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INTRODUCTION 

Enterprise organizations throughout the globe are pursuing their digital transformations, an 
imperative accelerated by the worldwide pandemic and the added emphasis of distanced, online 
customer interaction that comes with it. Being on the vanguard of digital transformation, AI and 
machine learning (ML) are at the top of their hype curve. Pre-pandemic interest in AI was high; but, 
given current digital business requirements, it has reached the stratosphere. 

While such attention on AI is creating a lot of excitement and driving great innovation, it can also 
make it difficult for customers to implement the technology successfully. Cutting through marketing 
“noise” when a sector is hype-driven can be a formidable challenge. It can also push vendors to 
focus on features that demo well and are high on “cool” factor, rather than those that address true 
pain points and are more applicable to successful implementation. 

Machine learning operations (MLOps) functionality bucks this trend of noise and superficiality. 
Instead, it supports customers’ ability to operationalize their machine learning efforts, helping them 
to implement successfully at scale, and proactively manage ongoing use of machine learning 
models, not just initial deployments. MLOps can manage model experimentation, deployment, 
monitoring and more. In various ways, it can also help customers stay on top of keeping their 
models accurate and, thereby, fair. 

Cloudera Machine Learning (CML) has sophisticated MLOps functionality integrated into the 
platform, in a fashion that provides an unusual balance of the sometimes-dueling strong suits of 
structure and flexibility. As part of the overall Cloudera Data Platform (CDP) — Cloudera’s hybrid 
cloud-native enterprise data platform — CML enables end-to-end machine learning in the context of 
a comprehensive data management, analytics and data engineering platform, ensuring MLOps 
integration into the broader data practices and operations of an organization. The major aspects of 
CML’s value proposition and capability set are summarized in Figure 1. 

 

Figure 1: The Cloudera Machine Learning Value Proposition - A full lifecycle production machine learning platform for 
quickly and securely going from data, to experimentation, to production of machine learning models at scale. 
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This report will provide an examination of CML’s MLOps capabilities. But rather than function only 
as an explainer, the features will be discussed in the context of how they address industry and 
customer needs. This is important, and not just a gimmick: since CML’s MLOps features were 
primarily driven by customer requirements and requests, such a contextual exploration will provide 
the full story of why the functionality exists and why it was prioritized. This is the best way to judge 
the efficacy and utility of these capabilities and assess their value. With that said, let’s proceed. 

CML OVERVIEW  

Cloudera Machine Learning is impressive in its own right, but has the great advantage of running as 
part of the Cloudera Data Platform. CDP is a hybrid cloud-native enterprise platform for data 
science, analytics, streaming data, data engineering and data management. It provides the ability to 
spin up managed and secure environments with a data hub and data lake for managing data, access, 
and security; as well as the ability to deploy data engineering clusters, machine learning 
workspaces, and  data warehouse infrastructure on a just-in-time basis.  CDP’s hybrid data 
architecture enables you to run it in your own data center, private cloud, the Microsoft Azure and 
Amazon Web Services public clouds, or a combination of these. Better yet, it offers its own Shared 
Data eXperience (SDX) platform for managing these distributed assets together, with shared data, 
security and centralized data governance. The CDP home screen is shown in Figure 2, with the 
Cloudera Machine Learning tile highlighted. 

Figure 2: The CDP home screen, with CML installed 

 

CML operates as a first-class citizen within the CDP control plane, alongside the other core 
components the latter manages and controls. CML also integrates with CDP’s data governance 
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framework, ensuring machine learning processes and users participate in the same data catalog and 
lineage infrastructure as do conventional data sources and data sets. This is, and should seem, 
perfectly logical and intuitive. But it’s actually unusual, as many AI platforms function in a 
standalone fashion, creating silos of functionality and making it difficult for organizations to govern 
their data and machine learning models in a unified, coordinated fashion. 

 

OPEN SOURCE 
 

Much of CDP is based on Apache Hadoop, Apache Spark and other open source projects in the big 
data ecosystem. Spark’s support for SQL-based querying and analysis, and its inclusion of the Spark 
MLlib set of machine learning algorithms, are immediately available to all CML developers, in Python, 
R or Scala. The very core of CML is based on well-known, open source execution platforms, 
programming languages and frameworks. 

