

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

http://cloudera.com
http://cloudera.com/more/about.html
https://blog.cloudera.com/
http://twitter.com/cloudera
http://facebook.com/cloudera
http://community.cloudera.com
http://cloudera.com/more/customers.html
http://cloudera.com/more/customers.html

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Apache® NiFi™

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Apache®
NiFi™

Cloudera 2nd Special Edition

By Guy Livini, Hima Lanka,
James Herron, John Kuchmek,

Richard Walden, Steven Matison,
& Steven Seguna

foreword by Mark Payne

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Apache® NiFi™ For Dummies®, Cloudera 2nd Special Edition

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, www.wiley.com

Copyright © 2023 by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
the prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons,
Inc. and may not be used without written permission. Apache, Apache NiFi, NiFi, Hadoop, Minifi,
and associated logos are either registered trademarks or trademarks of the Apache Software
Foundation in the United States and/or other countries. No endorsement by The Apache Software
Foundation is implied by the use of these marks. Cloudera and associated marks and trademarks
are registered trademarks of Cloudera, Inc. All other company and product names may be
trademarks of their respective owners. John Wiley & Sons, Inc. is not associated with any product
or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: WHILE THE PUBLISHER AND AUTHORS HAVE
USED THEIR BEST EFFORTS IN PREPARING THIS WORK, THEY MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF
THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION
ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES REPRESENTATIVES, WRITTEN
SALES MATERIALS OR PROMOTIONAL STATEMENTS FOR THIS WORK. THE FACT THAT AN
ORGANIZATION, WEBSITE, OR PRODUCT IS REFERRED TO IN THIS WORK AS A CITATION AND/
OR POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE PUBLISHER
AND AUTHORS ENDORSE THE INFORMATION OR SERVICES THE ORGANIZATION, WEBSITE, OR
PRODUCT MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. THIS WORK IS SOLD WITH
THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING PROFESSIONAL
SERVICES. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
YOUR SITUATION. YOU SHOULD CONSULT WITH A SPECIALIST WHERE APPROPRIATE. FURTHER,
READERS SHOULD BE AWARE THAT WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED
OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.
NEITHER THE PUBLISHER NOR AUTHORS SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY
OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR OTHER DAMAGES.

For general information on our other products and services, or how to create a custom For
Dummies book for your business or organization, please contact our Business Development
Department in the U.S. at 877-409-4177, contact info@dummies.biz, or visit www.wiley.com/go/
custompub. For information about licensing the For Dummies brand for products or services,
contact BrandedRights&Licenses@Wiley.com

ISBN 978-1-119-81055-1 (pbk); ISBN 978-1-119-81056-8 (ebk)

Publisher’s Acknowledgments

Some of the people who helped bring this book to market include the following:

Development Editor:
Rebecca Senninger

Acquisition Editor: Ashley Coffey

Editorial Manager: Rev Mengle

Business Development
Representative: Molly Daugherty

Production Editor:
Tamilmani Varadharaj

Special Thanks: Vinicius Cardoso,
Hanneh Bandi,
Ganapathy Raman

http://www.wiley.com
http://www.wiley.com/go/permissions
mailto:info@dummies.biz
http://www.wiley.com/go/custompub
http://www.wiley.com/go/custompub
mailto:BrandedRights&Licenses@Wiley.com
http://Dummies.com

Table of Contents v

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Table of Contents
FOREWORD ..vii

INTRODUCTION ... 1
About This Book ... 1
Icons Used in This Book ... 1
Beyond the Book .. 1
Where to Go from Here ... 2

CHAPTER 1: Why NiFi? .. 3
The Advantages of Apache NiFi .. 3
NiFi Core Concepts ... 4
NiFi Expression Language and Other Query Languages 7

JSONPath .. 9
XPath/XQuery .. 10

CHAPTER 2: Getting Started with NiFi .. 11
Importing a NiFi Template ... 13
Adding a NiFi Template to the NiFi Canvas 14
Setting Up and Running the Hello World Example 16

Configuring HandleHttpRequest NiFi processor 16
Configuring the other processors ... 17
Running the Hello World example .. 18

Understanding the Hello World Example .. 19

CHAPTER 3: General Debugging & Monitoring 21
Debugging through the User Interface .. 21

Status bar ... 22
Summary .. 22
Status History .. 23

Backpressure .. 24
Understanding how backpressure works 24
Configuring backpressure .. 25

Checking Provenance... 26
Checking the NiFi Server Logs... 28

CHAPTER 4: NiFi Use Cases .. 29
Importing Datasets into a Database .. 30
Listening for HTTP Posts .. 32
Polling a RESTful API to Extract a JSON Attribute 33

vi Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

CHAPTER 5: NiFi Anti-Patterns .. 37
Flow Overview ... 37
Laying Out Flows .. 38

Arranging flow direction .. 40
Naming and commenting processors .. 40
Using processor labels ... 40

Balancing Loads Correctly ... 41
Scheduling ... 42

Thread pools .. 42
Processor scheduling ... 42
CPU utilization ... 43

Optimizing Flows .. 43
Primary Node Only ... 43
ConvertRecord .. 44
Using complex expression language .. 44
Logging attributes ... 45

CHAPTER 6: Record-Based Processors .. 47
The Benefits of Record-Based Processors 47
Record-Based Controller Services .. 48

Source... 49
Sync (Target) .. 49
Transform .. 49

CHAPTER 7: Other NiFi Features ... 51
NiFi Registry .. 51

Key features of NiFi Registry .. 53
Getting started with NiFi Registry ... 53

Stateless NiFi ... 58
ExecuteStateless processor ... 59

Stateless KConnect Source and Sinks .. 60
Source connector .. 60
Sink connector ... 61

Cloudera DataFlow ... 61
Cloudera DataFlow Functions (DFF) ... 62

Use cases of DataFlow Functions .. 63
Advantages of DataFlow Functions .. 63

CHAPTER 8: Seven NiFi Resources .. 65

Foreword vii

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Foreword

Nearly ten years ago, I was presented with an amazing
opportunity. I was fortunate enough to join a team of three
incredibly talented engineers to build a new platform. This

platform would be responsible for handling the ever-increasing
volumes of data that would be streamed through my organization.
It would have to allow users to quickly add new sources of data on
the fly and route, analyze, process, and transform the data, all
before delivering it to its final destination. In short, the goal was
to get the right data to the right place, in the right format and
schema, at the right time.

Thus began a long and engaging journey. Over the next year,
I would take on more and more responsibilities, ultimately taking
full responsibility for the development of the framework. The vol-
ume and variety of the data continued to increase. My organiza-
tion decided that if the software were to be open sourced, it would
not only benefit us but also many others who were on a similar
journey. So, in November of 2014, this software was donated to the
Apache Software Foundation and became known as Apache NiFi.

Since its debut, NiFi has been adopted by companies and orga-
nizations across every industry. The authors of this book have
been with them through it all — training the users, assessing the
strengths and weaknesses of the platform, and even getting their
hands dirty to improve the code. They have seen a vast number
of different use cases for NiFi across these industries and been
active in the day-to-day use of the software to solve their criti-
cal dataflow problems. I have had the pleasure of working along-
side some of the authors to tackle their most difficult dataflow
challenges and learn from their experiences. Others have written
of their experiences using NiFi and established that they have a
great understanding of not just the software itself but also where
it came from and where it is heading.

This book is not intended to provide an in-depth understanding
of every aspect of NiFi but rather is meant to provide an under-
standing of what NiFi is and explain when, how, and why to use
NiFi. Additionally, it will explore the features that make the soft-
ware unique. Through tutorials, examples, and explanations, it
provides an excellent overview and walkthrough of NiFi that will
benefit the uninitiated and experienced users alike.

viii Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

While reading this book, you will gain a firm grasp on NiFi fun-
damentals and how to use the software. You should also be able
to relate them to some of the challenges that you are facing and
understand how NiFi can help to address them. Most importantly,
I hope that you enjoy the read and that it encourages you to read
more about NiFi and explore it on your own.

Cheers,

Mark Payne

Technical Lead, Apache NiFi, Cloudera

Introduction 1

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Introduction

Apache NiFi was built to automate and manage the flow of
data between systems and address the global enterprise
dataflow issues. It provides an end-to-end platform that

can collect, curate, analyze, and act on data in real-time, on-
premises, or in the cloud with a drag-and-drop visual interface.

About This Book
This book gives you an overview of NiFi, why it’s useful, and some
common use cases with technical information to help you get
started, debug, and manage your own dataflows.

Icons Used in This Book
Remember icons mark the information that’s especially impor-
tant to know.

The Tip icon points out helpful suggestions and useful nuggets of
information.

The Warning icon marks important information that may save
you headaches.

Beyond the Book
NiFi is an open-source software project licensed under the Apache
Software Foundation. You can find further details at https://
nifi.apache.org/.

https://nifi.apache.org/
https://nifi.apache.org/

2 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Where to Go from Here
The book is modular, so you can start with Chapter 1, but feel free
to roam around to the chapters that fit best. You can also pick out
a topic that interests you from the Table of Contents.

