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Introduction
If you want to learn how to build a predictive model to solve a particular kind of business problem, 
you’ll likely have no trouble finding a tutorial showing you how to extract features and train 
a model. This is a pleasant side effect of the popularity and importance of data science and 
machine learning across industries. However, solving business problems with machine learning 
isn’t just about training models or even about finding the best features; if you want a starting 
point for solving an entire problem from end to end, or if you want a realistic production workflow 
to test your system architecture or hardware performance, these tutorials leave many of the hard 
parts as an exercise for the reader.
In this book, we’re going to build up a complete solution for predicting customer churn — that 
is, answering the question “given what we know about this customer, is she likely to not renew 
her contract.” We’ll pay special attention to parts of the process that are underserved by most 
data science tutorials, such as analytic processing and federation of structured data, integrating 
enterprise data engineering pipelines with machine learning, and production model serving. 
We’ll also show you how to accelerate each stage of this workflow with GPUs.
For Cloudera customers, we’ll show you how to configure your Cloudera Data Platform Private 
Cloud to use Spark 3 and the RAPIDS Accelerator for Apache Spark and how to run a GPU 
accelerated job on Spark 3.
We’re going to start by level-setting: introducing a typical end-to-end machine learning 
workflow, describing some of the challenges of production machine learning systems, and 
explaining some of the specific concerns in understanding customer churn. We’ll then introduce 
the overall architecture for our churn prediction solution.
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Data Science Workflows and the Customer 
Churn Problem 
If we were talking about data science ten years ago, we’d have been referring to a broad 
discipline that combined domain expertise with elements of analytics, applied statistics, 
machine learning, computer science, and software engineering. A data scientist might have 
had to wear many hats: identifying business objectives; cleaning data; processing big data at 
scale; identifying features; encoding features; selecting and training models; building 
applications, reports, or dashboards that incorporate those models; and even managing 
infrastructure! Today, a typical data scientist is more specialized and only focuses on parts of 
the classic data science workflow: characterizing data, finding patterns, and training models. 
The other parts of the classic data science workflow are still important, but the practitioners 
who are responsible for them may have a range of titles other than “data scientist,” such as 
data engineer, application developer, machine learning engineer, or MLOps engineer. We’ll 
introduce such a workflow now (borrowing concrete terminology from this paper) in the 
context of the churn prediction problem.

Figure 1. A typical data science workflow, showing the human processes from discovery through production, and the team members and roles involved in each stage.

Codifying our Problem and Defining Metrics
The first step is formalizing the problem we’re trying to solve and defining metrics of success. 
On a long enough timeline, every customer will fail to renew their subscription, but producing a 
model that asserts “yes, eventually” for any customer isn’t useful. Similarly, we might be able to 
predict quite accurately that a customer who has begun the process to cancel her account is 
quite likely to churn in the near future, but such a prediction is also trivial. Ideally, we’d want a 
model that identifies signals in a customer’s profile that indicate that the customer may churn 
in the near but not immediate future and is thus a good candidate for targeted retention efforts. 
(We may also want to rank customers for more costly targeted retention efforts, e.g., by 
expected future lifetime account value.) The exact details of how we formally define churn will 
be specific to our business and the kinds of retention efforts we may have to offer; given such a 
definition, though, we can label historical customer records and build a target for our model.

Data scientists
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https://ieeexplore.ieee.org/document/9052717
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Data Federation, Cleaning, Analytics, and Labeling
Our focus next shifts to identifying, transforming, and federating potentially-relevant 
information about our customers. Ideally, we will be able to draw upon structured data, such as 
transactional databases, and unstructured data, such as call center transcripts. Federating this 
data in a single logical location, like a data lake, is an important step for further processing. We 
then need a way to ensure that the data we have meets a given standard for quality — for 
example, are all of the values in their expected ranges? Are certain records missing important 
values? — and can impose these constraints while processing raw data from the data lake and 
storing structured data in a data warehouse. Given a source of clean, structured data, we can 
support exploratory analytics, report generation, and ultimately machine learning model 
training. In many cases, ad hoc queries and reports are related to the problems we might want 
to solve with machine learning: for example, quarterly reports will likely cover net loss or gain in 
subscribers and revenue, and a database programmer or business analyst might use 
interactive queries to identify attributes of customer records that are correlated with various 
business outcomes.

Data in our data warehouse is cleaned, federated, structured, organized, and (can be) labeled 
with various outcomes of interest for each customer — these are all properties that make it 
easier to find patterns and business value in the data. But relational databases are also typically 
organized with normal forms, which means that all of the relevant data about a given customer 
may be spread across multiple more-or-less independent tables. In order to prepare to train a 
machine learning model, we’ll need to denormalize our data, and go from long-form tables of 
individual observations of a certain kind to wide-form tables whose rows include all of the 
relevant data we have for each customer.

Feature Engineering
The wide-form data we have now is analogous to rows in a database table or programming-
language objects — it’s structured in a convenient format for further programmatic 
manipulation, but it’s not in the most convenient format for training a machine learning model. 
The process of feature engineering is the process of building a technique to transform 
structured data into data that we can pass to a model training algorithm (or to a machine 
learning model). It entails identifying techniques to map from structured data to points in 
multidimensional space in such a way that the mapping preserves some interesting and 
meaningful structure of the source data; concretely, we might choose features, or attributes of 
each customer, and encode them as numbers so that we can encode customers as vectors of 
numbers in such a way that similar customers map to similar vectors and (ideally) there is a 
relatively straightforward way to partition the feature space between vectors for customers 
that churned and those for customers that have not yet churned. Once we’ve identified which 
features are important and how to encode them, we can develop a feature extraction pipeline 
that we can use to prepare structured data for model training or inference.

Model Selection, Training, Tuning, and Validation
At their core, machine learning models provide compact, useful summaries of datasets. In the 
case of the customer churn problem, our model will optimize a function to identify churning 
customers by identifying combinations of features that imply most strongly that a customer will 
churn. In order to train a model, we’ll need to identify a modeling approach, tune the 
parameters (called hyperparameters) that govern its behavior, and evaluate its performance 
before ultimately validating that it has generalized by testing its performance on held-out (and 
thus novel) data.

Analyze structured and 
unstructured data at scale

• CDP Data Warehouse offers a 
cloud-native data warehouse fully 
integrated with streaming, data 
engineering, and machine learning 
analytics.

• Cloudera Data Lake Service provides 
capabilities for governing, managing, 
securing and auditing data in a data lake.

Orchestrate and automate 
complex data pipelines

• CDP Data Engineering is the only 
cloud-native service purpose-built for 
enterprise data engineering teams. 
Building on Apache Spark, Data 
Engineering is an all-inclusive data 
engineering toolset that enables 
orchestration automation with Apache 
Airflow, advanced pipeline monitoring, 
visual troubleshooting, and 
comprehensive management tools to 
streamline ETL processes across 
enterprise analytics teams.

Accelerate the process of putting 
machine learning to work

• CDP Machine Learning is a scalable, 
open ML platform that helps streamline 
the process of getting analytic workloads 
into production and intelligently manage 
machine learning use cases across the 
business at scale. 

Federating data in a single logical 
location, like a data lake, is an 
important step for further 
processing.

Feature engineering: The process of 
building a technique to transform 
structured data into data that we can pass 
to a model training algorithm or to a 
machine learning model.

https://en.wikipedia.org/wiki/Database_normalization
https://www.cloudera.com/products/data-warehouse.html
https://www.cloudera.com/products/sdx/data-lake-service.html
https://www.cloudera.com/products/data-engineering.html
https://www.cloudera.com/products/machine-learning.html
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Production Deployment, Monitoring, and Feedback
Even a promising model can only be as useful as the system that employs it to solve a business 
problem. In order to deploy our model into production, we’ll need:

1. a way to reproduce the feature extraction pipeline and model training pipelines from our 
discovery workflow in a production environment as a production training pipeline (that is, a 
way to take raw, labeled data and produce a trained model), and

2. a way to publish our feature extraction pipeline and the trained model itself as a production 
inference pipeline (that is, a service that takes a record of novel data, extracts features from 
that record, and then uses the model to make a prediction about it)

In addition, we’ll need to monitor our model’s inputs and performance to account for concept 
drift, which occurs when the novel data we see have diverged enough from the data we trained 
our model on that its performance begins to materially suffer. (As a concrete example, a mobile 
network operator might start losing customers who spend a lot of time internationally roaming 
after a competitor introduces a free or reduced-cost international roaming plan – the 
underlying cause and phenomenon wouldn’t have been captured in any training data collected 
before the competitive landscape changed.) Other changes that could impact the 
performance of our model include changes to upstream data formats or schemas, the 
introduction of new customer categories, and long-term trends in the overall market.

Identifying concept drift is one of many problems that can cause us to return to an earlier stage 
and revisit engineering and modeling decisions that we made. At the end of this workflow, we 
may have a model with excellent predictive performance that ultimately doesn’t enable us to 
satisfy the right business metrics, requiring us to reevaluate how we formalized our problem. 
Concept drift may require retraining a model with additional training data. Unanticipated 
problems in production may suggest using a different overall approach. Finally, the processes 
of feature engineering and model training are often iterative since decisions made about how 
to encode features impact the kinds of models that we can effectively train.

CONCEPT DRIFT
When novel data diverge enough 
from training data that model 
performance begins to materially 
suffer.

Follow best practices for ML 
management and governance

• CDP Machine Learning’s MLOps 
capability enables one-click model 
deployment, model cataloging, and 
granular prediction monitoring to keep 
models secure and accurate across 
production environments.

https://www.cloudera.com/products/machine-learning.html
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Machine Learning Systems 

Figure 2. A mapping from machine learning workflow stages to the machine learning system components each informs.

We’ve just discussed a human process by which teams develop machine learning systems, but 
we haven’t explicitly described the machine learning systems they’ll create. Each of the stages 
we discussed in the discovery workflow informs some parts of a machine learning system. 
There’s a high-level view of one such mapping in the figure above, color-coded by the personas 
involved in each stage.

Some correspondences between human tasks and system components are obvious. For 
example, the feature engineering approach a data scientist chooses will directly inform the 
code that executes as part of a production feature extraction pipeline. The modeling 
approaches that are most successful in prototypes and experiments will inform the modeling 
approaches used in production, and so on.

Some correspondences are more interesting. Just as the discovery workflow is iterative and 
lessons learned in later stages can feed back to earlier stages, explicit data feedback is an 
important part of machine learning systems: new (potentially-labeled) data collected during 
the operation of a system can feed back to the data federation pipeline to be used for future 
training efforts, metrics about model performance and business metrics can be tracked in a 
single dashboard (as well as monitored for evidence of concept drift), and experimental 
approaches can be evaluated in production in parallel to established ones.

Data feedback is an important 
part of machine learning. New 
data collected during operation 
can feed back to the data 
federation pipeline for future 
training.
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Figure 3. A mapping from machine learning workflow stages to the machine learning system components each informs.

Overall Application Architecture
We’ll be building up a complete system for churn modeling and prediction, consisting of four 
applications that work together:

• a data federation application that integrates structured data from a data warehouse,

• an analytics application that prepares human- and machine-readable reports from the 
federated data in order to generate business insight and support a data scientist’s workflow,

• a feature extraction and model training application that takes flat training data and reports 
and generates a trained model and an inference pipeline, and

• an inference service that takes information about a customer and predicts whether or not 
that customer will churn.

As we’ve mentioned, we’re going to focus on some of the parts of machine learning systems 
that are often ignored in machine learning technique tutorials: accelerating data federation, 
query processing, and exploratory analytics; managing the connections between different 
system components developed by different teams in different languages; and making the best 
use of our compute resources across the lifecycle of our system.

Technology Stack
For our data federation and analytics applications, we’ll be using Apache Spark and the RAPIDS 
Accelerator for Apache Spark, which enables us to accelerate Spark data frame operations on 
NVIDIA GPUs. Our feature extraction and model training application will use accelerated 
libraries from RAPIDS and the Python data ecosystem, including cuDF, cuML, Dask, and 
XGBoost. We’ll use XGBoost and the RAPIDS Forest Inference Library to accelerate inference. 
There are some important differences in how these libraries work and how they achieve GPU 
acceleration; we’ll briefly examine each.

