
Apache Impala Guide

Important Notice
© 2010-2021 Cloudera, Inc. All rights reserved.

Cloudera, the Cloudera logo, and any other product or
service names or slogans contained in this document are trademarks of Cloudera and
its suppliers or licensors, and may not be copied, imitated or used, in whole or in part,
without the prior written permission of Cloudera or the applicable trademark holder. If
this documentation includes code, including but not limited to, code examples, Cloudera
makes this available to you under the terms of the Apache License, Version 2.0, including
any required notices. A copy of the Apache License Version 2.0, including any notices,
is included herein. A copy of the Apache License Version 2.0 can also be found here:
https://opensource.org/licenses/Apache-2.0

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software
Foundation. All other trademarks, registered trademarks, product names and company
names or logosmentioned in this document are the property of their respective owners.
Reference to any products, services, processes or other information, by trade name,
trademark, manufacturer, supplier or otherwise does not constitute or imply
endorsement, sponsorship or recommendation thereof by us.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this documentmay be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Cloudera.

Cloudera may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subjectmatter in this document. Except as expressly
provided in anywritten license agreement fromCloudera, the furnishing of this document
does not give you any license to these patents, trademarks copyrights, or other
intellectual property. For information about patents covering Cloudera products, see
http://tiny.cloudera.com/patents.

The information in this document is subject to change without notice. Cloudera shall
not be liable for any damages resulting from technical errors or omissions which may
be present in this document, or from use of this document.

Cloudera, Inc.
395 Page Mill Road
Palo Alto, CA 94306
info@cloudera.com
US: 1-888-789-1488
Intl: 1-650-362-0488
www.cloudera.com

Release Information

Version: Cloudera Impala Impala 2.4.x / CDH 5.6.x
Date: February 3, 2021

Table of Contents

Introducing Apache Impala..16
Impala Benefits..16

How Impala Works with CDH...16

Primary Impala Features..17

Impala Concepts and Architecture..18
Components of the Impala Server...18
The Impala Daemon...18

The Impala Statestore..18

The Impala Catalog Service..19

Developing Impala Applications...19
Overview of the Impala SQL Dialect...20

Overview of Impala Programming Interfaces..21

How Impala Fits Into the Hadoop Ecosystem...21
How Impala Works with Hive...21

Overview of Impala Metadata and the Metastore..21

How Impala Uses HDFS..22

How Impala Uses HBase..22

Planning for Impala Deployment..23
Impala Requirements...23
Product Compatibility Matrix...23

Supported Operating Systems..23

Hive Metastore and Related Configuration...23

Java Dependencies...24

Networking Configuration Requirements..24

Hardware Requirements..24

User Account Requirements...24

Guidelines for Designing Impala Schemas...25

Installing Impala...27
What is Included in an Impala Installation...27

Installing Impala with Cloudera Manager..27

Installing Impala without Cloudera Manager...28

Managing Impala...30
Post-Installation Configuration for Impala...30

Configuring Impala to Work with ODBC...31
Downloading the ODBC Driver...32

Configuring the ODBC Port..32

Example of Setting Up an ODBC Application for Impala..32

Notes about JDBC and ODBC Interaction with Impala SQL Features...33

Configuring Impala to Work with JDBC..34
Configuring the JDBC Port..34

Choosing the JDBC Driver...34

Enabling Impala JDBC Support on Client Systems..35

Establishing JDBC Connections...36

Notes about JDBC and ODBC Interaction with Impala SQL Features...37

Kudu Considerations for DML Statements...37

Upgrading Impala...38
Upgrading Impala through Cloudera Manager - Parcels..38

Upgrading Impala through Cloudera Manager - Packages...39

Upgrading Impala without Cloudera Manager...40

Starting Impala..42
Starting Impala through Cloudera Manager...42

Starting Impala from the Command Line...42

Modifying Impala Startup Options...43
Configuring Impala Startup Options through Cloudera Manager...43

Configuring Impala Startup Options through the Command Line...43

Checking the Values of Impala Configuration Options..46

Startup Options for impalad Daemon..46

Startup Options for statestored Daemon...46

Startup Options for catalogd Daemon...46

Impala Tutorials...47
Tutorials for Getting Started...47
Explore a New Impala Instance..47

Load CSV Data from Local Files..52

Point an Impala Table at Existing Data Files..53

Describe the Impala Table..55

Query the Impala Table..55

Data Loading and Querying Examples...56

Advanced Tutorials...58

Attaching an External Partitioned Table to an HDFS Directory Structure..58

Switching Back and Forth Between Impala and Hive...60

Cross Joins and Cartesian Products with the CROSS JOIN Operator..61

Dealing with Parquet Files with Unknown Schema..62

Impala Administration...75
Admission Control and Query Queuing..75
Overview of Impala Admission Control..75

How Impala Admission Control Relates to YARN...76

How Impala Schedules and Enforces Limits on Concurrent Queries..76

How Admission Control works with Impala Clients (JDBC, ODBC, HiveServer2)..77

Configuring Admission Control..77

Guidelines for Using Admission Control...82

Integrated Resource Management with YARN...83
The Llama Daemon..83

How Resource Limits Are Enforced...84

impala-shell Query Options for Resource Management..84

Limitations of Resource Management for Impala...84

Setting Timeout Periods for Daemons, Queries, and Sessions...84
Increasing the Statestore Timeout...84

Setting the Idle Query and Idle Session Timeouts for impalad...84

Cancelling a Query...85

Using Impala through a Proxy for High Availability..85
Overview of Proxy Usage and Load Balancing for Impala...86

Special Proxy Considerations for Clusters Using Kerberos...87

Example of Configuring HAProxy Load Balancer for Impala..88

Managing Disk Space for Impala Data..89

Impala Security..91
Security Guidelines for Impala...91

Securing Impala Data and Log Files..92

Installation Considerations for Impala Security..93

Securing the Hive Metastore Database..93

Securing the Impala Web User Interface..93

Configuring TLS/SSL for Impala..94
Using Cloudera Manager...94

Using the Command Line...95

Using TLS/SSL with Business Intelligence Tools..96

Enabling Sentry Authorization for Impala..96
The Sentry Privilege Model..96

Starting the impalad Daemon with Sentry Authorization Enabled..97

Using Impala with the Sentry Service (CDH 5.1 or higher only)...98

Using Impala with the Sentry Policy File..98

Setting Up Schema Objects for a Secure Impala Deployment..103

Privilege Model and Object Hierarchy...103

Debugging Failed Sentry Authorization Requests..106

Managing Sentry for Impala through Cloudera Manager...106

The DEFAULT Database in a Secure Deployment...107

Impala Authentication..107
Enabling Kerberos Authentication for Impala..107

Enabling LDAP Authentication for Impala..110

Using Multiple Authentication Methods with Impala..112

Configuring Impala Delegation for Hue and BI Tools...112

Auditing Impala Operations...113
Durability and Performance Considerations for Impala Auditing..113

Format of the Audit Log Files...114

Which Operations Are Audited..114

Reviewing the Audit Logs...115

Viewing Lineage Information for Impala Data..115

Impala SQL Language Reference...117
Comments..117

Data Types..117
ARRAY Complex Type (CDH 5.5 or higher only)..118

BIGINT Data Type...121

BOOLEAN Data Type..122

CHAR Data Type (CDH 5.2 or higher only)..123

DECIMAL Data Type (CDH 5.1 or higher only)..126

DOUBLE Data Type...134

FLOAT Data Type..135

INT Data Type..136

MAP Complex Type (CDH 5.5 or higher only)...137

REAL Data Type..140

SMALLINT Data Type..141

STRING Data Type..142

STRUCT Complex Type (CDH 5.5 or higher only)..143

TIMESTAMP Data Type...149

TINYINT Data Type...154

VARCHAR Data Type (CDH 5.2 or higher only)...155

Complex Types (CDH 5.5 or higher only)..157

Literals..185
Numeric Literals...185

String Literals...186

Boolean Literals...188

Timestamp Literals...188

NULL...188

SQL Operators..189
Arithmetic Operators...189

BETWEEN Operator...192

Comparison Operators...193

EXISTS Operator...194

IN Operator..197

IS NULL Operator...199

LIKE Operator...200

Logical Operators...200

REGEXP Operator...203

RLIKE Operator...204

Impala Schema Objects and Object Names...205
Overview of Impala Aliases..205

Overview of Impala Databases..206

Overview of Impala Functions...207

Overview of Impala Identifiers...208

Overview of Impala Tables...209

Overview of Impala Views...211

Impala SQL Statements..215
DDL Statements...215

DML Statements..216

ALTER TABLE Statement...216

ALTER VIEW Statement..225

COMPUTE STATS Statement...227

CREATE DATABASE Statement..232

CREATE FUNCTION Statement...233

CREATE ROLE Statement (CDH 5.2 or higher only)...236

CREATE TABLE Statement...236

CREATE VIEW Statement..244

DESCRIBE Statement..246

DROP DATABASE Statement...253

DROP FUNCTION Statement..255

DROP ROLE Statement (CDH 5.2 or higher only)..255

DROP STATS Statement..256

DROP TABLE Statement..259

DROP VIEW Statement...260

EXPLAIN Statement..261

GRANT Statement (CDH 5.2 or higher only)...264

INSERT Statement..264

INVALIDATE METADATA Statement..272

LOAD DATA Statement...275

REFRESH Statement...278

REVOKE Statement (CDH 5.2 or higher only)...280

SELECT Statement..281

SET Statement..305

SHOW Statement...323

TRUNCATE TABLE Statement (CDH 5.5 or higher only)..336

USE Statement...338

Impala Built-In Functions...339
Impala Mathematical Functions..340

Impala Bit Functions..352

Impala Type Conversion Functions...361

Impala Date and Time Functions...364

Impala Conditional Functions..392

Impala String Functions...395

Impala Miscellaneous Functions..403

Impala Aggregate Functions..404

Impala Analytic Functions..430

Impala User-Defined Functions (UDFs)..448

SQL Differences Between Impala and Hive..462
HiveQL Features not Available in Impala...463

Semantic Differences Between Impala and HiveQL Features..464

Porting SQL from Other Database Systems to Impala..465
Porting DDL and DML Statements...465

Porting Data Types from Other Database Systems..465

SQL Statements to Remove or Adapt...468

SQL Constructs to Doublecheck..469

Next Porting Steps after Verifying Syntax and Semantics..470

Using the Impala Shell (impala-shell Command)...471
impala-shell Configuration Options..471
Summary of impala-shell Configuration Options...471

impala-shell Configuration File..474

Connecting to impalad through impala-shell...475

Running Commands and SQL Statements in impala-shell..476

impala-shell Command Reference...477

Tuning Impala for Performance..480
Impala Performance Guidelines and Best Practices...480

Performance Considerations for Join Queries..483
How Joins Are Processed when Statistics Are Unavailable..484

Overriding Join Reordering with STRAIGHT_JOIN..484

Examples of Join Order Optimization...485

Table and Column Statistics..490
Overview of Table Statistics...490

Overview of Column Statistics..491

How Table and Column Statistics Work for Partitioned Tables..492

Overview of Incremental Statistics...494

Generating Table and Column Statistics (COMPUTE STATS Statement)...495

Detecting Missing Statistics...495

Keeping Statistics Up to Date...497

Setting the NUMROWS Value Manually through ALTER TABLE...497

Examples of Using Table and Column Statistics with Impala...498

Benchmarking Impala Queries...501

Controlling Impala Resource Usage..501

Using HDFS Caching with Impala (CDH 5.1 or higher only)..502
Overview of HDFS Caching for Impala...502

Setting Up HDFS Caching for Impala..502

Enabling HDFS Caching for Impala Tables and Partitions..503

Loading and Removing Data with HDFS Caching Enabled...504

Administration for HDFS Caching with Impala...505

Performance Considerations for HDFS Caching with Impala...506

Testing Impala Performance...507

Understanding Impala Query Performance - EXPLAIN Plans and Query Profiles...508
Using the EXPLAIN Plan for Performance Tuning...508

Using the SUMMARY Report for Performance Tuning...509

Using the Query Profile for Performance Tuning...510

Detecting and Correcting HDFS Block Skew Conditions...515

Scalability Considerations for Impala..517
Scalability Considerations for the Impala Statestore..517

SQL Operations that Spill to Disk..518

Limits on Query Size and Complexity...521

Scalability Considerations for Impala I/O...522

Scalability Considerations for Table Layout..522

Partitioning for Impala Tables...523
When to Use Partitioned Tables...523

SQL Statements for Partitioned Tables...523

Static and Dynamic Partitioning Clauses..524

Permissions for Partition Subdirectories..524

Partition Pruning for Queries...525
Checking if Partition Pruning Happens for a Query...525

What SQL Constructs Work with Partition Pruning..525

Partition Key Columns..526

Setting Different File Formats for Partitions...527

Managing Partitions...527

How Impala Works with Hadoop File Formats..528
Choosing the File Format for a Table..529

Using Text Data Files with Impala Tables..529
Query Performance for Impala Text Tables..530

Creating Text Tables...530

Data Files for Text Tables...531

Loading Data into Impala Text Tables..532

Using LZO-Compressed Text Files...532

Using gzip, bzip2, or Snappy-Compressed Text Files..535

Using the Parquet File Format with Impala Tables...536
Creating Parquet Tables in Impala...536

Loading Data into Parquet Tables..537

Query Performance for Impala Parquet Tables..539

Snappy and GZip Compression for Parquet Data Files...540

Parquet Tables for Impala Complex Types...542

Exchanging Parquet Data Files with Other Hadoop Components..542

How Parquet Data Files Are Organized..545

Compacting Data Files for Parquet Tables...546

Schema Evolution for Parquet Tables...547

Data Type Considerations for Parquet Tables..547

Using the Avro File Format with Impala Tables..548
Creating Avro Tables..548

Using a Hive-Created Avro Table in Impala..550

Specifying the Avro Schema through JSON..551

Loading Data into an Avro Table..551

Enabling Compression for Avro Tables...551

How Impala Handles Avro Schema Evolution..551

Data Type Considerations for Avro Tables..552

Using the RCFile File Format with Impala Tables..553
Creating RCFile Tables and Loading Data..553

Enabling Compression for RCFile Tables...554

Using the SequenceFile File Format with Impala Tables..555
Creating SequenceFile Tables and Loading Data...555

Enabling Compression for SequenceFile Tables..556

Using Impala to Query HBase Tables..558
Overview of Using HBase with Impala...558

Configuring HBase for Use with Impala..558

Supported Data Types for HBase Columns...559

Performance Considerations for the Impala-HBase Integration..559

Use Cases for Querying HBase through Impala..563

Loading Data into an HBase Table..563

Limitations and Restrictions of the Impala and HBase Integration..563

Examples of Querying HBase Tables from Impala..564

Using Impala to Query the Amazon S3 Filesystem...567
Specifying Impala Credentials to Access Data in S3...567

Loading Data into S3 for Impala Queries..567

Creating Impala Databases, Tables, and Partitions for Data Stored on S3...568

Internal and External Tables Located on S3..569

Running and Tuning Impala Queries for Data Stored on S3...571
Understanding and Tuning Impala Query Performance for S3 Data..571

Restrictions on Impala Support for S3..571

Using Impala with Isilon Storage..573
Required Configurations...573

Using Impala Logging...575
Locations and Names of Impala Log Files...575

Managing Impala Logs through Cloudera Manager or Manually...576

Rotating Impala Logs..576

Reviewing Impala Logs...576

Understanding Impala Log Contents..577

Setting Logging Levels..577

Redacting Sensitive Information from Impala Log Files...578

Troubleshooting Impala...579
Troubleshooting Impala SQL Syntax Issues..579

Troubleshooting I/O Capacity Problems...579

Impala Troubleshooting Quick Reference..580

Impala Web User Interface for Debugging...581
Debug Web UI for impalad..582

Ports Used by Impala...584

Impala Reserved Words..586
List of Current Reserved Words..586

Planning for Future Reserved Words...588

Impala Frequently Asked Questions...591
Transition to Apache Governance..591

Trying Impala..591

Impala System Requirements...592

Supported and Unsupported Functionality In Impala..593

How do I?...594

Impala Performance...595

Impala Use Cases...597

Questions about Impala And Hive..598

Impala Availability..599

Impala Internals...599

SQL...602

Partitioned Tables...603

HBase...603

Impala Release Notes...605
Impala Release Notes...605

New Features in Apache Impala...605
Further Information Available in Standalone CDH Release Notes..605

New Features in Impala Version 2.4.x / CDH 5.6.x...605

New Features in Impala Version 2.3.x / CDH 5.5.x...605

New Features in Impala Version 2.2.9 / CDH 5.4.9..608

New Features in Impala Version 2.2.8 / CDH 5.4.8..608

New Features in Impala Version 2.2.7 / CDH 5.4.7..608

New Features in Impala Version 2.2.x for CDH 5.4.5...608

New Features in Impala 2.2.x for CDH 5.4.3 and 5.4.4..608

New Features in Impala for CDH 5.4.x...608

New Features in Impala Version 2.2.0 / CDH 5.4.0..609

New Features in Impala Version 2.1.7 / CDH 5.3.9..611

New Features in Impala Version 2.1.6 / CDH 5.3.8..611

New Features in Impala Version 2.1.5 / CDH 5.3.6..611

New Features in Impala Version 2.1.4 / CDH 5.3.4..611

New Features in Impala Version 2.1.3 / CDH 5.3.3..611

New Features in Impala Version 2.1.2 / CDH 5.3.2..611

New Features in Impala Version 2.1.1 / CDH 5.3.1..612

New Features in Impala Version 2.1.0 / CDH 5.3.0..612

New Features in Impala Version 2.0.5 / CDH 5.2.6..612

New Features in Impala Version 2.0.4 / CDH 5.2.5..612

New Features in Impala Version 2.0.3 / CDH 5.2.4..612

New Features in Impala Version 2.0.2 / CDH 5.2.3..612

New Features in Impala Version 2.0.1 / CDH 5.2.1..613

New Features in Impala Version 2.0.0 / CDH 5.2.0..613

New Features in Impala Version 1.4.4 / CDH 5.1.5..615

New Features in Impala Version 1.4.3 / CDH 5.1.4..615

New Features in Impala Version 1.4.2 / CDH 5.1.3..615

New Features in Impala Version 1.4.1 / CDH 5.1.2..615

New Features in Impala Version 1.4.0 / CDH 5.1.0..615

New Features in Impala Version 1.3.3 / CDH 5.0.5..617

New Features in Impala Version 1.3.2 / CDH 5.0.4..617

New Features in Impala Version 1.3.1 / CDH 5.0.3..617

New Features in Impala Version 1.3.0 / CDH 5.0.0..618

New Features in Impala Version 1.2.4...618

New Features in Impala Version 1.2.3...619

New Features in Impala Version 1.2.2...619

New Features in Impala Version 1.2.1...620

New Features in Impala Version 1.2.0 (Beta)...622

New Features in Impala Version 1.1.1...623

New Features in Impala Version 1.1..623

New Features in Impala Version 1.0.1...624

New Features in Impala Version 1.0..625

New Features in Version 0.7 of the Impala Beta Release...625

New Features in Version 0.6 of the Impala Beta Release...625

New Features in Version 0.5 of the Impala Beta Release...625

New Features in Version 0.4 of the Impala Beta Release...625

New Features in Version 0.3 of the Impala Beta Release...626

New Features in Version 0.2 of the Impala Beta Release...626

Incompatible Changes and Limitations in Apache Impala..626
Further Information Available in Standalone CDH Release Notes..626

Incompatible Changes Introduced in Impala for CDH 5.6.x / Impala 2.4.x..626

Incompatible Changes Introduced in Impala for CDH 5.5.x / Impala 2.3.x..626

Incompatible Changes Introduced in Impala for CDH 5.4.x (CDH 5.4.1 through CDH 5.4.9)..627

Incompatible Changes Introduced in Impala 2.2.0 / CDH 5.4.0...627

Incompatible Changes Introduced in Cloudera Impala 2.1.7 / CDH 5.3.9..627

Incompatible Changes Introduced in Impala 2.1.6 / CDH 5.3.8...628

Incompatible Changes Introduced in Impala 2.1.5 / CDH 5.3.6...628

Incompatible Changes Introduced in Impala 2.1.4 / CDH 5.3.4...628

Incompatible Changes Introduced in Impala 2.1.3 / CDH 5.3.3...628

Incompatible Changes Introduced in Impala 2.1.2 / CDH 5.3.2...628

Incompatible Changes Introduced in Impala 2.1.1 / CDH 5.3.1...628

Incompatible Changes Introduced in Impala 2.1.0 / CDH 5.3.0...628

Incompatible Changes Introduced in Impala 2.0.5 / CDH 5.2.6...629

Incompatible Changes Introduced in Impala 2.0.4 / CDH 5.2.5...629

Incompatible Changes Introduced in Impala 2.0.3 / CDH 5.2.4...629

Incompatible Changes Introduced in Impala 2.0.2 / CDH 5.2.3...629

Incompatible Changes Introduced in Impala 2.0.1 / CDH 5.2.1...629

Incompatible Changes Introduced in Impala 2.0.0 / CDH 5.2.0...629

Incompatible Changes Introduced in Impala 1.4.4 / CDH 5.1.5...631

Incompatible Changes Introduced in Impala 1.4.3 / CDH 5.1.4...631

Incompatible Changes Introduced in Impala 1.4.2 / CDH 5.1.3...631

Incompatible Changes Introduced in Impala 1.4.1 / CDH 5.1.2...631

Incompatible Changes Introduced in Impala 1.4.0 / CDH 5.1.0...631

Incompatible Changes Introduced in Impala 1.3.3 / CDH 5.0.5...632

Incompatible Changes Introduced in Impala 1.3.2 / CDH 5.0.4...632

Incompatible Changes Introduced in Impala 1.3.1 / CDH 5.0.3...632

Incompatible Changes Introduced in Impala 1.3.0 / CDH 5.0.0...632

Incompatible Changes Introduced in Impala 1.2.4..633

Incompatible Changes Introduced in Impala 1.2.3..633

Incompatible Changes Introduced in Impala 1.2.2..633

Incompatible Changes Introduced in Impala 1.2.1..634

Incompatible Changes Introduced in Impala 1.2.0 (Beta)..634

Incompatible Changes Introduced in Impala 1.1.1..635

Incompatible Change Introduced in Impala 1.1...635

Incompatible Changes Introduced in Impala 1.0...635

Incompatible Change Introduced in Version 0.7 of the Cloudera Impala Beta Release...636

Incompatible Change Introduced in Version 0.6 of the Cloudera Impala Beta Release...636

Incompatible Change Introduced in Version 0.4 of the Cloudera Impala Beta Release...636

Incompatible Change Introduced in Version 0.3 of the Cloudera Impala Beta Release...636

Known Issues and Workarounds in Impala..636
Further Information Available in Standalone CDH Release Notes..636

Impala Known Issues: Crashes and Hangs...636

Impala Known Issues: Performance...637

Impala Known Issues: Usability..637

Impala Known Issues: JDBC and ODBC Drivers..637

Impala Known Issues: Security...637

Impala Known Issues: Supportability...638

Impala Known Issues: Resources..638

Impala Known Issues: Correctness...639

Impala Known Issues: Metadata..640

Impala Known Issues: Interoperability...641

Impala Known Issues: Limitations..643

Impala Known Issues: Miscellaneous / Older Issues..643

Fixed Issues in Apache Impala..644
Further Information Available in Standalone CDH Release Notes..645

Issues Fixed in Impala for CDH 5.6.0..645

Issues Fixed in Impala for CDH 5.5.2..645

Issues Fixed in Impala for CDH 5.5.1..648

Issues Fixed in Impala for CDH 5.5.0..648

Issues Fixed in Impala for CDH 5.4.9..648

Issues Fixed in Impala for CDH 5.4.8..650

Issues Fixed in Impala for CDH 5.4.7..651

Issues Fixed in Impala for CDH 5.4.5..653

Issues Fixed in Impala for CDH 5.4.3..654

Issues Fixed in Impala for CDH 5.4.1..655

Issues Fixed in the 2.2.0 Release / CDH 5.4.0...655

Issues Fixed in the 2.1.7 Release / CDH 5.3.9...657

Issues Fixed in the 2.1.6 Release / CDH 5.3.8...658

Issues Fixed in the 2.1.5 Release / CDH 5.3.6...659

Issues Fixed in the 2.1.4 Release / CDH 5.3.4...659

Issues Fixed in the 2.1.3 Release / CDH 5.3.3...660

Issues Fixed in the 2.1.2 Release / CDH 5.3.2...661

Issues Fixed in the 2.1.1 Release / CDH 5.3.1...662

Issues Fixed in the 2.1.0 Release / CDH 5.3.0...662

Issues Fixed in the 2.0.5 Release / CDH 5.2.6...663

Issues Fixed in the 2.0.4 Release / CDH 5.2.5...663

Issues Fixed in the 2.0.3 Release / CDH 5.2.4...664

Issues Fixed in the 2.0.2 Release / CDH 5.2.3...664

Issues Fixed in the 2.0.1 Release / CDH 5.2.1...665

Issues Fixed in the 2.0.0 Release / CDH 5.2.0...665

Issues Fixed in the 1.4.4 Release / CDH 5.1.5...667

Issues Fixed in the 1.4.3 Release / CDH 5.1.4...668

Issues Fixed in the 1.4.2 Release / CDH 5.1.3...668

Issues Fixed in the 1.4.1 Release / CDH 5.1.2...668

Issues Fixed in the 1.4.0 Release / CDH 5.1.0...669

Issues Fixed in the 1.3.3 Release / CDH 5.0.5...671

Issues Fixed in the 1.3.2 Release / CDH 5.0.4...671

Issues Fixed in the 1.3.1 Release / CDH 5.0.3...671

Issues Fixed in the 1.3.0 Release / CDH 5.0.0...673

Issues Fixed in the 1.2.4 Release..675

Issues Fixed in the 1.2.3 Release..676

Issues Fixed in the 1.2.2 Release..677

Issues Fixed in the 1.2.1 Release..678

Issues Fixed in the 1.2.0 Beta Release..678

Issues Fixed in the 1.1.1 Release..678

Issues Fixed in the 1.1.0 Release..680

Issues Fixed in the 1.0.1 Release..680

Issues Fixed in the 1.0 GA Release...682

Issues Fixed in Version 0.7 of the Beta Release..685

Issues Fixed in Version 0.6 of the Beta Release..686

Issues Fixed in Version 0.5 of the Beta Release..687

Issues Fixed in Version 0.4 of the Beta Release..688

Issues Fixed in Version 0.3 of the Beta Release..688

Issues Fixed in Version 0.2 of the Beta Release..689

Appendix: Apache License, Version 2.0...690

Introducing Apache Impala

Impala provides fast, interactive SQL queries directly on your Apache Hadoop data stored in HDFS, HBase, or the
Amazon Simple Storage Service (S3). In addition to using the same unified storage platform, Impala also uses the same
metadata, SQL syntax (Hive SQL), ODBC driver, and user interface (Impala queryUI in Hue) as ApacheHive. This provides
a familiar and unified platform for real-time or batch-oriented queries.

Impala is an addition to tools available for querying big data. Impala does not replace the batch processing frameworks
built on MapReduce such as Hive. Hive and other frameworks built on MapReduce are best suited for long running
batch jobs, such as those involving batch processing of Extract, Transform, and Load (ETL) type jobs.

Note: Impala graduated from the Apache Incubator on November 15, 2017. In places where the
documentation formerly referred to “Cloudera Impala”, now the official name is “Apache Impala”.

Impala Benefits
Impala provides:

• Familiar SQL interface that data scientists and analysts already know.
• Ability to query high volumes of data (“big data”) in Apache Hadoop.
• Distributed queries in a cluster environment, for convenient scaling and to make use of cost-effective commodity

hardware.
• Ability to share data files between different components with no copy or export/import step; for example, to

write with Pig, transformwith Hive and query with Impala. Impala can read from andwrite to Hive tables, enabling
simple data interchange using Impala for analytics on Hive-produced data.

• Single system for big data processing and analytics, so customers can avoid costly modeling and ETL just for
analytics.

How Impala Works with CDH
The following graphic illustrates how Impala is positioned in the broader Cloudera environment:

The Impala solution is composed of the following components:

• Clients - Entities including Hue, ODBC clients, JDBC clients, and the Impala Shell can all interact with Impala. These
interfaces are typically used to issue queries or complete administrative tasks such as connecting to Impala.

16 | Apache Impala Guide

Introducing Apache Impala

• Hive Metastore - Stores information about the data available to Impala. For example, the metastore lets Impala
know what databases are available and what the structure of those databases is. As you create, drop, and alter
schema objects, load data into tables, and so on through Impala SQL statements, the relevant metadata changes
are automatically broadcast to all Impala nodes by the dedicated catalog service introduced in Impala 1.2.

• Impala - This process, which runs on DataNodes, coordinates and executes queries. Each instance of Impala can
receive, plan, and coordinate queries from Impala clients. Queries are distributed among Impala nodes, and these
nodes then act as workers, executing parallel query fragments.

• HBase and HDFS - Storage for data to be queried.

Queries executed using Impala are handled as follows:

1. User applications send SQL queries to Impala through ODBC or JDBC, which provide standardized querying
interfaces. The user applicationmay connect to any impalad in the cluster. This impalad becomes the coordinator
for the query.

2. Impala parses the query and analyzes it to determine what tasks need to be performed by impalad instances
across the cluster. Execution is planned for optimal efficiency.

3. Services such as HDFS and HBase are accessed by local impalad instances to provide data.
4. Each impalad returns data to the coordinating impalad, which sends these results to the client.

Primary Impala Features
Impala provides support for:

• Most common SQL-92 features of Hive Query Language (HiveQL) including SELECT, joins, and aggregate functions.
• HDFS, HBase, and Amazon Simple Storage System (S3) storage, including:

– HDFS file formats: delimited text files, Parquet, Avro, SequenceFile, and RCFile.
– Compression codecs: Snappy, GZIP, Deflate, BZIP.

• Common data access interfaces including:

– JDBC driver.
– ODBC driver.
– Hue Beeswax and the Impala Query UI.

• impala-shell command-line interface.
• Kerberos authentication.

Apache Impala Guide | 17

Introducing Apache Impala

Impala Concepts and Architecture

The following sections provide background information to help you become productive using Impala and its features.
Where appropriate, the explanations include context to help understand how aspects of Impala relate to other
technologies youmight already be familiarwith, such as relational databasemanagement systems and datawarehouses,
or other Hadoop components such as Hive, HDFS, and HBase.

Components of the Impala Server
The Impala server is a distributed, massively parallel processing (MPP) database engine. It consists of different daemon
processes that run on specific hosts within your CDH cluster.

The Impala Daemon

The core Impala component is a daemon process that runs on each DataNode of the cluster, physically represented
by the impalad process. It reads and writes to data files; accepts queries transmitted from the impala-shell
command, Hue, JDBC, or ODBC; parallelizes the queries and distributes work across the cluster; and transmits
intermediate query results back to the central coordinator node.

You can submit a query to the Impala daemon running on any DataNode, and that instance of the daemon serves as
the coordinator node for that query. The other nodes transmit partial results back to the coordinator, which constructs
the final result set for a query. When running experiments with functionality through the impala-shell command,
you might always connect to the same Impala daemon for convenience. For clusters running production workloads,
you might load-balance by submitting each query to a different Impala daemon in round-robin style, using the JDBC
or ODBC interfaces.

The Impala daemons are in constant communication with the statestore, to confirm which nodes are healthy and can
accept new work.

They also receive broadcast messages from the catalogd daemon (introduced in Impala 1.2) whenever any Impala
node in the cluster creates, alters, or drops any type of object, orwhen an INSERT or LOAD DATA statement is processed
through Impala. This background communication minimizes the need for REFRESH or INVALIDATE METADATA
statements that were needed to coordinate metadata across nodes prior to Impala 1.2.

Related information:Modifying Impala Startup Options on page 43, Starting Impala on page 42, Setting the Idle Query
and Idle Session Timeouts for impalad on page 84, Ports Used by Impala on page 584, Using Impala through a Proxy
for High Availability on page 85

The Impala Statestore

The Impala component known as the statestore checks on the health of Impala daemons on all the DataNodes in a
cluster, and continuously relays its findings to each of those daemons. It is physically represented by a daemon process
named statestored; you only need such a process on one host in the cluster. If an Impala daemon goes offline due
to hardware failure, network error, software issue, or other reason, the statestore informs all the other Impala daemons
so that future queries can avoid making requests to the unreachable node.

Because the statestore's purpose is to help when things go wrong and to broadcast metadata to coordinators, it is not
always critical to the normal operation of an Impala cluster. If the statestore is not running or becomes unreachable,
the Impala daemons continue running and distributing work among themselves as usual when working with the data
known to Impala. The cluster just becomes less robust if other Impala daemons fail, and metadata becomes less
consistent as it changes while the statestore is offline. When the statestore comes back online, it re-establishes
communication with the Impala daemons and resumes its monitoring and broadcasting functions.

If you issue a DDL statement while the statestore is down, the queries that access the new object the DDL created will
fail.

18 | Apache Impala Guide

Impala Concepts and Architecture

Most considerations for load balancing and high availability apply to the impalad daemon. The statestored and
catalogd daemons do not have special requirements for high availability, because problems with those daemons do
not result in data loss. If those daemons become unavailable due to an outage on a particular host, you can stop the
Impala service, delete the Impala StateStore and Impala Catalog Server roles, add the roles on a different host, and
restart the Impala service.

Related information:

Scalability Considerations for the Impala Statestore on page 517,Modifying Impala StartupOptions on page 43, Starting
Impala on page 42, Increasing the Statestore Timeout on page 84, Ports Used by Impala on page 584

The Impala Catalog Service

The Impala component known as the catalog service relays the metadata changes from Impala SQL statements to all
the Impala daemons in a cluster. It is physically represented by a daemon process named catalogd; you only need
such a process on one host in the cluster. Because the requests are passed through the statestore daemon, it makes
sense to run the statestored and catalogd services on the same host.

The catalog service avoids the need to issue REFRESH and INVALIDATE METADATA statements when the metadata
changes are performed by statements issued through Impala. When you create a table, load data, and so on through
Hive, you do need to issue REFRESH or INVALIDATE METADATA on an Impala node before executing a query there.

This feature touches a number of aspects of Impala:

• See Installing Impala on page 27, Upgrading Impala on page 38 and Starting Impala on page 42, for usage
information for the catalogd daemon.

• The REFRESH and INVALIDATE METADATA statements are not needed when the CREATE TABLE, INSERT, or
other table-changing or data-changing operation is performed through Impala. These statements are still needed
if such operations are done through Hive or by manipulating data files directly in HDFS, but in those cases the
statements only need to be issued on one Impala node rather than on all nodes. See REFRESH Statement on page
278 and INVALIDATE METADATA Statement on page 272 for the latest usage information for those statements.

By default, the metadata loading and caching on startup happens asynchronously, so Impala can begin accepting
requests promptly. To enable the original behavior, where Impalawaited until all metadatawas loaded before accepting
any requests, set the catalogd configuration option --load_catalog_in_background=false.

Most considerations for load balancing and high availability apply to the impalad daemon. The statestored and
catalogd daemons do not have special requirements for high availability, because problems with those daemons do
not result in data loss. If those daemons become unavailable due to an outage on a particular host, you can stop the
Impala service, delete the Impala StateStore and Impala Catalog Server roles, add the roles on a different host, and
restart the Impala service.

Note:

In Impala 1.2.4 and higher, you can specify a table namewith INVALIDATE METADATA after the table
is created in Hive, allowing you to make individual tables visible to Impala without doing a full reload
of the catalog metadata. Impala 1.2.4 also includes other changes to make the metadata broadcast
mechanism faster andmore responsive, especially during Impala startup. See New Features in Impala
Version 1.2.4 on page 618 for details.

Related information:Modifying Impala Startup Options on page 43, Starting Impala on page 42, Ports Used by Impala
on page 584

Developing Impala Applications
The core development language with Impala is SQL. You can also use Java or other languages to interact with Impala
through the standard JDBC and ODBC interfaces used by many business intelligence tools. For specialized kinds of
analysis, you can supplement the SQL built-in functions by writing user-defined functions (UDFs) in C++ or Java.

Apache Impala Guide | 19

Impala Concepts and Architecture

Overview of the Impala SQL Dialect

The Impala SQL dialect is highly compatible with the SQL syntax used in the Apache Hive component (HiveQL). As such,
it is familiar to users who are already familiar with running SQL queries on the Hadoop infrastructure. Currently, Impala
SQL supports a subset of HiveQL statements, data types, and built-in functions. Impala also includes additional built-in
functions for common industry features, to simplify porting SQL from non-Hadoop systems.

For users coming to Impala from traditional database or data warehousing backgrounds, the following aspects of the
SQL dialect might seem familiar:

• The SELECT statement includes familiar clauses such as WHERE, GROUP BY, ORDER BY, and WITH. You will find
familiar notions such as joins, built-in functions for processing strings, numbers, and dates, aggregate functions,
subqueries, and comparison operators such as IN() and BETWEEN. The SELECT statement is the place where
SQL standards compliance is most important.

• From the data warehousing world, you will recognize the notion of partitioned tables. One or more columns serve
as partition keys, and the data is physically arranged so that queries that refer to the partition key columns in the
WHERE clause can skip partitions that do not match the filter conditions. For example, if you have 10 years worth
of data and use a clause such as WHERE year = 2015, WHERE year > 2010, or WHERE year IN (2014,
2015), Impala skips all the data for non-matching years, greatly reducing the amount of I/O for the query.

• In Impala 1.2 and higher, UDFs let you perform custom comparisons and transformation logic during SELECT and
INSERT...SELECT statements.

For users coming to Impala from traditional database or data warehousing backgrounds, the following aspects of the
SQL dialect might require some learning and practice for you to become proficient in the Hadoop environment:

• Impala SQL is focused on queries and includes relatively little DML. There is no UPDATE or DELETE statement.
Stale data is typically discarded (by DROP TABLE or ALTER TABLE ... DROP PARTITION statements) or
replaced (by INSERT OVERWRITE statements).

• All data creation is done by INSERT statements, which typically insert data in bulk by querying from other tables.
There are two variations, INSERT INTO which appends to the existing data, and INSERT OVERWRITE which
replaces the entire contents of a table or partition (similar to TRUNCATE TABLE followed by a new INSERT).
Although there is an INSERT ... VALUES syntax to create a small number of values in a single statement, it is
far more efficient to use the INSERT ... SELECT to copy and transform large amounts of data from one table
to another in a single operation.

• You often construct Impala table definitions and data files in some other environment, and then attach Impala so
that it can run real-time queries. The same data files and table metadata are shared with other components of
the Hadoop ecosystem. In particular, Impala can access tables created by Hive or data inserted by Hive, and Hive
can access tables and data produced by Impala. Many other Hadoop components can write files in formats such
as Parquet and Avro, that can then be queried by Impala.

• Because Hadoop and Impala are focused on data warehouse-style operations on large data sets, Impala SQL
includes some idioms that you might find in the import utilities for traditional database systems. For example,
you can create a table that reads comma-separated or tab-separated text files, specifying the separator in the
CREATE TABLE statement. You can create external tables that read existing data files but do notmove or transform
them.

• Because Impala reads large quantities of data that might not be perfectly tidy and predictable, it does not require
length constraints on string data types. For example, you can define a database column as STRINGwith unlimited
length, rather than CHAR(1) or VARCHAR(64). (Although in Impala 2.0 and later, you can also use
length-constrained CHAR and VARCHAR types.)

Related information: Impala SQL Language Reference on page 117, especially Impala SQL Statements on page 215 and
Impala Built-In Functions on page 339

20 | Apache Impala Guide

Impala Concepts and Architecture

Overview of Impala Programming Interfaces

You can connect and submit requests to the Impala daemons through:

• The impala-shell interactive command interpreter.
• The Hue web-based user interface.
• JDBC.
• ODBC.

With these options, you can use Impala in heterogeneous environments, with JDBC or ODBC applications running on
non-Linux platforms. You can also use Impala on combination with various Business Intelligence tools that use the
JDBC and ODBC interfaces.

Each impalad daemon process, running on separate nodes in a cluster, listens to several ports for incoming requests.
Requests from impala-shell and Hue are routed to the impalad daemons through the same port. The impalad
daemons listen on separate ports for JDBC and ODBC requests.

How Impala Fits Into the Hadoop Ecosystem
Impalamakes use of many familiar components within the Hadoop ecosystem. Impala can interchange data with other
Hadoop components, as both a consumer and a producer, so it can fit in flexible ways into your ETL and ELT pipelines.

How Impala Works with Hive

A major Impala goal is to make SQL-on-Hadoop operations fast and efficient enough to appeal to new categories of
users and open upHadoop to new types of use cases.Where practical, itmakes use of existing ApacheHive infrastructure
that many Hadoop users already have in place to perform long-running, batch-oriented SQL queries.

In particular, Impala keeps its table definitions in a traditional MySQL or PostgreSQL database known as themetastore,
the same database where Hive keeps this type of data. Thus, Impala can access tables defined or loaded by Hive, as
long as all columns use Impala-supported data types, file formats, and compression codecs.

The initial focus on query features and performance means that Impala can read more types of data with the SELECT
statement than it can write with the INSERT statement. To query data using the Avro, RCFile, or SequenceFile file
formats, you load the data using Hive.

The Impala query optimizer can also make use of table statistics and column statistics. Originally, you gathered this
information with the ANALYZE TABLE statement in Hive; in Impala 1.2.2 and higher, use the Impala COMPUTE STATS
statement instead. COMPUTE STATS requires less setup, is more reliable, and does not require switching back and
forth between impala-shell and the Hive shell.

Overview of Impala Metadata and the Metastore

As discussed in How Impala Works with Hive on page 21, Impala maintains information about table definitions in a
central database known as themetastore. Impala also tracks other metadata for the low-level characteristics of data
files:

• The physical locations of blocks within HDFS.

For tables with a large volume of data and/or many partitions, retrieving all the metadata for a table can be
time-consuming, taking minutes in some cases. Thus, each Impala node caches all of this metadata to reuse for future
queries against the same table.

If the table definition or the data in the table is updated, all other Impala daemons in the cluster must receive the
latest metadata, replacing the obsolete cached metadata, before issuing a query against that table. In Impala 1.2 and
higher, themetadata update is automatic, coordinated through the catalogd daemon, for all DDL andDML statements
issued through Impala. See The Impala Catalog Service on page 19 for details.

For DDL and DML issued through Hive, or changesmademanually to files in HDFS, you still use the REFRESH statement
(when new data files are added to existing tables) or the INVALIDATE METADATA statement (for entirely new tables,
or after dropping a table, performing an HDFS rebalance operation, or deleting data files). Issuing INVALIDATE

Apache Impala Guide | 21

Impala Concepts and Architecture

http://gethue.com/

METADATA by itself retrieves metadata for all the tables tracked by the metastore. If you know that only specific tables
have been changed outside of Impala, you can issue REFRESH table_name for each affected table to only retrieve
the latest metadata for those tables.

How Impala Uses HDFS

Impala uses the distributed filesystem HDFS as its primary data storage medium. Impala relies on the redundancy
provided by HDFS to guard against hardware or network outages on individual nodes. Impala table data is physically
represented as data files in HDFS, using familiar HDFS file formats and compression codecs.When data files are present
in the directory for a new table, Impala reads them all, regardless of file name. New data is added in files with names
controlled by Impala.

How Impala Uses HBase

HBase is an alternative to HDFS as a storage medium for Impala data. It is a database storage system built on top of
HDFS, without built-in SQL support. Many Hadoop users already have it configured and store large (often sparse) data
sets in it. By defining tables in Impala and mapping them to equivalent tables in HBase, you can query the contents of
the HBase tables through Impala, and even perform join queries including both Impala and HBase tables. See Using
Impala to Query HBase Tables on page 558 for details.

22 | Apache Impala Guide

Impala Concepts and Architecture

Planning for Impala Deployment

Before you set up Impala in production, do some planning tomake sure that your hardware setup has sufficient capacity,
that your cluster topology is optimal for Impala queries, and that your schema design and ETL processes follow the
best practices for Impala.

Impala Requirements
To perform as expected, Impala depends on the availability of the software, hardware, and configurations described
in the following sections.

Product Compatibility Matrix

The ultimate source of truth about compatibility between various versions of CDH, Cloudera Manager, and various
CDH components is the online Product Compatibility Matrix.

For Impala, see the Impala compatibility matrix page.

Supported Operating Systems

The relevant supported operating systems and versions for Impala are the same as for the corresponding CDH 5
platforms. For details, see the Supported Operating Systems page for CDH 5.

Hive Metastore and Related Configuration

Impala can interoperate with data stored in Hive, and uses the same infrastructure as Hive for trackingmetadata about
schema objects such as tables and columns. The following components are prerequisites for Impala:

• MySQL or PostgreSQL, to act as a metastore database for both Impala and Hive.

Note:

Installing and configuring a Hive metastore is an Impala requirement. Impala does not work
without the metastore database. For the process of installing and configuring the metastore, see
Installing Impala on page 27.

Always configure a Hive metastore service rather than connecting directly to the metastore
database. The Hivemetastore service is required to interoperate between possibly different levels
of metastore APIs used by CDH and Impala, and avoids known issues with connecting directly to
the metastore database. The Hive metastore service is set up for you by default if you install
through Cloudera Manager 4.5 or higher.

A summary of the metastore installation process is as follows:

• Install aMySQL or PostgreSQL database. Start the database if it is not started after installation.
• Download the MySQL connector or the PostgreSQL connector and place it in the

/usr/share/java/ directory.
• Use the appropriate command line tool for your database to create themetastore database.
• Use the appropriate command line tool for your database to grant privileges for themetastore

database to the hive user.
• Modify hive-site.xml to include information matching your particular database: its URL,

user name, and password. Youwill copy the hive-site.xml file to the Impala Configuration
Directory later in the Impala installation process.

• Optional: Hive. Although only the Hive metastore database is required for Impala to function, you might install
Hive on some client machines to create and load data into tables that use certain file formats. See How Impala

Apache Impala Guide | 23

Planning for Impala Deployment

http://www.cloudera.com/documentation/enterprise/latest/topics/Product_Compatibility_Matrix.html
http://www.cloudera.com/documentation/enterprise/latest/topics/pcm_impala.html
http://www.cloudera.com/documentation/enterprise/release-notes/topics/rn_consolidated_pcm.html#cdh_cm_supported_os
http://www.mysql.com/products/connector/
http://jdbc.postgresql.org/download.html

Workswith Hadoop File Formats on page 528 for details. Hive does not need to be installed on the sameDataNodes
as Impala; it just needs access to the same metastore database.

Java Dependencies

Although Impala is primarily written in C++, it does use Java to communicate with various Hadoop components:

• The officially supported JVM for Impala is the Oracle JVM. Other JVMs might cause issues, typically resulting in a
failure at impalad startup. In particular, the JamVM used by default on certain levels of Ubuntu systems can
cause impalad to fail to start.

• Internally, the impalad daemon relies on the JAVA_HOME environment variable to locate the system Java libraries.
Make sure the impalad service is not run from an environment with an incorrect setting for this variable.