CHAPTER 1 Why NiFi? 3

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 1

IN THIS CHAPTER

 » What to use NiFi for

 » Learning NiFi core concepts

 » Understanding the expression
and query languages for NiFi

Why NiFi?

The information age caused a shift from an industry-based
economy to an information-based economy. For organiza-
tions, the information age has led to a situation in which

immense amounts of data are stored in complete isolation, mak-
ing sharing with others for collaboration and analysis difficult.

Several technologies have emerged in response to this situa-
tion, such as data lakes, but they lack one major component —
data movement. The capability to connect databases, file servers,
Hadoop clusters, message queues, and devices in a single pane is
what Apache NiFi accomplishes. NiFi gives organizations a dis-
tributed, resilient platform to build their enterprise dataflows on.

In this chapter, we discuss how Apache NiFi can streamline the
development process and the terminology and languages you
need to be successful with NiFi.

The Advantages of Apache NiFi
The ability to bring subject matter experts closer to the busi-
ness logic code is a central concept when building a NiFi flow.
Code is abstracted behind a drag-and-drop interface, allowing
groups to collaborate much more effectively than looking through

4 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

lines of code. The programming logic follows steps, similar to a
whiteboard, with design intent apparent with labels and easy-to-
understand functions.

Apache NiFi excels when information needs to be processed
through a series of incremental steps. Examples of this include:

 » Files landing on an FTP server: An hourly data dump is
made available by a vendor and needs to be parsed,
enriched, and put in a database.

 » REST requests from a web application: A website needs to
make complex REST API calls, and middleware must make a
series of database lookups.

 » Secure transmission of logs: An appliance at a remote site
needs to transmit information back to the core data center
for analysis.

 » Filtering of events data: Event data is being streamed and
needs to be evaluated for specific conditions before being
archived.

NiFi Core Concepts
NiFi is a processing engine designed to manage a continuous flow
of information as a series of events in an ecosystem, as opposed to
batch operations that need to wait for a full dataset to be loaded.
Everything starts with a piece of data that flows continuously
through multiple stages of logic, transformation, and enrichment.

When building flows in NiFi, keep in mind where the data is com-
ing from and where it will ultimately land. In many ways, NiFi
is a hybrid information controller and event processor. An event
can be anything from a file landing in an FTP to an application
making a REST request. When you consider information flow as a
series of distinct events rather than a batch operation, you open
many possibilities.

One of the biggest paradigm shifts teams may face is going from
monolithic scheduled events to a sequence of individual tasks.
When big data first became a term, organizations would run
gigantic SQL operations on millions of rows. The problem was that

CHAPTER 1 Why NiFi? 5

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

this type of operation could only be done after the data was fully
loaded and staged. With NiFi, those same companies can consider
their SQL databases as individual rows at the time of ingestion.
This situation allows for data to be enriched and served to the end
consumer faster and with more reliability. Because each row is
individually analyzed, a corrupt value would only cause that indi-
vidual event to fail rather than the entire procedure.

NiFi consists of three main components:

 » Flowfiles: Information in NiFi consists of two parts: the
attributes and the payload. Flowfiles typically start with
a default set of attributes that are then added to by addi-
tional operations. Attributes can be referenced via the NiFi
expression language, which you can find out about in the
“NiFi Expression Language and Other Query Languages”
section. The payload is the information content itself, the
data, and can also be referenced by specific processors.

 » Processors: Do all the actual work in NiFi. They are self-
contained segments of code that in most cases have
inputs and outputs. One of the most common processors,
GetFTP, retrieves files from an FTP server and creates a
flowfile. The flowfile includes attributes about the directory
it was retrieved from such as the creation date, filename,
and a payload containing the file’s contents. This flowfile
can then be processed by another common processor,
RouteOnAttribute. This processor looks at an incoming
flowfile and applies user-defined logic based on the attri-
butes to determine which route the data should flow
through the chain.

 » Connections: These detail how flowfiles should travel
between processors. Common connections are for success
and failure, which are simple error handling for proces-
sors. Flowfiles that are processed without fault are sent to
the success queue while those with problems are sent to
a failure queue. Processors such as RouteOnAttribute
have custom connections based on the rules created.

Additional connection types may be Not Found or Retry
and depend on the processor itself. Connections can also be
Auto-Terminated if the user wishes to immediately discard
a specific type of event. Configuring the advanced features of
connections, such as backpressure, is covered in Chapter 3.

6 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Figure 1-1 shows a basic flow incorporating these three basic
concepts. A processor gets files from a local directory and creates
flowfiles. These flowfiles go through the connection to another
processor that puts the data into Hadoop or another filesystem.

Processors can be turned on and off (started/stopped), which is
indicated by a green triangle (running) or red square (stopped).
A stopped processor doesn’t evaluate flowfiles.

Processors are configurable by righting-click and choosing
Configure; five tabs are available:

 » Settings: This tab allows you to rename the processor and
provides access to more advanced settings; for example,
penalty and yield duration allow configuring for how to
handle re-trying flowfiles if the first attempt fails.

 » Relationships: Allows you to auto-terminate relationships
and, if a processor allows user-defined relationships to be
created (such as RouteOnAttribute), they also appear here,
after being created.

 » Scheduling: NiFi provides several different scheduling
options for each processor. For most cases, the timer-driven
strategy is most appropriate. This can accommodate running
on a specified interval or running as fast as NiFi can schedule
it (when data is available) by setting the scheduling period
to 0 seconds.

FIGURE 1-1: The first flow.

CHAPTER 1 Why NiFi? 7

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Additionally, you can increase the concurrency on this tab.
Doing so allocates additional threads to the processor, but
be mindful of the number of threads available to NiFi and
oversubscription.

 » Comments: Allows developers to add comments at the per
processor level.

 » Properties: This tab is where the processor’s specific
settings are configured. If the processor allows custom
properties to be configured, click the plus sign in the top
right to add them. Some properties allow for the NiFi
Expression Language.

To tell whether a property allows for the NiFi Expression
Language, hover over the question mark next to
the property name and see whether the Supports
Expression Language property is true or false.

NiFi Expression Language
and Other Query Languages

The NiFi Expression Language is the framework with which attri-
butes (metadata) can be interacted with. The language is built on
the attribute being referenced with a preceding ${ and proceed-
ing }. For example, if you want to find the path of a file retrieved
by GetFile, it would be ${path}. Additional terms can be added
for transformation and logic expressions, such as contains or
append. Multiple variables can be nested to have a multi-variable
term. Examples include

 » Check whether the file has a specific name

${filename:contains('Nifi')}

 » Add a new directory to the path attribute

${path:append('/new_directory')}

 » Reformat a date

${string_date:toDate("yyyy-MM-DD")}

8 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Mathematical operations

${amount_owed:minus(5)}

 » Multi-variable greater than

${variable_one:gt(${variable_two})}

When writing an expression language statement, enter ${ and
then press Ctrl+Space to get a list of possible functions you can
choose from to auto-complete your statement. There is also doc-
umentation available where you can look up a function.

Some processors require a Boolean expression language term to
filter events such as RouteOnAttribute, shown in Figure 1-2.

While others, such as UpdateAttribute, allow more freeform use
of the language, as shown in Figure 1-3.

FIGURE 1-2: This processor requires a Boolean expression.

CHAPTER 1 Why NiFi? 9

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

JSONPath
When referencing JSONs with processors such as Evaluate
JsonPath, you use the JSONPath expression language. In this
language, the JSON hierarchy is referenced with a $ to represent
the root and the names of the nested fields get a value, such as
$.account.user_name.first_name. For example, you can enu-
merate a list of accounts, such as $.account[0].user_name.
first_name. Additional complex operations are available:

 » Search any level of JSON for a field called Version

$..Version

 » Filter only for subversions greater than 5

$..Version[?(@.subVersion>5)]

FIGURE 1-3: This processor gives you a lot of freedom in your language.

10 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

XPath/XQuery
The XPath/Query language is available for accessing data in XMLs
through processors such as EvaluateXPath and EvaluateXQuery.
Much like JSONPath, it allows for data to either be exactly speci-
fied or searched:

 » Specify the value of the account holder’s first name

/account/user_name/first_name

 » Specify the value of the first account if multiple
accounts are present in the XML

/account[0]/user_name/first_name

 » Search any level of XML for a field called Version

//Version

 » Filter only for subversions greater than 5

//Version[subVersion>5]

CHAPTER 2 Getting Started with NiFi 11

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 2

IN THIS CHAPTER

 » Importing a NiFi template

 » Creating a NiFi dataflow

 » Understanding the Hello World example

Getting Started with NiFi

Apache NiFi is one of the most flexible, intuitive, feature-
rich dataflow management tools within the open-source
community. NiFi has a simple drag-and-drop user inter-

face (UI), which allows administrators to create visual dataflows
and manipulate the flows in real time and it provides the user
with information pertaining to audit, lineage, and backpressure.

For example, to really begin to understand some of the capabili-
ties, it’s best to start with a simple Hello World dataflow. The
traditional Hello World example (as every technologist is used
to starting with when learning any programming language) is a
bit different with a dataflow management tool such as NiFi. This
simple example demonstrates the flexibility, ease of use, and
intuitive nature of NiFi.