CLOUDERA DATA 
PLATFORM AND NVIDIA
To save time with model training, 
data scientists often turn to 
NVIDIA GPUs to accelerate 
machine learning and deep 
learning workloads. With 
Cloudera Data Platform (CDP), 
practitioners can leverage 
best-in-class GPU computing 
frameworks from NVIDIA natively 
on any cloud with CDP Public 
Cloud and/or on-premises with 
CDP Private Cloud.

Inference service

columnar data
in stable storage

summary reports
and field statistics

Legend of primary personas
Business analysts

Developers and ops
Data scientists
Data engineers

Data federation app

Input: multi-table “raw” data
Output: flat denormalized data

Data analytics app

Input: flat denormalized data
Output: summaries and reports

Feature extraction
and model training app

Input: flat training data
and summary reports
Output: trained model and
fitted inference pipeline
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Figure 4. A mapping from personas and workflow stages to RAPIDS libraries, including cuDF, cuML, and cuGraph, and ecosystem projects that interoperate with these.

RAPIDS
The RAPIDS libraries provide GPU-accelerated implementations of familiar interfaces from the 
Python data ecosystem. RAPIDS users are thus able to benefit from GPU acceleration without 
relying on implementing custom compute kernels or manually managing parallelism or 
transfers between host and device memory. cuDF is a GPU-accelerated data frame library, 
which allows users to manipulate collections of typed, structured data with an interface similar 
to the popular pandas library. cuML is a GPU-accelerated machine learning library that includes 
building blocks for feature extraction and model training pipelines that implement the 
scikit-learn estimator interface. cuML also includes a SHAP implementation for model 
explainability and FIL, an accelerated library for production inference with tree ensemble 
models. In addition, these libraries can share on-GPU data with other machine learning and 
deep learning libraries through the CUDA array interface. RAPIDS includes other libraries as 
well; the following figure shows how these map to the personas involved in the data science 
discovery lifecycle.

While cuDF and cuML provide familiar interfaces for data scientists, they are not drop-in 
replacements for pandas and scikit-learn respectively. Not every operation or algorithm in 
pandas and scikit-learn is amenable to GPU acceleration (or parallel execution in general); the 
RAPIDS libraries focus on implementing operations that can be accelerated on GPUs. A true 
drop-in replacement would need to transparently fall back to serial implementations for 
operations that won’t parallelize; since it’s possible, for example, to include serial scikit-learn 
estimators and transformers in a machine learning pipeline that uses cuML for performance-
sensitive stages, it’s possible for users to explicitly use serial implementations when necessary. 
In addition, most of the algorithms in RAPIDS are designed for a single node and a single GPU; 
in order to scale out or use more memory than is available in a single GPU, users will need to use 
the scale-out framework Dask in conjunction with cuDF and cuML, as in the following figure.

Data scientists

Data scientists

App developers, DevOps, and SRE

Business analysts

Codifying problem
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Data federation,
cleaning, and labeling
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engineering

Model training
and tuning

Model validation
and simulation

Production
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Continuous
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Data engineers

Apache Arrow columnar storage in GPU memory

cuDF cuML cuGraph TensorFlow, PyTorch, MXNet cuXfilter, pyViz, plotly

https://pandas.pydata.org
https://scikit-learn.org
https://medium.com/rapids-ai/gpu-accelerated-shap-values-with-xgboost-1-3-and-rapids-587fad6822
https://medium.com/rapids-ai/rapids-forest-inference-library-prediction-at-100-million-rows-per-second-19558890bc35
https://dask.org/
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The RAPIDS Accelerator for Apache Spark
The RAPIDS Accelerator for Apache Spark takes a different approach to accelerating data 
science workloads on GPUs. Fundamentally, its approach is to provide transparent acceleration 
of Spark data frame jobs via a Spark plugin that integrates with Spark’s query planner. The 
plugin rewrites data frame query plans in order to evaluate accelerable operations with 
implementations that use libcudf (the C++ library providing accelerated data frame 
functionality to the Python cuDF library) to execute on the GPU. Operations that cannot be 
accelerated will run on the CPU with Spark’s built-in implementations; if there is a branch of a 
query plan that includes both accelerable and non-accelerable operations, the RAPIDS 
Accelerator plugin will automatically insert transfers between host and device memory so that 
both kinds of operations can work together transparently to execute a given query plan. The 
RAPIDS Accelerator for Apache Spark also provides an accelerated shuffle implementation 
using UCX (for data transfer within clusters) and integration with GPU-accelerated XGBoost.

Figure 5. The architecture of GPU-acclerated Spark. Gray blocks in the bottom layer are the underlying resource managers Spark works with; the middle block is Spark’s core task scheduler, resource 
manager, and low-level distributed collection API; the blocks on top are Spark’s high-level APIs. Purple boxes indicate where extensions can provide GPU acceleration to Spark applications.

Transparent acceleration has both a benefit and a cost for users. The benefit of transparent 
acceleration is that users can expect that a Spark application that runs successfully on the CPU 
will also run successfully with the RAPIDS Accelerator for Apache Spark enabled. The cost of 
transparent acceleration is that the performance improvement any given application can 
expect may be difficult to predict and will be a function of several factors: what percentage of 
its runtime it spends in accelerable data frame operations, how much work can be performed 
on the GPU between CPU-only operations, and how much each accelerable operation can 
improve when running on the GPU. Paradoxically, in order to take full advantage of transparent 
acceleration, data engineers and application developers may need to consider which parts of 
their application can be accelerated in order to make small changes for maximum 
performance. The following figure shows part of a query plan in which some operations are 
accelerated but one aggregate operation runs on the CPU.

PUSH ML PERFORMANCE 
BOUNDARIES
The RAPIDS Accelerator for 
Apache Spark is now integrated 
with CDP Private Cloud Base, 
enabling enterprises to 
accelerate data pipelines and 
push the performance 
boundaries of data and machine 
learning (ML) workflows. Drive 
faster AI adoption and deliver 
better business outcomes 
without changing any code.

Spark core (distributed collections, memory manager, task scheduler)

Standalone KubernetesYARN

Graph processingMachine learningSQL and data frames Streaming

UCX

XGBoostlibcudf
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Finally, transparent acceleration depends on applications using Spark’s data frame and query 
abstractions. Because data frame operations are specified in an expressive but high-level API, 
it is possible to reorganize and rewrite query plans before they are executed, including 
replacing operations with higher-performance implementations (Spark itself takes advantage 
of this by generating native code to execute portions of query plans). Indeed, all data frame 
operations and SQL queries are planned and transformed by Spark before execution, and Spark 
itself provides a plugin layer so that external code (like the RAPIDS Accelerator) can alter the 
behavior of the query planner. Spark’s lower-level resilient distributed dataset (RDD) API allows 
users to execute arbitrary code on partitioned distributed collections, but this additional 
flexibility of expression for application developers comes at the cost of flexibility of execution 
for Spark itself: since it is not, in general, feasible to safely transform arbitrary host-language 
code, Spark must treat the functions passed into its RDD API as opaque.

Figure 6. A subset of an accelerated Spark query plan, showing GPU-accelerated portions, host-device and device-host transfers, and operations falling back to execute on the CPU.
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Synthesizing Data at Scale
We’ll start with where we get the data. A machine learning system is only as good as the data 
you build it with, so this is an important detail. However, since generating our synthetic data is 
not strictly a part of the final system, impatient readers are welcome to skip ahead to the next 
chapter where we describe the data federation app.

It’s understandably difficult to find real-world customer data with which to demonstrate data 
processing and machine learning techniques. We began with an open-source synthetic dataset 
that is meant to be representative of a telecommunications company’s customer records. 
Because this data set is open-source, there are several excellent extant tutorials using it as an 
example of feature engineering and model training techniques; some of these even involve 
deploying a model into production. However, all of these tutorials — like many data science 
tutorials — do not treat two important aspects of contemporary enterprise data pipelines:

1. They operate at minimal scale, since the source dataset is roughly 7,000 records. This is 
an excellent scale to let users experiment with modeling techniques quickly on modest 
hardware (like a laptop or tablet), but operating on a few thousand rows doesn’t provide an 
opportunity to engage many of the challenges of processing larger datasets and training 
models at realistic scale.

2. They begin with denormalized, wide-form data as it might appear on a data scientist’s desk, 
not with multiple tables from a data warehouse that need to be aggregated and federated in 
order to integrate all of the data we have about each given customer.

Our goal in this blueprint is to show an interesting churn modeling problem at meaningful scale, 
to show the query workloads that a data engineer might develop to prepare wide-form data for 
a data scientist, and to show exploratory analytic workloads that might support business 
intelligence applications. In order to do that, we’ll need more data and normalized data. Here’s 
how we’ll get there:

1. We’re going to augment the initial dataset by generating multiple customers that are 
essentially identical to each customer in the initial dataset, and

2. For each row in the augmented dataset, we’re going to generate records in multiple tables 
corresponding to a normalized schema as it might exist in an enterprise data warehouse.

Specifically, the original dataset has the following attributes:

NAME TYPE DOMAIN OR NOTES
customerID string
Gender categorical “Male” or “Female”
SeniorCitizen boolean
Partner boolean
Dependents boolean
Tenure int the age of the account in months
PhoneService boolean
MultipleLines categorical “yes,” “no,” or “no phone service”
InternetService boolean
OnlineSecurity categorical “yes,” “no”, or “no internet service”
OnlineBackup categorical “yes,” “no”, or “no internet service”
DeviceProtection categorical “yes,” “no”, or “no internet service”
TechSupport categorical “yes,” “no”, or “no internet service”
StreamingTV categorical “yes,” “no”, or “no internet service”
StreamingMovies categorical “yes,” “no”, or “no internet service”

A machine learning system is 
only as good as the data you 
build it with.

https://github.com/IBM/telco-customer-churn-on-icp4d/tree/master/data
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NAME TYPE DOMAIN OR NOTES
Contract categorical “Month-to-month”, “One year”, or “Two year”
PaperlessBilling boolean
PaymentMethod categorical “Credit card (automatic)”, “Mailed check”, “Bank 

transfer (automatic)”, “Electronic check”
MonthlyCharges currency a dollar amount
TotalCharges currency
Churn boolean the label we’re ultimately interested in predicting

When we generate synthetic data, we derive five related tables from the source data: 
customer metadata (basic information about our customer), billing events (account 
activations, terminations, and monthly charge events), phone features and internet features 
(long-form tables of pairs indicating that a given customer has enabled a given service on her 
account), and account features (specific features enabled on given customer accounts).

Some of the tables we’re deriving contain long-form data, which is more convenient for 
manipulation and analysis but less convenient for model training than the wide-form data in the 
source dataset. (In database design terms, long-form data is normalized.) The next two tables 
show the difference between long- and wide-form data on four customers and three features. 
The first, long-form table has one observation in each row: a given customer for whom a given 
feature has a certain value. The second, wide-form table has several observations in each row: 
for each customer, a row contains all of the feature information we’ve collected. Note that the 
long-form table does not contain a row for every customer: customer 7469-LKBCI, who has 
none of the relevant features, is not collected in the long-form table. This implies that we need 
a separate canonical list of customers outside of long-form feature tables.

CUSTOMER ID FEATURE VALUE
7590-VHVEG Internet Service DSL
6388-TABGU Internet Service DSL
9237-HQITU Internet Service Fiber optic
7590-VHVEG OnlineBackup Yes
6388-TABGU OnlineSecurity Yes
6388-TABGU OnlineBackup Yes

CUSTOMER ID INTERNET SERVICE ONLINE SECURITY ONLINE BACKUP
7590-VHVEG DSL No Yes
9237-HQITU Fiber optic No No
6388-TABGU DSL Yes Yes
7469-LKBCI No No service No service
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Data Federation
In this chapter, we’ll examine the first part of our blueprint: a data engineering pipeline that 
federates and integrates structured transactional data and prepares it for further processing 
by a data scientist, with a special focus on ensuring our pipeline can take advantage of the 
RAPIDS Accelerator for Apache Spark.

