
Cloudera Introduction

Important Notice
© 2010-2021 Cloudera, Inc. All rights reserved.

Cloudera, the Cloudera logo, and any other product or
service names or slogans contained in this document are trademarks of Cloudera and
its suppliers or licensors, and may not be copied, imitated or used, in whole or in part,
without the prior written permission of Cloudera or the applicable trademark holder. If
this documentation includes code, including but not limited to, code examples, Cloudera
makes this available to you under the terms of the Apache License, Version 2.0, including
any required notices. A copy of the Apache License Version 2.0, including any notices,
is included herein. A copy of the Apache License Version 2.0 can also be found here:
https://opensource.org/licenses/Apache-2.0

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software
Foundation. All other trademarks, registered trademarks, product names and company
names or logosmentioned in this document are the property of their respective owners.
Reference to any products, services, processes or other information, by trade name,
trademark, manufacturer, supplier or otherwise does not constitute or imply
endorsement, sponsorship or recommendation thereof by us.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this documentmay be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Cloudera.

Cloudera may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subjectmatter in this document. Except as expressly
provided in anywritten license agreement fromCloudera, the furnishing of this document
does not give you any license to these patents, trademarks copyrights, or other
intellectual property. For information about patents covering Cloudera products, see
http://tiny.cloudera.com/patents.

The information in this document is subject to change without notice. Cloudera shall
not be liable for any damages resulting from technical errors or omissions which may
be present in this document, or from use of this document.

Cloudera, Inc.
395 Page Mill Road
Palo Alto, CA 94306
info@cloudera.com
US: 1-888-789-1488
Intl: 1-650-362-0488
www.cloudera.com

Release Information

Version: Cloudera Enterprise 5.11.x
Date: February 3, 2021

Table of Contents

About Cloudera Introduction...6
Documentation Overview..6

Cloudera Primary User Personas..9
Infrastructure...9
Jim — Senior Hadoop Administrator..9

Jen — Junior Hadoop Administrator..10

Sarah — Cloud Administrator..10

Data Ingest, ETL, and Metadata Management...11
Terence — Enterprise Data Architect or Modeler..11

Kara — Data Steward and Data Curator..12

Analytics and Machine Learning..12
Song — Data Scientist..13

Jason — Machine Learning Engineer...13

Cory — Data Engineer..14

Sophie — Application Developer..15

Abe — SQL Expert/SQL Developer...15

Kiran — SQL Analyst/SQL User..16

Christine — BI Analyst..16

CDH Overview..18
Apache Impala Overview...18
Impala Benefits..19

How Impala Works with ..19

Primary Impala Features..20

Cloudera Search Overview...20
How Cloudera Search Works..22

Understanding Cloudera Search..22

Cloudera Search and Other Cloudera Components..23

Cloudera Search Architecture..24

Cloudera Search Tasks and Processes..27

Apache Sentry Overview..29

Apache Spark Overview...29

File Formats and Compression...30
Using Apache Parquet Data Files with CDH...31

Using Apache Avro Data Files with CDH..39

Data Compression..42

External Documentation..44

Cloudera Manager 5 Overview...46
Terminology..46

Architecture...49

State Management...50

Configuration Management...51

Process Management...54

Software Distribution Management...54

Host Management..55

Resource Management..56

User Management...57

Security Management..57

Cloudera Management Service..58

Cloudera Manager Admin Console..59
Starting and Logging into the Admin Console..61

Cloudera Manager Admin Console Home Page...61

Displaying Cloudera Manager Documentation..64

Automatic Logout..64

Cloudera Manager API...65
Backing Up and Restoring the Cloudera Manager Configuration ...67

Using the Cloudera Manager API for Cluster Automation...68

Extending Cloudera Manager...70

Cloudera Navigator 2 Overview..71
Cloudera Navigator Data Management Overview..72
Cloudera Navigator Data Management UI..72

Cloudera Navigator Data Management API..73

Displaying Cloudera Navigator Data Management Documentation...74

Displaying the Cloudera Navigator Data Management Component Version..74

Cloudera Navigator 2 Frequently Asked Questions..74

Cloudera Navigator Data Encryption Overview...77
Cloudera Navigator Data Encryption Architecture...79

Cloudera Navigator Data Encryption Integration with an EDH...79

Cloudera Navigator Key Trustee Server Overview..80
Key Trustee Server Architecture...80

Cloudera Navigator Key HSM Overview...81
Key HSM Architecture..82

Cloudera Navigator Encrypt Overview...82
Process-Based Access Control List..83

Encryption Key Storage and Management..85

Frequently Asked Questions About Cloudera Software...86

Getting Support...87
Cloudera Support...87
Information Required for Logging a Support Case...87

Community Support...87

Get Announcements about New Releases...88

Report Issues..88

Appendix: Apache License, Version 2.0...89

About Cloudera Introduction

Important: As of February 1, 2021, all downloads of CDH and Cloudera Manager require a username
and password and use a modified URL. You must use the modified URL, including the username and
password when downloading the repository contents described below. You may need to upgrade
Cloudera Manager to a newer version that uses the modified URLs.

This can affect new installations, upgrades, adding new hosts to a cluster, and adding a new cluster.

For more information, see Updating an existing CDH/Cloudera Manager deployment to access
downloads with authentication.

Cloudera provides a scalable, flexible, integrated platform that makes it easy to manage rapidly increasing volumes
and varieties of data in your enterprise. Cloudera products and solutions enable you to deploy and manage Apache
Hadoop and related projects, manipulate and analyze your data, and keep that data secure and protected.

Cloudera provides the following products and tools:

• CDH—The most complete, tested, and popular distribution of Apache Hadoop and other related open-source
projects, including Apache Impala and Cloudera Search. CDH also provides security and integrationwith numerous
hardware and software solutions.

• Apache Impala—A massively parallel processing SQL engine for interactive analytics and business intelligence. Its
highly optimized architecture makes it ideally suited for traditional BI-style queries with joins, aggregations, and
subqueries. It can query Hadoop data files from a variety of sources, including those produced by MapReduce
jobs or loaded into Hive tables. The YARN resourcemanagement component lets Impala coexist on clusters running
batchworkloads concurrentlywith Impala SQLqueries. You canmanage Impala alongsideotherHadoop components
through the Cloudera Manager user interface, and secure its data through the Sentry authorization framework.

• Cloudera Search—Provides near real-time access to data stored in or ingested into Hadoop and HBase. Search
provides near real-time indexing, batch indexing, full-text exploration and navigated drill-down, as well as a simple,
full-text interface that requires no SQL or programming skills. Fully integrated in the data-processing platform,
Search uses the flexible, scalable, and robust storage system included with CDH. This eliminates the need to move
large data sets across infrastructures to perform business tasks.

• Cloudera Manager—A sophisticated application used to deploy, manage, monitor, and diagnose issues with your
CDH deployments. Cloudera Manager provides the Admin Console, a web-based user interface that makes
administration of your enterprise data simple and straightforward. It also includes the Cloudera Manager API,
which you can use to obtain cluster health information and metrics, as well as configure Cloudera Manager.

• Cloudera Navigator—An end-to-end datamanagement and security tool for the CDH platform. Cloudera Navigator
enables administrators, datamanagers, and analysts to explore the large amounts of data in Hadoop, and simplifies
the storage and management of encryption keys. The robust auditing, data management, lineage management,
lifecycle management, and encryption key management in Cloudera Navigator allow enterprises to adhere to
stringent compliance and regulatory requirements.

This introductory guide provides a general overview of CDH, Cloudera Manager, and Cloudera Navigator. This guide
also includes frequently asked questions about Cloudera products and describes how to get support, report issues,
and receive information about updates and new releases.

Documentation Overview
The following guides are included in the Cloudera documentation set:

DescriptionGuide

Cloudera provides a scalable, flexible, integrated platform that makes it easy
tomanage rapidly increasing volumes and varieties of data in your enterprise.

Overviewof Cloudera and theCloudera
Documentation Set

6 | Cloudera Introduction

About Cloudera Introduction

https://docs.cloudera.com/documentation/enterprise/release-notes/topics/cm-retrofit-auth-downloads.html#cm_retrofit_auth_downloads
https://docs.cloudera.com/documentation/enterprise/release-notes/topics/cm-retrofit-auth-downloads.html#cm_retrofit_auth_downloads

DescriptionGuide

Cloudera products and solutions enable you to deploy and manage Apache
Hadoop and related projects, manipulate and analyze your data, and keep
that data secure and protected.

This guide contains release and download information for installers and
administrators. It includes release notes aswell as information about versions

Cloudera Release Notes

and downloads. The guide also provides a release matrix that shows which
major andminor release version of a product is supportedwithwhich release
version of Cloudera Manager, CDH and, if applicable, Cloudera Impala.

This set of guides describesways to rapidly begin experimentingwith Cloudera
software. The first section describes how to download and use QuickStart

Cloudera QuickStart

virtual machines, which provide everything you need to try CDH, Cloudera
Manager, Impala, and Cloudera Search. Subsequent sections show you how
to create a new installation of Cloudera Manager 5, CDH5, and managed
services on a cluster of four hosts and an unmanaged CDH pseudo cluster.
Quick start installations are for demonstration and POC applications only and
are not recommended for production use.

This guide provides Cloudera software requirements and installation
information for production deployments.

Cloudera Installation Guide

This topic provides an overview of upgrade procedures for ClouderaManager
and CDH.

Cloudera Upgrade Overview

This guide describes how to configure and administer a Cloudera deployment.
Administrators manage resources, availability, and backup and recovery

Cloudera Administration

configurations. In addition, this guide shows how to implement high
availability, and discusses integration.

This guide describes how to perform data management using Cloudera
Navigator. Datamanagement activities include auditing access to data residing

Cloudera Data Management

in HDFS and Hive metastores, reviewing and updating metadata, and
discovering the lineage of data objects.

This guide shows how to monitor the health of a Cloudera deployment and
diagnose issues. You can obtain metrics and usage information and view

Cloudera Operation

processing activities. This guide also describes how to examine logs and reports
to troubleshoot issues with cluster configuration and operation as well as
monitor compliance.

This guide is intended for system administrators who want to secure a cluster
using data encryption, user authentication, and authorization techniques. It

Cloudera Security

provides conceptual overviews and how-to information about setting up
various Hadoop components for optimal security, including how to setup a
gateway to restrict access. This guide assumes that you have basic knowledge
of Linux and systems administration practices, in general.

This guide describes Impala, its features and benefits, and how it works with
CDH. This topic introduces Impala concepts, describes how to plan your Impala

Apache Impala - Interactive SQL

deployment, and provides tutorials for first-time users as well as more
advanced tutorials that describe scenarios and specialized features. You will
also find a language reference, performance tuning, instructions for using the
Impala shell, troubleshooting information, and frequently asked questions.

This guide provides instructions for installing Cloudera software.Cloudera Search Guide

Cloudera Introduction | 7

About Cloudera Introduction

http://www.cloudera.com/documentation/enterprise/release-notes/topics/rg_release_notes.html

DescriptionGuide

This guide describes Apache Spark, a general framework for distributed
computing that offers high performance for both batch and interactive

Spark Guide

processing. The guide provides tutorial Spark applications, how to develop
and run Spark applications, and how to use Spark with other Hadoop
components.

This guide contains a glossary of terms for Cloudera components.Cloudera Glossary

This page contains documentation for using CDH in the cloud.Cloud Overview and Best Practices

8 | Cloudera Introduction

About Cloudera Introduction

https://www.cloudera.com/documentation/director/cloud.html

Cloudera Primary User Personas

Cloudera has defined the following set of personas described in this topic. These personas are characters based on
real people, where each persona represents a user type. This collection of personas helps define the goals and activities
of typical users of Cloudera products. Defining personas for software products is amoving target because user types
change over time. This collection is the result of a 2018 study collecting data from about fifteen leaders in Cloudera
product management and engineering. These primary personas are being validated with some customers to ensure
their accuracy and will be updated as needed.

Infrastructure
The personas in this group use either Cloudera Manager or Altus to manage CDH clusters on-premises or in the cloud.

Jim — Senior Hadoop Administrator

Skills and Background

• Very strong knowledge of HDFS and Linux administration
• Understanding of:

– Distributed/grid computing
– VMs and their capabilities
– Racks, disk topologies, and RAID
– Hadoop architecture

• Proficiency in Java

Tools:

Cloudera

• Cloudera Manager/CDH
• Navigator
• BDR
• Workload XM

Third-party Tools: Configuration management tools, log monitoring tools, for example, Splunk, Puppet, Chef, Ganglia,
or Grafana

Goals:

• Achieve consistent high availability and performance on Hadoop clusters
• User administration, including creating new users and updating access control rights upon demand

Typical Tasks:

• Monitor cluster performance to ensure high percentage up time
• Back up and replicate appropriate files to ensure disaster recovery

Cloudera Introduction | 9

Cloudera Primary User Personas

• Schedule and perform cluster upgrades
• Security: enable and check status of security services and configurations
• Analyze query performance with Workload XM to ensure optimum cluster performance
• Provision new clusters

Jen — Junior Hadoop Administrator

Skills and Background

• Basic knowledge of HDFS
• Limited knowledge of Linux (shell scripting mostly)
• General understanding of:

– Distributed/grid computing
– VMs and their capabilities
– Racks, disk topologies, and RAID
– Hadoop architecture

Tools:

Cloudera

• Cloudera Manager/CDH
• Navigator
• Workload XM

Third-party Tools: Configuration management tools, log monitoring tools, for example, Splunk, Puppet, Chef, Ganglia,
or Grafana

Goals:

• Maintain high availability and performance of Hadoop clusters

Typical Tasks:

• Perform basic procedures to ensure clusters are up and running
• Perform maintenance work flows

Sarah — Cloud Administrator

Skills and Background

• Understands public cloud primitives (Virtual Private Cloud)

10 | Cloudera Introduction

Cloudera Primary User Personas

• Understands security access policies (Identity Access Management)
• Proficiency in Java

Tools:

Cloudera

• Altus

Third-party Tools: Amazon Web Services, Microsoft Azure

Goals:

• Maintain correct access to cloud resources
• Maintain correct resource allocation to cloud resources, such as account limits

Typical Tasks:

• Create the Altus environment for the organization

Data Ingest, ETL, and Metadata Management
The personas in this group typically use Navigator, Workload XM, HUE, Hive, Impala, and Spark.

Terence — Enterprise Data Architect or Modeler

Skills and Background

• Experience with:

– ETL process
– Data munging
– Wide variety of data wrangling tools

Tools:

Cloudera

• Navigator
• Workload XM
• HUE
• Hive
• Impala
• Spark

Third-party Tools: ETL and other data wrangling tools

Goals:

• Maintain organized/optimized enterprise data architecture to support the business needs
• Ensure that data models support improved data management and consumption
• Maintain efficient schema design

Cloudera Introduction | 11

Cloudera Primary User Personas

Typical Tasks:

• Organize data at the macro level: set architectural principles, create data models, create key entity diagrams, and
create a data inventory to support business processes and architecture

• Organize data at the micro level: create data models for specific applications
• Map organization use cases to execution engines (Impala, Spark, Hive)
• Provide logical data models for the most important data sets, consuming applications, and data quality rules
• Provide data entity descriptions
• Ingest newdata into the system: use ingest tools,monitor ingestion rate, data formatting, and partitioning strategies

Kara — Data Steward and Data Curator

Skills and Background

• Experience with:

– ETL process
– Data wrangling tools

Tools:

Cloudera

• Navigator
• HUE data catalog

Third-party Tools: ETL and other data wrangling tools

Goals:

• Maintain metadata (technical and custom)
• Maintain data policies to support business processes
• Maintain data lifecycle at Hadoop scale
• Maintain data access permissions

Typical Tasks:

• Manage technical metadata
• Classify data at Hadoop scale
• Create andmanage custom and businessmetadata using policies or third-party tools that integrate with Navigator

Analytics and Machine Learning
The personas in this group typically use Cloudera Data Science Workbench (CDSW), HUE, HDFS, and HBase.

12 | Cloudera Introduction

Cloudera Primary User Personas

Song — Data Scientist

Skills and Background

• Statistics
• Related scripting tools, for example R
• Machine learning models
• SQL
• Basic programming

Tools:

Cloudera

• CDSW
• HUE to build and test queries before adding to CDSW
• HDFS
• HBase

Third-party Tools: R, SAS, SPSS, and others. Command-line scripting languages such as Scala, Python, Tableau, Qlik,
and some Java

Goals:

• Solve business problems by applying advanced analytics and machine learning in an ad hoc manner

Typical Tasks:

• Access, explore, and prepare data by joining and cleaning it
• Define data features and variables to solve business problems as in data feature engineering
• Select and adapt machine learning models or write algorithms to answer business questions
• Tune data model features and hyper parameters while running experiments
• Publish the optimizedmodel for wider use as an API for BI Analysts or Data Owners to use as part of their reporting
• Publish data model results to answer business questions for consumption by Data Owners and BI Analysts

Jason —Machine Learning Engineer

Skills and Background

• Machine learning and big data skills
• Software engineering

Tools:

Cloudera Introduction | 13

Cloudera Primary User Personas

Cloudera

• Spark
• HUE to build and test queries before adding to application
• CDSW

Third-party Tools: Java

Goals:

• Build and maintain production machine learning applications

Typical Tasks:

• Set up big data machine learning projects at companies such as Facebook

Cory — Data Engineer

Skills and Background

• Software engineering
• SQL mastery
• ETL design and big data skills
• Machine learning skills

Tools:

Cloudera

• CDSW
• Spark/MapReduce
• Hive
• Oozie
• Altus Data Engineering
• HUE
• Workload XM

Third-party Tools: IDE, Java, Python, Scala

Goals:

• Create data pipelines (about 40% of working time)
• Maintain data pipelines (about 60% of working time)

Typical Tasks:

• Create data workflow paths
• Create code repository check-ins
• Create XML workflows for production system launches

14 | Cloudera Introduction

Cloudera Primary User Personas

Sophie — Application Developer

Skills and Background

• Deep knowledge of software engineering to build real-time applications

Tools:

Cloudera

• HBase

Third-party Tools: Various software development tools

Goals:

• Applications developed run and successfully send workloads to the cluster. For example, connects a front-end to
HBase on the cluster.

Typical Tasks:

• Develops application features, but does not write the SQL workload. Rather writes the application that sends the
workloads to the cluster.

• Tests applications to ensure they run successfully

Abe — SQL Expert/SQL Developer

Skills and Background

• Deep knowledge of SQL dialects and schemas

Tools:

Cloudera

• HUE
• Cloudera Manager to monitor Hive queries
• Hive via command line or HUE
• Impala via HUE, another BI tool, or the command line
• Navigator via HUE
• Sentry via HUE
• Workload XM via HUE

Third-party Tools: SQL Studio, TOAD

Cloudera Introduction | 15

Cloudera Primary User Personas

Goals:

• Create workloads that perform well and that return the desired results

Typical Tasks:

• Create query workloads that applications send to the cluster
• Ensure optimal performance of query workloads by monitoring the query model and partitioning strategies
• Prepare and test queries before they are added to applications

Kiran — SQL Analyst/SQL User

Skills and Background

• Has high-level grasp of SQL concepts, but prefers to drag and drop query elements
• Good at data visualization, but prefers pre-populated tables and queries

Tools:

Cloudera

• HUE
• Cloudera Manager to monitor queries
• Oozie to schedule workloads
• Impala (rather than Hive)

Third-party Tools: Reporting and business intelligence tools like Cognos, Crystal Reports

Goals:

• To answer business questions and problems based on data

Typical Tasks:

• Create query workloads that applications send to the cluster
• Ensure optimal performance of queries (query model, partitioning strategies)

Christine — BI Analyst

Skills and Background

• Ability to:

– View reports and drill down into results of interest
– Tag, save, share reports and results

16 | Cloudera Introduction

Cloudera Primary User Personas

Tools:

Cloudera

• HUE
• Navigator via HUE

Third-party Tools: SQL query tools, Tableau, Qlik, Excel

Goals:

• Apply data preparation and analytic skills to solve recurrent business problems. For example, to create a weekly
sales report.

• Provide reports for the Business/Data Owner

Typical Tasks:

• Access, explore, and prepare data by joining and cleaning it
• Create reports to satisfy requests from business stakeholders to solve business problems

Cloudera Introduction | 17

Cloudera Primary User Personas

CDH Overview

CDH is the most complete, tested, and popular distribution of Apache Hadoop and related projects. CDH delivers the
core elements of Hadoop – scalable storage and distributed computing – along with a Web-based user interface and
vital enterprise capabilities. CDH is Apache-licensed open source and is the only Hadoop solution to offer unified batch
processing, interactive SQL and interactive search, and role-based access controls.

CDH provides:

• Flexibility—Store any type of data andmanipulate it with a variety of different computation frameworks including
batch processing, interactive SQL, free text search, machine learning and statistical computation.

• Integration—Get up and running quickly on a complete Hadoop platform thatworkswith a broad range of hardware
and software solutions.

• Security—Process and control sensitive data.
• Scalability—Enable a broad range of applications and scale and extend them to suit your requirements.
• High availability—Perform mission-critical business tasks with confidence.
• Compatibility—Leverage your existing IT infrastructure and investment.

For information about CDH components, which is out of scope for Cloudera documentation, see the links in External
Documentation on page 44.

Apache Impala Overview
Impala provides fast, interactive SQL queries directly on your Apache Hadoop data stored in HDFS, HBase, or the
Amazon Simple Storage Service (S3). In addition to using the same unified storage platform, Impala also uses the same
metadata, SQL syntax (Hive SQL), ODBC driver, and user interface (Impala queryUI in Hue) as ApacheHive. This provides
a familiar and unified platform for real-time or batch-oriented queries.

18 | Cloudera Introduction

CDH Overview

Impala is an addition to tools available for querying big data. Impala does not replace the batch processing frameworks
built on MapReduce such as Hive. Hive and other frameworks built on MapReduce are best suited for long running
batch jobs, such as those involving batch processing of Extract, Transform, and Load (ETL) type jobs.

Note: Impala graduated from the Apache Incubator on November 15, 2017. In places where the
documentation formerly referred to “Cloudera Impala”, now the official name is “Apache Impala”.