In this chapter, we explain how to import a NiFi template, create
a NiFi dataflow, and how data is processed and stored.

12 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

DOWNLOADING NIFI
AND CLONING A REPO
Installing and starting NiFi is outside the scope of this book.
Information on how to install and start NiFi can be found at
https://nifi.apache.org/docs.html.

You can download Apache NiFi at https://nifi.apache.org/
download.html. The demo GitHub repository we follow throughout
this book was tested with version 1.16.0 but should work with later
versions of NiFi. Once NiFi is running, you need to clone or download
the GitHub repository to follow along with the Hello World dataflow
example in this chapter.

By default, NiFi generates a username and password on startup to log
into the NiFi UI. If you want to set the username and password, you
can run the following command from the directory that you installed
NiFi into:

./bin/nifi.sh set-single-user-credentials <user
name> <password>

Note: Because NiFi out of the box is secured, you need to set a pass-
word that is, at least, 12 characters long.

If you would rather use the generated credentials to log into the NiFi
UI, you can navigate to the logs directory where you had installed
NiFi and search the nifi-app.log file for Generated Username
and Generated Password. You need to exclude the brackets []. For
example, if you search the log file and find Generated Username
[5c398133-cd42-49b1-8e16-afd53613d015], then your
username is 5c398133-cd42-49b1-8e16-afd53613d015.

To clone the GitHub repository from a command line, type the follow-
ing command:

git clone https://github.com/drnice/NifiHelloWorld.git

https://nifi.apache.org/docs.html
https://nifi.apache.org/download.html
https://nifi.apache.org/download.html
https://github.com/drnice/NifiHelloWorld.git

CHAPTER 2 Getting Started with NiFi 13

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Importing a NiFi Template
When you have NiFi successfully installed and running, you can
import the HelloWorld.xml file, which is a NiFi template cloned
from the GitHub repository (see the sidebar on how to clone the
GitHub repository).

Follow these steps to import a NiFi template (see Figure 2-1):

1. Launch NiFi by pointing your browser to this location
https://localhost:8443/nifi/ (or a similar location
based on how NiFi was installed).

2. Click the Upload Template button within the Operate
window.

3. Click the magnifying glass icon.

4. Browse to the location where you downloaded the
GitHub repository, and select the HelloWorld.xml file.

5. Click Open and then Upload.

To download the GitHub repository, point your web browser at
https://github.com/drnice/NifiHelloWorld, click the green
Clone or Download button, and click Download ZIP. After it’s down-
loaded, extract the zip file.

After the repository is cloned or downloaded and extracted, note the
location of the files. Remember to change the location we use in this
chapter to your location.

Note: Update these files in the repository to reflect your location:

• server.sh (the content of this file points to the location of
wsclient.html, and should point to a location on the computer)

• server.sh = cat /Users/drice/Documents/websocket/
index.html

• index.html (which is included in the repo)

http://localhost:9090/nifi/
https://github.com/drnice/NifiHelloWorld

14 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Templates are considered deprecated in the last several releases
of NiFi and are scheduled for removal in NiFi 2.0. Flow Defini-
tions, represented in JSON, are the recommended way of import-
ing and exporting reusable flow configurations.

You can export a process group as a Flow Definition starting from
NiFi 1.11 by right clicking and selecting Download Flow Definition.
To import a Flow Definition, drag the process group icon to the
canvas and click the Upload icon next to the text field.

Adding a NiFi Template
to the NiFi Canvas

With the NiFi template uploaded, you can add the Hello World tem-
plate to the NiFi canvas by following these steps (see Figure 2-2):

1. Click the Template icon in the grey navigation bar at
the top of the screen and drag and drop it anywhere
on the canvas.

2. In the Add Template window, choose the Hello World
template.

3. Click the Add button.

FIGURE 2-1: Importing the HelloWorld.xml NiFi template.

CHAPTER 2 Getting Started with NiFi 15

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

The Hello World dataflow opens on your canvas, as shown in
Figure 2-3. The NiFi processors have a yellow exclamation icon
next to them. You need to modify these processors (along with the
PutFile processor and the ExecuteStreamCommand processor) for
the Hello World dataflow to work.

FIGURE 2-2: Adding the Hello World template to the NiFi canvas.

FIGURE 2-3: The Hello World example dataflow.

16 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Setting Up and Running
the Hello World Example

With the Hello World template added onto the NiFi canvas,
you can clean up some properties and configurations within the
processors that have a yellow exclamation icon next to them. The
yellow exclamation icon indicates those processors need attention.

Configuring HandleHttpRequest
NiFi processor
Start by correcting the HandleHttpRequest NiFi processor by fol-
lowing these steps:

1. Right-click the Nifi-WebServer-HandleHTTP NiFi proces-
sor and select Configure.

2. In the Configure Processor window, click the Properties tab.

3. Click the right-pointing arrow in the third column next to
StandardHttpContextMap (see Figure 2-4).

4. In the Process Group Configuration window, click the
lightning bolt on the same row as the
StandardHttpContextMap to enable this controller
service (see Figure 2-5).

FIGURE 2-4: Configure the HandleHttpRequest processor.

CHAPTER 2 Getting Started with NiFi 17

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

5. Leave the Scope as Service Only and click Enable and
then Close.

6. Close the Process Group Configuration window.

With the HandleHttpRequest NiFi Processor configured properly,
there is now a red box next to it, indicating the processor isn’t
running.

Configuring the other processors
When you know how to configure the HandleHttpRequest NiFi
processor, you can easily configure the other processors needed
to run the Hello World dataflow: ListenWebSocket, PutFile,
and ExecuteStreamCommand. Just as you do with HandleHttp
Request, right-click the processor you want to configure, and
select Configure. Then on the Properties tab of the Process Group
Configuration window, change these settings for each processor:

 » ListenWebSocket: Click the right-pointing arrow in the third
column next to JettyWebSocketServer. Click its lightning
bolt to enable the service. Select Service Only for the Scope.
Then click the Enable and Close buttons.

 » PutFile: Change the Directory property to the directory
where you want the data from the web application to write
to and click the Apply button.

 » ExecuteStreamCommand: Change the Command Path
property to the directory where you downloaded the
NiFi HelloWorld GitHub repository and extracted the
server.sh file. Then click the Apply button.

When you have the processors configured correctly, each has a red
box next to it, indicating the processor isn’t running, instead of
the yellow exclamation icon.

FIGURE 2-5: Enable the StandardHttpContextMap controller.

18 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Running the Hello World example
To start the Hello World flow, follow these steps (see Figure 2-6):

1. Click anywhere on the NiFi canvas so that nothing is
selected (meaning no processor or connection is
highlighted).

2. Click the Start button on the left side of the Operate
window.

Every red box for each processor changes to a green triangle
pointing to the right, indicating the processor is running.

Now you can launch a web browser that NiFi is hosting. Follow
these steps (see Figure 2-7):

1. Point a web browser to http://localhost:6688/.

You see a text box along with three buttons: Open, Send,
and Close.

2. Click the Open button.

3. Enter Hello World in the text box.

4. Click the Send button.

Congratulations, you just submitted Hello World through
your NiFi flow.

To validate that Hello World flowed through NiFi, open the des-
tination path defined in the PutFile NiFi processor and you see a
file that contains the phrase “Hello World” inside it.

FIGURE 2-6: Running the Hello World dataflow.

http://localhost:6688/

CHAPTER 2 Getting Started with NiFi 19

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Understanding the Hello World Example
Now that you’ve successfully executed the Hello World dataflow,
you can better understand how it works behind the scenes.

The HandleHttpReqest NiFi processor starts an HTTP server
in NiFi and listens for HTTP requests on a specific port. In this
case, the NiFi processor is already set up on port 6688. When you
pointed your browser to http://localhost:6688, NiFi handled
this request and passed it to the next processor, which executed
the server.sh shell script.

This shell script launches the HTML file inside of NiFi. Like any
web server, the call is then routed to see whether the response is
successful and this is how the HTML file is presented in the web
browser.

The content of the index.html file is in a simple form. The
Open command established a connection from the web client to
the ListenWebSocket connection over port 9998 (the Listen
WebSocket was pre-configured to listen to this port when you
imported the NiFi template). After the connection is established,
you can publish any data over the web socket connection.

Eventually, the data put on the WebSocket connection is routed to
the PutFile processor within NiFi where the data is stored on a
local disk in the directory you specified.

FIGURE 2-7: Executing the Hello World demo.

http://localhost:6688

CHAPTER 3 General Debugging & Monitoring 21

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 3

IN THIS CHAPTER

 » Getting information through the NiFi’s
user interface

 » Setting up backpressure to help
processes run smoothly

 » Debugging with provenance

 » Getting information from the NiFi
server logs

General Debugging &
Monitoring

The last thing anyone wants is for a processor to stop run-
ning unexpectedly, which prevents it from completing or
preventing others from running altogether. Fortunately,

NiFi offers several methods to monitor them.

In this chapter, we discuss how to interpret information about
your processes through the user interface, set up backpressure to
allow NiFi to regulate itself, use provenance to help with debug-
ging efforts when things don’t go as planned, and monitor pro-
cesses through the NiFi server logs when you want more detail.