• All Java dependencies are packaged in the impala-dependencies.jar file, which is located at
/usr/lib/impala/lib/. These map to everything that is built under fe/target/dependency.

Networking Configuration Requirements

As part of ensuring best performance, Impala attempts to complete tasks on local data, as opposed to using network
connections to work with remote data. To support this goal, Impala matches the hostname provided to each Impala
daemon with the IP address of each DataNode by resolving the hostname flag to an IP address. For Impala to work
with local data, use a single IP interface for the DataNode and the Impala daemon on each machine. Ensure that the
Impala daemon's hostname flag resolves to the IP address of the DataNode. For single-homedmachines, this is usually
automatic, but formulti-homedmachines, ensure that the Impala daemon's hostname resolves to the correct interface.
Impala tries to detect the correct hostname at start-up, and prints the derived hostname at the start of the log in a
message of the form:

Using hostname: impala-daemon-1.example.com

In the majority of cases, this automatic detection works correctly. If you need to explicitly set the hostname, do so by
setting the --hostname flag.

Hardware Requirements

During join operations, portions of data from each joined table are loaded into memory. Data sets can be very large,
so ensure your hardware has sufficient memory to accommodate the joins you anticipate completing.

While requirements vary according to data set size, the following is generally recommended:

• CPU - Impala version 2.2 and higher uses the SSSE3 instruction set, which is included in newer processors.

Note: This required level of processor is the same as in Impala version 1.x. The Impala 2.0 and
2.1 releases had a stricter requirement for the SSE4.1 instruction set, which has nowbeen relaxed.

• Memory - 128 GB or more recommended, ideally 256 GB or more. If the intermediate results during query
processing on a particular node exceed the amount of memory available to Impala on that node, the query writes
temporary work data to disk, which can lead to long query times. Note that because the work is parallelized, and
intermediate results for aggregate queries are typically smaller than the original data, Impala can query and join
tables that are much larger than the memory available on an individual node.

• Storage - DataNodes with 12 or more disks each. I/O speeds are often the limiting factor for disk performance
with Impala. Ensure that you have sufficient disk space to store the data Impala will be querying.

User Account Requirements

Impala creates and uses a user and group named impala. Do not delete this account or group and do not modify the
account's or group's permissions and rights. Ensure no existing systems obstruct the functioning of these accounts and
groups. For example, if you have scripts that delete user accounts not in a white-list, add these accounts to the list of
permitted accounts.

24 | Apache Impala Guide

Planning for Impala Deployment

For correct file deletion during DROP TABLE operations, Impala must be able to move files to the HDFS trashcan. You
might need to create an HDFS directory /user/impala, writeable by the impala user, so that the trashcan can be
created. Otherwise, data files might remain behind after a DROP TABLE statement.

Impala should not run as root. Best Impala performance is achieved using direct reads, but root is not permitted to
use direct reads. Therefore, running Impala as root negatively affects performance.

By default, any user can connect to Impala and access all the associated databases and tables. You can enable
authorization and authentication based on the Linux OS user who connects to the Impala server, and the associated
groups for that user. Impala Security on page 91 for details. These security features do not change the underlying file
permission requirements; the impala user still needs to be able to access the data files.

Guidelines for Designing Impala Schemas
The guidelines in this topic help you to construct an optimized and scalable schema, one that integrates well with your
existing data management processes. Use these guidelines as a checklist when doing any proof-of-concept work,
porting exercise, or before deploying to production.

If you are adapting an existing database or Hive schema for use with Impala, read the guidelines in this section and
then see Porting SQL from Other Database Systems to Impala on page 465 for specific porting and compatibility tips.

Prefer binary file formats over text-based formats.

To save space and improve memory usage and query performance, use binary file formats for any large or intensively
queried tables. Parquet file format is the most efficient for data warehouse-style analytic queries. Avro is the other
binary file format that Impala supports, that you might already have as part of a Hadoop ETL pipeline.

Although Impala can create and query tables with the RCFile and SequenceFile file formats, such tables are relatively
bulky due to the text-based nature of those formats, and are not optimized for data warehouse-style queries due to
their row-oriented layout. Impala does not support INSERT operations for tables with these file formats.

Guidelines:

• For an efficient and scalable format for large, performance-critical tables, use the Parquet file format.
• To deliver intermediate data during the ETL process, in a format that can also be used by other Hadoop components,

Avro is a reasonable choice.
• For convenient import of raw data, use a text table instead of RCFile or SequenceFile, and convert to Parquet in

a later stage of the ETL process.

Use Snappy compression where practical.

Snappy compression involves low CPU overhead to decompress, while still providing substantial space savings. In cases
where you have a choice of compression codecs, such aswith the Parquet andAvro file formats, use Snappy compression
unless you find a compelling reason to use a different codec.

Prefer numeric types over strings.

If you have numeric values that you could treat as either strings or numbers (such as YEAR, MONTH, and DAY for partition
key columns), define them as the smallest applicable integer types. For example, YEAR can be SMALLINT, MONTH and
DAY can be TINYINT. Although you might not see any difference in the way partitioned tables or text files are laid out
on disk, using numeric types will save space in binary formats such as Parquet, and in memory when doing queries,
particularly resource-intensive queries such as joins.

Partition, but don't over-partition.

Partitioning is an important aspect of performance tuning for Impala. Follow the procedures in Partitioning for Impala
Tables on page 523 to set up partitioning for your biggest, most intensively queried tables.

If you are moving to Impala from a traditional database system, or just getting started in the Big Data field, you might
not have enough data volume to take advantage of Impala parallel queries with your existing partitioning scheme. For

Apache Impala Guide | 25

Planning for Impala Deployment

example, if you have only a few tens of megabytes of data per day, partitioning by YEAR, MONTH, and DAY columns
might be too granular. Most of your cluster might be sitting idle during queries that target a single day, or each node
might have very little work to do. Consider reducing the number of partition key columns so that each partition directory
contains several gigabytes worth of data.

For example, consider a Parquet table where each data file is 1 HDFS block, with a maximum block size of 1 GB. (In
Impala 2.0 and later, the default Parquet block size is reduced to 256 MB. For this exercise, let's assume you have
bumped the size back up to 1 GB by setting the query option PARQUET_FILE_SIZE=1g.) if you have a 10-node cluster,
you need 10 data files (up to 10 GB) to give each node some work to do for a query. But each core on each machine
can process a separate data block in parallel. With 16-core machines on a 10-node cluster, a query could process up
to 160 GB fully in parallel. If there are only a few data files per partition, not only are most cluster nodes sitting idle
during queries, so are most cores on those machines.

You can reduce the Parquet block size to as low as 128 MB or 64 MB to increase the number of files per partition and
improve parallelism. But also consider reducing the level of partitioning so that analytic queries have enough data to
work with.

Always compute stats after loading data.

Impala makes extensive use of statistics about data in the overall table and in each column, to help plan
resource-intensive operations such as join queries and inserting into partitioned Parquet tables. Because this information
is only available after data is loaded, run the COMPUTE STATS statement on a table after loading or replacing data in
a table or partition.

Having accurate statistics can make the difference between a successful operation, or one that fails due to an
out-of-memory error or a timeout. When you encounter performance or capacity issues, always use the SHOW STATS
statement to check if the statistics are present and up-to-date for all tables in the query.

When doing a join query, Impala consults the statistics for each joined table to determine their relative sizes and to
estimate the number of rows produced in each join stage.When doing an INSERT into a Parquet table, Impala consults
the statistics for the source table to determine how to distribute the work of constructing the data files for each
partition.

See COMPUTE STATS Statement on page 227 for the syntax of the COMPUTE STATS statement, and Table and Column
Statistics on page 490 for all the performance considerations for table and column statistics.

Verify sensible execution plans with EXPLAIN and SUMMARY.

Before executing a resource-intensive query, use the EXPLAIN statement to get an overview of how Impala intends
to parallelize the query and distribute the work. If you see that the query plan is inefficient, you can take tuning steps
such as changing file formats, using partitioned tables, running the COMPUTE STATS statement, or adding query hints.
For information about all of these techniques, see Tuning Impala for Performance on page 480.

After you run a query, you can see performance-related information about how it actually ran by issuing the SUMMARY
command inimpala-shell. Prior to Impala 1.4, youwould use thePROFILE command, but its highly technical output
was only useful for the most experienced users. SUMMARY, new in Impala 1.4, summarizes the most useful information
for all stages of execution, for all nodes rather than splitting out figures for each node.

26 | Apache Impala Guide

Planning for Impala Deployment

Installing Impala

Impala is an open-source add-on to the Cloudera Enterprise Core that returns rapid responses to queries.

Note:

Under CDH 5, Impala is included as part of the CDH installation and no separate steps are needed.
Therefore, the instruction steps in this section apply to CDH 4 only.

What is Included in an Impala Installation
Impala is made up of a set of components that can be installed on multiple nodes throughout your cluster. The key
installation step for performance is to install the impalad daemon (which does most of the query processing work)
on all DataNodes in the cluster.

The Impala package installs these binaries:

• impalad - The Impala daemon. Plans and executes queries against HDFS, HBase, and Amazon S3 data. Run one
impalad process on each node in the cluster that has a DataNode.

• statestored - Name service that tracks location and status of all impalad instances in the cluster. Run one
instance of this daemonon a node in your cluster.Most production deployments run this daemonon the namenode.

• catalogd - Metadata coordination service that broadcasts changes from Impala DDL and DML statements to all
affected Impala nodes, so that new tables, newly loaded data, and so on are immediately visible to queries
submitted through any Impala node. (Prior to Impala 1.2, you had to run the REFRESH or INVALIDATE METADATA
statement on each node to synchronize changedmetadata. Now those statements are only required if you perform
the DDL or DML through an external mechanism such as Hive or by uploading data to the Amazon S3 filesystem.)
Run one instance of this daemon on a node in your cluster, preferably on the same host as the statestored
daemon.

• impala-shell - Command-line interface for issuing queries to the Impala daemon. You install this on one or
more hosts anywhere on your network, not necessarily DataNodes or even within the same cluster as Impala. It
can connect remotely to any instance of the Impala daemon.

Before doing the installation, ensure that you have all necessary prerequisites. See Impala Requirements on page 23
for details.

Installing Impala with Cloudera Manager
Before installing Impala through the Cloudera Manager interface, make sure all applicable nodes have the appropriate
hardware configuration and levels of operating system and CDH. See Impala Requirements on page 23 for details.

Note:

To install the latest Impala under CDH 4, upgrade ClouderaManager to 4.8 or higher. ClouderaManager
4.8 is the first release that can manage the Impala catalog service introduced in Impala 1.2. Cloudera
Manager 4.8 requires this service to be present, so if you upgrade to Cloudera Manager 4.8, also
upgrade Impala to the most recent version at the same time.

For information on installing Impala in a Cloudera Manager-managed environment, see Installing Impala.

Apache Impala Guide | 27

Installing Impala

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_ig_install_impala.html

Managing your Impala installation through Cloudera Manager has a number of advantages. For example, when you
make configuration changes to CDH components using Cloudera Manager, it automatically applies changes to the
copies of configuration files, such as hive-site.xml, that Impala keeps under /etc/impala/conf. It also sets up
the Hive Metastore service that is required for Impala running under CDH 4.1.

In some cases, depending on the level of Impala, CDH, and Cloudera Manager, you might need to add particular
component configuration details in some of the free-form option fields on the Impala configuration pages within
Cloudera Manager. In Cloudera Manager 4, these fields are labelled Safety Valve; in Cloudera Manager 5, they are
called Advanced Configuration Snippet.

Installing Impala without Cloudera Manager
Before installing Impala manually, make sure all applicable nodes have the appropriate hardware configuration, levels
of operating system and CDH, and any other software prerequisites. See Impala Requirements on page 23 for details.

You can install Impala across many hosts or on one host:

• Installing Impala acrossmultiplemachines creates a distributed configuration. For best performance, install Impala
on all DataNodes.

• Installing Impala on a single machine produces a pseudo-distributed cluster.

To install Impala on a host:

1. Install CDH as described in the Installation section of the CDH 5 Installation Guide.
2. Install the Hive metastore somewhere in your cluster, as described in the Hive Installation topic in the CDH 5

Installation Guide. As part of this process, you configure the Hive metastore to use an external database as a
metastore. Impala uses this samedatabase for its own tablemetadata. You can choose either aMySQLor PostgreSQL
database as the metastore. The process for configuring each type of database is described in the CDH Installation
Guide).

Cloudera recommends setting up a Hive metastore service rather than connecting directly to the metastore
database; this configuration is required when running Impala under CDH 4.1. Make sure the
/etc/impala/conf/hive-site.xml file contains the following setting, substituting the appropriate hostname
formetastore_server_host:

<property>
<name>hive.metastore.uris</name>
<value>thrift://metastore_server_host:9083</value>
</property>
<property>
<name>hive.metastore.client.socket.timeout</name>
<value>3600</value>
<description>MetaStore Client socket timeout in seconds</description>
</property>

3. (Optional) If you installed the full Hive component on any host, you can verify that the metastore is configured
properly by starting the Hive console and querying for the list of available tables. Once you confirm that the console
starts, exit the console to continue the installation:

$ hive
Hive history file=/tmp/root/hive_job_log_root_201207272011_678722950.txt
hive> show tables;
table1
table2
hive> quit;
$

4. Confirm that your package management command is aware of the Impala repository settings, as described in
Impala Requirements on page 23. (For CDH 4, this is a different repository than for CDH.) You might need to
download a repo or list file into a system directory underneath /etc.

5. Use one of the following sets of commands to install the Impala package:

28 | Apache Impala Guide

Installing Impala

http://www.cloudera.com/documentation/enterprise/latest/topics/installation.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_hive_installation.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_hive_installation.html

For RHEL, Oracle Linux, or CentOS systems:

$ sudo yum install impala # Binaries for daemons
$ sudo yum install impala-server # Service start/stop script
$ sudo yum install impala-state-store # Service start/stop script
$ sudo yum install impala-catalog # Service start/stop script

For SUSE systems:

$ sudo zypper install impala # Binaries for daemons
$ sudo zypper install impala-server # Service start/stop script
$ sudo zypper install impala-state-store # Service start/stop script
$ sudo zypper install impala-catalog # Service start/stop script

For Debian or Ubuntu systems:

$ sudo apt-get install impala # Binaries for daemons
$ sudo apt-get install impala-server # Service start/stop script
$ sudo apt-get install impala-state-store # Service start/stop script
$ sudo apt-get install impala-catalog # Service start/stop script

Note: Cloudera recommends that you not install Impala on any HDFS NameNode. Installing
Impala on NameNodes provides no additional data locality, and executing queries with such a
configuration might cause memory contention and negatively impact the HDFS NameNode.

6. Copy the client hive-site.xml, core-site.xml, hdfs-site.xml, and hbase-site.xml configuration files
to the Impala configuration directory, which defaults to /etc/impala/conf. Create this directory if it does not
already exist.

7. Use one of the following commands to install impala-shell on the machines from which you want to issue
queries. You can installimpala-shellon any supportedmachine that can connect toDataNodes that are running
impalad.

For RHEL/CentOS systems:

$ sudo yum install impala-shell

For SUSE systems:

$ sudo zypper install impala-shell

For Debian/Ubuntu systems:

$ sudo apt-get install impala-shell

8. Complete any required or recommended configuration, as described in Post-Installation Configuration for Impala
on page 30. Some of these configuration changes aremandatory. (They are applied automatically when you install
using Cloudera Manager.)

Once installation and configuration are complete, see Starting Impala on page 42 for how to activate the software on
the appropriate nodes in your cluster.

If this is your first time setting up and using Impala in this cluster, run through some of the exercises in Impala Tutorials
on page 47 to verify that you can do basic operations such as creating tables and querying them.

Apache Impala Guide | 29

Installing Impala

Managing Impala

This section explains how to configure Impala to accept connections from applications that use popular programming
APIs:

• Post-Installation Configuration for Impala on page 30
• Configuring Impala to Work with ODBC on page 31
• Configuring Impala to Work with JDBC on page 34

This type of configuration is especially useful when using Impala in combination with Business Intelligence tools, which
use these standard interfaces to query different kinds of database and Big Data systems.

You can also configure these other aspects of Impala:

• Impala Security on page 91
• Modifying Impala Startup Options on page 43

Post-Installation Configuration for Impala
This section describes the mandatory and recommended configuration settings for Impala. If Impala is installed using
Cloudera Manager, some of these configurations are completed automatically; you must still configure short-circuit
reads manually. If you installed Impala without Cloudera Manager, or if you want to customize your environment,
consider making the changes described in this topic.

In some cases, depending on the level of Impala, CDH, and Cloudera Manager, you might need to add particular
component configuration details in one of the free-form fields on the Impala configuration pages within Cloudera
Manager. In Cloudera Manager 4, these fields are labelled Safety Valve; in Cloudera Manager 5, they are called
Advanced Configuration Snippet.

• You must enable short-circuit reads, whether or not Impala was installed through Cloudera Manager. This setting
goes in the Impala configuration settings, not the Hadoop-wide settings.

• If you installed Impala in an environment that is notmanaged by ClouderaManager, youmust enable block location
tracking, and you can optionally enable native checksumming for optimal performance.

• If you deployed Impala using Cloudera Manager see Testing Impala Performance on page 507 to confirm proper
configuration.

Mandatory: Short-Circuit Reads

Enabling short-circuit reads allows Impala to read local data directly from the file system. This removes the need to
communicate through the DataNodes, improving performance. This setting also minimizes the number of additional
copies of data. Short-circuit reads requires libhadoop.so (the Hadoop Native Library) to be accessible to both the
server and the client. libhadoop.so is not available if you have installed from a tarball. You must install from an
.rpm, .deb, or parcel to use short-circuit local reads.

Note: If you use Cloudera Manager, you can enable short-circuit reads through a checkbox in the
user interface and that setting takes effect for Impala as well.

To configure DataNodes for short-circuit reads:

1. Copy the client core-site.xml and hdfs-site.xml configuration files from theHadoop configuration directory
to the Impala configuration directory. The default Impala configuration location is /etc/impala/conf.

2. On all Impala nodes, configure the following properties in Impala's copy of hdfs-site.xml as shown:

<property>
 <name>dfs.client.read.shortcircuit</name>

30 | Apache Impala Guide

Managing Impala

 <value>true</value>
</property>

<property>
 <name>dfs.domain.socket.path</name>
 <value>/var/run/hdfs-sockets/dn</value>
</property>

<property>
 <name>dfs.client.file-block-storage-locations.timeout.millis</name>
 <value>10000</value>
</property>

3. If /var/run/hadoop-hdfs/ is group-writable, make sure its group is root.

Note: If you are also going to enable block location tracking, you can skip copying configuration
files and restarting DataNodes and go straight to Optional: Block Location Tracking. Configuring
short-circuit reads and block location tracking require the same process of copying files and
restarting services, so you can complete that process once when you have completed all
configuration changes. Whether you copy files and restart services now or during configuring
block location tracking, short-circuit reads are not enabled until you complete those final steps.

4. After applying these changes, restart all DataNodes.

Mandatory: Block Location Tracking

Enabling block locationmetadata allows Impala to knowwhich disk data blocks are located on, allowing better utilization
of the underlying disks. Impala will not start unless this setting is enabled.

To enable block location tracking:

1. For each DataNode, adding the following to the hdfs-site.xml file:

<property>
 <name>dfs.datanode.hdfs-blocks-metadata.enabled</name>
 <value>true</value>
</property>

2. Copy the client core-site.xml and hdfs-site.xml configuration files from theHadoop configuration directory
to the Impala configuration directory. The default Impala configuration location is /etc/impala/conf.

3. After applying these changes, restart all DataNodes.

Optional: Native Checksumming

Enabling native checksumming causes Impala to use an optimized native library for computing checksums, if that library
is available.

To enable native checksumming:

If you installed CDH from packages, the native checksumming library is installed and setup correctly. In such a case,
no additional steps are required. Conversely, if you installed by othermeans, such aswith tarballs, native checksumming
may not be available due to missing shared objects. Finding the message "Unable to load native-hadoop
library for your platform... using builtin-java classes where applicable" in the Impala logs
indicates native checksumming may be unavailable. To enable native checksumming, you must build and install
libhadoop.so (the Hadoop Native Library).

Configuring Impala to Work with ODBC
Third-party products can be designed to integrate with Impala using ODBC. For the best experience, ensure any
third-party product you intend to use is supported. Verifying support includes checking that the versions of Impala,

Apache Impala Guide | 31

Managing Impala

http://hadoop.apache.org/docs/r0.19.1/native_libraries.html

ODBC, the operating system, and the third-party product have all been approved for use together. Before configuring
your systems to use ODBC, download a connector. You may need to sign in and accept license agreements before
accessing the pages required for downloading ODBC connectors.

Downloading the ODBC Driver

Important: As of late 2015, most business intelligence applications are certified with the 2.x ODBC
drivers. Although the instructions on this page cover both the 2.x and 1.x drivers, expect to use the
2.x drivers exclusively for most ODBC applications connecting to Impala.

See the documentation page for installation instructions.

Configuring the ODBC Port

Versions 2.5 and 2.0 of the Cloudera ODBC Connector, currently certified for some but not all BI applications, use the
HiveServer2 protocol, corresponding to Impala port 21050. Impala supports Kerberos authentication with all the
supported versions of the driver, and requires ODBC 2.05.13 for Impala or higher for LDAP username/password
authentication.

Version 1.x of the Cloudera ODBC Connector uses the original HiveServer1 protocol, corresponding to Impala port
21000.

Example of Setting Up an ODBC Application for Impala

To illustrate the outline of the setup process, here is a transcript of a session to set up all required drivers and a business
intelligence application that uses the ODBC driver, under Mac OS X. Each .dmg file runs a GUI-based installer, first for
the underlying IODBC driver needed for non-Windows systems, then for the Cloudera ODBC Connector, and finally for
the BI tool itself.

$ ls -1
Cloudera-ODBC-Driver-for-Impala-Install-Guide.pdf
BI_Tool_Installer.dmg
iodbc-sdk-3.52.7-macosx-10.5.dmg
ClouderaImpalaODBC.dmg
$ open iodbc-sdk-3.52.7-macosx-10.dmg
Install the IODBC driver using its installer
$ open ClouderaImpalaODBC.dmg
Install the Cloudera ODBC Connector using its installer
$ installer_dir=$(pwd)
$ cd /opt/cloudera/impalaodbc
$ ls -1
Cloudera ODBC Driver for Impala Install Guide.pdf
Readme.txt
Setup
lib
ErrorMessages
Release Notes.txt
Tools
$ cd Setup
$ ls
odbc.ini odbcinst.ini
$ cp odbc.ini ~/.odbc.ini
$ vi ~/.odbc.ini
$ cat ~/.odbc.ini
[ODBC]
Specify any global ODBC configuration here such as ODBC tracing.

[ODBC Data Sources]
Sample Cloudera Impala DSN=Cloudera ODBC Driver for Impala

[Sample Cloudera Impala DSN]

Description: DSN Description.
This key is not necessary and is only to give a description of the data source.
Description=Cloudera ODBC Driver for Impala DSN

32 | Apache Impala Guide

Managing Impala

http://www.cloudera.com/content/support/en/documentation/cloudera-connectors-documentation/connector-documentation-latest.html
http://www.iodbc.org/dataspace/iodbc/wiki/iODBC/Downloads

Driver: The location where the ODBC driver is installed to.
Driver=/opt/cloudera/impalaodbc/lib/universal/libclouderaimpalaodbc.dylib

The DriverUnicodeEncoding setting is only used for SimbaDM
When set to 1, SimbaDM runs in UTF-16 mode.
When set to 2, SimbaDM runs in UTF-8 mode.
#DriverUnicodeEncoding=2

Values for HOST, PORT, KrbFQDN, and KrbServiceName should be set here.
They can also be specified on the connection string.
HOST=hostname.sample.example.com
PORT=21050
Schema=default

The authentication mechanism.
0 - No authentication (NOSASL)
1 - Kerberos authentication (SASL)
2 - Username authentication (SASL)
3 - Username/password authentication (SASL)
4 - Username/password authentication with SSL (SASL)
5 - No authentication with SSL (NOSASL)
6 - Username/password authentication (NOSASL)
AuthMech=0

Kerberos related settings.
KrbFQDN=
KrbRealm=
KrbServiceName=

Username/password authentication with SSL settings.
UID=
PWD
CAIssuedCertNamesMismatch=1
TrustedCerts=/opt/cloudera/impalaodbc/lib/universal/cacerts.pem

Specify the proxy user ID to use.
#DelegationUID=

General settings
TSaslTransportBufSize=1000
RowsFetchedPerBlock=10000
SocketTimeout=0
StringColumnLength=32767
UseNativeQuery=0
$ pwd
/opt/cloudera/impalaodbc/Setup
$ cd $installer_dir
$ open BI_Tool_Installer.dmg
Install the BI tool using its installer
$ ls /Applications | grep BI_Tool
BI_Tool.app
$ open -a BI_Tool.app
In the BI tool, connect to a data source using port 21050

Notes about JDBC and ODBC Interaction with Impala SQL Features

Most Impala SQL features work equivalently through the impala-shell interpreter of the JDBC or ODBC APIs. The
following are some exceptions to keep in mind when switching between the interactive shell and applications using
the APIs:

Note: If your JDBC or ODBC application connects to Impala through a load balancer such as haproxy,
be cautious about reusing the connections. If the load balancer has set up connection timeout values,
either check the connection frequently so that it never sits idle longer than the load balancer timeout
value, or check the connection validity before using it and create a new one if the connection has
been closed.

Apache Impala Guide | 33

Managing Impala

• The Impala complex types (STRUCT, ARRAY, or MAP) are available in CDH 5.5 / Impala 2.3 and higher. To use these
types with JDBC requires version 2.5.28 or higher of the Cloudera JDBC Connector for Impala. To use these types
with ODBC requires version 2.5.30 or higher of the Cloudera ODBC Connector for Impala. Consider upgrading all
JDBC and ODBC drivers at the same time you upgrade from CDH 5.5 or higher.

• Although the result sets from queries involving complex types consist of all scalar values, the queries involve join
notation and column references that might not be understood by a particular JDBC or ODBC connector. Consider
defining a view that represents the flattened version of a table containing complex type columns, and pointing
the JDBC or ODBC application at the view. See Complex Types (CDH 5.5 or higher only) on page 157 for details.

Configuring Impala to Work with JDBC
Impala supports the standard JDBC interface, allowing access from commercial Business Intelligence tools and custom
software written in Java or other programming languages. The JDBC driver allows you to access Impala from a Java
program that you write, or a Business Intelligence or similar tool that uses JDBC to communicate with various database
products.

Setting up a JDBC connection to Impala involves the following steps:

• Verifying the communication port where the Impala daemons in your cluster are listening for incoming JDBC
requests.

• Installing the JDBC driver on every system that runs the JDBC-enabled application.
• Specifying a connection string for the JDBC application to access one of the servers running the impalad daemon,

with the appropriate security settings.

Configuring the JDBC Port

The default port used by JDBC 2.0 and later (as well as ODBC 2.x) is 21050. Impala server accepts JDBC connections
through this same port 21050 by default. Make sure this port is available for communication with other hosts on your
network, for example, that it is not blocked by firewall software. If your JDBC client software connects to a different
port, specify that alternative port number with the --hs2_port option when starting impalad. See Starting Impala
on page 42 for details about Impala startup options. See Ports Used by Impala on page 584 for information about all
ports used for communication between Impala and clients or between Impala components.

Choosing the JDBC Driver

In Impala 2.0 and later, you have the choice between the Cloudera JDBC Connector and the Hive 0.13 JDBC driver.
Cloudera recommends using the Cloudera JDBC Connector where practical.

If you are already using JDBC applications with an earlier Impala release, you must update your JDBC driver to one of
these choices, because the Hive 0.12 driver that was formerly the only choice is not compatible with Impala 2.0 and
later.

Both the Cloudera JDBC2.5 Connector and theHive JDBCdriver provide a substantial speed increase for JDBC applications
with Impala 2.0 and higher, for queries that return large result sets.

Complex type considerations:

The Impala complex types (STRUCT, ARRAY, or MAP) are available in CDH 5.5 / Impala 2.3 and higher. To use these
types with JDBC requires version 2.5.28 or higher of the Cloudera JDBC Connector for Impala. To use these types with
ODBC requires version 2.5.30 or higher of the Cloudera ODBC Connector for Impala. Consider upgrading all JDBC and
ODBC drivers at the same time you upgrade from CDH 5.5 or higher.

Although the result sets from queries involving complex types consist of all scalar values, the queries involve join
notation and column references that might not be understood by a particular JDBC or ODBC connector. Consider
defining a view that represents the flattened version of a table containing complex type columns, and pointing the
JDBC or ODBC application at the view. See Complex Types (CDH 5.5 or higher only) on page 157 for details.

34 | Apache Impala Guide

Managing Impala

Enabling Impala JDBC Support on Client Systems

Using the Cloudera JDBC Connector (recommended)

You download and install the Cloudera JDBC 2.5 connector on any Linux, Windows, or Mac system where you intend
to run JDBC-enabled applications. From the Cloudera Connectors download page, you choose the appropriate protocol
(JDBC orODBC) and target product (Impala or Hive). The ease of downloading and installing on non-CDH systemsmakes
this connector a convenient choice for organizations with heterogeneous environments.

Using the Hive JDBC Driver

You install the Hive JDBC driver (hive-jdbc package) through the Linux package manager, on hosts within the CDH
cluster. The driver consists of several Java JAR files. The same driver can be used by Impala and Hive.

To get the JAR files, install the Hive JDBC driver on each CDH-enabled host in the cluster that will run JDBC applications.
Follow the instructions for CDH 5.

Note: The latest JDBC driver, corresponding to Hive 0.13, provides substantial performance
improvements for Impala queries that return large result sets. Impala 2.0 and later are compatible
with the Hive 0.13 driver. If you already have an older JDBC driver installed, and are running Impala
2.0 or higher, consider upgrading to the latest Hive JDBC driver for best performance with JDBC
applications.

If you are using JDBC-enabled applications on hosts outside the CDH cluster, you cannot use the CDH install procedure
on the non-CDH hosts. Install the JDBC driver on at least one CDH host using the preceding procedure. Then download
the JAR files to each client machine that will use JDBC with Impala:

commons-logging-X.X.X.jar
 hadoop-common.jar
 hive-common-X.XX.X-cdhX.X.X.jar
 hive-jdbc-X.XX.X-cdhX.X.X.jar
 hive-metastore-X.XX.X-cdhX.X.X.jar
 hive-service-X.XX.X-cdhX.X.X.jar
 httpclient-X.X.X.jar
 httpcore-X.X.X.jar
 libfb303-X.X.X.jar
 libthrift-X.X.X.jar
 log4j-X.X.XX.jar
 slf4j-api-X.X.X.jar
 slf4j-logXjXX-X.X.X.jar

To enable JDBC support for Impala on the system where you run the JDBC application:

1. Download the JAR files listed above to each client machine.

Note: For Maven users, see this sample github page for an example of the dependencies you
could add to a pom file instead of downloading the individual JARs.

2. Store the JAR files in a location of your choosing, ideally a directory already referenced in your CLASSPATH setting.
For example:

• On Linux, you might use a location such as /opt/jars/.
• On Windows, you might use a subdirectory underneath C:\Program Files.

3. To successfully load the Impala JDBC driver, client programs must be able to locate the associated JAR files. This
often means setting the CLASSPATH for the client process to include the JARs. Consult the documentation for
your JDBC client for more details on how to install new JDBC drivers, but some examples of how to set CLASSPATH
variables include:

Apache Impala Guide | 35

Managing Impala

http://go.cloudera.com/odbc-driver-hive-impala.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_hive_jdbc_install.html
https://github.com/onefoursix/Cloudera-Impala-JDBC-Example

• On Linux, if you extracted the JARs to /opt/jars/, you might issue the following command to prepend the
JAR files path to an existing classpath:

export CLASSPATH=/opt/jars/*.jar:$CLASSPATH

• On Windows, use the System Properties control panel item to modify the Environment Variables for your
system. Modify the environment variables to include the path to which you extracted the files.

Note: If the existing CLASSPATH on your client machine refers to some older version of the
Hive JARs, ensure that the new JARs are the first ones listed. Either put the new JAR files
earlier in the listings, or delete the other references to Hive JAR files.

Establishing JDBC Connections

The JDBC driver class depends on which driver you select.

Note: If your JDBC or ODBC application connects to Impala through a load balancer such as haproxy,
be cautious about reusing the connections. If the load balancer has set up connection timeout values,
either check the connection frequently so that it never sits idle longer than the load balancer timeout
value, or check the connection validity before using it and create a new one if the connection has
been closed.

Using the Cloudera JDBC Connector (recommended)

Depending on the level of the JDBC API your application is targeting, you can use the following fully-qualified class
names (FQCNs):

• com.cloudera.impala.jdbc41.Driver

• com.cloudera.impala.jdbc41.DataSource

• com.cloudera.impala.jdbc4.Driver

• com.cloudera.impala.jdbc4.DataSource

• com.cloudera.impala.jdbc3.Driver

• com.cloudera.impala.jdbc3.DataSource

The connection string has the following format:

jdbc:impala://Host:Port[/Schema];Property1=Value;Property2=Value;...

The port value is typically 21050 for Impala.

For full details about the classes and the connection string (especially the property values available for the connection
string), download the appropriate driver documentation for your platform from the Impala JDBC Connector download
page.

Using the Hive JDBC Driver

For example, with the Hive JDBC driver, the class name is org.apache.hive.jdbc.HiveDriver. Once you have
configured Impala to work with JDBC, you can establish connections between the two. To do so for a cluster that does
not use Kerberos authentication, use a connection string of the form jdbc:hive2://host:port/;auth=noSasl.
For example, you might use:

jdbc:hive2://myhost.example.com:21050/;auth=noSasl

36 | Apache Impala Guide

Managing Impala

http://www.cloudera.com/content/cloudera/en/downloads/connectors/impala/jdbc/impala-jdbc-v2-5-5.html
http://www.cloudera.com/content/cloudera/en/downloads/connectors/impala/jdbc/impala-jdbc-v2-5-5.html

To connect to an instance of Impala that requires Kerberos authentication, use a connection string of the form
jdbc:hive2://host:port/;principal=principal_name. The principal must be the same user principal you
used when starting Impala. For example, you might use:

jdbc:hive2://myhost.example.com:21050/;principal=impala/myhost.example.com@H2.EXAMPLE.COM

To connect to an instance of Impala that requires LDAP authentication, use a connection string of the form
jdbc:hive2://host:port/db_name;user=ldap_userid;password=ldap_password. For example, youmight
use:

jdbc:hive2://myhost.example.com:21050/test_db;user=fred;password=xyz123

Note:

Currently, the Hive JDBC driver does not support connections that use both Kerberos authentication
and SSL encryption. To use both of these security features with Impala through a JDBC application,
use the Cloudera JDBC Connector as the JDBC driver.

Notes about JDBC and ODBC Interaction with Impala SQL Features

Most Impala SQL features work equivalently through the impala-shell interpreter of the JDBC or ODBC APIs. The
following are some exceptions to keep in mind when switching between the interactive shell and applications using
the APIs:

• Complex type considerations:

– Queries involving the complex types (ARRAY, STRUCT, and MAP) require notation that might not be available
in all levels of JDBC and ODBC drivers. If you have trouble querying such a table due to the driver level or
inability to edit the queries used by the application, you can create a view that exposes a “flattened” version
of the complex columns and point the application at the view. See Complex Types (CDH 5.5 or higher only)
on page 157 for details.

– The complex types available in CDH 5.5 / Impala 2.3 and higher are supported by the JDBC getColumns()
API. Both MAP and ARRAY are reported as the JDBC SQL Type ARRAY, because this is the closest matching Java
SQL type. This behavior is consistent with Hive. STRUCT types are reported as the JDBC SQL Type STRUCT.

To be consistent with Hive's behavior, the TYPE_NAME field is populated with the primitive type name for
scalar types, andwith the fulltoSql() for complex types. The resulting type names are somewhat inconsistent,
because nested types are printed differently than top-level types. For example, the following list shows how
toSQL() for Impala types are translated to TYPE_NAME values:

DECIMAL(10,10) becomes DECIMAL
CHAR(10) becomes CHAR
VARCHAR(10) becomes VARCHAR
ARRAY<DECIMAL(10,10)> becomes ARRAY<DECIMAL(10,10)>
ARRAY<CHAR(10)> becomes ARRAY<CHAR(10)>
ARRAY<VARCHAR(10)> becomes ARRAY<VARCHAR(10)>

Kudu Considerations for DML Statements

Currently, Impala INSERT, UPDATE, or other DML statements issued through the JDBC interface against a Kudu table
do not return JDBC error codes for conditions such as duplicate primary key columns. Therefore, for applications that
issue a high volume of DML statements, prefer to use the Kudu Java API directly rather than a JDBC application.

Apache Impala Guide | 37

Managing Impala

http://www.cloudera.com/content/www/en-us/downloads.html.html

Upgrading Impala

Upgrading Impala involves stopping Impala services, using your operating system's package management tool to
upgrade Impala to the latest version, and then restarting Impala services.

Note:

• Each version of CDH 5 has an associated version of Impala, When you upgrade from CDH 4 to
CDH 5, you get whichever version of Impala comes with the associated level of CDH. Depending
on the version of Impala you were running on CDH 4, this could install a lower level of Impala on
CDH 5. For example, if you upgrade to CDH 5.0 fromCDH4 plus Impala 1.4, the CDH 5.0 installation
comeswith Impala 1.3. Always check the associated level of Impala before upgrading to a specific
version of CDH 5. Where practical, upgrade from CDH 4 to the latest CDH 5, which also has the
latest Impala.

• When you upgrade Impala, also upgrade Cloudera Manager if necessary:

– Users running Impala on CDH 5 must upgrade to Cloudera Manager 5.0.0 or higher.
– Users running Impala on CDH 4 must upgrade to Cloudera Manager 4.8 or higher. Cloudera

Manager 4.8 includesmanagement support for the Impala catalog service, and is theminimum
Cloudera Manager version you can use.

– ClouderaManager is continually updatedwith configuration settings for features introduced
in the latest Impala releases.

• If you are upgrading from CDH 5 beta to CDH 5.0 production, make sure you are using the
appropriate CDH 5 repositories shown on the CDH version and packaging page, then follow the
procedures throughout the rest of this section.

• Every time you upgrade to a new major or minor Impala release, see Incompatible Changes and
Limitations in Apache Impala on page 626 in the Release Notes for any changes needed in your
source code, startup scripts, and so on.

• Also check Known Issues and Workarounds in Impala on page 636 in the Release Notes for any
issues or limitations that require workarounds.

Upgrading Impala through Cloudera Manager - Parcels
Parcels are an alternative binary distribution format available in Cloudera Manager 4.5 and higher.

Important: In CDH 5, there is not a separate Impala parcel; Impala is part of the main CDH 5 parcel.
Each level of CDH 5 has a corresponding version of Impala, and you upgrade Impala by upgrading CDH.
See the CDH 5 upgrade instructions and choose the instructions for parcels. The remainder of this
section only covers parcel upgrades for Impala under CDH 4.

To upgrade Impala for CDH 4 in a Cloudera Managed environment, using parcels:

1. If you originally installed using packages and now are switching to parcels, remove all the Impala-related packages
first. You can checkwhich packages are installed using one of the following commands, depending on your operating
system:

rpm -qa # RHEL, Oracle Linux, CentOS, Debian
dpkg --get-selections # Debian

38 | Apache Impala Guide

Upgrading Impala

http://www.cloudera.com/documentation/enterprise/latest/topics/rg_vd.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_upgrading_cdh.html

and then remove the packages using one of the following commands:

sudo yum remove pkg_names # RHEL, Oracle Linux, CentOS
sudo zypper remove pkg_names # SLES
sudo apt-get purge pkg_names # Ubuntu, Debian

2. Connect to the Cloudera Manager Admin Console.

3. Go to the Hosts > Parcels tab. You should see a parcel with a newer version of Impala that you can upgrade to.

4. Click Download, then Distribute. (The button changes as each step completes.)

5. Click Activate.

6. When prompted, click Restart to restart the Impala service.

Upgrading Impala through Cloudera Manager - Packages
To upgrade Impala in a Cloudera Managed environment, using packages:

1. Connect to the Cloudera Manager Admin Console.
2. In the Services tab, click the Impala service.
3. Click Actions and click Stop.
4. Use one of the following sets of commands to update Impala on each Impala node in your cluster:

For RHEL, Oracle Linux, or CentOS systems:

$ sudo yum update impala
$ sudo yum update hadoop-lzo-cdh4 # Optional; if this package is already installed

For SUSE systems:

$ sudo zypper update impala
$ sudo zypper update hadoop-lzo-cdh4 # Optional; if this package is already installed

For Debian or Ubuntu systems:

$ sudo apt-get install impala
$ sudo apt-get install hadoop-lzo-cdh4 # Optional; if this package is already installed

5. Use one of the following sets of commands to update Impala shell on each node on which it is installed:

For RHEL, Oracle Linux, or CentOS systems:

$ sudo yum update impala-shell

For SUSE systems:

$ sudo zypper update impala-shell

For Debian or Ubuntu systems:

$ sudo apt-get install impala-shell

6. Connect to the Cloudera Manager Admin Console.
7. In the Services tab, click the Impala service.
8. Click Actions and click Start.

Apache Impala Guide | 39

Upgrading Impala

Upgrading Impala without Cloudera Manager
To upgrade Impala on a cluster not managed by Cloudera Manager, run these Linux commands on the appropriate
hosts in your cluster:

1. Stop Impala services.

a. Stop impalad on each Impala node in your cluster:

$ sudo service impala-server stop

b. Stop any instances of the state store in your cluster:

$ sudo service impala-state-store stop

c. Stop any instances of the catalog service in your cluster:

$ sudo service impala-catalog stop

2. Check if there are new recommended or required configuration settings to put into place in the configuration
files, typically under /etc/impala/conf. See Post-Installation Configuration for Impala on page 30 for settings
related to performance and scalability.

3. Use one of the following sets of commands to update Impala on each Impala node in your cluster:

For RHEL, Oracle Linux, or CentOS systems:

$ sudo yum update impala-server
$ sudo yum update hadoop-lzo-cdh4 # Optional; if this package is already installed
$ sudo yum update impala-catalog # New in Impala 1.2; do yum install when upgrading from
 1.1.

For SUSE systems:

$ sudo zypper update impala-server
$ sudo zypper update hadoop-lzo-cdh4 # Optional; if this package is already installed
$ sudo zypper update impala-catalog # New in Impala 1.2; do zypper install when upgrading
 from 1.1.

For Debian or Ubuntu systems:

$ sudo apt-get install impala-server
$ sudo apt-get install hadoop-lzo-cdh4 # Optional; if this package is already installed
$ sudo apt-get install impala-catalog # New in Impala 1.2.

4. Use one of the following sets of commands to update Impala shell on each node on which it is installed:

For RHEL, Oracle Linux, or CentOS systems:

$ sudo yum update impala-shell

For SUSE systems:

$ sudo zypper update impala-shell

For Debian or Ubuntu systems:

$ sudo apt-get install impala-shell

40 | Apache Impala Guide

Upgrading Impala

5. Depending on which release of Impala you are upgrading from, you might find that the symbolic links
/etc/impala/conf and /usr/lib/impala/sbin are missing. If so, see Known Issues and Workarounds in
Impala on page 636 for the procedure to work around this problem.

6. Restart Impala services:

a. Restart the Impala state store service on the desired nodes in your cluster. Expect to see a process named
statestored if the service started successfully.

$ sudo service impala-state-store start
$ ps ax | grep [s]tatestored
 6819 ? Sl 0:07 /usr/lib/impala/sbin/statestored -log_dir=/var/log/impala
-state_store_port=24000

Restart the state store service before the Impala server service to avoid “Not connected” errors when you
run impala-shell.

b. Restart the Impala catalog service on whichever host it runs on in your cluster. Expect to see a process named
catalogd if the service started successfully.

$ sudo service impala-catalog restart
$ ps ax | grep [c]atalogd
 6068 ? Sl 4:06 /usr/lib/impala/sbin/catalogd

c. Restart the Impala daemon service on each node in your cluster. Expect to see a process named impalad if
the service started successfully.

$ sudo service impala-server start
$ ps ax | grep [i]mpalad
 7936 ? Sl 0:12 /usr/lib/impala/sbin/impalad -log_dir=/var/log/impala
-state_store_port=24000 -use_statestore
-state_store_host=127.0.0.1 -be_port=22000

Note:

If the services did not start successfully (even though the sudo service command might display
[OK]), check for errors in the Impala log file, typically in /var/log/impala.

Apache Impala Guide | 41

Upgrading Impala

Starting Impala

To activate Impala if it is installed but not yet started:

1. Set any necessary configuration options for the Impala services. See Modifying Impala Startup Options on page
43 for details.

2. Start one instance of the Impala statestore. The statestore helps Impala to distribute work efficiently, and to
continue running in the event of availability problems for other Impala nodes. If the statestore becomes unavailable,
Impala continues to function.

3. Start one instance of the Impala catalog service.
4. Start the main Impala daemon services.

Once Impala is running, you can conduct interactive experiments using the instructions in Impala Tutorials on page 47
and try Using the Impala Shell (impala-shell Command) on page 471.

Starting Impala through Cloudera Manager
If you installed Impalawith ClouderaManager, use ClouderaManager to start and stop services. The ClouderaManager
GUI is a convenientway to check that all services are running, to set configuration options using form fields in a browser,
and to spot potential issues such as low disk space before they become serious. ClouderaManager automatically starts
all the Impala-related services as a group, in the correct order. See the Cloudera Manager Documentation for details.

Note:

Currently, Impala UDFs and UDAs are not persisted in the metastore database. Information about
these functions is held in the memory of the catalogd daemon. You must reload them by running
the CREATE FUNCTION statements again each time you restart the catalogd daemon.

Starting Impala from the Command Line
To start the Impala state store and Impala from the command line or a script, you can either use the service command
or you can start the daemons directly through the impalad, statestored, and catalogd executables.

Start the Impala statestore and then start impalad instances. You can modify the values the service initialization
scripts use when starting the statestore and Impala by editing /etc/default/impala.

Start the statestore service using a command similar to the following:

$ sudo service impala-state-store start

Start the catalog service using a command similar to the following:

$ sudo service impala-catalog start

Start the Impala daemon services using a command similar to the following:

$ sudo service impala-server start

42 | Apache Impala Guide

Starting Impala

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_start_stop_service.html

Note:

Currently, Impala UDFs and UDAs are not persisted in the metastore database. Information about
these functions is held in the memory of the catalogd daemon. You must reload them by running
the CREATE FUNCTION statements again each time you restart the catalogd daemon.

If any of the services fail to start, review:

• Reviewing Impala Logs on page 576
• Troubleshooting Impala on page 579

Modifying Impala Startup Options
The configuration options for the Impala-related daemons let you choose which hosts and ports to use for the services
that run on a single host, specify directories for logging, control resource usage and security, and specify other aspects
of the Impala software.