Impala Benefits

Impala provides:

• Familiar SQL interface that data scientists and analysts already know.
• Ability to query high volumes of data (“big data”) in Apache Hadoop.
• Distributed queries in a cluster environment, for convenient scaling and to make use of cost-effective commodity

hardware.
• Ability to share data files between different components with no copy or export/import step; for example, to

write with Pig, transformwith Hive and query with Impala. Impala can read from andwrite to Hive tables, enabling
simple data interchange using Impala for analytics on Hive-produced data.

• Single system for big data processing and analytics, so customers can avoid costly modeling and ETL just for
analytics.

How Impala Works with

The following graphic illustrates how Impala is positioned in the broader Cloudera environment:

The Impala solution is composed of the following components:

• Clients - Entities including Hue, ODBC clients, JDBC clients, and the Impala Shell can all interact with Impala. These
interfaces are typically used to issue queries or complete administrative tasks such as connecting to Impala.

• Hive Metastore - Stores information about the data available to Impala. For example, the metastore lets Impala
know what databases are available and what the structure of those databases is. As you create, drop, and alter
schema objects, load data into tables, and so on through Impala SQL statements, the relevant metadata changes
are automatically broadcast to all Impala nodes by the dedicated catalog service introduced in Impala 1.2.

• Impala - This process, which runs on DataNodes, coordinates and executes queries. Each instance of Impala can
receive, plan, and coordinate queries from Impala clients. Queries are distributed among Impala nodes, and these
nodes then act as workers, executing parallel query fragments.

• HBase and HDFS - Storage for data to be queried.

Queries executed using Impala are handled as follows:

Cloudera Introduction | 19

CDH Overview

1. User applications send SQL queries to Impala through ODBC or JDBC, which provide standardized querying
interfaces. The user applicationmay connect to any impalad in the cluster. This impalad becomes the coordinator
for the query.

2. Impala parses the query and analyzes it to determine what tasks need to be performed by impalad instances
across the cluster. Execution is planned for optimal efficiency.

3. Services such as HDFS and HBase are accessed by local impalad instances to provide data.
4. Each impalad returns data to the coordinating impalad, which sends these results to the client.

Primary Impala Features

Impala provides support for:

• Most common SQL-92 features of Hive Query Language (HiveQL) including SELECT, joins, and aggregate functions.
• HDFS, HBase, and Amazon Simple Storage System (S3) storage, including:

– HDFS file formats: delimited text files, Parquet, Avro, SequenceFile, and RCFile.
– Compression codecs: Snappy, GZIP, Deflate, BZIP.

• Common data access interfaces including:

– JDBC driver.
– ODBC driver.
– Hue Beeswax and the Impala Query UI.

• impala-shell command-line interface.
• Kerberos authentication.

Cloudera Search Overview
Cloudera Search provides easy, natural language access to data stored in or ingested into Hadoop, HBase, or cloud
storage. End users and other web services can use full-text queries and faceted drill-down to explore text,
semi-structured, and structured data as well as quickly filter and aggregate it to gain business insight without requiring
SQL or programming skills.

Cloudera Search is Apache Solr fully integrated in the Cloudera platform, taking advantage of the flexible, scalable,
and robust storage system and data processing frameworks included in CDH. This eliminates the need to move large
data sets across infrastructures to perform business tasks. It further enables a streamlined data pipeline, where search
and text matching is part of a larger workflow.

Cloudera Search incorporates Apache Solr, which includes Apache Lucene, SolrCloud, Apache Tika, and Solr Cell.
Cloudera Search is included with CDH 5 and higher.

Using Cloudera Search with the CDH infrastructure provides:

• Simplified infrastructure
• Better production visibility and control
• Quicker insights across various data types
• Quicker problem resolution
• Simplified interaction and platform access for more users and use cases beyond SQL
• Scalability, flexibility, and reliability of search services on the same platform used to run other types of workloads

on the same data
• A unified security model across all processes with access to your data
• Flexibility and scale in ingest and pre-processing options

The following table describes Cloudera Search features.

20 | Cloudera Introduction

CDH Overview

http://lucene.apache.org/solr/
http://lucene.apache.org/solr/

Table 1: Cloudera Search Features

DescriptionFeature

Cloudera Manager provides unified and centralized management and
monitoring for CDH and Cloudera Search. Cloudera Manager simplifies

Unified management and monitoring
with Cloudera Manager

deployment, configuration, and monitoring of your search services. Many
existing search solutions lack management and monitoring capabilities and
fail to provide deep insight into utilization, system health, trending, and other
supportability aspects.

Cloudera Search is integrated with HDFS for robust, scalable, and self-healing
index storage. Indexes created by Solr/Lucene are directly written in HDFS

Index storage in HDFS

with the data, instead of to local disk, thereby providing fault tolerance and
redundancy.

Cloudera Search is optimized for fast read and write of indexes in HDFS while
indexes are served and queried through standard Solr mechanisms. Because
data and indexes are co-located, data processing does not require transport
or separately managed storage.

To facilitate index creation for large data sets, Cloudera Search has built-in
MapReduce jobs for indexing data stored in HDFS or HBase. As a result, the

Batch index creation through
MapReduce

linear scalability ofMapReduce is applied to the indexing pipeline, off-loading
Solr index serving resources.

Cloudera Search provides integration with Flume to support near real-time
indexing. As new events pass through a Flume hierarchy and are written to
HDFS, those events can be written directly to Cloudera Search indexers.

Real-time and scalable indexing at data
ingest

In addition, Flume supports routing events, filtering, and annotation of data
passed to CDH. These features work with Cloudera Search for improved index
sharding, index separation, and document-level access control.

A Cloudera Search GUI is provided as a Hue plug-in, enabling users to
interactively query data, view result files, and do faceted exploration. Hue can

Easy interaction and data exploration
through Hue

also schedule standing queries and explore index files. This GUI uses the
Cloudera Search API, which is based on the standard Solr API. The
drag-and-drop dashboard interfacemakes it easy for anyone to create a Search
dashboard.

Cloudera Search can use Apache Tika for parsing and preparation of many of
the standard file formats for indexing. Additionally, Cloudera Search supports

Simplified data processing for Search
workloads

Avro, Hadoop Sequence, and Snappy file format mappings, as well as Log file
formats, JSON, XML, and HTML.

Cloudera Search also providesMorphlines, an easy-to-use, pre-built library of
commondata preprocessing functions.Morphlines simplifies data preparation
for indexing over a variety of file formats. Users can easily implement
Morphlines for Flume, Kafka, and HBase, or re-use the same Morphlines for
other applications, such as MapReduce or Spark jobs.

Cloudera Search integrateswith HBase, enabling full-text search of HBase data
without affecting HBase performance or duplicating data storage. A listener

HBase search

monitors the replication event stream fromHBase RegionServers and captures
each write or update-replicated event, enabling extraction and mapping (for
example, usingMorphlines). The event is then sent directly to Solr for indexing
and storage in HDFS, using the same process as for other indexing workloads
of Cloudera Search. The indexes can be served immediately, enabling free-text
searching of HBase data.

Cloudera Introduction | 21

CDH Overview

How Cloudera Search Works

In near real-time indexing use cases, such as log or event stream analytics, Cloudera Search indexes events that are
streamed through Apache Flume, Apache Kafka, Spark Streaming, or HBase. Fields and events are mapped to standard
Solr indexable schemas. Lucene indexes the incoming events and the index is written and stored in standard Lucene
index files in HDFS. Regular Flume event routing and storage of data in partitions in HDFS can also be applied. Events
can be routed and streamed through multiple Flume agents and written to separate Lucene indexers that can write
into separate index shards, for better scale when indexing and quicker responses when searching.

The indexes are loaded from HDFS to Solr cores, exactly like Solr would have read from local disk. The difference in
the design of Cloudera Search is the robust, distributed, and scalable storage layer of HDFS, which helps eliminate
costly downtime and allows for flexibility across workloads without having to move data. Search queries can then be
submitted to Solr through either the standard Solr API, or through a simple search GUI application, included in Cloudera
Search, which can be deployed in Hue.

Cloudera Search batch-oriented indexing capabilities can address needs for searching across batch uploaded files or
large data sets that are less frequently updated and less in need of near-real-time indexing. It can also be conveniently
used for re-indexing (a common pain point in stand-alone Solr) or ad-hoc indexing for on-demand data exploration.
Often, batch indexing is done on a regular basis (hourly, daily, weekly, and so on) as part of a larger workflow.

For such cases, Cloudera Search includes a highly scalable indexing workflow based on MapReduce or Spark. A
MapReduce or Spark workflow is launched for specified files or folders in HDFS, or tables in HBase, and the field
extraction and Solr schema mapping occurs during the mapping phase. Reducers use embedded Lucene to write the
data as a single index or as index shards, depending on your configuration and preferences. After the indexes are stored
in HDFS, they can be queried by using standard Solr mechanisms, as previously described above for the near-real-time
indexing use case. You can also configure these batch indexing options to post newly indexed data directly into live,
active indexes, served by Solr. This GoLive option enables a streamlined data pipeline without interrupting service to
process regularly incoming batch updates.

The Lily HBase Indexer Service is a flexible, scalable, fault tolerant, transactional, near real-time oriented system for
processing a continuous stream of HBase cell updates into live search indexes. The Lily HBase Indexer uses Solr to index
data stored in HBase. As HBase applies inserts, updates, and deletes to HBase table cells, the indexer keeps Solr
consistent with the HBase table contents, using standard HBase replication features. The indexer supports flexible
custom application-specific rules to extract, transform, and load HBase data into Solr. Solr search results can contain
columnFamily:qualifier links back to the data stored in HBase. This way applications can use the Search result
set to directly access matching raw HBase cells. Indexing and searching do not affect operational stability or write
throughput of HBase because the indexing and searching processes are separate and asynchronous to HBase.

Understanding Cloudera Search

Cloudera Search fits into the broader set of solutions available for analyzing information in large data sets. CDH provides
both the means and the tools to store the data and run queries. You can explore data through:

• MapReduce or Spark jobs
• Impala queries
• Cloudera Search queries

CDH provides storage for and access to large data sets by using MapReduce jobs, but creating these jobs requires
technical knowledge, and each job can take minutes or more to run. The longer run times associated with MapReduce
jobs can interrupt the process of exploring data.

To provide more immediate queries and responses and to eliminate the need to write MapReduce applications, you
can use Apache Impala. Impala returns results in seconds instead of minutes.

Although Impala is a fast, powerful application, it uses SQL-based querying syntax. Using Impala can be challenging for
users who are not familiar with SQL. If you do not know SQL, you can use Cloudera Search. Although Impala, Apache
Hive, and Apache Pig all require a structure that is applied at query time, Search supports free-text search on any data
or fields you have indexed.

22 | Cloudera Introduction

CDH Overview

How Search Uses Existing Infrastructure

Any data already in a CDH deployment can be indexed and made available for query by Cloudera Search. For data that
is not stored in CDH, Cloudera Search provides tools for loading data into the existing infrastructure, and for indexing
data as it is moved to HDFS or written to Apache HBase.

By leveraging existing infrastructure, Cloudera Search eliminates the need to create new, redundant structures. In
addition, Cloudera Search uses services provided by CDH and Cloudera Manager in a way that does not interfere with
other tasks running in the same environment. This way, you can reuse existing infrastructure without the cost and
problems associated with running multiple services in the same set of systems.

Cloudera Search and Other Cloudera Components

Cloudera Search interacts with other Cloudera components to solve different problems. The following table lists
Cloudera components that contribute to the Search process and describes how they interact with Cloudera Search:

Applicable ToContributionComponent

All casesStores source documents. Search indexes source documents to make
them searchable. Files that support Cloudera Search, such as Lucene

HDFS

index files and write-ahead logs, are also stored in HDFS. Using HDFS
provides simpler provisioning on a larger base, redundancy, and fault
tolerance.WithHDFS, Cloudera Search servers are essentially stateless,
so host failures have minimal consequences. HDFS also provides
snapshotting, inter-cluster replication, and disaster recovery.

Many casesSearch includes a pre-built MapReduce-based job. This job can be
used for on-demand or scheduled indexing of any supported data set

MapReduce

stored in HDFS. This job uses cluster resources for scalable batch
indexing.

Many casesSearch includes a Flume sink that enables writing events directly to
indexers deployed on the cluster, allowing data indexing during
ingestion.

Flume

Many casesHue includes a GUI-based Search application that uses standard Solr
APIs and can interact with data indexed in HDFS. The application

Hue

provides support for the Solr standard query language and visualization
of faceted search functionality.

Many casesA morphline is a rich configuration file that defines an ETL
transformation chain. Morphlines can consume any kind of data from

Morphlines

any data source, process the data, and load the results into Cloudera
Search. Morphlines run in a small, embeddable Java runtime system,
and can be used for near real-time applications such as the flume
agent as well as batch processing applications such as a Spark job.

Many casesCoordinates distribution of data and metadata, also known as shards.
It provides automatic failover to increase service resiliency.

ZooKeeper

Some casesThe CrunchIndexerTool can use Spark to move data from HDFS files
into Apache Solr, and run the data through a morphline for extraction
and transformation.

Spark

Some casesSupports indexing of stored data, extracting columns, column families,
and key information as fields. AlthoughHBase does not use secondary

HBase

indexing, Cloudera Search can facilitate full-text searches of content
in rows and tables in HBase.

Some casesDeploys, configures,manages, andmonitors Cloudera Search processes
and resource utilization across services on the cluster. Cloudera

Cloudera Manager

Cloudera Introduction | 23

CDH Overview

Applicable ToContributionComponent

Manager helps simplify Cloudera Search administration, but it is not
required.

Some casesClouderaNavigator provides governance for Hadoop systems including
support for auditing Search operations.

Cloudera Navigator

Some casesSentry enables role-based, fine-grained authorization for Cloudera
Search. Sentry can apply a range of restrictions to various tasks, such

Sentry

as accessing data, managing configurations through config objects, or
creating collections. Restrictions are consistently applied, regardless
of theway users attempt to complete actions. For example, restricting
access to data in a collection restricts that access whether queries
come from the command line, a browser, Hue, or through the admin
console.

Some casesAutomates scheduling and management of indexing jobs. Oozie can
check for new data and begin indexing jobs as required.

Oozie

Some casesFurther analyzes search results.Impala

Some casesFurther analyzes search results.Hive

Some casesProvides a columnar storage format, enabling especially rapid result
returns for structured workloads such as Impala or Hive. Morphlines
provide an efficient pipeline for extracting data from Parquet.

Parquet

Some casesIncludes metadata that Cloudera Search can use for indexing.Avro

Some casesSearch uses this message broker project to increase throughput and
decrease latency for handling real-time data.

Kafka

Some casesIngests data in batch and enables data availability for batch indexing.Sqoop

Cloudera Search Architecture

Cloudera Search runs as a distributed service on a set of servers, and each server is responsible for a portion of the
searchable data. The data is split into smaller pieces, copies are made of these pieces, and the pieces are distributed
among the servers. This provides two main advantages:

• Dividing the content into smaller pieces distributes the task of indexing the content among the servers.
• Duplicating the pieces of thewhole allows queries to be scaledmore effectively and enables the system to provide

higher levels of availability.

24 | Cloudera Introduction

CDH Overview

Each Cloudera Search server can handle requests independently. Clients can send requests to index documents or
perform searches to any Search server, and that server routes the request to the correct server.

Each Search deployment requires:

• ZooKeeper on at least one host. You can install ZooKeeper, Search, and HDFS on the same host.
• HDFS on at least one, but as many as all hosts. HDFS is commonly installed on all cluster hosts.
• Solr on at least one but as many as all hosts. Solr is commonly installed on all cluster hosts.

More hosts with Solr and HDFS provides the following benefits:

• More Search servers processing requests.
• More Search and HDFS collocation increasing the degree of data locality. More local data provides faster

performance and reduces network traffic.

The following graphic illustrates some of the key elements in a typical deployment.

Cloudera Introduction | 25

CDH Overview

This graphic illustrates:

1. A client submit a query over HTTP.
2. The response is received by the NameNode and then passed to a DataNode.
3. The DataNode distributes the request among other hosts with relevant shards.
4. The results of the query are gathered and returned to the client.

Also notice that the:

• Cloudera Manager provides client and server configuration files to other servers in the deployment.
• ZooKeeper server provides information about the state of the cluster and the other hosts running Solr.

The information a client must send to complete jobs varies:

• For queries, a client must have the hostname of the Solr server and the port to use.
• For actions related to collections, such as adding or deleting collections, the name of the collection is required as

well.
• Indexing jobs, such as MapReduceIndexer jobs, use a MapReduce driver that starts a MapReduce job. These

jobs can also process morphlines and index the results to Solr.

Cloudera Search Configuration Files

Configuration files in a Cloudera Search deployment include:

• Solr config files stored in ZooKeeper. Copies of these files exist on all Solr servers:

26 | Cloudera Introduction

CDH Overview

solrconfig.xml: Contains Solr configuration parameters.–
– schema.xml: Contains configuration that specifies the fields a document can contain, and how those fields

are processed when adding documents to the index, or when querying those fields.

• Files copied from hadoop-conf in HDFS configurations to Solr servers:

– core-site.xml

– hdfs-site.xml

– ssl-client.xml

– hadoop-env.sh

– topology.map

– topology.py

• Cloudera Manager manages the following configuration files:

– cloudera-monitor.properties

– cloudera-stack-monitor.properties

• Logging and security configuration files:

– log4j.properties

– jaas.conf

– solr.keytab

– sentry-site.xml

You can use parcels or packages to deploy Search. Some files are always installed to the same location and some files
are installed to different locations based on whether the installation is completed using parcels or packages.

Client Files
Client files are always installed to the same location and are required on any host where corresponding services are
installed. In a Cloudera Manager environment, Cloudera Manager manages settings. In an unmanaged deployment,
all files can be manually edited. Client configuration locations are:

• /etc/solr/conf for Solr client settings files
• /etc/hadoop/conf for HDFS, MapReduce, and YARN client settings files
• /etc/zookeeper/conf for ZooKeeper configuration files

Server Files

Server configuration file locations vary based on how services are installed.

• Cloudera Manager environments store configuration files in /var/run/.
• Unmanaged environments store configuration files in /etc/<service>/conf. For example:

– /etc/solr/conf

– /etc/zookeeper/conf

– /etc/hadoop/conf

Cloudera Search Tasks and Processes

For content to be searchable, it must exist in CDH and be indexed. Content can either already exist in CDH and be
indexed on demand, or it can be updated and indexed continuously. To make content searchable, first ensure that it
is ingested or stored in CDH.

Ingestion

You can move content to CDH by using:

• Flume, a flexible, agent-based data ingestion framework.

Cloudera Introduction | 27

CDH Overview

• A copy utility such as distcp for HDFS.
• Sqoop, a structured data ingestion connector.

Indexing

Content must be indexed before it can be searched. Indexing comprises the following steps:

1. Extraction, transformation, and loading (ETL) - Use existing engines or frameworks such as Apache Tika or Cloudera
Morphlines.

a. Content and metadata extraction
b. Schema mapping

2. Index creation using Lucene.

a. Index creation
b. Index serialization

Indexes are typically stored on a local file system. Lucene supports additional indexwriters and readers. OneHDFS-based
interface implemented as part of Apache Blur is integratedwith Cloudera Search and has been optimized for CDH-stored
indexes. All index data in Cloudera Search is stored in and served from HDFS.

You can index content in three ways:

Batch indexing using MapReduce

To use MapReduce to index documents, run a MapReduce job on content in HDFS to produce a Lucene index. The
Lucene index is written to HDFS, and this index is subsequently used by Search services to provide query results.

Batch indexing is most often used when bootstrapping a Search cluster. The Map phase of the MapReduce task parses
input into indexable documents, and the Reduce phase indexes the documents produced by the Map. You can also
configure a MapReduce-based indexing job to use all assigned resources on the cluster, utilizing multiple reducing
steps for intermediate indexing and merging operations, and then writing the reduction to the configured set of shard
sets for the service. This makes the batch indexing process as scalable as MapReduce workloads.

Near real-time (NRT) indexing using Flume

Cloudera Search includes a Flume sink that enables you to write events directly to the indexer. This sink provides a
flexible, scalable, fault-tolerant, near real-time (NRT) system for processing continuous streams of records to create
live-searchable, free-text search indexes. Typically, data ingested using the Flume sink appears in search results in
seconds, although you can tune this delay.

Data can flow frommultiple sources throughmultiple flume hosts. These hosts, which can be spread across a network,
route this information to one or more Flume indexing sinks. Optionally, you can split the data flow, storing the data in
HDFS while writing it to be indexed by Lucene indexers on the cluster. In that scenario, data exists both as data and as
indexed data in the same storage infrastructure. The indexing sink extracts relevant data, transforms the material, and
loads the results to live Solr search servers. These Solr servers are immediately ready to serve queries to end users or
search applications.

This flexible, customizable system scales effectively because parsing is moved from the Solr server to the multiple
Flume hosts for ingesting new content.

Search includes parsers for standard data formats including Avro, CSV, Text, HTML, XML, PDF, Word, and Excel. You
can extend the system by adding additional custom parsers for other file or data formats in the form of Tika plug-ins.
Any type of data can be indexed: a record is a byte array of any format, and custom ETL logic can handle any format
variation.

In addition, Cloudera Search includes a simplifying ETL framework called Cloudera Morphlines that can help adapt and
pre-process data for indexing. This eliminates the need for specific parser deployments, replacing them with simple
commands.

Cloudera Search is designed to handle a variety of use cases:

28 | Cloudera Introduction

CDH Overview

• Search supports routing tomultiple Solr collections to assign a single set of servers to supportmultiple user groups
(multi-tenancy).

• Search supports routing to multiple shards to improve scalability and reliability.
• Index servers can be collocatedwith live Solr servers serving end-user queries, or they can be deployed on separate

commodity hardware, for improved scalability and reliability.
• Indexing load can be spread across a large number of index servers for improved scalability and can be replicated

across multiple index servers for high availability.

This flexible, scalable, highly available system provides low latency data acquisition and low latency querying. Instead
of replacing existing solutions, Search complements use cases based on batch analysis of HDFS data usingMapReduce.
In many use cases, data flows from the producer through Flume to both Solr and HDFS. In this system, you can use
NRT ingestion and batch analysis tools.