Generating Wide Tables from Customer Account Data
Our source data consists about five normalized tables about customer accounts and activity. 
Given these data sources, we can simulate the data engineering pipeline that would prepare a 
flat, wide table for a data scientist to process and model. Essentially, this consists of multiple 
joins, aggregations, and transformations, including

• Rolling up billing event counts (to calculate account tenure) and billing amounts (to calculate 
lifetime account value),

• Identifying whether an customer is a senior citizen or not based on their birthdate, and
• Reconstructing wide-form account features (services and billing data) from long-form tables

We’ve implemented this pipeline with a Python application that uses Apache Spark. Just to give 
you a flavor for the kind of application it is, the code that calculates account tenure and lifetime 
value looks like this:

counts_and_charges = billing_events.groupBy( 
    "customerID", "kind" 
).agg( 
    F.count(billing_events.value).alias("event_counts"), 
    F.sum(billing_events.value).alias("total_charges") 
)

And the code that identifies churning customers looks like this:

terminations = billing_events.where(
    F.col("kind") == "AccountTermination"
).select(
    F.col("customerID").alias("Churn")
)

churned = customers.join(
    terminations, 
    customers.customerID == terminations.Churn,
    how="leftouter"
).select(
    "customerID", 
    F.when(F.col("Churn").isNull(),
    F.lit(False)).otherwise(F.lit(True)).alias("Churn")
)

In general, it’s a pretty standard Spark application that reads structured data, processes some 
queries, aggregations, and joins, and then writes structured output.

Making analytics jobs and 
queries as fast as possible makes 
the most of human time and 
attention.

https://nvidia.github.io/spark-rapids/
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Improving Analytics Performance
Remember that our overall data science workflow isn’t a waterfall; it’s a cycle. Since we might 
want to change the nature of our analytics job in order to meet new downstream requirements 
(or to fix bugs), we might have to rerun the job at any time. Since humans will often be waiting 
for the result of analytics jobs or ad hoc analytic queries, we want these jobs to be as fast as 
possible to make the most of human time and attention. Here are some techniques we used 
while developing the federation application; you can use these as well to improve the 
performance of your Spark query workloads. 

Inspect
Use the tools that Spark provides to help understand what your job is actually doing: look at the 
web UI to determine where your application is spending time and ensure that it is adequately 
using all of the resources it has reserved. Inspect the query plans generated by DataFrame.
explain to ensure that a seemingly-simple query doesn’t imply a pathological execution plan.

Upgrade and Optimize
There are often engineering costs involved with validating applications against new versions of 
frameworks, and enterprises can be conservative about upgrading Spark. But if you can run 
your application on Spark 3.0 or greater, you’ll benefit from improved performance relative to 
the 2.x series, especially if you enable Adaptive Query Execution, which will use runtime 
statistics to dynamically choose better partition sizes, more efficient join types, and limit the 
impact of data skew.

Accelerate and Understand
Once you’re on Spark 3.0, consider using the RAPIDS Accelerator for Apache Spark, which has 
the potential to dramatically speed up DataFrame-based Spark applications. However, like any 
advanced optimization, you’ll want to make sure you understand how to make the most of it. 
Here are some concrete tips:

• Some applications are better candidates for GPU acceleration than others. The RAPIDS 
Accelerator for Apache Spark works by translating query plans to run on columnar data in GPU 
memory and thus it cannot accelerate code that processes RDDs or operates on data one row 
at a time. Applications that spend a lot of time using RDDs as well as DataFrames, or that use 
complex user-defined functions, will not see the maximum possible speedup.

• Start with the suggested configuration in the tuning guide. Remember that if you want to use 
more than one GPU on a given system, you’ll need to run more than one Spark worker process 
on that system — each JVM will only be able to access one GPU.

• Once you’re up and running with the GPU, make sure to use the tools available to you again. 
This means revisiting the Spark web UI and DataFrame.explain — but this time, look out 
for query plan nodes that don’t run on the GPU. You can also configure the plugin to tell you 
why certain parts of your application did or did not run on the GPU by setting the property 
spark.rapids.sql.explain to ALL or NOT_ON_GPU; if you set this option, make sure 
you have access to console output from your application.

https://spark.apache.org/docs/latest/web-ui.html
https://spark.apache.org/docs/latest/sql-performance-tuning.html#adaptive-query-execution
https://nvidia.github.io/spark-rapids/
https://nvidia.github.io/spark-rapids/docs/tuning-guide.html
https://nvidia.github.io/spark-rapids/docs/tuning-guide.html
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Diving in a bit to understand how the application was executing on the GPU made it possible to 
unlock additional performance. When we looked at the query graph, we were able to determine 
that two parts of the query were unable to run on the GPU as we had configured the 
application: aggregating total lifetime account values and determining whether or not a 
customer with a given birthdate is a senior citizen. These two issues caused parts of the query 
to execute on CPU and parts to execute on the GPU, meaning that there were more transfers of 
data between the CPU and the GPU than strictly necessary; as it turned out, only the first one 
seriously impacted performance.

Fortunately, the fix was very simple: the RAPIDS Accelerator for Apache Spark will not perform 
aggregates on floating-point values by default because the roundoff behavior may be different 
from a CPU execution due to parallel execution.

• However, we can accelerate these operations as well if we set the property spark.rapids.
sql.variableFloatAgg.enabled to True. (If we were processing real money, we’d use 
a more precise number format, like arbitrary-precision decimals, but for modeling behavior, 
floating-point values are a great choice. We’ll see some of the tradeoffs involved in using 
decimals later in the book.)
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Reporting and Exploratory Analytics
The first step in the data science discovery workflow is formalizing the problem we’re trying to 
solve, which depends on understanding the data and understanding the business. A well-
defined problem can help to codify the ways in which our analytics efforts ultimately provide 
business value (rather than merely achieving excellent model performance metrics). 
Exploratory analysis can support formalizing the problem, developing these necessary 
understandings, and more:

1. Understanding the business impact of an effective solution is important for 
prioritizing efforts.

2. Business context helps practitioners identify finer-grained success criteria.

3. Data scientists and business analysts need to define meaningful prediction targets for 
the models they’ll ultimately be training.

4. Better understanding of the data can inspire novel modeling approaches.

5. Exploratory analysis can support the data science workflow’s “inner loop” of feature 
extraction, model training, and validation and simulation.

Prioritizing Efforts to Maximize Business Impact
Understanding the business impact of an effective solution is important for prioritizing efforts 
(not to mention that individual data scientists, like other employees, are interested in avenues 
to demonstrate the quantifiable impact of their work). While data scientists may take great 
pride in producing robust, general models with minimal prediction error, the business impact 
— not merely the predictive power of their models — should guide their efforts, and exploratory 
analysis is an important tool to identify the extent to which improved predictive performance 
might affect business metrics.

Tightening Success Criteria with Business Context
Business context helps practitioners identify finer-grained success criteria. While any 
organization wants to treat every customer equally in providing excellent service, it may not 
want to treat the risk of churn for every customer as equally important to the business. We may 
thus be interested in ranking churn risks by their expected remaining lifetime account value, by 
the expected cost to acquire a comparable account, or by other metrics.

Defining Meaningful Prediction Targets
Data scientists and business analysts need to define meaningful prediction targets for the 
models they’ll ultimately be training. On a long enough timeline, every customer will fail to 
renew their subscription, but a model that asserts “yes, eventually” for every customer isn’t 
useful or actionable. A model that exclusively identifies that customers who have recently 
begun the process to close their accounts are likely to churn is similarly dubious. Exploratory 
analysis can inform a carefully-crafted prediction target by enabling data scientists and 
analysts to simulate the plausibility and impact of various prediction targets on historical data.

Inspiring Novel Modeling Approaches
Better understanding of the data can inspire novel modeling approaches. For example, two 
customer attributes may not be strongly correlated with churning individually but their 
combination may be. Exploratory analysis can thus inform the process of feature engineering.

Supporting Discovery Workflows with Ubiquitous Exploratory Analysis
Exploratory analysis can support the data science workflow’s “inner loop” of feature extraction, 
model training and tuning, and validation and simulation in two ways: directly, by providing 
summary statistics, domains for categorical features, and distributions for numerical features, 
and indirectly, by enabling data scientists to disregard uninformative features before training a 
model and thus making the model and the system built around it more robust.

Understanding the business 
impact of an effective solution is 
important for prioritizing efforts.
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Business Analytics and Reporting
While exploratory analysis is a valuable part of the early stages of the data science discovery 
workflow, similar workloads are important in production and can provide insight and value even 
without training a model. The main difference between these workloads is one of context: while 
exploratory analysis is generally ad hoc, business analytics workloads are typically run regularly 
in production. Techniques or queries used in exploratory analysis may inform or even become 
parts of automated reporting or analytics workloads.

Analytics in Churn Modeling
In our blueprint application, we’ll incorporate a pair of analytics workloads. The first workload 
produces a machine-readable summary report that is — along with the single wide table of 
customer data we described earlier — part of the input to the model training application. The 
second workload produces a series of reports intended to help analysts and stakeholders better 
understand the factors that make customers more likely to renew or churn, in order to guide 
human decisions in the modeling process as well as to inform business decisions and service 
offerings that incorporate effective renewal incentives. We’ll now examine each of these in turn.

Calculating Feature Summaries and Domains
Part of understanding our data is understanding each feature individually; this is also a 
prerequisite to effective feature engineering or model training. Basic summary statistics —  
like minimum, count, mean, median, variance, and so on — are useful but may be insufficient 
to characterize a dataset alone, since radically different datasets may have similar summary 
statistics. A famous example of this phenomenon is Anscombe’s Quartet, which is four 
two-variable datasets that have identical means, variances, correlations, and linear 
relationships but which exhibit obviously different shapes when plotted.

Figure 7. Anscombe’s Quartet, a collection of synthetic datasets that have identical summary statistics but different shapes.

In order to more faithfully characterize our datasets, we’ll need to compute more descriptive 
summaries of individual features in addition to the basic descriptive statistics. One such 
summary is the cumulative distribution, which can both inform feature engineering decisions 
and provide valuable business context. For example, in many cases, it is more useful to know 
that a given customer’s monthly spend is in the 97th percentile than to know that that 
customer’s monthly spend is two standard deviations above the mean. Apache Spark supports 
efficient techniques for calculating approximate quantiles of columns in data frames, which we 
can use to produce cumulative distributions of these values.

We also produce a report including basic summary statistics, such as mean, minimum, maximum, 
and variance (for numeric features) and the identities and counts of distinct values (for discrete 
or categorical columns). These statistics and distributions are useful in themselves but will also 
make the data scientist’s job easier, since they can inform feature encoding approaches.

Our blueprint application will produce:

1. A machine-readable summary report 
that will be part of the input for 
model training.

2. A series of reports to highlight 
factors that make customers more 
likely to renew or churn.
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Exploratory Analysis and Reporting in Churn Modeling
The second component of our analytics workload simulates both exploratory analysis and 
scheduled reporting by producing two kinds of reports:

1. A set of data cubes, or multidimensional spreadsheets, showing the counts of customers 
with combinations of given attributes that churned or renewed, and

2. A collection of rollup reports showing the total lifetime account value of every customer that 
churned in a given quarter.

The data cube reports enable analysts to quickly drill down on a combination of features and 
see which are most strongly correlated with renewal or churn. It is worth noting that many 
real-world analytics pipelines may end at this point, since reports like this can provide 
actionable insight even without a trained predictive model. The next two figures show the value 
of these reports: by drilling down to plot the interaction of a customer’s contract status 
(month-to-month, annual, or two-year) and their tenure in quarters, we can clearly establish 
that most of the customers who churn are relatively new and on month-to-month contracts.

Figure 8. The distributions of a customer’s tenure and contract status for customers who renewed (on the left) and who churned (on the right), demonstrating that new customers on 
month-to-month contracts represent the majority of churning customers.
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These figures show another advantage of exploratory analysis and reporting: since some of 
the features we consider in our summaries are numeric (e.g., months of tenure), we can also 
use data cube reports to investigate the impact of various quantization or bucketing strategies. 
Instead of seeing how many customers churned at each discrete month of tenure, for example, 
we might be more interested in abstracting the tenure of our customers by looking at how many 
quarters, half-years, or years an account had been active. (In our plots, we bucketed customer 
tenures by quarter.) Identifying how best to abstract numeric data in order to convey the 
most information to human stakeholders and to downstream analyses alike is another goal of 
exploratory analysis.