Configuring Impala Startup Options through Cloudera Manager

If you manage your cluster through Cloudera Manager, configure the settings for all the Impala-related daemons by
navigating to this page: Clusters > Services > Impala > Configuration > View and Edit. See the Cloudera Manager
documentation for instructions about how to configure Impala through Cloudera Manager.

If the ClouderaManager interface does not yet have a form field for a newly added option, or if you need to use special
options for debugging and troubleshooting, the Advanced option page for each daemon includes one or more fields
where you can enter option names directly. In Cloudera Manager 4, these fields are labelled Safety Valve; in Cloudera
Manager 5, they are called Advanced Configuration Snippet. There is also a free-form field for query options, on the
top-level Impala Daemon options page.

Configuring Impala Startup Options through the Command Line

When you run Impala in a non-Cloudera Manager environment, the Impala server, statestore, and catalog services
start up using values provided in a defaults file, /etc/default/impala.

This file includes information about many resources used by Impala. Most of the defaults included in this file should
be effective in most cases. For example, typically you would not change the definition of the CLASSPATH variable, but
you would always set the address used by the statestore server. Some of the content you might modify includes:

IMPALA_STATE_STORE_HOST=127.0.0.1
IMPALA_STATE_STORE_PORT=24000
IMPALA_BACKEND_PORT=22000
IMPALA_LOG_DIR=/var/log/impala
IMPALA_CATALOG_SERVICE_HOST=...
IMPALA_STATE_STORE_HOST=...

export IMPALA_STATE_STORE_ARGS=${IMPALA_STATE_STORE_ARGS:- \
 -log_dir=${IMPALA_LOG_DIR} -state_store_port=${IMPALA_STATE_STORE_PORT}}
IMPALA_SERVER_ARGS=" \
-log_dir=${IMPALA_LOG_DIR} \
-catalog_service_host=${IMPALA_CATALOG_SERVICE_HOST} \
-state_store_port=${IMPALA_STATE_STORE_PORT} \
-use_statestore \
-state_store_host=${IMPALA_STATE_STORE_HOST} \
-be_port=${IMPALA_BACKEND_PORT}"
export ENABLE_CORE_DUMPS=${ENABLE_COREDUMPS:-false}

Apache Impala Guide | 43

Starting Impala

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_impala_service.html

To use alternate values, edit the defaults file, then restart all the Impala-related services so that the changes take
effect. Restart the Impala server using the following commands:

$ sudo service impala-server restart
Stopping Impala Server: [OK]
Starting Impala Server: [OK]

Restart the Impala statestore using the following commands:

$ sudo service impala-state-store restart
Stopping Impala State Store Server: [OK]
Starting Impala State Store Server: [OK]

Restart the Impala catalog service using the following commands:

$ sudo service impala-catalog restart
Stopping Impala Catalog Server: [OK]
Starting Impala Catalog Server: [OK]

Some common settings to change include:

• Statestore address. Cloudera recommends the statestore be on a separate host not running theimpalad daemon.
In that recommended configuration, the impalad daemon cannot refer to the statestore server using the loopback
address. If the statestore is hosted on a machine with an IP address of 192.168.0.27, change:

IMPALA_STATE_STORE_HOST=127.0.0.1

to:

IMPALA_STATE_STORE_HOST=192.168.0.27

• Catalog server address (including both the hostname and the port number). Update the value of the
IMPALA_CATALOG_SERVICE_HOST variable. Cloudera recommends the catalog server be on the same host as
the statestore. In that recommended configuration, the impalad daemon cannot refer to the catalog server using
the loopback address. If the catalog service is hosted on a machine with an IP address of 192.168.0.27, add the
following line:

IMPALA_CATALOG_SERVICE_HOST=192.168.0.27:26000

The /etc/default/impala defaults file currently does not define an IMPALA_CATALOG_ARGS environment
variable, but if you add one it will be recognized by the service startup/shutdown script. Add a definition for this
variable to /etc/default/impala and add the option -catalog_service_host=hostname. If the port is
different than the default 26000, also add the option -catalog_service_port=port.

• Memory limits. You can limit the amount of memory available to Impala. For example, to allow Impala to use no
more than 70% of system memory, change:

export IMPALA_SERVER_ARGS=${IMPALA_SERVER_ARGS:- \
 -log_dir=${IMPALA_LOG_DIR} \
 -state_store_port=${IMPALA_STATE_STORE_PORT} \
 -use_statestore -state_store_host=${IMPALA_STATE_STORE_HOST} \
 -be_port=${IMPALA_BACKEND_PORT}}

to:

export IMPALA_SERVER_ARGS=${IMPALA_SERVER_ARGS:- \
 -log_dir=${IMPALA_LOG_DIR} -state_store_port=${IMPALA_STATE_STORE_PORT} \
 -use_statestore -state_store_host=${IMPALA_STATE_STORE_HOST} \
 -be_port=${IMPALA_BACKEND_PORT} -mem_limit=70%}

44 | Apache Impala Guide

Starting Impala

You can specify the memory limit using absolute notation such as 500m or 2G, or as a percentage of physical
memory such as 60%.

Note: Queries that exceed the specified memory limit are aborted. Percentage limits are based
on the physical memory of the machine and do not consider cgroups.

• Core dump enablement. To enable core dumps on systems not managed by Cloudera Manager, change:

export ENABLE_CORE_DUMPS=${ENABLE_COREDUMPS:-false}

to:

export ENABLE_CORE_DUMPS=${ENABLE_COREDUMPS:-true}

On systems managed by Cloudera Manager, enable the Enable Core Dump setting for the Impala service.

Note:

• The location of core dump files may vary according to your operating system configuration.

• Other security settings may prevent Impala from writing core dumps even when this option
is enabled.

• On systems managed by Cloudera Manager, the default location for core dumps is on a
temporary filesystem, which can lead to out-of-space issues if the core dumps are large,
frequent, or not removed promptly. To specify an alternative location for the core dumps,
filter the Impala configuration settings to find the core_dump_dir option, which is available
in Cloudera Manager 5.4.3 and higher. This option lets you specify a different directory for
core dumps for each of the Impala-related daemons.

• Authorization using the open source Sentry plugin. Specify the -server_name and
-authorization_policy_fileoptionsaspart of theIMPALA_SERVER_ARGSandIMPALA_STATE_STORE_ARGS
settings to enable the core Impala support for authentication. See Starting the impalad Daemon with Sentry
Authorization Enabled on page 97 for details.

• Auditing for successful or blocked Impala queries, another aspect of security. Specify the
-audit_event_log_dir=directory_path option and optionally the
-max_audit_event_log_file_size=number_of_queries and-abort_on_failed_audit_eventoptions
as part of the IMPALA_SERVER_ARGS settings, for each Impala node, to enable and customize auditing. See
Auditing Impala Operations on page 113 for details.

• Password protection for the Impala web UI, which listens on port 25000 by default. This feature involves adding
some or all of the --webserver_password_file, --webserver_authentication_domain, and
--webserver_certificate_file options to the IMPALA_SERVER_ARGS and IMPALA_STATE_STORE_ARGS
settings. See Security Guidelines for Impala on page 91 for details.

• Another setting you might add to IMPALA_SERVER_ARGS is a comma-separated list of query options and values:

-default_query_options='option=value,option=value,...'

These options control the behavior of queries performed by this impalad instance. The option values you specify
here override the default values for Impala query options, as shown by the SET statement in impala-shell.

• During troubleshooting, Cloudera Support might direct you to change other values, particularly for
IMPALA_SERVER_ARGS, to work around issues or gather debugging information.

Apache Impala Guide | 45

Starting Impala

Note:

These startup options for the impalad daemon are different from the command-line options for the
impala-shell command. For the impala-shell options, see impala-shell Configuration Options
on page 471.

Checking the Values of Impala Configuration Options

You can check the current runtime value of all these settings through the Impala web interface, available by default
at http://impala_hostname:25000/varz for the impalad daemon, http://impala_hostname:25010/varz
for the statestored daemon, or http://impala_hostname:25020/varz for the catalogd daemon. In the
Cloudera Manager interface, you can see the link to the appropriate service_nameWeb UI page when you look at the
status page for a specific daemon on a specific host.

Startup Options for impalad Daemon

The impalad daemon implements the main Impala service, which performs query processing and reads and writes
the data files.

Startup Options for statestored Daemon

The statestored daemon implements the Impala statestore service, whichmonitors the availability of Impala services
across the cluster, and handles situations such as nodes becoming unavailable or becoming available again.

Startup Options for catalogd Daemon

The catalogd daemon implements the Impala catalog service, which broadcasts metadata changes to all the Impala
nodes when Impala creates a table, inserts data, or performs other kinds of DDL and DML operations.

By default, the metadata loading and caching on startup happens asynchronously, so Impala can begin accepting
requests promptly. To enable the original behavior, where Impalawaited until all metadatawas loaded before accepting
any requests, set the catalogd configuration option --load_catalog_in_background=false.

46 | Apache Impala Guide

Starting Impala

Impala Tutorials

This section includes tutorial scenarios that demonstrate how to begin using Impala once the software is installed. It
focuses on techniques for loading data, because once you have some data in tables and can query that data, you can
quickly progress to more advanced Impala features.

Note:

Where practical, the tutorials take you from “ground zero” to having the desired Impala tables and
data. In some cases, youmight need to download additional files fromoutside sources, set up additional
software components, modify commands or scripts to fit your own configuration, or substitute your
own sample data.

Before trying these tutorial lessons, install Impala using one of these procedures:

• If you already have a CDH environment set up and just need to add Impala to it, follow the installation process
described in Installing Impala on page 27.Make sure to also install the Hivemetastore service if you do not already
have Hive configured.

• To set up Impala and all its prerequisites at once, in a minimal configuration that you can use for small-scale
experiments, set up the Cloudera QuickStart VM, which includes CDH and Impala on CentOS. Use this single-node
VM to try out basic SQL functionality, not anything related to performance and scalability. For more information,
see the Cloudera QuickStart VM.

Tutorials for Getting Started
These tutorials demonstrate the basics of using Impala. They are intended for first-time users, and for trying out Impala
on any new cluster to make sure the major components are working correctly.

Explore a New Impala Instance

This tutorial demonstrates techniques for finding your way around the tables and databases of an unfamiliar (possibly
empty) Impala instance.

When you connect to an Impala instance for the first time, you use theSHOW DATABASES andSHOW TABLES statements
to view the most common types of objects. Also, call the version() function to confirm which version of Impala you
are running; the version number is important when consulting documentation and dealing with support issues.

A completely empty Impala instance contains no tables, but still has two databases:

• default, where new tables are created when you do not specify any other database.
• _impala_builtins, a system database used to hold all the built-in functions.

The following example shows how to see the available databases, and the tables in each. If the list of databases or
tables is long, you can use wildcard notation to locate specific databases or tables based on their names.

$ impala-shell -i localhost --quiet
Starting Impala Shell without Kerberos authentication
Welcome to the Impala shell. Press TAB twice to see a list of available commands.

Copyright (c) 2012 Cloudera, Inc. All rights reserved.

(Shell build version: Impala Shell v...
[localhost:21000] > select version();
+---
| version()
+---
| impalad version ...
| Built on ...

Apache Impala Guide | 47

Impala Tutorials

http://www.cloudera.com/content/support/en/downloads/quickstart_vms.html

+---
[localhost:21000] > show databases;
+--------------------------+
| name |
+--------------------------+
| _impala_builtins |
| ctas |
| d1 |
| d2 |
| d3 |
| default |
| explain_plans |
| external_table |
| file_formats |
| tpc |
+--------------------------+
[localhost:21000] > select current_database();
+--------------------+
| current_database() |
+--------------------+
| default |
+--------------------+
[localhost:21000] > show tables;
+-------+
| name |
+-------+
| ex_t |
| t1 |
+-------+
[localhost:21000] > show tables in d3;

[localhost:21000] > show tables in tpc;
+------------------------+
| name |
+------------------------+
| city |
| customer |
| customer_address |
| customer_demographics |
| household_demographics |
| item |
| promotion |
| store |
| store2 |
| store_sales |
| ticket_view |
| time_dim |
| tpc_tables |
+------------------------+
[localhost:21000] > show tables in tpc like 'customer*';
+-----------------------+
| name |
+-----------------------+
| customer |
| customer_address |
| customer_demographics |
+-----------------------+

Once you know what tables and databases are available, you descend into a database with the USE statement. To
understand the structure of each table, you use the DESCRIBE command. Once inside a database, you can issue
statements such as INSERT and SELECT that operate on particular tables.

The following example explores a database named TPC whose name we learned in the previous example. It shows
how to filter the table names within a database based on a search string, examine the columns of a table, and run
queries to examine the characteristics of the table data. For example, for an unfamiliar table you might want to know
the number of rows, the number of different values for a column, and other properties such as whether the column

48 | Apache Impala Guide

Impala Tutorials

contains any NULL values. When sampling the actual data values from a table, use a LIMIT clause to avoid excessive
output if the table contains more rows or distinct values than you expect.

[localhost:21000] > use tpc;
[localhost:21000] > show tables like '*view*';
+-------------+
| name |
+-------------+
| ticket_view |
+-------------+
[localhost:21000] > describe city;
+-------------+--------+---------+
| name | type | comment |
+-------------+--------+---------+
id	int	
name	string	
countrycode	string	
district	string	
population	int	
+-------------+--------+---------+		
[localhost:21000] > select count(*) from city;		
+----------+		
count(*)		
+----------+		
0		
+----------+		
[localhost:21000] > desc customer;		
+------------------------+--------+---------+		
name	type	comment
+------------------------+--------+---------+		
c_customer_sk	int	
c_customer_id	string	
c_current_cdemo_sk	int	
c_current_hdemo_sk	int	
c_current_addr_sk	int	
c_first_shipto_date_sk	int	
c_first_sales_date_sk	int	
c_salutation	string	
c_first_name	string	
c_last_name	string	
c_preferred_cust_flag	string	
c_birth_day	int	
c_birth_month	int	
c_birth_year	int	
c_birth_country	string	
c_login	string	
c_email_address	string	
c_last_review_date	string	
+------------------------+--------+---------+		
[localhost:21000] > select count(*) from customer;		
+----------+		
count(*)		
+----------+		
100000		
+----------+		
[localhost:21000] > select count(distinct c_birth_month) from customer;		
+-------------------------------+		
count(distinct c_birth_month)		
+-------------------------------+		
12		
+-------------------------------+		
[localhost:21000] > select count(*) from customer where c_email_address is null;		
+----------+		
count(*)		
+----------+		
0		
+----------+		
[localhost:21000] > select distinct c_salutation from customer limit 10;		
+--------------+		
c_salutation		
+--------------+		
Mr.		
Ms.		

Apache Impala Guide | 49

Impala Tutorials

| Dr. |
| |
| Miss |
| Sir |
| Mrs. |
+--------------+

When you graduate from read-only exploration, you use statements such as CREATE DATABASE and CREATE TABLE
to set up your own database objects.

The following example demonstrates creating a new database holding a new table. Although the last example ended
inside the TPC database, the new EXPERIMENTS database is not nested inside TPC; all databases are arranged in a
single top-level list.

[localhost:21000] > create database experiments;
[localhost:21000] > show databases;
+--------------------------+
| name |
+--------------------------+
| _impala_builtins |
| ctas |
| d1 |
| d2 |
| d3 |
| default |
| experiments |
| explain_plans |
| external_table |
| file_formats |
| tpc |
+--------------------------+
[localhost:21000] > show databases like 'exp*';
+---------------+
| name |
+---------------+
| experiments |
| explain_plans |
+---------------+

The following example creates a new table, T1. To illustrate a common mistake, it creates this table inside the wrong
database, the TPC database where the previous example ended. The ALTER TABLE statement lets youmove the table
to the intended database, EXPERIMENTS, as part of a rename operation. The USE statement is always needed to switch
to a new database, and the current_database() function confirms which database the session is in, to avoid these
kinds of mistakes.

[localhost:21000] > create table t1 (x int);

[localhost:21000] > show tables;
+------------------------+
| name |
+------------------------+
| city |
| customer |
| customer_address |
| customer_demographics |
| household_demographics |
| item |
| promotion |
| store |
| store2 |
| store_sales |
| t1 |
| ticket_view |
| time_dim |
| tpc_tables |
+------------------------+
[localhost:21000] > select current_database();
+--------------------+
| current_database() |

50 | Apache Impala Guide

Impala Tutorials

+--------------------+
| tpc |
+--------------------+
[localhost:21000] > alter table t1 rename to experiments.t1;
[localhost:21000] > use experiments;
[localhost:21000] > show tables;
+------+
| name |
+------+
| t1 |
+------+
[localhost:21000] > select current_database();
+--------------------+
| current_database() |
+--------------------+
| experiments |
+--------------------+

For your initial experiments with tables, you can use ones with just a few columns and a few rows, and text-format
data files.

Note: As you graduate to more realistic scenarios, you will use more elaborate tables with many
columns, features such as partitioning, and file formats such as Parquet. When dealing with realistic
data volumes, youwill bring in data using LOAD DATA or INSERT ... SELECT statements to operate
on millions or billions of rows at once.

The following example sets up a couple of simple tables with a few rows, and performs queries involving sorting,
aggregate functions and joins.

[localhost:21000] > insert into t1 values (1), (3), (2), (4);
[localhost:21000] > select x from t1 order by x desc;
+---+
| x |
+---+
| 4 |
| 3 |
| 2 |
| 1 |
+---+
[localhost:21000] > select min(x), max(x), sum(x), avg(x) from t1;
+--------+--------+--------+--------+
| min(x) | max(x) | sum(x) | avg(x) |
+--------+--------+--------+--------+
| 1 | 4 | 10 | 2.5 |
+--------+--------+--------+--------+

[localhost:21000] > create table t2 (id int, word string);
[localhost:21000] > insert into t2 values (1, "one"), (3, "three"), (5, 'five');
[localhost:21000] > select word from t1 join t2 on (t1.x = t2.id);
+-------+
| word |
+-------+
| one |
| three |
+-------+

After completing this tutorial, you should now know:

• How to tell which version of Impala is running on your system.
• How to find the names of databases in an Impala instance, either displaying the full list or searching for specific

names.
• How to find the names of tables in an Impala database, either displaying the full list or searching for specific names.
• How to switch between databases and check which database you are currently in.
• How to learn the column names and types of a table.
• How to create databases and tables, insert small amounts of test data, and run simple queries.

Apache Impala Guide | 51

Impala Tutorials

Load CSV Data from Local Files

This scenario illustrates how to create some very small tables, suitable for first-time users to experiment with Impala
SQL features. TAB1 and TAB2 are loaded with data from files in HDFS. A subset of data is copied from TAB1 into TAB3.

PopulateHDFSwith the data youwant to query. To begin this process, create one ormore new subdirectories underneath
your user directory in HDFS. The data for each table resides in a separate subdirectory. Substitute your own user name
for cloudera where appropriate. This example uses the -p option with the mkdir operation to create any necessary
parent directories if they do not already exist.

$ whoami
cloudera
$ hdfs dfs -ls /user
Found 3 items
drwxr-xr-x - cloudera cloudera 0 2013-04-22 18:54 /user/cloudera
drwxrwx--- - mapred mapred 0 2013-03-15 20:11 /user/history
drwxr-xr-x - hue supergroup 0 2013-03-15 20:10 /user/hive

$ hdfs dfs -mkdir -p /user/cloudera/sample_data/tab1 /user/cloudera/sample_data/tab2

Here is some sample data, for two tables named TAB1 and TAB2.

Copy the following content to .csv files in your local filesystem:

tab1.csv:

1,true,123.123,2012-10-24 08:55:00
2,false,1243.5,2012-10-25 13:40:00
3,false,24453.325,2008-08-22 09:33:21.123
4,false,243423.325,2007-05-12 22:32:21.33454
5,true,243.325,1953-04-22 09:11:33

tab2.csv:

1,true,12789.123
2,false,1243.5
3,false,24453.325
4,false,2423.3254
5,true,243.325
60,false,243565423.325
70,true,243.325
80,false,243423.325
90,true,243.325

Put each .csv file into a separate HDFS directory using commands like the following, which use paths available in the
Impala Demo VM:

$ hdfs dfs -put tab1.csv /user/cloudera/sample_data/tab1
$ hdfs dfs -ls /user/cloudera/sample_data/tab1
Found 1 items
-rw-r--r-- 1 cloudera cloudera 192 2013-04-02 20:08
/user/cloudera/sample_data/tab1/tab1.csv

$ hdfs dfs -put tab2.csv /user/cloudera/sample_data/tab2
$ hdfs dfs -ls /user/cloudera/sample_data/tab2
Found 1 items
-rw-r--r-- 1 cloudera cloudera 158 2013-04-02 20:09
/user/cloudera/sample_data/tab2/tab2.csv

The name of each data file is not significant. In fact, when Impala examines the contents of the data directory for the
first time, it considers all files in the directory to make up the data of the table, regardless of how many files there are
or what the files are named.

To understand what paths are available within your own HDFS filesystem and what the permissions are for the various
directories and files, issue hdfs dfs -ls / and work your way down the tree doing -ls operations for the various
directories.

52 | Apache Impala Guide

Impala Tutorials

Use the impala-shell command to create tables, either interactively or through a SQL script.

The following example shows creating three tables. For each table, the example shows creating columns with various
attributes such as Boolean or integer types. The example also includes commands that provide information about how
the data is formatted, such as rows terminating with commas, which makes sense in the case of importing data from
a .csv file. Where we already have .csv files containing data in the HDFS directory tree, we specify the location of
the directory containing the appropriate .csv file. Impala considers all the data from all the files in that directory to
represent the data for the table.

DROP TABLE IF EXISTS tab1;
-- The EXTERNAL clause means the data is located outside the central location
-- for Impala data files and is preserved when the associated Impala table is dropped.
-- We expect the data to already exist in the directory specified by the LOCATION clause.
CREATE EXTERNAL TABLE tab1
(
 id INT,
 col_1 BOOLEAN,
 col_2 DOUBLE,
 col_3 TIMESTAMP
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/user/cloudera/sample_data/tab1';

DROP TABLE IF EXISTS tab2;
-- TAB2 is an external table, similar to TAB1.
CREATE EXTERNAL TABLE tab2
(
 id INT,
 col_1 BOOLEAN,
 col_2 DOUBLE
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ','
LOCATION '/user/cloudera/sample_data/tab2';

DROP TABLE IF EXISTS tab3;
-- Leaving out the EXTERNAL clause means the data will be managed
-- in the central Impala data directory tree. Rather than reading
-- existing data files when the table is created, we load the
-- data after creating the table.
CREATE TABLE tab3
(
 id INT,
 col_1 BOOLEAN,
 col_2 DOUBLE,
 month INT,
 day INT
)
ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';

Note: Getting through these CREATE TABLE statements successfully is an important validation step
to confirm everything is configured correctly with the Hive metastore and HDFS permissions. If you
receive any errors during the CREATE TABLE statements:

• Make sure you followed the installation instructions closely, in Installing Impala on page 27.
• Make sure the hive.metastore.warehouse.dir property points to a directory that Impala

canwrite to. The ownership should behive:hive, and theimpala user should also be amember
of the hive group.

• If the value of hive.metastore.warehouse.dir is different in the Cloudera Manager dialogs
and in the Hive shell, youmight need to designate the hosts running impaladwith the “gateway”
role for Hive, and deploy the client configuration files to those hosts.

Point an Impala Table at Existing Data Files

A convenient way to set up data for Impala to access is to use an external table, where the data already exists in a set
of HDFS files and you just point the Impala table at the directory containing those files. For example, you might run in

Apache Impala Guide | 53

Impala Tutorials

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_managing_roles.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_managing_roles.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_client_config.html

impala-shell a *.sql file with contents similar to the following, to create an Impala table that accesses an existing
data file used by Hive.

The following examples set up 2 tables, referencing the paths and sample data supplied with the Cloudera QuickStart
VM. For historical reasons, the data physically resides in an HDFS directory tree under /user/hive, although this
particular data is entirely managed by Impala rather than Hive. When we create an external table, we specify the
directory containing one ormore data files, and Impala queries the combined content of all the files inside that directory.
Here is how we examine the directories and files within the HDFS filesystem:

$ cd ~/cloudera/datasets
$./tpcds-setup.sh
... Downloads and unzips the kit, builds the data and loads it into HDFS ...
$ hdfs dfs -ls /user/hive/tpcds/customer
Found 1 items
-rw-r--r-- 1 cloudera supergroup 13209372 2013-03-22 18:09
/user/hive/tpcds/customer/customer.dat
$ hdfs dfs -cat /user/hive/tpcds/customer/customer.dat | more
1|AAAAAAAABAAAAAAA|980124|7135|32946|2452238|2452208|Mr.|Javier|Lewis|Y|9|12|1936|CHILE||Javie
r.Lewis@VFAxlnZEvOx.org|2452508|
2|AAAAAAAACAAAAAAA|819667|1461|31655|2452318|2452288|Dr.|Amy|Moses|Y|9|4|1966|TOGO||Amy.Moses@
Ovk9KjHH.com|2452318|
3|AAAAAAAADAAAAAAA|1473522|6247|48572|2449130|2449100|Miss|Latisha|Hamilton|N|18|9|1979|NIUE||
Latisha.Hamilton@V.com|2452313|
4|AAAAAAAAEAAAAAAA|1703214|3986|39558|2450030|2450000|Dr.|Michael|White|N|7|6|1983|MEXICO||Mic
hael.White@i.org|2452361|
5|AAAAAAAAFAAAAAAA|953372|4470|36368|2449438|2449408|Sir|Robert|Moran|N|8|5|1956|FIJI||Robert.
Moran@Hh.edu|2452469|
...

Here is a SQL script to set up Impala tables pointing to some of these data files in HDFS. (The script in the VM sets up
tables like this through Hive; ignore those tables for purposes of this demonstration.) Save the following as
customer_setup.sql:

--
-- store_sales fact table and surrounding dimension tables only
--
create database tpcds;
use tpcds;

drop table if exists customer;
create external table customer
(
 c_customer_sk int,
 c_customer_id string,
 c_current_cdemo_sk int,
 c_current_hdemo_sk int,
 c_current_addr_sk int,
 c_first_shipto_date_sk int,
 c_first_sales_date_sk int,
 c_salutation string,
 c_first_name string,
 c_last_name string,
 c_preferred_cust_flag string,
 c_birth_day int,
 c_birth_month int,
 c_birth_year int,
 c_birth_country string,
 c_login string,
 c_email_address string,
 c_last_review_date string
)
row format delimited fields terminated by '|'
location '/user/hive/tpcds/customer';

drop table if exists customer_address;
create external table customer_address
(
 ca_address_sk int,
 ca_address_id string,
 ca_street_number string,

54 | Apache Impala Guide

Impala Tutorials

 ca_street_name string,
 ca_street_type string,
 ca_suite_number string,
 ca_city string,
 ca_county string,
 ca_state string,
 ca_zip string,
 ca_country string,
 ca_gmt_offset float,
 ca_location_type string
)
row format delimited fields terminated by '|'
location '/user/hive/tpcds/customer_address';

We would run this script with a command such as:

impala-shell -i localhost -f customer_setup.sql

Describe the Impala Table

Now that you have updated the database metadata that Impala caches, you can confirm that the expected tables are
accessible by Impala and examine the attributes of one of the tables. We created these tables in the database named
default. If the tables were in a database other than the default, wewould issue a command use db_name to switch
to that database before examining or querying its tables. We could also qualify the name of a table by prepending the
database name, for example default.customer and default.customer_name.

[impala-host:21000] > show databases
Query finished, fetching results ...
default
Returned 1 row(s) in 0.00s
[impala-host:21000] > show tables
Query finished, fetching results ...
customer
customer_address
Returned 2 row(s) in 0.00s
[impala-host:21000] > describe customer_address
+------------------+--------+---------+
| name | type | comment |
+------------------+--------+---------+
ca_address_sk	int	
ca_address_id	string	
ca_street_number	string	
ca_street_name	string	
ca_street_type	string	
ca_suite_number	string	
ca_city	string	
ca_county	string	
ca_state	string	
ca_zip	string	
ca_country	string	
ca_gmt_offset	float	
ca_location_type	string	
+------------------+--------+---------+
Returned 13 row(s) in 0.01

Query the Impala Table

You can query data contained in the tables. Impala coordinates the query execution across a single node or multiple
nodes depending on your configuration,without the overhead of runningMapReduce jobs to perform the intermediate
processing.

There are a variety of ways to execute queries on Impala:

• Using the impala-shell command in interactive mode:

$ impala-shell -i impala-host
Connected to localhost:21000

Apache Impala Guide | 55

Impala Tutorials

[impala-host:21000] > select count(*) from customer_address;
50000
Returned 1 row(s) in 0.37s

• Passing a set of commands contained in a file:

$ impala-shell -i impala-host -f myquery.sql
Connected to localhost:21000
50000
Returned 1 row(s) in 0.19s

• Passing a single command to the impala-shell command. The query is executed, the results are returned, and
the shell exits. Make sure to quote the command, preferably with single quotation marks to avoid shell expansion
of characters such as *.

$ impala-shell -i impala-host -q 'select count(*) from customer_address'
Connected to localhost:21000
50000
Returned 1 row(s) in 0.29s

Data Loading and Querying Examples

This section describes how to create some sample tables and load data into them. These tables can then be queried
using the Impala shell.

Loading Data

Loading data involves:

• Establishing a data set. The example below uses .csv files.
• Creating tables to which to load data.
• Loading the data into the tables you created.

Sample Queries

To run these sample queries, create a SQL query file query.sql, copy and paste each query into the query file, and
then run the query file using the shell. For example, to run query.sql on impala-host, youmight use the command:

impala-shell.sh -i impala-host -f query.sql

The examples and results below assume you have loaded the sample data into the tables as described above.

Example: Examining Contents of Tables

Let's start by verifying that the tables do contain the data we expect. Because Impala often deals with tables containing
millions or billions of rows, when examining tables of unknown size, include the LIMIT clause to avoid huge amounts
of unnecessary output, as in the final query. (If your interactive query starts displaying an unexpected volume of data,
press Ctrl-C in impala-shell to cancel the query.)

SELECT * FROM tab1;
SELECT * FROM tab2;
SELECT * FROM tab2 LIMIT 5;

Results:

+----+-------+------------+-------------------------------+
| id | col_1 | col_2 | col_3 |
+----+-------+------------+-------------------------------+
1	true	123.123	2012-10-24 08:55:00
2	false	1243.5	2012-10-25 13:40:00
3	false	24453.325	2008-08-22 09:33:21.123000000
4	false	243423.325	2007-05-12 22:32:21.334540000

56 | Apache Impala Guide

Impala Tutorials

| 5 | true | 243.325 | 1953-04-22 09:11:33 |
+----+-------+------------+-------------------------------+

+----+-------+---------------+
| id | col_1 | col_2 |
+----+-------+---------------+
1	true	12789.123
2	false	1243.5
3	false	24453.325
4	false	2423.3254
5	true	243.325
60	false	243565423.325
70	true	243.325
80	false	243423.325
90	true	243.325
+----+-------+---------------+

+----+-------+-----------+
| id | col_1 | col_2 |
+----+-------+-----------+
1	true	12789.123
2	false	1243.5
3	false	24453.325
4	false	2423.3254
5	true	243.325
+----+-------+-----------+

Example: Aggregate and Join

SELECT tab1.col_1, MAX(tab2.col_2), MIN(tab2.col_2)
FROM tab2 JOIN tab1 USING (id)
GROUP BY col_1 ORDER BY 1 LIMIT 5;

Results:

+-------+-----------------+-----------------+
| col_1 | max(tab2.col_2) | min(tab2.col_2) |
+-------+-----------------+-----------------+
| false | 24453.325 | 1243.5 |
| true | 12789.123 | 243.325 |
+-------+-----------------+-----------------+

Example: Subquery, Aggregate and Joins

SELECT tab2.*
FROM tab2,
(SELECT tab1.col_1, MAX(tab2.col_2) AS max_col2
 FROM tab2, tab1
 WHERE tab1.id = tab2.id
 GROUP BY col_1) subquery1
WHERE subquery1.max_col2 = tab2.col_2;

Results:

+----+-------+-----------+
| id | col_1 | col_2 |
+----+-------+-----------+
| 1 | true | 12789.123 |
| 3 | false | 24453.325 |
+----+-------+-----------+

Example: INSERT Query

INSERT OVERWRITE TABLE tab3
SELECT id, col_1, col_2, MONTH(col_3), DAYOFMONTH(col_3)
FROM tab1 WHERE YEAR(col_3) = 2012;

Apache Impala Guide | 57

Impala Tutorials

Query TAB3 to check the result:

SELECT * FROM tab3;

Results:

+----+-------+---------+-------+-----+
| id | col_1 | col_2 | month | day |
+----+-------+---------+-------+-----+
| 1 | true | 123.123 | 10 | 24 |
| 2 | false | 1243.5 | 10 | 25 |
+----+-------+---------+-------+-----+

Advanced Tutorials
These tutorials walk you through advanced scenarios or specialized features.

Attaching an External Partitioned Table to an HDFS Directory Structure

This tutorial shows how you might set up a directory tree in HDFS, put data files into the lowest-level subdirectories,
and then use an Impala external table to query the data files from their original locations.

The tutorial uses a table with web log data, with separate subdirectories for the year, month, day, and host. For
simplicity, we use a tiny amount of CSV data, loading the same data into each partition.

First, we make an Impala partitioned table for CSV data, and look at the underlying HDFS directory structure to
understand the directory structure to re-create elsewhere in HDFS. The columns field1, field2, and field3
correspond to the contents of the CSV data files. The year, month, day, and host columns are all represented as
subdirectories within the table structure, and are not part of the CSV files. We use STRING for each of these columns
so that we can produce consistent subdirectory names, with leading zeros for a consistent length.

create database external_partitions;
use external_partitions;
create table logs (field1 string, field2 string, field3 string)
 partitioned by (year string, month string , day string, host string)
 row format delimited fields terminated by ',';
insert into logs partition (year="2013", month="07", day="28", host="host1") values
("foo","foo","foo");
insert into logs partition (year="2013", month="07", day="28", host="host2") values
("foo","foo","foo");
insert into logs partition (year="2013", month="07", day="29", host="host1") values
("foo","foo","foo");
insert into logs partition (year="2013", month="07", day="29", host="host2") values
("foo","foo","foo");
insert into logs partition (year="2013", month="08", day="01", host="host1") values
("foo","foo","foo");

Back in the Linux shell, we examine the HDFS directory structure. (Your Impala data directory might be in a different
location; for historical reasons, it is sometimes under the HDFS path /user/hive/warehouse.) We use the hdfs
dfs -ls command to examine the nested subdirectories corresponding to each partitioning column, with separate
subdirectories at each level (with = in their names) representing the different values for each partitioning column.
When we get to the lowest level of subdirectory, we use the hdfs dfs -cat command to examine the data file and
see CSV-formatted data produced by the INSERT statement in Impala.

$ hdfs dfs -ls /user/impala/warehouse/external_partitions.db
Found 1 items
drwxrwxrwt - impala hive 0 2013-08-07 12:24
/user/impala/warehouse/external_partitions.db/logs
$ hdfs dfs -ls /user/impala/warehouse/external_partitions.db/logs
Found 1 items
drwxr-xr-x - impala hive 0 2013-08-07 12:24
/user/impala/warehouse/external_partitions.db/logs/year=2013
$ hdfs dfs -ls /user/impala/warehouse/external_partitions.db/logs/year=2013

58 | Apache Impala Guide

Impala Tutorials

Found 2 items
drwxr-xr-x - impala hive 0 2013-08-07 12:23
/user/impala/warehouse/external_partitions.db/logs/year=2013/month=07
drwxr-xr-x - impala hive 0 2013-08-07 12:24
/user/impala/warehouse/external_partitions.db/logs/year=2013/month=08
$ hdfs dfs -ls /user/impala/warehouse/external_partitions.db/logs/year=2013/month=07
Found 2 items
drwxr-xr-x - impala hive 0 2013-08-07 12:22
/user/impala/warehouse/external_partitions.db/logs/year=2013/month=07/day=28
drwxr-xr-x - impala hive 0 2013-08-07 12:23
/user/impala/warehouse/external_partitions.db/logs/year=2013/month=07/day=29
$ hdfs dfs -ls
/user/impala/warehouse/external_partitions.db/logs/year=2013/month=07/day=28
Found 2 items
drwxr-xr-x - impala hive 0 2013-08-07 12:21
/user/impala/warehouse/external_partitions.db/logs/year=2013/month=07/day=28/host=host1
drwxr-xr-x - impala hive 0 2013-08-07 12:22
/user/impala/warehouse/external_partitions.db/logs/year=2013/month=07/day=28/host=host2
$ hdfs dfs -ls
/user/impala/warehouse/external_partitions.db/logs/year=2013/month=07/day=28/host=host1
Found 1 items
-rw-r--r-- 3 impala hive 12 2013-08-07 12:21
/user/impala/warehouse/external_partiti
ons.db/logs/year=2013/month=07/day=28/host=host1/3981726974111751120--8907184999369517436_822630111_data.0
$ hdfs dfs -cat
/user/impala/warehouse/external_partitions.db/logs/year=2013/month=07/day=28/\
host=host1/3981726974111751120--8 907184999369517436_822630111_data.0
foo,foo,foo

Still in the Linux shell, we use hdfs dfs -mkdir to create several data directories outside the HDFS directory tree
that Impala controls (/user/impala/warehouse in this example, maybe different in your case). Depending on your
configuration, you might need to log in as a user with permission to write into this HDFS directory tree; for example,
the commands shown here were run while logged in as the hdfs user.

$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=07/day=28/host=host1
$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=07/day=28/host=host2
$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=07/day=28/host=host1
$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=07/day=29/host=host1
$ hdfs dfs -mkdir -p /user/impala/data/logs/year=2013/month=08/day=01/host=host1

Wemake a tiny CSV file, with values different than in the INSERT statements used earlier, and put a copy within each
subdirectory that we will use as an Impala partition.

$ cat >dummy_log_data
bar,baz,bletch
$ hdfs dfs -mkdir -p
/user/impala/data/external_partitions/year=2013/month=08/day=01/host=host1
$ hdfs dfs -mkdir -p
/user/impala/data/external_partitions/year=2013/month=07/day=28/host=host1
$ hdfs dfs -mkdir -p
/user/impala/data/external_partitions/year=2013/month=07/day=28/host=host2
$ hdfs dfs -mkdir -p
/user/impala/data/external_partitions/year=2013/month=07/day=29/host=host1
$ hdfs dfs -put dummy_log_data /user/impala/data/logs/year=2013/month=07/day=28/host=host1
$ hdfs dfs -put dummy_log_data /user/impala/data/logs/year=2013/month=07/day=28/host=host2
$ hdfs dfs -put dummy_log_data /user/impala/data/logs/year=2013/month=07/day=29/host=host1
$ hdfs dfs -put dummy_log_data /user/impala/data/logs/year=2013/month=08/day=01/host=host1

Back in the impala-shell interpreter, we move the original Impala-managed table aside, and create a new external
table with a LOCATION clause pointing to the directory under which we have set up all the partition subdirectories
and data files.

use external_partitions;
alter table logs rename to logs_original;
create external table logs (field1 string, field2 string, field3 string)
 partitioned by (year string, month string, day string, host string)

Apache Impala Guide | 59

Impala Tutorials

 row format delimited fields terminated by ','
 location '/user/impala/data/logs';

Because partition subdirectories and data files come and go during the data lifecycle, you must identify each of the
partitions through an ALTER TABLE statement before Impala recognizes the data files they contain.

alter table logs add partition (year="2013",month="07",day="28",host="host1")
alter table log_type add partition (year="2013",month="07",day="28",host="host2");
alter table log_type add partition (year="2013",month="07",day="29",host="host1");
alter table log_type add partition (year="2013",month="08",day="01",host="host1");

We issue a REFRESH statement for the table, always a safe practicewhen data files have beenmanually added, removed,
or changed. Then the data is ready to be queried. The SELECT * statement illustrates that the data from our trivial
CSV file was recognized in each of the partitions where we copied it. Although in this case there are only a few rows,
we include a LIMIT clause on this test query just in case there is more data than we expect.

refresh log_type;
select * from log_type limit 100;
+--------+--------+--------+------+-------+-----+-------+
| field1 | field2 | field3 | year | month | day | host |
+--------+--------+--------+------+-------+-----+-------+
bar	baz	bletch	2013	07	28	host1
bar	baz	bletch	2013	08	01	host1
bar	baz	bletch	2013	07	29	host1
bar	baz	bletch	2013	07	28	host2
+--------+--------+--------+------+-------+-----+-------+

Switching Back and Forth Between Impala and Hive

Sometimes, you might find it convenient to switch to the Hive shell to perform some data loading or transformation
operation, particularly on file formats such as RCFile, SequenceFile, and Avro that Impala currently can query but not
write to.

Whenever you create, drop, or alter a table or other kind of object through Hive, the next time you switch back to the
impala-shell interpreter, issue a one-time INVALIDATE METADATA statement so that Impala recognizes the new
or changed object.

Whenever you load, insert, or change data in an existing table through Hive (or even through manual HDFS operations
such as the hdfs command), the next time you switch back to the impala-shell interpreter, issue a one-time
REFRESH table_name statement so that Impala recognizes the new or changed data.

For examples showing how this process works for the REFRESH statement, look at the examples of creating RCFile and
SequenceFile tables in Impala, loading data through Hive, and then querying the data through Impala. See Using the
RCFile File Format with Impala Tables on page 553 and Using the SequenceFile File Format with Impala Tables on page
555 for those examples.

For examples showing how this process works for the INVALIDATE METADATA statement, look at the example of
creating and loading an Avro table in Hive, and then querying the data through Impala. See Using the Avro File Format
with Impala Tables on page 548 for that example.

Note:

Originally, Impala did not support UDFs, but this feature is available in Impala starting in Impala 1.2.
Some INSERT ... SELECT transformations that you originally did through Hive can now be done
through Impala. See Impala User-Defined Functions (UDFs) on page 448 for details.

Prior to Impala 1.2, the REFRESH and INVALIDATE METADATA statements needed to be issued on
each Impala node to which you connected and issued queries. In Impala 1.2 and higher, when you
issue either of those statements on any Impala node, the results are broadcast to all the Impala nodes
in the cluster, making it truly a one-step operation after each round of DDL or ETL operations in Hive.

60 | Apache Impala Guide

Impala Tutorials

Cross Joins and Cartesian Products with the CROSS JOIN Operator

Originally, Impala restricted join queries so that they had to include at least one equality comparison between the
columns of the tables on each side of the join operator. With the huge tables typically processed by Impala, any
miscoded query that produced a full Cartesian product as a result set could consume a huge amount of cluster resources.

In Impala 1.2.2 and higher, this restriction is lifted when you use the CROSS JOIN operator in the query. You still
cannot remove all WHERE clauses from a query like SELECT * FROM t1 JOIN t2 to produce all combinations of
rows from both tables. But you can use the CROSS JOIN operator to explicitly request such a Cartesian product.
Typically, this operation is applicable for smaller tables, where the result set still fits within the memory of a single
Impala node.

The following example sets up data for use in a series of comic books where characters battle each other. At first, we
use an equijoin query, which only allows characters from the same time period and the same planet to meet.

[localhost:21000] > create table heroes (name string, era string, planet string);
[localhost:21000] > create table villains (name string, era string, planet string);
[localhost:21000] > insert into heroes values
 > ('Tesla','20th century','Earth'),
 > ('Pythagoras','Antiquity','Earth'),
 > ('Zopzar','Far Future','Mars');
Inserted 3 rows in 2.28s
[localhost:21000] > insert into villains values
 > ('Caligula','Antiquity','Earth'),
 > ('John Dillinger','20th century','Earth'),
 > ('Xibulor','Far Future','Venus');
Inserted 3 rows in 1.93s
[localhost:21000] > select concat(heroes.name,' vs. ',villains.name) as battle
 > from heroes join villains
 > where heroes.era = villains.era and heroes.planet = villains.planet;
+--------------------------+
| battle |
+--------------------------+
| Tesla vs. John Dillinger |
| Pythagoras vs. Caligula |
+--------------------------+
Returned 2 row(s) in 0.47s

Readers demanded more action, so we added elements of time travel and space travel so that any hero could face
any villain. Prior to Impala 1.2.2, this type of query was impossible because all joins had to reference matching values
between the two tables:

[localhost:21000] > -- Cartesian product not possible in Impala 1.1.
 > select concat(heroes.name,' vs. ',villains.name) as battle from
heroes join villains;
ERROR: NotImplementedException: Join between 'heroes' and 'villains' requires at least
 one conjunctive equality predicate between the two tables

With Impala 1.2.2, we rewrite the query slightly to use CROSS JOIN rather than JOIN, and now the result set includes
all combinations:

[localhost:21000] > -- Cartesian product available in Impala 1.2.2 with the CROSS JOIN
 syntax.
 > select concat(heroes.name,' vs. ',villains.name) as battle from
heroes cross join villains;
+-------------------------------+
| battle |
+-------------------------------+
| Tesla vs. Caligula |
| Tesla vs. John Dillinger |
| Tesla vs. Xibulor |
| Pythagoras vs. Caligula |
| Pythagoras vs. John Dillinger |
| Pythagoras vs. Xibulor |
| Zopzar vs. Caligula |
| Zopzar vs. John Dillinger |
| Zopzar vs. Xibulor |

Apache Impala Guide | 61

Impala Tutorials

+-------------------------------+
Returned 9 row(s) in 0.33s

The full combination of rows from both tables is known as the Cartesian product. This type of result set is often used
for creating grid data structures. You can also filter the result set by including WHERE clauses that do not explicitly
compare columns between the two tables. The following example shows how youmight produce a list of combinations
of year and quarter for use in a chart, and then a shorter list with only selected quarters.

[localhost:21000] > create table x_axis (x int);
[localhost:21000] > create table y_axis (y int);
[localhost:21000] > insert into x_axis values (1),(2),(3),(4);
Inserted 4 rows in 2.14s
[localhost:21000] > insert into y_axis values (2010),(2011),(2012),(2013),(2014);
Inserted 5 rows in 1.32s
[localhost:21000] > select y as year, x as quarter from x_axis cross join y_axis;
+------+---------+
| year | quarter |
+------+---------+
2010	1
2011	1
2012	1
2013	1
2014	1
2010	2
2011	2
2012	2
2013	2
2014	2
2010	3
2011	3
2012	3
2013	3
2014	3
2010	4
2011	4
2012	4
2013	4
2014	4
+------+---------+	
Returned 20 row(s) in 0.38s	
[localhost:21000] > select y as year, x as quarter from x_axis cross join y_axis where	
x in (1,3);	
+------+---------+	
year	quarter
+------+---------+	
2010	1
2011	1
2012	1
2013	1
2014	1
2010	3
2011	3
2012	3
2013	3
2014	3
+------+---------+
Returned 10 row(s) in 0.39s

Dealing with Parquet Files with Unknown Schema
As data pipelines start to include more aspects such as NoSQL or loosely specified schemas, you might encounter
situationswhere you have data files (particularly in Parquet format)where you do not know the precise table definition.
This tutorial shows how you can build an Impala table around data that comes from non-Impala or even non-SQL
sources, where you do not have control of the table layout and might not be familiar with the characteristics of the
data.