NRT indexing using the API

Other clients can complete NRT indexing. This is donewhen the client first writes files directly to HDFS and then triggers
indexing using the Solr REST API. Specifically, the API does the following:

1. Extract content from the document contained in HDFS, where the document is referenced by a URL.
2. Map the content to fields in the search schema.
3. Create or update a Lucene index.

This is useful if you index as part of a larger workflow. For example, you could trigger indexing from an Oozie workflow.

Querying

After data is available as an index, the query API provided by the Search service allows direct queries to be completed
or to be facilitated through a command-line tool or graphical interface. Hue includes a simple GUI-based Search
application, or you can create a custom application based on the standard Solr API. Any application that works with
Solr is compatible and runs as a search-serving application for Cloudera Search because Solr is the core.

Apache Sentry Overview
Apache Sentry is a granular, role-based authorization module for Hadoop. Sentry provides the ability to control and
enforce precise levels of privileges on data for authenticated users and applications on a Hadoop cluster. Sentry
currently works out of the box with Apache Hive, Hive Metastore/HCatalog, Apache Solr, Impala, and HDFS (limited
to Hive table data).

Sentry is designed to be a pluggable authorization engine for Hadoop components. It allows you to define authorization
rules to validate a user or application’s access requests for Hadoop resources. Sentry is highly modular and can support
authorization for a wide variety of data models in Hadoop.

For more information, see Authorization With Apache Sentry.

Apache Spark Overview
Apache Spark is a general framework for distributed computing that offers high performance for both batch and
interactive processing. It exposes APIs for Java, Python, and Scala and consists of Spark core and several related projects:

• Spark SQL - Module for working with structured data. Allows you to seamlessly mix SQL queries with Spark
programs.

• Spark Streaming - API that allows you to build scalable fault-tolerant streaming applications.
• MLlib - API that implements common machine learning algorithms.
• GraphX - API for graphs and graph-parallel computation.

You can run Spark applications locally or distributed across a cluster, either by using an interactive shell or by submitting
an application. Running Spark applications interactively is commonly performed during the data-exploration phase
and for ad hoc analysis.

Cloudera Introduction | 29

CDH Overview

http://spark.apache.org/
http://spark.apache.org/sql/
http://spark.apache.org/streaming/
http://spark.apache.org/mllib/
http://spark.apache.org/graphx/

To run applications distributed across a cluster, Spark requires a cluster manager. Cloudera supports two cluster
managers: YARN and Spark Standalone. When run on YARN, Spark application processes are managed by the YARN
ResourceManager and NodeManager roles. When run on Spark Standalone, Spark application processes are managed
by Spark Master and Worker roles.

Note:

This page contains information related to Spark 1.6, which is includedwith CDH. For information about
the separately available parcel for CDS 2 Powered by Apache Spark, see the documentation for CDS
2.

Unsupported Features

The following Spark features are not supported:

• Spark SQL:

– Thrift JDBC/ODBC server
– Spark SQL CLI

• Spark Dataset API
• SparkR
• GraphX
• Spark on Scala 2.11
• Mesos cluster manager

Related Information

• Managing Spark
• Monitoring Spark Applications
• Spark Authentication
• Spark Encryption
• Cloudera Spark forum
• Apache Spark documentation

File Formats and Compression
CDH supports all standardHadoop file formats. For information about the file formats, see the File-BasedData Structures
section of the Hadoop I/O chapter in Hadoop: The Definitive Guide.

The file format has a significant impact on performance. Use Avro if your use case typically scans or retrieves all of the
fields in a row in each query. Parquet is a better choice if your dataset has many columns, and your use case typically
involves working with a subset of those columns instead of entire records. For more information, see this Parquet
versus Avro benchmark study.

Important:

The configuration property serialization.null.format is set in Hive and Impala engines as
SerDes or table properties to specify how to serialize/deserialize NULL values into a storage format.

This configuration option is suitable for text file formats only. If used with binary storage formats such
as RCFile or Parquet, the option causes compatibility, complexity and efficiency issues.

All file formats include support for compression, which affects the size of data on the disk and, consequently, the
amount of I/O and CPU resources required to serialize and deserialize data.

30 | Cloudera Introduction

CDH Overview

https://www.cloudera.com/documentation/spark2/latest/topics/spark2.html
https://www.cloudera.com/documentation/spark2/latest/topics/spark2.html
http://community.cloudera.com/t5/Advanced-Analytics-Apache-Spark/bd-p/Spark
https://spark.apache.org/docs/1.6.0/
http://www.cloudera.com/developers/hadoop-ecosystem-books.html
http://blog.cloudera.com/blog/2016/04/benchmarking-apache-parquet-the-allstate-experience/
http://blog.cloudera.com/blog/2016/04/benchmarking-apache-parquet-the-allstate-experience/

Using Apache Parquet Data Files with CDH

Apache Parquet is a columnar storage format available to any component in the Hadoop ecosystem, regardless of the
data processing framework, data model, or programming language. The Parquet file format incorporates several
features that support data warehouse-style operations:

• Columnar storage layout - A query can examine and perform calculations on all values for a column while reading
only a small fraction of the data from a data file or table.

• Flexible compression options - Data can be compressed with any of several codecs. Different data files can be
compressed differently.

• Innovative encoding schemes - Sequences of identical, similar, or related data values can be represented in ways
that save disk space and memory. The encoding schemes provide an extra level of space savings beyond overall
compression for each data file.

• Large file size - The layout of Parquet data files is optimized for queries that process large volumes of data, with
individual files in the multimegabyte or even gigabyte range.

Parquet is automatically installed when you install CDH, and the required libraries are automatically placed in the
classpath for all CDH components. Copies of the libraries are in /usr/lib/parquet or
/opt/cloudera/parcels/CDH/lib/parquet.

CDH lets you use the component of your choice with the Parquet file format for each phase of data processing. For
example, you can read and write Parquet files using Pig and MapReduce jobs. You can convert, transform, and query
Parquet tables through Hive, Impala, and Spark. And you can interchange data files between all of these components.

Compression for Parquet Files

For most CDH components, by default Parquet data files are not compressed. Cloudera recommends enabling
compression to reduce disk usage and increase read and write performance.

You do not need to specify configuration to read a compressed Parquet file. However, to write a compressed Parquet
file, you must specify the compression type. The supported compression types, the compression default, and how you
specify compression depends on the CDH component writing the files.

Using Parquet Tables in Hive

To create a table named PARQUET_TABLE that uses the Parquet format, use a command like the following, substituting
your own table name, column names, and data types:

hive> CREATE TABLE parquet_table_name (x INT, y STRING) STORED AS PARQUET;

Note:

• Once you create a Parquet table, you can query it or insert into it through other components
such as Impala and Spark.

• Set dfs.block.size to 256 MB in hdfs-site.xml.

If the table will be populated with data files generated outside of Impala and Hive, you can create the table as an
external table pointing to the location where the files will be created:

hive> create external table parquet_table_name (x INT, y STRING)
STORED AS PARQUET
LOCATION '/test-warehouse/tinytable';

To populate the tablewith an INSERT statement, and to read the tablewith a SELECT statement, seeUsing the Parquet
File Format with Impala Tables.

Cloudera Introduction | 31

CDH Overview

https://parquet.apache.org/
http://en.wikipedia.org/wiki/Column-oriented_DBMS

To set the compression type to use when writing data, configure the parquet.compression property:

set parquet.compression=GZIP;
INSERT OVERWRITE TABLE tinytable SELECT * FROM texttable;

The supported compression types are UNCOMPRESSED, GZIP, and SNAPPY.

Using Parquet Tables in Impala

Impala can create tables that use Parquet data files, insert data into those tables, convert the data into Parquet format,
and query Parquet data files produced by Impala or other components. The only syntax required is the STORED AS
PARQUET clause on the CREATE TABLE statement. After that, all SELECT, INSERT, and other statements recognize
the Parquet format automatically. For example, a session in the impala-shell interpreter might look as follows:

[localhost:21000] > create table parquet_table (x int, y string) stored as parquet;
[localhost:21000] > insert into parquet_table select x, y from some_other_table;
Inserted 50000000 rows in 33.52s
[localhost:21000] > select y from parquet_table where x between 70 and 100;

Once you create a Parquet table this way in Impala, you can query it or insert into it through either Impala or Hive.

The Parquet format is optimized for working with large data files. In Impala 2.0 and higher, the default size of Parquet
files written by Impala is 256MB; in lower releases, 1 GB. Avoid using the INSERT ... VALUES syntax, or partitioning
the table at too granular a level, if thatwould produce a large number of small files that cannot use Parquet optimizations
for large data chunks.

Inserting data into a partitioned Impala table can be a memory-intensive operation, because each data file requires a
memory buffer to hold the data before it is written. Such inserts can also exceed HDFS limits on simultaneous open
files, because each node could potentially write to a separate data file for each partition, all at the same time. Make
sure table and column statistics are in place for any table used as the source for an INSERT ... SELECT operation
into a Parquet table. If capacity problems still occur, consider splitting insert operations into one INSERT statement
per partition.

Impala can query Parquet files that use the PLAIN, PLAIN_DICTIONARY, BIT_PACKED, and RLE encodings. Currently,
Impala does not support RLE_DICTIONARY encoding. When creating files outside of Impala for use by Impala, make
sure to use one of the supported encodings. In particular, for MapReduce jobs, parquet.writer.versionmust not
be defined (especially as PARQUET_2_0) for writing the configurations of Parquet MR jobs. Use the default version (or
format). The default format, 1.0, includes some enhancements that are compatible with older versions. Data using the
2.0 format might not be consumable by Impala, due to use of the RLE_DICTIONARY encoding.

If you use Sqoop to convert RDBMS data to Parquet, be careful with interpreting any resulting values from DATE,
DATETIME, or TIMESTAMP columns. The underlying values are represented as the Parquet INT64 type, which is
represented as BIGINT in the Impala table. The Parquet values represent the time in milliseconds, while Impala
interprets BIGINT as the time in seconds. Therefore, if you have a BIGINT column in a Parquet table that was imported
this way from Sqoop, divide the values by 1000 when interpreting as the TIMESTAMP type.

For complete instructions and examples, see Using the Parquet File Format with Impala Tables.

Using Parquet Files in MapReduce

MapReduce requires Thrift in its CLASSPATH and in libjars to access Parquet files. It also requires parquet-format
in libjars. Set up the following before running MapReduce jobs that access Parquet data files:

if [-e /opt/cloudera/parcels/CDH] ; then
 CDH_BASE=/opt/cloudera/parcels/CDH
else
 CDH_BASE=/usr
fi
THRIFTJAR=`ls -l $CDH_BASE/lib/hive/lib/libthrift*jar | awk '{print $9}' | head -1`
export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$THRIFTJAR
export LIBJARS=`echo "$CLASSPATH" | awk 'BEGIN { RS = ":" } { print }' | grep
parquet-format | tail -1`
export LIBJARS=$LIBJARS,$THRIFTJAR

32 | Cloudera Introduction

CDH Overview

hadoop jar my-parquet-mr.jar -libjars $LIBJARS

Reading Parquet Files in MapReduce

Using the Example helper classes in the Parquet JAR files, a simple map-only MapReduce job that reads Parquet files
can use the ExampleInputFormat class and the Group value class. The following example demonstrates how to read
a Parquet file in a MapReduce job; portions of code specific to Parquet are shown in bold.

import static java.lang.Thread.sleep;
import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.Mapper.Context;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

import parquet.Log;
import parquet.example.data.Group;
import parquet.hadoop.example.ExampleInputFormat;

public class TestReadParquet extends Configured
 implements Tool {
 private static final Log LOG =
 Log.getLog(TestReadParquet.class);

 /*
 * Read a Parquet record
 */
 public static class MyMap extends
 Mapper<LongWritable, Group, NullWritable, Text> {

 @Override
 public void map(LongWritable key, Group value, Context context) throws IOException,
 InterruptedException {
 NullWritable outKey = NullWritable.get();
 String outputRecord = "";
 // Get the schema and field values of the record
 String inputRecord = value.toString();
 // Process the value, create an output record
 // ...
 context.write(outKey, new Text(outputRecord));
 }
 }

 public int run(String[] args) throws Exception {

 Job job = new Job(getConf());

 job.setJarByClass(getClass());
 job.setJobName(getClass().getName());
 job.setMapOutputKeyClass(LongWritable.class);
 job.setMapOutputValueClass(Text.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(Text.class);
 job.setMapperClass(MyMap.class);
 job.setNumReduceTasks(0);

job.setInputFormatClass(ExampleInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);

Cloudera Introduction | 33

CDH Overview

 FileInputFormat.setInputPaths(job, new Path(args[0]));
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 job.waitForCompletion(true);
 return 0;
 }

 public static void main(String[] args) throws Exception {
 try {
 int res = ToolRunner.run(new Configuration(), new TestReadParquet(), args);
 System.exit(res);
 } catch (Exception e) {
 e.printStackTrace();
 System.exit(255);
 }
 }
}

Writing Parquet Files in MapReduce

When writing Parquet files, you must provide a schema. Specify the schema in the runmethod of the job before
submitting it; for example:

...
import parquet.Log;
import parquet.example.data.Group;
import parquet.hadoop.example.GroupWriteSupport;
import parquet.hadoop.example.ExampleInputFormat;
import parquet.hadoop.example.ExampleOutputFormat;
import parquet.hadoop.metadata.CompressionCodecName;
import parquet.hadoop.ParquetFileReader;
import parquet.hadoop.metadata.ParquetMetadata;
import parquet.schema.MessageType;
import parquet.schema.MessageTypeParser;
import parquet.schema.Type;
...
public int run(String[] args) throws Exception {
...

 String writeSchema = "message example {\n" +
 "required int32 x;\n" +
 "required int32 y;\n" +
 "}";
 ExampleOutputFormat.setSchema(
 job,
 MessageTypeParser.parseMessageType(writeSchema));

 job.submit();

If input files are in Parquet format, the schema can be extracted using the getSchemamethod:

import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.LocatedFileStatus;
import org.apache.hadoop.fs.RemoteIterator;
...

public int run(String[]
 args) throws Exception {
...

String inputFile = args[0];
 Path parquetFilePath = null;
 // Find a file in case a directory was passed

 RemoteIterator<LocatedFileStatus> it = FileSystem.get(getConf()).listFiles(new
Path(inputFile), true);
 while(it.hasNext()) {
 FileStatus fs = it.next();

34 | Cloudera Introduction

CDH Overview

 if(fs.isFile()) {
 parquetFilePath = fs.getPath();
 break;
 }
 }
 if(parquetFilePath == null) {
 LOG.error("No file found for " + inputFile);
 return 1;
 }
 ParquetMetadata readFooter =
 ParquetFileReader.readFooter(getConf(), parquetFilePath);
 MessageType schema =
 readFooter.getFileMetaData().getSchema();
 GroupWriteSupport.setSchema(schema, getConf());

 job.submit();

You can then write records in the mapper by composing a Group value using the Example classes and no key:

protected void map(LongWritable key, Text value,
 Mapper<LongWritable, Text, Void, Group>.Context context)
 throws java.io.IOException, InterruptedException {
 int x;
 int y;
 // Extract the desired output values from the input text
 //
 Group group = factory.newGroup()
 .append("x", x)
 .append("y", y);
 context.write(null, group);
 }
}

To set the compression type before submitting the job, invoke the setCompressionmethod:

ExampleOutputFormat.setCompression(job, compression_type);

The supported compression types are CompressionCodecName.UNCOMPRESSED, CompressionCodecName.GZIP,
and CompressionCodecName.SNAPPY.

Using Parquet Files in Pig

Reading Parquet Files in Pig

If the external table is created and populated, the Pig instruction to read the data is:

grunt> A = LOAD '/test-warehouse/tinytable' USING parquet.pig.ParquetLoader AS (x: int,
 y int);

Writing Parquet Files in Pig

Create and populate a Parquet file with the ParquetStorer class:

grunt> store A into '/test-warehouse/tinytable' USING parquet.pig.ParquetStorer;

To set the compression type, configure the parquet.compression property before the first store instruction in a
Pig script:

SET parquet.compression gzip;

The supported compression types are uncompressed, gzip, and snappy (the default).

Cloudera Introduction | 35

CDH Overview

Using Parquet Files in Spark

Spark SQL supports loading and saving DataFrames from and to a variety of data sources and has native support for
Parquet. For information about Parquet, see Using Apache Parquet Data Files with CDH on page 31.

To read Parquet files in Spark SQL, use the SQLContext.read.parquet("path")method.

To write Parquet files in Spark SQL, use the DataFrame.write.parquet("path")method.

To set the compression type, configure the spark.sql.parquet.compression.codec property:

sqlContext.setConf("spark.sql.parquet.compression.codec","codec")

The supported codec values are: uncompressed, gzip, lzo, and snappy. The default is gzip.

Currently, Spark looks up columndata fromParquet files by using the names storedwithin the data files. This is different
than the default Parquet lookup behavior of Impala and Hive. If data files are produced with a different physical layout
due to added or reordered columns, Spark still decodes the column data correctly. If the logical layout of the table is
changed in themetastore database, for example through anALTER TABLE CHANGE statement that renames a column,
Spark still looks for the data using the now-nonexistent column name and returns NULLs when it cannot locate the
column values. To avoid behavior differences between Spark and Impala or Hive whenmodifying Parquet tables, avoid
renaming columns, or use Impala, Hive, or a CREATE TABLE AS SELECT statement to produce a new table and new
set of Parquet files containing embedded column names that match the new layout.

For an example of writing Parquet files to Amazon S3, see Examples of Accessing S3 Data from Spark.

For general information and examples of Spark working with data in different file formats, see Accessing External
Storage from Spark.

Parquet File Interoperability

Impala has always included Parquet support, using high-performance code written in C++ to read and write Parquet
files. The Parquet JARs for usewithHive, Pig, andMapReduce are availablewith CDH4.5 and higher. Using the Java-based
Parquet implementation on a CDH release lower than CDH 4.5 is not supported.

A Parquet table created by Hive can typically be accessed by Impala 1.1.1 and higher with no changes, and vice versa.
Before Impala 1.1.1, when Hive support for Parquet was not available, Impala wrote a dummy SerDe class name into
each data file. These older Impala data files require a one-time ALTER TABLE statement to update the metadata for
the SerDe class name before they can be used with Hive. See Apache Impala Incompatible Changes and Limitations
for details.

A Parquet file written by Hive, Impala, Pig, or MapReduce can be read by any of the others. Different defaults for file
and block sizes, compression and encoding settings, and so on might cause performance differences depending on
which component writes or reads the data files. For example, Impala typically sets the HDFS block size to 256 MB and
divides the data files into 256 MB chunks, so that each I/O request reads an entire data file.

In CDH 5.5 and higher, non-Impala components that write Parquet files include extra padding to ensure that the Parquet
row groups are aligned with HDFS data blocks. The maximum amount of padding is controlled by the
parquet.writer.max-padding setting, specified as a number of bytes. By default, up to 8 MB of padding can be
added to the end of each row group. This alignment helps prevent remote reads during Impala queries. The setting
does not apply to Parquet files written by Impala, because Impala always writes each Parquet file as a single HDFS data
block.

Each release may have limitations. The following are current limitations in CDH:

• Parquet has not been tested with HCatalog. Without HCatalog, Pig cannot correctly read dynamically partitioned
tables; this is true for all file formats.

• Impala supports table columns using nested data types or complex data types such as map, struct, or array
only in Impala 2.3 (corresponding to CDH 5.5) and higher. Impala 2.2 (corresponding to CDH 5.4) can query only
the scalar columns of Parquet files containing such types. Lower releases of Impala cannot query any columns
from Parquet data files that include such types.

• Cloudera supports some but not all of the object models from the upstream Parquet-MR project. Currently
supported object models are:

36 | Cloudera Introduction

CDH Overview

http://spark.apache.org/docs/1.6.0/sql-programming-guide.html#data-sources

parquet-avro (recommended for Cloudera users)–
– parquet-thrift

– parquet-protobuf

– parquet-pig

– The Impala and Hive objectmodels built into those components, not available in external libraries. (CDH does
not include the parquet-hivemodule of the parquet-mr project, because recent versions of Hive have
Parquet support built in.)

Parquet File Structure

To examine the internal structure and data of Parquet files, you can use the parquet-tools command that comes
with CDH.Make sure this command is in your $PATH. (Typically, it is symlinked from /usr/bin; sometimes, depending
on your installation setup, you might need to locate it under a CDH-specific bin directory.) The arguments to this
command let you perform operations such as:

• cat: Print a file's contents to standard out. In CDH 5.5 and higher, you can use the -j option to output JSON.
• head: Print the first few records of a file to standard output.
• schema: Print the Parquet schema for the file.
• meta: Print the file footer metadata, including key-value properties (like Avro schema), compression ratios,

encodings, compression used, and row group information.
• dump: Print all data and metadata.

Use parquet-tools -h to see usage information for all the arguments. Here are some examples showing
parquet-tools usage:

$ # Be careful doing this for a big file! Use parquet-tools head to be safe.
$ parquet-tools cat sample.parq
year = 1992
month = 1
day = 2
dayofweek = 4
dep_time = 748
crs_dep_time = 750
arr_time = 851
crs_arr_time = 846
carrier = US
flight_num = 53
actual_elapsed_time = 63
crs_elapsed_time = 56
arrdelay = 5
depdelay = -2
origin = CMH
dest = IND
distance = 182
cancelled = 0
diverted = 0

year = 1992
month = 1
day = 3
...

$ parquet-tools head -n 2 sample.parq
year = 1992
month = 1
day = 2
dayofweek = 4
dep_time = 748
crs_dep_time = 750
arr_time = 851
crs_arr_time = 846
carrier = US

Cloudera Introduction | 37

CDH Overview

flight_num = 53
actual_elapsed_time = 63
crs_elapsed_time = 56
arrdelay = 5
depdelay = -2
origin = CMH
dest = IND
distance = 182
cancelled = 0
diverted = 0

year = 1992
month = 1
day = 3
...

$ parquet-tools schema sample.parq
message schema {
 optional int32 year;
 optional int32 month;
 optional int32 day;
 optional int32 dayofweek;
 optional int32 dep_time;
 optional int32 crs_dep_time;
 optional int32 arr_time;
 optional int32 crs_arr_time;
 optional binary carrier;
 optional int32 flight_num;
...