But developers can go well beyond the core and utilize other widely-adopted, open source data 
science frameworks. These would include Python-specific libraries like Numpy, Pandas, Scikit-learn, 
Seaborn, and Matplotlib; deep learning frameworks like PyTorch and TensorFlow; and model 
explanation frameworks like LIME and SHAP. None of these libraries is required, but any and all of 
them are fully accommodated, allowing them to be stitched into what will become a customer’s or 
team’s own core platform. 

 

Depending on the network configuration, CML can load any open source project dependencies it 
needs from the Python Package Index (PyPI) by using the pip package management utility from either 
the public repository or a copy hosted locally on a secure network. In the next section of this report, 
we’ll discuss how CML manages scripts in its projects, but for now, know that creating a simple 
bootstrap script in CML that, among other things, contains the pip3 commands necessary for the 
project, is a good way to automate the loading of dependent packages. The build script can also 
import necessary code package namespaces, set up global environment variables, provision cloud 
storage and upload the necessary raw data to it. 

 

STRUCTURED FLEXIBILITY 

Such a use of scripts to automate certain tasks is a good example of combining code with CML’s UI-
driven features. As it turns out, this blended approach is a hallmark of CML, and it’s a design point 
that is quite intentional. 

We’ve mentioned already how many ML platforms operate in a standalone fashion, and how that 
creates certain challenges in making ML work as part of the mainstream technology efforts in an 
organization. Part of the reason ML platforms are functionally and operationally segregated is 
because data science teams have often been organized separately from mainstream analytics and 
software development teams, and have developed distinct toolchains, standards and even culture. 
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In order for enterprises to operationalize machine learning successfully, data science teams must 
work in greater collaboration and coordination with their peer technology teams. That said, this 
cannot be imposed by fiat. Compelling data science/ML teams to use unfamiliar tools, procedures 
and structures would be too abrupt and, perhaps more important, would likely backfire. Instead, a 
balance must be found, so that data scientists can work the way they’re comfortable working and at 
the same time conform to broader organizational standards and requirements. 

CML avoids rigidity around tooling and practices, and instead establishes a baseline environment 
and constructs. A set of core organizational structures and critical entities establish this baseline, yet 
discretionary components and technology can be layered on top of them. For data science in the 
enterprise, this is key. A successful platform for modern machine learning development must 
provide sufficient flexibility for data scientists and ML engineers to buy into it and enjoy working 
with it. But it must also put those professionals and their teams into compliance with corporate 
security and governance requirements, without causing them to lose agility. 

This is more than just philosophy; it manifests in concrete structures in CML. For example, CML 
customers can define shared Workspaces, domiciled in specific CDP environments, where teams can 
collaborate. Within a workspace, one or potentially more engine profiles (hardware profiles that 
define CPU, GPU and RAM allocations) can be defined. Within these workspaces, one or (usually) 
more Projects can be created by individual Users. These projects can be private, shared with other 
specific users, or with formally-defined Teams that define specific users as collaborators. This is 
shown in Figure 3. 

Figure 3: CML allows collaborating Teams to be defined 

 

Lots of what data science is about these days is the code itself.  To that end, CML Projects contain 
Files – code scripts, first and foremost, but including any other file type as well – optionally 
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organized within folders. CML projects also contain interactive Sessions where scripts and other 
interactive computing can execute interactively; Models, naturally; Experiments that can be used to 
train and test those models; deployments to host the models and serve as callable endpoints for 
scoring/inferencing against them; and Jobs, wherein specific script functions can be executed 
imperatively or on a scheduled basis. 

A CML Project has an Overview page that includes information about the Models, Files and Jobs in 
the Project. It can also contain summarized documentation in markdown format if the project 
contains a README.md file, a feature similar to github projects. Figure 4 shows the Overview page, 
scrolled down to the end of the Files listing and the beginning of the documentation. Note the 
markdown contains a screenshot of the project’s test harness application, which we will discuss in-
depth, later in the report. 