62 | Apache Impala Guide

Impala Tutorials

The data used in this tutorial represents airline on-time arrival statistics, from October 1987 through April 2008. See
the details on the 2009 ASA Data Expo web site. You can also see the explanations of the columns; for purposes of this
exercise, wait until after following the tutorial before examining the schema, to better simulate a real-life situation
where you cannot rely on assumptions and assertions about the ranges and representations of data values.

We will download Parquet files containing this data from the Ibis blog. First, we download and unpack the data files.
There are 8 files totalling 1.4 GB. Each file is less than 256 MB.

$ wget -O airlines_parquet.tar.gz
https://www.dropbox.com/s/ol9x51tqp6cv4yc/airlines_parquet.tar.gz?dl=0
...
Length: 1245204740 (1.2G) [application/octet-stream]
Saving to: “airlines_parquet.tar.gz”

2015-08-12 17:14:24 (23.6 MB/s) - “airlines_parquet.tar.gz” saved [1245204740/1245204740]

$ tar xvzf airlines_parquet.tar.gz
airlines_parquet/
airlines_parquet/93459d994898a9ba-77674173b331fa9a_2073981944_data.0.parq
airlines_parquet/93459d994898a9ba-77674173b331fa99_1555718317_data.1.parq
airlines_parquet/93459d994898a9ba-77674173b331fa99_1555718317_data.0.parq
airlines_parquet/93459d994898a9ba-77674173b331fa96_2118228804_data.0.parq
airlines_parquet/93459d994898a9ba-77674173b331fa97_574780876_data.0.parq
airlines_parquet/93459d994898a9ba-77674173b331fa96_2118228804_data.1.parq
airlines_parquet/93459d994898a9ba-77674173b331fa98_1194408366_data.0.parq
airlines_parquet/93459d994898a9ba-77674173b331fa9b_1413430552_data.0.parq
$ cd airlines_parquet/
$ du -kch *.parq
253M 93459d994898a9ba-77674173b331fa96_2118228804_data.0.parq
65M 93459d994898a9ba-77674173b331fa96_2118228804_data.1.parq
156M 93459d994898a9ba-77674173b331fa97_574780876_data.0.parq
240M 93459d994898a9ba-77674173b331fa98_1194408366_data.0.parq
253M 93459d994898a9ba-77674173b331fa99_1555718317_data.0.parq
16M 93459d994898a9ba-77674173b331fa99_1555718317_data.1.parq
177M 93459d994898a9ba-77674173b331fa9a_2073981944_data.0.parq
213M 93459d994898a9ba-77674173b331fa9b_1413430552_data.0.parq
1.4G total

Next, we put the Parquet data files in HDFS, all together in a single directory, with permissions on the directory and
the files so that the impala user will be able to read them.

Note: After unpacking, we saw the largest Parquet file was 253 MB. When copying Parquet files into
HDFS for Impala to use, for maximum query performance, make sure that each file resides in a single
HDFS data block. Therefore, we pick a size larger than any single file and specify that as the block size,
using the argument -Ddfs.block.size=256m on the hdfs dfs -put command.

$ hdfs dfs -mkdir -p hdfs://demo_host.example.com:8020/user/impala/staging/airlines
$ hdfs dfs -Ddfs.block.size=256m -put *.parq /user/impala/staging/airlines
$ hdfs dfs -ls /user/impala/staging
Found 1 items
drwxrwxrwx - hdfs supergroup 0 2015-08-12 13:52 /user/impala/staging/airlines
$ hdfs dfs -ls hdfs://demo_host.example.com:8020/user/impala/staging/airlines
Found 8 items
-rw-r--r-- 3 jrussell supergroup 265107489 2015-08-12 17:18
/user/impala/staging/airlines/93459d994898a9ba-77674173b331fa96_2118228804_data.0.parq
-rw-r--r-- 3 jrussell supergroup 67544715 2015-08-12 17:18
/user/impala/staging/airlines/93459d994898a9ba-77674173b331fa96_2118228804_data.1.parq
-rw-r--r-- 3 jrussell supergroup 162556490 2015-08-12 17:18
/user/impala/staging/airlines/93459d994898a9ba-77674173b331fa97_574780876_data.0.parq
-rw-r--r-- 3 jrussell supergroup 251603518 2015-08-12 17:18
/user/impala/staging/airlines/93459d994898a9ba-77674173b331fa98_1194408366_data.0.parq
-rw-r--r-- 3 jrussell supergroup 265186603 2015-08-12 17:18
/user/impala/staging/airlines/93459d994898a9ba-77674173b331fa99_1555718317_data.0.parq
-rw-r--r-- 3 jrussell supergroup 16663754 2015-08-12 17:18
/user/impala/staging/airlines/93459d994898a9ba-77674173b331fa99_1555718317_data.1.parq
-rw-r--r-- 3 jrussell supergroup 185511677 2015-08-12 17:18
/user/impala/staging/airlines/93459d994898a9ba-77674173b331fa9a_2073981944_data.0.parq

Apache Impala Guide | 63

Impala Tutorials

http://stat-computing.org/dataexpo/2009/
http://stat-computing.org/dataexpo/2009/the-data.html

-rw-r--r-- 3 jrussell supergroup 222794621 2015-08-12 17:18
/user/impala/staging/airlines/93459d994898a9ba-77674173b331fa9b_1413430552_data.0.parq

With the files in an accessible location in HDFS, we create a database table that uses the data in those files. The CREATE
EXTERNAL syntax and the LOCATION attribute point Impala at the appropriate HDFS directory. The LIKE PARQUET
'path_to_any_parquet_file' clause means we skip the list of column names and types; Impala automatically
gets the column names and data types straight from the data files. (Currently, this technique only works for Parquet
files.) We ignore the warning about lack of READ_WRITE access to the files in HDFS; the impala user can read the
files, which will be sufficient for us to experiment with queries and perform some copy and transform operations into
other tables.

$ impala-shell -i localhost
Starting Impala Shell without Kerberos authentication
Connected to localhost:21000
Server version: impalad version 2.2.0-cdh5 RELEASE (build
2ffd73a4255cefd521362ffe1cfb37463f67f75c)
Welcome to the Impala shell. Press TAB twice to see a list of available commands.

Copyright (c) 2012 Cloudera, Inc. All rights reserved.

(Shell build version: Impala Shell v2.1.2-cdh5 (92438b7) built on Tue Feb 24 12:36:33
PST 2015)
[localhost:21000] > create database airline_data;
[localhost:21000] > use airline_data;
[localhost:21000] > create external table airlines_external
 > like parquet
'hdfs://demo_host.example.com:8020/user/impala/staging/airlines/93459d994898a9ba-77674173b331fa96_2118228804_data.0.parq'

 > stored as parquet location
'hdfs://demo_host.example.com:8020/user/impala/staging/airlines';
WARNINGS: Impala does not have READ_WRITE access to path
'hdfs://demo_host.example.com:8020/user/impala/staging'

With the table created, we examine its physical and logical characteristics to confirm that the data is really there and
in a format and shape that we can work with. The SHOW TABLE STATS statement gives a very high-level summary of
the table, showing how many files and how much total data it contains. Also, it confirms that the table is expecting all
the associated data files to be in Parquet format. (The ability to work with all kinds of HDFS data files in different
formats means that it is possible to have a mismatch between the format of the data files, and the format that the
table expects the data files to be in.) The SHOW FILES statement confirms that the data in the table has the expected
number, names, and sizes of the original Parquet files. The DESCRIBE statement (or its abbreviation DESC) confirms
the names and types of the columns that Impala automatically created after reading that metadata from the Parquet
file. The DESCRIBE FORMATTED statement prints out some extra detail along with the column definitions; the pieces
we care about for this exercise are the containing database for the table, the location of the associated data files in
HDFS, the fact that it's an external table so Impala will not delete the HDFS files when we finish the experiments and
drop the table, and the fact that the table is set up to work exclusively with files in the Parquet format.

[localhost:21000] > show table stats airlines_external;
+-------+--------+--------+--------------+-------------------+---------+-------------------+
| #Rows | #Files | Size | Bytes Cached | Cache Replication | Format | Incremental
stats |
+-------+--------+--------+--------------+-------------------+---------+-------------------+
| -1 | 8 | 1.34GB | NOT CACHED | NOT CACHED | PARQUET | false
 |
+-------+--------+--------+--------------+-------------------+---------+-------------------+
[localhost:21000] > show files in airlines_external;
+--+----------+-----------+
| path
 | size | partition |
+--+----------+-----------+
| /user/impala/staging/airlines/93459d994898a9ba-77674173b331fa96_2118228804_data.0.parq
 | 252.83MB | |
| /user/impala/staging/airlines/93459d994898a9ba-77674173b331fa96_2118228804_data.1.parq
 | 64.42MB | |
| /user/impala/staging/airlines/93459d994898a9ba-77674173b331fa97_574780876_data.0.parq
 | 155.03MB | |
| /user/impala/staging/airlines/93459d994898a9ba-77674173b331fa98_1194408366_data.0.parq

64 | Apache Impala Guide

Impala Tutorials

 | 239.95MB | |
| /user/impala/staging/airlines/93459d994898a9ba-77674173b331fa99_1555718317_data.0.parq
 | 252.90MB | |
| /user/impala/staging/airlines/93459d994898a9ba-77674173b331fa99_1555718317_data.1.parq
 | 15.89MB | |
| /user/impala/staging/airlines/93459d994898a9ba-77674173b331fa9a_2073981944_data.0.parq
 | 176.92MB | |
| /user/impala/staging/airlines/93459d994898a9ba-77674173b331fa9b_1413430552_data.0.parq
 | 212.47MB | |
+--+----------+-----------+
[localhost:21000] > describe airlines_external;
+---------------------+--------+---+
| name | type | comment |
+---------------------+--------+---+
year	int	inferred from: optional int32 year
month	int	inferred from: optional int32 month
day	int	inferred from: optional int32 day
dayofweek	int	inferred from: optional int32 dayofweek
dep_time	int	inferred from: optional int32 dep_time
crs_dep_time	int	inferred from: optional int32 crs_dep_time
arr_time	int	inferred from: optional int32 arr_time
crs_arr_time	int	inferred from: optional int32 crs_arr_time
carrier	string	inferred from: optional binary carrier
flight_num	int	inferred from: optional int32 flight_num
tail_num	int	inferred from: optional int32 tail_num
actual_elapsed_time	int	inferred from: optional int32 actual_elapsed_time
crs_elapsed_time	int	inferred from: optional int32 crs_elapsed_time
airtime	int	inferred from: optional int32 airtime
arrdelay	int	inferred from: optional int32 arrdelay
depdelay	int	inferred from: optional int32 depdelay
origin	string	inferred from: optional binary origin
dest	string	inferred from: optional binary dest
distance	int	inferred from: optional int32 distance
taxi_in	int	inferred from: optional int32 taxi_in
taxi_out	int	inferred from: optional int32 taxi_out
cancelled	int	inferred from: optional int32 cancelled
cancellation_code	string	inferred from: optional binary cancellation_code
diverted	int	inferred from: optional int32 diverted
carrier_delay	int	inferred from: optional int32 carrier_delay
weather_delay	int	inferred from: optional int32 weather_delay
nas_delay	int	inferred from: optional int32 nas_delay
security_delay	int	inferred from: optional int32 security_delay
late_aircraft_delay	int	inferred from: optional int32 late_aircraft_delay
+---------------------+--------+---+		
[localhost:21000] > desc formatted airlines_external;		
+------------------------------+-------------------------------		
name	type	
+------------------------------+-------------------------------		
...		
# Detailed Table Information	NULL	
Database:	airline_data	
Owner:	jrussell	
...		
Location:	/user/impala/staging/airlines	
Table Type:	EXTERNAL_TABLE	
...		
# Storage Information	NULL	
SerDe Library:	parquet.hive.serde.ParquetHiveSerDe	
InputFormat:	parquet.hive.DeprecatedParquetInputFormat	
OutputFormat:	parquet.hive.DeprecatedParquetOutputFormat	
...

Now that we are confident that the connections are solid between the Impala table and the underlying Parquet files,
we run some initial queries to understand the characteristics of the data: the overall number of rows, and the ranges
and howmany different values are in certain columns. For convenience in understanding themagnitude of theCOUNT(*)
result, we run another query dividing the number of rows by 1 million, demonstrating that there are 123 million rows
in the table.

[localhost:21000] > select count(*) from airlines_external;
+-----------+
| count(*) |

Apache Impala Guide | 65

Impala Tutorials

+-----------+
| 123534969 |
+-----------+
Fetched 1 row(s) in 1.32s
[localhost:21000] > select count(*) / 1e6 as 'millions of rows' from airlines_external;
+------------------+
| millions of rows |
+------------------+
| 123.534969 |
+------------------+
Fetched 1 row(s) in 1.24s

The NDV() function stands for “number of distinct values”, which for performance reasons is an estimate when there
are lots of different values in the column, but is precise when the cardinality is less than 16 K. Use NDV() calls for this
kind of exploration rather than COUNT(DISTINCT colname), because Impala can evaluate multiple NDV() functions
in a single query, but only a single instance of COUNT DISTINCT. Here we see that there are modest numbers of
different airlines, flight numbers, and origin and destination airports. Two things jump out from this query: the number
of tail_num values is much smaller than wemight have expected, and there aremore destination airports than origin
airports. Let's dig further. What we find is that most tail_num values are NULL. It looks like this was an experimental
column that wasn't filled in accurately. We make a mental note that if we use this data as a starting point, we'll ignore
this column. We also find that certain airports are represented in the ORIGIN column but not the DEST column; now
we know that we cannot rely on the assumption that those sets of airport codes are identical.

Note: A slight digression for some performance tuning. Notice how the first SELECT DISTINCT
DEST query takes almost 40 seconds. We expect all queries on such a small data set, less than 2 GB,
to take a few seconds at most. The reason is because the expression NOT IN (SELECT origin
FROM airlines_external) produces an intermediate result set of 123million rows, then runs 123
million comparisons on each data node against the tiny set of destination airports. The way the NOT
IN operator works internally means that this intermediate result set with 123 million rows might be
transmitted across the network to each data node in the cluster. Applying another DISTINCT inside
the NOT IN subquery means that the intermediate result set is only 340 items, resulting in much less
network traffic and fewer comparison operations. Themore efficient querywith the added DISTINCT
is approximately 7 times as fast.

[localhost:21000] > select ndv(carrier), ndv(flight_num), ndv(tail_num),
 > ndv(origin), ndv(dest) from airlines_external;
+--------------+-----------------+---------------+-------------+-----------+
| ndv(carrier) | ndv(flight_num) | ndv(tail_num) | ndv(origin) | ndv(dest) |
+--------------+-----------------+---------------+-------------+-----------+
| 29 | 9086 | 3 | 340 | 347 |
+--------------+-----------------+---------------+-------------+-----------+
[localhost:21000] > select tail_num, count(*) as howmany from airlines_external
 > group by tail_num;
+----------+-----------+
| tail_num | howmany |
+----------+-----------+
715	1
0	406405
112	6562
NULL	123122001
+----------+-----------+
Fetched 1 row(s) in 5.18s
[localhost:21000] > select distinct dest from airlines_external
 > where dest not in (select origin from airlines_external);
+------+
| dest |
+------+
| LBF |
| CBM |
| RCA |
| SKA |
| LAR |
+------+
Fetched 5 row(s) in 39.64s
[localhost:21000] > select distinct dest from airlines_external

66 | Apache Impala Guide

Impala Tutorials

 > where dest not in (select distinct origin from airlines_external);
+------+
| dest |
+------+
| LBF |
| RCA |
| CBM |
| SKA |
| LAR |
+------+
Fetched 5 row(s) in 5.59s
[localhost:21000] > select distinct origin from airlines_external
 > where origin not in (select distinct dest from airlines_external);
Fetched 0 row(s) in 5.37s

Next, we try doing a simple calculation, with results broken down by year. This reveals that some years have no data
in the AIRTIME column. That means we might be able to use that column in queries involving certain date ranges, but
we cannot count on it to always be reliable. The question of whether a column contains any NULL values, and if so
what is their number, proportion, and distribution, comes up again and again when doing initial exploration of a data
set.

[localhost:21000] > select year, sum(airtime) from airlines_external
 > group by year order by year desc;
+------+--------------+
| year | sum(airtime) |
+------+--------------+
2008	713050445
2007	748015545
2006	720372850
2005	708204026
2004	714276973
2003	665706940
2002	549761849
2001	590867745
2000	583537683
1999	561219227
1998	538050663
1997	536991229
1996	519440044
1995	513364265
1994	NULL
1993	NULL
1992	NULL
1991	NULL
1990	NULL
1989	NULL
1988	NULL
1987	NULL
+------+--------------+

With the notion of NULL values inmind, let's come back to the TAILNUM column that we discovered had a lot of NULLs.
Let's quantify the NULL and non-NULL values in that column for better understanding. First, we just count the overall
number of rows versus the non-NULL values in that column. That initial result gives the appearance of relatively few
non-NULL values, but we can break it down more clearly in a single query. Once we have the COUNT(*) and the
COUNT(colname) numbers, we can encode that initial query in aWITH clause, then run a followonquery that performs
multiple arithmetic operations on those values. Seeing that only one-third of one percent of all rows have non-NULL
values for the TAILNUM column clearly illustrates that that column won't be of much use.

[localhost:21000] > select count(*) as 'rows', count(tail_num) as 'non-null tail numbers'

 > from airlines_external;
+-----------+-----------------------+
| rows | non-null tail numbers |
+-----------+-----------------------+
| 123534969 | 412968 |
+-----------+-----------------------+
Fetched 1 row(s) in 1.51s
[localhost:21000] > with t1 as

Apache Impala Guide | 67

Impala Tutorials

 > (select count(*) as 'rows', count(tail_num) as 'nonnull'
 > from airlines_external)
 > select `rows`, `nonnull`, `rows` - `nonnull` as 'nulls',
 > (`nonnull` / `rows`) * 100 as 'percentage non-null'
 > from t1;
+-----------+---------+-----------+---------------------+
| rows | nonnull | nulls | percentage non-null |
+-----------+---------+-----------+---------------------+
| 123534969 | 412968 | 123122001 | 0.3342923897119365 |
+-----------+---------+-----------+---------------------+

By examining other columns using these techniques, we can form a mental picture of the way data is distributed
throughout the table, and which columns are most significant for query purposes. For this tutorial, we focus mostly
on the fields likely to hold discrete values, rather than columns such as ACTUAL_ELAPSED_TIMEwhose names suggest
they hold measurements. We would dig deeper into those columns once we had a clear picture of which questions
were worthwhile to ask, and what kinds of trends we might look for. For the final piece of initial exploration, let's look
at the YEAR column. A simple GROUP BY query shows that it has awell-defined range, amanageable number of distinct
values, and relatively even distribution of rows across the different years.

[localhost:21000] > select min(year), max(year), ndv(year) from airlines_external;
+-----------+-----------+-----------+
| min(year) | max(year) | ndv(year) |
+-----------+-----------+-----------+
| 1987 | 2008 | 22 |
+-----------+-----------+-----------+
Fetched 1 row(s) in 2.03s
[localhost:21000] > select year, count(*) howmany from airlines_external
 > group by year order by year desc;
+------+---------+
| year | howmany |
+------+---------+
2008	7009728
2007	7453215
2006	7141922
2005	7140596
2004	7129270
2003	6488540
2002	5271359
2001	5967780
2000	5683047
1999	5527884
1998	5384721
1997	5411843
1996	5351983
1995	5327435
1994	5180048
1993	5070501
1992	5092157
1991	5076925
1990	5270893
1989	5041200
1988	5202096
1987	1311826
+------+---------+
Fetched 22 row(s) in 2.13s

We could go quite far with the data in this initial raw format, just as we downloaded it from the web. If the data set
proved to be useful and worth persisting in Impala for extensive queries, we might want to copy it to an internal table,
letting Impala manage the data files and perhaps reorganizing a little for higher efficiency. In this next stage of the
tutorial, we copy the original data into a partitioned table, still in Parquet format. Partitioning based on the YEAR
column lets us run queries with clauses such as WHERE year = 2001 or WHERE year BETWEEN 1989 AND 1999,
which can dramatically cut down on I/O by ignoring all the data from years outside the desired range. Rather than
reading all the data and then deciding which rows are in the matching years, Impala can zero in on only the data files
from specific YEAR partitions. To do this, Impala physically reorganizes the data files, putting the rows from each year
into data files in a separate HDFS directory for each YEAR value. Along the way, we'll also get rid of the TAIL_NUM
column that proved to be almost entirely NULL.

68 | Apache Impala Guide

Impala Tutorials

The first step is to create a new table with a layout very similar to the original AIRLINES_EXTERNAL table. We'll do
that by reverse-engineering a CREATE TABLE statement for the first table, then tweaking it slightly to include a
PARTITION BY clause for YEAR, and excluding the TAIL_NUM column. The SHOW CREATE TABLE statement gives us
the starting point.

[localhost:21000] > show create table airlines_external;
+---
| result
+---
| CREATE EXTERNAL TABLE airline_data.airlines_external (
| year INT COMMENT 'inferred from: optional int32 year',
| month INT COMMENT 'inferred from: optional int32 month',
| day INT COMMENT 'inferred from: optional int32 day',
| dayofweek INT COMMENT 'inferred from: optional int32 dayofweek',
| dep_time INT COMMENT 'inferred from: optional int32 dep_time',
| crs_dep_time INT COMMENT 'inferred from: optional int32 crs_dep_time',
| arr_time INT COMMENT 'inferred from: optional int32 arr_time',
| crs_arr_time INT COMMENT 'inferred from: optional int32 crs_arr_time',
| carrier STRING COMMENT 'inferred from: optional binary carrier',
| flight_num INT COMMENT 'inferred from: optional int32 flight_num',
| tail_num INT COMMENT 'inferred from: optional int32 tail_num',
| actual_elapsed_time INT COMMENT 'inferred from: optional int32 actual_elapsed_time',
| crs_elapsed_time INT COMMENT 'inferred from: optional int32 crs_elapsed_time',
| airtime INT COMMENT 'inferred from: optional int32 airtime',
| arrdelay INT COMMENT 'inferred from: optional int32 arrdelay',
| depdelay INT COMMENT 'inferred from: optional int32 depdelay',
| origin STRING COMMENT 'inferred from: optional binary origin',
| dest STRING COMMENT 'inferred from: optional binary dest',
| distance INT COMMENT 'inferred from: optional int32 distance',
| taxi_in INT COMMENT 'inferred from: optional int32 taxi_in',
| taxi_out INT COMMENT 'inferred from: optional int32 taxi_out',
| cancelled INT COMMENT 'inferred from: optional int32 cancelled',
| cancellation_code STRING COMMENT 'inferred from: optional binary cancellation_code',
| diverted INT COMMENT 'inferred from: optional int32 diverted',
| carrier_delay INT COMMENT 'inferred from: optional int32 carrier_delay',
| weather_delay INT COMMENT 'inferred from: optional int32 weather_delay',
| nas_delay INT COMMENT 'inferred from: optional int32 nas_delay',
| security_delay INT COMMENT 'inferred from: optional int32 security_delay',
| late_aircraft_delay INT COMMENT 'inferred from: optional int32 late_aircraft_delay'
|)
| STORED AS PARQUET
| LOCATION 'hdfs://a1730.example.com:8020/user/impala/staging/airlines'
| TBLPROPERTIES ('numFiles'='0', 'COLUMN_STATS_ACCURATE'='false',
| 'transient_lastDdlTime'='1439425228', 'numRows'='-1', 'totalSize'='0',
| 'rawDataSize'='-1')
+---
Fetched 1 row(s) in 0.03s
[localhost:21000] > quit;

Although we could edit that output into a new SQL statement, all the ASCII box characters make such editing
inconvenient. To get a more stripped-down CREATE TABLE to start with, we restart the impala-shell command
with the -B option, which turns off the box-drawing behavior.

[localhost:21000] > quit;
Goodbye jrussell
$ impala-shell -i localhost -B -d airline_data;
Starting Impala Shell without Kerberos authentication
Connected to localhost:21000
Server version: impalad version 2.2.0-cdh5 RELEASE (build
2ffd73a4255cefd521362ffe1cfb37463f67f75c)
Welcome to the Impala shell. Press TAB twice to see a list of available commands.

Copyright (c) 2012 Cloudera, Inc. All rights reserved.

(Shell build version: Impala Shell v2.1.2-cdh5 (92438b7) built on Tue Feb 24 12:36:33
PST 2015)
[localhost:21000] > show create table airlines_external;
"CREATE EXTERNAL TABLE airline_data.airlines_external (
 year INT COMMENT 'inferred from: optional int32 year',
 month INT COMMENT 'inferred from: optional int32 month',
 day INT COMMENT 'inferred from: optional int32 day',

Apache Impala Guide | 69

Impala Tutorials

 dayofweek INT COMMENT 'inferred from: optional int32 dayofweek',
 dep_time INT COMMENT 'inferred from: optional int32 dep_time',
 crs_dep_time INT COMMENT 'inferred from: optional int32 crs_dep_time',
 arr_time INT COMMENT 'inferred from: optional int32 arr_time',
 crs_arr_time INT COMMENT 'inferred from: optional int32 crs_arr_time',
 carrier STRING COMMENT 'inferred from: optional binary carrier',
 flight_num INT COMMENT 'inferred from: optional int32 flight_num',
 tail_num INT COMMENT 'inferred from: optional int32 tail_num',
 actual_elapsed_time INT COMMENT 'inferred from: optional int32 actual_elapsed_time',
 crs_elapsed_time INT COMMENT 'inferred from: optional int32 crs_elapsed_time',
 airtime INT COMMENT 'inferred from: optional int32 airtime',
 arrdelay INT COMMENT 'inferred from: optional int32 arrdelay',
 depdelay INT COMMENT 'inferred from: optional int32 depdelay',
 origin STRING COMMENT 'inferred from: optional binary origin',
 dest STRING COMMENT 'inferred from: optional binary dest',
 distance INT COMMENT 'inferred from: optional int32 distance',
 taxi_in INT COMMENT 'inferred from: optional int32 taxi_in',
 taxi_out INT COMMENT 'inferred from: optional int32 taxi_out',
 cancelled INT COMMENT 'inferred from: optional int32 cancelled',
 cancellation_code STRING COMMENT 'inferred from: optional binary cancellation_code',
 diverted INT COMMENT 'inferred from: optional int32 diverted',
 carrier_delay INT COMMENT 'inferred from: optional int32 carrier_delay',
 weather_delay INT COMMENT 'inferred from: optional int32 weather_delay',
 nas_delay INT COMMENT 'inferred from: optional int32 nas_delay',
 security_delay INT COMMENT 'inferred from: optional int32 security_delay',
 late_aircraft_delay INT COMMENT 'inferred from: optional int32 late_aircraft_delay'
)
STORED AS PARQUET
LOCATION 'hdfs://a1730.example.com:8020/user/impala/staging/airlines'
TBLPROPERTIES ('numFiles'='0', 'COLUMN_STATS_ACCURATE'='false',
 'transient_lastDdlTime'='1439425228', 'numRows'='-1', 'totalSize'='0',
 'rawDataSize'='-1')"
Fetched 1 row(s) in 0.01s

After copying and pasting the CREATE TABLE statement into a text editor for fine-tuning, we quit and restart
impala-shell without the -B option, to switch back to regular output.

Next we run the CREATE TABLE statement that we adapted from the SHOW CREATE TABLE output. We kept the
STORED AS PARQUET clause becausewewant to rearrange the data somewhat but still keep it in the high-performance
Parquet format. The LOCATION and TBLPROPERTIES clauses are not relevant for this new table, so we edit those out.
Because we are going to partition the new table based on the YEAR column, wemove that column name (and its type)
into a new PARTITIONED BY clause.

[localhost:21000] > CREATE TABLE airline_data.airlines
 > (
 > month INT,
 > day INT,
 > dayofweek INT,
 > dep_time INT,
 > crs_dep_time INT,
 > arr_time INT,
 > crs_arr_time INT,
 > carrier STRING,
 > flight_num INT,
 > actual_elapsed_time INT,
 > crs_elapsed_time INT,
 > airtime INT,
 > arrdelay INT,
 > depdelay INT,
 > origin STRING,
 > dest STRING,
 > distance INT,
 > taxi_in INT,
 > taxi_out INT,
 > cancelled INT,
 > cancellation_code STRING,
 > diverted INT,
 > carrier_delay INT,
 > weather_delay INT,
 > nas_delay INT,
 > security_delay INT,

70 | Apache Impala Guide

Impala Tutorials

 > late_aircraft_delay INT
 >)
 > STORED AS PARQUET
 > PARTITIONED BY (year INT);
Fetched 0 row(s) in 0.10s

Next, we copy all the rows from the original table into this new onewith an INSERT statement. (We edited the CREATE
TABLE statement to make an INSERT statement with the column names in the same order.) The only change is to add
a PARTITION(year) clause, and move the YEAR column to the very end of the SELECT list of the INSERT statement.
Specifying PARTITION(year), rather than a fixed value such as PARTITION(year=2000), means that Impala figures
out the partition value for each row based on the value of the very last column in the SELECT list. This is the first SQL
statement that legitimately takes any substantial time, because the rows from different years are shuffled around the
cluster; the rows that go into each partition are collected on one node, before being written to one or more new data
files.

[localhost:21000] > INSERT INTO airline_data.airlines
 > PARTITION (year)
 > SELECT
 > month,
 > day,
 > dayofweek,
 > dep_time,
 > crs_dep_time,
 > arr_time,
 > crs_arr_time,
 > carrier,
 > flight_num,
 > actual_elapsed_time,
 > crs_elapsed_time,
 > airtime,
 > arrdelay,
 > depdelay,
 > origin,
 > dest,
 > distance,
 > taxi_in,
 > taxi_out,
 > cancelled,
 > cancellation_code,
 > diverted,
 > carrier_delay,
 > weather_delay,
 > nas_delay,
 > security_delay,
 > late_aircraft_delay,
 > year
 > FROM airline_data.airlines_external;
Inserted 123534969 row(s) in 202.70s

Once partitioning or join queries come into play, it's important to have statistics that Impala can use to optimize queries
on the corresponding tables. The COMPUTE INCREMENTAL STATS statement is the way to collect statistics for
partitioned tables. Then the SHOW TABLE STATS statement confirms that the statistics are in place for each partition,
and also illustrates how many files and how much raw data is in each partition.

[localhost:21000] > compute incremental stats airlines;
+---+
| summary |
+---+
| Updated 22 partition(s) and 27 column(s). |
+---+
[localhost:21000] > show table stats airlines;
+-------+-----------+--------+----------+--------------+------------+---------+-------------------+
| year | #Rows | #Files | Size | Bytes Cached | Cache Repl | Format |
Incremental stats |
+-------+-----------+--------+----------+--------------+------------+---------+-----
| 1987 | 1311826 | 1 | 9.32MB | NOT CACHED | NOT CACHED | PARQUET | true
| 1988 | 5202096 | 1 | 37.04MB | NOT CACHED | NOT CACHED | PARQUET | true
| 1989 | 5041200 | 1 | 36.25MB | NOT CACHED | NOT CACHED | PARQUET | true

Apache Impala Guide | 71

Impala Tutorials

| 1990 | 5270893 | 1 | 38.39MB | NOT CACHED | NOT CACHED | PARQUET | true
| 1991 | 5076925 | 1 | 37.23MB | NOT CACHED | NOT CACHED | PARQUET | true
| 1992 | 5092157 | 1 | 36.85MB | NOT CACHED | NOT CACHED | PARQUET | true
| 1993 | 5070501 | 1 | 37.16MB | NOT CACHED | NOT CACHED | PARQUET | true
| 1994 | 5180048 | 1 | 38.31MB | NOT CACHED | NOT CACHED | PARQUET | true
| 1995 | 5327435 | 1 | 53.14MB | NOT CACHED | NOT CACHED | PARQUET | true
| 1996 | 5351983 | 1 | 53.64MB | NOT CACHED | NOT CACHED | PARQUET | true
| 1997 | 5411843 | 1 | 54.41MB | NOT CACHED | NOT CACHED | PARQUET | true
| 1998 | 5384721 | 1 | 54.01MB | NOT CACHED | NOT CACHED | PARQUET | true
| 1999 | 5527884 | 1 | 56.32MB | NOT CACHED | NOT CACHED | PARQUET | true
| 2000 | 5683047 | 1 | 58.15MB | NOT CACHED | NOT CACHED | PARQUET | true
| 2001 | 5967780 | 1 | 60.65MB | NOT CACHED | NOT CACHED | PARQUET | true
| 2002 | 5271359 | 1 | 57.99MB | NOT CACHED | NOT CACHED | PARQUET | true
| 2003 | 6488540 | 1 | 81.33MB | NOT CACHED | NOT CACHED | PARQUET | true
| 2004 | 7129270 | 1 | 103.19MB | NOT CACHED | NOT CACHED | PARQUET | true
| 2005 | 7140596 | 1 | 102.61MB | NOT CACHED | NOT CACHED | PARQUET | true
| 2006 | 7141922 | 1 | 106.03MB | NOT CACHED | NOT CACHED | PARQUET | true
| 2007 | 7453215 | 1 | 112.15MB | NOT CACHED | NOT CACHED | PARQUET | true
| 2008 | 7009728 | 1 | 105.76MB | NOT CACHED | NOT CACHED | PARQUET | true
| Total | 123534969 | 22 | 1.30GB | 0B | | |
+-------+-----------+--------+----------+--------------+------------+---------+-----

At this point, we go through a quick thought process to sanity check the partitioning we did. All the partitions have
exactly one file, which is on the low side. A query that includes a clause WHERE year=2004will only read a single data
block; that data block will be read and processed by a single data node; therefore, for a query targeting a single year,
all the other nodes in the cluster will sit idle while all the work happens on a single machine. It's even possible that by
chance (depending on HDFS replication factor and the way data blocks are distributed across the cluster), that multiple
year partitions selected by a filter such as WHERE year BETWEEN 1999 AND 2001 could all be read and processed
by the same data node. Themore data files each partition has, themore parallelism you can get and the less probability
of “hotspots” occurring on particular nodes, therefore a bigger performance boost by having a big CDH cluster.

However, the more data files, the less data goes in each one. The overhead of dividing the work in a parallel query
might not be worth it if each node is only reading a few megabytes. 50 or 100 megabytes is a decent size for a Parquet
data block; 9 or 37 megabytes is on the small side. Which is to say, the data distribution we ended up with based on
this partitioning scheme is on the borderline between sensible (reasonably large files) and suboptimal (few files in
each partition). The way to see how well it works in practice is to run the same queries against the original flat table
and the new partitioned table, and compare times.

Spoiler: in this case, with my particular 4-node cluster with its specific distribution of data blocks and my particular
exploratory queries, queries against the partitioned table do consistently run faster than the same queries against the
unpartitioned table. But I could not be sure that would be the case without some real measurements. Here are some
queries I ran to draw that conclusion, first against AIRLINES_EXTERNAL (no partitioning), then against AIRLINES
(partitioned by year). The AIRLINES queries are consistently faster. Changing the volume of data, changing the size
of the cluster, running queries that did or didn't refer to the partition key columns, or other factors could change the
results to favor one table layout or the other.

Note: If you find the volume of each partition is only in the low tens of megabytes, consider lowering
the granularity of partitioning. For example, instead of partitioning by year, month, and day, partition
by year and month or even just by year. The ideal layout to distribute work efficiently in a parallel
query is many tens or even hundreds of megabytes per Parquet file, and the number of Parquet files
in each partition somewhat higher than the number of data nodes.

[localhost:21000] > select sum(airtime) from airlines_external;
+--------------+
| sum(airtime) |
+--------------+
| 8662859484 |
+--------------+
Fetched 1 row(s) in 2.02s
[localhost:21000] > select sum(airtime) from airlines;
+--------------+
| sum(airtime) |
+--------------+

72 | Apache Impala Guide

Impala Tutorials

| 8662859484 |
+--------------+
Fetched 1 row(s) in 1.21s

[localhost:21000] > select sum(airtime) from airlines_external where year = 2005;
+--------------+
| sum(airtime) |
+--------------+
| 708204026 |
+--------------+
Fetched 1 row(s) in 2.61s
[localhost:21000] > select sum(airtime) from airlines where year = 2005;
+--------------+
| sum(airtime) |
+--------------+
| 708204026 |
+--------------+
Fetched 1 row(s) in 1.19s

[localhost:21000] > select sum(airtime) from airlines_external where dayofweek = 1;
+--------------+
| sum(airtime) |
+--------------+
| 1264945051 |
+--------------+
Fetched 1 row(s) in 2.82s
[localhost:21000] > select sum(airtime) from airlines where dayofweek = 1;
+--------------+
| sum(airtime) |
+--------------+
| 1264945051 |
+--------------+
Fetched 1 row(s) in 1.61s

Now we can finally do some serious analysis with this data set that, remember, a few minutes ago all we had were
some raw data files and we didn't even know what columns they contained. Let's see whether the “air time” of a flight
tends to be different depending on the day of the week. We can see that the average is a little higher on day number
6; perhaps Saturday is a busy flying day and planes have to circle for longer at the destination airport before landing.

[localhost:21000] > select dayofweek, avg(airtime) from airlines
 > group by dayofweek order by dayofweek;
+-----------+-------------------+
| dayofweek | avg(airtime) |
+-----------+-------------------+
1	102.1560425016671
2	102.1582931538807
3	102.2170009256653
4	102.37477661846
5	102.2697358763511
6	105.3627448363705
7	103.4144351202054
+-----------+-------------------+
Fetched 7 row(s) in 2.25s

To see if the apparent trend holds up over time, let's do the same breakdown by day of week, but also split up by year.
Now we can see that day number 6 consistently has a higher average air time in each year. We can also see that the
average air time increased over time across the board. And the presence of NULL for this column in years 1987 to 1994
shows that queries involving this column need to be restricted to a date range of 1995 and higher.

[localhost:21000] > select year, dayofweek, avg(airtime) from airlines
 > group by year, dayofweek order by year desc, dayofweek;
+------+-----------+-------------------+
| year | dayofweek | avg(airtime) |
+------+-----------+-------------------+
2008	1	103.1821651651355
2008	2	103.2149301386094
2008	3	103.0585076622796
2008	4	103.4671383539038
2008	5	103.5575385182659

Apache Impala Guide | 73

Impala Tutorials

2008	6	107.4006306562128
2008	7	104.8648851041755
2007	1	102.2196114337825
2007	2	101.9317791906348
2007	3	102.0964767689043
2007	4	102.6215927201686
2007	5	102.4289399000661
2007	6	105.1477448215756
2007	7	103.6305945644095
...		
1996	1	99.33860750862108
1996	2	99.54225446396656
1996	3	99.41129336113134
1996	4	99.5110373340348
1996	5	99.22120745027595
1996	6	101.1717447111921
1996	7	99.95410136133704
1995	1	96.93779698300494
1995	2	96.93458674589712
1995	3	97.00972311337051
1995	4	96.90843832024412
1995	5	96.78382115425562
1995	6	98.70872826057003
1995	7	97.85570478374616
1994	1	NULL
1994	2	NULL
1994	3	NULL
...		
1987	5	NULL
1987	6	NULL
1987	7	NULL
+------+-----------+-------------------+

74 | Apache Impala Guide

Impala Tutorials

Impala Administration

As an administrator, you monitor Impala's use of resources and take action when necessary to keep Impala running
smoothly and avoid conflicts with other Hadoop components running on the same cluster. When you detect that an
issue has happened or could happen in the future, you reconfigure Impala or other components such as HDFS or even
the hardware of the cluster itself to resolve or avoid problems.

Related tasks:

As an administrator, you can expect to perform installation, upgrade, and configuration tasks for Impala on all machines
in a cluster. See Installing Impala on page 27, Upgrading Impala on page 38, and Managing Impala on page 30 for
details.

For security tasks typically performed by administrators, see Impala Security on page 91.

Administrators also decide how to allocate cluster resources so that all Hadoop components can run smoothly together.
For Impala, this task primarily involves:

• Deciding how many Impala queries can run concurrently and with how much memory, through the admission
control feature. See Admission Control and Query Queuing on page 75 for details.

• Dividing cluster resources such asmemory between Impala and other components, using YARN for overall resource
management, and Llama tomediate resource requests from Impala to YARN. See Integrated ResourceManagement
with YARN on page 83 for details.

Admission Control and Query Queuing
Admission control is an Impala feature that imposes limits on concurrent SQL queries, to avoid resource usage spikes
and out-of-memory conditions on busy CDH clusters. It is a formof “throttling”. Newqueries are accepted and executed
until certain conditions are met, such as too many queries or too much total memory used across the cluster. When
one of these thresholds is reached, incoming queries wait to begin execution. These queries are queued and are
admitted (that is, begin executing) when the resources become available.

In addition to the threshold values for currently executing queries, you can place limits on the maximum number of
queries that are queued (waiting) and a limit on the amount of time they might wait before returning with an error.
These queue settings let you ensure that queries do notwait indefinitely, so that you can detect and correct “starvation”
scenarios.

Enable this feature if your cluster is underutilized at some times and overutilized at others. Overutilization is indicated
by performance bottlenecks and queries being cancelled due to out-of-memory conditions, when those same queries
are successful and perform well during times with less concurrent load. Admission control works as a safeguard to
avoid out-of-memory conditions during heavy concurrent usage.

Note: Though Impala can be used together with YARN via simple configuration of Static Service Pools
in Cloudera Manager, the use of the general-purpose component Llama for integrated resource
management within YARN is no longer supported with CDH 5.5 / Impala 2.3 and higher.

Overview of Impala Admission Control

On a busy CDH cluster, you might find there is an optimal number of Impala queries that run concurrently. Because
Impala queries are typically I/O-intensive, you might not find any throughput benefit in running more concurrent
queries when the I/O capacity is fully utilized. Because Impala by default cancels queries that exceed the specified
memory limit, runningmultiple large-scale queries at once can result in having to re-run somequeries that are cancelled.

The admission control feature lets you set a cluster-wide upper limit on the number of concurrent Impala queries and
on the memory used by those queries. Any additional queries are queued until the earlier ones finish, rather than

Apache Impala Guide | 75

Impala Administration

being cancelled or running slowly and causing contention. As other queries finish, the queued queries are allowed to
proceed.

For details on the internal workings of admission control, see How Impala Schedules and Enforces Limits on Concurrent
Queries on page 76.

How Impala Admission Control Relates to YARN

The admission control feature is similar in some ways to the YARN resource management framework, and they can be
used separately or together. This section describes some similarities and differences, to help you decide when to use
one, the other, or both together.

Admission control is a lightweight, decentralized system that is suitable for workloads consisting primarily of Impala
queries and other SQL statements. It sets “soft” limits that smooth out Impala memory usage during times of heavy
load, rather than taking an all-or-nothing approach that cancels jobs that are too resource-intensive.

Because the admission control system is not aware of other Hadoop workloads such as MapReduce jobs, you might
use YARN with static service pools on heterogeneous CDH 5 clusters where resources are shared between Impala and
other Hadoop components. Devote a percentage of cluster resources to Impala, allocate another percentage for
MapReduce and other batch-style workloads; let admission control handle the concurrency andmemory usage for the
Impala work within the cluster, and let YARN manage the remainder of work within the cluster.

The Impala admission control feature uses the same configuration mechanism as the YARN resource manager to map
users to pools and authenticate them.

For full details about using Impala with YARN, see Integrated Resource Management with YARN on page 83.

How Impala Schedules and Enforces Limits on Concurrent Queries

The admission control system is decentralized, embedded in each Impala daemon and communicating through the
statestore mechanism. Although the limits you set for memory usage and number of concurrent queries apply
cluster-wide, each Impala daemon makes its own decisions about whether to allow each query to run immediately or
to queue it for a less-busy time. These decisions are fast, meaning the admission control mechanism is low-overhead,
butmight be imprecise during times of heavy load. There could be timeswhen the query queue containedmore queries
than the specified limit, or when the estimated ofmemory usage for a query is not exact and the overall memory usage
exceeds the specified limit. Thus, you typically err on the high side for the size of the queue, because there is not a big
penalty for having a large number of queued queries; and you typically err on the low side for the memory limit, to
leave some headroom for queries to use more memory than expected, without being cancelled as a result.

At any time, the set of queued queries could include queries submitted through multiple different Impala daemon
hosts. All the queries submitted through a particular host will be executed in order, so a CREATE TABLE followed by
an INSERT on the same table would succeed. Queries submitted through different hosts are not guaranteed to be
executed in the order they were received. Therefore, if you are using load-balancing or other round-robin scheduling
where different statements are submitted through different hosts, set up all table structures ahead of time so that
the statements controlled by the queuing system are primarily queries, where order is not significant. Or, if a sequence
of statements needs to happen in strict order (such as an INSERT followed by a SELECT), submit all those statements
through a single session, while connected to the same Impala daemon host.

The limit on the number of concurrent queries is a “soft” one, To achieve high throughput, Impalamakes quick decisions
at the host level about which queued queries to dispatch. Therefore, Impala might slightly exceed the limit from time
to time.

To avoid a large backlog of queued requests, you can also set an upper limit on the size of the queue for queries that
are delayed. When the number of queued queries exceeds this limit, further queries are cancelled rather than being
queued. You can also configure a timeout period, after which queued queries are cancelled, to avoid indefinite waits.
If a cluster reaches this state where queries are cancelled due to too many concurrent requests or long waits for query
execution to begin, that is a signal for an administrator to take action, either by provisioningmore resources, scheduling
work on the cluster to smooth out the load, or by doing Impala performance tuning to enable higher throughput.

76 | Apache Impala Guide

Impala Administration

How Admission Control works with Impala Clients (JDBC, ODBC, HiveServer2)

Most aspects of admission control work transparently with client interfaces such as JDBC and ODBC:

• If a SQL statement is put into a queue rather than running immediately, the API call blocks until the statement is
dequeued and begins execution. At that point, the client program can request to fetch results, which might also
block until results become available.

• If a SQL statement is cancelled because it has been queued for too long or because it exceeded the memory limit
during execution, the error is returned to the client program with a descriptive error message.

If you want to submit queries to different resource pools through the REQUEST_POOL query option, as described in
REQUEST_POOL Query Option on page 321, In Impala 2.0 and higher you can change that query option through a SQL
SET statement that you submit from the client application, in the same session. Prior to Impala 2.0, that option was
only settable for a session through the impala-shell SET command, or cluster-wide through an impalad startup
option.

Admission control has the following limitations or special behavior when used with JDBC or ODBC applications:

• TheMEM_LIMIT query option, sometimes useful towork around problems caused by inaccuratememory estimates
for complicated queries, is only settable through the impala-shell interpreter and cannot be used directly
through JDBC or ODBC applications.

• Admission control does not use the other resource-related query options, RESERVATION_REQUEST_TIMEOUT or
V_CPU_CORES. Those query options only apply to the YARN resource management framework.

Configuring Admission Control

The configuration options for admission control range from the simple (a single resource pool with a single set of
options) to the complex (multiple resource pools with different options, each pool handling queries for a different set
of users and groups). You can configure the settings through the Cloudera Manager user interface, or on a system
without Cloudera Manager by editing configuration files or through startup options to the impalad daemon.