$ parquet-tools meta sample.parq
creator: impala version 2.2.0-cdh5.4.3 (build
517bb0f71cd604a00369254ac6d88394df83e0f6)

file schema: schema

year: OPTIONAL INT32 R:0 D:1
month: OPTIONAL INT32 R:0 D:1
day: OPTIONAL INT32 R:0 D:1
dayofweek: OPTIONAL INT32 R:0 D:1
dep_time: OPTIONAL INT32 R:0 D:1
crs_dep_time: OPTIONAL INT32 R:0 D:1
arr_time: OPTIONAL INT32 R:0 D:1
crs_arr_time: OPTIONAL INT32 R:0 D:1
carrier: OPTIONAL BINARY R:0 D:1
flight_num: OPTIONAL INT32 R:0 D:1
...

row group 1: RC:20636601 TS:265103674

year: INT32 SNAPPY DO:4 FPO:35 SZ:10103/49723/4.92 VC:20636601
ENC:PLAIN_DICTIONARY,RLE,PLAIN
month: INT32 SNAPPY DO:10147 FPO:10210 SZ:11380/35732/3.14 VC:20636601
ENC:PLAIN_DICTIONARY,RLE,PLAIN
day: INT32 SNAPPY DO:21572 FPO:21714 SZ:3071658/9868452/3.21 VC:20636601
 ENC:PLAIN_DICTIONARY,RLE,PLAIN
dayofweek: INT32 SNAPPY DO:3093276 FPO:3093319 SZ:2274375/5941876/2.61
VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
dep_time: INT32 SNAPPY DO:5367705 FPO:5373967 SZ:28281281/28573175/1.01
VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
crs_dep_time: INT32 SNAPPY DO:33649039 FPO:33654262 SZ:10220839/11574964/1.13
VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
arr_time: INT32 SNAPPY DO:43869935 FPO:43876489 SZ:28562410/28797767/1.01
VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
crs_arr_time: INT32 SNAPPY DO:72432398 FPO:72438151 SZ:10908972/12164626/1.12
VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
carrier: BINARY SNAPPY DO:83341427 FPO:83341558 SZ:114916/128611/1.12

38 | Cloudera Introduction

CDH Overview

VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
flight_num: INT32 SNAPPY DO:83456393 FPO:83488603 SZ:10216514/11474301/1.12
VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
...

Examples of Java Programs to Read and Write Parquet Files

You can find full examples of Java code at the Cloudera Parquet examples GitHub repository.

The TestReadWriteParquet.java example demonstrates the “identity” transform. It reads any Parquet data file and
writes a new file with exactly the same content.

The TestReadParquet.java example reads a Parquet data file, and produces a new text file in CSV format with the same
content.

Using Apache Avro Data Files with CDH

Apache Avro is a serialization system. Avro supports rich data structures, a compact binary encoding, and a container
file for sequences of Avro data (often referred to as Avro data files). Avro is language-independent and there are
several language bindings for it, including Java, C, C++, Python, and Ruby.

Avro data files have the .avro extension. Make sure the files you create have this extension, because some tools use
it to determine which files to process as Avro (for example, AvroInputFormat and AvroAsTextInputFormat for
MapReduce and streaming).

Avro does not rely on generated code, so processing data imported fromFlumeor Sqoop 1 is simpler than usingHadoop
Writables in SequenceFiles, where you must ensure that the generated classes are on the processing job classpath.
Pig and Hive cannot easily process SequenceFiles with customWritables, so users often revert to using text, which has
disadvantages in compactness and compressibility. Generally, you cannot split compressed text, whichmakes it difficult
to process efficiently using MapReduce.

All components in CDH that produce or consume files support Avro data files.

Compression for Avro Data Files

By default Avro data files are not compressed, but Cloudera recommends enabling compression to reduce disk usage
and increase read and write performance. Avro data files support Deflate and Snappy compression. Snappy is faster,
but Deflate is slightly more compact.

You do not need to specify configuration to read a compressed Avro data file. However, to write an Avro data file, you
must specify the type of compression. How you specify compression depends on the component.

Using Avro Data Files in Flume

The HDFSEventSink used to serialize event data onto HDFS supports plug-in implementations of theEventSerializer
interface. Implementations of this interface have full control over the serialization format and can be used in cases
where the default serialization format provided by the sink is insufficient.

An abstract implementation of the EventSerializer interface, called AbstractAvroEventSerializer, is providedwith Flume.
This class can be extended to support custom schemas for Avro serialization over HDFS. The
FlumeEventAvroEventSerializer class provides a simple implementation that maps the events to a representation of a
String header map and byte payload in Avro. Use this class by setting the serializer property of the sink as follows:

agent-name.sinks.sink-name.serializer = AVRO_EVENT

Using Avro Data Files in Hive

The following example demonstrates how to create a Hive table backed by Avro data files:

CREATE TABLE doctors
ROW FORMAT
SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'

Cloudera Introduction | 39

CDH Overview

https://github.com/cloudera/parquet-examples
https://github.com/cloudera/parquet-examples/blob/master/MapReduce/TestReadWriteParquet.java
https://github.com/cloudera/parquet-examples/blob/master/MapReduce/TestReadParquet.java
http://avro.apache.org/
https://en.wikipedia.org/wiki/DEFLATE
https://archive.cloudera.com/cdh5/cdh/5/flume-ng/apidocs/org/apache/flume/sink/hdfs/HDFSEventSink.html
https://archive.cloudera.com/cdh5/cdh/5/flume-ng/apidocs/org/apache/flume/serialization/EventSerializer.html
https://archive.cloudera.com/cdh5/cdh/5/flume-ng/apidocs/org/apache/flume/serialization/AbstractAvroEventSerializer.html
https://archive.cloudera.com/cdh5/cdh/5/flume-ng/apidocs/org/apache/flume/serialization/FlumeEventAvroEventSerializer.html

STORED AS
INPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
TBLPROPERTIES ('avro.schema.literal'='{
 "namespace": "testing.hive.avro.serde",
 "name": "doctors",
 "type": "record",
 "fields": [
 {
 "name":"number",
 "type":"int",
 "doc":"Order of playing the role"
 },
 {
 "name":"first_name",
 "type":"string",
 "doc":"first name of actor playing role"
 },
 {
 "name":"last_name",
 "type":"string",
 "doc":"last name of actor playing role"
 },
 {
 "name":"extra_field",
 "type":"string",
 "doc:":"an extra field not in the original file",
 "default":"fishfingers and custard"
 }
]
}');

LOAD DATA LOCAL INPATH '/usr/share/doc/hive-0.7.1+42.55/examples/files/doctors.avro'
INTO TABLE doctors;

You can also create an Avro backed Hive table by using an Avro schema file:

CREATE TABLE my_avro_table(notused INT)
 ROW FORMAT SERDE
 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
 WITH SERDEPROPERTIES (
 'avro.schema.url'='file:///tmp/schema.avsc')
 STORED as INPUTFORMAT
 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
 OUTPUTFORMAT
 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat';

avro.schema.url is a URL (here a file:// URL) pointing to an Avro schema file used for reading and writing. It
could also be an hdfs: URL; for example, hdfs://hadoop-namenode-uri/examplefile.

To enable Snappy compression on output files, run the following before writing to the table:

SET hive.exec.compress.output=true;
SET avro.output.codec=snappy;

Also include the snappy-java JAR in --auxpath, which is located at
/usr/lib/hive/lib/snappy-java-1.0.4.1.jar or
/opt/cloudera/parcels/CDH/lib/hive/lib/snappy-java-1.0.4.1.jar.

Haivvreo SerDe has beenmerged into Hive as AvroSerDe and is no longer supported in its original form. schema.url
and schema.literal have been changed to avro.schema.url and avro.schema.literal as a result of the
merge. If you were using Haivvreo SerDe, you can use the Hive AvroSerDe with tables created with the Haivvreo
SerDe. For example, if you have a table my_avro_table that uses the Haivvreo SerDe, add the following to make the
table use the new AvroSerDe:

ALTER TABLE my_avro_table SET SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe';

ALTER TABLE my_avro_table SET FILEFORMAT

40 | Cloudera Introduction

CDH Overview

https://github.com/jghoman/haivvreo
https://cwiki.apache.org/confluence/display/Hive/AvroSerDe
https://github.com/jghoman/haivvreo

INPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat';

Using Avro Data Files in MapReduce

The Avro MapReduce API is an Avro module for running MapReduce programs that produce or consume Avro data
files.

If you are using Maven, add the following dependency to your POM:

<dependency>
 <groupId>org.apache.avro</groupId>
 <artifactId>avro-mapred</artifactId>
 <version>1.7.6-cdh5.11.2</version>
 <classifier>hadoop2</classifier>
</dependency>

Then write your program, using the Avro MapReduce javadoc for guidance.

At run time, include the avro and avro-mapred JARs in the HADOOP_CLASSPATH and the avro, avro-mapred and
paranamer JARs in -libjars.

To enable Snappy compression on output, call AvroJob.setOutputCodec(job, "snappy")when configuring the
job. You must also include the snappy-java JAR in -libjars.

Using Avro Data Files in Pig

CDH provides AvroStorage for Avro integration in Pig.

To use it, first register the piggybank JAR file and supporting libraries:

REGISTER piggybank.jar
REGISTER lib/avro-1.7.6.jar
REGISTER lib/json-simple-1.1.jar
REGISTER lib/snappy-java-1.0.4.1.jar

Then load Avro data files as follows:

a = LOAD 'my_file.avro' USING org.apache.pig.piggybank.storage.avro.AvroStorage();

Pig maps the Avro schema to a corresponding Pig schema.

You can store data in Avro data files with:

store b into 'output' USING org.apache.pig.piggybank.storage.avro.AvroStorage();

With store, Pig generates an Avro schema from the Pig schema. You can override the Avro schema by specifying it
literally as a parameter to AvroStorage or by using the same schema as an existing Avro data file. See the Pig wiki
for details.

To store two relations in one script, specify an index to each store function. For example:

set1 = load 'input1.txt' using PigStorage() as (...);
store set1 into 'set1' using org.apache.pig.piggybank.storage.avro.AvroStorage('index',
 '1');

set2 = load 'input2.txt' using PigStorage() as (...);
store set2 into 'set2' using org.apache.pig.piggybank.storage.avro.AvroStorage('index',
 '2');

For more information, search for "index" in the AvroStorage wiki.

Cloudera Introduction | 41

CDH Overview

https://www.cloudera.com/documentation/enterprise/release-notes/topics/cdh_vd_cdh5_maven_repo.html
http://avro.apache.org/docs/1.7.6/api/java/index.html?org/apache/avro/mapred/package-summary.html
https://cwiki.apache.org/confluence/display/PIG/AvroStorage
https://cwiki.apache.org/confluence/display/PIG/AvroStorage

To enable Snappy compression on output files, do the following before issuing the STORE statement:

SET mapred.output.compress true
SET mapred.output.compression.codec org.apache.hadoop.io.compress.SnappyCodec
SET avro.output.codec snappy

For more information, see the Pig wiki. The version numbers of the JAR files to register are different on that page, so
adjust them as shown above.

Importing Avro Data Files in Sqoop 1

On the command line, use the following option to import Avro data files:

--as-avrodatafile

Sqoop 1 automatically generates an Avro schema that corresponds to the database table being exported from.

To enable Snappy compression, add the following option:

--compression-codec snappy

Note: Sqoop 2 does not currently support Avro.

Using Avro Data Files in Spark

See Accessing External Storage from Spark and Accessing Avro Data Files From Spark SQL Applications.

Using Avro Data Files in Streaming Programs

To read fromAvrodata files froma streamingprogram, specifyorg.apache.avro.mapred.AvroAsTextInputFormat
as the input format. This format converts each datum in the Avro data file to a string. For a "bytes" schema, this is
the raw bytes; in general cases, this is a single-line JSON representation.

Towrite to Avro data files from a streaming program, specify org.apache.avro.mapred.AvroTextOutputFormat
as the output format. This format creates Avro data files with a "bytes" schema, where each datum is a tab-delimited
key-value pair.

At run time, specify the avro, avro-mapred, and paranamer JARs in -libjars in the streaming command.

To enable Snappy compression on output files, set the property avro.output.codec to snappy. You must also
include the snappy-java JAR in -libjars.

Data Compression

Data compression and compression formats can have a significant impact on performance. Three important places to
consider data compression are in MapReduce and Spark jobs, data stored in HBase, and Impala queries. For the most
part, the principles are similar for each.

You must balance the processing capacity required to compress and uncompress the data, the disk IO required to read
and write the data, and the network bandwidth required to send the data across the network. The correct balance of
these factors depends upon the characteristics of your cluster and your data, as well as your usage patterns.

Compression is not recommended if your data is already compressed (such as images in JPEG format). In fact, the
resulting file can sometimes be larger than the original.

Compression Types

Hadoop supports the following compression types and codecs:

• gzip - org.apache.hadoop.io.compress.GzipCodec

42 | Cloudera Introduction

CDH Overview

https://cwiki.apache.org/confluence/display/PIG/AvroStorage
http://www.json.org/

• bzip2 - org.apache.hadoop.io.compress.BZip2Codec
• LZO - com.hadoop.compression.lzo.LzopCodec
• Snappy - org.apache.hadoop.io.compress.SnappyCodec
• Deflate - org.apache.hadoop.io.compress.DeflateCodec

Different file types and CDH components support different compression types. For details, see Using Apache Avro Data
Files with CDH on page 39 and Using Apache Parquet Data Files with CDH on page 31.

For guidelines on choosing compression types and configuring compression, see Choosing and Configuring Data
Compression.

Snappy Compression

Snappy is a compression/decompression library. It optimizes for very high-speed compression and decompression,
and moderate compression instead of maximum compression or compatibility with other compression libraries.

Snappy is supported for all CDH components. How you specify compression depends on the component.

Using Snappy with HBase

If you install Hadoop and HBase from RPM or Debian packages, Snappy requires no HBase configuration.

Using Snappy with Hive or Impala

To enable Snappy compression for Hive output when creating SequenceFile outputs, use the following settings:

SET hive.exec.compress.output=true;
SET mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
SET mapred.output.compression.type=BLOCK;

For information about configuring Snappy compression for Parquet files with Hive, see Using Parquet Tables in Hive.
For information about using Snappy compression for Parquet files with Impala, see Snappy and GZip Compression for
Parquet Data Files in the Impala Guide.

Using Snappy with MapReduce

Enabling MapReduce intermediate compression can make jobs run faster without requiring application changes. Only
the temporary intermediate files created by Hadoop for the shuffle phase are compressed; the final output may or
may not be compressed. Snappy is ideal in this case because it compresses and decompresses very quickly compared
to other compression algorithms, such as Gzip. For information about choosing a compression format, see Choosing
and Configuring Data Compression.

To enable Snappy for MapReduce intermediate compression for the whole cluster, set the following properties in
mapred-site.xml:

• MRv1

<property>
 <name>mapred.compress.map.output</name>
 <value>true</value>
</property>
<property>
 <name>mapred.map.output.compression.codec</name>
 <value>org.apache.hadoop.io.compress.SnappyCodec</value>
</property>

• YARN

<property>
 <name>mapreduce.map.output.compress</name>
 <value>true</value>
</property>
<property>
 <name>mapred.map.output.compress.codec</name>
 <value>org.apache.hadoop.io.compress.SnappyCodec</value>
</property>

Cloudera Introduction | 43

CDH Overview

http://code.google.com/p/snappy/

You can also set these properties on a per-job basis.

Use the properties in the following table to compress the final output of a MapReduce job. These are usually set on a
per-job basis.

DescriptionYARN PropertyMRv1 Property

Whether to compress the final job outputs (true or
false).

mapreduce.output.
fileoutputformat.
compress

mapred.output.compress

If the final job outputs are to be compressed, the codec
to use. Set to

mapreduce.output.
fileoutputformat.
compress.codec

mapred.output.
compression.codec

org.apache.hadoop.io.compress.SnappyCodec

for Snappy compression.

For SequenceFile outputs, e type of compression to
use (NONE, RECORD, or BLOCK). Cloudera recommends
BLOCK.

mapreduce.output.
fileoutputformat.
compress.type

mapred.output.
compression.type

Note: The MRv1 property names are also supported (but deprecated) in YARN. You do not need to
update them in this release.

Using Snappy with Pig

Set the same properties for Pig as for MapReduce.

Using Snappy with Spark SQL

To enable Snappy compression for Spark SQL when writing tables, specify the snappy codec in the
spark.sql.parquet.compression.codec configuration:

sqlContext.setConf("spark.sql.parquet.compression.codec","snappy")

Using Snappy Compression with Sqoop 1 and Sqoop 2 Imports

• Sqoop 1 - On the command line, use the following option to enable Snappy compression:

--compression-codec org.apache.hadoop.io.compress.SnappyCodec

Cloudera recommends using the --as-sequencefile option with this compression option.

• Sqoop 2 - When you create a job (sqoop:000> create job), choose 7 (SNAPPY) as the compression format.

External Documentation
Cloudera provides documentation for CDH as a whole, whether your CDH cluster is managed by Cloudera Manager or
not. In addition, youmay find it useful to refer to documentation for the individual components included in CDH.Where
possible, these links point to the main documentation for a project, in the Cloudera release archive. This ensures that
you are looking at the correct documentation for the version of a project included in CDH. Otherwise, the links may
point to the project's main site.

• Apache Avro
• Apache Crunch
• Apache DataFu
• Apache Flume
• Apache Hadoop
• Apache HBase
• Apache Hive

44 | Cloudera Introduction

CDH Overview

http://avro.apache.org/docs/current/
https://crunch.apache.org/
https://archive.cloudera.com/cdh5/cdh/5/datafu/javadoc/
https://archive.cloudera.com/cdh5/cdh/5/flume-ng/index.html
https://archive.cloudera.com/cdh5/cdh/5/hadoop/index.html
https://archive.cloudera.com/cdh5/cdh/5/hbase/book.html
https://cwiki.apache.org/confluence/display/Hive/Home%3bjsessionid=88FC364CDEC274BAAC50B58E759EA0F2

• Hue
• Kite
• Apache Mahout
• Apache Oozie
• Apache Parquet
• Apache Pig
• Apache Sentry
• Apache Solr
• Apache Spark
• Apache Sqoop
• Apache Sqoop2
• Apache Whirr
• Apache ZooKeeper

Cloudera Introduction | 45

CDH Overview

https://archive.cloudera.com/cdh5/cdh/5/hue/
http://kitesdk.org/docs/current/guide/
https://archive.cloudera.com/cdh5/cdh/5/mahout/
https://archive.cloudera.com/cdh5/cdh/5/oozie/
http://parquet.apache.org/documentation/latest/
https://archive.cloudera.com/cdh5/cdh/5/pig/
http://incubator.apache.org/projects/sentry.html
https://archive.cloudera.com/cdh5/cdh/5/solr/
https://spark.apache.org/docs/1.6.0/
https://archive.cloudera.com/cdh5/cdh/5/sqoop/
https://archive.cloudera.com/cdh5/cdh/5/sqoop2/
https://archive.cloudera.com/cdh5/cdh/5/whirr/
https://archive.cloudera.com/cdh5/cdh/5/zookeeper/

Cloudera Manager 5 Overview

Cloudera Manager is an end-to-end application for managing CDH clusters. Cloudera Manager sets the standard for
enterprise deployment by delivering granular visibility into and control over every part of the CDH cluster—empowering
operators to improve performance, enhance quality of service, increase compliance and reduce administrative costs.
With Cloudera Manager, you can easily deploy and centrally operate the complete CDH stack and other managed
services. The application automates the installation process, reducing deployment time from weeks to minutes; gives
you a cluster-wide, real-time view of hosts and services running; provides a single, central console to enact configuration
changes across your cluster; and incorporates a full range of reporting and diagnostic tools to help you optimize
performance and utilization. This primer introduces the basic concepts, structure, and functions of Cloudera Manager.

Terminology
To effectively use Cloudera Manager, you should first understand its terminology. The relationship between the terms
is illustrated below and their definitions follow:

Some of the terms, such as cluster and service, will be used without further explanation. Others, such as role group,
gateway, host template, and parcel are expanded upon in later sections.

A common point of confusion is the overloading of the terms service and role for both types and instances; Cloudera
Manager and this section sometimes uses the same term for type and instance. For example, the Cloudera Manager
Admin Console Home > Status tab and Clusters > ClusterNamemenu lists service instances. This is similar to the
practice in programming languageswhere for example the term "string"may indicate either a type (java.lang.String)
or an instance of that type ("hi there"). When it's necessary to distinguish between types and instances, the word
"type" is appended to indicate a type and the word "instance" is appended to explicitly indicate an instance.

deployment

A configuration of Cloudera Manager and all the clusters it manages.

dynamic resource pool

In Cloudera Manager, a named configuration of resources and a policy for scheduling the resources among YARN
applications or Impala queries running in the pool.

46 | Cloudera Introduction

Cloudera Manager 5 Overview

cluster

• A set of computers or racks of computers that contains an HDFS filesystem and runs MapReduce and other
processes on that data. A pseudo-distributed cluster is a CDH installation run on a single machine and useful for
demonstrations and individual study.

• In Cloudera Manager, a logical entity that contains a set of hosts, a single version of CDH installed on the hosts,
and the service and role instances running on the hosts. A host can belong to only one cluster. Cloudera Manager
can manage multiple CDH clusters, however each cluster can only be associated with a single Cloudera Manager
Server or Cloudera Manager HA pair.

host

In Cloudera Manager, a physical or virtual machine that runs role instances. A host can belong to only one cluster.

rack

In Cloudera Manager, a physical entity that contains a set of physical hosts typically served by the same switch.

service

• A Linux command that runs a System V init script in /etc/init.d/ in as predictable an environment as possible,
removing most environment variables and setting the current working directory to /.

• A category of managed functionality in Cloudera Manager, which may be distributed or not, running in a cluster.
Sometimes referred to as a service type. For example:MapReduce, HDFS, YARN, Spark, and Accumulo. In traditional
environments, multiple services run on one host; in distributed systems, a service runs on many hosts.

service instance

In ClouderaManager, an instance of a service running on a cluster. For example: "HDFS-1" and "yarn". A service instance
spans many role instances.

role

In Cloudera Manager, a category of functionality within a service. For example, the HDFS service has the following
roles: NameNode, SecondaryNameNode, DataNode, and Balancer. Sometimes referred to as a role type. See also user
role.

role instance

In Cloudera Manager, an instance of a role running on a host. It typically maps to a Unix process. For example:
"NameNode-h1" and "DataNode-h1".

role group

In Cloudera Manager, a set of configuration properties for a set of role instances.

host template

A set of role groups in Cloudera Manager. When a template is applied to a host, a role instance from each role group
is created and assigned to that host.

gateway

A type of role that typically provides client access to specific cluster services. For example, HDFS, Hive, Kafka,MapReduce,
Solr, and Spark each have gateway roles to provide access for their clients to their respective services. Gateway roles
do not always have "gateway" in their names, nor are they exclusively for client access. For example, Hue Kerberos
Ticket Renewer is a gateway role that proxies tickets from Kerberos.