Performance Improvements and Future Work
In the first chapter, we saw how the RAPIDS Accelerator for Apache Spark could execute data 
federation workloads on NVIDIA GPUs. While some organizations may execute federation 
pipelines regularly, others may execute federation pipelines only when the pipelines 
themselves or the source data materially change. Exploratory analytics and reporting are more 
performance-sensitive, though: exploratory analytics workloads are typically interactive and 
human time is precious, and reporting workloads may be batch scheduled but run regularly. 
These workloads are also typically more complex than data federation workloads and thus also 
more amenable to performance improvement. By executing our analytics workloads on NVIDIA 
GPUs with the RAPIDS Accelerator for Apache Spark, we were able to achieve speedups of 
nearly 700% relative to CPU execution.

700%
700% increase in speed

by executing analytics workloads on 
NVIDIA GPUs with the RAPIDS Accelerator 
for Apache Spark, relative to CPU 
execution
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Best Practices for Accelerated Analytics
In this chapter, we finish presenting the analytics and federation components of our application 
and explain some best practices for getting the most out of Apache Spark and the RAPIDS 
Accelerator for Apache Spark.

Architecture Review
Recall that our blueprint application includes a federation workload and a pair of analytics 
workloads.

1. The federation workload produces a single denormalized wide table of data about each 
customer drawn from aggregating data spread across five normalized tables of observations 
related to different aspects of customers’ accounts.

2. The first analytic workload produces a machine-readable summary report of value 
distributions and domains for each feature.

3. The second analytic workload produces a series of illustrative business reports about 
customer outcomes.

We’ve implemented these three workloads as a single Spark application with multiple phases:

1. The app federates raw data from multiple tables in HDFS (which are stored as Parquet files) 
into a single wide table.

2. Because the wide table is substantially smaller than the raw data, the app then reformats 
the wide output by coalescing to fewer partitions and casting numeric values to types that 
will be suitable for ML model training. The output of this phase is the source data for ML 
model training.

3. The app then runs the analytics workloads against the coalesced and transformed wide 
table, first producing the machine-readable summary report and then producing a 
collection of rollup and data cube reports.

Performance Considerations
Parallel Execution
For over 50 years, one of the most important considerations for high performance in computer 
systems has been increasing the applicability of parallel execution. (We choose, somewhat 
arbitrarily, to identify the development of Tomasulo’s algorithm in 1967, which set the stage for 
ubiquitous superscalar processing, as the point at which concerns about parallelism became 
practical and not merely theoretical.) In the daily work of analysts, data scientists, data and ML 
engineers, and application developers, concerns about parallelism often manifest in one of a 
few ways; we’ll look at those now.

WHEN SCALING OUT, PERFORM WORK ON A CLUSTER.
If you’re using a scale-out framework, perform work on a cluster instead of on a single node 
whenever possible. In the case of Spark, this means executing code in Spark jobs on executors 
rather than in serial code on the driver. In general, using Spark’s API rather than host-language 
code in the driver will get you most of the way there, but you’ll want to ensure that the Spark 
APIs you’re using are actually executing in parallel on executors.

OPERATE ON COLLECTIONS, NOT ELEMENTS; ON COLUMNS, NOT ROWS.
A general best practice to exploit parallelism and improve performance is to use specialized 
libraries that perform operations on a collection at a time rather than an element at a time. In 
the case of Spark, this means using data frames and columnar operations rather than iterating 
over records in partitions of RDDs; in the case of the Python data ecosystem and RAPIDS, it 
means using vectorized operations that operate on entire arrays and matrices in a single library 
call rather than using explicit looping in Python. Crucially, both of these approaches are also 
amenable to GPU acceleration.

One of the most important 
considerations for high 
performance in computer 
systems is parallel execution.

https://nvidia.github.io/spark-rapids/
https://nvidia.github.io/spark-rapids/
https://en.wikipedia.org/wiki/Tomasulo_algorithm
https://numpy.org/doc/stable/user/whatisnumpy.html#why-is-numpy-fast
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AMORTIZE THE COST OF I/O AND DATA LOADING.
I/O and data loading are expensive, so it makes sense to amortize their cost across as many 
parallel operations as possible. We can improve performance both by directly reducing the cost 
of data transfers and by doing as much as possible with data once it is loaded. In Spark, this 
means using columnar formats, filtering relations only once upon import from stable storage, 
and performing as much work as possible between I/O or shuffle operations.

Better Performance Through Abstraction
In general, raising the level of abstraction that analysts and developers employ in apps, queries, 
and reports allows runtimes and frameworks to find opportunities for parallel execution that 
developers didn’t (or couldn’t) anticipate.

USE SPARK’S DATA FRAMES.
As an example, there are many benefits to using data frames in Spark and primarily developing 
against the high-level data frame API, including faster execution, semantics-preserving 
optimization of queries, reduced demand on storage and I/O, and dramatically improved 
memory footprint relative to using RDD based code. But beyond even these benefits lies a 
deeper advantage: because the data frame interface is high-level and because Spark allows 
plug-ins to alter the behavior of the query optimizer, it is possible for the RAPIDS Accelerator for 
Apache Spark to replace certain data frame operations with equivalent — but substantially 
faster — operations running on the GPU.

TRANSPARENTLY ACCELERATE SPARK QUERIES.
Replacing some of the functionality of Spark’s query planner with a plug-in is a particularly 
compelling example of the power of abstraction: an application written years before it was 
possible to run Spark queries on GPUs could nevertheless take advantage of GPU acceleration 
by running it with Spark 3.1 and the RAPIDS Accelerator.

MAINTAIN CLEAR ABSTRACTIONS.
While the potential to accelerate unmodified applications with new runtimes is a major 
advantage of developing against high-level abstractions, in practice, maintaining clear 
abstractions is rarely a higher priority for development teams than shipping working projects on 
time. For multiple reasons, details underlying abstractions often leak into production code; 
while this can introduce technical debt and have myriad engineering consequences, it can also 
limit the applicability of advanced runtimes to optimize programs that use abstractions cleanly.

CONSIDER OPERATIONS SUITABLE FOR GPU ACCELERATION.
In order to get the most out of Spark in general, it makes sense to pay down technical debt in 
applications that work around Spark’s data frame abstraction (e.g., by implementing parts of 
queries as RDD operations). In order to make the most of advanced infrastructure, though, it 
often makes sense to consider details about the execution environment without breaking 
abstractions. To get the best possible performance from NVIDIA GPUs and the RAPIDS 
Accelerator for Apache Spark, start by ensuring that your code doesn’t work around 
abstractions, but then consider the types and operations that are more or less amenable to 
GPU execution so you can ensure that as much of your applications run on the GPU as possible. 
We’ll see some examples of these next.

Types and Operations
Not every operation can be accelerated by the GPU. When in doubt, it always makes sense to 
run your job with spark.rapids.sql.explain set to NOT_ON_GPU and examine the 
explanations logged to standard output. In this section, we’ll call out a few common pitfalls, 
including decimal arithmetic and operations that require configuration for support.

Get the most out of Spark by 
ensuring that as much of your 
applications run on the GPU as 
possible.

https://nvidia.github.io/spark-rapids/
https://nvidia.github.io/spark-rapids/
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BEWARE OF DECIMAL ARITHMETIC.
Decimal computer arithmetic supports precise operations up to a given precision limit, can 
avoid and detect overflow, and rounds numbers as humans would while performing pencil-and-
paper calculations. While decimal arithmetic is an important part of many data processing 
systems (especially for financial data), it presents a particular challenge for analytics systems. 
In order to avoid overflow, the results of decimal operations must widen to include every 
possible result; in cases in which the result would be wider than a system-specific limit, the 
system must detect overflow. In the case of Spark on CPUs, this involves delegating operations 
to the BigDecimal class in the Java standard library and precision is limited to 38 decimal 
digits, or 128 bits. The RAPIDS Accelerator for Apache Spark can currently accelerate 
calculations on decimal values of up to 18 digits, or 64 bits.

We’ve evaluated two configurations of the churn blueprint: one using floating-point values for 
currency amounts and one using decimal values for currency amounts (which is the 
configuration that the performance numbers we’re currently reporting is running against). 
Because of its semantics and robustness, decimal arithmetic is more costly than floating-point 
arithmetic, but it can be accelerated by the RAPIDS Accelerator plugin as long as all of the 
decimal types involved fit within 64 bits.

CONFIGURE THE RAPIDS ACCELERATOR TO ENABLE MORE OPERATIONS.
The RAPIDS Accelerator is conservative about executing operations on the GPU that might 
exhibit poor performance or return slightly different results than their CPU-based counterparts. 
As a consequence, some operations that could be accelerated may not be accelerated by 
default, and many real-world applications will need to enable these to see the best possible 
performance. We saw an example earlier, in which we had to explicitly enable floating-point 
aggregate operations in our Spark configuration by setting spark.rapids.sql.
variableFloatAgg.enabled to true. Similarly, when we configured the workload to use 
decimal arithmetic, we needed to enable decimal acceleration by setting spark.rapids.
sql.decimalType.enabled to true.

The plugin documentation lists operations that can be supported or not by configuration and 
the reasons why certain operations are enabled or disabled by default. In addition to floating-
point aggregation and decimal support, there are several classes of operations that production 
Spark workloads are extremely likely to benefit from enabling:

• cast operations, especially from string to date or numeric types or from floating-point types 
to decimal types.

• string uppercase and lowercase (e.g., SELECT UPPER(name) FROM EMPLOYEES) 
are not supported for some Unicode characters in which changing the case also changes 
the character width in bytes, but many applications do not use such characters. You can 
enable these operations individually or enable them and several others by setting  
spark.rapids.sql.incompatibleOps.enabled to true.

• reading specific types from CSV files; while reading CSV files is currently enabled by default 
in the plugin (spark.rapids.sql.format.csv.enabled), reading invalid values of 
some types (numeric types, dates, and decimals in particular) will have different behavior on 
the GPU and the CPU and thus reading each of these will need to be enabled individually.

ACCELERATE DATA INGEST FROM CSV FILES.
CSV reading warrants additional attention: it is expensive and accelerating it can improve the 
performance of many jobs. However, because the behavior of CSV reading under the RAPIDS 
Accelerator may diverge from Spark’s behavior while executing on CPUs and because of the 
huge dynamic range of real-world CSV file quality, it is particularly important to validate the 
results of reading CSV files on the GPU. One quick but valuable sanity check is to ensure that 
reading a CSV file on the GPU returns the same number of NULL values as reading the same file 
on the CPU. Of course, there are many benefits to using a self-documenting structured input 
format like Parquet or ORC instead of CSV if possible.

Some operations that could be 
accelerated may not be 
accelerated by default.

A data frame query that filters two input 
relations before — rather than after — 
joining the results may produce the same 
results much more efficiently. 

https://docs.oracle.com/javase/7/docs/api/java/math/BigDecimal.html
https://nvidia.github.io/spark-rapids/docs/configs.html
https://nvidia.github.io/spark-rapids/docs/compatibility.html#casting-between-types
https://nvidia.github.io/spark-rapids/docs/configs.html#supported-gpu-operators-and-fine-tuning
https://nvidia.github.io/spark-rapids/docs/configs.html#supported-gpu-operators-and-fine-tuning
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Figure 10. A depiction of executing a data frame query that joins two data frames and then filters the results. If the predicate is sufficiently selective, most of the output tuples will be discarded.

Figure 11. A depiction of executing a data frame query that filters two input relations before joining the results. If the predicate can be evaluated on each input relation independently, 
this query execution produces the same results as the query execution in the previous figure, but much more efficiently.