Debugging through the User Interface
You can glean a lot of information right from the user interface,
through the status bar, the Summary window, and the Status
History menu.

22 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Status bar
The status bar is located at the top of the user interface under the
drag-and-drop toolbox. It provides metrics related to:

 » Nodes in the cluster

 » Threads running

 » Flowfile count and content size

 » Remote process groups in transmitting or disabled state

 » Processors status (for example, which ones are running,
stopped, invalid, disabled, the last time the UI was refreshed)

The amount of information reported in the status bar is minimal.
When you need more in-depth information, choose the Summary
found in the menu.

Summary
The Summary window contains tabs for processors, input ports,
output ports, remote process groups (RPGs), connections, and
process groups.

The process groups located on the canvas contain their own status
bars and general metrics; they’re also available on the Summary’s
Process Groups tab in a tabular report. The Connections tab pro-
vides basic information as well: name, relation type being con-
nected, the destination, queue size, % of queue threshold used,
and output size in bytes. Metrics that track the input and outputs
are tracked over a five-minute window.

Funnels are notoriously used as anti-patterns to store flowfiles
that may not be expiring. While valid in development, such set-
ups can back up and cause other operational issues. With the
Summary’s Connections tab, all the funnels on the canvas can
be identified to validate that they’re being used downstream and
not just dead ends from other processors, as shown in Figure 3-1.

Additionally, at the bottom right of the Summary on any tab is the
system diagnostics link. There are three tabs:

 » The JVM tab shows metrics about on and off-heap utilization
and garbage collection counts along with total time.

CHAPTER 3 General Debugging & Monitoring 23

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » System, as shown in Figure 3-2, shows the number of CPU
cores and the amount of space used on the partition that the
repository is stored on.

 » Version contains detailed build numbers of NiFi, the version
of Java NiFi is running with, and details on the OS.

Status History
The Status History menu is one of the most useful features, next
to Data Provenance, in debugging a slow flow. The Status History
menu contains all the generic information expected such as the

FIGURE 3-1: You can keep track of funnels through the Connections tab.

FIGURE 3-2: The system storage used for the NiFi repositories.

24 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

name and the time the status has been collected for. The graph
in the menu, as shown in Figure 3-3, can visualize many metrics
related to the processor or connection and includes separate plot-
ting for each NiFi node in the cluster.

The line graph in the Status History menu can be zoomed in by
dragging from one part of the graph to the next.

Backpressure
From an operational perspective, backpressure enables you to
design a system that self-regulates the amount of storage it’s
utilizing to prevent it from crashing! Backpressure isn’t typi-
cally thought of as a first-class citizen in many data movement
systems, but NiFi provides it as a first-class feature.

Understanding how backpressure works
It’s important to understand how the backpressure is configured
in the flow to understand its behavior. If a connection is ever
completely utilized by storage or flowfile count, the processor
upstream of the connection stops processing and waits for room

FIGURE 3-3: The graph and information that you can find via the Status
History menu.

CHAPTER 3 General Debugging & Monitoring 25

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

to be made in the connection. This problem is typically caused by
a slow processor downstream of the connection that can’t con-
sume the flowfiles as fast as upstream processors can place them
into the connection queue.

The simplest visual to monitor backpressure appears on the
Connections tab of the Summary window with both flowfile and
storage size icons that represent capacity: Green (most), Yellow,
and Red (least). (See the earlier “Summary” section for more
about the Connections tab.) It also lists the source and target pro-
cessor names along with utilization and last five-minute metrics.
The Connections tab can be targeted for a specific node or the
entire NiFi cluster.

Use this information to identify specific ingestion methods that
skew, such as a Kafka processor that has a high skew to a specific
keyed partition where a specific NiFi node would be responsible
for a single partition receiver.

Configuring backpressure
In NiFi, backpressure is configured at the connection level, where
you can manage the backpressure policies. You can configure back-
pressure from two perspectives: value and infrastructure storage:

 » Value: Accepting that it’s impossible to store everything is
the first step to designing systems that have the capability
to self-regulate their contents.

 » Storage: The infrastructure itself has physical limitations on
total storage available for Flowfile, Content, and Provenance
repositories to use. By defining the value of specific mes-
sages in the flow, the flowfiles of lesser importance can be
dropped while holding onto more important ones.

NiFi supports three ways to configure the backpressure policies
of a connection:

 » Flowfile count: Ensure only a specific number of files are in the
queue to be processed. When filled, the upstream processor
pauses processing, allowing the system to catch up.

 » ContentSize: Limit the amount of downstream flow storage
used and also ensure that the total storage for all connec-
tions is set up in a manner that prevents the flow from filling
a disk completely.

26 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Time: Expire data that remained in the queue for too long so
that it no longer holds any value in being processed.

Filling the storage mounts on a NiFi server can lead to very odd
behavior of the repositories, which can result in requiring special
actions to restore the normal operation of the NiFi server that is
filled. Refer to the Summary menu’s system diagnostics link for
detailed storage use by the NiFi nodes (see the earlier section).

The Flowfile repository is much smaller than the Content reposi-
tory. For example, a sample flow in a NiFi cluster with three nodes
holding 32,500 flowfiles totaling 872.5MB results in the reposi-
tories on a single node (1/3) looking like the following table. It’s
important to note that in a cluster, work is distributed and some
servers could have more work depending on the ingestion and
transformations taking place in the flow on each server.

Node Repository Size

1 Content 285MB

1 Flowfile 5.4MB

2 Content 305MB

2 Flowfile 6.2MB

3 Content 265MB

3 Flowfile 5.9MB

If you’re trying to empty a queue and flowfiles remain, the down-
stream processor may have a lease on the files. Stopping the pro-
cessor allows you to clear out these files.

Checking Provenance
NiFi’s data provenance provides debugging capabilities that allow
for flowfiles themselves to be tracked from start to end inside the
application. Flowfiles can have their contents inspected, down-
loaded, and even replayed. The combination of these features
enables ease of troubleshooting to find out why a specific path
was taken in the workflow. This capability allows you to make
changes to the workflow based on what occurred and replay the
message to ensure the new path is correctly taken.

CHAPTER 3 General Debugging & Monitoring 27

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Both processors and connections have data provenance availa-
ble by right-clicking; alternatively, you can access the complete
Provenance repository from the Provenance menu. The Provenance
menu includes the Date/Time, ActionType, the Unique Flowfile
ID, and other stats. On the far left is a small ‘i’ encircled in blue;
click this icon, and you get the flowfile details. On the right, what
looks like three little circles connected together is Lineage.

Lineage is visualized as a large directed acyclic graph (DAG) that
shows the steps in the flow where modifications or routing took
place on the flowfile. Right-click a step in the Lineage to view
details about the flowfile at that step or expand the flow to under-
stand where it was potentially cloned from. At the very bottom
left of the Lineage UI is a slider with a play button to play the pro-
cessing flow (with scaled time) and understand where the flowfile
spent the most time or at which point it got routed.

Inside the flowfile details, you can find a detailed analysis of both
the content and its attributes, as well as the queue positions and
durations, along with the node that performed the event. The
Content tab allows you to investigate before and after versions of
a flowfile after it’s been processed (see Figure 3-4); just read the
data in the browser or download it for later. To correct a problem,
use the Replay capability to make a connection to the flow and
replay the flowfile again. (And then inspect it again to be sure it
runs the way you want.)

FIGURE 3-4: A major advantage to provenance is the capability to view the
before and after the content of a flowfile.

28 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Checking the NiFi Server Logs
Each NiFi server has a set of application and bootstrapping logs.
NiFi uses Logback to provide a robust and configurable logging
framework that you can configure to provide as much detail as
you want. The logs contain detailed information about processes
occurring on the server.

By default, the NiFi server logs are located in the logs/ directory
found in the NiFi folder. This folder is also called $NIFI_HOME.
If you downloaded and untarred/unzipped NiFi, the directory is
NIFI_HOME.

The nifi-app.log application log contains more details about
processors, remote process groups (for site-to-site), Write Ahead
Log functions, and other system processes.

The nifi-bootstrap.log bootstrap contains entries on whether
the NiFi server is started, stopped, or dead. It also contains the
complete command with classpath entries used to start the NiFi
service.

The log level for NiFi is set to INFO by default. Users can customize
the log level (WARN, DEBUG, ERROR) for better debugging.

The logback.xml located in $NIFI_HOME/conf can be edited
on the fly without having to restart NiFi. It takes approximately
30 seconds before the new logging configuration takes effect. The
log level can be configured per node and isn’t a cluster-wide con-
figuration. For example, to only change the processor log level,
edit the logback.xml and change the logger line for org.apache.
nifi.processors from WARN to INFO.

Alternatively, the log level can also be changed at the processor
level using the UI. However, this may help only during develop-
ment or debugging using the UI or when you don’t have access to
the node-level logs. Remember to set it back to the default when
you’re done.