The node supporting one or more gateway roles is sometimes referred to as the gateway node or edge node, with
the notion of "edge" common in network or cloud environments. In terms of the Cloudera cluster, the gateway nodes

Cloudera Introduction | 47

Cloudera Manager 5 Overview

in the cluster receive the appropriate client configuration files when Deploy Client Configuration is selected from the
Actions menu in Cloudera Manager Admin Console.

parcel

A binary distribution format that contains compiled code andmeta-information such as a package description, version,
and dependencies.

static service pool

In Cloudera Manager, a static partitioning of total cluster resources—CPU, memory, and I/O weight—across a set of
services.

Cluster Example

Consider a cluster Cluster 1 with four hosts as shown in the following listing from Cloudera Manager:

The host tcdn501-1 is the "master" host for the cluster, so it has many more role instances, 21, compared with the 7
role instances running on the other hosts. In addition to the CDH "master" role instances, tcdn501-1 also has Cloudera
Management Service roles:

48 | Cloudera Introduction

Cloudera Manager 5 Overview

Architecture
As depicted below, the heart of ClouderaManager is the ClouderaManager Server. The Server hosts the Admin Console
Web Server and the application logic, and is responsible for installing software, configuring, starting, and stopping
services, and managing the cluster on which the services run.

Cloudera Introduction | 49

Cloudera Manager 5 Overview

The Cloudera Manager Server works with several other components:

• Agent - installed on every host. The agent is responsible for starting and stopping processes, unpacking
configurations, triggering installations, and monitoring the host.

• Management Service - a service consisting of a set of roles that perform variousmonitoring, alerting, and reporting
functions.

• Database - stores configuration and monitoring information. Typically, multiple logical databases run across one
or more database servers. For example, the Cloudera Manager Server and the monitoring roles use different
logical databases.

• Cloudera Repository - repository of software for distribution by Cloudera Manager.
• Clients - are the interfaces for interacting with the server:

– Admin Console - Web-based UI with which administrators manage clusters and Cloudera Manager.
– API - API with which developers create custom Cloudera Manager applications.

Heartbeating

Heartbeats are a primary communication mechanism in Cloudera Manager. By default Agents send heartbeats every
15 seconds to the Cloudera Manager Server. However, to reduce user latency the frequency is increased when state
is changing.

During the heartbeat exchange, the Agent notifies the Cloudera Manager Server of its activities. In turn the Cloudera
Manager Server responds with the actions the Agent should be performing. Both the Agent and the ClouderaManager
Server end up doing some reconciliation. For example, if you start a service, the Agent attempts to start the relevant
processes; if a process fails to start, the Cloudera Manager Server marks the start command as having failed.

State Management
The Cloudera Manager Server maintains the state of the cluster. This state can be divided into two categories: "model"
and "runtime", both of which are stored in the Cloudera Manager Server database.

50 | Cloudera Introduction

Cloudera Manager 5 Overview

ClouderaManagermodels CDH andmanaged services: their roles, configurations, and inter-dependencies.Model state
captures what is supposed to run where, and with what configurations. For example, model state captures the fact
that a cluster contains 17 hosts, each of which is supposed to run a DataNode. You interact with the model through
the Cloudera Manager Admin Console configuration screens and API and operations such as "Add Service".

Runtime state is what processes are running where, and what commands (for example, rebalance HDFS or run a
Backup/Disaster Recovery schedule or rolling restart or stop) are currently running. The runtime state includes the
exact configuration files needed to run a process. When you select Start in the Cloudera Manager Admin Console, the
server gathers up all the configuration for the relevant services and roles, validates it, generates the configuration files,
and stores them in the database.

When you update a configuration (for example, the Hue Server web port), you have updated themodel state. However,
if Hue is running while you do this, it is still using the old port. When this kind of mismatch occurs, the role is marked
as having an "outdated configuration". To resynchronize, you restart the role (which triggers the configuration
re-generation and process restart).

While Cloudera Manager models all of the reasonable configurations, some cases inevitably require special handling.
To allow you to workaround, for example, a bug or to explore unsupported options, Cloudera Manager supports an
"advanced configuration snippet" mechanism that lets you add properties directly to the configuration files.

Configuration Management
Cloudera Manager defines configuration at several levels:

• The service level may define configurations that apply to the entire service instance, such as an HDFS service's
default replication factor (dfs.replication).

• The role group level may define configurations that apply to the member roles, such as the DataNodes' handler
count (dfs.datanode.handler.count). This can be set differently for different groups of DataNodes. For
example, DataNodes running on more capable hardware may have more handlers.

• The role instance levelmay override configurations that it inherits from its role group. This should be used sparingly,
because it easily leads to configuration divergence within the role group. One example usage is to temporarily
enable debug logging in a specific role instance to troubleshoot an issue.

• Hosts have configurations related to monitoring, software management, and resource management.
• Cloudera Manager itself has configurations related to its own administrative operations.

Role Groups

You can set configuration at the service instance (for example, HDFS) or role instance (for example, the DataNode on
host17). An individual role inherits the configurations set at the service level. Configurations made at the role level
override those inherited from the service level. While this approach offers flexibility, configuring a set of role instances
in the same way can be tedious.

Cloudera Introduction | 51

Cloudera Manager 5 Overview

Cloudera Manager supports role groups, a mechanism for assigning configurations to a group of role instances. The
members of those groups then inherit those configurations. For example, in a cluster with heterogeneous hardware,
a DataNode role group can be created for each host type and the DataNodes running on those hosts can be assigned
to their corresponding role group. That makes it possible to set the configuration for all the DataNodes running on the
same hardware by modifying the configuration of one role group. The HDFS service discussed earlier has the following
role groups defined for the service's roles:

In addition to making it easy to manage the configuration of subsets of roles, role groups also make it possible to
maintain different configurations for experimentation or managing shared clusters for different users or workloads.

Host Templates

In typical environments, sets of hosts have the same hardware and the same set of services running on them. A host
template defines a set of role groups (at most one of each type) in a cluster and provides two main benefits:

• Adding new hosts to clusters easily - multiple hosts can have roles from different services created, configured,
and started in a single operation.

• Altering the configuration of roles from different services on a set of hosts easily - which is useful for quickly
switching the configuration of an entire cluster to accommodate different workloads or users.

Server and Client Configuration

Administrators are sometimes surprised that modifying /etc/hadoop/conf and then restarting HDFS has no effect.
That is because service instances started by Cloudera Manager do not read configurations from the default locations.
To use HDFS as an example, when not managed by Cloudera Manager, there would usually be one HDFS configuration
per host, located at /etc/hadoop/conf/hdfs-site.xml. Server-side daemons and clients running on the same
host would all use that same configuration.

Cloudera Manager distinguishes between server and client configuration. In the case of HDFS, the file
/etc/hadoop/conf/hdfs-site.xml contains only configuration relevant to an HDFS client. That is, by default, if
you run a program that needs to communicate with Hadoop, it will get the addresses of the NameNode and JobTracker,
and other important configurations, from that directory. A similar approach is taken for /etc/hbase/conf and
/etc/hive/conf.

In contrast, the HDFS role instances (for example, NameNode and DataNode) obtain their configurations from a private
per-process directory, under/var/run/cloudera-scm-agent/process/unique-process-name. Giving each process
its own private execution and configuration environment allows Cloudera Manager to control each process
independently. For example, here are the contents of an example 879-hdfs-NAMENODE process directory:

$ tree -a /var/run/cloudera-scm-Agent/process/879-hdfs-NAMENODE/
 /var/run/cloudera-scm-Agent/process/879-hdfs-NAMENODE/
 cloudera_manager_Agent_fencer.py
 cloudera_manager_Agent_fencer_secret_key.txt
 cloudera-monitor.properties
 core-site.xml
 dfs_hosts_allow.txt
 dfs_hosts_exclude.txt
 event-filter-rules.json
 hadoop-metrics2.properties

52 | Cloudera Introduction

Cloudera Manager 5 Overview

 hdfs.keytab
 hdfs-site.xml
 log4j.properties
 logs
 stderr.log
 stdout.log
 topology.map
 topology.py

Distinguishing between server and client configuration provides several advantages:

• Sensitive information in the server-side configuration, such as the password for the Hive Metastore RDBMS, is
not exposed to the clients.

• A service that depends on another service may deploy with customized configuration. For example, to get good
HDFS read performance, Impala needs a specialized version of the HDFS client configuration, whichmay be harmful
to a generic client. This is achieved by separating the HDFS configuration for the Impala daemons (stored in the
per-process directory mentioned above) from that of the generic client (/etc/hadoop/conf).

• Client configuration files are much smaller and more readable. This also avoids confusing non-administrator
Hadoop users with irrelevant server-side properties.

Deploying Client Configurations and Gateways

A client configuration is a zip file that contain the relevant configuration files with the settings for a service. Each zip
file contains the set of configuration files needed by the service. For example, the MapReduce client configuration zip
file contains copies of core-site.xml, hadoop-env.sh, hdfs-site.xml, log4j.properties, and
mapred-site.xml. Cloudera Manager supports a Download Client Configuration action to enable distributing the
client configuration file to users outside the cluster.

Cloudera Manager can deploy client configurations within the cluster; each applicable service has a Deploy Client
Configuration action. This action does not necessarily deploy the client configuration to the entire cluster; it only
deploys the client configuration to all the hosts that this service has been assigned to. For example, suppose a cluster
has 10 hosts, and a MapReduce service is running on hosts 1-9. When you use Cloudera Manager to deploy the
MapReduce client configuration, host 10 will not get a client configuration, because the MapReduce service has no
role assigned to it. This design is intentional to avoid deploying conflicting client configurations frommultiple services.

To deploy a client configuration to a host that does not have a role assigned to it you use a gateway. A gateway is a
marker to convey that a service should be accessible from a particular host. Unlike all other roles it has no associated
process. In the preceding example, to deploy the MapReduce client configuration to host 10, you assign a MapReduce
gateway role to that host.

Gateways can also be used to customize client configurations for some hosts. Gateways can be placed in role groups
and those groups can be configured differently. However, unlike role instances, there is noway to override configurations
for gateway instances.

In the cluster we discussed earlier, the three hosts (tcdn501-[2-5]) that do not have Hive role instances have Hive
gateways:

Cloudera Introduction | 53

Cloudera Manager 5 Overview

Process Management
In a non-Cloudera Manager managed cluster, you most likely start a role instance process using an init script, for
example, service hadoop-hdfs-datanode start. ClouderaManager does not use init scripts for the daemons
it manages; in a Cloudera Manager managed cluster, starting and stopping services using init scripts will not work.

In a Cloudera Manager managed cluster, you can only start or stop role instance processes using Cloudera Manager.
Cloudera Manager uses an open source process management tool called supervisord, that starts processes, takes
care of redirecting log files, notifying of process failure, setting the effective user ID of the calling process to the right
user, and so on. Cloudera Manager supports automatically restarting a crashed process. It will also flag a role instance
with a bad health flag if its process crashes repeatedly right after start up.

Stopping the ClouderaManager Server and the ClouderaManager Agentswill not bring down your services; any running
role instances keep running.

The Agent is started by init.d at start-up. It, in turn, contacts the Cloudera Manager Server and determines which
processes should be running. The Agent is monitored as part of ClouderaManager's hostmonitoring. If the Agent stops
heartbeating, the host is marked as having bad health.

One of the Agent's main responsibilities is to start and stop processes. When the Agent detects a new process from
the Server heartbeat, the Agent creates a directory for it in /var/run/cloudera-scm-agent and unpacks the
configuration. It then contacts supervisord, which starts the process.

These actions reinforce an important point: a ClouderaManager process never travels alone. In other words, a process
is more than just the arguments to exec()—it also includes configuration files, directories that need to be created,
and other information.

Software Distribution Management
A major function of Cloudera Manager is to install CDH and managed service software. Cloudera Manager installs
software for new deployments and to upgrade existing deployments. Cloudera Manager supports two software
distribution formats: packages and parcels.

A package is a binary distribution format that contains compiled code and meta-information such as a package
description, version, and dependencies. Packagemanagement systems evaluate thismeta-information to allow package
searches, perform upgrades to a newer version, and ensure that all dependencies of a package are fulfilled. Cloudera
Manager uses the native system package manager for each supported OS.

A parcel is a binary distribution format containing the program files, along with additional metadata used by Cloudera
Manager. The important differences between parcels and packages are:

• Parcels are self-contained and installed in a versioned directory, which means that multiple versions of a given
parcel can be installed side-by-side. You can then designate one of these installed versions as the active one. With
packages, only one package can be installed at a time so there is no distinction between what is installed and
what is active.

• You can install parcels at any location in the filesystem. They are installed by default in /opt/cloudera/parcels.
In contrast, packages are installed in /usr/lib.

• When you install from the Parcels page, Cloudera Manager automatically downloads, distributes, and activates
the correct parcel for the operating system running on each host in the cluster. All CDH hosts that make up a
logical cluster need to run on the same major OS release to be covered by Cloudera Support. Cloudera Manager
needs to run on the same OS release as one of the CDH clusters it manages, to be covered by Cloudera Support.
The risk of issues caused by running different minor OS releases is considered lower than the risk of running
different major OS releases. Cloudera recommends running the same minor release cross-cluster, because it
simplifies issue tracking and supportability. You can, however, use RHEL/Centos 7.2 as the operating system for
gateway hosts. See Operating System Support for Gateway Hosts (CDH 5.11 and higher only).

Because of their unique properties, parcels offer the following advantages over packages:

54 | Cloudera Introduction

Cloudera Manager 5 Overview

http://supervisord.org/

• Distribution of CDH as a single object - Instead of having a separate package for each part of CDH, parcels have
just a single object to install. This makes it easier to distribute software to a cluster that is not connected to the
Internet.

• Internal consistency - All CDH components arematched, eliminating the possibility of installing parts fromdifferent
versions of CDH.

• Installation outside of /usr - In some environments, Hadoop administrators do not have privileges to install
system packages. These administrators needed to use CDH tarballs, which do not provide the infrastructure that
packages do.With parcels, administrators can install to /opt, or anywhere else, without completing the additional
manual steps of regular tarballs.

Note: With parcels, the path to the CDH libraries is/opt/cloudera/parcels/CDH/lib instead
of the usual /usr/lib. Do not link /usr/lib/ elements to parcel-deployed paths, because the
links may cause scripts that distinguish between the two paths to not work.

• Installation of CDH without sudo - Parcel installation is handled by the Cloudera Manager Agent running as root
or another user, so you can install CDH without sudo.

• Decoupled distribution from activation - With side-by-side install capabilities, you can stage a new version of
CDH across the cluster before switching to it. This allows the most time-consuming part of an upgrade to be done
ahead of time without affecting cluster operations, thereby reducing downtime.

• Rolling upgrades - Packages require you to shut down the old process, upgrade the package, and then start the
newprocess. Any errors in the process can be difficult to recover from, and upgrading requires extensive integration
with the package management system to function seamlessly. With parcels, when a new version is staged
side-by-side, you can switch to a new minor version by simply changing which version of CDH is used when
restarting each process. You can then perform upgrades with rolling restarts, in which service roles are restarted
in the correct order to switch to the new version with minimal service interruption. Your cluster can continue to
run on the existing installed components while you stage a new version across your cluster, without impacting
your current operations.Major version upgrades (for example, CDH 4 to CDH 5) require full service restarts because
of substantial changes between the versions. Finally, you can upgrade individual parcels or multiple parcels at the
same time.

• Upgrade management - Cloudera Manager manages all the steps in a CDH version upgrade. With packages,
Cloudera Manager only helps with initial installation.

• Additional components - Parcels are not limited to CDH. Impala, Cloudera Search, LZO, Apache Kafka, and add-on
service parcels are also available.

• Compatibility with other distribution tools - ClouderaManager works with other tools you use for download and
distribution. For example, you can use Puppet. Or, you can download the parcel to Cloudera Manager Server
manually if your cluster has no Internet connectivity and then have Cloudera Manager distribute the parcel to the
cluster.

Host Management
Cloudera Manager provides several features to manage the hosts in your Hadoop clusters. The first time you run
Cloudera Manager Admin Console you can search for hosts to add to the cluster and once the hosts are selected you
can map the assignment of CDH roles to hosts. Cloudera Manager automatically deploys all software required to
participate as a managed host in a cluster: JDK, Cloudera Manager Agent, CDH, Impala, Solr, and so on to the hosts.

Once the services are deployed and running, the Hosts area within the Admin Console shows the overall status of the
managed hosts in your cluster. The information provided includes the version of CDH running on the host, the cluster
to which the host belongs, and the number of roles running on the host. Cloudera Manager provides operations to
manage the lifecycle of the participating hosts and to add and delete hosts. The Cloudera Management Service Host
Monitor role performs health tests and collects host metrics to allow you to monitor the health and performance of
the hosts.

Cloudera Introduction | 55

Cloudera Manager 5 Overview

Resource Management
Resource management helps ensure predictable behavior by defining the impact of different services on cluster
resources. Use resource management to:

• Guarantee completion in a reasonable time frame for critical workloads.
• Support reasonable cluster scheduling between groups of users based on fair allocation of resources per group.
• Prevent users from depriving other users access to the cluster.

With Cloudera Manager 5, statically allocating resources using cgroups is configurable through a single static service
pool wizard. You allocate services as a percentage of total resources, and the wizard configures the cgroups.

Static service pools isolate the services in your cluster from one another, so that load on one service has a bounded
impact on other services. Services are allocated a static percentage of total resources—CPU, memory, and I/O
weight—which are not sharedwith other services.When you configure static service pools, ClouderaManager computes
recommended memory, CPU, and I/O configurations for the worker roles of the services that correspond to the
percentage assigned to each service. Static service pools are implemented per role group within a cluster, using Linux
control groups (cgroups) and cooperative memory limits (for example, Java maximum heap sizes). Static service pools
can be used to control access to resources by HBase, HDFS, Impala,MapReduce, Solr, Spark, YARN, and add-on services.
Static service pools are not enabled by default.

For example, the following figure illustrates static pools for HBase, HDFS, Impala, and YARN services that are respectively
assigned 20%, 30%, 20%, and 30% of cluster resources.

You can dynamically apportion resources that are statically allocated to YARN and Impala by using dynamic resource
pools.

Depending on the version of CDH you are using, dynamic resource pools in Cloudera Manager support the following
scenarios:

• YARN (CDH5) - YARNmanages the virtual cores,memory, running applications,maximum resources for undeclared
children (for parent pools), and scheduling policy for each pool. In the preceding diagram, three dynamic resource
pools—Dev, Product, andMktgwithweights 3, 2, and 1 respectively—are defined for YARN. If an application starts
and is assigned to the Product pool, and other applications are using the Dev andMktg pools, the Product resource

56 | Cloudera Introduction

Cloudera Manager 5 Overview

pool receives 30% x 2/6 (or 10%) of the total cluster resources. If no applications are using the Dev andMktg pools,
the YARN Product pool is allocated 30% of the cluster resources.

• Impala (CDH 5 and CDH 4) - Impala manages memory for pools running queries and limits the number of running
and queued queries in each pool.

User Management
Access to ClouderaManager features is controlled by user accounts. A user account identifies howa user is authenticated
and determines what privileges are granted to the user.

Cloudera Manager provides several mechanisms for authenticating users. You can configure Cloudera Manager to
authenticate users against the Cloudera Manager database or against an external authentication service. The external
authentication service can be an LDAP server (Active Directory or an OpenLDAP compatible directory), or you can
specify another external service. ClouderaManager also supports using the Security AssertionMarkup Language (SAML)
to enable single sign-on.

For information about the privileges associated with each of the Cloudera Manager user roles, see Cloudera Manager
User Roles.

Security Management
Cloudera Manager strives to consolidate security configurations across several projects.

Authentication

The purpose of authentication in Hadoop, as in other systems, is simply to prove that a user or service is who he or
she claims to be.

Typically, authentication in enterprises is managed through a single distributed system, such as a Lightweight Directory
Access Protocol (LDAP) directory. LDAP authentication consists of straightforward username/password services backed
by a variety of storage systems, ranging from file to database.

A common enterprise-grade authentication system is Kerberos. Kerberos provides strong security benefits including
capabilities that render intercepted authentication packets unusable by an attacker. It virtually eliminates the threat
of impersonation by never sending a user's credentials in cleartext over the network.

Several components of theHadoop ecosystemare converging to use Kerberos authenticationwith the option tomanage
and store credentials in LDAP or AD. For example, Microsoft's Active Directory (AD) is an LDAP directory that also
provides Kerberos authentication for added security.

Authorization

Authorization is concerned with who or what has access or control over a given resource or service. Since Hadoop
merges together the capabilities of multiple varied, and previously separate IT systems as an enterprise data hub that
stores andworks on all datawithin an organization, it requiresmultiple authorization controls with varying granularities.
In such cases, Hadoop management tools simplify setup and maintenance by:

• Tying all users to groups, which can be specified in existing LDAP or AD directories.
• Providing role-based access control for similar interaction methods, like batch and interactive SQL queries. For

example, Apache Sentry permissions apply to Hive (HiveServer2) and Impala.

CDH currently provides the following forms of access control:

• Traditional POSIX-style permissions for directories and files, where each directory and file is assigned a single
owner and group. Each assignment has a basic set of permissions available; file permissions are simply read, write,
and execute, and directories have an additional permission to determine access to child directories.

• Extended Access Control Lists (ACLs) for HDFS that provide fine-grained control of permissions for HDFS files by
allowing you to set different permissions for specific named users or named groups.

Cloudera Introduction | 57

Cloudera Manager 5 Overview

• Apache HBase uses ACLs to authorize various operations (READ, WRITE, CREATE, ADMIN) by column, column
family, and column family qualifier. HBase ACLs are granted and revoked to both users and groups.