 

Figure 4: CML Project Overview page 

Formal documentation of this sort is important. While source code control systems have long 
supported this type of documentation through the addition of a markdown file in the code 
repository, CML’s support of it through an explicit platform feature is an important facet in the 
effort to add rigor and process to ML development.  

Speaking of source code control, CML projects can be integrated with any Git-compliant repository, 
perhaps the most popular source code control standard, to provide version control at the source 
code/script level, further illustrating the congruity between ML development and mainstream 
software development. When you create a CML Project, you can optionally supply a Git URL that 
points to  any accessible repository. While CML does not provide direct UI support for Git, its 
commands can be run from within the Workbench terminal (described in the next section). 
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CML also accommodates versioning for models. This support, which is described later in this report, 
is provided directly by CML and not dependent on Git. 

 

SESSION-BASED COMPUTE 

We’ll discuss later in this report how Experiment- and Job-based compute can be provisioned to run 
specific, discrete, short-lived tasks. But for the significant amount of interactive work the ML 
development process involves, CML supports the concept of compute Sessions. Sessions involve on-
demand spinning up of compute resources, based on specific language kernels and engine profiles, 
with their own processing and memory parameters.  Figure 5 shows the CML experience for starting 
a session. 

Figure 5: Launching a new CML Session, with specification of editor environment, kernel and engine profile 

 
CML WORKBENCH 

As the preceding figure shows, provisioned Sessions also specify an associated editor environment. 
In CML, data scientists can create and run interactive code within Jupyter notebooks or from their 
own preferred integrated development environments (IDEs). But CML also boasts its own 
Workbench, which includes a powerful native editor with syntax highlighting, and an output 
console, where resulting messages, text, markdown and visualizations produced by the code can be 
rendered. 
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The Workbench thus provides most of the same interactive capabilities of a notebook while 
fostering the authoring of full-fledged standalone scripts that can be run in any language-compatible 
environment, including the command line. The Workbench editor is shown in Figure 6. 

 
Figure 6: The CML Workbench and its code editor 

 

The Workbench also provides its own interactive command prompt (shown at bottom-right in the 
preceding figure) and web-based terminal access (not shown), both of which execute in the context 
of the underlying Session. Scripts that are authored and executed interactively in the Workbench 
can further serve as the basis for the Experiments, Models and Jobs mentioned earlier, and 
described in the next section of this report. 

Again, a balance is struck: customers can use the full Workbench capabilities with the rest of CML 
and thus avoid having to stitch together additional dev tools in a bespoke fashion. At the same time, 
if the data science and/or ML engineering teams have already adopted certain dev tools, those can 
be accommodated and integrated. This creates a big tent, allowing CML to be the nucleus for ML 
work – at the very least – and, for those customers who want more – to serve as the sanctioned, 
turn-key ML environment. 

 

CONTAINERS, KUBERNETES AND PROVISIONING OF COMPUTE  

Everything in terms of compute in CML is based on Kubernetes (K8s). The workspace itself defines a 
K8s auto-scaling cluster, while deployments are container images that can be deployed within it. 
Sessions are pods within the workspace cluster, based on the engine definitions already discussed. 
Cloudera provides the base docker images used for these Sessions, which can be extended to add 



 

 

  Ó 2020 BLUE BADGE INSIGHTS, INC.            REPORT REPRINT                               10 

libraries and code specific to your team’s requirements. Experiments are also pods based on engine 
definitions, but whereas Sessions are for interactive compute and run until explicitly shut down, 
Experiments’ lifespans are task-driven, being spun-up and torn-down to execute a specific script 
that trains and tests a model, then optionally records specific metrics based on both. 

Such a container-based architecture is state of the art. It’s also just plain smart. On the other hand, 
the rigors of working with containers and orchestrating them with K8s are beyond scope for data 
science and ML engineering work. Forcing data scientists and ML engineers to become Kubernetes 
experts creates an unreasonable burden on them and deep inefficiency for the organization. The 
beauty of CML is that it performs all the K8s work behind the scenes, ensuring users are utilizing a 
proper, modern architecture and yet relieving them of the significant learning curve and 
management overhead of having to deal with K8s themselves. 