CHAPTER 4 NiFi Use Cases 29

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 4

IN THIS CHAPTER

 » Importing data into a database

 » Pushing the data over an HTTP
connection

 » Polling and saving data for later use

NiFi Use Cases

P
lanning the first NiFi data integration project requires
attention to:

 » Data volume and velocity: Pulling flat files from a moni-
tored directory often leads to large files made available
infrequently, which can require lots of memory to process.
In contrast, when data is pushed from an external source to
a NiFi listener over a TCP/IP port, each data row tends to be
small in size but is received frequently.

 » Data types to ingest: NiFi has the ability to support binary
and text data, either in a structured or unstructured format.

 » Capacity of connected systems: When considering
system capacity needed, pay close attention to each of
the connected systems’ capabilities to accept the data as it
becomes available, support temporary content data storage,
and store data long term.

While NiFi can support many different ingest use cases, in this
chapter we examine three sample use case scenarios.

30 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Importing Datasets into a Database
In this scenario, the requirement is to monitor a directory on disk
and on a scheduled basis read all the files in the directory, vali-
date the data in those files, and finally write the valid records into
a database.

The flow consists of the following steps:

1. Periodically scans the directory and fetches the contents
whenever a new file arrives.

The ListFile and FetchFile processors accomplish
this step.

2. Validates the contents of the data.

The ValidateRecord processor, which accomplishes this
step, is configured with a schema that describes how the
data should look. In this case, the flow routes invalid records
to a processor and writes them to an errors directory. The
ValidateRecord processor is configured with a Record
Reader so that it’s capable of processing any kind of record-
oriented data, such as CSV, JSON, Avro, or even unstructured
log data.

3. Publishes the data to the database using the
PutDatabaseRecord processor.

Again, this processor uses a Record Reader so that it can
process any record-oriented data.

Failures during data integration can happen, so you need to plan
for errors. NiFi handles this nicely through the ability to route
exceptions into a failure queue to either hold for reprocessing or
to write to another destination, (such as Apache Kafka), local disk
storage, or cloud object storage (such as Amazon S3).

The sample scenario validates that the data file contents match a
schema and any invalid records are written to an error directory
via the PutFile processor. This processor can also be stopped to
hold the data in the queue within NiFi. From here, you can review
the input content, make any necessary corrections to the flow,
and reprocess the data. See Figure 4-1.

CHAPTER 4 NiFi Use Cases 31

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FIGURE 4-1: The steps to this dataflow.

32 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

At the same time, any records that did match the schema are
written to the database by the PutDatabaseRecord processor.

This processor allows you to configure where the data should be
published and how to include the mapping of field names in the
data to database column names.

The concepts used for this NiFi dataflow can be extended to a
variety of different import scenarios — for example, pulling from
a relational database or a RESTful query.

Listening for HTTP Posts
In this scenario, an external system pushes the data over an HTTP
connection into NiFi using a POST option. The approach to setting
up a listener operation is as simple as inserting the ListenHTTP
processor, as shown in Figure 4-2.

This flow is listening on the same server the NiFi process is
running on and listening to a port configured in the ListenHTTP
processor, as shown in Figure 4-3.

FIGURE 4-2: This flow inserts a ListenHTTP processor.

CHAPTER 4 NiFi Use Cases 33

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

With this configuration, any HTTP POST operation to the NiFi
server using the URL http://{nifi server address}:7001/
contentListener gets picked up by the listener and then gets
passed on to the next step in the dataflow.

The capability to specify a base path (the example in Figure 4-3
specifies contentListener) means that it’s possible to have
multiple readable HTTP endpoints for all the different workflows
supported by your NiFi instance.

Polling a RESTful API to Extract
a JSON Attribute

In this scenario, the flow executes RESTful queries every 30 seconds
and then saves the result as a NiFi attribute for use in other down-
stream functions, as shown in Figure 4-4.

The first step in this scenario is to poll the RESTful API to query
the Yahoo Weather service every 30 seconds and return a flowfile
in JSON format. To control the polling interval, specify 30 seconds
for the Run Schedule property on the Scheduling tab.

FIGURE 4-3: The ListenHTTP processor includes a port for listening.

34 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Without any programming, you can specify an HTTP URL on the
Properties tab to make the Yahoo Weather query.

To make this use case work, you need to extract the wind speed
from the full JSON object. The data returned by the InvokeHTTP
processor is actually a fairly complex JSON object. This is a prob-
lem because the objective is to only pull out the wind speed
attribute from within this large JSON object.

To extract just the wind speed JSON attribute, you need to add a
NiFi attribute using the EvaluateJsonPath processor, as shown
in Figure 4-5.

To add it, click the + sign in the top-right corner of the Evaluate
JsonPath processor Properties tab and add the wind_speed attrib-
ute. Looking at the output from the EvaluateJsonPath, you find a
new attribute with an actual flowfile-content value.

FIGURE 4-4: This flow shows a RESTful query runs every 30 seconds
and saves the result.

CHAPTER 4 NiFi Use Cases 35

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FIGURE 4-5: Use EvaluateJsonPath processor to extract the wind speed.

CHAPTER 5 NiFi Anti-Patterns 37

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 5

IN THIS CHAPTER

 » Flow overview

 » Setting up flow layout

 » Properly load balancing

 » Scheduling and threading flows

 » Optimizing flows

NiFi Anti-Patterns

Anti-patterns are routines that are frequently found in
dataflows, but they end up not being effective, and may
even not be productive at all.

In this chapter, we go over common NiFi anti-patterns found in
dataflows. Knowing these anti-patterns can help you improve
the design and layout of your flow, optimize processors and con-
nections with scheduling and load balancing, and optimize your
dataflow for best performance.

If you want to learn more about Apache NiFi anti-patterns, see
Chapter 8 for an additional resource.

Flow Overview
There are three Nifi anti-patterns that occur in NiFi flows:

 » Splitting a flowfile into parts and then merging them
together again. This split and merge also affects the lineage
and makes it very hard to look at data provenance.

The solution is to use NiFi’s record-based processors
(SplitText processor and AttributesToJson proces-
sor are two) with parsers versus splitting new lines.

38 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » Using Regex matching to unstructured text. Avoid regular
expressions where possible. They are hard to write and
often do not actually solve complicated structured data.

 » Blurring the line between flowfile attributes and
content. You need to keep flowfile content and flowfile
attributes separate.

The solution for these three anti-patterns is to use NiFi’s record-
based processors with parsers versus splitting new lines, using
regular expression to match unstructured data, and moving data
from content to attributes and back again.

Record-based processors include record readers and record
writers. Two common ones are QueryRecord and PutRecord.
These readers and writers can be a different type and schema than
the source data. Additionally, when using record-based proces-
sors, the data provenance and lineage are now navigable within a
data provenance UI.

A query in these processors can include additional columns calcu-
lated by NiFi functions or flowfile attributes.

Laying Out Flows
Properly laying out your flow is very important to be able to visu-
ally follow the flow of data. Creating a proper flow that is easy
to follow greatly helps when trying to operate or debug the flow.
Any developer who inherits your flow needs to be able to visually
understand where data is coming from upstream, what is hap-
pening to that data in the branches of your dataflow, and where
it’s going downstream.

Avoid spaghetti flows. You don’t want to end up in a situation
depicted in Figure 5-1.

Every dataflow is unique, but taking a consistent approach to flow
layout and using all the NiFi UI tools make your dataflow easier
to work on for yourself and others who may use it later in its
lifecycle.

CHAPTER 5 NiFi Anti-Patterns 39

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FIGURE 5-1: Avoid tangled and confusing dataflows.

40 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Arranging flow direction
Top to bottom or left to right are the most common dataflow
structures. Whichever path you take, you should be consistent,
and organize the flow accordingly. Create a dataflow path that is
visually traceable.

Here are some tips to achieve better dataflow structure:

 » Use top to bottom where possible, and align these as close
as possible within the NiFi canvas.

 » Create bend points for connection lines that are overlapping
other UI elements.

 » Combine connections where appropriate, by creating one
connection with multiple relationships.

You can use process groups with input/output ports to create
advanced flows.

Naming and commenting processors
Naming and commenting on processors is very useful. Rename
your processors to something appropriate for their function. For
example, ReplaceText could be Fix Bad Characters.

Every processor includes a Comments tab. It’s a great place to
provide comments to yourself or others that give a greater expla-
nation of what the processor does.

Click the black arrow at the bottom right of any processor to show
its description.

Using processor labels
At the top right of the NiFi UIis a Labels icon. Dragging a label
onto the screen allows you to create descriptive text boxes on your
NiFi canvas. These labels are great for providing directions, infor-
mation, or documentation important to your flow.

You can change the color and text size of your labels to suit your
needs by right clicking on the label and selecting Configure to
rename or clicking on the bottom right corner and dragging to
resize.

CHAPTER 5 NiFi Anti-Patterns 41

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Balancing Loads Correctly
Load balancing is the process of taking data on one NiFi node and
spreading it across the entire cluster — thus parallelizing the
processing of that data.

NiFi does not automatically distribute data between nodes.

You need to intelligently decide when to distribute data across the
cluster and when not to. How do you know when? The answer is
found by evaluating if it is economical to move data across the
entire cluster to other NiFi nodes or leave it where it already is on
a given node.