In general, this sort of transformation can improve performance. As an example, consider a 
query that, as written, joins two data frames on the values of a column and then filters the 
results based on a selective predicate. Executing this query as written, as in Figure 2, will likely 
generate a large relation from the join and discard most of the results. When possible, it will 
often be more efficient to execute the filter before executing the join, as in Figure 3. Doing so 
will reduce the cardinality of the join, eliminate comparisons that will ultimately be 
unnecessary, decrease memory pressure, and potentially even reduce the number of data 
frame partitions that need to be considered in the join.

However, these optimizations can have counterintuitive consequences and aggressive query 
reordering may negatively impact performance on the GPU if the operation that is moved 
towards the root of the query plan is only supported on CPU or if it generates a value of a type 
that is not supported on the GPU. When this happens, a greater percentage of the query plan 
may execute on the CPU than is strictly necessary. You can often work around this problem and 
improve performance by dividing a query into two parts that execute separately, thus forcing 
CPU-only operation near the leaves of a query plan to execute only after the accelerable parts 
of the original query run on the GPU.

AVOID UNINTENDED CONSEQUENCES OF QUERY OPTIMIZATION.
The RAPIDS Accelerator transforms a physical query plan to delegate certain operators to the 
GPU. By the time Spark has generated a physical plan, though, it has already performed several 
transformations on the logical plan, which may involve reordering operations. As a 
consequence, an operation near the end of a query or data frame operation as it was stated by 
the developer or analyst may get moved from a leaf of the query plan towards the root.

2 3 output1

output31 2

http://spark.apache.org/docs/latest/sql-ref-syntax-qry-explain.html
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Interoperability Considerations
Our focus now shifts from analytics and data engineering to machine learning. Production 
machine learning systems are typically designed, developed, and maintained by cross-functional 
teams, including data engineers, business analysts, data scientists, machine learning engineers, 
application developers, and devops and site reliability engineers. As we saw in the introduction, 
different individuals and teams are responsible for different components at different stages of a 
system’s lifecycle. In this chapter, we’ll cover some of the concerns involved in sharing data 
between data engineering and analytics teams and data science teams.

Preserve Performance While Sharing Parquet Datasets Across Ecosystems

Figure 12. A detail of our blueprint architecture, focusing on the handoff point between data federation and model training applications.

The interfaces between software components developed by different teams are an important 
part of how the humans in these teams collaborate. In our application, the interface between 
data federation and analytics and machine learning is federated wide-table data in an Apache 
Parquet file. Parquet is an ubiquitous columnar format that enjoys excellent support in both the 
(primarily JVM-based and data engineering-focused) big data ecosystem and the (primarily 
Python-based) machine learning and experimental data science ecosystem. However, that 
ubiquity can mask some challenges in sharing data between teams and across environments. 
In order to understand those challenges, let’s briefly review how Apache Parquet stores data.

The interfaces between software 
components developed by 
different teams are an important 
part of how the humans in these 
teams collaborate.

columnar data
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A row-oriented representation of these data would store each record contiguously in a file,  
so that all of the field values for a given row are adjacent on disk, as in the following figure 
(the first record is highlighted):

Figure 14. A portion of the billing events table, represented in a row-oriented storage format, with field values from the same record adjacent to one another

Understanding Parquet

Apache Parquet is a columnar format for structured data, meaning that data are stored so that 
values in each column are physically adjacent (rather than so that each value in a given row is 
physically adjacent). We might imagine an excerpt from our billing events data as laid out in an 
abstract table representation like this:

Figure 13. An abstract representation of tabular data, with records in rows and fields in columns
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A column-oriented representation, however, stores all of the values for each field contiguously, 
as in the following figure (the first record is highlighted again):

Figure 15. A portion of the billing events table, represented in a column-oriented storage format, with a separate logical file for the values in each column

Columnar representations are often more efficient for analytics use cases, in which it is more 
likely to operate on every value in a column (or field) than every value in a row (or record), and in 
which several fields in a record may be projected out and may not contribute to a result.1  Because 
the values for a given field in consecutive records are adjacent on disk and in memory, operating 
on a given field value for every record involves reading from disk or memory sequentially and can 
be accelerated by caching and prefetching at multiple layers of the memory hierarchy. By 
contrast, reading a single field from multiple records in a row-oriented representation will require 
inefficient seeking and pollute system and hardware caches with unused data.

However, columnar organization enables additional optimizations that can further improve 
analytic efficiency.

Columns with relatively few values can be dictionary-encoded, so that each individual value is 
only stored once, in a dictionary in file metadata, and each field value on disk is replaced with its 
index in the dictionary. For example, the kind field of our billing events table can take on three 
values: AccountActivation, AccountTermination, and Charge. By storing each 
value once, we’d create a dictionary like this:

{0: "AccountActivation", 1: "AccountTermination", 2: "Charge"}

and then replace every value with its index in the dictionary: 0, 1, or 2.

Columns in which consecutive records might share the same or similar values can be run-
length encoded. Instead of storing identical values multiple times consecutively, it’s possible to 
store the value once along with a representation of the number of times it repeats; this can be 
extremely efficient for values like timestamps since many consecutive events can occur on the 
same day (or, in some systems, even in the same second).

These kinds of optimizations can be combined to save even more space in a data 
representation. The next figure first shows using dictionary encoding (on the left) and then 
dictionary encoding and run-length encoding (on the right) to compress the kind column of the 
billing events table.
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Maintain Categorical Encoding When Loading Parquet Files in Pandas
Apache Parquet is well-supported both in the JVM-based big data ecosystem (through the 
Parquet project itself and its integrations in Hadoop-ecosystem projects including Spark) and 
in the Python data ecosystem (via functionality in Apache Arrow and other libraries). However, 
some projects rely on informal conventions that are not part of the Parquet specification. As a 
consequence, certain optimizations and features may not survive the round trip between 
serialization in one environment and deserialization in another.

For example, both Apache Spark and pandas write Parquet files with implementation-specific 
metadata in order to map from Parquet types to Spark data frame types or pandas types 
respectively. Spark and pandas each know how to read their own metadata, but other 
consumers may not without special configuration. In particular, pandas will use dictionary 
encoding to efficiently store categorical features, or columns that may assume only one of a 
finite (and typically relatively small) set of values.2 When pandas saves a data frame as a Parquet 
file, the Parquet file includes a schema that uses Parquet-native types and encodings to store 
categoricals and also pandas-specific metadata to indicate that these values should be 
interpreted as categoricals on load and thus stored efficiently in a pandas data frame in memory.

Figure 16. Example optimizations enabled by column-oriented storage formats: on the left, the kind column from the billing events table is dictionary-encoded; on the right, the 
dictionary-encoded data are also run-length encoded

Columnar formats in general (and Parquet in particular) enable many other additional 
optimizations, such as predicate pushdown, in which a file or portion of a file may be ignored 
altogether if its metadata indicate that it does not contain any values that will be relevant to 
computing a query (for example, if we’re querying for billing events from September 2020, we 
needn’t examine a file whose most recent event was from January 2019). While a full discussion 
of Parquet’s capabilities and implementation is beyond the scope for this book, it should be clear 
that the kinds of optimizations it enables greatly impact performance in several ways:

• by improving I/O throughput (by reducing the size of datasets and storing values likely to be 
accessed together sequentially),

• by reducing memory consumption (by storing data more compactly and with a locality-
sensitive format in memory), and

• by eliminating unnecessary computation (after exploiting redundancy and metadata to 
identify unnecessary operations).

We are interested in preserving these performance advantages when we use Parquet to share 
data between our data engineers (and our federation and analytics applications) and our data 
scientists (and our model training application). We’ll now examine where this can go wrong.
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Because pandas reads its metadata when loading a Parquet file that has been saved from 
pandas, it is able to efficiently load categorical features from dictionary-encoded string 
columns. However, when pandas loads a Parquet file generated by Apache Spark, the pandas-
specific type metadata is not present, meaning that categoricals stored as dictionary-encoded 
string columns may be loaded as strings, resulting in substantial memory and computational 
overhead. Concretely, if we were to load the raw billing events table, which was generated with 
Spark, into a pandas data frame, the code would look like this:

import pandas as pd
billing_events = pd.read_parquet("billing_events.parquet")

If we were to inspect the pandas schema for this data frame (by inspecting the dtypes attribute 
of billing_events), we’d see that the kind field, which is a categorical, has been 
materialized as strings and stored in memory as Python objects. We can label-encode this 
column or cast it to a categorical, but we shouldn’t have to — and the memory overhead of the 
unnecessary conversions will be enormous.

Fortunately, it’s possible for pandas to efficiently consume the Parquet files that Spark 
produces, if we take a little care to exploit the available metadata. pandas itself doesn’t include 
a Parquet reader implementation, but its read_parquet function is able to use either Apache 
Arrow (through the pyarrow library) or the fastparquet library if they are available. In both 
cases, the read_parquet function in pandas can pass additional options to the underlying 
Parquet implementation. In our blueprint, we’re using Arrow, and in order to take advantage of 
Spark-generated metadata when loading files into pandas, we’ll need to tell Arrow how to 
handle particular fields. We’ll do this by passing the read_dictionary keyword argument to 
read_parquet, which will in turn be passed to Arrow.

import pandas as pd
billing_events = pd.read_parquet("billing_events.parquet", 
                                 read_dictionary=["kind"])

If we do this, pandas will correctly interpret the dictionary-encoded fields as categoricals. In 
your own applications, you’ll know which fields represent categoricals and should be read as 
such; doing so will preserve performance and eliminate potential integration headaches.

Double-check performance and correctness when using multiple Parquet implementations.
Materializing dictionary-encoded strings instead of representing them as categoricals is a 
good example of the sort of integration pitfall stemming from using multiple Parquet 
implementations, because it can result in a particularly egregious performance penalty. However, 
there are other interoperability concerns to watch out for when using Parquet files as an interface 
between application components implemented in different language ecosystems. In this section, 
we’ll briefly examine some potential issues that you might encounter in your own systems.

Avoid structure-valued columns. One of the advantages of Parquet in the big data ecosystem 
is its efficient support for structured data, including deeply-nested data. While Arrow itself can 
load structured data (with the read_parquet function in the pyarrow.parquet module), 
structure-valued fields will turn into Python dict objects once they’re converted into a pandas 
data frame, which provides an inefficient implementation of an inconvenient interface. When 
using Parquet as an interface between components developed in different ecosystems, prefer 
flat schemas.

Identify compatible compression algorithms. In addition to encoding values within columns 
to save space, Parquet can also compress individual column chunks with a general-purpose 
compression algorithm. The current version of the Parquet specification supports several 
different compression algorithms; GZIP, SNAPPY, and BROTLI are the most widely supported. 
(While it is possible to store encoded column data without compression, using compression will 
often improve overall system performance.) If you know in advance that every component of 
your application uses a Parquet implementation that supports another compression algorithm, 
you can use that algorithm; otherwise, it’s safest to stick to GZIP, SNAPPY, or BROTLI.

Watch for interoperability 
concerns when using Parquet 
files as an interface between 
application components 
implemented in different 
language ecosystems.
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Pay careful attention to the behavior of alternative data frame implementations. In 
complex accelerated pipelines, data science teams will often be working not merely with 
pandas but also with cuDF and Dask data frames. These alternative implementations may have 
different behavior than pandas, especially in corner cases, so it’s important to verify that they 
behave as you expect they will. As a concrete example, consider the categorical case we 
presented earlier: if we’re using Dask with cuDF, we’ll need to use the categorize() method 
to turn objects into categoricals, like this:

import dask_cudf as dc
ddf = dc.read_parquet("billing_events.parquet").categorize(["kind"])

Dask will ultimately compute the possible values from each categorical across every partition, 
although it may be able to make use of Dask-specific metadata (so it may make sense for a 
data scientist to write out intermediate files from Dask, which will have this metadata).

If we’re using cuDF on a single GPU, we can get the proper behavior by first reading our dataset 
into a pandas data frame and then converting it to a cuDF data frame:

import pandas as pd
import cudf
pd_be = pd.read_parquet("billing_events.parquet", 
                        read_dictionary=["kind"])

billing_events = cudf.DataFrame(pd_be)

(If we do not need to preserve categoricals, we can use cuDF’s native Parquet reader, which 
should be faster.)