 
PROJECT TEMPLATES AND WORKFLOWS 

While some structures are fixed and concrete, others are optional and based on convention. 
Specifically, Projects can be based on Cloudera’s Applied Machine Learning Prototype templates 
which can define or imply a specific workflow. CML’s default Churn Predictor template, for example, 
contains script and notebook stubs to accommodate each of several discrete workflow steps. CML 
doesn’t mandate those steps, nor a particular sequence of executing them. But it does make doing 
so easy, and it helps enforce adherence to that (or another) methodology, should an organization 
wish to standardize on it. 

 

THE CANONICAL WORKFLOW 

The “canonical” workflow implied by CML’s built-in Churn Predictor template involves steps for 
ingest of data; data exploration and transformation; training, testing and deployment of models; 
running predictions against the models in production, and explanations of those predictions; and 
management tasks including monitoring models for accuracy and performance, integration of 
ground truth and model governance. 

Again, this workflow isn’t mandatory. But it does represent a set of best practices, and discussing 
each step within it is a great way to get a full sense of how CML works.  For the remainder of this 
report, we’ll go through the workflow, and glean from it the unique capabilities of CML, as well as 
issues important to ML development work overall. 

 
SETUP AND INGEST  

Data ingest is likely to be the most straightforward step in the ML development workflow, as it’s 
more about straight data access than it is machine learning, per se. Typically, the code in this step 
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will pull data back from the data lake, a data warehouse, or some public/open data set endpoint. 
The data will likely be loaded into a dataframe, then perhaps saved in the local CML environment in 
an open format, such as CSV. 
 
DATA EXPLORATION AND TRANSFORMATION 

Next, the data scientist or ML engineer may aggregate, profile, and visualize the data, with an eye 
toward understanding correlation between columns and beginning to determine target and feature 
columns. Additional code may determine data quality, then cleanse the data set to remediate any 
quality issues identified. Finally, feature engineering, algorithm selection and hyperparameter 
optimization can be performed, in order to ready things for training. 
 
Data exploration and transformation work is the bread and butter of the pre-training data science 
workflow. While some of this might be performed in a script, CML also facilitates performing this 
work in Jupyter notebooks. The latter is shown in Figure 7. 
 

 
Figure 7: Data exploration in a Jupyter notebook, hosted within CML 

 

MODEL TRAINING 

Training is where the “action” takes place in ML development, as it produces the model itself.  In 
CML, a script for this step may actually have two “identities.”  Like other scripts in the project, it can 
be run interactively in a Session to perform certain one-time tasks. On the other hand, the actual 
training code can be placed in a specific function within the script, which can then be called directly 
by a CML Job, or in a CML Experiment (discussed in the “Test the Model” section, below), to train 
and test the model. As such, it serves in both interactive/development and scheduled/production 
capacities. 
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The fact that CML has a built in Jobs engine is critical for enterprises who have adopted machine 
learning and are putting models in production at scale. In the proof-of-concept stage, it may be 
sufficient for models to be trained by running the script interactively and eventually deploying the 
model on a similar interactive basis, and many data scientists may be accustomed to such an ad hoc 
workflow. But such a “one-and-done” approach is not sufficient for enterprise-grade production ML 
work. For the latter, the model must be routinely re-trained on new data to keep it up-to-date and 
accurate. And, again, that accuracy must also be monitored, in a separate step, which we will 
discuss below. 
 
In addition to the scheduling information, and as with CML Sessions, Jobs are configured with an 
engine kernel and profile. These can be identical to, or different from, the engine profile used for 
the interactive Session used in development; all of this is shown in Figure 8. 
 

 
Figure 8: CML Job creation 

 
TEST THE MODEL 

The dataframe used to train a model is typically a subset of the overall data set initially ingested. 
The remainder of the data should be used to test the model, so the model’s predictions can be 
compared to the actual target variable in order to determine an initial accuracy level of the model. If 
that accuracy level is low, feature engineering and hyperparameter optimization code can be 
further iterated upon. The test script can then be run again to determine if the model is suitable for 
deployment and operationalization. 
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Along with such code, data scientists can use CML’s special track_metric function (part of a built in 
python library called cdsw) to log the parameter values and the accuracy of the resulting model and 
the track_file function can be used to save a persisted version of the trained model. 
 