Impala Service Flags for Admission Control (Advanced)

The following Impala configuration options let you adjust the settings of the admission control feature.When supplying
the options on the command line, prepend the option name with --.

default_pool_max_queued

Purpose:Maximum number of requests allowed to be queued before rejecting requests. Because this limit applies
cluster-wide, but each Impala node makes independent decisions to run queries immediately or queue them, it is
a soft limit; the overall number of queued queries might be slightly higher during times of heavy load. A negative
value or 0 indicates requests are always rejected once the maximum concurrent requests are executing. Ignored if
fair_scheduler_config_path and llama_site_path are set.

Type: int64

Default: 200

default_pool_max_requests

Purpose:Maximum number of concurrent outstanding requests allowed to run before incoming requests are
queued. Because this limit applies cluster-wide, but each Impala node makes independent decisions to run queries
immediately or queue them, it is a soft limit; the overall number of concurrent queries might be slightly higher
during times of heavy load. A negative value indicates no limit. Ignored if fair_scheduler_config_path and
llama_site_path are set.

Type: int64

Default: 200

default_pool_mem_limit

Purpose:Maximum amount of memory (across the entire cluster) that all outstanding requests in this pool can use
before new requests to this pool are queued. Specified in bytes, megabytes, or gigabytes by a number followed by

Apache Impala Guide | 77

Impala Administration

the suffix b (optional), m, or g, either uppercase or lowercase. You can specify floating-point values for megabytes
and gigabytes, to represent fractional numbers such as 1.5. You can also specify it as a percentage of the physical
memory by specifying the suffix %. 0 or no setting indicates no limit. Defaults to bytes if no unit is given. Because
this limit applies cluster-wide, but each Impala node makes independent decisions to run queries immediately or
queue them, it is a soft limit; the overall memory used by concurrent queries might be slightly higher during times
of heavy load. Ignored if fair_scheduler_config_path and llama_site_path are set.

Note: Impala relies on the statistics produced by the COMPUTE STATS statement to estimate
memory usage for each query. See COMPUTE STATS Statement on page 227 for guidelines about
how and when to use this statement.

Type: string

Default: "" (empty string, meaning unlimited)

disable_admission_control

Purpose: Turns off the admission control feature entirely, regardless of other configuration option settings.

Type: Boolean

Default: true

disable_pool_max_requests

Purpose: Disables all per-pool limits on the maximum number of running requests.

Type: Boolean

Default: false

disable_pool_mem_limits

Purpose: Disables all per-pool mem limits.

Type: Boolean

Default: false

fair_scheduler_allocation_path

Purpose: Path to the fair scheduler allocation file (fair-scheduler.xml).

Type: string

Default: "" (empty string)

Usage notes: Admission control only uses a small subset of the settings that can go in this file, as described below.
For details about all the Fair Scheduler configuration settings, see the Apache wiki.

llama_site_path

Purpose: Path to the Llama configuration file (llama-site.xml). If set, fair_scheduler_allocation_path
must also be set.

Type: string

Default: "" (empty string)

Usage notes: Admission control only uses a small subset of the settings that can go in this file, as described below.
For details about all the Llama configuration settings, see the documentation on Github.

queue_wait_timeout_ms

Purpose:Maximum amount of time (in milliseconds) that a request waits to be admitted before timing out.

Type: int64

Default: 60000

78 | Apache Impala Guide

Impala Administration

http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html#Configuration
http://cloudera.github.io/llama/llama-site.html

Configuring Admission Control Using Cloudera Manager

In Cloudera Manager, you can configure pools to manage queued Impala queries, and the options for the limit on
number of concurrent queries and how to handle queries that exceed the limit. For details, see Managing Resources
with Cloudera Manager.

Configuring Admission Control Using the Command Line

To configure admission control, use a combination of startup options for the Impala daemon and edit or create the
configuration files fair-scheduler.xml and llama-site.xml.

For a straightforward configuration using a single resource pool named default, you can specify configuration options
on the command line and skip the fair-scheduler.xml and llama-site.xml configuration files.

For an advanced configurationwithmultiple resource pools using different settings, set up the fair-scheduler.xml
and llama-site.xml configuration files manually. Provide the paths to each one using the impalad command-line
options, --fair_scheduler_allocation_path and --llama_site_path respectively.

The Impala admission control feature only uses the Fair Scheduler configuration settings to determine how to map
users and groups to different resource pools. For example, you might set up different resource pools with separate
memory limits, and maximum number of concurrent and queued queries, for different categories of users within your
organization. For details about all the Fair Scheduler configuration settings, see the Apache wiki.

The Impala admission control feature only uses a small subset of possible settings from the llama-site.xml
configuration file:

llama.am.throttling.maximum.placed.reservations.queue_name
llama.am.throttling.maximum.queued.reservations.queue_name
impala.admission-control.pool-default-query-options.queue_name
impala.admission-control.pool-queue-timeout-ms.queue_name

The impala.admission-control.pool-queue-timeout-ms setting specifies the timeout value for this pool, in
milliseconds. Theimpala.admission-control.pool-default-query-options settings designates the default
query options for all queries that run in this pool. Its argument value is a comma-delimited string of 'key=value' pairs,
for example,'key1=val1,key2=val2'. For example, this iswhere youmight set a defaultmemory limit for all queries
in the pool, using an argument such as MEM_LIMIT=5G.

The impala.admission-control.* configuration settings are available in and higher.

Examples of Admission Control Configurations

Example Admission Control Configurations Using Cloudera Manager

For full instructions about configuring dynamic resource pools through Cloudera Manager, see
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_resource_pools.html. The following
examples demonstrate some important points related to the Impala admission control feature.

The following figure shows a sample of the Dynamic Resource Pools page in Cloudera Manager, accessed through the
Clusters > Cluster name > ResourceManagement >Dynamic Resource Pools. menu choice and then the Configuration
tab. Numbers from all the resource pools are combined into the topmost root pool. The default pool is for users
who are not assigned any other pool by the user-to-pool mapping settings. The development and production pools
show how you can set different limits for different classes of users, for total memory, number of concurrent queries,
and number of queries that can be queued.

Apache Impala Guide | 79

Impala Administration

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_managing_resources.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_managing_resources.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/FairScheduler.html#Configuration
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_resource_pools.html

Figure 1: Sample Settings for Cloudera Manager Dynamic Resource Pools Page

The following figure shows a sample of the Placement Rules page in ClouderaManager, accessed through the Clusters >
Cluster name >ResourceManagement >DynamicResource Pools.menu choice and then theConfiguration >Placement
Rules tabs. The settings demonstrate a reasonable configuration of a pool named default to service all requests
where the specified resource pool does not exist, is not explicitly set, or the user or group is not authorized for the
specified pool.

80 | Apache Impala Guide

Impala Administration

Figure 2: Sample Settings for Cloudera Manager Placement Rules Page

Example Admission Control Configurations Using Configuration Files

For clusters not managed by Cloudera Manager, here are sample fair-scheduler.xml and llama-site.xml files
that define resource pools equivalent to the ones in the preceding Cloudera Manager dialog. These sample files are
stripped down: in a real deployment they might contain other settings for use with various aspects of the YARN and
Llama components. The settings shown here are the significant ones for the Impala admission control feature.

fair-scheduler.xml:

Although Impala does not use the vcores value, you must still specify it to satisfy YARN requirements for the file
contents.

Each <aclSubmitApps> tag (other than the one for root) contains a comma-separated list of users, then a space,
then a comma-separated list of groups; these are the users and groups allowed to submit Impala statements to the
corresponding resource pool.

If you leave the <aclSubmitApps> element empty for a pool, nobody can submit directly to that pool; child pools
can specify their own <aclSubmitApps> values to authorize users and groups to submit to those pools.

<allocations>
 <queue name="root">
 <aclSubmitApps> </aclSubmitApps>
 <queue name="default">
 <maxResources>50000 mb, 0 vcores</maxResources>
 <aclSubmitApps>*</aclSubmitApps>
 </queue>
 <queue name="development">
 <maxResources>200000 mb, 0 vcores</maxResources>
 <aclSubmitApps>user1,user2 dev,ops,admin</aclSubmitApps>
 </queue>
 <queue name="production">
 <maxResources>1000000 mb, 0 vcores</maxResources>
 <aclSubmitApps> ops,admin</aclSubmitApps>
 </queue>
 </queue>

Apache Impala Guide | 81

Impala Administration

 <queuePlacementPolicy>
 <rule name="specified" create="false"/>
 <rule name="default" />
 </queuePlacementPolicy>
</allocations>

llama-site.xml:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <property>
 <name>llama.am.throttling.maximum.placed.reservations.root.default</name>
 <value>10</value>
 </property>
 <property>
 <name>llama.am.throttling.maximum.queued.reservations.root.default</name>
 <value>50</value>
 </property>
 <property>
 <name>llama.am.throttling.maximum.placed.reservations.root.development</name>
 <value>50</value>
 </property>
 <property>
 <name>llama.am.throttling.maximum.queued.reservations.root.development</name>
 <value>100</value>
 </property>
 <property>
 <name>llama.am.throttling.maximum.placed.reservations.root.production</name>
 <value>100</value>
 </property>
 <property>
 <name>llama.am.throttling.maximum.queued.reservations.root.production</name>
 <value>200</value>
 </property>
</configuration>

Guidelines for Using Admission Control

To see how admission control works for particular queries, examine the profile output for the query. This information
is available through the PROFILE statement in impala-shell immediately after running a query in the shell, on the
queries page of the Impala debug web UI, or in the Impala log file (basic information at log level 1, more detailed
information at log level 2). The profile output contains details about the admission decision, such as whether the query
was queued or not andwhich resource pool it was assigned to. It also includes the estimated and actual memory usage
for the query, so you can fine-tune the configuration for the memory limits of the resource pools.

Where practical, use Cloudera Manager to configure the admission control parameters. The Cloudera Manager GUI is
much simpler than editing the configuration files directly. In Cloudera Manager 4, the admission control settings are
not available directly, but you can use the impalad safety valve field to configure appropriate startup options.

Remember that the limits imposed by admission control are “soft” limits. Although the limits you specify for number
of concurrent queries and amount of memory apply cluster-wide, the decentralized nature of this mechanism means
that each Impala node makes its own decisions about whether to allow queries to run immediately or to queue them.
These decisions rely on information passed back and forth between nodes by the statestore service. If a sudden surge
in requests causes more queries than anticipated to run concurrently, then as a fallback, the overall Impala memory
limit and the Linux cgroups mechanism serve as hard limits to prevent overallocation of memory, by cancelling queries
if necessary.

If you have trouble getting a query to run because its estimatedmemory usage is too high, you can override the estimate
by setting the MEM_LIMIT query option in impala-shell, then issuing the query through the shell in the same session.
The MEM_LIMIT value is treated as the estimated amount of memory, overriding the estimate that Impala would
generate based on table and column statistics. This value is used only for making admission control decisions, and is
not pre-allocated by the query.

In impala-shell, you can also specify which resource pool to direct queries to by setting the REQUEST_POOL query
option. (This option was named YARN_POOL during the CDH 5 beta period.)

82 | Apache Impala Guide

Impala Administration

The statements affected by the admission control feature are primarily queries, but also include statements that write
data such as INSERT and CREATE TABLE AS SELECT. Most write operations in Impala are not resource-intensive,
but inserting into a Parquet table can require substantial memory due to buffering 1 GB of data before writing out
each Parquet data block. See Loading Data into Parquet Tables on page 537 for instructions about inserting data
efficiently into Parquet tables.

Although admission control does not scrutinize memory usage for other kinds of DDL statements, if a query is queued
due to a limit on concurrent queries or memory usage, subsequent statements in the same session are also queued
so that they are processed in the correct order:

-- This query could be queued to avoid out-of-memory at times of heavy load.
select * from huge_table join enormous_table using (id);
-- If so, this subsequent statement in the same session is also queued
-- until the previous statement completes.
drop table huge_table;

If you set up different resource pools for different users and groups, consider reusing any classifications and hierarchy
you developed for use with Sentry security. See Enabling Sentry Authorization for Impala on page 96 for details.

For details about all the Fair Scheduler configuration settings, see Fair Scheduler Configuration, in particular the tags
such as <queue> and <aclSubmitApps> to map users and groups to particular resource pools (queues).

Integrated Resource Management with YARN

Note: Though Impala can be used together with YARN via simple configuration of Static Service Pools
in Cloudera Manager, the use of the general-purpose component Llama for integrated resource
management within YARN is no longer supported with CDH 5.5 / Impala 2.3 and higher.

You can limit the CPU and memory resources used by Impala, to manage and prioritize workloads on clusters that run
jobs from many Hadoop components.

Requests from Impala to YARN go through an intermediary service called Llama. When the resource requests are
granted, Impala starts the query and places all relevant execution threads into the cgroup containers and sets up the
memory limit on each host. If sufficient resources are not available, the Impala query waits until other jobs complete
and the resources are freed. During query processing, as the need for additional resources arises, Llama can “expand”
already-requested resources, to avoid over-allocating at the start of the query.

After a query is finished, Llama caches the resources (for example, leaving memory allocated) in case they are needed
for subsequent Impala queries. This caching mechanism avoids the latency involved in making a whole new set of
resource requests for each query. If the resources are needed by YARN for other types of jobs, Llama returns them.

While the delays to wait for resources might make individual queries seem less responsive on a heavily loaded cluster,
the resource management feature makes the overall performance of the cluster smoother and more predictable,
without sudden spikes in utilization due to memory paging, CPUs pegged at 100%, and so on.

The Llama Daemon

Llama is a system that mediates resource management between Impala and Hadoop YARN. Llama enables Impala to
reserve, use, and release resource allocations in a Hadoop cluster. Llama is only required if resource management is
enabled in Impala.

By default, YARN allocates resources bit-by-bit as needed by MapReduce jobs. Impala needs all resources available at
the same time, so that intermediate results can be exchanged between cluster nodes, and queries do not stall partway
through waiting for new resources to be allocated. Llama is the intermediary process that ensures all requested
resources are available before each Impala query actually begins.

For management through Cloudera Manager, see The Impala Llama ApplicationMaster.

Apache Impala Guide | 83

Impala Administration

https://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-yarn/hadoop-yarn-site/FairScheduler.html#Configuration
http://www.cloudera.com/documentation/enterprise/latest/topics/admin_llama.html

How Resource Limits Are Enforced

• If Cloudera Manager Static Partitioning is used, it creates a cgroup in which Impala runs. This cgroup limits CPU,
network, and IO according to the static partitioning policy.

• Limits on memory usage are enforced by Impala's process memory limit (the MEM_LIMIT query option setting).
The admission control feature checks this setting to decide howmany queries can be safely run at the same time.
Then the Impala daemon enforces the limit by activating the spill-to-diskmechanismwhen necessary, or cancelling
a query altogether if the limit is exceeded at runtime.

impala-shell Query Options for Resource Management

Before issuing SQL statements through the impala-shell interpreter, you can use the SET command to configure
the following parameters related to resource management:

• EXPLAIN_LEVEL Query Option on page 310
• MEM_LIMIT Query Option on page 318

Limitations of Resource Management for Impala

The MEM_LIMIT query option, and the other resource-related query options, are settable through the ODBC or JDBC
interfaces in Impala 2.0 and higher. This is a former limitation that is now lifted.

Setting Timeout Periods for Daemons, Queries, and Sessions
Depending on how busy your CDH cluster is, you might increase or decrease various timeout values. Increase timeouts
if Impala is cancelling operations prematurely, when the system is responding slower than usual but the operations
are still successful if given extra time. Decrease timeouts if operations are idle or hanging for long periods, and the idle
or hung operations are consuming resources and reducing concurrency.

Increasing the Statestore Timeout

If you have an extensive Impala schema, for example with hundreds of databases, tens of thousands of tables, and so
on, you might encounter timeout errors during startup as the Impala catalog service broadcasts metadata to all the
Impala nodes using the statestore service. To avoid such timeout errors on startup, increase the statestore timeout
value from its default of 10 seconds. Specify the timeout value using the
-statestore_subscriber_timeout_seconds option for the statestore service, using the configuration instructions
in Modifying Impala Startup Options on page 43. The symptom of this problem is messages in the impalad log such
as:

Connection with state-store lost
Trying to re-register with state-store

See Scalability Considerations for the Impala Statestore on page 517 for more details about statestore operation and
settings on clusters with a large number of Impala-related objects such as tables and partitions.

Setting the Idle Query and Idle Session Timeouts for impalad

To keep long-running queries or idle sessions from tying up cluster resources, you can set timeout intervals for both
individual queries, and entire sessions.

84 | Apache Impala Guide

Impala Administration

Note:

The timeout clock for queries and sessions only starts ticking when the query or session is idle. For
queries, this means the query has results ready but is waiting for a client to fetch the data. A query
can run for an arbitrary time without triggering a timeout, because the query is computing results
rather than sitting idle waiting for the results to be fetched. The timeout period is intended to prevent
unclosed queries from consuming resources and taking up slots in the admission count of running
queries, potentially preventing other queries from starting.

For sessions, this means that no query has been submitted for some period of time.

Specify the following startup options for the impalad daemon:

• The --idle_query_timeout option specifies the time in seconds after which an idle query is cancelled. This
could be a query whose results were all fetched but was never closed, or one whose results were partially fetched
and then the client program stopped requesting further results. This condition is most likely to occur in a client
program using the JDBC or ODBC interfaces, rather than in the interactive impala-shell interpreter. Once the
query is cancelled, the client program cannot retrieve any further results.

You can reduce the idle query timeout by using the QUERY_TIMEOUT_S query option. Any value specified for the
--idle_query_timeout startup option serves as an upper limit for the QUERY_TIMEOUT_S query option. See
QUERY_TIMEOUT_S Query Option (CDH 5.2 or higher only) on page 321 for details.

• The --idle_session_timeout option specifies the time in seconds after which an idle session is expired. A
session is idle when no activity is occurring for any of the queries in that session, and the session has not started
any new queries. Once a session is expired, you cannot issue any new query requests to it. The session remains
open, but the only operation you can perform is to close it. The default value of 0 means that sessions never
expire.

For instructions on changing impalad startup options, see Modifying Impala Startup Options on page 43.

Note:

To avoid excessive polling, Impala checks periodically for idle sessions and queries to cancel. The actual
idle time before cancellation might be up to 50% greater than the specified configuration setting. For
example, if the timeout settingwas 60, the session or querymight be cancelled after being idle between
60 and 90 seconds.

Cancelling a Query

Sometimes, an Impala query might run for an unexpectedly long time, tying up resources in the cluster. You can cancel
the query explicitly, independent of the timeout period, by going into the web UI for the impalad host (on port 25000
by default), and using the link on the /queries tab to cancel the running query. Various client applications let you
interactively cancel queries submitted or monitored through those applications. For example, by pressing ^C in
impala-shell, clicking the Cancel button from theWatch page in Hue, clicking Actions > Cancel from the Queries
list in Cloudera Manager, and so on.

Using Impala through a Proxy for High Availability
For most clusters that have multiple users and production availability requirements, you might set up a proxy server
to relay requests to and from Impala.

Currently, the Impala statestore mechanism does not include such proxying and load-balancing features. Set up a
software package of your choice to perform these functions.

Apache Impala Guide | 85

Impala Administration

Note:

Most considerations for load balancing and high availability apply to the impalad daemon. The
statestored and catalogd daemons do not have special requirements for high availability, because
problems with those daemons do not result in data loss. If those daemons become unavailable due
to an outage on a particular host, you can stop the Impala service, delete the Impala StateStore and
Impala Catalog Server roles, add the roles on a different host, and restart the Impala service.

Overview of Proxy Usage and Load Balancing for Impala

Using a load-balancing proxy server for Impala has the following advantages:

• Applications connect to a single well-known host and port, rather than keeping track of the hosts where the
impalad daemon is running.

• If any host running the impalad daemon becomes unavailable, application connection requests still succeed
because you always connect to the proxy server rather than a specific host running the impalad daemon.

• The coordinator node for each Impala query potentially requires more memory and CPU cycles than the other
nodes that process the query. The proxy server can issue queries using round-robin scheduling, so that each
connection uses a different coordinator node. This load-balancing technique lets the Impala nodes share this
additional work, rather than concentrating it on a single machine.

The following setup steps are a general outline that apply to any load-balancing proxy software.

1. Download the load-balancing proxy software. It should only need to be installed and configured on a single host.
Pick a host other than the DataNodes where impalad is running, because the intention is to protect against the
possibility of these DataNodes becoming unavailable.

2. Configure the software (typically by editing a configuration file). In particular:

• Set up a port that the load balancer will listen on to relay Impala requests back and forth.

• Consider enabling “sticky sessions”. Cloudera recommends enabling this setting so that stateless client
applications such as impalad and Hue are not disconnected from long-running queries. Evaluate whether
this setting is appropriate for your combination of workload and client applications.

• For Kerberized clusters, follow the instructions in Special Proxy Considerations for Clusters Using Kerberos
on page 87.

3. Specify the host and port settings for each Impala node. These are the hosts that the load balancer will choose
fromwhen relaying each Impala query. See Ports Used by Impala on page 584 for when to use port 21000, 21050,
or another value depending on what type of connections you are load balancing.

Note:

In particular, if you are using Hue or JDBC-based applications, you typically set up load balancing
for both ports 21000 and 21050, because these client applications connect through port 21050
while the impala-shell command connects through port 21000.

4. Run the load-balancing proxy server, pointing it at the configuration file that you set up.
5. On systemsmanaged by ClouderaManager, on the page Impala > Configuration > Impala DaemonDefault Group,

specify a value for the Impala Daemons Load Balancer field. Specify the address of the load balancer in host:port
format. This setting lets Cloudera Manager route all appropriate Impala-related operations through the proxy
server.

6. For any scripts, jobs, or configuration settings for applications that formerly connected to a specific datanode to
run Impala SQL statements, change the connection information (such as the -i option in impala-shell) to point
to the load balancer instead.

86 | Apache Impala Guide

Impala Administration

Note: The following sections use theHAProxy software as a representative example of a load balancer
that you can use with Impala. For information specifically about using Impala with the F5 BIG-IP load
balancer, see Impala HA with F5 BIG-IP.

Special Proxy Considerations for Clusters Using Kerberos

In a cluster using Kerberos, applications check host credentials to verify that the host they are connecting to is the
same one that is actually processing the request, to preventman-in-the-middle attacks. To clarify that the load-balancing
proxy server is legitimate, perform these extra Kerberos setup steps:

1. This section assumes you are starting with a Kerberos-enabled cluster. See Enabling Kerberos Authentication for
Impala on page 107 for instructions for setting up Impala with Kerberos. See the CDH Security Guide for general
steps to set up Kerberos.

2. Choose the host you will use for the proxy server. Based on the Kerberos setup procedure, it should already have
an entry impala/proxy_host@realm in its keytab. If not, go back over the initial Kerberos configuration steps
for the keytab on each host running the impalad daemon.

3. Copy the keytab file from the proxy host to all other hosts in the cluster that run the impalad daemon. (For
optimal performance, impalad should be running on all DataNodes in the cluster.) Put the keytab file in a secure
location on each of these other hosts.

4. On systems not managed by Cloudera Manager, add an entry impala/actual_hostname@realm to the keytab
on each host running the impalad daemon.

5. For each impalad node, merge the existing keytab with the proxy’s keytab using ktutil, producing a new keytab
file. For example:

$ ktutil
ktutil: read_kt proxy.keytab
ktutil: read_kt impala.keytab
ktutil: write_kt proxy_impala.keytab
ktutil: quit

Note: On systems managed by Cloudera Manager 5.1.0 and later, the keytab merging happens
automatically. To verify that Cloudera Manager has merged the keytabs, run the command:

klist -k keytabfile

which lists the credentials for both principal and be_principal on all nodes.

6. Make sure that the impala user has permission to read this merged keytab file.
7. Change some configuration settings for each host in the cluster that participates in the load balancing. Follow the

appropriate steps depending on whether you use Cloudera Manager or not:

• In the impalad option definition, or the Cloudera Manager safety valve (Cloudera Manager 4) or advanced
configuration snippet (Cloudera Manager 5), add:

--principal=impala/proxy_host@realm
--be_principal=impala/actual_host@realm
--keytab_file=path_to_merged_keytab

Note:

Every host has a different --be_principal because the actual hostname is different on
each host.

Specify the fully qualified domain name (FQDN) for the proxy host, not the IP address. Use
the exact FQDN as returned by a reverse DNS lookup for the associated IP address.

Apache Impala Guide | 87

Impala Administration

http://www.cloudera.com/documentation/other/reference-architecture/PDF/Impala-HA-with-F5-BIG-IP.pdf
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_sg_kerberos_prin_keytab_deploy.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_sg_kerberos_prin_keytab_deploy.html

• On a cluster managed by Cloudera Manager, create a role group to set the configuration values from the
preceding step on a per-host basis.

• On a cluster not managed by Cloudera Manager, see Modifying Impala Startup Options on page 43 for the
procedure to modify the startup options.

8. Restart Impala to make the changes take effect. Follow the appropriate steps depending on whether you use
Cloudera Manager or not:

• On a cluster managed by Cloudera Manager, restart the Impala service.
• On a cluster not managed by Cloudera Manager, restart the impalad daemons on all hosts in the cluster, as

well as the statestored and catalogd daemons.

Example of Configuring HAProxy Load Balancer for Impala

If you are not already using a load-balancing proxy, you can experimentwith HAProxy a free, open source load balancer.
This example shows how you might install and configure that load balancer on a Red Hat Enterprise Linux system.

• Install the load balancer: yum install haproxy

• Set up the configuration file: /etc/haproxy/haproxy.cfg. See the following section for a sample configuration
file.

• Run the load balancer (on a single host, preferably one not running impalad):

/usr/sbin/haproxy –f /etc/haproxy/haproxy.cfg

• In impala-shell, JDBC applications, or ODBC applications, connect to the listener port of the proxy host, rather
than port 21000 or 21050 on a host actually running impalad. The sample configuration file sets haproxy to listen
on port 25003, therefore you would send all requests to haproxy_host:25003.

This is the sample haproxy.cfg used in this example:

global
 # To have these messages end up in /var/log/haproxy.log you will
 # need to:
 #
 # 1) configure syslog to accept network log events. This is done
 # by adding the '-r' option to the SYSLOGD_OPTIONS in
 # /etc/sysconfig/syslog
 #
 # 2) configure local2 events to go to the /var/log/haproxy.log
 # file. A line like the following can be added to
 # /etc/sysconfig/syslog
 #
 # local2.* /var/log/haproxy.log
 #
 log 127.0.0.1 local0
 log 127.0.0.1 local1 notice
 chroot /var/lib/haproxy
 pidfile /var/run/haproxy.pid
 maxconn 4000
 user haproxy
 group haproxy
 daemon

 # turn on stats unix socket
 #stats socket /var/lib/haproxy/stats

#---
common defaults that all the 'listen' and 'backend' sections will
use if not designated in their block
#
You might need to adjust timing values to prevent timeouts.
#---
defaults
 mode http

88 | Apache Impala Guide

Impala Administration

http://haproxy.1wt.eu/

 log global
 option httplog
 option dontlognull
 option http-server-close
 option forwardfor except 127.0.0.0/8
 option redispatch
 retries 3
 maxconn 3000
 contimeout 5000
 clitimeout 50000
 srvtimeout 50000

#
This sets up the admin page for HA Proxy at port 25002.
#
listen stats :25002
 balance
 mode http
 stats enable
 stats auth username:password

This is the setup for Impala. Impala client connect to load_balancer_host:25003.
HAProxy will balance connections among the list of servers listed below.
The list of Impalad is listening at port 21000 for beeswax (impala-shell) or original
 ODBC driver.
For JDBC or ODBC version 2.x driver, use port 21050 instead of 21000.
listen impala :25003
 mode tcp
 option tcplog
 balance leastconn

 server symbolic_name_1 impala-host-1.example.com:21000 check
 server symbolic_name_2 impala-host-2.example.com:21000 check
 server symbolic_name_3 impala-host-3.example.com:21000 check
 server symbolic_name_4 impala-host-4.example.com:21000 check

Setup for Hue or other JDBC-enabled applications.
In particular, Hue requires sticky sessions.
The application connects to load_balancer_host:21051, and HAProxy balances
connections to the associated hosts, where Impala listens for JDBC
requests on port 21050.
listen impalajdbc :21051
 mode tcp
 option tcplog
 balance source
 server symbolic_name_5 impala-host-1.example.com:21050
 server symbolic_name_6 impala-host-2.example.com:21050
 server symbolic_name_7 impala-host-3.example.com:21050
 server symbolic_name_8 impala-host-4.example.com:21050

Note: If your JDBC or ODBC application connects to Impala through a load balancer such as haproxy,
be cautious about reusing the connections. If the load balancer has set up connection timeout values,
either check the connection frequently so that it never sits idle longer than the load balancer timeout
value, or check the connection validity before using it and create a new one if the connection has
been closed.

Managing Disk Space for Impala Data
Although Impala typically works with many large files in an HDFS storage system with plenty of capacity, there are
times when you might perform some file cleanup to reclaim space, or advise developers on techniques to minimize
space consumption and file duplication.

• Use compact binary file formats where practical. Numeric and time-based data in particular can be stored in more
compact form in binary data files. Depending on the file format, various compression and encoding features can
reduce file size even further. You can specify the STORED AS clause as part of the CREATE TABLE statement, or
ALTER TABLE with the SET FILEFORMAT clause for an existing table or partition within a partitioned table. See

Apache Impala Guide | 89

Impala Administration

How ImpalaWorkswithHadoop File Formats on page 528 for details about file formats, especially Using the Parquet
File Formatwith Impala Tables on page 536. See CREATE TABLE Statement on page 236 andALTER TABLE Statement
on page 216 for syntax details.

• You manage underlying data files differently depending on whether the corresponding Impala table is defined as
an internal or external table:

– Use the DESCRIBE FORMATTED statement to check if a particular table is internal (managed by Impala) or
external, and to see the physical location of the data files in HDFS. See DESCRIBE Statement on page 246 for
details.

– For Impala-managed (“internal”) tables, use DROP TABLE statements to remove data files. See DROP TABLE
Statement on page 259 for details.

– For tables not managed by Impala (“external” tables), use appropriate HDFS-related commands such as
hadoop fs, hdfs dfs, or distcp, to create, move, copy, or delete files within HDFS directories that are
accessible by the impala user. Issue a REFRESH table_name statement after adding or removing any files
from the data directory of an external table. See REFRESH Statement on page 278 for details.

– Use external tables to reference HDFS data files in their original location. With this technique, you avoid
copying the files, and you can map more than one Impala table to the same set of data files. When you drop
the Impala table, the data files are left undisturbed. See External Tables on page 210 for details.

– Use the LOAD DATA statement to move HDFS files into the data directory for an Impala table from inside
Impala, without the need to specify the HDFS path of the destination directory. This techniqueworks for both
internal and external tables. See LOAD DATA Statement on page 275 for details.

• Make sure that the HDFS trashcan is configured correctly. When you remove files from HDFS, the space might not
be reclaimed for use by other files until sometime later, when the trashcan is emptied. See DROP TABLE Statement
on page 259 and the FAQ entry Why is space not freed up when I issue DROP TABLE? on page 602 for details. See
User Account Requirements on page 24 for permissions needed for the HDFS trashcan to operate correctly.

• Drop all tables in a database before dropping the database itself. See DROP DATABASE Statement on page 253 for
details.

• Clean up temporary files after failed INSERT statements. If an INSERT statement encounters an error, and you
see a directory named .impala_insert_staging or _impala_insert_staging left behind in the data
directory for the table, it might contain temporary data files taking up space in HDFS. You might be able to salvage
these data files, for example if they are complete but could not be moved into place due to a permission error.
Or, you might delete those files through commands such as hadoop fs or hdfs dfs, to reclaim space before
re-trying the INSERT. Issue DESCRIBE FORMATTED table_name to see the HDFS path where you can check for
temporary files.

• By default, intermediate files used during large sort, join, aggregation, or analytic function operations are stored
in thedirectory/tmp/impala-scratch . These files are removedwhen theoperation finishes. (Multiple concurrent
queries can perform operations that use the “spill to disk” technique, without any name conflicts for these
temporary files.) You can specify a different location by starting the impalad daemon with the
--scratch_dirs="path_to_directory" configuration option or the equivalent configuration option in the
Cloudera Manager user interface. You can specify a single directory, or a comma-separated list of directories. The
scratch directories must be on the local filesystem, not in HDFS. You might specify different directory paths for
different hosts, depending on the capacity and speed of the available storage devices. In CDH 5.5 / Impala 2.3 or
higher, Impala successfully starts (with a warning written to the log) if it cannot create or read and write files in
one of the scratch directories. If there is less than 1 GB free on the filesystemwhere that directory resides, Impala
still runs, but writes a warning message to its log. If Impala encounters an error reading or writing files in a scratch
directory during a query, Impala logs the error and the query fails.

• If you use the Amazon Simple Storage Service (S3) as a place to offload data to reduce the volume of local storage,
Impala 2.2.0 and higher can query the data directly from S3. See Using Impala to Query the Amazon S3 Filesystem
on page 567 for details.

90 | Apache Impala Guide

Impala Administration

Impala Security

Impala includes a fine-grained authorization framework for Hadoop, based on the Sentry open source project. Sentry
authorization was added in Impala 1.1.0. Together with the Kerberos authentication framework, Sentry takes Hadoop
security to a new level needed for the requirements of highly regulated industries such as healthcare, financial services,
and government. Impala also includes an auditing capability; Impala generates the audit data, the Cloudera Navigator
product consolidates the audit data from all nodes in the cluster, and Cloudera Manager lets you filter, visualize, and
produce reports. The auditing feature was added in Impala 1.1.1.

The Impala security features have several objectives. At the most basic level, security prevents accidents or mistakes
that could disrupt application processing, delete or corrupt data, or reveal data to unauthorized users. More advanced
security features and practices can harden the system against malicious users trying to gain unauthorized access or
perform other disallowed operations. The auditing feature provides a way to confirm that no unauthorized access
occurred, and detect whether any such attemptsweremade. This is a critical set of features for production deployments
in large organizations that handle important or sensitive data. It sets the stage for multi-tenancy, where multiple
applications run concurrently and are prevented from interfering with each other.

The material in this section presumes that you are already familiar with administering secure Linux systems. That is,
you should know the general security practices for Linux andHadoop, and their associated commands and configuration
files. For example, you should know how to create Linux users and groups, manage Linux group membership, set Linux
and HDFS file permissions and ownership, and designate the default permissions and ownership for new files. You
should be familiar with the configuration of the nodes in your Hadoop cluster, and know how to apply configuration
changes or run a set of commands across all the nodes.

The security features are divided into these broad categories:

authorization

Which users are allowed to access which resources, andwhat operations are they allowed to perform? Impala relies
on the open source Sentry project for authorization. By default (when authorization is not enabled), Impala does
all read and write operations with the privileges of the impala user, which is suitable for a development/test
environment but not for a secure production environment. When authorization is enabled, Impala uses the OS user
ID of the user who runs impala-shell or other client program, and associates various privileges with each user.
See Enabling Sentry Authorization for Impala on page 96 for details about setting up and managing authorization.

authentication

How does Impala verify the identity of the user to confirm that they really are allowed to exercise the privileges
assigned to that user? Impala relies on the Kerberos subsystem for authentication. See Enabling Kerberos
Authentication for Impala on page 107 for details about setting up and managing authentication.

auditing

What operations were attempted, and did they succeed or not? This feature provides a way to look back and
diagnose whether attempts were made to perform unauthorized operations. You use this information to track
down suspicious activity, and to see where changes are needed in authorization policies. The audit data produced
by this feature is collected by the Cloudera Manager product and then presented in a user-friendly form by the
Cloudera Manager product. See Auditing Impala Operations on page 113 for details about setting up andmanaging
auditing.

Security Guidelines for Impala
The following are the major steps to harden a cluster running Impala against accidents and mistakes, or malicious
attackers trying to access sensitive data:

• Secure the root account. The root user can tamper with the impalad daemon, read and write the data files in
HDFS, log into other user accounts, and access other system services that are beyond the control of Impala.

Apache Impala Guide | 91

Impala Security

• Restrict membership in the sudoers list (in the /etc/sudoers file). The users who can run the sudo command
can do many of the same things as the root user.

• Ensure the Hadoop ownership and permissions for Impala data files are restricted.

• Ensure the Hadoop ownership and permissions for Impala log files are restricted.

• Ensure that the Impala web UI (available by default on port 25000 on each Impala node) is password-protected.
See Impala Web User Interface for Debugging on page 581 for details.

• Create a policy file that specifies which Impala privileges are available to users in particular Hadoop groups (which
by defaultmap to LinuxOS groups). Create the associated Linux groups using the groupadd command if necessary.

• The Impala authorization featuremakes use of theHDFS file ownership and permissionsmechanism; for background
information, see the CDH HDFS Permissions Guide. Set up users and assign them to groups at the OS level,
corresponding to the different categories of users with different access levels for various databases, tables, and
HDFS locations (URIs). Create the associated Linux users using the useradd command if necessary, and add them
to the appropriate groups with the usermod command.

• Design your databases, tables, and views with database and table structure to allow policy rules to specify simple,
consistent rules. For example, if all tables related to an application are inside a single database, you can assign
privileges for that database and use the * wildcard for the table name. If you are creating views with different
privileges than the underlying base tables, you might put the views in a separate database so that you can use
the * wildcard for the database containing the base tables, while specifying the precise names of the individual
views. (For specifying table or database names, you either specify the exact name or * to mean all the databases
on a server, or all the tables and views in a database.)

• Enable authorization by running the impalad daemons with the -server_name and
-authorization_policy_file options on all nodes. (The authorization feature does not apply to the
statestored daemon, which has no access to schema objects or data files.)

• Set up authentication using Kerberos, to make sure users really are who they say they are.

Securing Impala Data and Log Files
One aspect of security is to protect files from unauthorized access at the filesystem level. For example, if you store
sensitive data in HDFS, you specify permissions on the associated files and directories in HDFS to restrict read andwrite
permissions to the appropriate users and groups.

If you issue queries containing sensitive values in the WHERE clause, such as financial account numbers, those values
are stored in Impala log files in the Linux filesystem and you must secure those files also. For the locations of Impala
log files, see Using Impala Logging on page 575.

All Impala read and write operations are performed under the filesystem privileges of the impala user. The impala
user must be able to read all directories and data files that you query, and write into all the directories and data files
for INSERT and LOAD DATA statements. At a minimum, make sure the impala user is in the hive group so that it
can access files and directories shared between Impala and Hive. See User Account Requirements on page 24 for more
details.

Setting file permissions is necessary for Impala to function correctly, but is not an effective security practice by itself:

• The way to ensure that only authorized users can submit requests for databases and tables they are allowed to
access is to set up Sentry authorization, as explained in Enabling Sentry Authorization for Impala on page 96. With
authorization enabled, the checking of the user ID and group is done by Impala, and unauthorized access is blocked
by Impala itself. The actual low-level read and write requests are still done by the impala user, so you must have
appropriate file and directory permissions for that user ID.

• You must also set up Kerberos authentication, as described in Enabling Kerberos Authentication for Impala on
page 107, so that users can only connect from trusted hosts. With Kerberos enabled, if someone connects a new

92 | Apache Impala Guide

Impala Security

https://archive.cloudera.com/cdh/3/hadoop/hdfs_permissions_guide.html

host to the network and creates user IDs that match your privileged IDs, they will be blocked from connecting to
Impala at all from that host.

Installation Considerations for Impala Security
Impala 1.1 comes set up with all the software and settings needed to enable security when you run the impalad
daemon with the new security-related options (-server_name and -authorization_policy_file). You do not
need to change any environment variables or install any additional JAR files. In a clustermanaged by ClouderaManager,
you do not need to change any settings in Cloudera Manager.

Securing the Hive Metastore Database
It is important to secure theHivemetastore, so that users cannot access the names or other information about databases
and tables the through the Hive client or by querying the metastore database. Do this by turning on Hive metastore
security, using the instructions in the CDH 5 Security Guide for securing different Hive components:

• Secure the Hive Metastore.
• In addition, allow access to the metastore only from the HiveServer2 server, and then disable local access to the

HiveServer2 server.

Securing the Impala Web User Interface
The instructions in this section presume you are familiar with the .htpasswdmechanism commonly used to
password-protect pages on web servers.

Password-protect the ImpalawebUI that listens on port 25000 by default. Set up a.htpasswd file in the$IMPALA_HOME
directory, or start both the impalad and statestored daemons with the --webserver_password_file option
to specify a different location (including the filename).

This file should only be readable by the Impala process and machine administrators, because it contains (hashed)
versions of passwords. The username / password pairs are not derived from Unix usernames, Kerberos users, or any
other system. Thedomain field in the password filemustmatch the domain supplied to Impala by the new command-line
option --webserver_authentication_domain. The default is mydomain.com.

Impala also supports using HTTPS for secure web traffic. To do so, set --webserver_certificate_file to refer
to a valid .pem TLS/SSL certificate file. Impala will automatically start using HTTPS once the TLS/SSL certificate has
been read and validated. A .pem file is basically a private key, followed by a signed TLS/SSL certificate; make sure to
concatenate both parts when constructing the .pem file.

If Impala cannot find or parse the .pem file, it prints an error message and quits.

Note:

If the private key is encrypted using a passphrase, Impalawill ask for that passphrase on startup, which
is not useful for a large cluster. In that case, remove the passphrase and make the .pem file readable
only by Impala and administrators.

When you turn on TLS/SSL for the Impala web UI, the associated URLs change from http:// prefixes
to https://. Adjust any bookmarks or application code that refers to those URLs.

Configuring Secure Access for Impala Web Servers

Cloudera Manager supports two methods of authentication for secure access to the Impala Catalog Server, Daemon,
and StateStoreweb servers: password-based authentication and TLS/SSL certificate authentication.

Authentication for the three types of daemons can be configured independently.

Apache Impala Guide | 93

Impala Security

http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_sg_hive_security.html
http://en.wikipedia.org/wiki/.htpasswd

Configuring Password Authentication

1. Navigate to Clusters > Impala Service > Configuration.
2. Search for "password" using the Search box in the Configuration tab. This should display the password-related

properties (Username and Password properties) for the Impala Daemon, StateStore, and Catalog Server. If there
are multiple role groups configured for Impala Daemon instances, the search should display all of them.

3. Enter a username and password into these fields.
4. Click Save Changes, and restart the Impala service.

Now when you access theWeb UI for the Impala Daemon, StateStore, or Catalog Server, you are asked to log in before
access is granted.

Configuring TLS/SSL Certificate Authentication

1. Create or obtain an TLS/SSL certificate.
2. Place the certificate, in .pem format, on the hosts where the Impala Catalog Server and StateStore are running,

and on each host where an Impala Daemon is running. It can be placed in any location (path) you choose. If all
the Impala Daemons are members of the same role group, then the .pem file must have the same path on every
host.

3. Navigate to Clusters > Impala Service > Configuration.
4. Search for "certificate" using the Search box in the Configuration tab. This should display the certificate file location

properties for the Impala Catalog Server, Impala Daemon, and StateStore. If there are multiple role groups
configured for Impala Daemon instances, the search should display all of them.

5. In the property fields, enter the full path name to the certificate file.
6. Click Save Changes, and restart the Impala service.

Important: If Cloudera Manager cannot find the .pem file on the host for a specific role instance,
that role will fail to start.

When you access the Web UI for the Impala Catalog Server, Impala Daemon, and StateStore, https will be used.

Configuring TLS/SSL for Impala
Impala supports TLS/SSL network encryption, between Impala and client programs, and between the Impala-related
daemons running on different nodes in the cluster. This feature is important when you also use other features such
as Kerberos authentication or Sentry authorization, where credentials are being transmitted back and forth.

Important:

• You can use either Cloudera Manager or the following command-line instructions to complete
this configuration.

• This information applies specifically to CDH 5.6.x. If you use an earlier version of CDH, see the
documentation for that version located at Cloudera Documentation.

Using Cloudera Manager

To configure Impala to listen for Beeswax and HiveServer2 requests on TLS/SSL-secured ports:

1. Open the Cloudera Manager Admin Console and go to the Impala service.
2. Click the Configuration tab.
3. Select Scope > Impala (Service-Wide).
4. Select Category > Security.
5. Edit the following properties:

94 | Apache Impala Guide

Impala Security

http://www.cloudera.com/content/support/en/documentation.html

Table 1: Impala SSL Properties

DescriptionProperty

Encrypt communication between clients (like ODBC, JDBC, and the Impala shell)
and the Impala daemon using Transport Layer Security (TLS) (formerly known
as Secure Socket Layer (SSL)).

Enable TLS/SSL for Impala
Client Services

Local path to the X509 certificate that identifies the Impala daemon to clients
during TLS/SSL connections. This file must be in PEM format.

SSL/TLS Certificate for Clients

Local path to the private key that matches the certificate specified in the
Certificate for Clients. This file must be in PEM format.

SSL/TLS Private Key for Clients

A shell command for Impala to run on startup to retrieve the password for a
password-protected private key file. The output of the command is truncated

SSL/TLS Private Key Password
for Clients

to a maximum of 1024 bytes, and any trailing whitespace (such as spaces or
newline characters) is trimmed. If the command exits with an error, Impala does
not start. If the password is incorrect, clients cannot connect to the server
regardless of whether the public key is correct.

Must be specified for TLS/SSL encryption to be enabled for communication
between internal Impala components.

SSL/TLS CA Certificate

There are three of these configuration settings, one each for “Impala Daemon”,
“Catalog Server”, and “Statestore”. Each of these Impala components has its

SSL/TLS Certificate for Impala
componentWebserver

own internal web server that powers the associated web UI with diagnostic
information. The configuration setting represents the local path to the X509
certificate that identifies the web server to clients during TLS/SSL connections.
This file must be in PEM format.

6. Click Save Changes to commit the changes.
7. Restart the Impala service.

For information on configuring TLS/SSL communication with the impala-shell interpreter, see Configuring TLS/SSL
Communication for the Impala Shell on page 96.

Using the Command Line

To enable SSL for when client applications connect to Impala, add both of the following flags to the impalad startup
options:

• --ssl_server_certificate: the full path to the server certificate, on the local filesystem.
• --ssl_private_key: the full path to the server private key, on the local filesystem.

In CDH 5.5 / Impala 2.3 and higher, Impala can also use SSL for its own internal communication between the impalad,
statestored, andcatalogddaemons. Toenable this additional SSL encryption, set the--ssl_server_certificate
and --ssl_private_key flags in the startup options for impalad, catalogd, and statestored, and also add the
--ssl_client_ca_certificate flag for all three of those daemons.

Warning: Prior to CDH 5.5.2 / Impala 2.3.2, you could enable Kerberos authentication between Impala
internal components, or SSL encryption between Impala internal components, but not both at the
same time. This restriction has now been lifted. See IMPALA-2598 to see the maintenance releases
for different levels of CDH where the fix has been published.

If either of these flags are set, both must be set. In that case, Impala starts listening for Beeswax and HiveServer2
requests on SSL-secured ports only. (The port numbers stay the same; see Ports Used by Impala on page 584 for details.)