Properly load balancing your flow makes your flow operational
from 100 to 1,000 plus nodes at rates up to billions of transactions
per second. To achieve this type of NiFi performance, you want to
avoid these three anti-patterns:

 » Load balance compression: This option should be set to
Do Not Compress At All.

Look at the bottom right of the queue for the configuration
summary.

 » Overload balancing within your flow: When you distrib-
ute the load at the top of a flow, you do not need to config-
ure deeper queues for load balancing; the data is already
distributed upstream. These deeper connections should
remain Do Not Load Balance.

Make sure your top-of-flow processor isn’t already distribut-
ing its load around the cluster. For example, Kafka proces-
sors already have distribution built in.

 » Incorrectly using the Primary Node feature of a proces-
sor after load balancing: Instead use the primary node
at the top of your flow and then load balance on the next
processor. For example, use ListFile (set to primary
node), configure Load Balance on the next connection
to FetchFile, and then process further down the flow
as normal.

42 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Scheduling
Getting scheduling wrong affects the performance and the stabil-
ity of your cluster.

Your flows are operational from 1,000, 100,000 or 1,000,00 trans-
actions per second on each node in your cluster.

You should find a sweet spot during flow tuning. After you’re
sure the flow is operating correctly, you can then increment your
thread pool values, re-evaluate your flow, and retune in a new
iteration.

Do not overtune any of these values by jumping from small to
very large values. If everything is tuned correctly, and a processor
is struggling to keep up with performance demand, take a look at
the disk configuration.

Thread pools
Thread pools affect all users and dataflows. Configure them in the
controller settings that are found in the top-right menu. There
are two different thread pools:

 » Event driven: This is where you tell NiFi how many different
processors you want to run at any given time.

Set this between two and four times the number of CPU
cores available.

This setting is per node, so don’t set the total number of
cores by two to four times the number of nodes.

 » Timer driven: Leave this set to 1.

Processor scheduling
Configure processor scheduling within your processors and
dataflow connections before increasing thread pools. From the
Scheduling tab of a processor, you can change these settings:

 » Concurrent Tasks: This is the maximum number of threads
the processors are able to use.

CHAPTER 5 NiFi Anti-Patterns 43

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Use this setting sparingly. Increasing settings to large
numbers without evaluating other tuning methods is
also an anti-pattern. Increase in small iterations.

 » Run Duration: This slider bar configures micro batching.
Instead of increasing concurrency, increase the run duration.

CPU utilization
To view CPU utilization, go to the top right menu and choose
Summary ➪ System Diagnostics ➪ System Tab. Look at total cores
and the load average. If there is some overhead (the load isn’t equal
to cores), increase the size of the thread pool slowly. Use incre-
mental iterations where you evaluate the flow on each iteration.

Be sure to leave some overhead to account for nodes dropping
out of the cluster. In some cases 50 percent is right; in others,
70 percent to 80 percent is better.

Optimizing Flows
In this section of common NiFi anti-patterns, we cover how to
properly use the Primary Node Only feature, when to use the
ConvertRecord processor, how to avoid complex expression
language usage, and why to avoid using LogAttribute in your
dataflows.

Primary Node Only
Using the Primary Node Only feature of any processor should be
carefully considered. In most cases a Primary Node Only proces-
sor should be at the start or top of your dataflow. Setting deeper
dataflow processors to the primary node can create a situa-
tion where data is on the primary node when the primary node
changes. When this happens the data can not be moved to the new
primary node.

Only source processors (top of dataflow) should be set to Primary
Node Only.

44 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

ConvertRecord
Overusing ConvertRecord is another common NiFi anti-pattern.
There are three scenarios often seen in NiFI dataflows that use
ConvertRecord:

 » When to use a ConvertRecord: Best practice is to use
ConvertRecord when there are no other ConvertRecord
processors in a flow.

 » When not to use ConvertRecord: Do not use a
ConvertRecord processor when you’re already using a
record-based processor. Remove the ConvertRecord, and
do the appropriate conversion in the source processor.

 » Avoid the overuse of ConvertRecord: Don’t use a record-
based processor, then a ConvertRecord, and then yet
another record-based processor. Overusing causes perfor-
mance issues.

Using complex expression language
The next NiFi anti-pattern to cover is using complex expression
language in NiFi processor configuration. Complicated if-then-
else expression language chains are very hard to write, very hard
to understand, and can often be replaced with NiFi expression
language functions.

Follow these tips when using expression language:

 » Press Shift+Enter to create new lines to make chained
expressions easier to follow.

 » When possible, evaluate other NiFi functions that can
provide the same end result.

 » Press Control+Space to show expression language functions
with hover descriptions in the UI.

Right-click any processor to link directly to the documentation
for that processor.

CHAPTER 5 NiFi Anti-Patterns 45

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

NiFi EXPRESSION LANGUAGE
USER GUIDES
There are so many NiFi expression language functions that NiFi data-
flow developers should be aware of where to find the documentation.
You can find this documentation on the Apache NiFi website, as well
as in your NiFi user interface in the Help menu. Be sure to check out
the Expression Language Guide and Admin Docs that ships with every
instance of NiFi. One advantage of having this information local to
your instance of NiFi is the docs are specific to your version of NiFi.

Logging attributes
Logging attributes as a debug method is an anti-pattern that can
greatly impact the performance of your flow. This behavior puts a
large number of log output lines into the NiFi log file preventing
the ability to look at those logs for other purposes. The preferred
alternative to debugging within a dataflow is to use NiFi Data
Provenance in the NiFi Admin menu. It allows you to view the
entire lineage of a flowfile, including all its attributes and con-
tent at any point in the dataflow. This method provides a much
greater perspective when compared to trying to use log attributes
and hunting through the logs. You can also search for filenames
and attributes.

During a debug event, if changes are made to the dataflow, you
can use the NiFi Data Provenance UI to replay those flowfiles.

CHAPTER 6 Record-Based Processors 47

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 6

IN THIS CHAPTER

 » Leveraging the benefits of record-based
processors

 » Finding out the different types
of processors

Record-Based Processors

Traditionally, NiFi didn’t care about the content of data.
A flowfile is just “data” whether it’s an image, text without
structure, or text in JSON. This powerful characteristic

makes NiFi efficient, data agnostic, and suitable for handling
unstructured data such as Internet of Things (IoT) data. However,
a lot of enterprises use NiFi to manipulate structured data in
different formats: CSV, JSON, and Avro to name a few. In this
chapter, we show you how to use record-based processors with
structured data.

The Benefits of Record-Based Processors
To make managing structured data easier, record-based proces-
sors were first introduced in NiFi 1.2. Since then they’re con-
stantly improved and new processors added. Before record-based
processors, developers had to deal with the following issues:

 » Files were split and operations were done at the individual
record/event level, which could cause performance issues
when files sizes were large.

 » NiFi flowfile attributes would be replicated across each file
split, causing additional memory overhead. Keeping the

48 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

file and underlying record as a whole can provide perfor-
mance and operational benefits to NiFi flow processing.

 » Files were split and operations were done at the individual
record/event level. This can cause some performance issues
as some files can contain millions of records. The metadata
is replicated across all records, creating additional memory
overhead.

Being able to keep the record as a whole can give some serious
performance advantages:

 » Record-based processors offer better performance,
functionalities, and ease of use.

 » They can help reduce the overall flow complexity (Split,
Evaluate Json Path, Update Attribute, for example) and
help simplify your canvas.

 » They also lead to consolidating the reusable components,
thereby increasing the overall NiFi cluster efficiency.

Record-Based Controller Services
Record-based processors leverage a set of deserializers (record
readers) and serializers (record writers) to efficiently read, trans-
form, and write data. They leverage controller services, which
are reusable components contained within the scope of the NiFi
canvas. The record readers and writers infer the schema, get the
schema from NiFi’s internal Avro Schema Registry, or use an
external schema registry such as the Cloudera Schema Registry.

Auto inference of schema simplifies schema management but
could cause data mismatch with target systems such as RDBMS
or SQL engines such as Hive. This could potentially cause a mis-
match with a table DDL’s causing NULL values in your table.

Use of schema registry allows you to have control over schema
and reject records not conforming to schema rules. It also
allows easier evolution/transition of the schema as the upstream/
downstream data changes.

CHAPTER 6 Record-Based Processors 49

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

NiFi supports many types of record-based processors but they can
be mainly classified into three types: Source, Sync (Target), and
Transform.

Source
Source record processors can contain only a record writer (RDBMS
processors such as Query Database Table Record and Execute
SQL Record) or contain both a record reader and record writer
(such as Consume Kafka Record) when the source of the data
vary. The difference between the RDBMS processors and others is
that data output is in Avro format, thus normalizing the data type.
Other record processors manage data in Kafka topics, support
multiple formats (for example, CSV and JSON), and are ingested
based on the source topic datatype.

Sync (Target)
Sync (Target) processors consist only of a record reader for
RDBMS processing. For processing of other sources such as
Publish Kafka Record Processors, target processing is similar
for both record readers and record writers.

Transform
Transform record processors come in a few different varieties:

 » Data type transforms such as the ConvertRecord processor
that converts one data type into another.

 » The JoltTransformRecord processor that can manipulate
data, including flattening.