Summary
Parquet is efficient and ubiquitous, but it may require some care to maintain its advantages 
throughout workflows that rely on multiple implementations. In this chapter, you’ve learned 
how to work around some common pitfalls and retain the benefits of a columnar format across 
language ecosystems.
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Scaling Up and Out Across the Data Science Workflow
In our blueprint application, we benefit from two kinds of parallelism: scaling up, or accelerating 
fine-grained tasks with specialized hardware or improved single-node performance, and scaling 
out, or dividing a problem into larger tasks and distributing these across machines. In our 
federation and analytics applications, Apache Spark itself provides scale-out parallelism and the 
RAPIDS Accelerator for Apache Spark provides scale-up parallelism for tasks within Spark. In our 
feature extraction and machine learning applications, we benefit from scaling up with RAPIDS.ai 
and scaling out with Dask. However, the benefits of each kind of parallelism are not uniform 
across the data science workflow. In this chapter, you’ll learn how to most effectively use your 
compute resources across the application lifecycle and data science workflow.

Address Limitations by Scaling Up and Out
Consider some of the high-level reasons why computer system performance is limited:

• finite storage at a given level of the memory hierarchy limits how many values can be 
accessed efficiently,

• finite execution capacity at the instruction level, limiting how much computation can be done 
in a particular amount of time, and

• finite bandwidth between CPU or GPU and memory, between memory and storage, or 
between nodes, limiting how quickly data can be transferred from where it is to where it can 
be accessed efficiently.

Different workloads will be affected by different root causes of poor performance, and thus will 
benefit from different strategies to improve performance. Broadly, if a workload is storage- or 
memory-bound, it may benefit from scaling out, if a workload is execution-bound, it may 
benefit from scaling up, and if a workload is bandwidth-bound, either strategy may be 
appropriate depending on specifics of the workload.

Scaling up can take the form of hardware acceleration, which includes superscalar and 
multithreaded processors, SIMD and vector processing, and GPU acceleration. We can also 
construe scaling up more broadly to encompass factors that improve single-node performance 
without explicitly introducing parallelism, like larger and faster memories or disks (to improve 
overall throughput), faster system buses (to increase bandwidth across the memory 
hierarchy), optimized library code (to improve the efficiency of frequently-accessed routines), 
and efficient storage formats like Parquet (in order to improve I/O bandwidth and memory 
system performance). Scaling out involves coordinating work across multiple threads, GPUs, 
and machines and is typically most effective when a problem cannot be solved with the 
resources of a single node or when the coordination and communication costs involved in 
orchestrating coarse-grained tasks across multiple nodes are outweighed by the benefits of 
executing each task concurrently with independent resources. Scale-out strategies may also 
be useful for allowing a memory-hungry workload to execute to completion on a single node by 
dividing the problem into tasks that can execute independently and serially given the memory 
constraints of that node.

For many workloads, a combination of scale-up and scale-out strategies will be appropriate. 
Apache Spark itself is a scale-out framework that uses some scale-up techniques (including 
native code generation for optimized query processing). When combined with the RAPIDS 
Accelerator plugin, Spark is more clearly both a scale-out framework (via distributed 
processing) and a scale-up framework (via GPU acceleration of query operators).

The benefits of each kind of 
parallelism are not uniform 
across the data science 
workflow.

Once it is possible to solve a given problem 
quickly at scale, our focus often shifts to 
solving a more challenging version of that 
problem. 
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Often, applications evolve along multiple axes: first, it is challenging to process the data at 
scale at all; then, scalability improvements make it possible to solve an interesting problem on a 
subset of the data (or a coarse approximation of the problem of interest on the whole dataset). 
With further advances in scalability, it may be possible to solve the problem of interest more 
precisely on the full dataset, albeit slowly; finally, further engineering or algorithmic 
improvements make it possible to solve the problem of interest on the full dataset quickly. 
Scale-out techniques, scale-up techniques, better algorithms, or some combination of the 
three may be responsible for each leap in an application’s evolution. Of course, once it is 
possible to solve a given problem quickly at scale, our focus often shifts to solving a more 
challenging version of that problem: considering more variables, processing more data, making 
low-latency predictions, identifying a more precise approximation, and so on.

Know When to Scale Up and When to Scale Out
Because different parts of our workload are constrained by different aspects of our hardware 
and architecture, they benefit more or less from different kinds of parallelism. Some parts of 
our workload are constrained by memory availability (given working set sizes to execute 
queries) and some are more constrained by capacity to execute compute-intensive tasks 
quickly. In general, data federation and analytics workloads can benefit more from scale-out 
techniques and machine learning techniques can benefit from scale-up techniques, but there 
are circumstances in which both kinds of workloads can benefit from both kinds of parallelism.

Processing the data at all
is a challenge at scale

Solving the problem of
interest is possible and fast

Solving a relevant problem
is possible, but slow

Solving a relevant problem
is possible with caveatsscaling out,

sampling or
simplifying

improved
techniques
scaling out
and/or up

solving a more challenging problem

scaling up

Figure 17.
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Scale Analytics and Federation Out and Up
Unsurprisingly, the federation application benefits from scaling out, whether with multiple 
threads or multiple machines. As we’ve seen, it also benefits from scaling up, by adding GPUs 
to each executor, but because the federation work is not particularly compute-intensive, the 
benefits from scaling up may be more modest.

The analytic application deals with a tiny fraction – less than a thousandth – of the data that the 
federation application does, but its work is more computationally involved, since the data cube 
operation requires examining counts of churning and retained customers for each combination 
of values from select columns. On-line analytics jobs are often also well-suited for coarse-
grained parallel execution.

When we perform feature extraction and encoding, we further distill the federated structured 
data into feature vectors. Therefore, the input data volume for model training proper is even 
smaller than the output from the federation job. In addition, model training can be far more 
computationally intensive than data federation or even analytics. Finally, model training often 
does not benefit as much from coarse-grained parallelism as it does from running many 
fine-grained compute kernels in parallel.

Individual Model Training Tasks Can Effectively Scale Up
The amount of raw or structured data our system must handle for federation or analytics is 
typically far greater than the amount of data our system will train a machine learning model on. 
However, the demands on single-node compute performance are far greater once we’re 
training a model. In the earlier, data engineering-focused parts of the workflow, we are limited 
by our data throughput; in later, data-science-focused parts of our workflow, we are limited by 
our compute operation throughput. Concretely, the federation and analytics application 
operates on roughly one hundred and forty gigabytes of structured data, but model training 
operates on under one hundred megabytes of feature vectors. While we are able to scale 
federation and analytics both out and up, seeing benefits both from running on an eight-node 
cluster and from adding GPUs to each node, training an individual model by itself operates on a 
relatively small volume of data and is best served by scaling up.

Model training can be far more 
computationally intensive than 
data federation or analytics.
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The figure below represents the data volumes operated on by the federation, analytics, and 
machine learning applications in our blueprint. (Note that, in order to make the figure fit on the 
page, the federation input data volume is actually one-tenth the scale it should be – the 
analytics and ML apps operate on roughly one-one-thousandth the volume of data as the 
federation app.)

Figure 18.
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Experimental Machine Learning Can Scale Out and Up

However, data scientists rarely train a single model in isolation – rather, they often train many 
models in parallel in order to identify the best-performing hyperparameter settings, or 
parameters supplied to the model training algorithm. Data scientists can also train multiple 
independent models together that will be federated as an ensemble. Each of these training 
tasks is an excellent candidate for scaling up, but the entire experimental workload, which 
consists of potentially many independent training runs, is an excellent candidate for scaling up.

Interactive Data Science Exploration Benefits from Scaling Up
In the process of identifying a successful model and feature extraction approach, a data 
scientist may train several auxiliary models that don’t necessarily make it into a production 
system. Rather, these auxiliary models make it easier to understand the structure of the data or 
the behavior of the model. For example, fitting a UMAP or t-SNE model to a high-dimensional 
dataset may make it possible to visualize the essential structure of a high-dimensional dataset 
in two or three dimensions. Similarly, techniques like LIME or SHAP train auxiliary models to 
explain the behavior of other models. Because these techniques are on the critical path of a 
creative professional, we can dramatically improve practitioner velocity by making these 
techniques as fast as possible, typically by scaling them up.

Schedule Heterogeneous Workloads to Take Advantage of Available 
Compute Resources
In this chapter, you’ve seen that the workloads supporting different stages of our discovery 
workflow will benefit more or less from different kinds of parallelism. Analytics and federation 
workloads that process a large amount of data will benefit both from scaling up with GPU 
acceleration, and out across multiple GPUs. Training an individual machine learning model will 
typically have a much smaller working set size; since the data involved will often fit in GPU 
memory on a single GPU, classical machine learning model training is often a better candidate 
for scaling up. (Some model training, including complex deep learning models or very large tree 
ensembles, may still benefit from scaling out even at modest data volumes.) Experiment 
orchestration, which can involve training many models to identify optimal hyperparameter 
settings, can scale both out and up.

You’ll want to rely on the flexibility of a general-purpose scheduler like YARN or Kubernetes to 
effectively utilize a cluster. Plan to allocate more resources for federation and analytics jobs 
than for individual model training jobs. Interactive data science and exploratory analytics both 
benefit from scaling up, in order to reduce latency and improve practitioner experience, but 
present additional challenges to schedule clusters effectively, since interactive workloads can 
run indefinitely and necessarily exhibit lower utilization than batch workloads.
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Machine Learning Training and Inference
In previous chapters, we’ve seen an overall architecture for churn modeling and prediction, how 
to accelerate data federation and analytics, how to integrate these components, and how to 
effectively use our compute resources by scaling up and out. In this chapter, we’ll focus on the 
remaining parts of our workflow and system, highlighted below, and discuss how our 
application trains a model and performs inference.

Communicate structured feature metadata from federation and analysis

Recall that our data federation application produces flat tabular data where each row contains 
all the data we have about a given customer, federated and aggregated from multiple source 
tables. Our analytics application produces both summary reports and a machine-readable 
metadata report. While the former may inform a data scientist’s modeling activity (by 
suggesting features that are positively correlated with churn), the latter is intended to be 
consumed directly by modeling code.

Our metadata report contains the following information in a JSON object:

• the schema for the federated data, including column names and data types;

• empirical cumulative distributions for numeric columns, so that downstream modeling code 
can readily identify where a given value falls in the distribution of observed values (it’s often 
more useful to know, for example, that a value is in the ninety-seventh percentile than that it’s 
two standard deviations above the mean);

• the percentage of true values for boolean columns;

• a structure describing potential encodings for various columns, identifying columns that are 
likely categorical values, likely numerical values, or likely unique values; and

• a count of distinct customers in the output data.

Figure 20. Workflow stages covered in this chapter

Figure 21. 
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In some organizations, the kinds of metadata we generate in our report may be collected and 
maintained separately from the data (in a metadata catalog) rather than passed directly to 
modeling code. In some cases, a metadata catalog will consist of prescriptive expectations as 
to the kinds and distributions of values rather than descriptive summaries of observed data. 
Both kinds of metadata reports can be useful, but the descriptive approach we take has the 
advantage of always describing the data we are actually operating upon.

Data scientists may collect similar information as part of their initial exploratory analysis and 
then use this information to inform downstream modeling. However, unless this process is 
formalized and automated, the information derived from an initial exploration may become 
stale with changes to upstream data or to the federation job itself, just as prescriptive 
expectations in a metadata catalog can become stale. Out-of-date information about 
schemas, encodings, or distributions is likely to be less useful than no information at all, and 
unexpected changes to data formats and distributions are an important source of silent bugs in 
machine learning systems.

By generating summary reports on newly-federated data with automated analysis code, we 
eliminate a source of potential bugs, ensure that downstream analyses are consuming fresh 
metadata, and remove a dependency on human discipline in our pipeline. We can also compare 
distributions over time as we collect new data and detect upstream data errors by identifying 
unexpected divergences.

Accelerate Encoding Categorical and Boolean Columns
Appropriately encoding numerical features (like a customer’s monthly bill, lifetime account value, 
or length of tenure) is necessary to get acceptable performance out of many model-training 
algorithms. Depending on the model and the feature, a linear transformation, normalization, or 
recentering may be most appropriate. As we saw in Chapter 7, though, many of our features are 
categorical features, which do not take values that have a natural numeric interpretation.