Apache Impala Guide | 95

Impala Security

https://issues.cloudera.org/browse/IMPALA-2598

Since Impala uses passphrase-less certificates in PEM format, you can reuse a host's existing Java keystore by converting
it to the PEM format. For instructions, see
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_sg_openssl_jks.html.

Configuring TLS/SSL Communication for the Impala Shell

Typically, a client programhas corresponding configuration properties in ClouderaManager to verify that it is connecting
to the right server. For example, with SSL enabled for Impala, you use the following options when starting the
impala-shell interpreter:

• --ssl: enables TLS/SSL for impala-shell.
• --ca_cert: the local pathname pointing to the third-party CA certificate, or to a copy of the server certificate

for self-signed server certificates.

If --ca_cert is not set, impala-shell enables TLS/SSL, but does not validate the server certificate. This is useful
for connecting to a known-good Impala that is only running over TLS/SSL, when a copy of the certificate is not available
(such as when debugging customer installations).

For impala-shell to successfully connect to an Impala cluster that has the minimum allowed TLS/SSL version set to
1.2 (--ssl_minimum_version=tlsv1.2), the Python version on the cluster that impala-shell runs on must be
2.7.9 or higher (or a vendor-provided Python version with the required support. Some vendors patched Python 2.7.5
versions on Red Hat Enterprise Linux 7 and derivatives).

Using TLS/SSL with Business Intelligence Tools

You can use Kerberos authentication, TLS/SSL encryption, or both to secure connections from JDBCandODBCapplications
to Impala. See Configuring Impala to Work with JDBC on page 34 and Configuring Impala to Work with ODBC on page
31 for details.

Currently, the Hive JDBC driver does not support connections that use both Kerberos authentication and SSL encryption.
To use both of these security features with Impala through a JDBC application, use the Cloudera JDBC Connector as
the JDBC driver.

Enabling Sentry Authorization for Impala
Authorization determines which users are allowed to access which resources, and what operations they are allowed
to perform. In Impala 1.1 and higher, you use the Sentry open source project for authorization. Sentry adds a fine-grained
authorization framework for Hadoop. By default (when authorization is not enabled), Impala does all read and write
operations with the privileges of the impala user, which is suitable for a development/test environment but not for
a secure production environment. When authorization is enabled, Impala uses the OS user ID of the user who runs
impala-shell or other client program, and associates various privileges with each user.

Note: Sentry is typically used in conjunction with Kerberos authentication, which defines which hosts
are allowed to connect to each server. Using the combination of Sentry and Kerberos preventsmalicious
users from being able to connect by creating a named account on an untrustedmachine. See Enabling
Kerberos Authentication for Impala on page 107 for details about Kerberos authentication.

The Sentry Privilege Model

Privileges can be granted on different objects in the schema. Any privilege that can be granted is associated with a
level in the object hierarchy. If a privilege is granted on a container object in the hierarchy, the child object automatically
inherits it. This is the same privilege model as Hive and other database systems such as MySQL.

The object hierarchy for Impala covers Server, URI, Database, Table, and Column. (The Table privileges apply to views
as well; anywhere you specify a table name, you can specify a view name instead.) Column-level authorization is
available in CDH 5.5 / Impala 2.3 and higher, as described in
https://www.cloudera.com/documentation/enterprise/latest/topics/sg_hive_sql.html. Previously, you constructed
views to query specific columns and assigned privileges based on the views rather than the base tables.

96 | Apache Impala Guide

Impala Security

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_sg_openssl_jks.html
http://www.cloudera.com/content/www/en-us/downloads.html.html
https://www.cloudera.com/documentation/enterprise/latest/topics/sg_hive_sql.html

A restricted set of privileges determines what you can do with each object:

SELECT privilege

Lets you read data from a table or view, for example with the SELECT statement, the INSERT...SELECT syntax,
or CREATE TABLE...LIKE. Also required to issue the DESCRIBE statement or the EXPLAIN statement for a query
against a particular table. Only objects for which a user has this privilege are shown in the output for SHOW
DATABASES and SHOW TABLES statements. The REFRESH statement and INVALIDATE METADATA statements
only access metadata for tables for which the user has this privilege.

INSERT privilege

Lets you write data to a table. Applies to the INSERT and LOAD DATA statements.

ALL privilege

Lets you create or modify the object. Required to run DDL statements such as CREATE TABLE, ALTER TABLE, or
DROP TABLE for a table, CREATE DATABASE or DROP DATABASE for a database, or CREATE VIEW, ALTER VIEW,
or DROP VIEW for a view. Also required for the URI of the “location” parameter for the CREATE EXTERNAL TABLE
and LOAD DATA statements.

Privileges can be specified for a table or view before that object actually exists. If you do not have sufficient privilege
to perform an operation, the error message does not disclose if the object exists or not.

Originally, privileges were encoded in a policy file, stored in HDFS. This mode of operation is still an option, but the
emphasis of privilege management is moving towards being SQL-based. Although currently Impala does not have
GRANT or REVOKE statements, Impala can make use of privileges assigned through GRANT and REVOKE statements
done through Hive. The mode of operation with GRANT and REVOKE statements instead of the policy file requires that
a special Sentry service be enabled; this service stores, retrieves, and manipulates privilege information stored inside
the metastore database.

Starting the impalad Daemon with Sentry Authorization Enabled

To run the impalad daemon with authorization enabled, you add one or more options to the IMPALA_SERVER_ARGS
declaration in the /etc/default/impala configuration file:

• The -server_name option turns on Sentry authorization for Impala. The authorization rules refer to a symbolic
server name, and you specify the name to use as the argument to the -server_name option.

• If you specify just -server_name, Impala uses the Sentry service for authorization, relying on the results of GRANT
and REVOKE statements issued through Hive. (This mode of operation is available in Impala 1.4.0 and higher.)
Prior to Impala 1.4.0, or if you want to continue storing privilege rules in the policy file, also specify the
-authorization_policy_file option as in the following item.

• Specifying the-authorization_policy_fileoption in addition to-server_namemakes Impala read privilege
information from a policy file, rather than from the metastore database. The argument to the
-authorization_policy_file option specifies the HDFS path to the policy file that defines the privileges on
different schema objects.

For example, you might adapt your /etc/default/impala configuration to contain lines like the following. To use
the Sentry service rather than the policy file:

IMPALA_SERVER_ARGS=" \
-server_name=server1 \
...

Or to use the policy file, as in releases prior to Impala 1.4:

IMPALA_SERVER_ARGS=" \
-authorization_policy_file=/user/hive/warehouse/auth-policy.ini \
-server_name=server1 \
...

The preceding examples set up a symbolic name of server1 to refer to the current instance of Impala. This symbolic
name is used in the following ways:

Apache Impala Guide | 97

Impala Security

• In an environment managed by Cloudera Manager, the server name is specified through Impala (Service-Wide) >
Category > Advanced > Sentry Service and Hive > Service-Wide > Advanced > Sentry Service. The values must
be the same for both, so that Impala and Hive can share the privilege rules. Restart the Impala and Hive services
after setting or changing this value.

• In an environment not managed by Cloudera Manager, you specify this value for the sentry.hive.server
property in thesentry-site.xml configuration file for Hive, aswell as in the-server_name option forimpalad.

If the impalad daemon is not already running, start it as described in Starting Impala on page 42. If it is already
running, restart it with the command sudo /etc/init.d/impala-server restart. Run the appropriate
commands on all the nodes where impalad normally runs.

• If you use the mode of operation using the policy file, the rules in the [roles] section of the policy file refer to
this same server1 name. For example, the following rule sets up a role report_generator that lets users with
that role query any table in a database named reporting_db on a nodewhere the impalad daemonwas started
up with the -server_name=server1 option:

[roles]
report_generator = server=server1->db=reporting_db->table=*->action=SELECT

When impalad is started with one or both of the -server_name=server1 and -authorization_policy_file
options, Impala authorization is enabled. If Impala detects any errors or inconsistencies in the authorization settings
or the policy file, the daemon refuses to start.

Using Impala with the Sentry Service (CDH 5.1 or higher only)

When you use the Sentry service rather than the policy file, you set up privileges through GRANT and REVOKE statement
in either Impala or Hive, then both components use those same privileges automatically. (Impala added the GRANT
and REVOKE statements in Impala 2.0.0 / CDH 5.2.0.)

Hive already had GRANT and REVOKE statements prior to CDH 5.1, but those statements were not production-ready.
CDH 5.1 is the first release where those statements use the Sentry framework and are considered GA level. If you used
the Hive GRANT and REVOKE statements prior to CDH 5.1, you must set up these privileges with the CDH 5.1 versions
of GRANT and REVOKE to take advantage of Sentry authorization.

For information about using the updated Hive GRANT and REVOKE statements, see Sentry service topic in the CDH 5
Security Guide.

Using Impala with the Sentry Policy File

The policy file is a file that you put in a designated location in HDFS, and is read during the startup of the impalad
daemonwhen you specify both the -server_name and -authorization_policy_file startup options. It controls
which objects (databases, tables, and HDFS directory paths) can be accessed by the user who connects to impalad,
and what operations that user can perform on the objects.

Note:

In CDH5 and higher, Cloudera recommendsmanaging privileges through SQL statements, as described
in Using Impala with the Sentry Service (CDH 5.1 or higher only) on page 98. If you are still using policy
files, plan to migrate to the new approach some time in the future.

The location of the policy file is listed in the auth-site.xml configuration file. To minimize overhead, the security
information from this file is cached by each impalad daemon and refreshed automatically, with a default interval of
5 minutes. After making a substantial change to security policies, restart all Impala daemons to pick up the changes
immediately.

98 | Apache Impala Guide

Impala Security

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_sg_sentry_service.html

Policy File Location and Format

The policy file uses the familiar .ini format, divided into the major sections [groups] and [roles]. There is also
an optional[databases] section,which allows you to specify a specific policy file for a particular database, as explained
in Using Multiple Policy Files for Different Databases on page 102. Another optional section, [users], allows you to
override the OS-level mapping of users to groups; that is an advanced technique primarily for testing and debugging,
and is beyond the scope of this document.

In the [groups] section, you define various categories of users and select which roles are associated with each
category. The group and user names correspond to Linux groups and users on the server where the impalad daemon
runs.

The group and user names in the [groups] section correspond to Linux groups and users on the server where the
impalad daemon runs. When you access Impala through the impalad interpreter, for purposes of authorization, the
user is the logged-in Linux user and the groups are the Linux groups that user is a member of. When you access Impala
through the ODBC or JDBC interfaces, the user and password specified through the connection string are used as login
credentials for the Linux server, and authorization is based on that user name and the associated Linux group
membership.

In the [roles] section, you a set of roles. For each role, you specify precisely the set of privileges is available. That
is, which objects users with that role can access, and what operations they can perform on those objects. This is the
lowest-level category of security information; the other sections in the policy file map the privileges to higher-level
divisions of groups and users. In the [groups] section, you specify which roles are associated with which groups. The
group and user names correspond to Linux groups and users on the server where the impalad daemon runs. The
privileges are specified using patterns like:

server=server_name->db=database_name->table=table_name->action=SELECT
server=server_name->db=database_name->table=table_name->action=CREATE
server=server_name->db=database_name->table=table_name->action=ALL

For the server_name value, substitute the same symbolic name you specify with the impalad -server_name option.
You can use * wildcard characters at each level of the privilege specification to allow access to all such objects. For
example:

server=impala-host.example.com->db=default->table=t1->action=SELECT
server=impala-host.example.com->db=*->table=*->action=CREATE
server=impala-host.example.com->db=*->table=audit_log->action=SELECT
server=impala-host.example.com->db=default->table=t1->action=*

When authorization is enabled, Impala uses the policy file as a whitelist, representing every privilege available to any
user on any object. That is, only operations specified for the appropriate combination of object, role, group, and user
are allowed; all other operations are not allowed. If a group or role is defined multiple times in the policy file, the last
definition takes precedence.

To understand the notion of whitelisting, set up aminimal policy file that does not provide any privileges for any object.
When you connect to an Impala node where this policy file is in effect, you get no results for SHOW DATABASES, and
an error when you issue any SHOW TABLES, USE database_name, DESCRIBE table_name, SELECT, and or other
statements that expect to access databases or tables, even if the corresponding databases and tables exist.

The contents of the policy file are cached, to avoid a performance penalty for each query. The policy file is re-checked
by each impalad node every 5 minutes. When you make a non-time-sensitive change such as adding new privileges
or new users, you can let the change take effect automatically a few minutes later. If you remove or reduce privileges,
and want the change to take effect immediately, restart the impalad daemon on all nodes, again specifying the
-server_name and -authorization_policy_file options so that the rules from the updated policy file are
applied.

Examples of Policy File Rules for Security Scenarios

The following examples show rules that might go in the policy file to deal with various authorization-related scenarios.
For illustration purposes, this section shows several very small policy fileswith only a few rules each. In your environment,

Apache Impala Guide | 99

Impala Security

typically you would definemany roles to cover all the scenarios involving your own databases, tables, and applications,
and a smaller number of groups, whose members are given the privileges from one or more roles.

A User with No Privileges

If a user has no privileges at all, that user cannot access any schema objects in the system. The error messages do not
disclose the names or existence of objects that the user is not authorized to read.

This is the experience you want a user to have if they somehow log into a system where they are not an authorized
Impala user. In a real deployment with a filled-in policy file, a user might have no privileges because they are not a
member of any of the relevant groups mentioned in the policy file.

Examples of Privileges for Administrative Users

When an administrative user has broad access to tables or databases, the associated rules in the [roles] section
typically use wildcards and/or inheritance. For example, in the following sample policy file, db=* refers to all databases
and db=*->table=* refers to all tables in all databases.

Omitting the rightmost portion of a rule means that the privileges apply to all the objects that could be specified there.
For example, in the following sample policy file, the all_databases role has all privileges for all tables in all databases,
while the one_database role has all privileges for all tables in one specific database. The all_databases role does
not grant privileges on URIs, so a group with that role could not issue a CREATE TABLE statement with a LOCATION
clause. The entire_server role has all privileges on both databases and URIs within the server.

[groups]
supergroup = all_databases

[roles]
read_all_tables = server=server1->db=*->table=*->action=SELECT
all_tables = server=server1->db=*->table=*
all_databases = server=server1->db=*
one_database = server=server1->db=test_db
entire_server = server=server1

A User with Privileges for Specific Databases and Tables

If a user has privileges for specific tables in specific databases, the user can access those things but nothing else. They
can see the tables and their parent databases in the output ofSHOW TABLES andSHOW DATABASES,USE the appropriate
databases, and perform the relevant actions (SELECT and/or INSERT) based on the table privileges. To actually create
a table requires the ALL privilege at the database level, so you might define separate roles for the user that sets up a
schema and other users or applications that perform day-to-day operations on the tables.

The following sample policy file shows some of the syntax that is appropriate as the policy file grows, such as the #
comment syntax, \ continuation syntax, and comma separation for roles assigned to groups or privileges assigned to
roles.

[groups]
cloudera = training_sysadmin, instructor
visitor = student

[roles]
training_sysadmin = server=server1->db=training, \
server=server1->db=instructor_private, \
server=server1->db=lesson_development
instructor = server=server1->db=training->table=*->action=*, \
server=server1->db=instructor_private->table=*->action=*, \
server=server1->db=lesson_development->table=lesson*
This particular course is all about queries, so the students can SELECT but not INSERT
 or CREATE/DROP.
student = server=server1->db=training->table=lesson_*->action=SELECT

Privileges for Working with External Data Files

When data is being inserted through the LOAD DATA statement, or is referenced from an HDFS location outside the
normal Impala database directories, the user also needs appropriate permissions on the URIs corresponding to those
HDFS locations.

100 | Apache Impala Guide

Impala Security

In this sample policy file:

• The external_table role lets us insert into and query the Impala table, external_table.sample.
• The staging_dir role lets us specify the HDFS path /user/cloudera/external_data with the LOAD DATA

statement. Remember, when Impala queries or loads data files, it operates on all the files in that directory, not
just a single file, so any Impala LOCATION parameters refer to a directory rather than an individual file.

• We included the IP address and port of the Hadoop name node in the HDFS URI of the staging_dir rule. We
found those details in /etc/hadoop/conf/core-site.xml, under the fs.default.name element. That is
what we use in any roles that specify URIs (that is, the locations of directories in HDFS).

• We start this example after the table external_table.sample is already created. In the policy file for the
example,we have already taken away theexternal_table_admin role from thecloudera group, and replaced
it with the lesser-privileged external_table role.

• We assign privileges to a subdirectory underneath /user/cloudera in HDFS, because such privileges also apply
to any subdirectories underneath. If we had assigned privileges to the parent directory /user/cloudera, it would
be too likely to mess up other files by specifying a wrong location by mistake.

• The cloudera under the [groups] section refers to the cloudera group. (In the demoVMused for this example,
there is a cloudera user that is a member of a cloudera group.)

Policy file:

[groups]
cloudera = external_table, staging_dir

[roles]
external_table_admin = server=server1->db=external_table
external_table = server=server1->db=external_table->table=sample->action=*
staging_dir =
server=server1->uri=hdfs://127.0.0.1:8020/user/cloudera/external_data->action=*

impala-shell session:

[localhost:21000] > use external_table;
Query: use external_table
[localhost:21000] > show tables;
Query: show tables
Query finished, fetching results ...
+--------+
| name |
+--------+
| sample |
+--------+
Returned 1 row(s) in 0.02s

[localhost:21000] > select * from sample;
Query: select * from sample
Query finished, fetching results ...
+-----+
| x |
+-----+
| 1 |
| 5 |
| 150 |
+-----+
Returned 3 row(s) in 1.04s

[localhost:21000] > load data inpath '/user/cloudera/external_data' into table sample;
Query: load data inpath '/user/cloudera/external_data' into table sample
Query finished, fetching results ...
+--+
| summary |
+--+
| Loaded 1 file(s). Total files in destination location: 2 |
+--+
Returned 1 row(s) in 0.26s
[localhost:21000] > select * from sample;
Query: select * from sample

Apache Impala Guide | 101

Impala Security

Query finished, fetching results ...
+-------+
| x |
+-------+
| 2 |
| 4 |
| 6 |
| 8 |
| 64738 |
| 49152 |
| 1 |
| 5 |
| 150 |
+-------+
Returned 9 row(s) in 0.22s

[localhost:21000] > load data inpath '/user/cloudera/unauthorized_data' into table
sample;
Query: load data inpath '/user/cloudera/unauthorized_data' into table sample
ERROR: AuthorizationException: User 'cloudera' does not have privileges to access:
hdfs://127.0.0.1:8020/user/cloudera/unauthorized_data

Separating Administrator Responsibility from Read and Write Privileges

Remember that to create a database requires full privilege on that database, while day-to-day operations on tables
within that database can be performed with lower levels of privilege on specific table. Thus, you might set up separate
roles for each database or application: an administrative one that could create or drop the database, and a user-level
one that can access only the relevant tables.

For example, this policy file divides responsibilities between users in 3 different groups:

• Members of the supergroup group have the training_sysadmin role and so can set up a database named
training.

• Members of the cloudera group have the instructor role and so can create, insert into, and query any tables
in the training database, but cannot create or drop the database itself.

• Members of the visitor group have the student role and so can query those tables in the training database.

[groups]
supergroup = training_sysadmin
cloudera = instructor
visitor = student

[roles]
training_sysadmin = server=server1->db=training
instructor = server=server1->db=training->table=*->action=*
student = server=server1->db=training->table=*->action=SELECT

Using Multiple Policy Files for Different Databases

For an Impala cluster with many databases being accessed by many users and applications, it might be cumbersome
to update the security policy file for each privilege change or each new database, table, or view. You can allow security
to be managed separately for individual databases, by setting up a separate policy file for each database:

• Add the optional [databases] section to the main policy file.
• Add entries in the [databases] section for each database that has its own policy file.
• For each listed database, specify the HDFS path of the appropriate policy file.

For example:

[databases]
Defines the location of the per-DB policy files for the 'customers' and 'sales'
databases.
customers = hdfs://ha-nn-uri/etc/access/customers.ini
sales = hdfs://ha-nn-uri/etc/access/sales.ini

102 | Apache Impala Guide

Impala Security

To enable URIs in per-DB policy files, add the following string in the ClouderaManager field Impala Service Environment
Advanced Configuration Snippet (Safety Valve):

JAVA_TOOL_OPTIONS="-Dsentry.allow.uri.db.policyfile=true"

Important: Enabling URIs in per-DB policy files introduces a security risk by allowing the owner of
the db-level policy file to grant himself/herself load privileges to anything the impala user has read
permissions for in HDFS (including data in other databases controlled by different db-level policy files).

Setting Up Schema Objects for a Secure Impala Deployment

Remember that in your role definitions, you specify privileges at the level of individual databases and tables, or all
databases or all tables within a database. To simplify the structure of these rules, plan ahead of time how to name
your schema objects so that data with different authorization requirements is divided into separate databases.

If you are adding security on top of an existing Impala deployment, remember that you can rename tables or even
move them between databases using the ALTER TABLE statement. In Impala, creating new databases is a relatively
inexpensive operation, basically just creating a new directory in HDFS.

You can also plan the security scheme and set up the policy file before the actual schema objects named in the policy
file exist. Because the authorization capability is based on whitelisting, a user can only create a new database or table
if the required privilege is already in the policy file: either by listing the exact name of the object being created, or a *
wildcard to match all the applicable objects within the appropriate container.

Privilege Model and Object Hierarchy

Privileges can be granted on different objects in the schema. Any privilege that can be granted is associated with a
level in the object hierarchy. If a privilege is granted on a container object in the hierarchy, the child object automatically
inherits it. This is the same privilege model as Hive and other database systems such as MySQL.

The kinds of objects in the schema hierarchy are:

Server
URI
Database
 Table

The server name is specified by the -server_name option when impalad starts. Specify the same name for all
impalad nodes in the cluster.

URIs represent the HDFS paths you specify as part of statements such as CREATE EXTERNAL TABLE and LOAD DATA.
Typically, you specify what look like UNIX paths, but these locations can also be prefixed with hdfs:// to make clear
that they are really URIs. To set privileges for a URI, specify the name of a directory, and the privilege applies to all the
files in that directory and any directories underneath it.

In CDH 5.5 / Impala 2.3 and higher, you can specify privileges for individual columns, as described in
https://www.cloudera.com/documentation/enterprise/latest/topics/sg_hive_sql.html. Formerly, to specify read
privileges at this level, you created a view that queried specific columns and/or partitions from a base table, and gave
SELECT privilege on the view but not the underlying table.

URIs must start with either hdfs:// or file://. If a URI starts with anything else, it will cause an exception and the
policy file will be invalid. When defining URIs for HDFS, you must also specify the NameNode. For example:

data_read = server=server1->uri=file:///path/to/dir, \
server=server1->uri=hdfs://namenode:port/path/to/dir

Apache Impala Guide | 103

Impala Security

https://www.cloudera.com/documentation/enterprise/latest/topics/sg_hive_sql.html

Warning:

Because theNameNode host and portmust be specified, Cloudera strongly recommends you use High
Availability (HA). This ensures that the URI will remain constant even if the NameNode changes.

data_read = server=server1->uri=file:///path/to/dir,\
server=server1->uri=hdfs://ha-nn-uri/path/to/dir

Table 2: Valid privilege types and objects they apply to

ObjectPrivilege

DB, TABLEINSERT

DB, TABLE, COLUMNSELECT

SERVER, TABLE, DB, URIALL

Note:

Although this document refers to the ALL privilege, currently if you use the policy file mode, you do
not use the actual keyword ALL in the policy file. When you code role entries in the policy file:

• To specify the ALL privilege for a server, use a role like server=server_name.
• To specify the ALL privilege for a database, use a role like

server=server_name->db=database_name.
• To specify the ALL privilege for a table, use a role like

server=server_name->db=database_name->table=table_name->action=*.

URIPrivileges RequiredScopeOperation

ALLSERVERCREATE DATABASE

ALLDATABASEDROP DATABASE

ALLDATABASECREATE TABLE

ALLTABLEDROP TABLE

ALLDATABASE; SELECT on TABLE;CREATE VIEW

-This operation is allowed if you
have column-levelSELECT access
to the columns being used.

ALLVIEW/TABLEALTER VIEW

-This operation is allowed if you
have column-levelSELECT access
to the columns being used.

ALLVIEW/TABLEDROP VIEW

ALLTABLEALTER TABLE .. ADD COLUMNS

ALLTABLEALTER TABLE .. REPLACE
COLUMNS

ALLTABLEALTER TABLE .. CHANGE column

ALLTABLEALTER TABLE .. RENAME

104 | Apache Impala Guide

Impala Security

URIPrivileges RequiredScopeOperation

ALLTABLEALTER TABLE .. SET
TBLPROPERTIES

ALLTABLEALTER TABLE .. SET FILEFORMAT

URIALLTABLEALTER TABLE .. SET LOCATION

ALLTABLEALTER TABLE .. ADD PARTITION

URIALLTABLEALTER TABLE .. ADD PARTITION
location

ALLTABLEALTER TABLE .. DROP PARTITION

ALLTABLEALTER TABLE .. PARTITION SET
FILEFORMAT

SELECT/INSERTTABLESHOW CREATE TABLE

SELECT/INSERTTABLESHOW PARTITIONS

SELECT/INSERTTABLESHOW TABLES

-Output includes all the tables for
which the user has table-level
privileges and all the tables for
which the user has some
column-level privileges.

SELECT/INSERTTABLESHOW GRANT ROLE

-Output includes an additional
field for any column-level
privileges.

SELECT/INSERTTABLEDESCRIBE TABLE

-Output shows all columns if the
user has table level-privileges or
SELECT privilege on at least one
table column

URIINSERTTABLELOAD DATA

SELECTVIEW/TABLE; COLUMNSELECT

-You can grant the SELECT
privilege on a view to give users
access to specific columns of a
table they do not otherwise have
access to.

-See Column-level Authorization
for details on allowed
column-level operations.

INSERTTABLEINSERT OVERWRITE TABLE

ALLDATABASE; SELECT on TABLECREATE TABLE .. AS SELECT

-This operation is allowed if you
have column-levelSELECT access
to the columns being used.

Apache Impala Guide | 105

Impala Security

URIPrivileges RequiredScopeOperation

AnyUSE <dbName>

ALLSERVERCREATE FUNCTION

ALLTABLEALTER TABLE .. SET
SERDEPROPERTIES

ALLTABLEALTER TABLE .. PARTITION SET
SERDEPROPERTIES

SELECTTABLE; COLUMNEXPLAIN SELECT

INSERTTABLE; COLUMNEXPLAIN INSERT

ALLSERVERINVALIDATE METADATA

SELECT/INSERTTABLEINVALIDATE METADATA <table
name>

SELECT/INSERTTABLEREFRESH <table name> or
REFRESH <table name>
PARTITION (<partition_spec>)

ALLSERVERDROP FUNCTION

ALLTABLECOMPUTE STATS

Debugging Failed Sentry Authorization Requests

Sentry logs all facts that lead up to authorization decisions at the debug level. If you do not understand why Sentry is
denying access, the best way to debug is to temporarily turn on debug logging:

• In ClouderaManager, add log4j.logger.org.apache.sentry=DEBUG to the logging settings for your service
through the corresponding Logging Safety Valve field for the Impala, Hive Server 2, or Solr Server services.

• On systems not managed by Cloudera Manager, add log4j.logger.org.apache.sentry=DEBUG to the
log4j.properties file on each host in the cluster, in the appropriate configuration directory for each service.

Specifically, look for exceptions and messages such as:

FilePermission server..., RequestPermission server...., result [true|false]

which indicate each evaluation Sentrymakes. TheFilePermission is from the policy file, whileRequestPermission
is the privilege required for the query. A RequestPermission will iterate over all appropriate FilePermission
settings until a match is found. If no matching privilege is found, Sentry returns false indicating “Access Denied” .

Managing Sentry for Impala through Cloudera Manager

To enable the Sentry service for Impala and Hive, set Hive/Impala > Service-Wide > Sentry Service parameter to the
Sentry service. Then restart Impala and Hive. Simply adding Sentry service as a dependency and restarting enables
Impala and Hive to use the Sentry service.

To set the server name to use when granting server level privileges, set the Hive > Service-Wide > Advanced > Server
Name for Sentry Authorization parameter. When using Sentry with the Hive Metastore, you can specify the list of
users that are allowed to bypass Sentry Authorization in HiveMetastore usingHive > Service-Wide > Security > Bypass
Sentry Authorization Users. These are usually service users that already ensure all activity has been authorized.

106 | Apache Impala Guide

Impala Security

Note: The Hive/Impala > Service-Wide > Policy File Based Sentry tab contains parameters only
relevant to configuring Sentry using policy files. In particular, make sure that Enable Sentry
Authorization using Policy Files parameter is unchecked when using the Sentry service. Cloudera
Manager throws a validation error if you attempt to configure the Sentry service and policy file at the
same time.

The DEFAULT Database in a Secure Deployment

Because of the extra emphasis on granular access controls in a secure deployment, you should move any important
or sensitive information out of the DEFAULT database into a named database whose privileges are specified in the
policy file. Sometimes you might need to give privileges on the DEFAULT database for administrative reasons; for
example, as a place you can reliably specify with a USE statement when preparing to drop a database.

Impala Authentication
Authentication is the mechanism to ensure that only specified hosts and users can connect to Impala. It also verifies
that when clients connect to Impala, they are connected to a legitimate server. This feature prevents spoofing such as
impersonation (setting up a phony client system with the same account and group names as a legitimate user) and
man-in-the-middle attacks (intercepting application requests before they reach Impala and eavesdropping on sensitive
information in the requests or the results).

Impala supports authentication using either Kerberos or LDAP.

Note: Regardless of the authenticationmechanism used, Impala always creates HDFS directories and
data files owned by the same user (typically impala). To implement user-level access to different
databases, tables, columns, partitions, and so on, use the Sentry authorization feature, as explained
in Enabling Sentry Authorization for Impala on page 96.

Once you are finished setting up authentication, move on to authorization, which involves specifying what databases,
tables, HDFS directories, and so on can be accessed by particular userswhen they connect through Impala. See Enabling
Sentry Authorization for Impala on page 96 for details.

Enabling Kerberos Authentication for Impala

Impala supports Kerberos authentication. For more information on enabling Kerberos authentication, see the topic
on Configuring Hadoop Security in the CDH 5 Security Guide.

When using Impala in a managed environment, Cloudera Manager automatically completes Kerberos configuration.
In an unmanaged environment, create a Kerberos principal for each host running impalad or statestored. Cloudera
recommends using a consistent format, such as impala/_HOST@Your-Realm, but you can use any three-part Kerberos
server principal.

In Impala 2.0 and later, user() returns the full Kerberos principal string, such as user@example.com, in a Kerberized
environment.

Note: Regardless of the authenticationmechanism used, Impala always creates HDFS directories and
data files owned by the same user (typically impala). To implement user-level access to different
databases, tables, columns, partitions, and so on, use the Sentry authorization feature, as explained
in Enabling Sentry Authorization for Impala on page 96.

An alternative form of authentication you can use is LDAP, described in Enabling LDAP Authentication for Impala on
page 110.

Apache Impala Guide | 107

Impala Security

http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_sg_cdh5_hadoop_security.html

Requirements for Using Impala with Kerberos

On version 5 of Red Hat Enterprise Linux and comparable distributions, some additional setup is needed for the
impala-shell interpreter to connect to a Kerberos-enabled Impala cluster:

sudo yum install python-devel openssl-devel python-pip
sudo pip-python install ssl

Important:

• If you plan to use Impala in your cluster, you must configure your KDC to allow tickets to be
renewed, and you must configure krb5.conf to request renewable tickets. Typically, you can
do this by adding the max_renewable_life setting to your realm in kdc.conf, and by adding
the renew_lifetime parameter to the libdefaults section of krb5.conf.

For more information about renewable tickets, see the Kerberos documentation.

• The Impala Web UI does not support Kerberos authentication.

• You cannot use the Impala resource management feature on a cluster that has Kerberos
authentication enabled.

Start all impalad and statestored daemons with the --principal and --keytab-file flags set to the principal
and full path name of the keytab file containing the credentials for the principal.

Impala supports the Cloudera ODBC driver and the Kerberos interface provided. To use Kerberos through the ODBC
driver, the host type must be set depending on the level of the ODBD driver:

• SecImpala for the ODBC 1.0 driver.
• SecBeeswax for the ODBC 1.2 driver.
• Blank for the ODBC 2.0 driver or higher, when connecting to a secure cluster.
• HS2NoSasl for the ODBC 2.0 driver or higher, when connecting to a non-secure cluster.

To enable Kerberos in the Impala shell, start the impala-shell command using the -k flag.

To enable Impala to work with Kerberos security on your Hadoop cluster, make sure you perform the installation and
configuration steps in Authentication in the CDH 5 Security Guide.

Configuring Impala to Support Kerberos Security

Enabling Kerberos authentication for Impala involves steps that can be summarized as follows:

• Creating service principals for Impala and the HTTP service. Principal names take the form:
serviceName/fully.qualified.domain.name@KERBEROS.REALM

• Creating, merging, and distributing key tab files for these principals.
• Editing /etc/default/impala (in cluster not managed by Cloudera Manager), or editing the Security settings

in the Cloudera Manager interface, to accommodate Kerberos authentication.

Enabling Kerberos for Impala

1. Create an Impala service principal, specifying the name of the OS user that the Impala daemons run under, the
fully qualified domain name of each node running impalad, and the realm name. For example:

$ kadmin
kadmin: addprinc -requires_preauth -randkey
impala/impala_host.example.com@TEST.EXAMPLE.COM

2. Create an HTTP service principal. For example:

kadmin: addprinc -randkey HTTP/impala_host.example.com@TEST.EXAMPLE.COM

108 | Apache Impala Guide

Impala Security

http://web.mit.edu/Kerberos/krb5-1.8/
http://www.cloudera.com/documentation/enterprise/latest/topics/sg_authentication.html

Note: TheHTTP component of the service principalmust be uppercase as shown in the preceding
example.

3. Create keytab files with both principals. For example:

kadmin: xst -k impala.keytab impala/impala_host.example.com
kadmin: xst -k http.keytab HTTP/impala_host.example.com
kadmin: quit

4. Use ktutil to read the contents of the two keytab files and then write those contents to a new file. For example:

$ ktutil
ktutil: rkt impala.keytab
ktutil: rkt http.keytab
ktutil: wkt impala-http.keytab
ktutil: quit

5. (Optional) Test that credentials in the merged keytab file are valid, and that the “renew until” date is in the future.
For example:

$ klist -e -k -t impala-http.keytab

6. Copy the impala-http.keytab file to the Impala configuration directory. Change the permissions to be only
read for the file owner and change the file owner to the impala user. By default, the Impala user and group are
both named impala. For example:

$ cp impala-http.keytab /etc/impala/conf
$ cd /etc/impala/conf
$ chmod 400 impala-http.keytab
$ chown impala:impala impala-http.keytab

7. Add Kerberos options to the Impala defaults file, /etc/default/impala. Add the options for both the impalad
and statestored daemons, using the IMPALA_SERVER_ARGS and IMPALA_STATE_STORE_ARGS variables. For
example, you might add:

-kerberos_reinit_interval=60
-principal=impala_1/impala_host.example.com@TEST.EXAMPLE.COM
-keytab_file=/var/run/cloudera-scm-agent/process/3212-impala-IMPALAD/impala.keytab

Formore information on changing the Impala defaults specified in /etc/default/impala, seeModifying Impala
Startup Options.

Note: Restart impalad and statestored for these configuration changes to take effect.

Enabling Kerberos for Impala with a Proxy Server

A common configuration for Impala with High Availability is to use a proxy server to submit requests to the actual
impalad daemons on different hosts in the cluster. This configuration avoids connection problems in case of machine
failure, because the proxy server can route new requests through one of the remaining hosts in the cluster. This
configuration also helps with load balancing, because the additional overhead of being the “coordinator node” for
each query is spread across multiple hosts.

Although you can set up a proxy serverwith orwithout Kerberos authentication, typically users set up a secure Kerberized
configuration. For information about setting up a proxy server for Impala, including Kerberos-specific steps, see Using
Impala through a Proxy for High Availability on page 85.

Apache Impala Guide | 109

Impala Security

Enabling Impala Delegation for Kerberos Users

See Configuring Impala Delegation for Hue and BI Tools on page 112 for details about the delegation feature that lets
certain users submit queries using the credentials of other users.

Using TLS/SSL with Business Intelligence Tools

You can use Kerberos authentication, TLS/SSL encryption, or both to secure connections from JDBCandODBCapplications
to Impala. See Configuring Impala to Work with JDBC on page 34 and Configuring Impala to Work with ODBC on page
31 for details.

Currently, the Hive JDBC driver does not support connections that use both Kerberos authentication and SSL encryption.
To use both of these security features with Impala through a JDBC application, use the Cloudera JDBC Connector as
the JDBC driver.

Enabling LDAP Authentication for Impala

Authentication is the process of allowing only specified named users to access the server (in this case, the Impala
server). This feature is crucial for any production deployment, to prevent misuse, tampering, or excessive load on the
server. Impala uses LDAP for authentication, verifying the credentials of each userwho connects throughimpala-shell,
Hue, a Business Intelligence tool, JDBC or ODBC application, and so on.

Note: Regardless of the authenticationmechanism used, Impala always creates HDFS directories and
data files owned by the same user (typically impala). To implement user-level access to different
databases, tables, columns, partitions, and so on, use the Sentry authorization feature, as explained
in Enabling Sentry Authorization for Impala on page 96.

An alternative formof authentication you can use is Kerberos, described in Enabling Kerberos Authentication for Impala
on page 107.

Requirements for Using Impala with LDAP

Authentication against LDAP servers is available in Impala 1.2.2 and higher. Impala 1.4.0 adds support for secure LDAP
authentication through SSL and TLS.

The Impala LDAP support lets you use Impala with systems such as Active Directory that use LDAP behind the scenes.

Kerberos Authentication for Connections Between Impala Components

Only client->Impala connections can be authenticated by LDAP.

You must use the Kerberos authentication mechanism for connections between internal Impala components, such as
between the impalad, statestored, and catalogd daemons. See Enabling Kerberos Authentication for Impala on
page 107 on how to set up Kerberos for Impala.

Server-Side LDAP Setup

These requirements apply on the server side when configuring and starting Impala:

To enable LDAP authentication, set the following startup options for impalad:

• --enable_ldap_auth enables LDAP-based authentication between the client and Impala.
• --ldap_uri sets the URI of the LDAP server to use. Typically, the URI is prefixed with ldap://. In Impala 1.4.0

and higher, you can specify secure SSL-based LDAP transport by using the prefix ldaps://. The URI can optionally
specify the port, for example: ldap://ldap_server.cloudera.com:389 or
ldaps://ldap_server.cloudera.com:636. (389 and 636 are the default ports for non-SSL and SSL LDAP
connections, respectively.)

• For ldaps:// connections secured by SSL, --ldap_ca_certificate="/path/to/certificate/pem"
specifies the location of the certificate in standard .PEM format. Store this certificate on the local filesystem, in a
location that only the impala user and other trusted users can read.

110 | Apache Impala Guide

Impala Security

http://www.cloudera.com/content/www/en-us/downloads.html.html

Support for Custom Bind Strings

When Impala connects to LDAP it issues a bind call to the LDAP server to authenticate as the connected user. Impala
clients, including the Impala shell, provide the short name of the user to Impala. This is necessary so that Impala can
use Sentry for role-based access, which uses short names.

However, LDAP servers often require more complex, structured usernames for authentication. Impala supports three
ways of transforming the short name (for example, 'henry') to a more complicated string. If necessary, specify one
of the following configuration options when starting the impalad daemon on each DataNode:

• --ldap_domain: Replaces the username with a string username@ldap_domain.
• --ldap_baseDN: Replaces the username with a “distinguished name” (DN) of the form:

uid=userid,ldap_baseDN. (This is equivalent to a Hive option).
• --ldap_bind_pattern: This is the most general option, and replaces the username with the string

ldap_bind_pattern where all instances of the string #UID are replaced with userid. For example, an
ldap_bind_pattern of "user=#UID,OU=foo,CN=bar"with a username of henrywill construct a bind name
of "user=henry,OU=foo,CN=bar".

For clusters notmanaged by ClouderaManager, specify the option on theimpalad command line. For clustersmanaged
by Cloudera Manager 5.4.0 and higher, search for the configuration field names ldap_domain, ldap_basedn, or
ldap_bind_pattern, fill in and save the appropriate field values, and restart the Impala service. Prior to Cloudera
Manager 5.4.0, these valueswere filled in using the Impala DaemonCommand LineArgument Advanced Configuration
Snippet (Safety Valve) field.

These options are mutually exclusive; Impala does not start if more than one of these options is specified.

Secure LDAP Connections

To avoid sending credentials over the wire in cleartext, you must configure a secure connection between both the
client and Impala, and between Impala and the LDAP server. The secure connection could use SSL or TLS.

Secure LDAP connections through SSL:

For SSL-enabled LDAP connections, specify a prefix of ldaps:// instead of ldap://. Also, the default port for
SSL-enabled LDAP connections is 636 instead of 389.

Secure LDAP connections through TLS:

TLS, the successor to the SSL protocol, is supported by most modern LDAP servers. Unlike SSL connections, TLS
connections can be made on the same server port as non-TLS connections. To secure all connections using TLS, specify
the following flags as startup options to the impalad daemon:

• --ldap_tls tells Impala to start a TLS connection to the LDAP server, and to fail authentication if it cannot be
done.

• --ldap_ca_certificate="/path/to/certificate/pem" specifies the location of the certificate in standard
.PEM format. Store this certificate on the local filesystem, in a location that only the impala user and other trusted
users can read.

LDAP Authentication for impala-shell Interpreter

To connect to Impala using LDAP authentication, you specify command-line options to the impala-shell command
interpreter and enter the password when prompted:

• -l enables LDAP authentication.
• -u sets the user. Per Active Directory, the user is the short user name, not the full LDAP distinguished name. If

your LDAP settings include a search base, use the --ldap_bind_pattern on the impalad daemon to translate
the short user name from impala-shell automatically to the fully qualified name.

• impala-shell automatically prompts for the password.

For the full list of available impala-shell options, see impala-shell Configuration Options on page 471.

LDAP authentication for JDBC applications: See Configuring Impala to Work with JDBC on page 34 for the format to
use with the JDBC connection string for servers using LDAP authentication.

Apache Impala Guide | 111

Impala Security

http://en.wikipedia.org/wiki/Transport_Layer_Security

Enabling LDAP for Impala in Hue

Enabling LDAP for Impala in Hue Using Cloudera Manager

1. Go to the Hue service.
2. Click the Configuration tab.
3. Select Scope > Hue Server.
4. Select Category > Advanced.
5. Add the following properties to the Hue Server Advanced Configuration Snippet (Safety Valve) for

hue_safety_valve_server.ini property.

[impala]
auth_username=<LDAP username of Hue user to be authenticated>
auth_password=<LDAP password of Hue user to be authenticated>

6. Click Save Changes.

Enabling LDAP for Impala in Hue Using the Command Line

LDAP authentication for the Impala app in Hue can be enabled by setting the following properties under the [impala]
section in hue.ini.

LDAP username of Hue user to be authenticated.auth_username

LDAP password of Hue user to be authenticated.auth_password

These login details are only used by Impala to authenticate to LDAP. The Impala service trusts Hue to have already
validated the user being impersonated, rather than simply passing on the credentials.

Enabling Impala Delegation for LDAP Users

See Configuring Impala Delegation for Hue and BI Tools on page 112 for details about the delegation feature that lets
certain users submit queries using the credentials of other users.

LDAP Restrictions for Impala

The LDAP support is preliminary. It currently has only been tested against Active Directory.

Using Multiple Authentication Methods with Impala

Impala 2.0 and later automatically handles both Kerberos and LDAP authentication. Each impalad daemon can accept
both Kerberos and LDAP requests through the same port. No special actions need to be taken if some users authenticate
through Kerberos and some through LDAP.

Prior to Impala 2.0, you had to configure each impalad to listen on a specific port depending on the kind of
authentication, then configure your network load balancer to forward each kind of request to a DataNode that was
set up with the appropriate authentication type. Once the initial request was made using either Kerberos or LDAP
authentication, Impala automatically handled theprocess of coordinating thework acrossmultiple nodes and transmitting
intermediate results back to the coordinator node.

Configuring Impala Delegation for Hue and BI Tools

When users submit Impala queries through a separate application, such as Hue or a business intelligence tool, typically
all requests are treated as coming from the same user. In Impala 1.2 and higher,,Impala supports applications to pass
along credentials for the users that connect to them, known as “delegation”, and to issue Impala queries with the
privileges for those users. Currently, the delegation feature is available only for Impala queries submitted through
application interfaces such as Hue and BI tools; for example, Impala cannot issue queries using the privileges of the
HDFS user.

112 | Apache Impala Guide

Impala Security

The delegation feature is enabled by a startup option for impalad: --authorized_proxy_user_config. When
you specify this option, users whose names you specify (such as hue) can delegate the execution of a query to another
user. The query runs with the privileges of the delegated user, not the original user such as hue. The name of the
delegated user is passed using the HiveServer2 configuration property impala.doas.user.

You can specify a list of users that the application user can delegate to, or * to allow a superuser to delegate to any
other user. For example:

impalad --authorized_proxy_user_config 'hue=user1,user2;admin=*' ...

Note: Make sure to use single quotes or escape characters to ensure that any * characters do not
undergo wildcard expansion when specified in command-line arguments.

See Modifying Impala Startup Options on page 43 for details about adding or changing impalad startup options. See
this Cloudera blog post for background information about the delegation capability in HiveServer2.

To set up authentication for the delegated users:

• On the server side, configure either user/password authentication through LDAP, or Kerberos authentication, for
all the delegatedusers. See Enabling LDAPAuthentication for Impala onpage110or Enabling KerberosAuthentication
for Impala on page 107 for details.

• On the client side, follow the instructions in the “Using User Name and Password” section in the ODBC driver
installation guide. Then search for “delegation” in that same installation guide to learn about the Delegation UID
field and DelegationUID configuration keyword to enable the delegation feature for ODBC-based BI tools.

Enabling Delegation in Cloudera Manager

To enable delegation in Cloudera Manager:

1. Navigate to Clusters > Impala > Configuration > Policy File-Based Sentry.
2. In the Proxy User Configuration field, type the a semicolon-separated list of key=value pairs of authorized proxy

users to the user(s) they can impersonate. The list of delegated users are delimited with a comma, e.g. hue=user1,
user2.

3. Click Save Changes and then restart Impala service.

Auditing Impala Operations
To monitor how Impala data is being used within your organization, ensure that your Impala authorization and
authentication policies are effective, and detect attempts at intrusion or unauthorized access to Impala data, you can
use the auditing feature in Impala 1.2.1 and higher:

• Enable auditing by including the option -audit_event_log_dir=directory_path in your impalad startup
options for a cluster not managed by Cloudera Manager, or configuring Impala Daemon logging in Cloudera
Manager. The log directory must be a local directory on the server, not an HDFS directory.