Since optimizing the model is an iterative process, CML allows the training and testing code to be 
run repeatedly within a set of and parameter value-specific Experiments. Unlike Jobs, Experiments 
execute only on-demand; but like Jobs, they do so outside the context of a Session. As such, an 
engine kernel and compute/memory profile are once again supplied specifically for the Experiment.  
 
Along with the engine profile, a script and arguments (feature values) are specified for Experiments 
as well, as shown in Figure 9. Combined with the aforementioned track_metric and track_file 
functions, this gives CML everything it needs to execute a training run, test the resulting model, 
record its hyperparameter values, accuracy and other metrics, and save the model file itself. 
 

 
Figure 9: Running an Experiment in CML 

 
After several Experiments are run and the best one is determined, an ML engineer can go to the 
Overview page for that experiment, select its persisted model file right from the UI, then click Add 
to Project. This will make the model file available from the project’s Files page for easy subsequent 
Model entity creation and deployment, each of which we discuss next. 

 

 

MODEL CREATION 

Creating a Model entity in CML allows initial and successive builds and deployments of the model to 
take place. Model creation is straightforward, requiring input of a name for the model, and 



 

 

  Ó 2020 BLUE BADGE INSIGHTS, INC.            REPORT REPRINT                               14 

identification of a script, and a function within the script, that will run predictions and, optionally, 
explanations of the predictions (discussed more later). The script, by the way, can open the 
persisted model file from the optimal Experiment, as discussed in the previous section. 
 
Optionally, sample input (i.e. feature names and values) can be supplied to facilitate easy execution 
of a sample prediction against the model, once the model entity has been saved. 
 
The CML Model creation screen is shown in Figure 10. 
 

 
Figure 10: CML model deployment 

 
DEPLOY 

Once the CML Model is created, builds and deployments can be created against it. A deployment is 
essentially a Docker container that serves prediction requests on the model. Dependencies are 
included; CPU/GPU/RAM and number of replicas for load balancing can be specified. When the build 
is executed, a deployment of the model is created, for the purpose of allowing subsequent new 
builds to rollback to previous deployments.. 
 
This brings up an important point: version control is prerequisite in any software discipline, and that 
includes machine learning. The ad hoc data science approach of reverting to an old version of a 
notebook, then manually re-training and re-deploying a model, isn’t good enough. AI platforms 
need to support a single-click mechanism for model version rollback, in a way that mitigates human 
error, especially under high-pressure circumstances. CML provides this. 
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Within the Model screen, separate tabs will appear that provide a Model overview, show 
deployments, show builds, provide operational monitoring information, and display certain settings 
for the Model entity. The Overview tab is shown in Figure 11. 
 

 
Figure 11: Overview tab of model screen 

 

The monitoring tab of the Model screen lets users observe operational details around each 
build/deployment replica, as shown in Figure 12. 
 
 

 
Figure 12: Operational monitoring for ML models 
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PREDICT 

If you look at the Model Details section of the Overview tab, shown on the right-hand side of Figure 
11, you’ll notice an Id and CRN are assigned to each model. These are critical to the model 
governance capabilities we will discuss towards the end of this report. You’ll also notice that a Test 
button (shown at the lower left-hand corner of Figure 11) is provided for easy execution of a sample 
prediction right from the CML UI. Alternatively, a shell command as well as Python and R code, are 
provided to execute the sample prediction from the command shell or code. Such API calls can be 
locked down via authentication (via the “Enable Authentication” checkbox shown in Figure 10). 
 
Just as track_metric can be used to log hyperparameter values and accuracy, it can also be used to 
log feature values as a dictionary and the output value from a prediction. A timestamp, duration and 
prediction UUID for the prediction will be automatically tracked by CML as well. 
 
Builds and Deployments each get their own Ids and CRNs, and each of these is logged at prediction 
time so that the prediction can be associated with a particular model/build/deployment 
combination. This comes in handy for comparison of “ground truth” data, well after prediction – 
something we’ll cover in the Monitoring discussion shortly. 
 