• Role-based access control with Apache Sentry.

Encryption

Encryption is a process that uses digital keys to encode various components—text, files, databases, passwords,
applications, or network packets, for example—so that only the appropriate entity (user, system process, and so on)
can decode (decrypt) the item and view, modify, or add to the data. For Cloudera CDH components, encryption can
be applied at various layers of the cluster, as shown in the table:

Cloudera Management Service
The Cloudera Management Service implements various management features as a set of roles:

• Activity Monitor - collects information about activities run by the MapReduce service. This role is not added by
default.

• Host Monitor - collects health and metric information about hosts
• Service Monitor - collects health and metric information about services and activity information from the YARN

and Impala services
• Event Server - aggregates relevant Hadoop events and makes them available for alerting and searching
• Alert Publisher - generates and delivers alerts for certain types of events
• Reports Manager - generates reports that provide an historical view into disk utilization by user, user group, and

directory, processing activities by user and YARN pool, and HBase tables and namespaces. This role is not added
in Cloudera Express.

In addition, for certain editions of the Cloudera Enterprise license, the Cloudera Management Service provides the
Navigator Audit Server and Navigator Metadata Server roles for Cloudera Navigator.

Health Tests

Cloudera Manager monitors the health of the services, roles, and hosts that are running in your clusters using health
tests. The Cloudera Management Service also provides health tests for its roles. Role-based health tests are enabled
by default. For example, a simple health test is whether there's enough disk space in every NameNode data directory.
A more complicated health test may evaluate when the last checkpoint for HDFS was compared to a threshold or
whether a DataNode is connected to a NameNode. Some of these health tests also aggregate other health tests: in a
distributed system like HDFS, it's normal to have a few DataNodes down (assuming you've got dozens of hosts), so we
allow for setting thresholds on what percentage of hosts should color the entire service down.

Health tests can return one of three values: Good, Concerning, and Bad. A test returns Concerning health if the test
falls below a warning threshold. A test returns Bad if the test falls below a critical threshold. The overall health of a
service or role instance is a roll-up of its health tests. If any health test is Concerning (but none are Bad) the role's or
service's health is Concerning; if any health test is Bad, the service's or role's health is Bad.

In the Cloudera Manager Admin Console, health tests results are indicated with colors: Good , Concerning , and
Bad .

One common question is whether monitoring can be separated from configuration. One of the goals for monitoring
is to enable it without needing to do additional configuration and installing additional tools (for example, Nagios). By
having a deepmodel of the configuration, ClouderaManager is able to knowwhich directories to monitor, which ports
to use, and what credentials to use for those ports. This tight coupling means that, when you install Cloudera Manager
all the monitoring is enabled.

Metric Collection and Display

To performmonitoring, the Service Monitor and Host Monitor collects metrics. Ametric is a numeric value, associated
with a name (for example, "CPU seconds"), an entity it applies to ("host17"), and a timestamp. Most metric collection

58 | Cloudera Introduction

Cloudera Manager 5 Overview

is performed by the Agent. The Agent communicates with a supervised process, requests the metrics, and forwards
them to the Service Monitor. In most cases, this is done once per minute.

A few special metrics are collected by the Service Monitor. For example, the Service Monitor hosts an HDFS canary,
which tries to write, read, and delete a file from HDFS at regular intervals, and measure whether it succeeded, and
how long it took. Once metrics are received, they're aggregated and stored.

Using the Charts page in the ClouderaManager Admin Console, you can query and explore themetrics being collected.
Charts display time series, which are streams of metric data points for a specific entity. Each metric data point contains
a timestamp and the value of that metric at that timestamp.

Some metrics (for example, total_cpu_seconds) are counters, and the appropriate way to query them is to take
their rate over time, which is why a lot of metrics queries contain the dt0 function. For example,
dt0(total_cpu_seconds). (The dt0 syntax is intended to remind you of derivatives. The 0 indicates that the rate
of a monotonically increasing counter should never have negative rates.)

Events, Alerts, and Triggers

An event is a record that something of interest has occurred – a service's health has changed state, a log message (of
the appropriate severity) has been logged, and so on. Many events are enabled and configured by default.

An alert is an event that is considered especially noteworthy and is triggered by a selected event. Alerts are shown

with an badge when they appear in a list of events. You can configure the Alert Publisher to send alert
notifications by email or by SNMP trap to a trap receiver.

A trigger is a statement that specifies an action to be taken when one or more specified conditions are met for a
service, role, role configuration group, or host. The conditions are expressed as a tsquery statement, and the action
to be taken is to change the health for the service, role, role configuration group, or host to either Concerning (yellow)
or Bad (red).

Cloudera Manager Admin Console
Cloudera Manager Admin Console is the web-based UI that you use to configure, manage, and monitor CDH.

If no services are configuredwhen you log into the ClouderaManager Admin Console, the ClouderaManager installation
wizard displays. If services have been configured, the Cloudera Manager top navigation bar:

and Home page display. The Cloudera Manager Admin Console top navigation bar provides the following tabs and
menus:

• Clusters > cluster_name

– Services - Display individual services, and the Cloudera Management Service. In these pages you can:

– View the status and other details of a service instance or the role instances associated with the service
– Make configuration changes to a service instance, a role, or a specific role instance
– Add and delete a service or role
– Stop, start, or restart a service or role.
– View the commands that have been run for a service or a role
– View an audit event history
– Deploy and download client configurations
– Decommission and recommission role instances
– Enter or exit maintenance mode
– Perform actions unique to a specific type of service. For example:

– Enable HDFS high availability or NameNode federation

Cloudera Introduction | 59

Cloudera Manager 5 Overview

– Run the HDFS Balancer
– Create HBase, Hive, and Sqoop directories

– ClouderaManagerManagement Service -Manage andmonitor the ClouderaManagerManagement Service.
This includes the following roles: Activity Monitor, Alert Publisher, Event Server, Host Monitor, Navigator
Audit Server, Navigator Metadata Server, Reports Manager, and Service Monitor.

– Cloudera Navigator - Opens the Cloudera Navigator user interface.
– Hosts - Displays the hosts in the cluster.
– Reports - Create reports about the HDFS, MapReduce, YARN, and Impala usage and browse HDFS files, and

manage quotas for HDFS directories.
– Utilization Report - Opens the Cluster Utilization Report. displays aggregated utilization information for

YARN and Impala jobs.
– MapReduce_service_name Jobs - Query information about MapReduce jobs running on your cluster.
– YARN_service_name Applications - Query information about YARN applications running on your cluster.
– Impala_service_name Queries - Query information about Impala queries running on your cluster.
– Dynamic Resource Pools - Manage dynamic allocation of cluster resources to YARN and Impala services by

specifying the relative weights of named pools.
– Static Service Pools - Manage static allocation of cluster resources to HBase, HDFS, Impala, MapReduce, and

YARN services.

• Hosts - Display the hosts managed by Cloudera Manager.

– All Hosts - Displays a list of manage hosts in the cluster.
– Roles - Displays the roles deployed on each host.
– Host Templates - Create and manage Host Templates, which define sets of role groups that can be used to

easily expand a cluster.
– Disks Overview - Displays the status of all disks in the cluster.
– Parcels - Displays parcels available in the cluster and allows you to download, distribute, and activate new

parcels.

In this page you can:

– View the status and a variety of detail metrics about individual hosts
– Make configuration changes for host monitoring
– View all the processes running on a host
– Run the Host Inspector
– Add and delete hosts
– Create and manage host templates
– Manage parcels
– Decommission and recommission hosts
– Make rack assignments
– Run the host upgrade wizard

• Diagnostics - Review logs, events, and alerts to diagnose problems. The subpages are:

– Events - Search for and displaying events and alerts that have occurred.
– Logs - Search logs by service, role, host, and search phrase as well as log level (severity).
– Server Log -Display the Cloudera Manager Server log.

• Audits - Query and filter audit events across clusters, including logins, across clusters.
• Charts - Query for metrics of interest, display them as charts, and display personalized chart dashboards.
• Backup - Manage replication schedules and snapshot policies.
• Administration - Administer Cloudera Manager. The subpages are:

– Settings - Configure Cloudera Manager.
– Alerts - Display when alerts will be generated, configure alert recipients, and send test alert email.

60 | Cloudera Introduction

Cloudera Manager 5 Overview

– Users - Manage Cloudera Manager users and user sessions.
– Security - Generate Kerberos credentials and inspect hosts.
– License - Manage Cloudera licenses.
– Language - Set the language used for the content of activity events, health events, and alert email messages.
– AWS Credentials - Configure S3 connectivity to Cloudera Manager.

•

Parcel Icon - link to the Hosts > Parcels page.
• Running Commands Indicator - displays the number of commands currently running for all services or roles.
• Search - Supports searching for services, roles, hosts, configuration properties, and commands. You can enter a

partial string and a drop-down list with up to sixteen entities that match will display.
• Support - Displays various support actions. The subcommands are:

– Send Diagnostic Data - Sends data to Cloudera Support to support troubleshooting.
– Support Portal (Cloudera Enterprise) - Displays the Cloudera Support portal.
– Mailing List (Cloudera Express) - Displays the Cloudera Manager Users list.
– Scheduled Diagnostics: Weekly - Configure the frequency of automatically collecting diagnostic data and

sending to Cloudera support.
– The following links open the latest documentation on the Cloudera web site:

– Help
– Installation Guide
– API Documentation
– Release Notes

– About - Version number and build details of Cloudera Manager and the current date and time stamp of the
Cloudera Manager server.

• Logged-in User Menu - The currently logged-in user. The subcommands are:

– Change Password - Change the password of the currently logged in user.
– Logout

Starting and Logging into the Admin Console

1. In a web browser, enter http://Server host:7180, where Server host is the FQDN or IP address of the host
where the Cloudera Manager Server is running.

The login screen for Cloudera Manager Admin Console displays.

2. Log into Cloudera Manager Admin Console using the credentials assigned by your administrator. User accounts
are assigned roles that constrain the features available to you.

Note: You can configure the Cloudera Manager Admin Console to automatically log out a user after
a configurable period of time. See Automatic Logout on page 64.

Cloudera Manager Admin Console Home Page

When you start the Cloudera Manager Admin Console on page 59, the Home > Status tab displays.

Cloudera Introduction | 61

Cloudera Manager 5 Overview

You can also go to the Home > Status tab by clicking the Cloudera Manager logo in the top navigation bar.

Status
The Status tab contains:

• Clusters - The clusters being managed by Cloudera Manager. Each cluster is displayed either in summary form or
in full form depending on the configuration of the Administration > Settings > Other >Maximum Cluster Count
Shown In Full property. When the number of clusters exceeds the value of the property, only cluster summary
information displays.

– Summary Form - A list of links to cluster status pages. Click Customize to jump to the Administration >
Settings > Other >Maximum Cluster Count Shown In Full property.

– Full Form - A separate section for each cluster containing a link to the cluster status page and a table containing
links to the Hosts page and the status pages of the services running in the cluster.

Each service row in the table has a menu of actions that you select by clicking

and can contain one or more of the following indicators:

DescriptionMeaningIndicator

Indicates that the service has at least one health issue. The indicator shows
the number of health issues at the highest severity level. If there are Bad

Health issue

health test results, the indicator is red. If there are no Bad health test results,
but Concerning test results exist, then the indicator is yellow. No indicator
is shown if there are no Bad or Concerning health test results.

Important: If there is one Bad health test result and two
Concerning health results, there will be three health issues,
but the number will be one.

Click the indicator to display the Health Issues pop-up dialog box.

By default only Bad health test results are shown in the dialog box. To display
Concerning health test results, click the Also show n concerning issue(s)

62 | Cloudera Introduction

Cloudera Manager 5 Overview

DescriptionMeaningIndicator

link.Click the link to display the Status page containing with details about
the health test result.

Indicates that the service has at least one configuration issue. The indicator
shows the number of configuration issues at the highest severity level. If

Configuration
issue

there are configuration errors, the indicator is red. If there are no errors
but configuration warnings exist, then the indicator is yellow. No indicator
is shown if there are no configuration notifications.

Important: If there is one configuration error and two
configuration warnings, there will be three configuration
issues, but the number will be one.

Click the indicator to display the Configuration Issues pop-up dialog box.

By default only notifications at the Error severity level are listed, grouped
by service name are shown in the dialog box. To display Warning
notifications, click the Also show n warning(s) link.Click the message
associatedwith an error orwarning to be taken to the configuration property
for which the notification has been issued where you can address the
issue.See Managing Services.

Indicates that at least one of a service's roles is running with a configuration
that does notmatch the current configuration settings in ClouderaManager.

Click the indicator to display the Stale Configurations page.To bring the
cluster up-to-date, click the Refresh or Restart button on the Stale

Configuration
modified

Restart
Needed

Refresh
Needed

Configurations page or follow the instructions in Refreshing a Cluster,
Restarting a Cluster, or Restarting Services and Instances after Configuration
Changes.

Indicates that the client configuration for a service should be redeployed.

Click the indicator to display the Stale Configurations page.To bring the
cluster up-to-date, click the Deploy Client Configuration button on the Stale

Client
configuration
redeployment
required

Configurations page or follow the instructions in Manually Redeploying
Client Configuration Files.

– Cloudera Management Service - A table containing a link to the Cloudera Manager Service. The Cloudera
Manager Service has a menu of actions that you select by clicking

.
– Charts - A set of charts (dashboard) that summarize resource utilization (IO, CPU usage) and processing

metrics.

Click a line, stack area, scatter, or bar chart to expand it into a full-page view with a legend for the individual
charted entities as well more fine-grained axes divisions.

By default the time scale of a dashboard is 30 minutes. To change the time scale, click a duration link

at the top-right of the dashboard.

To set the dashboard type, click and select one of the following:

• Custom - displays a custom dashboard.
• Default - displays a default dashboard.
• Reset - resets the custom dashboard to the predefined set of charts, discarding any customizations.

Cloudera Introduction | 63

Cloudera Manager 5 Overview

All Health Issues
Displays all health issues by cluster. The number badge has the same semantics as the per service health issues reported
on the Status tab.

• By default only Bad health test results are shown in the dialog box. To display Concerning health test results, click
the Also show n concerning issue(s) link.

• To group the health test results by entity or health test, click the buttons on the Organize by Entity/Organize by
Health Test switch.

• Click the link to display the Status page containing with details about the health test result.

All Configuration Issues
Displays all configuration issues by cluster. The number badge has the same semantics as the per service configuration
issues reported on the Status tab. By default only notifications at the Error severity level are listed, grouped by service
name are shown in the dialog box. To display Warning notifications, click the Also show n warning(s) link. Click the
message associated with an error or warning to be taken to the configuration property for which the notification has
been issued where you can address the issue.

All Recent Commands
Displays all commands run recently across the clusters. A badge indicates how many recent commands are still
running. Click the command link to display details about the command and child commands. See also Viewing Running
and Recent Commands.

Starting and Logging into the Cloudera Manager Admin Console

1. In a web browser, enter http://Server host:7180, where Server host is the FQDN or IP address of the host
where the Cloudera Manager Server is running.

The login screen for Cloudera Manager Admin Console displays.

2. Log into Cloudera Manager Admin Console using the credentials assigned by your administrator. User accounts
are assigned roles that constrain the features available to you.

Note: You can configure the Cloudera Manager Admin Console to automatically log out a user after
a configurable period of time. See Automatic Logout on page 64.

Displaying the Cloudera Manager Server Version and Server Time

To display the version, build number, and time for the Cloudera Manager Server:

1. Open the Cloudera Manager Admin Console.
2. Select Support > About.

Displaying Cloudera Manager Documentation

To display Cloudera Manager documentation:

1. Open the Cloudera Manager Admin Console.
2. Select Support > Help, Installation Guide, API Documentation, or Release Notes. By default, the Help and

Installation Guide files from the Cloudera web site are opened. This is because local help files are not updated
after installation. You can configure Cloudera Manager to open either the latest Help and Installation Guide from
the Clouderaweb site (this option requires Internet access from the browser) or locally-installedHelp and Installation
Guide by configuring the Administration > Settings > Support >Open latest Help files from the Cloudera website
property.

Automatic Logout

For security purposes, Cloudera Manager automatically logs out a user session after 30 minutes. You can change this
session logout period.

64 | Cloudera Introduction

Cloudera Manager 5 Overview

To configure the timeout period:

1. Click Administration > Settings.
2. Click Category > Security.
3. Edit the Session Timeout property.
4. Click Save Changes to commit the changes.

When the timeout is one minute from triggering, the user sees the following message:

If the user does not click the mouse or press a key, the user is logged out of the session and the following message
appears:

Cloudera Manager API
The Cloudera Manager API provides configuration and service lifecycle management, service health information and
metrics, and allows you to configure Cloudera Manager itself. The API is served on the same host and port as the
Cloudera Manager Admin Console on page 59, and does not require an extra process or extra configuration. The API
supports HTTP Basic Authentication, accepting the same users and credentials as the ClouderaManager Admin Console.

Resources

• Quick Start
• Cloudera Manager API tutorial
• Cloudera Manager API documentation
• Python client
• Using the Cloudera Manager API for Cluster Automation on page 68

Cloudera Introduction | 65

Cloudera Manager 5 Overview

http://cloudera.github.io/cm_api/docs/quick-start/
http://tiny.cloudera.com/cm_api_5.11/tutorial.html
http://tiny.cloudera.com/cm_api_5.11
http://cloudera.github.io/cm_api/docs/python-client/

Obtaining Configuration Files

1. Obtain the list of a service's roles:

http://cm_server_host:7180/api/v16/clusters/clusterName/services/serviceName/roles

2. Obtain the list of configuration files a process is using:

http://cm_server_host:7180/api/v16/clusters/clusterName/services/serviceName/roles/roleName/process

3. Obtain the content of any particular file:

http://cm_server_host:7180/api/v16/clusters/clusterName/services/serviceName/roles/roleName/process/
configFiles/configFileName

For example:

http://cm_server_host:7180/api/v16/clusters/Cluster%201/services/OOZIE-1/roles/
OOZIE-1-OOZIE_SERVER-e121641328fcb107999f2b5fd856880d/process/configFiles/oozie-site.xml

Retrieving Service and Host Properties

To update a service property using the Cloudera Manager APIs, you'll need to know the name of the property, not just
the display name. If you know the property's display namebut not the property name itself, retrieve the documentation
by requesting any configuration object with the query string view=FULL appended to the URL. For example:

http://cm_server_host:7180/api/v16/clusters/Cluster%201/services/service_name/config?view=FULL

Search the results for the display name of the desired property. For example, a search for the display name HDFS
Service Environment Advanced Configuration Snippet (Safety Valve) shows that the corresponding property name
is hdfs_service_env_safety_valve:

{
 "name" : "hdfs_service_env_safety_valve",
 "require" : false,
 "displayName" : "HDFS Service Environment Advanced Configuration Snippet (Safety
Valve)",
 "description" : "For advanced use onlyu, key/value pairs (one on each line) to be
inserted into a roles
 environment. Applies to configurations of all roles in this service except client
configuration.",
 "relatedName" : "",
 "validationState" : "OK"
}

Similar to finding service properties, you can also find host properties. First, get the host IDs for a cluster with the URL:

http://cm_server_host:7180/api/v16/hosts

This should return host objects of the form:

{
 "hostId" : "2c2e951c-aaf2-4780-a69f-0382181f1821",
 "ipAddress" : "10.30.195.116",
 "hostname" : "cm_server_host",
 "rackId" : "/default",
 "hostUrl" :
"http://cm_server_host:7180/cmf/hostRedirect/2c2e951c-adf2-4780-a69f-0382181f1821",
 "maintenanceMode" : false,
 "maintenanceOwners" : [],
 "commissionState" : "COMMISSIONED",
 "numCores" : 4,

66 | Cloudera Introduction

Cloudera Manager 5 Overview

 "totalPhysMemBytes" : 10371174400
}

Then obtain the host properties by including one of the returned host IDs in the URL:

http://cm_server_host:7180/api/v16/hosts/2c2e951c-adf2-4780-a69f-0382181f1821?view=FULL

Backing Up and Restoring the Cloudera Manager Configuration

You can use the Cloudera Manager REST API to export and import all of its configuration data. The API exports a JSON
document that contains configuration data for the Cloudera Manager instance. You can use this JSON document to
back up and restore a Cloudera Manager deployment.

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

Exporting the Cloudera Manager Configuration

1. Log in to the Cloudera Manager server host as the root user.
2. Run the following command:

curl -u admin_uname:admin_pass "http://cm_server_host:7180/api/v16/cm/deployment" >
path_to_file/cm-deployment.json

Where:

• admin_uname is a username with either the Full Administrator or Cluster Administrator role.
• admin_pass is the password for the admin_uname username.
• cm_server_host is the hostname of the Cloudera Manager server.
• path_to_file is the path to the file where you want to save the configuration.

Redacting Sensitive Information from the Exported Configuration

The exported configuration may contain passwords and other sensitive information. You can configure redaction of
the sensitive items by specifying a JVM parameter for Cloudera Manager. When you set this parameter, API calls to
Cloudera Manager for configuration data do not include the sensitive information.

Important: If you configure this redaction, you cannot use an exported configuration to restore the
configuration of your cluster due to the redacted information.

To configure redaction for the API:

1. Log in the Cloudera Manager server host.
2. Edit the /etc/default/cloudera-scm-server file by adding the following property (separate each property

with a space) to the line that begins with export CMF_JAVA_OPTS:

-Dcom.cloudera.api.redaction=true

For example:

export CMF_JAVA_OPTS="-Xmx2G -Dcom.cloudera.api.redaction=true"

3. Restart Cloudera Manager:

sudo service cloudera-scm-server restart

Cloudera Introduction | 67

Cloudera Manager 5 Overview

Restoring the Cloudera Manager Configuration

Important: This feature is available only with a Cloudera Enterprise license. It is not available in
Cloudera Express. For information on Cloudera Enterprise licenses, see Managing Licenses.

Using a previously saved JSON document that contains the Cloudera Manager configuration data, you can restore that
configuration to a running cluster.

1. Using the Cloudera Manager Administration Console, stop all running services in your cluster:

a. On the Home > Status tab, click

to the right of the cluster name and select Stop.
b. Click Stop in the confirmation screen. The CommandDetailswindow shows the progress of stopping services.