• Decide how many queries will be represented in each log files. By default, Impala starts a new log file every 5000
queries. To specify a different number, include the option
-max_audit_event_log_file_size=number_of_queries in the impalad startup options.

• Configure the Cloudera Navigator product to collect and consolidate the audit logs from all the hosts in the cluster.
• Use Cloudera Navigator or Cloudera Manager to filter, visualize, and produce reports based on the audit data.

(The Impala auditing feature works with Cloudera Manager 4.7 to 5.1 and Cloudera Navigator 2.1 and higher.)
Check the audit data to ensure that all activity is authorized and detect attempts at unauthorized access.

Durability and Performance Considerations for Impala Auditing

The auditing feature only imposes performance overhead while auditing is enabled.

Apache Impala Guide | 113

Impala Security

http://blog.cloudera.com/blog/2013/07/how-hiveserver2-brings-security-and-concurrency-to-apache-hive/
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Connectors/PDF/Cloudera-ODBC-Driver-for-Impala-Install-Guide.pdf
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Connectors/PDF/Cloudera-ODBC-Driver-for-Impala-Install-Guide.pdf
http://www.cloudera.com/documentation/enterprise/latest/topics/cn_iu_service_audit.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cn_iu_service_audit.html

Because any Impala host can process a query, enable auditing on all hosts where the impalad daemon runs. Each
host stores its own log files, in a directory in the local filesystem. The log data is periodically flushed to disk (through
an fsync() system call) to avoid loss of audit data in case of a crash.

The runtime overhead of auditing applies to whichever host serves as the coordinator for the query, that is, the host
you connect to when you issue the query. This might be the same host for all queries, or different applications or users
might connect to and issue queries through different hosts.

To avoid excessive I/O overhead on busy coordinator hosts, Impala syncs the audit log data (using the fsync() system
call) periodically rather than after every query. Currently, the fsync() calls are issued at a fixed interval, every 5
seconds.

By default, Impala avoids losing any audit log data in the case of an error during a logging operation (such as a disk full
error), by immediately shutting down impalad on the host where the auditing problem occurred. You can override
this setting by specifying the option -abort_on_failed_audit_event=false in the impalad startup options.

Format of the Audit Log Files

The audit log files represent the query information in JSON format, one query per line. Typically, rather than looking
at the log files themselves, you use the Cloudera Navigator product to consolidate the log data from all Impala hosts
and filter and visualize the results in useful ways. (If you do examine the raw log data, you might run the files through
a JSON pretty-printer first.)

All the information about schema objects accessed by the query is encoded in a single nested record on the same line.
For example, the audit log for an INSERT ... SELECT statement records that a select operation occurs on the source
table and an insert operation occurs on the destination table. The audit log for a query against a view records the base
table accessed by the view, or multiple base tables in the case of a view that includes a join query. Every Impala
operation that corresponds to a SQL statement is recorded in the audit logs, whether the operation succeeds or fails.
Impala records more information for a successful operation than for a failed one, because an unauthorized query is
stopped immediately, before all the query planning is completed.

The information logged for each query includes:

• Client session state:

– Session ID
– User name
– Network address of the client connection

• SQL statement details:

– Query ID
– Statement Type - DML, DDL, and so on
– SQL statement text
– Execution start time, in local time
– Execution Status - Details on any errors that were encountered
– Target Catalog Objects:

– Object Type - Table, View, or Database
– Fully qualified object name
– Privilege - How the object is being used (SELECT, INSERT, CREATE, and so on)

Which Operations Are Audited

The kinds of SQL queries represented in the audit log are:

• Queries that are prevented due to lack of authorization.
• Queries that Impala can analyze and parse to determine that they are authorized. The audit data is recorded

immediately after Impala finishes its analysis, before the query is actually executed.

114 | Apache Impala Guide

Impala Security

The audit log does not contain entries for queries that could not be parsed and analyzed. For example, a query that
fails due to a syntax error is not recorded in the audit log. The audit log also does not contain queries that fail due to
a reference to a table that does not exist, if you would be authorized to access the table if it did exist.

Certain statements in the impala-shell interpreter, such as CONNECT, SUMMARY, PROFILE, SET, and QUIT, do not
correspond to actual SQL queries, and these statements are not reflected in the audit log.

Reviewing the Audit Logs

You typically do not review the audit logs in raw form. The Cloudera Manager Agent periodically transfers the log
information into a back-end database where it can be examined in consolidated form. See the Cloudera Navigator
documentation for details .

Viewing Lineage Information for Impala Data
Lineage is a feature in the Cloudera Navigator datamanagement component that helps you trackwhere data originated,
and how data propagates through the system through SQL statements such as SELECT, INSERT, and CREATE TABLE
AS SELECT. Impala is covered by the Cloudera Navigator lineage features in CDH 5.4.0 and higher.

This type of tracking is important in high-security configurations, especially in highly regulated industries such as
healthcare, pharmaceuticals, financial services and intelligence. For such kinds of sensitive data, it is important to know
all the places in the system that contain that data or other data derived from it; to verify who has accessed that data;
and to be able to doublecheck that the data used to make a decision was processed correctly and not tampered with.

You interact with this feature through lineage diagrams showing relationships between tables and columns. For
instructions about interpreting lineage diagrams, see
http://www.cloudera.com/documentation/enterprise/latest/topics/cn_iu_lineage.html.

Column Lineage

Column lineage tracks information in fine detail, at the level of particular columns rather than entire tables.

For example, if you have a table with information derived from web logs, you might copy that data into other tables
as part of the ETL process. The ETL operations might involve transformations through expressions and function calls,
and rearranging the columns into more or fewer tables (normalizing or denormalizing the data). Then for reporting,
you might issue queries against multiple tables and views. In this example, column lineage helps you determine that
data that entered the system as RAW_LOGS.FIELD1was then turned into WEBSITE_REPORTS.IP_ADDRESS through
an INSERT ... SELECT statement. Or, conversely, you could start with a reporting query against a view, and trace
the origin of the data in a field such as TOP_10_VISITORS.USER_ID back to the underlying table and even further
back to the point where the data was first loaded into Impala.

When you have tables where you need to track or control access to sensitive information at the column level, see
Enabling Sentry Authorization for Impala on page 96 for how to implement column-level security. You set up
authorization using the Sentry framework, create views that refer to specific sets of columns, and then assign
authorization privileges to those views rather than the underlying tables.

Lineage Data for Impala

The lineage feature is enabled by default. When lineage logging is enabled, the serialized column lineage graph is
computed for each query and stored in a specialized log file in JSON format.

Impala records queries in the lineage log if they complete successfully, or fail due to authorization errors. For write
operations such as INSERT and CREATE TABLE AS SELECT, the statement is recorded in the lineage log only if it
successfully completes. Therefore, the lineage feature tracks data that was accessed by successful queries, or that was
attempted to be accessed by unsuccessful queries that were blocked due to authorization failure. These kinds of queries
represent data that really was accessed, or where the attempted access could represent malicious activity.

Impala does not record in the lineage log queries that fail due to syntax errors or that fail or are cancelled before they
reach the stage of requesting rows from the result set.

Apache Impala Guide | 115

Impala Security

http://www.cloudera.com/content/cloudera-content/cloudera-docs/Navigator/latest/Cloudera-Navigator-Installation-and-User-Guide/Cloudera-Navigator-Installation-and-User-Guide.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Navigator/latest/Cloudera-Navigator-Installation-and-User-Guide/Cloudera-Navigator-Installation-and-User-Guide.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cn_iu_lineage.html

To enable or disable this feature on a system not managed by Cloudera Manager, set or remove the
-lineage_event_log_dir configuration option for the impalad daemon. For information about turning the lineage
feature on and off through Cloudera Manager, see
http://www.cloudera.com/documentation/enterprise/latest/topics/datamgmt_impala_lineage_log.html.

116 | Apache Impala Guide

Impala Security

http://www.cloudera.com/documentation/enterprise/latest/topics/datamgmt_impala_lineage_log.html

Impala SQL Language Reference

Impala uses SQL as its query language. To protect user investment in skills development and query design, Impala
provides a high degree of compatibility with the Hive Query Language (HiveQL):

• Because Impala uses the samemetadata store as Hive to record information about table structure and properties,
Impala can access tables defined through the native Impala CREATE TABLE command, or tables created using
the Hive data definition language (DDL).

• Impala supports data manipulation (DML) statements similar to the DML component of HiveQL.
• Impala provides many built-in functions with the same names and parameter types as their HiveQL equivalents.

Impala supports most of the same statements and clauses as HiveQL, including, but not limited to JOIN, AGGREGATE,
DISTINCT, UNION ALL, ORDER BY, LIMIT and (uncorrelated) subquery in the FROM clause. Impala also supports
INSERT INTO and INSERT OVERWRITE.

Impala supports data types with the same names and semantics as the equivalent Hive data types: string, TINYINT,
SMALLINT, INT, BIGINT, FLOAT, DOUBLE, BOOLEAN, STRING, TIMESTAMP.

For full details about Impala SQL syntax and semantics, see Impala SQL Statements on page 215.

Most HiveQL SELECT and INSERT statements run unmodified with Impala. For information about Hive syntax not
available in Impala, see SQL Differences Between Impala and Hive on page 462.

For a list of the built-in functions available in Impala queries, see Impala Built-In Functions on page 339.

Comments
Impala supports the familiar styles of SQL comments:

• All text from a -- sequence to the end of the line is considered a comment and ignored. This type of comment
can occur on a single line by itself, or after all or part of a statement.

• All text from a /* sequence to the next */ sequence is considered a comment and ignored. This type of comment
can stretch over multiple lines. This type of comment can occur on one or more lines by itself, in the middle of a
statement, or before or after a statement.

For example:

-- This line is a comment about a table.
create table ...;

/*
This is a multi-line comment about a query.
*/
select ...;

select * from t /* This is an embedded comment about a query. */ where ...;

select * from t -- This is a trailing comment within a multi-line command.
where ...;

Data Types
Impala supports a set of data types that you can use for table columns, expression values, and function arguments and
return values.

Note: Currently, Impala supports only scalar types, not composite or nested types. Accessing a table
containing any columns with unsupported types causes an error.

Apache Impala Guide | 117

Impala SQL Language Reference

For the notation to write literals of each of these data types, see Literals on page 185.

See SQL Differences Between Impala and Hive on page 462 for differences between Impala and Hive data types.

ARRAY Complex Type (CDH 5.5 or higher only)

A complex data type that can represent an arbitrary number of ordered elements. The elements can be scalars or
another complex type (ARRAY, STRUCT, or MAP).

Syntax:

column_name ARRAY < type >

type ::= primitive_type | complex_type

Usage notes:

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are unfamiliar
with the Impala complex types, startwith Complex Types (CDH5.5 or higher only) on page 157 for background information
and usage examples.

The elements of the array have no names. You refer to the value of the array item using the ITEM pseudocolumn, or
its position in the array with the POS pseudocolumn. See ITEM and POS Pseudocolumns on page 171 for information
about these pseudocolumns.

Each row can have a different number of elements (including none) in the array for that row.

When an array contains items of scalar types, you can use aggregation functions on the array elements without using
join notation. For example, you can find the COUNT(), AVG(), SUM(), and so on of numeric array elements, or the
MAX() and MIN() of any scalar array elements by referring to table_name.array_column in the FROM clause of
the query. When you need to cross-reference values from the array with scalar values from the same row, such as by
including a GROUP BY clause to produce a separate aggregated result for each row, then the join clause is required.

A common usage pattern with complex types is to have an array as the top-level type for the column: an array of
structs, an array of maps, or an array of arrays. For example, you can model a denormalized table by creating a column
that is an ARRAY of STRUCT elements; each item in the array represents a row from a table that would normally be
used in a join query. This kind of data structure lets you essentially denormalize tables by associating multiple rows
from one table with the matching row in another table.

You typically do not create more than one top-level ARRAY column, because if there is some relationship between the
elements of multiple arrays, it is convenient to model the data as an array of another complex type element (either
STRUCT or MAP).

You can pass a qualified name to DESCRIBE to specify an ARRAY, STRUCT, or MAP column and visualize its structure
as if it were a table. An ARRAY is shown as a two-column table, with ITEM and POS columns. A STRUCT is shown as a
table with each field representing a column in the table. A MAP is shown as a two-column table, with KEY and VALUE
columns.

Added in: CDH 5.5.0 (Impala 2.3.0)

Restrictions:

• Columns with this data type can only be used in tables or partitions with the Parquet file format.

• Columns with this data type cannot be used as partition key columns in a partitioned table.

• The COMPUTE STATS statement does not produce any statistics for columns of this data type.

• The maximum length of the column definition for any complex type, including declarations for any nested types,
is 4000 characters.

• See Limitations and Restrictions for Complex Types on page 162 for a full list of limitations and associated guidelines
about complex type columns.

Examples:

118 | Apache Impala Guide

Impala SQL Language Reference

Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted
from the tables used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with
Impala Complex Types on page 179 for the table definitions.

The following example shows how to construct a table with various kinds of ARRAY columns, both at the top level and
nested within other complex types. Whenever the ARRAY consists of a scalar value, such as in the PETS column or the
CHILDREN field, you can see that future expansion is limited. For example, you could not easily evolve the schema to
record the kind of pet or the child's birthday alongside the name. Therefore, it is more common to use an ARRAYwhose
elements are of STRUCT type, to associate multiple fields with each array element.

Note: Practice the CREATE TABLE and query notation for complex type columns using empty tables,
until you can visualize a complex data structure and construct corresponding SQL statements reliably.

CREATE TABLE array_demo
(
 id BIGINT,
 name STRING,
-- An ARRAY of scalar type as a top-level column.
 pets ARRAY <STRING>,

-- An ARRAY with elements of complex type (STRUCT).
 places_lived ARRAY < STRUCT <
 place: STRING,
 start_year: INT
 >>,

-- An ARRAY as a field (CHILDREN) within a STRUCT.
-- (The STRUCT is inside another ARRAY, because it is rare
-- for a STRUCT to be a top-level column.)
 marriages ARRAY < STRUCT <
 spouse: STRING,
 children: ARRAY <STRING>
 >>,

-- An ARRAY as the value part of a MAP.
-- The first MAP field (the key) would be a value such as
-- 'Parent' or 'Grandparent', and the corresponding array would
-- represent 2 parents, 4 grandparents, and so on.
 ancestors MAP < STRING, ARRAY <STRING> >
)
STORED AS PARQUET;

The following example shows how to examine the structure of a table containing one or more ARRAY columns by using
the DESCRIBE statement. You can visualize each ARRAY as its own two-column table, with columns ITEM and POS.

DESCRIBE array_demo;
+--------------+---------------------------+
| name | type |
+--------------+---------------------------+
id	bigint
name	string
pets	array<string>
marriages	array<struct<
	spouse:string,
	children:array<string>
	>>
places_lived	array<struct<
	place:string,
	start_year:int
	>>
ancestors	map<string,array<string>>
+--------------+---------------------------+

DESCRIBE array_demo.pets;
+------+--------+

Apache Impala Guide | 119

Impala SQL Language Reference

| name | type |
+------+--------+
| item | string |
| pos | bigint |
+------+--------+

DESCRIBE array_demo.marriages;
+------+--------------------------+
| name | type |
+------+--------------------------+
item	struct<
	spouse:string,
	children:array<string>
	>
pos	bigint
+------+--------------------------+

DESCRIBE array_demo.places_lived;
+------+------------------+
| name | type |
+------+------------------+
item	struct<
	place:string,
	start_year:int
	>
pos	bigint
+------+------------------+

DESCRIBE array_demo.ancestors;
+-------+---------------+
| name | type |
+-------+---------------+
| key | string |
| value | array<string> |
+-------+---------------+

The following example shows queries involving ARRAY columns containing elements of scalar or complex types. You
“unpack” each ARRAY column by referring to it in a join query, as if it were a separate tablewith ITEM and POS columns.
If the array element is a scalar type, you refer to its value using the ITEM pseudocolumn. If the array element is a
STRUCT, you refer to the STRUCT fields using dot notation and the field names. If the array element is another ARRAY
or a MAP, you use another level of join to unpack the nested collection elements.

-- Array of scalar values.
-- Each array element represents a single string, plus we know its position in the array.
SELECT id, name, pets.pos, pets.item FROM array_demo, array_demo.pets;

-- Array of structs.
-- Now each array element has named fields, possibly of different types.
-- You can consider an ARRAY of STRUCT to represent a table inside another table.
SELECT id, name, places_lived.pos, places_lived.item.place, places_lived.item.start_year
FROM array_demo, array_demo.places_lived;

-- The .ITEM name is optional for array elements that are structs.
-- The following query is equivalent to the previous one, with .ITEM
-- removed from the column references.
SELECT id, name, places_lived.pos, places_lived.place, places_lived.start_year
 FROM array_demo, array_demo.places_lived;

-- To filter specific items from the array, do comparisons against the .POS or .ITEM
-- pseudocolumns, or names of struct fields, in the WHERE clause.
SELECT id, name, pets.item FROM array_demo, array_demo.pets
 WHERE pets.pos in (0, 1, 3);

SELECT id, name, pets.item FROM array_demo, array_demo.pets
 WHERE pets.item LIKE 'Mr. %';

SELECT id, name, places_lived.pos, places_lived.place, places_lived.start_year
 FROM array_demo, array_demo.places_lived
WHERE places_lived.place like '%California%';

120 | Apache Impala Guide

Impala SQL Language Reference

Related information:

Complex Types (CDH 5.5 or higher only) on page 157, STRUCT Complex Type (CDH 5.5 or higher only) on page 143,MAP
Complex Type (CDH 5.5 or higher only) on page 137

BIGINT Data Type

An 8-byte integer data type used in CREATE TABLE and ALTER TABLE statements.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name BIGINT

Range: -9223372036854775808 .. 9223372036854775807. There is no UNSIGNED subtype.

Conversions: Impala automatically converts to a floating-point type (FLOAT or DOUBLE) automatically. Use CAST() to
convert toTINYINT,SMALLINT,INT,STRING, orTIMESTAMP. Casting an integer or floating-point valueN toTIMESTAMP
produces a value that is N seconds past the start of the epoch date (January 1, 1970). By default, the result value
represents a date and time in the UTC time zone. If the setting
--use_local_tz_for_unix_timestamp_conversions=true is in effect, the resulting TIMESTAMP represents a
date and time in the local time zone.

Examples:

CREATE TABLE t1 (x BIGINT);
SELECT CAST(1000 AS BIGINT);

Usage notes:

BIGINT is a convenient type to use for column declarations because you can use any kind of integer values in INSERT
statements and they are promoted to BIGINT where necessary. However, BIGINT also requires the most bytes of
any integer type on disk and in memory, meaning your queries are not as efficient and scalable as possible if you
overuse this type. Therefore, prefer to use the smallest integer type with sufficient range to hold all input values, and
CAST() when necessary to the appropriate type.

For a convenient and automated way to check the bounds of the BIGINT type, call the functions MIN_BIGINT() and
MAX_BIGINT().

If an integer value is too large to be represented as a BIGINT, use a DECIMAL instead with sufficient digits of precision.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently
than a STRING representation of the value.

HBase considerations: This data type is fully compatible with HBase tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as an 8-byte value.

Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COMPUTE STATS statement.

Sqoop considerations:

If you use Sqoop to convert RDBMS data to Parquet, be careful with interpreting any resulting values from DATE,
DATETIME, or TIMESTAMP columns. The underlying values are represented as the Parquet INT64 type, which is
represented as BIGINT in the Impala table. The Parquet values represent the time in milliseconds, while Impala
interprets BIGINT as the time in seconds. Therefore, if you have a BIGINT column in a Parquet table that was imported
this way from Sqoop, divide the values by 1000 when interpreting as the TIMESTAMP type.

Apache Impala Guide | 121

Impala SQL Language Reference

Related information:

Numeric Literals on page 185, TINYINTData Type on page 154, SMALLINTData Type on page 141, INTData Type on page
136, BIGINT Data Type on page 121, DECIMAL Data Type (CDH 5.1 or higher only) on page 126, Impala Mathematical
Functions on page 340

BOOLEAN Data Type

A data type used in CREATE TABLE and ALTER TABLE statements, representing a single true/false choice.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name BOOLEAN

Range: TRUE or FALSE. Do not use quotationmarks around the TRUE and FALSE literal values. You can write the literal
values in uppercase, lowercase, or mixed case. The values queried from a table are always returned in lowercase, true
or false.

Conversions: Impala does not automatically convert any other type to BOOLEAN. All conversions must use an explicit
call to the CAST() function.

You can use CAST() to convert any integer or floating-point type to BOOLEAN: a value of 0 represents false, and any
non-zero value is converted to true.

SELECT CAST(42 AS BOOLEAN) AS nonzero_int, CAST(99.44 AS BOOLEAN) AS nonzero_decimal,
 CAST(000 AS BOOLEAN) AS zero_int, CAST(0.0 AS BOOLEAN) AS zero_decimal;
+-------------+-----------------+----------+--------------+
| nonzero_int | nonzero_decimal | zero_int | zero_decimal |
+-------------+-----------------+----------+--------------+
| true | true | false | false |
+-------------+-----------------+----------+--------------+

When you cast the opposite way, from BOOLEAN to a numeric type, the result becomes either 1 or 0:

SELECT CAST(true AS INT) AS true_int, CAST(true AS DOUBLE) AS true_double,
 CAST(false AS INT) AS false_int, CAST(false AS DOUBLE) AS false_double;
+----------+-------------+-----------+--------------+
| true_int | true_double | false_int | false_double |
+----------+-------------+-----------+--------------+
| 1 | 1 | 0 | 0 |
+----------+-------------+-----------+--------------+

You can cast DECIMAL values to BOOLEAN, with the same treatment of zero and non-zero values as the other numeric
types. You cannot cast a BOOLEAN to a DECIMAL.

You cannot cast a STRING value to BOOLEAN, although you can cast a BOOLEAN value to STRING, returning '1' for
true values and '0' for false values.

Although you can cast a TIMESTAMP to a BOOLEAN or a BOOLEAN to a TIMESTAMP, the results are unlikely to be useful.
Any non-zero TIMESTAMP (that is, any value other than 1970-01-01 00:00:00) becomes TRUE when converted to
BOOLEAN, while 1970-01-01 00:00:00 becomes FALSE. A value of FALSE becomes 1970-01-01 00:00:00when
converted to BOOLEAN, and TRUE becomes one second past this epoch date, that is, 1970-01-01 00:00:01.

NULL considerations: An expression of this type produces a NULL value if any argument of the expression is NULL.

Partitioning:

Do not use a BOOLEAN column as a partition key. Although you can create such a table, subsequent operations produce
errors:

[localhost:21000] > create table truth_table (assertion string) partitioned by (truth
boolean);
[localhost:21000] > insert into truth_table values ('Pigs can fly',false);

122 | Apache Impala Guide

Impala SQL Language Reference

ERROR: AnalysisException: INSERT into table with BOOLEAN partition column (truth) is
not supported: partitioning.truth_table

Examples:

SELECT 1 < 2;
SELECT 2 = 5;
SELECT 100 < NULL, 100 > NULL;
CREATE TABLE assertions (claim STRING, really BOOLEAN);
INSERT INTO assertions VALUES
 ("1 is less than 2", 1 < 2),
 ("2 is the same as 5", 2 = 5),
 ("Grass is green", true),
 ("The moon is made of green cheese", false);
SELECT claim FROM assertions WHERE really = TRUE;

HBase considerations: This data type is fully compatible with HBase tables.

Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COMPUTE STATS statement.

Related information: Boolean Literals on page 188, SQL Operators on page 189, Impala Conditional Functions on page
392

CHAR Data Type (CDH 5.2 or higher only)

A fixed-length character type, padded with trailing spaces if necessary to achieve the specified length. If values are
longer than the specified length, Impala truncates any trailing characters.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name CHAR(length)

The maximum length you can specify is 255.

Semantics of trailing spaces:

• When you store a CHAR value shorter than the specified length in a table, queries return the value padded with
trailing spaces if necessary; the resulting value has the same length as specified in the column definition.

• If you store a CHAR value containing trailing spaces in a table, those trailing spaces are not stored in the data file.
When the value is retrieved by a query, the result could have a different number of trailing spaces. That is, the
value includes however many spaces are needed to pad it to the specified length of the column.

• If you compare two CHAR values that differ only in the number of trailing spaces, those values are considered
identical.

Partitioning: This type can be used for partition key columns. Because of the efficiency advantage of numeric values
over character-based values, if the partition key is a string representation of a number, prefer to use an integer type
with sufficient range (INT, BIGINT, and so on) where practical.

HBase considerations: This data type cannot be used with HBase tables.

Parquet considerations:

• This type can be read from and written to Parquet files.
• There is no requirement for a particular level of Parquet.
• Parquet files generated by Impala and containing this type can be freely interchanged with other components

such as Hive and MapReduce.

Apache Impala Guide | 123

Impala SQL Language Reference

• Any trailing spaces, whether implicitly or explicitly specified, are not written to the Parquet data files.
• Parquet data files might contain values that are longer than allowed by the CHAR(n) length limit. Impala ignores

any extra trailing characters when it processes those values during a query.

Text table considerations:

Text data files might contain values that are longer than allowed for a particular CHAR(n) column. Any extra trailing
characters are ignored when Impala processes those values during a query. Text data files can also contain values that
are shorter than the defined length limit, and Impala pads them with trailing spaces up to the specified length. Any
text data files produced by Impala INSERT statements do not include any trailing blanks for CHAR columns.

Avro considerations:

The Avro specification allows string values up to 2**64 bytes in length. Impala queries for Avro tables use 32-bit integers
to hold string lengths. In CDH 5.7 / Impala 2.5 and higher, Impala truncates CHAR and VARCHAR values in Avro tables
to (2**31)-1 bytes. If a query encounters a STRING value longer than (2**31)-1 bytes in an Avro table, the query fails.
In earlier releases, encountering such long values in an Avro table could cause a crash.

Compatibility:

This type is available using Impala 2.0 or higher under CDH 4, or with Impala on CDH 5.2 or higher. There are no
compatibility issues with other components when exchanging data files or running Impala on CDH 4.

Some other database systems make the length specification optional. For Impala, the length is required.

Internal details: Represented in memory as a byte array with the same size as the length specification. Values that are
shorter than the specified length are padded on the right with trailing spaces.

Added in: CDH 5.2.0 (Impala 2.0.0)

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COMPUTE STATS statement.

UDF considerations: This type cannot be used for the argument or return type of a user-defined function (UDF) or
user-defined aggregate function (UDA).

Examples:

These examples show how trailing spaces are not considered significant when comparing or processing CHAR values.
CAST() truncates any longer string to fit within the defined length. If a CHAR value is shorter than the specified length,
it is padded on the right with spaces until it matches the specified length. Therefore, LENGTH() represents the length
including any trailing spaces, and CONCAT() also treats the column value as if it has trailing spaces.

select cast('x' as char(4)) = cast('x ' as char(4)) as "unpadded equal to padded";
+--------------------------+
| unpadded equal to padded |
+--------------------------+
| true |
+--------------------------+

create table char_length(c char(3));
insert into char_length values (cast('1' as char(3))), (cast('12' as char(3))),
(cast('123' as char(3))), (cast('123456' as char(3)));
select concat("[",c,"]") as c, length(c) from char_length;
+-------+-----------+
| c | length(c) |
+-------+-----------+
[1]	3
[12]	3
[123]	3
[123]	3
+-------+-----------+

124 | Apache Impala Guide

Impala SQL Language Reference

This example shows a case where data values are known to have a specific length, where CHAR is a logical data type
to use.

create table addresses
 (id bigint,
 street_name string,
 state_abbreviation char(2),
 country_abbreviation char(2));

The following example shows how values written by Impala do not physically include the trailing spaces. It creates a
table using text format, with CHAR values much shorter than the declared length, and then prints the resulting data
file to show that the delimited values are not separated by spaces. The same behavior applies to binary-format Parquet
data files.

create table char_in_text (a char(20), b char(30), c char(40))
 row format delimited fields terminated by ',';

insert into char_in_text values (cast('foo' as char(20)), cast('bar' as char(30)),
cast('baz' as char(40))), (cast('hello' as char(20)), cast('goodbye' as char(30)),
cast('aloha' as char(40)));

-- Running this Linux command inside impala-shell using the ! shortcut.
!hdfs dfs -cat
'hdfs://127.0.0.1:8020/user/hive/warehouse/impala_doc_testing.db/char_in_text/*.*';
foo,bar,baz
hello,goodbye,aloha

The following example further illustrates the treatment of spaces. It replaces the contents of the previous table with
some values including leading spaces, trailing spaces, or both. Any leading spaces are preserved within the data file,
but trailing spaces are discarded. Then when the values are retrieved by a query, the leading spaces are retrieved
verbatim while any necessary trailing spaces are supplied by Impala.

insert overwrite char_in_text values (cast('trailing ' as char(20)), cast(' leading
 and trailing ' as char(30)), cast(' leading' as char(40)));
!hdfs dfs -cat
'hdfs://127.0.0.1:8020/user/hive/warehouse/impala_doc_testing.db/char_in_text/*.*';
trailing, leading and trailing, leading

select concat('[',a,']') as a, concat('[',b,']') as b, concat('[',c,']') as c from
char_in_text;
+------------------------+----------------------------------+--+
| a | b | c
 |
+------------------------+----------------------------------+--+
| [trailing] | [leading and trailing] | [leading
] |
+------------------------+----------------------------------+--+

Restrictions:

Because the blank-padding behavior requires allocating the maximum length for each value in memory, for scalability
reasons avoid declaring CHAR columns that are much longer than typical values in that column.

All data in CHAR and VARCHAR columns must be in a character encoding that is compatible with UTF-8. If you have
binary data from another database system (that is, a BLOB type), use a STRING column to hold it.

When an expression compares a CHAR with a STRING or VARCHAR, the CHAR value is implicitly converted to STRING
first, with trailing spaces preserved.

select cast("foo " as char(5)) = 'foo' as "char equal to string";
+----------------------+
| char equal to string |
+----------------------+
| false |
+----------------------+

Apache Impala Guide | 125

Impala SQL Language Reference

This behavior differs from other popular database systems. To get the expected result of TRUE, cast the expressions
on both sides to CHAR values of the appropriate length:

select cast("foo " as char(5)) = cast('foo' as char(3)) as "char equal to string";
+----------------------+
| char equal to string |
+----------------------+
| true |
+----------------------+

This behavior is subject to change in future releases.

Related information:

STRING Data Type on page 142, VARCHAR Data Type (CDH 5.2 or higher only) on page 155, String Literals on page 186,
Impala String Functions on page 395

DECIMAL Data Type (CDH 5.1 or higher only)

A numeric data type with fixed scale and precision, used in CREATE TABLE and ALTER TABLE statements. Suitable
for financial and other arithmetic calculations where the imprecise representation and rounding behavior of FLOAT
and DOUBLEmake those types impractical.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name DECIMAL[(precision[,scale])]

DECIMAL with no precision or scale values is equivalent to DECIMAL(9,0).

Precision and Scale:

precision represents the total number of digits that can be represented by the column, regardless of the location of
the decimal point. This value must be between 1 and 38. For example, representing integer values up to 9999, and
floating-point values up to 99.99, both require a precision of 4. You can also represent corresponding negative values,
without any change in the precision. For example, the range -9999 to 9999 still only requires a precision of 4.

scale represents the number of fractional digits. This valuemust be less than or equal to precision. A scale of 0 produces
integral values, with no fractional part. If precision and scale are equal, all the digits come after the decimal point,
making all the values between 0 and 0.999... or 0 and -0.999...

When precision and scale are omitted, a DECIMAL value is treated as DECIMAL(9,0), that is, an integer value ranging
from -999,999,999 to 999,999,999. This is the largest DECIMAL value that can still be represented in 4 bytes. If
precision is specified but scale is omitted, Impala uses a value of zero for the scale.

Both precision and scalemust be specified as integer literals, not any other kind of constant expressions.

To check the precision or scale for arbitrary values, you can call the precision() and scale() built-in functions.
For example, you might use these values to figure out how many characters are required for various fields in a report,
or to understand the rounding characteristics of a formula as applied to a particular DECIMAL column.

Range:

The maximum precision value is 38. Thus, the largest integral value is represented by DECIMAL(38,0) (999... with 9
repeated 38 times). Themost precise fractional value (between 0 and 1, or 0 and -1) is represented byDECIMAL(38,38),
with 38 digits to the right of the decimal point. The value closest to 0 would be .0000...1 (37 zeros and the final 1). The
value closest to 1 would be .999... (9 repeated 38 times).

For a given precision and scale, the range of DECIMAL values is the same in the positive and negative directions. For
example, DECIMAL(4,2) can represent from -99.99 to 99.99. This is different from other integral numeric types where
the positive and negative bounds differ slightly.

When you use DECIMAL values in arithmetic expressions, the precision and scale of the result value are determined
as follows:

126 | Apache Impala Guide

Impala SQL Language Reference

• For addition and subtraction, the precision and scale are based on the maximum possible result, that is, if all the
digits of the input values were 9s and the absolute values were added together.

• For multiplication, the precision is the sum of the precisions of the input values. The scale is the sum of the scales
of the input values.

• For division, Impala sets the precision and scale to values large enough to represent the whole and fractional parts
of the result.

• For UNION, the scale is the larger of the scales of the input values, and the precision is increased if necessary to
accommodate any additional fractional digits. If the same input value has the largest precision and the largest
scale, the result value has the same precision and scale. If one value has a larger precision but smaller scale, the
scale of the result value is increased. For example, DECIMAL(20,2) UNION DECIMAL(8,6) produces a result
of type DECIMAL(24,6). The extra 4 fractional digits of scale (6-2) are accommodated by extending the precision
by the same amount (20+4).

• To doublecheck, you can always call the PRECISION() and SCALE() functions on the results of an arithmetic
expression to see the relevant values, or use a CREATE TABLE AS SELECT statement to define a column based
on the return type of the expression.

Compatibility:

• Using the DECIMAL type is only supported under CDH 5.1.0 and higher.
• Use the DECIMAL data type in Impala for applications where you used the NUMBER data type in Oracle. The Impala

DECIMAL type does not support the Oracle idioms of * for scale or negative values for precision.

Conversions and casting:

Casting an integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the
epoch date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting
--use_local_tz_for_unix_timestamp_conversions=true is in effect, the resulting TIMESTAMP represents a
date and time in the local time zone.

Impala automatically converts between DECIMAL and other numeric types where possible. A DECIMALwith zero scale
is converted to or from the smallest appropriate integral type. A DECIMAL with a fractional part is automatically
converted to or from the smallest appropriate floating-point type. If the destination type does not have sufficient
precision or scale to hold all possible values of the source type, Impala raises an error and does not convert the value.

For example, these statements show how expressions of DECIMAL and other types are reconciled to the same type in
the context of UNION queries and INSERT statements:

[localhost:21000] > select cast(1 as int) as x union select cast(1.5 as decimal(9,4))
as x;
+----------------+
| x |
+----------------+
| 1.5000 |
| 1.0000 |
+----------------+
[localhost:21000] > create table int_vs_decimal as select cast(1 as int) as x union
select cast(1.5 as decimal(9,4)) as x;
+-------------------+
| summary |
+-------------------+
| Inserted 2 row(s) |
+-------------------+
[localhost:21000] > desc int_vs_decimal;
+------+---------------+---------+
| name | type | comment |
+------+---------------+---------+
| x | decimal(14,4) | |
+------+---------------+---------+

Apache Impala Guide | 127

Impala SQL Language Reference

To avoid potential conversion errors, you can use CAST() to convert DECIMAL values to FLOAT, TINYINT, SMALLINT,
INT, BIGINT, STRING, TIMESTAMP, or BOOLEAN. You can use exponential notation in DECIMAL literals or when casting
from STRING, for example 1.0e6 to represent one million.

If you cast a value with more fractional digits than the scale of the destination type, any extra fractional digits are
truncated (not rounded). Casting a value to a target type with not enough precision produces a result of NULL and
displays a runtime warning.

[localhost:21000] > select cast(1.239 as decimal(3,2));
+-----------------------------+
| cast(1.239 as decimal(3,2)) |
+-----------------------------+
| 1.23 |
+-----------------------------+
[localhost:21000] > select cast(1234 as decimal(3));
+----------------------------+
| cast(1234 as decimal(3,0)) |
+----------------------------+
| NULL |
+----------------------------+
WARNINGS: Expression overflowed, returning NULL

When you specify integer literals, for example in INSERT ... VALUES statements or arithmetic expressions, those
numbers are interpreted as the smallest applicable integer type. You must use CAST() calls for some combinations
of integer literals and DECIMAL precision. For example, INT has a maximum value that is 10 digits long, TINYINT has
a maximum value that is 3 digits long, and so on. If you specify a value such as 123456 to go into a DECIMAL column,
Impala checks if the column has enough precision to represent the largest value of that integer type, and raises an
error if not. Therefore, use an expression like CAST(123456 TO DECIMAL(9,0)) for DECIMAL columnswith precision
9 or less, CAST(50 TO DECIMAL(2,0)) for DECIMAL columns with precision 2 or less, and so on. For DECIMAL
columns with precision 10 or greater, Impala automatically interprets the value as the correct DECIMAL type; however,
because DECIMAL(10) requires 8 bytes of storage while DECIMAL(9) requires only 4 bytes, only use precision of 10
or higher when actually needed.

[localhost:21000] > create table decimals_9_0 (x decimal);
[localhost:21000] > insert into decimals_9_0 values (1), (2), (4), (8), (16), (1024),
(32768), (65536), (1000000);
ERROR: AnalysisException: Possible loss of precision for target table
'decimal_testing.decimals_9_0'.
Expression '1' (type: INT) would need to be cast to DECIMAL(9,0) for column 'x'
[localhost:21000] > insert into decimals_9_0 values (cast(1 as decimal)), (cast(2 as
decimal)), (cast(4 as decimal)), (cast(8 as decimal)), (cast(16 as decimal)), (cast(1024
 as decimal)), (cast(32768 as decimal)), (cast(65536 as decimal)), (cast(1000000 as
decimal));

[localhost:21000] > create table decimals_10_0 (x decimal(10,0));
[localhost:21000] > insert into decimals_10_0 values (1), (2), (4), (8), (16), (1024),
 (32768), (65536), (1000000);

Be aware that in memory and for binary file formats such as Parquet or Avro, DECIMAL(10) or higher consumes 8
bytes while DECIMAL(9) (the default for DECIMAL) or lower consumes 4 bytes. Therefore, to conserve space in large
tables, use the smallest-precision DECIMAL type that is appropriate and CAST() literal values where necessary, rather
than declaring DECIMAL columns with high precision for convenience.

To represent a very large or precise DECIMAL value as a literal, for example one that contains more digits than can be
represented by a BIGINT literal, use a quoted string or a floating-point value for the number, and CAST() to the
desired DECIMAL type:

insert into decimals_38_5 values (1), (2), (4), (8), (16), (1024), (32768), (65536),
(1000000),
 (cast("999999999999999999999999999999" as decimal(38,5))),
 (cast(999999999999999999999999999999. as decimal(38,5)));

128 | Apache Impala Guide

Impala SQL Language Reference

• The result of the SUM() aggregate function on DECIMAL values is promoted to a precision of 38, with the same
precision as the underlying column. Thus, the result can represent the largest possible value at that particular
precision.

• STRING columns, literals, or expressions can be converted to DECIMAL as long as the overall number of digits and
digits to the right of the decimal point fit within the specified precision and scale for the declared DECIMAL type.
By default, a DECIMAL value with no specified scale or precision can hold a maximum of 9 digits of an integer
value. If there are more digits in the string value than are allowed by the DECIMAL scale and precision, the result
is NULL.

The following examples demonstrate how STRING values with integer and fractional parts are represented when
converted to DECIMAL. If the scale is 0, the number is treated as an integer value with a maximum of precision
digits. If the precision is greater than 0, the scale must be increased to account for the digits both to the left and
right of the decimal point. As the precision increases, output values are printed with additional trailing zeros after
the decimal point if needed. Any trailing zeros after the decimal point in the STRING value must fit within the
number of digits specified by the precision.

[localhost:21000] > select cast('100' as decimal); -- Small integer value fits within
9 digits of scale.
+-----------------------------+
| cast('100' as decimal(9,0)) |
+-----------------------------+
| 100 |
+-----------------------------+
[localhost:21000] > select cast('100' as decimal(3,0)); -- Small integer value fits
within 3 digits of scale.
+-----------------------------+
| cast('100' as decimal(3,0)) |
+-----------------------------+
| 100 |
+-----------------------------+
[localhost:21000] > select cast('100' as decimal(2,0)); -- 2 digits of scale is not
enough!
+-----------------------------+
| cast('100' as decimal(2,0)) |
+-----------------------------+
| NULL |
+-----------------------------+
[localhost:21000] > select cast('100' as decimal(3,1)); -- (3,1) = 2 digits left of the
 decimal point, 1 to the right. Not enough.
+-----------------------------+
| cast('100' as decimal(3,1)) |
+-----------------------------+
| NULL |
+-----------------------------+
[localhost:21000] > select cast('100' as decimal(4,1)); -- 4 digits total, 1 to the
right of the decimal point.
+-----------------------------+
| cast('100' as decimal(4,1)) |
+-----------------------------+
| 100.0 |
+-----------------------------+
[localhost:21000] > select cast('98.6' as decimal(3,1)); -- (3,1) can hold a 3 digit
number with 1 fractional digit.
+------------------------------+
| cast('98.6' as decimal(3,1)) |
+------------------------------+
| 98.6 |
+------------------------------+
[localhost:21000] > select cast('98.6' as decimal(15,1)); -- Larger scale allows bigger
 numbers but still only 1 fractional digit.
+-------------------------------+
| cast('98.6' as decimal(15,1)) |
+-------------------------------+
| 98.6 |
+-------------------------------+
[localhost:21000] > select cast('98.6' as decimal(15,5)); -- Larger precision allows
more fractional digits, outputs trailing zeros.
+-------------------------------+
| cast('98.6' as decimal(15,5)) |

Apache Impala Guide | 129

Impala SQL Language Reference

+-------------------------------+
| 98.60000 |
+-------------------------------+
[localhost:21000] > select cast('98.60000' as decimal(15,1)); -- Trailing zeros in the
 string must fit within 'scale' digits (1 in this case).
+-----------------------------------+
| cast('98.60000' as decimal(15,1)) |
+-----------------------------------+
| NULL |
+-----------------------------------+

• Most built-in arithmetic functions such as SIN() and COS() continue to accept only DOUBLE values because they
are so commonly used in scientific context for calculations of IEEE 754-compliant values. The built-in functions
that accept and return DECIMAL are:

– ABS()

– CEIL()

– COALESCE()

– FLOOR()

– FNV_HASH()

– GREATEST()

– IF()

– ISNULL()

– LEAST()

– NEGATIVE()

– NULLIF()

– POSITIVE()

– PRECISION()

– ROUND()

– SCALE()

– TRUNCATE()

– ZEROIFNULL()

See Impala Built-In Functions on page 339 for details.
• BIGINT, INT, SMALLINT, and TINYINT values can all be cast to DECIMAL. The number of digits to the left of the

decimal point in the DECIMAL type must be sufficient to hold the largest value of the corresponding integer type.
Note that integer literals are treated as the smallest appropriate integer type, meaning there is sometimes a range
of values that require one more digit of DECIMAL scale than you might expect. For integer values, the precision
of the DECIMAL type can be zero; if the precision is greater than zero, remember to increase the scale value by
an equivalent amount to hold the required number of digits to the left of the decimal point.

The following examples show how different integer types are converted to DECIMAL.

[localhost:21000] > select cast(1 as decimal(1,0));
+-------------------------+
| cast(1 as decimal(1,0)) |
+-------------------------+
| 1 |
+-------------------------+
[localhost:21000] > select cast(9 as decimal(1,0));
+-------------------------+
| cast(9 as decimal(1,0)) |
+-------------------------+
| 9 |
+-------------------------+
[localhost:21000] > select cast(10 as decimal(1,0));
+--------------------------+
| cast(10 as decimal(1,0)) |
+--------------------------+
| 10 |

130 | Apache Impala Guide

Impala SQL Language Reference

+--------------------------+
[localhost:21000] > select cast(10 as decimal(1,1));
+--------------------------+
| cast(10 as decimal(1,1)) |
+--------------------------+
| 10.0 |
+--------------------------+
[localhost:21000] > select cast(100 as decimal(1,1));
+---------------------------+
| cast(100 as decimal(1,1)) |
+---------------------------+
| 100.0 |
+---------------------------+
[localhost:21000] > select cast(1000 as decimal(1,1));
+----------------------------+
| cast(1000 as decimal(1,1)) |
+----------------------------+
| 1000.0 |
+----------------------------+

• When a DECIMAL value is converted to any of the integer types, any fractional part is truncated (that is, rounded
towards zero):

[localhost:21000] > create table num_dec_days (x decimal(4,1));
[localhost:21000] > insert into num_dec_days values (1), (2), (cast(4.5 as decimal(4,1)));
[localhost:21000] > insert into num_dec_days values (cast(0.1 as decimal(4,1))), (cast(.9
 as decimal(4,1))), (cast(9.1 as decimal(4,1))), (cast(9.9 as decimal(4,1)));
[localhost:21000] > select cast(x as int) from num_dec_days;
+----------------+
| cast(x as int) |
+----------------+
| 1 |
| 2 |
| 4 |
| 0 |
| 0 |
| 9 |
| 9 |
+----------------+

• You cannot directly cast TIMESTAMP or BOOLEAN values to or from DECIMAL values. You can turn a DECIMAL
value into a time-related representation using a two-step process, by converting it to an integer value and then
using that result in a call to a date and time function such as from_unixtime().

[localhost:21000] > select from_unixtime(cast(cast(1000.0 as decimal) as bigint));
+---+
| from_unixtime(cast(cast(1000.0 as decimal(9,0)) as bigint)) |
+---+
| 1970-01-01 00:16:40 |
+---+
[localhost:21000] > select now() + interval cast(x as int) days from num_dec_days; --
x is a DECIMAL column.

[localhost:21000] > create table num_dec_days (x decimal(4,1));
[localhost:21000] > insert into num_dec_days values (1), (2), (cast(4.5 as decimal(4,1)));
[localhost:21000] > select now() + interval cast(x as int) days from num_dec_days; --
The 4.5 value is truncated to 4 and becomes '4 days'.
+--------------------------------------+
| now() + interval cast(x as int) days |
+--------------------------------------+
| 2014-05-13 23:11:55.163284000 |
| 2014-05-14 23:11:55.163284000 |
| 2014-05-16 23:11:55.163284000 |
+--------------------------------------+

Apache Impala Guide | 131

Impala SQL Language Reference

• Because values in INSERT statements are checked rigorously for type compatibility, be prepared to use CAST()
function calls around literals, column references, or other expressions that you are inserting into a DECIMAL
column.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

DECIMAL differences from integer and floating-point types:

With the DECIMAL type, you are concerned with the number of overall digits of a number rather than powers of 2 (as
in TINYINT, SMALLINT, and so on). Therefore, the limits with integral values of DECIMAL types fall around 99, 999,
9999, and so on rather than 32767, 65535, 2 32 -1, and so on. For fractional values, you do not need to account for
imprecise representation of the fractional part according to the IEEE-954 standard (as in FLOAT and DOUBLE). Therefore,
when you insert a fractional value into a DECIMAL column, you can compare, sum, query, GROUP BY, and so on that
column and get back the original values rather than some “close but not identical” value.