 

EXPLAIN 

Training, testing, deploying and running predictions against a model together comprise the full arc 
of model development and production usage…or do they? While submitting data to a model and 
getting predictions back from it is absolutely where the value of ML lies, acting immediately on a 
model’s prediction requires having a lot of faith in the model, and a comfort level with not being 
able to verify it. Most organizations are understandably uncomfortable putting blind faith into any 
technology, but with machine learning, this concern may be even more pronounced. 
 
A prediction unto itself is valuable, but having context and an understanding for why a prediction 
was made will increase confidence in the model and that added confidence will likely encourage 
greater adoption of it. Perhaps more important, ethical considerations and a dedication to equitable 
machine learning requires the ability to verify the model’s accuracy and understand its logic, at least 
empirically. 
 
The concept of ML model explainability is still relatively new, but important open source 
frameworks, including LIME and SHAP, have emerged recently to help data scientists and ML 
engineers obtain explanations of individual predictions. While these frameworks require technical 
expertise, they do, within that domain, provide explanations with relative ease, and even provide 
ways to visualize the results. 
 
The frameworks are still evolving, as is the explainability space in general, making it difficult to 
standardize on any one of them. But because CML provides that balance between built-in constructs 
and extensibility through integration of open source libraries, and because it also supports 
formalization of conventions and practices through project templates, building prediction 
explanations into the CML workflow is easily done. The Churn Predictor template incorporates 
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techniques and processes discussed in the freely available Cloudera Fast Forward Interpretability 
report.  
 
In fact, the default Python project template integrates LIME, and the sample model building Jupyter 
notebook includes the code necessary to produce and visualize an explanation, as shown in Figure 
13. 
 

 
Figure 13: Model building notebook with explainer code and visualization 

Note that feature values contributing to a higher predicted value for the model’s target (customer 
churn probability in this case) are visualized as green bars extending to the right, while those 
contributing to lower probability are visualized as red bars extending to the left.  That’s one way to 
visualize explainability data. We discuss another approach next. 

 

APPLICATIONS 

Another way to conduct predictions is through an application, and CML Projects can be set up to 
generate a simple browser-based app for prediction diagnostics, automatically. The main screen of 
one such application is shown in Figure 14. This CML Application is a simplified version of the 
Refractor prototype from the Cloudera Fast Forward Interpretability report. 
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Figure 14: A CML generated application for prediction diagnostics 

§ The Probability column (i.e. the second column) in the table in Figure 14 represents the 
predicted value for the target columns, with the other columns representing feature values 
for the prediction. Using underlying explainability code, the columns with the most influence 
on the predicted value, for a particular prediction, are color coded. Here, cells with a darker 
red color represent those with a positive effect on the predicted value, while blue cells 
represent those with a negative effect. Cells with no color shading represent those with little 
impact in either direction. 

 

§ For this sample application, built using the Python-based Flask Web framework (CML can also 
host applications built using the R language-based Shiny framework), any of the individual 
rows can be clicked on to display detail for just that particular prediction, as shown in Figure 
15. Here, the predicted value is shown at the top of the screen and each feature column is 
displayed on a separate row. For each such column, its name, value, and the color-coded 
positive or negative impact on the prediction, is shown. To the right of the color-coded impact 
figure is the list of all possible values for the column.  Clicking on any of those values allows a 
what-if analysis to take place, where the Application interacts with the deployed Model’s rest 
endpoint to get the new predicted value.   The alternate predicted value and influence figures 
for each column, will be displayed interactively. 
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Figure 15: CML generated app, in single prediction view 

This application is hosted by CML and the value here is extremely high. The application at once 
provides a test harness for the model deployment and facilitates a much deeper and interactive 
explainability analysis than would be possible by running predictions and rendering their 
explainability visualizations one at a time.  

Note that in order for this code to work in the case of models deployed with authentication, the 
CML user must obtain the model’s access key, as highlighted in Figure 16, and insert it into the 
application’s code, which must then be saved, as shown in Figure 17. 
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Figure 16: The model's access key is displayed, and can be copied from, the Settings tab of the Model screen 

 
Figure 17: Inserting the model's access key into the sample application's code 
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MONITORING 

The final step in the machine learning workflow is one that all too often has been an afterthought 
for adopters and vendors in the AI space: monitoring model performance, accuracy and drift.  Again, 
the layered approach of concrete structures at CML’s base, with open source components and free-
form visualizations from code, allows monitoring to be included in the ML workflow by convention. 
 