 » The QueryRecord processor that does SQL operations
against the flowfile.

 » The UpdateRecord processor that allows you to make
changes to various keys/values across the entire record.

A common mistake seen with typical NiFi flows are the constant
splitting of flowfiles, placing data in attributes, modifying with
the expression language and then creating content from those
adjusted attributes. A better approach would be to use the Update
Record processor that allows you to modify flowfile content
much more efficiently without splitting the flowfiles.

CHAPTER 7 Other NiFi Features 51

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 7

IN THIS CHAPTER

 » NiFi Registry

 » Stateless NiFi

 » KConnect

 » Cloudera DataFlow

 » Cloudera DataFlow Functions

Other NiFi Features

NiFi has many other features and functions than what has
been mentioned in the prior chapters. So in this chapter,
we decribe some of the more interesting features you

might find useful when using Apache Nifi.

NiFi Registry
NiFi Registry, a subproject of Apache NiFi, is a service that enables
sharing of NiFi resources across diverse environments. Registry
is a uniquely coupled complementary application to Apache NiFi,
providing a central location for storing, managing, and enabling
version control of data flow resources.

When designing a dataflow in NiFi, you may need to develop and
test different approaches and build incrementally towards final-
izing your flows. This is where Registry can help you with the
full Flow Development Lifecycle (FDLC), shown in Figure 7-1.
It seamlessly integrates with NiFi, facilitating storing, retriev-
ing, and upgrading versioned flows. NiFi Registry helps you track
multiple flow versions and easily navigate among them.

NiFi Registry can be an essential component to controlling and
managing your data pipeline and flows in a DevOps environment
to accelerate the timeline from flow development to operational-
izing your flows.

52 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FIGURE 7-1: Managing flows with NiFi Registry.

CHAPTER 7 Other NiFi Features 53

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Versioned flows are stored and organized in containerized buckets
(nested containers for storing and organizing versioned flows)
within the registry. Buckets can be aligned to various teams, spe-
cific to deployment environments, based on usage patterns, or be
assigned to different projects or business/mission units.

Key features of NiFi Registry
With NiFi Registry, you can

 » Access it from a web UI (default port is 18080).

 » Use the REST API, which provides an interface for flow
registry operations.

 » Initiate version control of flows directly from the Apache
NiFi canvas.

 » Export/import versioned flows across NiFi deployments
(for example, Development ➪  QA/Staging ➪  Production).

 » Commit and/or revert local flow changes.

 » Support user authentication methods including LDAP, Active
Directory, and Kerberos.

 » Manage users and groups level permissions for access
control to flows and buckets with role-based-access (RBAC)
policies.

Getting started with NiFi Registry
Details for downloading and installing NiFi Registry are beyond
the scope of this book. However, you can find additional informa-
tion in the Apache NiFi Registry documentation.

After you’ve downloaded and installed NiFi Registry,you can start
the same way you’d start any application.

To set up NiFi Registry, follow these steps:

1. Open a web browser and navigate to http://localhost:
18080/nifi-registry.

The default web UI port, shown in Figure 7-2, is 18080 and,
if needed, you can change it by editing the nifi-registry.
properties file in the NiFi Registry conf directory.

http://localhost:18080/nifi-registry
http://localhost:18080/nifi-registry

54 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

2. Create a new bucket to store versioned flows.

a. Click the wrench icon in the upper-right corner of the UI.
A pop-up window listing the currently configured
buckets appears.

b. Click the New Bucket button, name your bucket, add a
description (optional), and click Create. See Figure 7-3.

3. Connect a NiFi instance to Registry.

a. Choose Controller Settings (see Figure 7-4) from a currently
running NiFi instance and add Registry Client under the NiFi
Setting tab.

b. To add a Registry Client, click the plus sign icon. In the pop-up
window, enter the Registry information and then click Add.
See Figure 7-5.

4. Initiate version control management at the process
group level in a running NiFi instance.

a. Right-click a process group and choose Version ➪  Start
Version Control from the context menu, as shown in
Figure 7-6.

FIGURE 7-2: The web UI for NiFi Registry.

FIGURE 7-3: Create a new bucket in NiFi Registry.

CHAPTER 7 Other NiFi Features 55

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

b. Fill in the details in the Save Flow Version box, shown in
Figure 7-7, and click Save.

FIGURE 7-4: The global menu with Controller Settings.

FIGURE 7-5: Add a Registry Client.

56 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

FIGURE 7-6: The Start Version Control option.

FIGURE 7-7: Save the flow version for a progress group.

CHAPTER 7 Other NiFi Features 57

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Once the version control attributes are saved, the process group is
now under version control as denoted by the green checkmark in
the upper left corner of the Process Group, as shown in Figure 7-8.

When working with NiFi Registry, keep these tasks in mind:

 » If there are any uncommitted changes to the process group
or its underlying flow processors, then the version control
icon changes to an asterisk symbol, as shown in Figure 7-9.

 » To manage the version control actions for the process
group, right-click the process group and select the appropri-
ate action from the context menu, as shown in Figure 7-10.

 » To view the changes to the process group, navigate to the
Registry UI and from the main page click the versioned flow
bucket name (a refresh may be required). You can view the
log for the project flow, as shown in Figure 7-11.

FIGURE 7-8: This progress group is under version control.

FIGURE 7-9: This process group has uncommitted changes.

58 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

You can find more information about NiFi Registry in these guides:

 » NiFi Registry User Guide (https://nifi.apache.org/
docs/nifi-registry-docs/html/user-guide.html):
A basic user guide for accessing the Apache NiFi Registry.
Topics include managing flows and buckets, administering
users/groups, along with configuring special access and
privileges for users and groups.

 » NiFi User Guide (https://nifi.apache.org/docs/
nifi-docs/html/user-guide.html): This guide provides
information on how to navigate the Registry UI and explains
in detail how to manage flows/policies/special privileges and
configure users/groups when the Registry is secured. Topics
include connecting to a registry, version states, importing a
versioned flow, and managing local changes.

Stateless NiFi
NiFi was originally designed to run as a large, multi-threaded,
multi-tenant application. Data is checkpointed and saved to disk
across the different flows to reliably deliver data to the destination.

FIGURE 7-10: The Version Control Action menu.

FIGURE 7-11: The change log for the project flow.

https://nifi.apache.org/docs/nifi-registry-docs/html/user-guide.html
https://nifi.apache.org/docs/nifi-registry-docs/html/user-guide.html
https://nifi.apache.org/docs/nifi-docs/html/user-guide.html
https://nifi.apache.org/docs/nifi-docs/html/user-guide.html

CHAPTER 7 Other NiFi Features 59

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

However, NiFi is used in a particular use case to route data from
a Kafka consumer to a Kafka producer. In this case, NiFi needs to
support exactly once semantics. The default NiFi engine has a few
obstacles that prevents this case.

 » Because NiFi persists all data across restarts, when restarted,
it can send the processed data again, which can cause data
duplication.

 » NiFi is loosely coupled. Exactly once semantics require
that the producer and consumer be tightly coupled so that
when there is a problem, entire data can be rolled back and
processed again.

 » For complex use cases where data in NiFi is split and
re-ordered, it becomes difficult to support exactly once
semantics.

NiFi Stateless architecture is designed to prevent these obstacles
and support exactly once semantics. It’s single-threaded, and it
can optionally keep the data in memory to make processing fast
but no data is persisted across restarts. It also runs the entire
dataflow as a single cohesive unit; if there is an issue, the entire
transaction is rolled back. The data is never re-ordered between
transactions.

ExecuteStateless processor
You can use the ExecuteStateless processor, new in NiFi 1.15, to
run a stateless engine from traditional NiFi.

To use the ExecuteStateless processor, you need to first create
a process group containing the flow you want to execute with the
stateless engine. You would then download the flow definition,
or commit the flow to a NiFi Registry instance. From there, you
would configure ExecuteStateless with the location of the flow
definition. When configuring the process group, the Parameter
Context property is set to Enrich Changes and the Outbound
Policy property is set to Batch Output.

You need to make configuration changes for the Kafka consumer
and publisher so that data is sent as a single transaction:

 » ConsumeKafkaRecord: Set CommitOffsets to False, so that
if there is a processing failure the entire transaction can be
rolled back.

60 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » PublishKafkaRecord: Set Use transactions to True.
When the consumer doesn’t commit offsets, it updates the
flowfile with an attribute so that the publisher knows that it’s
responsible to commit offsets. PublishKafkaRecords
needs to be out of the process and needs to be connected
from the success connection of the process group.

Stateless KConnect Source and Sinks
For deployments where NiFi acts only as a bridge to transfer data
into and out of Kafka, it may be simpler to have the dataflow run
within Kafka Connect.

The NiFi Kafka Connector allows you to do just that!

The dataflow runs with Kafka Connect using the stateless NiFi
dataflow engine. For more information, see the earlier “Stateless
NiFi” section.

NiFi supports two different Kafka Connectors: a source connector
and a sink connector.

To build a flow for running in Kafka Connect, build it within a
process group using a traditional deployment of NiFi. Then export
the process group by right-clicking it and selecting Download
Flow or by saving the flow to a NiFi Registry instance.