Application programmers are comfortable turning arbitrary values from a finite domain into 
numbers by creating an enumerated type or by enumerating them, as the following 
hypothetical code snippet does:

class PaymentType(object): 
    CREDIT_CARD = 0 
    MAILED_CHECK = 1 
    BANK_TRANSFER = 2 
    ELECTRONIC_CHECK = 3

With these constant definitions, a program can consistently represent distinct payment types 
as unique small integers. If this technique sounds familiar, it should – it’s essentially a manual 
version of the dictionary encoding that Parquet applies to low-cardinality columns to improve 
space efficiency.

Most machine learning models ultimately expect numeric inputs, but dictionary encoding 
alone is, in general, insufficient to treat categorical features. This is the case since the numbers 
we assign to individual feature values are not meaningful. As an example, consider the informal 
encoding above: we’ve assigned values arbitrarily and a priori and thus there’s no sense in 
which a bank transfer (2) is twice the magnitude of a mailed check (1), or in which an electronic 
check (3) is more similar to a bank transfer (2) than it is to a credit card (0). Without some 
additional domain-specific information in our encoding, the only meaningful comparison we 
can make between feature values is whether or not they are identical.
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One-hot encoding is one way to turn our informal dictionary encoding into a meaningful way to 
represent categorical features. In this case, we’ll be turning a feature with k possible values into 
a k-bit vector in which exactly one bit is set. We could also turn such a feature into a k-1-bit 
vector in which at most one bit is set and in which a vector with no bits set corresponded to one 
of the feature values. The approach we’re taking is most appropriate because we’re training an 
ensemble of decision trees and each branch in a decision tree can depend on only one 
comparison. So while it’d be fine for a branch to depend on, for example, whether or not bit 2 
was set to 1, we couldn’t have a single branch depending on if all bits were 0. (By contrast, the 
k-1-bit approach would be appopriate if we were going to train a linear model.)

The value we get from our initial encoding will be the index of the set bit, as in the figure below, 
which shows a vector that encodes a credit card payment type.

There are two ways to accelerate one-hot encoding with RAPIDS: you can use the  
get_dummies method in cuDF or the OneHotEncoder class in cuML. The following code 
excerpt shows how to use the former, assuming path is the input path of the data set,  
binary_cols is a list of column names that have binary values, and ohe_cols is a list of 
column names that have categorical values.

import cudf

# path is the input path of the dataset 
# binary_cols is a list of column names that have binary values 
# ohe_cols is a list of column names that have categorical values

data = cudf.read_parquet(path, read_dictionary=binary_cols+ohe_
cols) 
data_enc = cudf.get_dummies(data, columns=ohe_cols, dtype='bool')

# encode boolean or binary-valued columns as True/False 
for cc in binary_cols: 
    data_enc[cc] = data_enc[cc].cat.codes.astype('bool')

This code is very similar to code a data scientist might write in pandas. Recall that we know the 
types of columns because of the metadata produced by our analytics application. We discussed 
the need for read_dictionary in Chapter 7. Because boolean and two-valued columns in our 
source data are encoded as strings — including Yes / No, 0 / 1, and Male / Female, for 
example — we also convert these to boolean values using the categorical codes.

Figure 22.

Mailed check Bank transfer

Electronic checkCredit card

1 0 0 0
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One-hot encoding is not always the right approach for treating categorical values; we have 
used it here because most of the categoricals in this problem have relatively small domains 
(most frequently, three or four elements). If we use one-hot encoding to transform a 
categorical with many potential values, like postal codes, we will greatly increase the 
dimensionality and the sparsity of our data. Other approaches, like cardinal encoding 
(replacing values with their counts from the training set), quantizing values by clustering or 
exploiting semantic hierarchies, or target encoding (replacing values with the fraction of times 
they correlate with a true label) may be more effective for categoricals with large domains.

Scale Tree Ensemble Training Up with GPUs
If we were going to define a set of static rules to predict churning customers, we might imagine 
inspecting the data, identifying the features most strongly correlated with churning, and then 
constructing a set of questions about an individual customer so that the answers would identify 
whether or not that customer was likely to churn. A simple example is in the decision tree below:

We can use machine learning to train a decision tree automatically by optimizing the set of 
questions we ask to minimize error. The main advantages of decision trees are that they are 
simple and interpretable; you can always explain why you arrived at a given conclusion by listing 
the questions you asked from the root of the tree to a decision. The main disadvantage of 
decision trees is that they are inflexible and thus prone to both imprecision and overfitting. In the 
former case, we are unable to train a model with sufficiently acceptable predictive performance 
on our training set. In the latter case, we are unable to train a model that has comparable 
predictive performance on novel data as it does on the training set; in other words, it has failed to 
generalize from the training examples.

By combining several decision trees in an ensemble, we can eliminate the disadvantages of 
simple individual decision trees. The basic technique involves training many decision trees to 
solve the same problem but in different ways — whether each focuses on a subset of input 
columns or on a subset of training examples — so that each individual tree has relatively weak 
performance. When it comes time to make predictions, the technique will take the consensus of 
the predictions from each individual decision tree.

The particular tree ensemble method we use in this application is gradient-boosted trees, as 
implemented by the XGBoost library. At a high level, XGBoost is able to optimize for one of many 
objective functions (not just accuracy) and can focus later rounds of training on examples that 
previous rounds performed poorly on. It is many data scientists’ default choice for classification 
and regression problems on structured data.

Figure 23.

Contract type is 
month-to-month

Contract tenure is 
less than three years Likely to 

churn
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to churn

Yes
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No

No

https://medium.com/rapids-ai/target-encoding-with-rapids-cuml-do-more-with-your-categorical-data-8c762c79e784
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A full discussion of XGBoost is outside the scope of this book, but the XGBoost documentation 
has an excellent introduction to XGBoost and this NVIDIA developer blog post by Rory Mitchell 
explains how XGBoost benefits from GPU acceleration. XGBoost itself supports accelerated 
inference as well as accelerated training. Complex models or use cases requiring high-
throughput inference will benefit from the RAPIDS Forest Inference Library, which accelerates 
production inference of XGBoost models.

We can train a tree ensemble model using GPU-accelerated XGBoost. We’ll use the native 
XGBoost interface through Dask even though we’re operating on a single node for now, just to 
make it easier to scale up and out in the future:

from dask.distributed import Client 
import xgboost

Our next step is to initialize a Dask client. As we discussed in Chapter 8, because of the scale of 
this problem, training on a single GPU is actually faster than training on a cluster of CPUs (or a 
cluster of GPUs).

# we’re using only one worker because the scale of this problem 
client = Client(n_workers=1, threads_per_worker=8)

From our training data (which we loaded and encoded in an earlier excerpt), we can assemble a 
training set. For training purposes, we create a DaskDeviceQuantileDMatrix from our 
data. This precomputes an efficient internal representation for numeric columns and can 
dramatically reduce memory consumption; however, we cannot use it for inference.

# - data_enc is the data frame we populated  
#   in the previous section  
# - feature_cols is a list of feature columns 
# - label_col is the label column (i.e., "Churn")

train = data_enc.drop["customerID"].sample(.7)

X = train[feature_cols].astype('float32') 
y = train[label_col].astype('float32') 
dtrain = xgboost.dask.DaskDeviceQuantileDMatrix(client, X, y)

Finally, we’re able to train the model using a GPU-accelerated algorithm:

xgb_model = \ 
    xgboost.dask.train(client,  
                       tree_method='gpu_hist', 
                       dtrain)['booster']

If you’ve used XGBoost in the past, you may have used it via its scikit-learn compatible interface. 
You’ll want to use the native interface instead because it provides the most support for features 
necessary for scaling up and out.

https://xgboost.readthedocs.io/en/latest/
https://developer.nvidia.com/blog/gradient-boosting-decision-trees-xgboost-cuda/
https://medium.com/rapids-ai/rapids-forest-inference-library-prediction-at-100-million-rows-per-second-19558890bc35
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Use Dask for Multi-GPU and Multi-node Training 
Modeling customer churn in the way we do in this blueprint does not benefit from multiple nodes 
or multiple GPUs, even at reasonable scale, since the entire dataset fits in GPU memory and the 
processing itself is not complex enough to saturate a GPU. However, many problems will benefit 
from multiple GPUs or even from multiple nodes. For some problems, the volume of data arriving 
on a data scientist’s desk may be so great that even exploratory work and feature encoding 
might benefit from scaling out. If we need to scale out to multiple GPUs or multiple nodes, we’ll 
be able to use the same Dask interface we used above, with a few minor changes and additional 
considerations.

To run on multiple GPUs on a single node, we’ll connect to a Dask LocalCUDACluster.  
The following example shows how to use a node with four GPUs:

from dask_cuda import LocalCUDACluster

cuda_cluster = LocalCUDACluster(n_workers=4, threads_per_worker=8) 
client = Client(cuda_cluster)

To run with multiple nodes, we’ll need a multinode Dask cluster. Since the details of how to do so 
are necessarily specific to your environment, the best way to learn how to get started with 
multinode Dask is to consult the Dask documentation, which covers scheduling jobs on on 
Kubernetes, on YARN, and on public cloud providers.

https://kubernetes.dask.org/en/latest/kubecluster.html
https://kubernetes.dask.org/en/latest/kubecluster.html
https://yarn.dask.org/en/latest/configuration.html
https://cloudprovider.dask.org/en/latest/gpus.html
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GPUs on the Cloudera Data Platform
So far in this book we’ve stepped through an example ML solution that emphasizes 
performance improvements achieved via RAPIDS and the RAPIDS Accelerator for Apache 
Spark running on NVIDIA GPUs. With the Cloudera Data Platform (CDP), you can take 
advantage of these performance improvements on the industry’s first enterprise data cloud 
built to enable fast and secure end-to-end data workflows. CDP is a hybrid data platform 
designed for any cloud, any data, and any analytics. It manages and secures the data lifecycle, 
from the edge to AI, across all major public clouds and the private cloud.

In this chapter we will show you how to configure CDP Private Cloud Base to use Spark 3 and 
the RAPIDS Accelerator for Apache Spark. We will also demonstrate how to run a simple GPU 
accelerated job in Spark3.

While these instructions are meant to be thorough, they are not meant to be exhaustive. To that 
end, there are some prerequisites you’ll need to meet in order to successfully follow the steps 
outlined in this chapter.

Prerequisites:

• CDP Private Cloud Base 7.1.6 or later

• Scala 2.12 or higher

• Python 3.6 or higher

• JDK 8 or JDK 11 (Remove other JDK versions from all cluster and gateway hosts)

• Required Cloudera Manager Role: Administrator

• Linux sudo Access to Cloudera Manager master node

• At least 1 CDP YARN node with a GPU installed

• NVIDIA Drivers installed

Installing the Cloudera Distribution of Spark 3 (CDS 3)
1. Install CDS 3 Powered by Apache Spark

a. Download the CDS Powered by Apache Spark service descriptor compatible with 
RAPIDS. It is the JAR file that begins with SPARK3_ON_YARN.

b. Log on to the Cloudera Manager Server host, and copy the CDS Powered by Apache 
Spark service descriptor you just downloaded in the location configured for service 
descriptor files (/opt/cloudera/csd).

c. Set the file ownership of the service descriptor to cloudera-scm:cloudera-scm with 
permission 644

i.  chown cloudera-scm:sclouder-scm ./opt/cloudera/csd/ 
SPARK3_ON_YARN.jar

ii.  chmod 644 ./opt/cloudera/csd/SPARK3_ON_YARN.jar

d. Reset the Cloudera Manager Server

i.  systemctl restart cloudera-scm-server

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.5/cds-3/topics/spark-spark-3-packaging.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.5/cds-3/topics/spark-spark-3-packaging.html
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2. In the Cloudera Manager Admin Console, on the left menu select Hosts >> Parcels.   
Then select Parcel Repositories & Network Settings. 