But it gets even more sophisticated: because of the way that CML logs and catalogs models, builds, 
deployments and predictions, its API has the ability to judge the accuracy of predictions well after 
they’re made, through the integration of so-called “ground truth.”  Essentially, using the API’s 
read_metrics function to recall historical predictions and, optionally, the track_delayed_metrics 
function to register and update with the actual outcomes, the two can be compared to judge the 
accuracy and efficacy of models after the fact.  
 
In addition to prediction-by-prediction accuracy tracking, it’s also possible to track aggregate 
accuracy using CML’s track_aggregate_metrics API function.  This can be done at a predetermined 
granularity, to monitor drift, and all of this can be run on a scheduled basis – once per day, for 
example – using CML’s Jobs facility. The periodic comparisons can then be visualized in classification 
reports, as shown in Figure 18. 
 

 
Figure 18: Monitoring model accuracy 

Explicit support for ground truth tracking and integration of that data into the monitoring process is 
a powerful capability set. It enhances the sophistication of model management and the 
thoroughness of accuracy monitoring. Along with its support for model explainability analysis, CML 
greatly enhances the customer’s ability to practice responsible AI more proactively. This has a 
positive cascading impact on customer trust, risk management and successful digital transformation. 
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GOVERNANCE 

In addition to the individual steps in the ML development and operational management processes, 
tracking the big picture of a model’s progress through the development and production workflow is 
important as well. Just as with tracking the lineage of data in conventional analytics, tracking the 
lineage of machine learning models in predictive analytics is critical.  

Cloudera, as the key backer behind the open source Apache Atlas data governance platform, has 
extended that technology to track ML assets as well as data sets. Furthermore, it has integrated that 
capability with CML, using the CRNs and UUIDs for models, builds, deployments and predictions to 
track ML lineage, all the way from data ingest to final prediction. This is shown in Figure 19. 

 

Figure 19: CML facilitates model lineage in Apache Atlas 

This lineage graph shows how the dataset at the far left, which originates in cloud storage (Azure 
Blob Storage in this case), proceeds to go through ingest and transformation, is combined with test 
data to produce a model, and is then used in inferencing to predict a churn probability. This lineage 
visualization is the same type used for data sets in conventional analytics; Apache Atlas handles it 
all, and Cloudera Machine Learning ties it together with the development and management of the 
ML assets themselves. 
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CONCLUSION 
 

Even if machine learning development has emerged as a segregated and highly-specialized pursuit, 
it is in fact a sub-discipline of software development. As such, ML work needs to be pursued with 
the same engineering rigor around testing, deployment, operational monitoring and collaborative 
development that mainstream software work is. If all of this makes machine learning sound less 
“special,” so be it, as this will allow the technology to become truly pervasive throughout enterprise 
organizations, just as application development is today. 

“Citizen data scientists” have automated machine learning at their disposal. But formal data 
scientists and machine learning engineers need their own tool chain in order to make AI in the 
enterprise, at scale, a reality. Furthermore, the ethical requirements around ML, in terms of model 
accuracy, explainability and mitigation of bias, greatly benefit from tooling support as well. 

Cloudera Machine Learning supplies all of this support, in an environment that can be as 
prescriptive or permissive as the customer may require. CML provides all the tooling necessary for 
productive data science work, and yet integrates with open source frameworks and development 
tools to accommodate organizations which may have standardized on a certain subset of them. Its 
layering of formal constructs, conventions and extensibility provides the combination of structure 
and flexibility necessary for the current state of data science, which is transitioning from a 
preponderance of ad hoc, craftsperson-like approaches to a more standardized, disciplined 
approach. 

CML’s capabilities are based on customer requirements and demands. It will continue to evolve 
along those lines, even as it introduces best practices to its customers and mentors them into 
scalable practices and techniques. Hopefully, this report has provided helpful insight not only into 
the mechanics and capabilities of CML, but also the motivation behind them, and the significant 
industrial/business advantages they deliver. 