WhenAll services successfully stopped appears, the task is complete and you can close the CommandDetails
window.

Warning: If you do not stop the cluster beforemaking this API call, the API call will stop all cluster
services before running the job. Any running jobs and data are lost.

2. Log in to the Cloudera Manager server host as the root user.
3. Run the following command:

curl -H "Content-Type: application/json" --upload-file path_to_file/cm-deployment.json
 -u admin:admin
http://cm_server_host:7180/api/v16/cm/deployment?deleteCurrentDeployment=true

Where:

• admin_uname is a username with either the Full Administrator or Cluster Administrator role.
• admin_pass is the password for the admin_uname username.
• cm_server_host is the hostname of the Cloudera Manager server.
• path_to_file is the path to the file containing the JSON configuration file.

4. Restart the Cloudera Manager Server.

RHEL 7, SLES 12, Debian 8, Ubuntu 16.04

sudo systemctl restart cloudera-scm-server

RHEL 5 or 6, SLES 11, Debian 6 or 7, Ubuntu 12.04, 14.04

sudo service cloudera-scm-server restart

Using the Cloudera Manager API for Cluster Automation

One of the complexities of Apache Hadoop is the need to deploy clusters of servers, potentially on a regular basis. If
you maintain hundreds of test and development clusters in different configurations, this process can be complex and
cumbersome if not automated.

Cluster Automation Use Cases

Cluster automation is useful in various situations. For example, you might work on many versions of CDH, which works
on a wide variety of OS distributions (RHEL 5 and RHEL 6, Ubuntu Precise and Lucid, DebianWheezy, and SLES 11). You
might have complex configuration combinations—highly available HDFS or simple HDFS, Kerberized or non-secure,

68 | Cloudera Introduction

Cloudera Manager 5 Overview

YARN orMRv1, and so on.With these requirements, you need an easy way to create a new cluster that has the required
setup. This cluster can also be used for integration, testing, customer support, demonstrations, and other purposes.

You can install and configure Hadoop according to precise specifications using the Cloudera Manager REST API. Using
the API, you can add hosts, install CDH, and define the cluster and its services. You can also tune heap sizes, set up
HDFS HA, turn on Kerberos security and generate keytabs, and customize service directories and ports. Every
configuration available in Cloudera Manager is exposed in the API.

The API also provides access to management functions:

• Obtaining logs and monitoring the system
• Starting and stopping services
• Polling cluster events
• Creating a disaster recovery replication schedule

For example, you can use the API to retrieve logs from HDFS, HBase, or any other service, without knowing the log
locations. You can also stop any service with no additional steps.

Use scenarios for the Cloudera Manager API for cluster automation might include:

• OEM and hardware partners that deliver Hadoop-in-a-box appliances using the API to set up CDH and Cloudera
Manager on bare metal in the factory.

• Automated deployment of new clusters, using a combination of Puppet and the Cloudera Manager API. Puppet
does the OS-level provisioning and installs the software. The Cloudera Manager API sets up the Hadoop services
and configures the cluster.

• Integrating the API with reporting and alerting infrastructure. An external script can poll the API for health and
metrics information, as well as the stream of events and alerts, to feed into a custom dashboard.

Java API Example

This example covers the Java API client.

To use the Java client, add this dependency to your project's pom.xml:

<project>
 <repositories>
 <repository>
 <id>cdh.repo</id>
 <url>https://repository.cloudera.com/artifactory/cloudera-repos</url>
 <name>Cloudera Repository</name>
 </repository>
 …
 </repositories>
 <dependencies>
 <dependency>
 <groupId>com.cloudera.api</groupId>
 <artifactId>cloudera-manager-api</artifactId>
 <version>4.6.2</version> <!-- Set to the version of Cloudera Manager you use
 -->
 </dependency>
 …
 </dependencies>
 ...
</project>

The Java client works like a proxy. It hides from the caller any details about REST, HTTP, and JSON. The entry point is
a handle to the root of the API:

RootResourcev16 apiRoot = new ClouderaManagerClientBuilder().withHost("cm.cloudera.com")
.withUsernamePassword("admin", "admin").build().getRootv16();

From the root, you can traverse down to all other resources. (It's called "v16" because that is the current Cloudera
Manager API version, but the same builder will also return a root from an earlier version of the API.) The tree view
shows some key resources and supported operations:

Cloudera Introduction | 69

Cloudera Manager 5 Overview

http://cloudera.github.com/cm_api/

• RootResourcev16

– ClustersResourcev16 - host membership, start cluster

– ServicesResourcev16 - configuration, get metrics, HA, service commands

– RolesResource - add roles, get metrics, logs
– RoleConfigGroupsResource - configuration

– ParcelsResource - parcel management

• HostsResource - host management, get metrics
• UsersResource - user management

For more information, see the Javadoc.

The following example lists and starts a cluster:

// List of clusters
ApiClusterList clusters = apiRoot.getClustersResource().readClusters(DataView.SUMMARY);
for (ApiCluster cluster : clusters) {
 LOG.info("{}: {}", cluster.getName(), cluster.getVersion());
}

// Start the first cluster
ApiCommand cmd = apiRoot.getClustersResource().startCommand(clusters.get(0).getName());
while (cmd.isActive()) {
 Thread.sleep(100);
 cmd = apiRoot.getCommandsResource().readCommand(cmd.getId());
}
LOG.info("Cluster start {}", cmd.getSuccess() ? "succeeded" : "failed " +
cmd.getResultMessage());

Python Example

You can see an example of automation with Python at the following link: Python example. The example contains
information on the requirements and steps to automate a cluster deployment.

Extending Cloudera Manager
In addition to the set of software packages and services managed by Cloudera Manager, you can also define and add
new types of services using custom service descriptors.When youdeploy a custom service descriptor, the implementation
is delivered in a Cloudera Manager parcel or other software package. For information on the extension mechanisms
provided by Cloudera Manager for creating custom service descriptors and parcels, see Cloudera Manager Extensions.

70 | Cloudera Introduction

Cloudera Manager 5 Overview

http://cloudera.github.io/cm_api/javadoc/5.11.0/index.html
https://github.com/cloudera/cm_api/tree/master/python/examples/auto-deploy
https://github.com/cloudera/cm_ext/wiki

Cloudera Navigator 2 Overview

Cloudera Navigator is a fully integrated data-management and security system for the Hadoop platform. Cloudera
Navigator enables you to work effectively with data at scale and helps various stakeholders answer the following
questions:

• Compliance groups

– Who accessed the data, and what did they do with it?
– Are we prepared for an audit?
– Is our sensitive data protected?

• Hadoop administrators and DBAs

– How can we boost productivity and cluster performance?
– How is data being used?
– How can data be optimized for future workloads?

• Data stewards and curators

– How can data assets be managed and organized?
– What is the lifecycle of the data?
– How can I get "at-a-glance" information about overall cluster activity for a specific time period?

• Data scientists and Business Intelligence users

– Where is the most important data?
– Is this data trustworthy?
– What is the relationship between data sets?

ClouderaNavigator provides the following components to help you answer these questions andmeet data-management
and security requirements.

• DataManagement - Provides visibility into and control over the data in Hadoop datastores, and the computations
performed on that data. Hadoop administrators, data stewards, and data scientists can use Cloudera Navigator
to:

– Get an "at-a-glance" overview of cluster activity - Use the Data Stewardship dashboard to get a high-level
view of the state of the data and data usage on the cluster. The dashboard displays information about table,
file, and database activity, table and file creation and modification trends, operations, and other information
captured by the Navigator Metadata Server.

– Audit data access and verify access privileges - The goal of auditing is to capture a complete and immutable
record of all activity within a system. Cloudera Navigator auditing adds secure, real-time audit components
to key data and access frameworks. Compliance groups can use Cloudera Navigator to configure, collect, and
view audit events that show who accessed data, and how.

– Searchmetadata and visualize lineage - ClouderaNavigatormetadatamanagement allowsDBAs, data stewards,
business analysts, and data scientists to define, search for, amend the properties of, and tag data entities
and view relationships between datasets.

– Policies - Data stewards can use Cloudera Navigator policies to define automated actions, based on data
access or on a schedule, to add metadata, create alerts, and move or purge data.

– Analytics - Hadoop administrators can use Cloudera Navigator analytics to examine data usage patterns and
create policies based on those patterns.

• Data Encryption - Data encryption and key management provide a critical layer of protection against potential
threats by malicious actors on the network or in the datacenter. Encryption and key management are also
requirements for meeting key compliance initiatives and ensuring the integrity of your enterprise data. The
following Cloudera Navigator components enable compliance groups to manage encryption:

Cloudera Introduction | 71

Cloudera Navigator 2 Overview

– Cloudera Navigator Encrypt transparently encrypts and secures data at rest without requiring changes to
your applications and ensures there is minimal performance lag in the encryption or decryption process.

– ClouderaNavigator Key Trustee Server is an enterprise-grade virtual safe-deposit box that stores andmanages
cryptographic keys and other security artifacts.

– Cloudera Navigator Key HSM allows Cloudera Navigator Key Trustee Server to seamlessly integrate with a
hardware security module (HSM).

You can install Cloudera Navigator data management and data encryption components independently.

Related Information

• Installing the Cloudera Navigator Data Management Component
• Upgrading the Cloudera Navigator Data Management Component
• Cloudera Navigator Data Management Component Administration
• Cloudera Data Management
• Configuring Authentication in the Cloudera Navigator Data Management Component
• Configuring TLS/SSL for Cloudera Navigator Metadata Server
• Cloudera Navigator Data Management Component User Roles

Cloudera Navigator Data Management Overview
The section describes basic features of Cloudera Navigator data management.

Cloudera Navigator Data Management UI

Managing data in your cluster presents a number of challenges:

• The volume of data can be very large.
• Multiple people can access that data. How do you know who is accessing what data, and how it is being used?
• Tracking data can be challenging. Where did the data originate? Has it been altered? In how many places is that

data being used? In regulated industries, answers to these questions must be precise and provable. For example,
how can you make sure that you are complying with industry or government requirements for the deletion or
preservation of data?

Cloudera Navigator is designed to help you manage and monitor vast amounts of data in your cluster. You can use the
Cloudera Navigator data management UI to:

• Create and view audit reports
• Search entity metadata, view entity lineage, and modify custom metadata
• Define policies for modifying custom metadata and sending notifications when entities are extracted
• Get "at-a-glance" information about activity on the cluster for a defined period of time through theData Stewardship

dashboard.
• View metadata analytics
• Assign user roles to groups

Navigator auditing, metadata, lineage, policies, and analytics all support multi-cluster deployments managed by a
single Cloudera Manager instance. So if you have five clusters, all centrally managed by a single Cloudera Manager,
you see all this information in a single Navigator datamanagement UI. In themetadata part of the UI, Navigator provides
technical metadata that tracks the specific cluster from which the data is derived.

72 | Cloudera Introduction

Cloudera Navigator 2 Overview

Starting and Logging into the Cloudera Navigator Data Management UI

1. Do one of the following:

• Enter the URL of the Navigator UI in a browser: http://Navigator_Metadata_Server_host:port/,
where Navigator_Metadata_Server_host is the name of the host on which you are running the Navigator
Metadata Server role and port is the port configured for the role. The default port of the Navigator Metadata
Server is 7187. To change the port, follow the instructions in Configuring the NavigatorMetadata Server Port.

• Select Clusters > Cloudera Management Service > Cloudera Navigator.
• Navigate from the Navigator Metadata Server role:

1. Select Clusters > Cloudera Management Service.
2. Click the Instances tab.
3. Click the Navigator Metadata Server role.
4. Click the Cloudera Navigator link.

2. Log in to Cloudera Navigator UI using the credentials assigned by your administrator.

Cloudera Navigator Data Management API

The Cloudera Navigator data management API provides access to the same features as the UI.

The API available at http://Navigator_Metadata_Server_host:port/api/v10, where
Navigator_Metadata_Server_host is the name of the host on which you are running the Navigator Metadata Server
role and port is the port configured for the role. The default port of the Navigator Metadata Server is 7187. To change
the port, follow the instructions in Configuring the Navigator Metadata Server Port. The API supports HTTP Basic
Authentication, accepting the same users and credentials as the UI.

To get a listing of the API calls invoked by the UI, see Downloading a Debug File on page 74.

Accessing API Documentation

For API documentation, select > API Documentation or go to
Navigator_Metadata_Server_host:port/api-console/index.html. TheClouderaNavigatorAPIdocumentation
displays in a new window. The API is structured into resource categories. Click a category to display the resource
endpoints.

To view an API tutorial, click the Tutorial link at the top of the API documentation or go to
Navigator_Metadata_Server_host:port/api-console/tutorial.html

Capturing and Downloading API Calls

To capture API calls made from the Cloudera Navigator data management UI, enable debug mode. You can then
download a file containing the captured calls and send it to Cloudera.

Enabling and Disabling Debug Mode
To enable debug mode:

1. Start and log in to the Cloudera Navigator data management component UI.
2. In the top right, select username > Enable Debug Mode. A red box with the following message displays at the

bottom right of the UI.

Debug mode enabled. Captured 0 calls.

3. Reload the page so that all API calls are captured.

To disable debug mode, do one of the following:

• In the top right, select username > Disable Debug Mode.
• Click Disable in the red box at the bottom right of the UI.

Cloudera Introduction | 73

Cloudera Navigator 2 Overview

The red box at the bottom right of the UI disappears.

Downloading a Debug File
In debugmode, the n in the string "Captured n calls." is incrementedwith the number of calls of the Cloudera Navigator
data management API as you interact with the Cloudera Navigator data management UI. To download a file containing
information about the API calls, click Download debug file. A file named
api-data-Navigator_Metadata_Server_host-UTC timestamp.json is downloaded. For example:

{
 "href": "http://Navigator Metadata Server
hostname:port/?view=detailsView&id=7f44221738670c98baf0799aa6abd330&activeView=lineage&b=ImMka",

 "userAgent": ...
 "windowSize": ...
 },
 "timestamp": 1456795776671,
 "calls": [
 {
 "type": "POST",
 "url": "/api/v6/interactive/entities?limit=0&offset=0",
 "data":...,
 "page": "http://Navigator Metadata Server
hostname:port/?view=resultsView&facets=%7B%22type%22%3A%5B%22database%22%5D%7D",
 "timestamp": 1456795762472
 },
 {
 "type": "GET",
 "url": "/api/v3/entities?query=type%3Asource",
 "status": 200,
 "responseText": ...,
 "page": "http://Navigator Metadata Server
hostname:port/?view=resultsView&facets=%7B%22type%22%3A%5B%22database%22%5D%7D",
 "timestamp": 1456795763233
 },
...

Displaying Cloudera Navigator Data Management Documentation

To display Cloudera Navigator data management documentation:

1. Start and log in to the Cloudera Navigator data management component UI.
2. Select > Help. The Cloudera Navigator data management online documentation displays in a new window.

Displaying the Cloudera Navigator Data Management Component Version

To display the version and build number for the Cloudera Navigator data management component:

1. Start and log in to the Cloudera Navigator data management component UI.
2. Select > About.

Cloudera Navigator 2 Frequently Asked Questions

Is Cloudera Navigator a module of Cloudera Manager?

Cloudera Navigator and Cloudera Manager complement each other. Cloudera Manager helps you manage services
and Cloudera Navigator helps youmanage the data stored in those services. Cloudera Navigator provides the following
components:

• DataManagement - Provides visibility into and control over the data in Hadoop datastores, and the computations
performed on that data. Hadoop administrators, data stewards, and data scientists can use Cloudera Navigator
to:

74 | Cloudera Introduction

Cloudera Navigator 2 Overview

Get an "at-a-glance" overview of cluster activity - Use the Data Stewardship dashboard to get a high-level
view of the state of the data and data usage on the cluster. The dashboard displays information about table,

–

file, and database activity, table and file creation and modification trends, operations, and other information
captured by the Navigator Metadata Server.

– Audit data access and verify access privileges - The goal of auditing is to capture a complete and immutable
record of all activity within a system. Cloudera Navigator auditing adds secure, real-time audit components
to key data and access frameworks. Compliance groups can use Cloudera Navigator to configure, collect, and
view audit events that show who accessed data, and how.

– Searchmetadata and visualize lineage - ClouderaNavigatormetadatamanagement allowsDBAs, data stewards,
business analysts, and data scientists to define, search for, amend the properties of, and tag data entities
and view relationships between datasets.

– Policies - Data stewards can use Cloudera Navigator policies to define automated actions, based on data
access or on a schedule, to add metadata, create alerts, and move or purge data.

– Analytics - Hadoop administrators can use Cloudera Navigator analytics to examine data usage patterns and
create policies based on those patterns.

• Data Encryption - Data encryption and key management provide a critical layer of protection against potential
threats by malicious actors on the network or in the datacenter. Encryption and key management are also
requirements for meeting key compliance initiatives and ensuring the integrity of your enterprise data. The
following Cloudera Navigator components enable compliance groups to manage encryption:

– Cloudera Navigator Encrypt transparently encrypts and secures data at rest without requiring changes to
your applications and ensures there is minimal performance lag in the encryption or decryption process.

– ClouderaNavigator Key Trustee Server is an enterprise-grade virtual safe-deposit box that stores andmanages
cryptographic keys and other security artifacts.

– Cloudera Navigator Key HSM allows Cloudera Navigator Key Trustee Server to seamlessly integrate with a
hardware security module (HSM).

The Cloudera Navigator data management component is implemented as two roles in the Cloudera Management
Service: Navigator Audit Server and Navigator Metadata Server. You can add Cloudera Navigator data management
roles while installing Cloudera Manager for the first time or into an existing Cloudera Manager installation. For
information on compatible Cloudera Navigator and Cloudera Manager versions, see the Product Compatibility Matrix
for Cloudera Navigator product compatibility matrix.

Is Cloudera Navigator included with a Cloudera Enterprise Enterprise Data Hub Edition license?

Yes. Cloudera Navigator is included with a Cloudera Enterprise Enterprise Data Hub Edition license and can be selected
as a choice with a Cloudera Enterprise Flex Edition license.

Can Cloudera Navigator be purchased standalone—that is, without Cloudera Manager?

Cloudera Navigator components are managed by Cloudera Manager. Therefore, Cloudera Manager is a prerequisite
for Cloudera Navigator.

What Cloudera Manager, CDH, and Impala releases does Cloudera Navigator 2 work with?

See Product Compatibility Matrix for Cloudera Navigator.

Is Cloudera Navigator open source or closed source?

Cloudera Navigator is a closed-source management tool and part of the Cloudera suite of management capabilities
for Hadoop.

How are Cloudera Navigator logs different from Cloudera Manager logs?

Cloudera Navigator tracks and aggregates only the accesses to the data stored in CDH services and used for audit
reports and analysis. Cloudera Manager monitors and logs all the activity performed by CDH services that helps

Cloudera Introduction | 75

Cloudera Navigator 2 Overview

administrators maintain the health of the cluster. Together these logs provide better visibility into both the data access
and system activity for an enterprise cluster.

76 | Cloudera Introduction

Cloudera Navigator 2 Overview

Cloudera Navigator Data Encryption Overview

Warning: Encryption transforms coherent data into random, unrecognizable information for
unauthorized users. It is absolutely critical that you follow the documented procedures for encrypting
and decrypting data, and that you regularly back up the encryption keys and configuration files. Failure
to do so can result in irretrievable data loss. See Backing Up and Restoring Key Trustee Server and
Clients for more information.

Do not attempt to perform any operations that you do not understand. If you have any questions
about a procedure, contact Cloudera Support before proceeding.

Cloudera Navigator includes a turnkey encryption and keymanagement solution for data at rest, whether data is stored
in HDFS or on the local Linux filesystem. Cloudera Navigator data encryption comprises the following components:

• Cloudera Navigator Key Trustee Server

Key Trustee Server is an enterprise-grade virtual safe-deposit box that stores and manages cryptographic keys.
With Key Trustee Server, encryption keys are separated from the encrypted data, ensuring that sensitive data is
protected in the event that unauthorized users gain access to the storage media.

• Cloudera Navigator Key HSM

Key HSM is a service that allows Key Trustee Server to integrate with a hardware security module (HSM). Key HSM
enables Key Trustee Server to use an HSM as the root of trust for cryptographic keys, taking advantage of Key
Trustee Server’s policy-based key and security asset management capabilities while satisfying existing internal
security requirements regarding treatment of cryptographic materials.

• Cloudera Navigator Encrypt

Navigator Encrypt is a client-side service that transparently encrypts data at rest without requiring changes to
your applications and with minimal performance lag in the encryption or decryption process. Advanced key
managementwith Key Trustee Server and process-based access controls in Navigator Encrypt enable organizations
tomeet compliance regulations and ensure unauthorized parties ormalicious actors never gain access to encrypted
data.

• Key Trustee KMS

For HDFS Transparent Encryption, Cloudera provides Key Trustee KMS, a customized key management server
(KMS) that uses Key Trustee Server for robust and scalable encryption key storage and management instead of
the file-based Java KeyStore used by the default Hadoop KMS.

• Cloudera Navigator HSM KMS

Also for HDFS Transparent Encryption, Navigator HSM KMS provides a customized key management server (KMS)
that uses third-party HSMs to provide the highest level of key isolation, storing key material on the HSM. When
using the Navigator HSM KMS, encryption zone key material originates on the HSM and never leaves the HSM.
While Navigator HSM KMS allows for the highest level of key isolation, it also requires some overhead for network
calls to the HSM for key generation, encryption and decryption operations.

• Cloudera Navigator HSM KMS Services and HA

Navigator HSM KMSs running on a single node fulfill the functional needs of users, but do not provide the
non-functional qualities of service necessary for production deployment (primarily key data high availability and
key data durability). You can achieve high availability (HA) of key material through the HA mechanisms of the
backing HSM. However, metadata cannot be stored on the HSM directly, so the HSM KMS provides for high
availability of key metadata via a built-in replication mechanism between the metadata stores of each KMS role
instance. This release supports a two-node topology for high availability. When deployed using this topology,

Cloudera Introduction | 77

Cloudera Navigator Data Encryption Overview

there is a durability guarantee enforced for key creation and roll such that a key create or roll operation will fail
if it cannot be successfully replicated between the two nodes.