 

3. Click the plus sign next to any one of the existing URLs and add 
https://<username>:<password>@archive.cloudera.com/p/spark3-
rapids/3.x/parcels/. Replace <username> and <password> with the 
accompanying username and password for your CDP license. Now select Save & Verify 
Configuration in the bottom right corner. For further help, see Parcel Configuration Settings. 

Note: If your Cloudera Manager Server does not have Internet access, you can use the  
CDS Powered by Apache Spark parcel files: put them into a new parcel repository, and 
then configure the Cloudera Manager Server to target this newly created repository. 
See the Cloudera docs for more info.

4. Download the CDS Powered by Apache Spark parcel, distribute the parcel to the hosts in 
your cluster, and activate the parcel. For instructions, see Managing Parcels.

5. Go to the Cloudera Manager Admin Console, select the 3 vertical dots next to your cluster 
name (in the screenshot it is Neptune) and select Add Service.

Note

If your Cloudera Manager Server 
does not have Internet access, 
you can use the CDS Powered by 
Apache Spark parcel files: put 
them into a new parcel 
repository, and then configure 
the Cloudera Manager Server to 
target this newly created 
repository. See the Cloudera 
docs for more info.

https://docs.cloudera.com/cdp-private-cloud-base/7.1.5/managing-clusters/topics/cm-parcel-configuration-settings.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/installation/topics/cdpdc-local-package-parcel-repositories.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.5/managing-clusters/topics/cm-managing-parcels.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/installation/topics/cdpdc-local-package-parcel-repositories.html
https://docs.cloudera.com/cdp-private-cloud-base/7.1.6/installation/topics/cdpdc-local-package-parcel-repositories.html
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6. Select the Spark 3 service and then click Continue.

a. In step 1, select “No Optional Dependencies”.

b. In step 2, when customizing the role assignments, add a gateway role to every host.

c. On the Review Changes page, you can enable TLS for the Spark History Server  
(not mandatory for this demo).

d. Note that the History Server port is 18089 instead of the usual 18088.

e. Complete the remaining steps in the wizard.

7. Return to the Cloudera Manager Admin Console.

8. Click the stale configuration icon to launch the Stale Configuration Wizard and restart the 
necessary services.

Configuring YARN to use GPUs
Validating NVIDIA Driver Install

As stated in the prerequisites, we assume that the GPUs and NVIDIA drivers have already been 
installed correctly. If this is not true, there are a couple resources that NVIDIA provides to help 
you out. The first is a Quick Start Guide. This contains the minimal first-step instructions you’ll 
need to get CUDA running on a standard linux system. The second is the more thorough  
Linux Installation Guide. This will have just about any and everything you need if you weren’t 
lucky enough to have your GPUs up and running beforehand.

Before proceeding to enable GPUs on YARN, follow these steps to check that your NVIDIA 
drivers are installed correctly.

1.  ssh into each YARN node with a GPU installed.

2.  Run the nvidia-smi command. It should list out the GPUs on your system                                        
(see the image below)

https://docs.cloudera.com/cdp-private-cloud-base/7.1.5/managing-clusters/topics/cm-managing-roles.html#autoId0
https://docs.nvidia.com/cuda/cuda-quick-start-guide/index.html#linux
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
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3.  Run dmesg | grep nvidia to see if NVIDIA drivers are being started on boot: 

If YARN Nodes > GPUs

While we would all love to have a GPU for every node, many real-world clusters will be 
heterogeneous and have a combination of CPU-only and GPU nodes. If you do not have a GPU 
installed on every YARN node, there are two options.

Option 1: You can add a dedicated compute cluster on the side with a GPU on each node. The 
downside is that users will have to connect to two different clusters depending on if they want 
to use GPUs or not. Now, this can in itself be a good way to filter users who really need GPUs 
from those that just want to use them, but it is still an additional cluster that you will have to 
manage. If you wish to pursue this option then follow the instructions in Setting Up Compute 
Clusters. Once the dedicated compute cluster is running, you can continue to the section 
Enable GPUs in YARN.

Option 2: You can stick with one cluster and create Role Groups. These allow for different 
YARN configs on a host-by-host basis, meaning some nodes can have Enable GPU Usage 
turned on while others have it turned off. If you wish to pursue this option, continue to Enable 
GPUs in YARN, but be sure to navigate to Configure YARN Role Groups in step 4 as instructed.

Enable GPUs in YARN

With Spark enabled, we need to enable GPUs on YARN. For those who have skimmed the 
Apache docs for enabling GPUs on YARN, these instructions will differ as Cloudera Manager will 
manage changes to configuration files like resource-types.xml for you.

To schedule GPUs, we need GPU isolation, and for that we need to leverage Linux Control 
Groups (Cgroups). Cgroups are Linux controls that control the hardware resources (CPU, RAM, 
GPU, etc.) that different applications will have access to. Cgroups are the only way to truly 
guarantee the amount of resources allocated to a running application.

https://docs.cloudera.com/cdp-private-cloud-base/latest/managing-clusters/topics/cm-add-compute-cluster.html
https://docs.cloudera.com/cdp-private-cloud-base/latest/managing-clusters/topics/cm-add-compute-cluster.html
https://hadoop.apache.org/docs/r3.1.0/hadoop-yarn/hadoop-yarn-site/UsingGpus.html
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/resource_management_guide/ch01
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1. In Cloudera Manager, enabling Cgroups is a host-based setting that can be set from the 
Hosts >> Hosts Configuration option in the left side toolbar.

2. Search for “cgroups’’ and select the checkbox. This will enable Cgroups for all nodes, but it 
can also be set on a host-by-host basis through the Add Host Overrides option. For more 
details on the finer details of the Cgroup settings, refer to the CDP-PvC Base Cgroups 
documentation.

3. Turn on Cgroup Scheduling in the YARN service

a. Navigate back to Cloudera Manager Admin Console  

b. Select the YARN service    

c. Go to Resource Management, and then search for cgroup

d. Turn on Use CGroups for Resource Management 

e. Turn on Always Use Linux Container Executor

4. If you do not have a GPU on each YARN node, continue to the sub section Configure YARN 
Role Groups, otherwise we can enable GPU on YARN through the Enable GPU Usage 
checkbox. You can find that at YARN service >> Configuration tab >> Category >> GPU 
Management >> Enable GPU Usage

https://docs.cloudera.com/cdp-private-cloud-base/latest/managing-clusters/topics/cm-linux-cgroups.html
https://docs.cloudera.com/cdp-private-cloud-base/latest/managing-clusters/topics/cm-linux-cgroups.html
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5. Restart the cluster.

Configure YARN Role Groups

Role groups are configured on the service level. To set up a GPU role group for YARN, follow 
these steps.

1. In the Cloudera Manager home screen, navigate to YARN >> Instances tab >> Role Groups. 
The Role Groups button is just above the table listing all the hosts.
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2. Select Create Role Group. For Group Name enter “gpu nodes” and for Role Type select 
“NodeManager”. Set the Copy From field to “NodeManager Default Group”.

3. On the left hand side, under NODEMANAGER, select NodeManager Default Group, then 
check the boxes for the nodes that have GPUs installed and move them to the new “gpu 
nodes” group.

4. Navigate to Yarn service >> Configuration tab >> Category >> GPU Management >> 
Enable GPU Usage. Now you can select your role group “gpu nodes” and enable GPU usage 
only for them. 
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Verifying YARN is using GPUs

Any developer should live with a healthy dose of skepticism. To verify that YARN is indeed 
configured to use GPUs, follow these steps.

1. Go to YARN >> Web UI tab >> ResourceManager Web UI

 

2. If YARN was successfully configured to use GPUs you will be able to see yarn.io/gpu listed as 
one of the usage meters on the Yarn2 cluster overview screen. 

Running a GPU Accelerated Job in Spark3
In this section we will show you how to run a simple GPU accelerated job in Spark3 and verify 
that it executed using GPUs. This isn’t meant to demonstrate all the intricacies of running 
Spark3 jobs with the RAPIDS Accelerator for Apache Spark, but it will be a great starting point 
in your accelerated Spark journey and will also verify that the previous steps in this chapter 
were successful.

For the Spark job we’ll create two dataframes, each with 100 MM records. We’ll then compare 
the dataframes and return the matching count.

val df = sc.makeRDD(1 to 100000000, 6).toDF

val df2 = sc.makeRDD(1 to 100000000, 6).toDF

df.select($"value" as "a").join(df2.select($"value" as "b"), $"a" 
=== $"b").count
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1. Login to an edge node

2. Start a Spark shell session with the following command:

spark3-shell  --conf "spark.rapids.sql.enabled=true" \ 
                     --cuda-version=11 \ 
                     --conf "spark.executor.memoryOverhead=5g"

3. Run the provided spark commands

4. Go back to the Cloudera Manager Admin Console and go to YARN >> Web UI tab >> 
ResourceManager Web UI. 

5. Select the Applications tab and click your spark3-shell application (you can get the 
Application ID from the text output at the top of the Spark3 session) 
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6. Select ApplicationMaster

7. Select the SQL tab, then select the query we just ran (count at <console>:28).
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Here you can see the GPU execution plan. Notice that some of the operations begin with “Gpu”. 
These are the operations that are being accelerated.

And just like that, you are now a GPU accelerated Spark3 master! If you’re ready to take the next 
step and want to run a more complex GPU accelerated Spark3 job, the code for running the 
Churn Prediction Demo can be found in NVIDIA’s data science blueprints repository on github. 
This repo contains excellent instructions for running the demo either in notebook form or as 
scripts. We point you to these instructions as they are contained in a living README that can be 
changed as development cycles cause differences from what is correct at the time that his 
eBook is released.

https://github.com/NVIDIA/data-science-blueprints/tree/main/churn
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Next Steps
In this book, you’ve learned what to look out for as you build a contemporary accelerated 
machine learning system. You’ve learned about the cross-functional teams who build machine 
learning systems and about how their work comes together to solve business problems. You’ve 
seen how to accelerate data engineering and analytics workloads with the RAPIDS Accelerator 
for Apache Spark and how to accelerate machine learning training and inference with RAPIDS 
and XGBoost. We’ve seen how to ensure that the different components in our pipeline are 
interoperable and how to best manage compute resources for the different demands of data 
engineering and machine learning workloads. We’ve even seen out to set up CDP Private Cloud 
Base to run GPU accelerated Spark 3 workloads.

We’ve intentionally focused on the connections, challenges, and curiosities in this process, but 
any practitioner knows that there’s the potential to dive arbitrarily deep on any of the stages 
here. Now that you know what to watch for as you put these pieces together, why not use this 
framework to explore a really interesting new data engineering or modeling technique?

Accelerated computing makes it possible to solve problems we couldn’t have tackled before. 
While we’re able to train a model for customer churn with a single GPU faster than we could with 
a cluster of powerful CPUs, there are many applications of classical machine learning that are 
impractical without GPU acceleration. Other applications are complex enough to benefit from 
multiple GPUs or multiple nodes. (Many interesting deep learning techniques, of course, are 
only feasible at all with GPU acceleration.) Now that you know how to accelerate entire 
pipelines, why not tackle a problem that has seemed out of reach in the past?

Finally, many practitioners know the benefits of getting into a state of flow, when everything is 
focused and seems to be working perfectly. Interruptions and delays can kill flow, though. By 
making your exploratory, interactive work seamless and fast — whether you’re an analyst 
waiting for SQL queries to return results or a data scientist waiting for a manifold projection to 
power visualization — GPU acceleration makes it possible to stay in that state of flow and try 
new ideas as quickly as you can think them up.

To learn more about some of the technologies we’ve discussed, visit the following sites:

• NVIDIA Developer

• RAPIDS

• RAPIDS Accelerator for Apache Spark

• Dask

• Cloudera Data Platform

• CDS 3
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Sources
1. Row-oriented representations are often more appropriate for transaction processing than for analytic processing. In general, 

because of how they lay out data, they can be more efficient if every value in a given record will be read or written in a given 
transaction or if only a very small subset of records will be accessed to compute a query result.

2. Dictionary encoding is a particular implementation of label encoding, in which unique values in some domain are mapped to unique 
small integers; it is a relatively standard part of many approaches for statistical and machine learning software to handle categoricals 
even without involving Parquet.
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