Source connector
The NiFi source connector is responsible for obtaining data from
one source and delivering that data to Kafka.

Only route the data to an output port. Do not use processors such
as PublishKafka to deliver directly to Kafka itself.

Any flowfile delivered to the output port is obtained by the con-
nector and delivered to Kafka.

Each flowfile is delivered as a single Kafka record. In some sit-
uations, you may need to split the flowfile to avoid Kafka size
limitations.

CHAPTER 7 Other NiFi Features 61

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Sink connector
The NiFi sink connector is responsible for obtaining data from
Kafka and delivering data to some other service.

Only an input port should receive the data. The dataflow should
not use processors such as ConsumeKafka to source data directly
from Kafka itself.

Each Kafka record flowfile is delivered as a single flowfile.
Depending on the destination, you may want to consolidate mul-
tiple Kafka records together before delivering them.

For example, if delivering to HDFS, you don’t want to send each
individual Kafka message as a separate file to prevent HDFS small
file problems.

Cloudera DataFlow
Running NiFi on traditional bare metal or virtual machine (VM)
infrastructure works great. However, it has some inherent issues:

 » Unless separated to different clusters, the tenants are
all sharing the same resources. This means they’re subject
to multi-tenancy related issues such as resource contention
and failure domains.

One way to overcome this limitation is to simply separate the
different tenants to different clusters. This solution, however,
comes with the additional overhead of managing and
monitoring those clusters.

 » Properly sizing your cluster can be difficult. Too small of
a cluster and you won’t meet your service level agreement
(SLA). Sizing a cluster for peak periods solves that, but you
might find yourself with an idle cluster off-peak.

It’s possible to manually scale up a NiFi cluster, but it’s a
multi-step process and requires you to constantly monitor
the resource usage, and in time take care of deploying the
software and setting up the required security (for example,
certificates). Downscaling requires even more planning
because it can potentially cause data loss if not done
properly.

62 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

To address these challenges and others, Cloudera released
DataFlow that enables running NiFi on Kubernetes based on a
brand new Kubernetes operator, which encapsulates all the day-
to-day knowledge required to manage a NiFi cluster.

 » Resource contention: When running on Kubernetes, you
can easily deploy each process group or multi-level nested
process groups to their own NiFi clusters. This ensures that
each process group gets a more accurate set of resources
when compared to simply putting everything in one big
monolith cluster.

 » Auto-scaling clusters: When you deploy a flow, you can
set lower and upper boundaries for the NiFi cluster to
auto-scale in between. (This is in addition to a node profile
that determines how many cores and RAM each node has.)
This way, if you missed sizing estimates, the Kubernetes
operator can readjust to the correct size as necessary.
Auto-scaling occurs based on CPU utilization.

 » Central monitoring dashboard: Cloudera provides an
out-of-the-box dashboard for monitoring multiple clusters
spread across multiple environments and multiple clouds.
When you create a cluster, you define a set of key perfor-
mance indicators (KPI) — for example, a certain queue’s
utilization or CPU utilization. That way, you automatically
get notified when one of your KPIs is breached.

 » Simplifying upgrades: When a maintenance release or
hotfix is available for deployment, it’s automatically available
for NiFi administrators to deploy with a push of a button,
allowing administrators to independently upgrade their
deployments based on business needs and constraints.
The deployment upgrade is carried out node by node in
a rolling fashion, essentially preventing downtime.

Cloudera DataFlow Functions (DFF)
Serverless architectures are a way of software design where you
can build applications without having to worry about managing
infrastructure. They are becoming very attractive to consumers as
they are easy to use, relatively inexpensive, and scale up very fast.

CHAPTER 7 Other NiFi Features 63

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Function as a Service (FaaS) goes one step further than Software
as a Service (SaaS) in reducing the complexity of building the
architecture required for the application and instead offers you a
way to directly invoke the function on-demand. These functions
are typically triggered based on specific events and are best suited
for burst workloads. They are offered by most of the cloud ser-
vice providers (AWS Lambda, Azure Functions, and Google Cloud
Functions are a few).

NiFi already provides a no-code UI to accelerate the development
of your functions with an ever-growing set of processors and
integrations to process your data and a robust software develop-
ment life cycle solution around it. By using DataFlow Functions,
you don’t need to code your functions yourself anymore. Just
design your flow in NiFi and you can be running in a few minutes
while leveraging the 450+ processors already available.

Use cases of DataFlow Functions
There is a very wide range of use cases where DataFlow Functions
is a great fit. The best source of inspiration is to look at the case
studies of AWS Lambda, Azure Functions, and Google Cloud
Functions. All these use cases can be implemented with DataFlow
Functions as it provides a no-code UI to easily and quickly build
any function.

Some of the possible use cases include:

 » Real-time processing of files while they land into an object store

 » Integrate with third-party services and APIs to expose
microservices

 » Process streams of data (IoT use cases, cybersecurity,
fraud detection, for example)

 » Integrate with mobile backends

Advantages of DataFlow Functions
When used for the right use cases, DataFlow Functions provides
many advantages including:

 » FaaS provides virtually unlimited (depending on the quotas
and limitations of each cloud provider) scaling and it can be a
very good option to handle bursts of events.

64 Apache NiFi For Dummies, Cloudera 2nd Special Edition

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

 » There is no need to provision servers or Kubernetes clusters.
Instead, FaaS uses the cloud native serverless framework to
launch the infrastructure in the background.

 » They are very cheap.

 » There is no need to patch servers or do server maintenance.

 » After the initial cold start, the subsequent runs complete very
quickly — as fast as microseconds based on the function.

CHAPTER 8 Seven NiFi Resources 65

These materials are © 2023 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use is strictly prohibited.

Chapter 8
Seven NiFi Resources

H
ere we present seven resources that provide more infor-
mation to help you successfully use Apache NiFi:

 » Apache NiFi docs https://bit.ly/nifi-docs

 » Hello World sample code from Chapter 2 https://github.
com/drnice/NifiHelloWorld

 » Apache Technical Wiki https://cwiki.apache.org/
confluence/display/NIFI/FAQs

 » Cloudera DataFlow http://bit.ly/nifi-for-dummies-
cdf-page

 » Cloudera Flow Management Datasheet http://bit.ly/
nifi-for-dummies-cfm-datasheet

 » NiFi anti-patterns videos http://bit.ly/nifi-anti-
patterns

 » NiFi tutorials http://bit.ly/cloudera-nifi-tutorials

https://bit.ly/nifi-docs
https://github.com/drnice/NifiHelloWorld
https://github.com/drnice/NifiHelloWorld
https://cwiki.apache.org/confluence/display/NIFI/FAQs
https://cwiki.apache.org/confluence/display/NIFI/FAQs
http://bit.ly/nifi-for-dummies-cdf-page
http://bit.ly/nifi-for-dummies-cdf-page
http://bit.ly/nifi-for-dummies-cfm-datasheet
http://bit.ly/nifi-for-dummies-cfm-datasheet
http://bit.ly/nifi-anti-patterns
http://bit.ly/nifi-anti-patterns
http://bit.ly/cloudera-nifi-tutorials

http://Dummies.com

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Table of Contents
	Foreword
	Introduction
	About This Book
	Icons Used in This Book
	Beyond the Book
	Where to Go from Here

	Chapter 1 Why NiFi?
	The Advantages of Apache NiFi
	NiFi Core Concepts
	NiFi Expression Language and Other Query Languages
	JSONPath
	XPath/XQuery

	Chapter 2 Getting Started with NiFi
	Importing a NiFi Template
	Adding a NiFi Template to the NiFi Canvas
	Setting Up and Running the Hello World Example
	Configuring HandleHttpRequest NiFi processor
	Configuring the other processors
	Running the Hello World example

	Understanding the Hello World Example

	Chapter 3 General Debugging & Monitoring
	Debugging through the User Interface
	Status bar
	Summary
	Status History

	Backpressure
	Understanding how backpressure works
	Configuring backpressure

	Checking Provenance
	Checking the NiFi Server Logs

	Chapter 4 NiFi Use Cases
	Importing Datasets into a Database
	Listening for HTTP Posts
	Polling a RESTful API to Extract a JSON Attribute

	Chapter 5 NiFi Anti-Patterns
	Flow Overview
	Laying Out Flows
	Arranging flow direction
	Naming and commenting processors
	Using processor labels

	Balancing Loads Correctly
	Scheduling
	Thread pools
	Processor scheduling
	CPU utilization

	Optimizing Flows
	Primary Node Only
	ConvertRecord
	Using complex expression language
	Logging attributes

	Chapter 6 Record-Based Processors
	The Benefits of Record-Based Processors
	Record-Based Controller Services
	Source
	Sync (Target)
	Transform

	Chapter 7 Other NiFi Features
	NiFi Registry
	Key features of NiFi Registry
	Getting started with NiFi Registry

	Stateless NiFi
	ExecuteStateless processor

	Stateless KConnect Source and Sinks
	Source connector
	Sink connector

	Cloudera DataFlow
	Cloudera DataFlow Functions (DFF)
	Use cases of DataFlow Functions
	Advantages of DataFlow Functions

	Chapter 8 Seven NiFi Resources
	EULA