Cloudera Navigator data encryption provides:

• High-performance transparent data encryption for files, databases, and applications running on Linux
• Separation of cryptographic keys from encrypted data
• Centralized management of cryptographic keys
• Integration with hardware security modules (HSMs) from Thales and SafeNet
• Support for Intel AES-NI cryptographic accelerator for enhanced performance in the encryption and decryption

process
• Process-Based Access Controls

Cloudera Navigator data encryption can be deployed to protect different assets, including (but not limited to):

• Databases
• Log files
• Temporary files
• Spill files
• HDFS data

For planning and deployment purposes, this can be simplified to two types of data that Cloudera Navigator data
encryption can secure:

1. HDFS data
2. Local filesystem data

The following table outlines some common use cases and identifies the services required.

Table 2: Encrypting Data at Rest

Additional Services
Required

Key ManagementData LocationData Type

Key Trustee KMSKey Trustee ServerHDFSHDFS

Navigator EncryptKey Trustee ServerLocal filesystemMetadata databases,
including:

• Hive Metastore
• Cloudera Manager
• Cloudera Navigator

Data Management
• Sentry

None (enable native
temp/spill encryption for
each component)

N/A (temporary keys are
stored in memory only)

Local filesystemTemp/spill files for CDH
components with native
encryption:

• Impala
• YARN
• MapReduce
• Flume
• HBase
• Accumulo

Navigator EncryptKey Trustee ServerLocal filesystemTemp/spill files for CDH
components without native
encryption:

78 | Cloudera Introduction

Cloudera Navigator Data Encryption Overview

Additional Services
Required

Key ManagementData LocationData Type

• Spark
• Kafka
• Sqoop2
• HiveServer2

Navigator Encrypt

Log Redaction

Key Trustee ServerLocal filesystemLog files

For instructions on using Navigator Encrypt to secure local filesystem data, see Cloudera Navigator Encrypt.

Cloudera Navigator Data Encryption Architecture
The following diagram illustrates how the Cloudera Navigator data encryption components interact with each other:

Key Trustee clients include Navigator Encrypt and Key Trustee KMS. Encryption keys are created by the client and
stored in Key Trustee Server.

Cloudera Navigator Data Encryption Integration with an EDH
The following diagram illustrates how the Cloudera Navigator data encryption components integratewith an Enterprise
Data Hub (EDH):

Cloudera Introduction | 79

Cloudera Navigator Data Encryption Overview

For more details on the individual components of Cloudera Navigator data encryption, continue reading:

Cloudera Navigator Key Trustee Server Overview
Cloudera Navigator Key Trustee Server is an enterprise-grade virtual safe-deposit box that stores and manages
cryptographic keys and other security artifacts. With Navigator Key Trustee Server, encryption keys are separated from
the encrypted data, ensuring that sensitive data is still protected if unauthorized users gain access to the storagemedia.

Key Trustee Server protects these keys and other critical security objects from unauthorized access while enabling
compliance with strict data security regulations. For added security, Key Trustee Server can integrate with a hardware
security module (HSM). See Cloudera Navigator Key HSM Overview on page 81 for more information.

In conjunction with the Key Trustee KMS, Navigator Key Trustee Server can serve as a backing key store for HDFS
Transparent Encryption, providing enhanced security and scalability over the file-based Java KeyStore used by the
default Hadoop Key Management Server.

Cloudera Navigator Encrypt also uses Key Trustee Server for key storage and management.

For instructions on installing Navigator Key Trustee Server, see Installing Cloudera Navigator Key Trustee Server. For
instructions on configuring Navigator Key Trustee Server, see Initializing Standalone Key Trustee Server or Cloudera
Navigator Key Trustee Server High Availability.

Key Trustee Server Architecture

Key Trustee Server is a secure object store. Clients register with Key Trustee Server, and are then able to store and
retrieve objects with Key Trustee Server. The most common use case for Key Trustee Server is storing encryption keys
to simplify key management and enable compliance with various data security regulations, but Key Trustee Server is
agnostic about the actual objects being stored.

All interactions with Key Trustee Server occur over a TLS-encrypted HTTPS connection.

Key Trustee Server does not generate encryption keys for clients. Clients generate encryption keys, encrypt them with
their private key, and send them over a TLS-encrypted connection to the Key Trustee Server. When a client needs to
decrypt data, it retrieves the appropriate encryption key from Key Trustee Server and caches it locally to improve
performance. This process is demonstrated in the following diagram:

80 | Cloudera Introduction

Cloudera Navigator Data Encryption Overview

https://en.wikipedia.org/wiki/Hardware_security_module
https://en.wikipedia.org/wiki/Hardware_security_module

The most common Key Trustee Server clients are Navigator Encrypt and Key Trustee KMS.

When a Key Trustee client registers with Key Trustee Server, it generates a unique fingerprint. All client interactions
with the Key Trustee Server are authenticated with this fingerprint. You must ensure that the file containing this
fingerprint is secured with appropriate Linux file permissions. The file containing the fingerprint is
/etc/navencrypt/keytrustee/ztrustee.conf for Navigator Encrypt clients, and
/var/lib/kms-keytrustee/keytrustee/.keytrustee/keytrustee.conf for Key Trustee KMS.

Many clients can use the same Key Trustee Server to manage security objects. For example, you can have several
Navigator Encrypt clients using a Key Trustee Server, and also use the same Key Trustee Server as the backing store
for Key Trustee KMS (used in HDFS encryption).

Cloudera Navigator Key HSM Overview
Cloudera Navigator Key HSM allows Cloudera Navigator Key Trustee Server to seamlessly integrate with a hardware
security module (HSM). Key HSM enables Key Trustee Server to use an HSM as a root of trust for cryptographic keys,
taking advantage of Key Trustee Server’s policy-based key and security asset management capabilities while satisfying
existing, internal security requirements for treatment of cryptographic materials.

Key HSM adds an additional layer of encryption to Key Trustee Server deposits, and acts as a root of trust. If a key is
revoked on the HSM, any Key Trustee Server deposits encrypted with that key are rendered irretrievable.

The following diagram demonstrates the flow of storing a deposit in Key Trustee Server when Key HSM is used:

1. A Key Trustee client (for example, Navigator Encrypt or Key Trustee KMS) sends an encrypted secret to Key Trustee
Server.

2. Key Trustee Server forwards the encrypted secret to Key HSM.
3. Key HSM generates a symmetric encryption key and sends it to the HSM over an encrypted channel.

Cloudera Introduction | 81

Cloudera Navigator Data Encryption Overview

4. The HSM generates a new key pair and encrypts the symmetric key and returns the encrypted symmetric key to
Key HSM.

5. Key HSM encrypts the original client-encrypted secret with the symmetric key, and returns the twice-encrypted
secret, along with the encrypted symmetric key, to Key Trustee Server. Key HSM discards its copy of the symmetric
key.

6. Key Trustee Server stores the twice-encrypted secret along with the encrypted symmetric key in its PostgreSQL
database.

The only way to retrieve the original encrypted secret is for Key HSM to request the HSM to decrypt the encrypted
symmetric key, which is required to decrypt the twice-encrypted secret. If the key has been revoked on the HSM, it is
not possible to retrieve the original secret.

Key HSM Architecture

For increased security, Key HSM should always be installed on the same host running the Key Trustee Server. This
reduces the attack surface of the system by ensuring that communication between Key Trustee Server and Key HSM
stays on the same host, and never has to traverse a network segment.

The following diagram displays the recommended architecture for Key HSM:

For instructions on installing Navigator Key HSM, see Installing Cloudera Navigator Key HSM. For instructions on
configuring Navigator Key HSM, see Initializing Navigator Key HSM.

Cloudera Navigator Encrypt Overview
ClouderaNavigator Encrypt transparently encrypts and secures data at restwithout requiring changes to your applications
and ensures minimal performance lag in the encryption or decryption process. Advanced key management with
Cloudera Navigator Key Trustee Server and process-based access controls in Navigator Encrypt enable organizations
tomeet compliance regulations and prevent unauthorized parties ormalicious actors from gaining access to encrypted
data.

For instructions on installing Navigator Encrypt, see Installing Cloudera Navigator Encrypt. For instructions on configuring
Navigator Encrypt, see Registering Cloudera Navigator Encrypt with Key Trustee Server.

Navigator Encrypt features include:

82 | Cloudera Introduction

Cloudera Navigator Data Encryption Overview

• Automatic key management: Encryption keys are stored in Key Trustee Server to separate the keys from the
encrypted data. If the encrypted data is compromised, it is useless without the encryption key.

• Transparent encryption and decryption: Protected data is encrypted and decrypted seamlessly, with minimal
performance impact and no modification to the software accessing the data.

• Process-based access controls: Processes are authorized individually to access encrypted data. If the process is
modified in any way, access is denied, preventing malicious users from using customized application binaries to
bypass the access control.

• Performance: Navigator Encrypt supports the Intel AES-NI cryptographic accelerator for enhanced performance
in the encryption and decryption process.

• Compliance: Navigator Encrypt enables you to comply with requirements for HIPAA-HITECH, PCI-DSS, FISMA, EU
Data Protection Directive, and other data security regulations.

• Multi-distribution support: Navigator Encrypt supports Debian, Ubuntu, RHEL, CentOS, and SLES.
• Simple installation: Navigator Encrypt is distributed as RPM and DEB packages, as well as SLES KMPs.
• Multiple mountpoints: You can separate data into different mountpoints, each with its own encryption key.

Navigator Encrypt can be used with many kinds of data, including (but not limited to):

• Databases
• Temporary files (YARN containers, spill files, and so on)
• Log files
• Data directories
• Configuration files

Navigator Encrypt uses dmcrypt for its underlying cryptographic operations. Navigator Encrypt uses several different
encryption keys:

• Master Key: The master key can be a single passphrase, dual passphrase, or RSA key file. The master key is stored
in Key Trustee Server and cached locally. This key is used when registering with a Key Trustee Server and when
performing administrative functions on Navigator Encrypt clients.

• Mount Encryption Key (MEK): This key is generated by Navigator Encrypt using openssl rand by default, but it
can alternatively use /dev/urandom. This key is generatedwhen preparing a newmount point. Eachmount point
has its own MEK. This key is uploaded to Key Trustee Server.

• dmcrypt Device Encryption Key (DEK): This key is not managed by Navigator Encrypt or Key Trustee Server. It is
managed locally by dmcrypt and stored in the header of the device.

Process-Based Access Control List

The access control list (ACL) controls access to specified data. The ACL uses a process fingerprint, which is the SHA256
hash of the process binary, for authentication. You can create rules to allow a process to access specific files or
directories. The ACL file is encrypted with the client master key and stored locally for quick access and updates.

Here is an example rule:

"ALLOW @mydata * /usr/bin/myapp"

This rule allows the /usr/bin/myapp process to access any encrypted path (*) that was encrypted under the category
@mydata.

Note: You have the option of using wildcard characters when defining process-based ACLs. The
following example shows valid wildcard definitions:

"ALLOW @* * *"
"ALLOW @* path/* /path/to/process"

Navigator Encrypt uses a kernel module that intercepts any input/output (I/O) sent to an encrypted andmanaged path.
The Linux module filename is navencryptfs.ko and it resides in the kernel stack, injecting filesystem hooks. It also
authenticates and authorizes processes and caches authentication results for increased performance.

Cloudera Introduction | 83

Cloudera Navigator Data Encryption Overview

Because the kernel module intercepts and does not modify I/O, it supports any filesystem (ext3, ext4, xfs, and so
on).

The following diagram shows /usr/bin/myapp sending an open() call that is intercepted by
navencrypt-kernel-module as an open hook:

The kernelmodule calculates the process fingerprint. If the authentication cache already has the fingerprint, the process
is allowed to access the data. If the fingerprint is not in the cache, the fingerprint is checked against the ACL. If the ACL
grants access, the fingerprint is added to the authentication cache, and the process is permitted to access the data.

When you add an ACL rule, you are prompted for the master key. If the rule is accepted, the ACL rules file is updated
as well as the navencrypt-kernel-module ACL cache.

The next diagram illustrates different aspects of Navigator Encrypt:

The user adds a rule to allow /usr/bin/myapp to access the encrypted data in the category @mylogs, and adds
another rule to allow /usr/bin/myapp to access encrypted data in the category @mydata. These two rules are loaded
into the navencrypt-kernel-module cache after restarting the kernel module.

84 | Cloudera Introduction

Cloudera Navigator Data Encryption Overview

The /mydata directory is encrypted under the @mydata category and /mylogs is encrypted under the @mylogs
category using dmcrypt (block device encryption).

When myapp tries to issue I/O to an encrypted directory, the kernel module calculates the fingerprint of the process
(/usr/bin/myapp) and compares it with the list of authorized fingerprints in the cache.

Encryption Key Storage and Management

The master key and mount encryption keys are securely deposited in Key Trustee Server. One MEK per mount point
is stored locally for offline recovery and rapid access. The locally-stored MEKs are encrypted with the master key.

The connection between Navigator Encrypt and Key Trustee Server is secured with TLS/SSL certificates.

The following diagram demonstrates the communication process between Navigator Encrypt and Key Trustee Server:

Themaster key is encryptedwith a local GPG key. Before being stored in the Key Trustee Server database, it is encrypted
again with the Key Trustee Server GPG key. When the master key is needed to perform a Navigator Encrypt operation,
Key Trustee Server decrypts the stored keywith its server GPG key and sends it back to the client (in this case, Navigator
Encrypt), which decrypts the deposit with the local GPG key.

All communication occurs over TLS-encrypted connections.

Cloudera Introduction | 85

Cloudera Navigator Data Encryption Overview

Frequently Asked Questions About Cloudera Software

The following topics contain frequently asked questions about components and subsystems of the Cloudera Enterprise
product:

• Cloudera Manager 5 Frequently Asked Questions
• Cloudera Navigator Frequently Asked Questions
• Impala Frequently Asked Questions
• Cloudera Search Frequently Asked Questions

86 | Cloudera Introduction

Frequently Asked Questions About Cloudera Software

Getting Support

This section describes how to get support.

Cloudera Support
Cloudera can help you install, configure, optimize, tune, and run CDH for large scale data processing and analysis.
Cloudera supports CDH whether you run it on servers in your own datacenter or on hosted infrastructure services,
such as Amazon Web Services, Microsoft Azure, or Google Compute Engine.

If you are a Cloudera customer, you can:

• Register for an account to create a support ticket at the support site.
• Visit the Cloudera Knowledge Base.

If you are not a Cloudera customer, learn how Cloudera can help you.

Information Required for Logging a Support Case

Before you log a support case, ensure you have either part or all of the following information to help Support investigate
your case:

• If possible, provide a diagnostic data bundle following the instructions in Collecting and Sending Diagnostic Data
to Cloudera.

• For security issues, see How to Log a Security Support Case.
• Provide details about the issue such as what was observed and what the impact was.
• Provide any error messages that were seen, using screen capture if necessary & attach to the case.
• If you were running a command or performing a series of steps, provide the commands and the results, captured

to a file if possible.
• Specify whether the issue took place in a new install or a previously-working cluster.
• Mention any configuration changes made in the follow-up to the issue being seen.
• Specify the type of release environment the issue is taking place in, such as sandbox, development, or production.
• The severity of the impact and whether it is causing outage.

Community Support
There are several vehicles for community support. You can:

• Register for the Cloudera forums.
• If you have any questions or comments about CDH, you can visit the Using the Platform forum.
• If you have any questions or comments about Cloudera Manager, you can

– Visit the Cloudera Manager forum forum.
– Cloudera Express users can access the Cloudera Manager support mailing list from within the Cloudera

Manager Admin Console by selecting Support >Mailing List.
– Cloudera Enterprise customers can access the Cloudera Support Portal from within the Cloudera Manager

Admin Console, by selecting Support > Cloudera Support Portal. From there you can register for a support
account, create a support ticket, and access the Cloudera Knowledge Base.

• If you have any questions or comments about Cloudera Navigator, you can visit the Cloudera Navigator forum.
• Find more documentation for specific components by referring to External Documentation on page 44.

Cloudera Introduction | 87

Getting Support

https://my.cloudera.com/support.html
https://my.cloudera.com/knowledge.html
https://my.cloudera.com/support/subscription-value-center.html
http://community.cloudera.com/
http://community.cloudera.com/t5/Using-the-Platform/ct-p/UsingPlatform
http://community.cloudera.com/t5/Cloudera-Manager-Installation/bd-p/CMInstall
https://sso.cloudera.com/
http://community.cloudera.com/t5/Cloudera-Navigator-Data/bd-p/Navigator

Get Announcements about New Releases
To get information about releases and updates for all products, visit the Release Announcements forum.

Report Issues
Your input is appreciated, but before filing a request:

• Search the Cloudera issue tracker, where Cloudera tracks software and documentation bugs and enhancement
requests for CDH.

• Search the CDH Manual Installation, Using the Platform, and Cloudera Manager forums.

88 | Cloudera Introduction

Getting Support

http://community.cloudera.com/t5/Release-Announcements/bd-p/RelAnnounce
https://issues.cloudera.org/browse/DISTRO
http://community.cloudera.com/t5/CDH-Manual-Installation/bd-p/CDHInstall
http://community.cloudera.com/t5/Using-the-Platform/ct-p/UsingPlatform
http://community.cloudera.com/t5/Cloudera-Manager-Installation/bd-p/CMInstall

Appendix: Apache License, Version 2.0

SPDX short identifier: Apache-2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through
9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of
fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

"Object" form shall mean any form resulting frommechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole,
an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or
additions to thatWork or DerivativeWorks thereof, that is intentionally submitted to Licensor for inclusion in theWork
by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of
discussing and improving theWork, but excluding communication that is conspicuouslymarked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whoma Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare DerivativeWorks of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license tomake, havemade,
use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims

Cloudera | 89

Appendix: Apache License, Version 2.0

licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated
within theWork constitutes direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and
2. You must cause any modified files to carry prominent notices stating that You changed the files; and
3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,

and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part
of the Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along
with the DerivativeWorks; or, within a display generated by the DerivativeWorks, if andwherever such third-party
notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify
the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be
construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as
a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an "AS IS" BASIS,WITHOUTWARRANTIES OR CONDITIONSOF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required
by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable
to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure ormalfunction, or any and all other commercial damages or losses), even
if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

90 | Cloudera

Appendix: Apache License, Version 2.0

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
"[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class name and description of
purpose be included on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Cloudera | 91

Appendix: Apache License, Version 2.0

	Table of Contents
	About Cloudera Introduction
	Documentation Overview

	Cloudera Primary User Personas
	Infrastructure
	Jim — Senior Hadoop Administrator
	Jen — Junior Hadoop Administrator
	Sarah — Cloud Administrator

	Data Ingest, ETL, and Metadata Management
	Terence — Enterprise Data Architect or Modeler
	Kara — Data Steward and Data Curator

	Analytics and Machine Learning
	Song — Data Scientist
	Jason — Machine Learning Engineer
	Cory — Data Engineer
	Sophie — Application Developer
	Abe — SQL Expert/SQL Developer
	Kiran — SQL Analyst/SQL User
	Christine — BI Analyst

	CDH Overview
	Apache Impala Overview
	Impala Benefits
	How Impala Works with
	Primary Impala Features

	Cloudera Search Overview
	How Cloudera Search Works
	Understanding Cloudera Search
	Cloudera Search and Other Cloudera Components
	Cloudera Search Architecture
	Cloudera Search Configuration Files

	Cloudera Search Tasks and Processes
	Ingestion
	Indexing
	Querying

	Apache Sentry Overview
	Apache Spark Overview
	File Formats and Compression
	Using Apache Parquet Data Files with CDH
	Compression for Parquet Files
	Using Parquet Tables in Hive
	Using Parquet Tables in Impala
	Using Parquet Files in MapReduce
	Using Parquet Files in Pig
	Using Parquet Files in Spark
	Parquet File Interoperability
	Parquet File Structure
	Examples of Java Programs to Read and Write Parquet Files

	Using Apache Avro Data Files with CDH
	Compression for Avro Data Files
	Using Avro Data Files in Flume
	Using Avro Data Files in Hive
	Using Avro Data Files in MapReduce
	Using Avro Data Files in Pig
	Importing Avro Data Files in Sqoop 1
	Using Avro Data Files in Spark
	Using Avro Data Files in Streaming Programs

	Data Compression
	Snappy Compression
	Using Snappy with HBase
	Using Snappy with Hive or Impala
	Using Snappy with MapReduce
	Using Snappy with Pig
	Using Snappy with Spark SQL
	Using Snappy Compression with Sqoop 1 and Sqoop 2 Imports

	External Documentation

	Cloudera Manager 5 Overview
	Terminology
	Architecture
	State Management
	Configuration Management
	Process Management
	Software Distribution Management
	Host Management
	Resource Management
	User Management
	Security Management
	Cloudera Management Service
	Cloudera Manager Admin Console
	Starting and Logging into the Admin Console
	Cloudera Manager Admin Console Home Page
	Starting and Logging into the Cloudera Manager Admin Console
	Displaying the Cloudera Manager Server Version and Server Time

	Displaying Cloudera Manager Documentation
	Automatic Logout

	Cloudera Manager API
	Backing Up and Restoring the Cloudera Manager Configuration
	Using the Cloudera Manager API for Cluster Automation
	Cluster Automation Use Cases
	Java API Example
	Python Example

	Extending Cloudera Manager

	Cloudera Navigator 2 Overview
	Cloudera Navigator Data Management Overview
	Cloudera Navigator Data Management UI
	Cloudera Navigator Data Management API
	Accessing API Documentation
	Capturing and Downloading API Calls

	Displaying Cloudera Navigator Data Management Documentation
	Displaying the Cloudera Navigator Data Management Component Version

	Cloudera Navigator 2 Frequently Asked Questions

	Cloudera Navigator Data Encryption Overview
	Cloudera Navigator Data Encryption Architecture
	Cloudera Navigator Data Encryption Integration with an EDH
	Cloudera Navigator Key Trustee Server Overview
	Key Trustee Server Architecture

	Cloudera Navigator Key HSM Overview
	Key HSM Architecture

	Cloudera Navigator Encrypt Overview
	Process-Based Access Control List
	Encryption Key Storage and Management

	Frequently Asked Questions About Cloudera Software
	Getting Support
	Cloudera Support
	Information Required for Logging a Support Case

	Community Support
	Get Announcements about New Releases
	Report Issues

	Appendix: Apache License, Version 2.0