FLOAT and DOUBLE can cause problems or unexpected behavior due to inability to precisely represent certain fractional
values, for example dollar and cents values for currency. You might find output values slightly different than you
inserted, equality tests that do not match precisely, or unexpected values for GROUP BY columns. DECIMAL can help
reduce unexpected behavior and rounding errors, at the expense of some performance overhead for assignments and
comparisons.

Literals and expressions:

• When you use an integer literal such as 1 or 999 in a SQL statement, depending on the context, Impala will treat
it as either the smallest appropriate DECIMAL type, or the smallest integer type (TINYINT, SMALLINT, INT, or
BIGINT). To minimize memory usage, Impala prefers to treat the literal as the smallest appropriate integer type.

• When you use a floating-point literal such as 1.1 or 999.44 in a SQL statement, depending on the context, Impala
will treat it as either the smallest appropriate DECIMAL type, or the smallest floating-point type (FLOAT or DOUBLE).
To avoid loss of accuracy, Impala prefers to treat the literal as a DECIMAL.

Storage considerations:

• Only the precision determines the storage size for DECIMAL values; the scale setting has no effect on the storage
size.

• Text, RCFile, and SequenceFile tables all use ASCII-based formats. In these text-based file formats, leading zeros
are not stored, but trailing zeros are stored. In these tables, each DECIMAL value takes up as many bytes as there
are digits in the value, plus an extra byte if the decimal point is present and an extra byte for negative values.
Once the values are loaded into memory, they are represented in 4, 8, or 16 bytes as described in the following
list items. The on-disk representation varies depending on the file format of the table.

• Parquet and Avro tables use binary formats, In these tables, Impala stores each value in as few bytes as possible
depending on the precision specified for the DECIMAL column.

– In memory, DECIMAL values with precision of 9 or less are stored in 4 bytes.
– In memory, DECIMAL values with precision of 10 through 18 are stored in 8 bytes.
– In memory, DECIMAL values with precision greater than 18 are stored in 16 bytes.

File format considerations:

• The DECIMAL data type can be stored in any of the file formats supported by Impala, as described in How Impala
Works with Hadoop File Formats on page 528. Impala only writes to tables that use the Parquet and text formats,
so those formats are the focus for file format compatibility.

• Impala can query Avro, RCFile, or SequenceFile tables containing DECIMAL columns, created by other Hadoop
components, on CDH 5 only.

• You can use DECIMAL columns in Impala tables that are mapped to HBase tables. Impala can query and insert
into such tables.

• Text, RCFile, and SequenceFile tables all use ASCII-based formats. In these tables, each DECIMAL value takes up
as many bytes as there are digits in the value, plus an extra byte if the decimal point is present. The binary format
of Parquet or Avro files offers more compact storage for DECIMAL columns.

132 | Apache Impala Guide

Impala SQL Language Reference

• Parquet and Avro tables use binary formats, In these tables, Impala stores each value in 4, 8, or 16 bytes depending
on the precision specified for the DECIMAL column.

UDF considerations:When writing a C++ UDF, use the DecimalVal data type defined in
/usr/include/impala_udf/udf.h.

Partitioning:

You can use a DECIMAL column as a partition key. Doing so provides a better match between the partition key values
and the HDFS directory names than using a DOUBLE or FLOAT partitioning column:

Schema evolution considerations:

• For text-based formats (text, RCFile, and SequenceFile tables), you can issue an ALTER TABLE ... REPLACE
COLUMNS statement to change the precision and scale of an existing DECIMAL column. As long as the values in
the column fit within the new precision and scale, they are returned correctly by a query. Any values that do not
fit within the new precision and scale are returned as NULL, and Impala reports the conversion error. Leading
zeros do not count against the precision value, but trailing zeros after the decimal point do.

[localhost:21000] > create table text_decimals (x string);
[localhost:21000] > insert into text_decimals values ("1"), ("2"), ("99.99"), ("1.234"),
 ("000001"), ("1.000000000");
[localhost:21000] > select * from text_decimals;
+-------------+
| x |
+-------------+
| 1 |
| 2 |
| 99.99 |
| 1.234 |
| 000001 |
| 1.000000000 |
+-------------+
[localhost:21000] > alter table text_decimals replace columns (x decimal(4,2));
[localhost:21000] > select * from text_decimals;
+-------+
| x |
+-------+
| 1.00 |
| 2.00 |
| 99.99 |
| NULL |
| 1.00 |
| NULL |
+-------+
ERRORS:
Backend 0:Error converting column: 0 TO DECIMAL(4, 2) (Data is: 1.234)
file:
hdfs://127.0.0.1:8020/user/hive/warehouse/decimal_testing.db/text_decimals/634d4bd3aa0
e8420-b4b13bab7f1be787_56794587_data.0
record: 1.234
Error converting column: 0 TO DECIMAL(4, 2) (Data is: 1.000000000)
file:
hdfs://127.0.0.1:8020/user/hive/warehouse/decimal_testing.db/text_decimals/cd40dc68e20
c565a-cc4bd86c724c96ba_311873428_data.0
record: 1.000000000

• For binary formats (Parquet and Avro tables), although an ALTER TABLE ... REPLACE COLUMNS statement
that changes the precision or scale of a DECIMAL column succeeds, any subsequent attempt to query the changed
column results in a fatal error. (The other columns can still be queried successfully.) This is because the metadata
about the columns is stored in the data files themselves, and ALTER TABLE does not actually make any updates
to the data files. If the metadata in the data files disagrees with the metadata in the metastore database, Impala
cancels the query.

Apache Impala Guide | 133

Impala SQL Language Reference

Examples:

CREATE TABLE t1 (x DECIMAL, y DECIMAL(5,2), z DECIMAL(25,0));
INSERT INTO t1 VALUES (5, 99.44, 123456), (300, 6.7, 999999999);
SELECT x+y, ROUND(y,1), z/98.6 FROM t1;
SELECT CAST(1000.5 AS DECIMAL);

Restrictions:

Currently, the COMPUTE STATS statement under CDH 4 does not store any statistics for DECIMAL columns. When
Impala runs under CDH 5, which has better support for DECIMAL in the metastore database, COMPUTE STATS does
collect statistics for DECIMAL columns and Impala uses the statistics to optimize query performance.

HBase considerations: This data type is fully compatible with HBase tables.

Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COMPUTE STATS statement.

Related information:

Numeric Literals on page 185, TINYINTData Type on page 154, SMALLINTData Type on page 141, INTData Type on page
136, BIGINT Data Type on page 121, DECIMAL Data Type (CDH 5.1 or higher only) on page 126, Impala Mathematical
Functions on page 340 (especially PRECISION() and SCALE())

DOUBLE Data Type

A double precision floating-point data type used in CREATE TABLE and ALTER TABLE statements.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name DOUBLE

Range: 4.94065645841246544e-324d .. 1.79769313486231570e+308, positive or negative

Precision: 15 to 17 significant digits, depending on usage. The number of significant digits does not depend on the
position of the decimal point.

Representation: The values are stored in 8 bytes, using IEEE 754 Double Precision Binary Floating Point format.

Conversions: Impala does not automatically convert DOUBLE to any other type. You can use CAST() to convert DOUBLE
values to FLOAT, TINYINT, SMALLINT, INT, BIGINT, STRING, TIMESTAMP, or BOOLEAN. You can use exponential
notation in DOUBLE literals or when casting from STRING, for example 1.0e6 to represent one million. Casting an
integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date
(January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting
--use_local_tz_for_unix_timestamp_conversions=true is in effect, the resulting TIMESTAMP represents a
date and time in the local time zone.

Usage notes:

The data type REAL is an alias for DOUBLE.

Examples:

CREATE TABLE t1 (x DOUBLE);
SELECT CAST(1000.5 AS DOUBLE);

134 | Apache Impala Guide

Impala SQL Language Reference

https://en.wikipedia.org/wiki/Double-precision_floating-point_format

Partitioning: Because fractional values of this type are not always represented precisely, when this type is used for a
partition key column, the underlying HDFS directories might not be named exactly as you expect. Prefer to partition
on a DECIMAL column instead.

HBase considerations: This data type is fully compatible with HBase tables.

Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as an 8-byte value.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COMPUTE STATS statement.

Restrictions:

Due to theway arithmetic onFLOAT andDOUBLE columns uses high-performance hardware instructions, and distributed
queries can perform these operations in different order for each query, results can vary slightly for aggregate function
calls such as SUM() and AVG() for FLOAT and DOUBLE columns, particularly on large data setswheremillions or billions
of values are summed or averaged. For perfect consistency and repeatability, use the DECIMAL data type for such
operations instead of FLOAT or DOUBLE.

The inability to exactly represent certain floating-point values means that DECIMAL is sometimes a better choice than
DOUBLE or FLOAT when precision is critical, particularly when transferring data from other database systems that use
different representations or file formats.

Related information:

Numeric Literals on page 185, Impala Mathematical Functions on page 340, FLOAT Data Type on page 135

FLOAT Data Type

A single precision floating-point data type used in CREATE TABLE and ALTER TABLE statements.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name FLOAT

Range: 1.40129846432481707e-45 .. 3.40282346638528860e+38, positive or negative

Precision: 6 to 9 significant digits, depending on usage. The number of significant digits does not depend on the position
of the decimal point.

Representation: The values are stored in 4 bytes, using IEEE 754 Single Precision Binary Floating Point format.

Conversions: Impala automatically converts FLOAT to more precise DOUBLE values, but not the other way around.
You can use CAST() to convertFLOAT values to TINYINT, SMALLINT, INT, BIGINT, STRING, TIMESTAMP, or BOOLEAN.
You can use exponential notation in FLOAT literals or when casting from STRING, for example 1.0e6 to represent one
million. Casting an integer or floating-point value N to TIMESTAMP produces a value that is N seconds past the start of
the epoch date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the
setting --use_local_tz_for_unix_timestamp_conversions=true is in effect, the resulting TIMESTAMP
represents a date and time in the local time zone.

Examples:

CREATE TABLE t1 (x FLOAT);
SELECT CAST(1000.5 AS FLOAT);

Partitioning: Because fractional values of this type are not always represented precisely, when this type is used for a
partition key column, the underlying HDFS directories might not be named exactly as you expect. Prefer to partition
on a DECIMAL column instead.

Apache Impala Guide | 135

Impala SQL Language Reference

https://en.wikipedia.org/wiki/Single-precision_floating-point_format

HBase considerations: This data type is fully compatible with HBase tables.

Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as a 4-byte value.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COMPUTE STATS statement.

Restrictions:

Due to theway arithmetic onFLOAT andDOUBLE columns uses high-performance hardware instructions, and distributed
queries can perform these operations in different order for each query, results can vary slightly for aggregate function
calls such as SUM() and AVG() for FLOAT and DOUBLE columns, particularly on large data setswheremillions or billions
of values are summed or averaged. For perfect consistency and repeatability, use the DECIMAL data type for such
operations instead of FLOAT or DOUBLE.

The inability to exactly represent certain floating-point values means that DECIMAL is sometimes a better choice than
DOUBLE or FLOAT when precision is critical, particularly when transferring data from other database systems that use
different representations or file formats.

Related information:

Numeric Literals on page 185, Impala Mathematical Functions on page 340, DOUBLE Data Type on page 134

INT Data Type

A 4-byte integer data type used in CREATE TABLE and ALTER TABLE statements.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name INT

Range: -2147483648 .. 2147483647. There is no UNSIGNED subtype.

Conversions: Impala automatically converts to a larger integer type (BIGINT) or a floating-point type (FLOAT or DOUBLE)
automatically. Use CAST() to convert to TINYINT, SMALLINT, STRING, or TIMESTAMP. Casting an integer or
floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date (January 1,
1970). By default, the result value represents a date and time in the UTC time zone. If the setting
--use_local_tz_for_unix_timestamp_conversions=true is in effect, the resulting TIMESTAMP represents a
date and time in the local time zone.

Usage notes:

The data type INTEGER is an alias for INT.

For a convenient and automated way to check the bounds of the INT type, call the functions MIN_INT() and
MAX_INT().

If an integer value is too large to be represented as a INT, use a BIGINT instead.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Examples:

CREATE TABLE t1 (x INT);
SELECT CAST(1000 AS INT);

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently
than a STRING representation of the value.

HBase considerations: This data type is fully compatible with HBase tables.

136 | Apache Impala Guide

Impala SQL Language Reference

Parquet considerations:

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as a 4-byte value.

Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COMPUTE STATS statement.

Related information:

Numeric Literals on page 185, TINYINTData Type on page 154, SMALLINTData Type on page 141, INTData Type on page
136, BIGINT Data Type on page 121, DECIMAL Data Type (CDH 5.1 or higher only) on page 126, Impala Mathematical
Functions on page 340

MAP Complex Type (CDH 5.5 or higher only)

A complex data type representing an arbitrary set of key-value pairs. The key part is a scalar type, while the value part
can be a scalar or another complex type (ARRAY, STRUCT, or MAP).

Syntax:

column_name MAP < primitive_type, type >

type ::= primitive_type | complex_type

Usage notes:

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are unfamiliar
with the Impala complex types, startwith Complex Types (CDH5.5 or higher only) on page 157 for background information
and usage examples.

The MAP complex data type represents a set of key-value pairs. Each element of the map is indexed by a primitive type
such as BIGINT or STRING, letting you define sequences that are not continuous or categories with arbitrary names.
You might find it convenient for modelling data produced in other languages, such as a Python dictionary or Java
HashMap, where a single scalar value serves as the lookup key.

In a big data context, the keys in a map columnmight represent a numeric sequence of events during a manufacturing
process, or TIMESTAMP values corresponding to sensor observations. The map itself is inherently unordered, so you
choose whether to make the key values significant (such as a recorded TIMESTAMP) or synthetic (such as a random
global universal ID).

Note: Behind the scenes, the MAP type is implemented in a similar way as the ARRAY type. Impala
does not enforce any uniqueness constraint on the KEY values, and the KEY values are processed by
looping through the elements of the MAP rather than by a constant-time lookup. Therefore, this type
is primarily for ease of understanding when importing data and algorithms from non-SQL contexts,
rather than optimizing the performance of key lookups.

You can pass a qualified name to DESCRIBE to specify an ARRAY, STRUCT, or MAP column and visualize its structure
as if it were a table. An ARRAY is shown as a two-column table, with ITEM and POS columns. A STRUCT is shown as a
table with each field representing a column in the table. A MAP is shown as a two-column table, with KEY and VALUE
columns.

Added in: CDH 5.5.0 (Impala 2.3.0)

Restrictions:

• Columns with this data type can only be used in tables or partitions with the Parquet file format.

• Columns with this data type cannot be used as partition key columns in a partitioned table.

Apache Impala Guide | 137

Impala SQL Language Reference

• The COMPUTE STATS statement does not produce any statistics for columns of this data type.

• The maximum length of the column definition for any complex type, including declarations for any nested types,
is 4000 characters.

• See Limitations and Restrictions for Complex Types on page 162 for a full list of limitations and associated guidelines
about complex type columns.

Examples:

Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted
from the tables used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with
Impala Complex Types on page 179 for the table definitions.

The following example shows a table with various kinds of MAP columns, both at the top level and nested within other
complex types. Each row represents information about a specific country, with complex type fields of various levels
of nesting to represent different information associated with the country: factual measurements such as area and
population, notable people in different categories, geographic features such as cities, points of interest within each
city, and mountains with associated facts. Practice the CREATE TABLE and query notation for complex type columns
using empty tables, until you can visualize a complex data structure and construct corresponding SQL statements
reliably.

create TABLE map_demo
(
 country_id BIGINT,

-- Numeric facts about each country, looked up by name.
-- For example, 'Area':1000, 'Population':999999.
-- Using a MAP instead of a STRUCT because there could be
-- a different set of facts for each country.
 metrics MAP <STRING, BIGINT>,

-- MAP whose value part is an ARRAY.
-- For example, the key 'Famous Politicians' could represent an array of 10 elements,
-- while the key 'Famous Actors' could represent an array of 20 elements.
 notables MAP <STRING, ARRAY <STRING>>,

-- MAP that is a field within a STRUCT.
-- (The STRUCT is inside another ARRAY, because it is rare
-- for a STRUCT to be a top-level column.)
-- For example, city #1 might have points of interest with key 'Zoo',
-- representing an array of 3 different zoos.
-- City #2 might have completely different kinds of points of interest.
-- Because the set of field names is potentially large, and most entries could be blank,
-- a MAP makes more sense than a STRUCT to represent such a sparse data structure.
 cities ARRAY < STRUCT <
 name: STRING,
 points_of_interest: MAP <STRING, ARRAY <STRING>>
 >>,

-- MAP that is an element within an ARRAY. The MAP is inside a STRUCT field to associate
-- the mountain name with all the facts about the mountain.
-- The "key" of the map (the first STRING field) represents the name of some fact whose
 value
-- can be expressed as an integer, such as 'Height', 'Year First Climbed', and so on.
 mountains ARRAY < STRUCT < name: STRING, facts: MAP <STRING, INT > > >
)
STORED AS PARQUET;

DESCRIBE map_demo;
+------------+--+
| name | type |
+------------+--+
| country_id | bigint |
| metrics | map<string,bigint> |

138 | Apache Impala Guide

Impala SQL Language Reference

notables	map<string,array<string>>
cities	array<struct<
	name:string,
	points_of_interest:map<string,array<string>>
	>>
mountains	array<struct<
	name:string,
	facts:map<string,int>
	>>
+------------+--+

DESCRIBE map_demo.metrics;
+-------+--------+
| name | type |
+-------+--------+
| key | string |
| value | bigint |
+-------+--------+

DESCRIBE map_demo.notables;
+-------+---------------+
| name | type |
+-------+---------------+
| key | string |
| value | array<string> |
+-------+---------------+

DESCRIBE map_demo.notables.value;
+------+--------+
| name | type |
+------+--------+
| item | string |
| pos | bigint |
+------+--------+

DESCRIBE map_demo.cities;
+------+--+
| name | type |
+------+--+
item	struct<
	name:string,
	points_of_interest:map<string,array<string>>
	>
pos	bigint
+------+--+

DESCRIBE map_demo.cities.item.points_of_interest;
+-------+---------------+
| name | type |
+-------+---------------+
| key | string |
| value | array<string> |
+-------+---------------+

DESCRIBE map_demo.cities.item.points_of_interest.value;
+------+--------+
| name | type |
+------+--------+
| item | string |
| pos | bigint |
+------+--------+

DESCRIBE map_demo.mountains;
+------+-------------------------+
| name | type |
+------+-------------------------+
item	struct<
	name:string,
	facts:map<string,int>
	>
pos	bigint
+------+-------------------------+

Apache Impala Guide | 139

Impala SQL Language Reference

DESCRIBE map_demo.mountains.item.facts;
+-------+--------+
| name | type |
+-------+--------+
| key | string |
| value | int |
+-------+--------+

The following example shows a table that uses a variety of data types for the MAP “key” field. Typically, you use BIGINT
or STRING to use numeric or character-based keys without worrying about exceeding any size or length constraints.

CREATE TABLE map_demo_obscure
(
 id BIGINT,
 m1 MAP <INT, INT>,
 m2 MAP <SMALLINT, INT>,
 m3 MAP <TINYINT, INT>,
 m4 MAP <TIMESTAMP, INT>,
 m5 MAP <BOOLEAN, INT>,
 m6 MAP <CHAR(5), INT>,
 m7 MAP <VARCHAR(25), INT>,
 m8 MAP <FLOAT, INT>,
 m9 MAP <DOUBLE, INT>,
 m10 MAP <DECIMAL(12,2), INT>
)
STORED AS PARQUET;

CREATE TABLE celebrities (name STRING, birth_year MAP < STRING, SMALLINT >) STORED AS
PARQUET;
-- A typical row might represent values with 2 different birth years, such as:
-- ("Joe Movie Star", { "real": 1972, "claimed": 1977 })

CREATE TABLE countries (name STRING, famous_leaders MAP < INT, STRING >) STORED AS
PARQUET;
-- A typical row might represent values with different leaders, with key values
corresponding to their numeric sequence, such as:
-- ("United States", { 1: "George Washington", 3: "Thomas Jefferson", 16: "Abraham
Lincoln" })

CREATE TABLE airlines (name STRING, special_meals MAP < STRING, MAP < STRING, STRING >
 >) STORED AS PARQUET;
-- A typical row might represent values with multiple kinds of meals, each with several
 components:
-- ("Elegant Airlines",
-- {
-- "vegetarian": { "breakfast": "pancakes", "snack": "cookies", "dinner": "rice
pilaf" },
-- "gluten free": { "breakfast": "oatmeal", "snack": "fruit", "dinner": "chicken"
}
-- })

Related information:

Complex Types (CDH 5.5 or higher only) on page 157, ARRAY Complex Type (CDH5.5 or higher only) on page 118, STRUCT
Complex Type (CDH 5.5 or higher only) on page 143

REAL Data Type

An alias for the DOUBLE data type. See DOUBLE Data Type on page 134 for details.

Examples:

140 | Apache Impala Guide

Impala SQL Language Reference

These examples show how you can use the type names REAL and DOUBLE interchangeably, and behind the scenes
Impala treats them always as DOUBLE.

[localhost:21000] > create table r1 (x real);
[localhost:21000] > describe r1;
+------+--------+---------+
| name | type | comment |
+------+--------+---------+
| x | double | |
+------+--------+---------+
[localhost:21000] > insert into r1 values (1.5), (cast (2.2 as double));
[localhost:21000] > select cast (1e6 as real);
+---------------------------+
| cast(1000000.0 as double) |
+---------------------------+
| 1000000 |
+---------------------------+

SMALLINT Data Type

A 2-byte integer data type used in CREATE TABLE and ALTER TABLE statements.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name SMALLINT

Range: -32768 .. 32767. There is no UNSIGNED subtype.

Conversions: Impala automatically converts to a larger integer type (INT or BIGINT) or a floating-point type (FLOAT
or DOUBLE) automatically. Use CAST() to convert to TINYINT, STRING, or TIMESTAMP. Casting an integer or
floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date (January 1,
1970). By default, the result value represents a date and time in the UTC time zone. If the setting
--use_local_tz_for_unix_timestamp_conversions=true is in effect, the resulting TIMESTAMP represents a
date and time in the local time zone.

Usage notes:

For a convenient and automated way to check the bounds of the SMALLINT type, call the functions MIN_SMALLINT()
and MAX_SMALLINT().

If an integer value is too large to be represented as a SMALLINT, use an INT instead.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Examples:

CREATE TABLE t1 (x SMALLINT);
SELECT CAST(1000 AS SMALLINT);

Parquet considerations:

Physically, Parquet files represent TINYINT and SMALLINT values as 32-bit integers. Although Impala rejects attempts
to insert out-of-range values into such columns, if you create a new tablewith theCREATE TABLE ... LIKE PARQUET
syntax, any TINYINT or SMALLINT columns in the original table turn into INT columns in the new table.

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently
than a STRING representation of the value.

HBase considerations: This data type is fully compatible with HBase tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as a 2-byte value.

Apache Impala Guide | 141

Impala SQL Language Reference

Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COMPUTE STATS statement.

Related information:

Numeric Literals on page 185, TINYINTData Type on page 154, SMALLINTData Type on page 141, INTData Type on page
136, BIGINT Data Type on page 121, DECIMAL Data Type (CDH 5.1 or higher only) on page 126, Impala Mathematical
Functions on page 340

STRING Data Type

A data type used in CREATE TABLE and ALTER TABLE statements.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name STRING

Length:Maximum of 32,767 bytes. Do not use any length constraint when declaring STRING columns, as you might
be familiar with from VARCHAR, CHAR, or similar column types from relational database systems. If you do need to
manipulate string values with precise or maximum lengths, in Impala 2.0 and higher you can declare columns as
VARCHAR(max_length) or CHAR(length), but for best performance use STRING where practical.

Character sets: For full support in all Impala subsystems, restrict string values to the ASCII character set. Although
some UTF-8 character data can be stored in Impala and retrieved through queries, UTF-8 strings containing non-ASCII
characters are not guaranteed to work properly in combination with many SQL aspects, including but not limited to:

• String manipulation functions.
• Comparison operators.
• The ORDER BY clause.
• Values in partition key columns.

For any national language aspects such as collation order or interpreting extended ASCII variants such as ISO-8859-1
or ISO-8859-2 encodings, Impala does not include suchmetadatawith the table definition. If you need to sort,manipulate,
or display data depending on those national language characteristics of string data, use logic on the application side.

Conversions:

• Impala does not automatically convert STRING to any numeric type. Impala does automatically convert STRING
to TIMESTAMP if the value matches one of the accepted TIMESTAMP formats; see TIMESTAMP Data Type on page
149 for details.

• You can use CAST() to convert STRING values to TINYINT, SMALLINT, INT, BIGINT, FLOAT, DOUBLE, or
TIMESTAMP.

• You cannot directly cast a STRING value to BOOLEAN. You can use a CASE expression to evaluate string values
such as 'T', 'true', and so on and return Boolean true and false values as appropriate.

• You can cast a BOOLEAN value to STRING, returning '1' for true values and '0' for false values.

Partitioning:

Although itmight be convenient to use STRING columns for partition keys, evenwhen those columns contain numbers,
for performance and scalability it ismuch better to use numeric columns as partition keyswhenever practical. Although
the underlying HDFS directory name might be the same in either case, the in-memory storage for the partition key
columns is more compact, and computations are faster, if partition key columns such as YEAR, MONTH, DAY and so on
are declared as INT, SMALLINT, and so on.

Zero-length strings: For purposes of clauses such as DISTINCT and GROUP BY, Impala considers zero-length strings
(""), NULL, and space to all be different values.

142 | Apache Impala Guide

Impala SQL Language Reference

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Avro considerations:

The Avro specification allows string values up to 2**64 bytes in length. Impala queries for Avro tables use 32-bit integers
to hold string lengths. In CDH 5.7 / Impala 2.5 and higher, Impala truncates CHAR and VARCHAR values in Avro tables
to (2**31)-1 bytes. If a query encounters a STRING value longer than (2**31)-1 bytes in an Avro table, the query fails.
In earlier releases, encountering such long values in an Avro table could cause a crash.

Column statistics considerations: Because the values of this type have variable size, none of the column statistics fields
are filled in until you run the COMPUTE STATS statement.

Examples:

The following examples demonstrate double-quoted and single-quoted string literals, and required escaping for
quotation marks within string literals:

SELECT 'I am a single-quoted string';
SELECT "I am a double-quoted string";
SELECT 'I\'m a single-quoted string with an apostrophe';
SELECT "I\'m a double-quoted string with an apostrophe";
SELECT 'I am a "short" single-quoted string containing quotes';
SELECT "I am a \"short\" double-quoted string containing quotes";

The following examples demonstrate calls to string manipulation functions to concatenate strings, convert numbers
to strings, or pull out substrings:

SELECT CONCAT("Once upon a time, there were ", CAST(3 AS STRING), ' little pigs.');
SELECT SUBSTR("hello world",7,5);

The following examples show how to perform operations on STRING columns within a table:

CREATE TABLE t1 (s1 STRING, s2 STRING);
INSERT INTO t1 VALUES ("hello", 'world'), (CAST(7 AS STRING), "wonders");
SELECT s1, s2, length(s1) FROM t1 WHERE s2 LIKE 'w%';

Related information:

String Literals on page 186, CHAR Data Type (CDH 5.2 or higher only) on page 123, VARCHAR Data Type (CDH 5.2 or
higher only) on page 155, Impala String Functions on page 395, Impala Date and Time Functions on page 364

STRUCT Complex Type (CDH 5.5 or higher only)

A complex data type, representing multiple fields of a single item. Frequently used as the element type of an ARRAY
or the VALUE part of a MAP.

Syntax:

column_name STRUCT < name : type [COMMENT 'comment_string'], ... >

type ::= primitive_type | complex_type

The names and number of fields within the STRUCT are fixed. Each field can be a different type. A field within a STRUCT
can also be another STRUCT, or an ARRAY or a MAP, allowing you to create nested data structures with a maximum
nesting depth of 100.

A STRUCT can be the top-level type for a column, or can itself be an item within an ARRAY or the value part of the
key-value pair in a MAP.

When a STRUCT is used as an ARRAY element or a MAP value, you use a join clause to bring the ARRAY or MAP elements
into the result set, and then refer to array_name.ITEM.field or map_name.VALUE.field. In the case of a STRUCT
directly inside an ARRAY or MAP, you can omit the .ITEM and .VALUE pseudocolumns and refer directly to
array_name.field or map_name.field.

Apache Impala Guide | 143

Impala SQL Language Reference

Usage notes:

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are unfamiliar
with the Impala complex types, startwith Complex Types (CDH5.5 or higher only) on page 157 for background information
and usage examples.

A STRUCT is similar conceptually to a table row: it contains a fixed number of named fields, each with a predefined
type. To combine two related tables, while using complex types to minimize repetition, the typical way to represent
that data is as an ARRAY of STRUCT elements.

Because a STRUCT has a fixed number of named fields, it typically does not make sense to have a STRUCT as the type
of a table column. In such a case, you could just make each field of the STRUCT into a separate column of the table.
The STRUCT type is most useful as an item of an ARRAY or the value part of the key-value pair in a MAP. A nested type
column with a STRUCT at the lowest level lets you associate a variable number of row-like objects with each row of
the table.

The STRUCT type is straightforward to reference within a query. You do not need to include the STRUCT column in a
join clause or give it a table alias, as is required for the ARRAY and MAP types. You refer to the individual fields using
dot notation, such as struct_column_name.field_name, without any pseudocolumn such as ITEM or VALUE.

You can pass a qualified name to DESCRIBE to specify an ARRAY, STRUCT, or MAP column and visualize its structure
as if it were a table. An ARRAY is shown as a two-column table, with ITEM and POS columns. A STRUCT is shown as a
table with each field representing a column in the table. A MAP is shown as a two-column table, with KEY and VALUE
columns.

Internal details:

Within the Parquet data file, the values for each STRUCT field are stored adjacent to each other, so that they can be
encoded and compressed using all the Parquet techniques for storing sets of similar or repeated values. The adjacency
applies even when the STRUCT values are part of an ARRAY or MAP. During a query, Impala avoids unnecessary I/O by
reading only the portions of the Parquet data file containing the requested STRUCT fields.

Added in: CDH 5.5.0 (Impala 2.3.0)

Restrictions:

• Columns with this data type can only be used in tables or partitions with the Parquet file format.

• Columns with this data type cannot be used as partition key columns in a partitioned table.

• The COMPUTE STATS statement does not produce any statistics for columns of this data type.

• The maximum length of the column definition for any complex type, including declarations for any nested types,
is 4000 characters.

• See Limitations and Restrictions for Complex Types on page 162 for a full list of limitations and associated guidelines
about complex type columns.

Examples:

Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted
from the tables used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with
Impala Complex Types on page 179 for the table definitions.

The following example shows a table with various kinds of STRUCT columns, both at the top level and nested within
other complex types. Practice the CREATE TABLE and query notation for complex type columns using empty tables,
until you can visualize a complex data structure and construct corresponding SQL statements reliably.

CREATE TABLE struct_demo
(
 id BIGINT,
 name STRING,

144 | Apache Impala Guide

Impala SQL Language Reference

-- A STRUCT as a top-level column. Demonstrates how the table ID column
-- and the ID field within the STRUCT can coexist without a name conflict.
 employee_info STRUCT < employer: STRING, id: BIGINT, address: STRING >,

-- A STRUCT as the element type of an ARRAY.
 places_lived ARRAY < STRUCT <street: STRING, city: STRING, country: STRING >>,

-- A STRUCT as the value portion of the key-value pairs in a MAP.
 memorable_moments MAP < STRING, STRUCT < year: INT, place: STRING, details: STRING
>>,

-- A STRUCT where one of the fields is another STRUCT.
 current_address STRUCT < street_address: STRUCT <street_number: INT, street_name:
STRING, street_type: STRING>, country: STRING, postal_code: STRING >
)
STORED AS PARQUET;

The following example shows how to examine the structure of a table containing one or more STRUCT columns by
using the DESCRIBE statement. You can visualize each STRUCT as its own table, with columns named the same as
each field of the STRUCT. If the STRUCT is nested inside another complex type, such as ARRAY, you can extend the
qualified name passed to DESCRIBE until the output shows just the STRUCT fields.

DESCRIBE struct_demo;
+-------------------+--------------------------+
| name | type |
+-------------------+--------------------------+
id	bigint
name	string
employee_info	struct<
	employer:string,
	id:bigint,
	address:string
	>
places_lived	array<struct<
	street:string,
	city:string,
	country:string
	>>
memorable_moments	map<string,struct<
	year:int,
	place:string,
	details:string
	>>
current_address	struct<
	street_address:struct<
	street_number:int,
	street_name:string,
	street_type:string
	>,
	country:string,
	postal_code:string
	>
+-------------------+--------------------------+

The top-level column EMPLOYEE_INFO is a STRUCT. Describing table_name.struct_name displays the fields of the
STRUCT as if they were columns of a table:

DESCRIBE struct_demo.employee_info;
+----------+--------+
| name | type |
+----------+--------+
employer	string
id	bigint
address	string
+----------+--------+

Apache Impala Guide | 145

Impala SQL Language Reference

Because PLACES_LIVED is a STRUCT inside an ARRAY, the initial DESCRIBE shows the structure of the ARRAY:

DESCRIBE struct_demo.places_lived;
+------+------------------+
| name | type |
+------+------------------+
item	struct<
	street:string,
	city:string,
	country:string
	>
pos	bigint
+------+------------------+

Ask for the details of the ITEM field of the ARRAY to see just the layout of the STRUCT:

DESCRIBE struct_demo.places_lived.item;
+---------+--------+
| name | type |
+---------+--------+
street	string
city	string
country	string
+---------+--------+

Likewise, MEMORABLE_MOMENTS has a STRUCT inside a MAP, which requires an extra level of qualified name to see just
the STRUCT part:

DESCRIBE struct_demo.memorable_moments;
+-------+------------------+
| name | type |
+-------+------------------+
key	string
value	struct<
	year:int,
	place:string,
	details:string
	>
+-------+------------------+

For a MAP, ask to see the VALUE field to see the corresponding STRUCT fields in a table-like structure:

DESCRIBE struct_demo.memorable_moments.value;
+---------+--------+
| name | type |
+---------+--------+
year	int
place	string
details	string
+---------+--------+

For a STRUCT inside a STRUCT, we can see the fields of the outer STRUCT:

DESCRIBE struct_demo.current_address;
+----------------+-----------------------+
| name | type |
+----------------+-----------------------+
street_address	struct<
	street_number:int,
	street_name:string,
	street_type:string
	>
country	string
postal_code	string

146 | Apache Impala Guide

Impala SQL Language Reference

+----------------+-----------------------+

Then we can use a further qualified name to see just the fields of the inner STRUCT:

DESCRIBE struct_demo.current_address.street_address;
+---------------+--------+
| name | type |
+---------------+--------+
street_number	int
street_name	string
street_type	string
+---------------+--------+

The following example shows how to examine the structure of a table containing one or more STRUCT columns by
using the DESCRIBE statement. You can visualize each STRUCT as its own table, with columns named the same as
each field of the STRUCT. If the STRUCT is nested inside another complex type, such as ARRAY, you can extend the
qualified name passed to DESCRIBE until the output shows just the STRUCT fields.

DESCRIBE struct_demo;
+-------------------+--------------------------+---------+
| name | type | comment |
+-------------------+--------------------------+---------+
id	bigint	
name	string	
employee_info	struct<	
	employer:string,	
	id:bigint,	
	address:string	
	>	
places_lived	array<struct<	
	street:string,	
	city:string,	
	country:string	
	>>	
memorable_moments	map<string,struct<	
	year:int,	
	place:string,	
	details:string	
	>>	
current_address	struct<	
	street_address:struct<	
	street_number:int,	
	street_name:string,	
	street_type:string	
	>,	
	country:string,	
	postal_code:string	
	>	
+-------------------+--------------------------+---------+

SELECT id, employee_info.id FROM struct_demo;

SELECT id, employee_info.id AS employee_id FROM struct_demo;

SELECT id, employee_info.id AS employee_id, employee_info.employer
 FROM struct_demo;

SELECT id, name, street, city, country
 FROM struct_demo, struct_demo.places_lived;

SELECT id, name, places_lived.pos, places_lived.street, places_lived.city,
places_lived.country
 FROM struct_demo, struct_demo.places_lived;

SELECT id, name, pl.pos, pl.street, pl.city, pl.country
 FROM struct_demo, struct_demo.places_lived AS pl;

SELECT id, name, places_lived.pos, places_lived.street, places_lived.city,

Apache Impala Guide | 147

Impala SQL Language Reference

places_lived.country
 FROM struct_demo, struct_demo.places_lived;

SELECT id, name, pos, street, city, country
 FROM struct_demo, struct_demo.places_lived;

SELECT id, name, memorable_moments.key,
 memorable_moments.value.year,
 memorable_moments.value.place,
 memorable_moments.value.details
FROM struct_demo, struct_demo.memorable_moments
WHERE memorable_moments.key IN ('Birthday','Anniversary','Graduation');

SELECT id, name, mm.key, mm.value.year, mm.value.place, mm.value.details
 FROM struct_demo, struct_demo.memorable_moments AS mm
WHERE mm.key IN ('Birthday','Anniversary','Graduation');

SELECT id, name, memorable_moments.key, memorable_moments.value.year,
 memorable_moments.value.place, memorable_moments.value.details
FROM struct_demo, struct_demo.memorable_moments
WHERE key IN ('Birthday','Anniversary','Graduation');

SELECT id, name, key, value.year, value.place, value.details
 FROM struct_demo, struct_demo.memorable_moments
WHERE key IN ('Birthday','Anniversary','Graduation');

SELECT id, name, key, year, place, details
 FROM struct_demo, struct_demo.memorable_moments
WHERE key IN ('Birthday','Anniversary','Graduation');

SELECT id, name,
 current_address.street_address.street_number,
 current_address.street_address.street_name,
 current_address.street_address.street_type,
 current_address.country,
 current_address.postal_code
FROM struct_demo;

For example, this table uses a struct that encodes several data values for each phone number associated with a person.
Each person can have a variable-length array of associated phone numbers, and queries can refer to the category field
to locate specific home, work, mobile, and so on kinds of phone numbers.

CREATE TABLE contact_info_many_structs
(
 id BIGINT, name STRING,
 phone_numbers ARRAY < STRUCT <category:STRING, country_code:STRING, area_code:SMALLINT,
 full_number:STRING, mobile:BOOLEAN, carrier:STRING > >
) STORED AS PARQUET;

Because structs are naturally suited to composite values where the fields have different data types, you might use
them to decompose things such as addresses:

CREATE TABLE contact_info_detailed_address
(
 id BIGINT, name STRING,
 address STRUCT < house_number:INT, street:STRING, street_type:STRING, apartment:STRING,
 city:STRING, region:STRING, country:STRING >
);

In a big data context, splitting out data fields such as the number part of the address and the street name could let
you do analysis on each field independently. For example, which streets have the largest number range of addresses,
what are the statistical properties of the street names, which areas have a higher proportion of “Roads”, “Courts” or
“Boulevards”, and so on.

Related information:

148 | Apache Impala Guide

Impala SQL Language Reference

Complex Types (CDH 5.5 or higher only) on page 157, ARRAY Complex Type (CDH 5.5 or higher only) on page 118, MAP
Complex Type (CDH 5.5 or higher only) on page 137

TIMESTAMP Data Type

A data type used in CREATE TABLE and ALTER TABLE statements, representing a point in time.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name TIMESTAMP

Range: Allowed date values range from 1400-01-01 to 9999-12-31; this range is different from the Hive TIMESTAMP
type. Internally, the resolution of the time portion of a TIMESTAMP value is in nanoseconds.

INTERVAL expressions:

You can perform date arithmetic by adding or subtracting a specified number of time units, using the INTERVAL
keyword and the + and - operators or date_add() and date_sub() functions. You can specify units as YEAR[S],
MONTH[S], WEEK[S], DAY[S], HOUR[S], MINUTE[S], SECOND[S], MILLISECOND[S], MICROSECOND[S], and
NANOSECOND[S]. You can only specify one time unit in each interval expression, for example INTERVAL 3 DAYS or
INTERVAL 25 HOURS, but you can produce any granularity by adding together successive INTERVAL values, such as
timestamp_value + INTERVAL 3 WEEKS - INTERVAL 1 DAY + INTERVAL 10 MICROSECONDS.

For example:

select now() + interval 1 day;
select date_sub(now(), interval 5 minutes);
insert into auction_details
 select auction_id, auction_start_time, auction_start_time + interval 2 days + interval
 12 hours
 from new_auctions;

Time zones:

By default, Impala does not store timestamps using the local timezone, to avoid undesired results from unexpected
time zone issues. Timestamps are stored and interpreted relative to UTC, both when written to or read from data files,
or when converted to or fromUnix time values through functions such as from_unixtime() or unix_timestamp().
To convert such a TIMESTAMP value to one that represents the date and time in a specific time zone, convert the
original value with the from_utc_timestamp() function.

Because Impala does not assume that TIMESTAMP values are in any particular time zone, you must be conscious of
the time zone aspects of data that you query, insert, or convert.

For consistency with Unix system calls, the TIMESTAMP returned by the now() function represents the local time in
the system time zone, rather than in UTC. To store values relative to the current time in a portable way, convert any
now() return values using the to_utc_timestamp() function first. For example, the following example shows that
the current time in California (where this Impala cluster is located) is shortly after 2 PM. If that value was written to a
data file, and shipped off to a distant server to be analyzed alongside other data from far-flung locations, the dates
and times would not match up precisely because of time zone differences. Therefore, the to_utc_timestamp()
function converts it using a common reference point, the UTC time zone (descended from the old Greenwich Mean
Time standard). The 'PDT' argument indicates that the original value is from the Pacific time zonewith Daylight Saving
Time in effect. When servers in all geographic locations run the same transformation on any local date and time values
(with the appropriate time zone argument), the stored data uses a consistent representation. Impala queries can use
functions such as EXTRACT(), MIN(), AVG(), and so on to do time-series analysis on those timestamps.

[localhost:21000] > select now();
+-------------------------------+
| now() |
+-------------------------------+
| 2015-04-09 14:07:46.580465000 |
+-------------------------------+

Apache Impala Guide | 149

Impala SQL Language Reference

[localhost:21000] > select to_utc_timestamp(now(), 'PDT');
+--------------------------------+
| to_utc_timestamp(now(), 'pdt') |
+--------------------------------+
| 2015-04-09 21:08:07.664547000 |
+--------------------------------+

The converse function, from_utc_timestamp(), lets you take stored TIMESTAMP data or calculated results and
convert back to local date and time for processing on the application side. The following example shows how youmight
represent some future date (such as the ending date and time of an auction) in UTC, and then convert back to local
time when convenient for reporting or other processing. The final query in the example tests whether this arbitrary
UTC date and time has passed yet, by converting it back to the local time zone and comparing it against the current
date and time.

[localhost:21000] > select to_utc_timestamp(now() + interval 2 weeks, 'PDT');
+---+
| to_utc_timestamp(now() + interval 2 weeks, 'pdt') |
+---+
| 2015-04-23 21:08:34.152923000 |
+---+
[localhost:21000] > select from_utc_timestamp('2015-04-23 21:08:34.152923000','PDT');
+--+
| from_utc_timestamp('2015-04-23 21:08:34.152923000', 'pdt') |
+--+
| 2015-04-23 14:08:34.152923000 |
+--+
[localhost:21000] > select from_utc_timestamp('2015-04-23 21:08:34.152923000','PDT') <
 now();
+--+
| from_utc_timestamp('2015-04-23 21:08:34.152923000', 'pdt') < now() |
+--+
| false |
+--+

If you have data files written by Hive, those TIMESTAMP values represent the local timezone of the host where the
datawaswritten, potentially leading to inconsistent resultswhen processed by Impala. To avoid compatibility problems
or having to code workarounds, you can specify one or both of these impalad startup flags:
-use_local_tz_for_unix_timestamp_conversions=true

-convert_legacy_hive_parquet_utc_timestamps=true. Although
-convert_legacy_hive_parquet_utc_timestamps is turned off by default to avoid performance overhead,
Cloudera recommends turning it on when processing TIMESTAMP columns in Parquet files written by Hive, to avoid
unexpected behavior.

The-use_local_tz_for_unix_timestamp_conversions setting affects conversions fromTIMESTAMP toBIGINT,
or from BIGINT to TIMESTAMP. By default, Impala treats all TIMESTAMP values as UTC, to simplify analysis of time-series
data fromdifferent geographic regions.When youenable the-use_local_tz_for_unix_timestamp_conversions
setting, these operations treat the input values as if they are in the local time zone of the host doing the processing.
See Impala Date and Time Functions on page 364 for the list of functions affected by the
-use_local_tz_for_unix_timestamp_conversions setting.

The following sequence of examples shows how the interpretation of TIMESTAMP values in Parquet tables is affected
by the setting of the -convert_legacy_hive_parquet_utc_timestamps setting.

Regardless of the -convert_legacy_hive_parquet_utc_timestamps setting, TIMESTAMP columns in text tables
can be written and read interchangeably by Impala and Hive:

Impala DDL and queries for text table:

[localhost:21000] > create table t1 (x timestamp);
[localhost:21000] > insert into t1 values (now()), (now() + interval 1 day);
[localhost:21000] > select x from t1;
+-------------------------------+
| x |
+-------------------------------+
| 2015-04-07 15:43:02.892403000 |

150 | Apache Impala Guide

Impala SQL Language Reference

| 2015-04-08 15:43:02.892403000 |
+-------------------------------+
[localhost:21000] > select to_utc_timestamp(x, 'PDT') from t1;
+-------------------------------+
| to_utc_timestamp(x, 'pdt') |
+-------------------------------+
| 2015-04-07 22:43:02.892403000 |
| 2015-04-08 22:43:02.892403000 |
+-------------------------------+

Hive query for text table:

hive> select * from t1;
OK
2015-04-07 15:43:02.892403
2015-04-08 15:43:02.892403
Time taken: 1.245 seconds, Fetched: 2 row(s)

When the table uses Parquet format, Impala expects any time zone adjustment to be applied prior to writing, while
TIMESTAMP values written by Hive are adjusted to be in the UTC time zone. When Hive queries Parquet data files that
it wrote, it adjusts the TIMESTAMP values back to the local time zone, while Impala does no conversion. Hive does no
time zone conversion when it queries Impala-written Parquet files.

Impala DDL and queries for Parquet table:

[localhost:21000] > create table p1 stored as parquet as select x from t1;
+-------------------+
| summary |
+-------------------+
| Inserted 2 row(s) |
+-------------------+
[localhost:21000] > select x from p1;
+-------------------------------+
| x |
+-------------------------------+
| 2015-04-07 15:43:02.892403000 |
| 2015-04-08 15:43:02.892403000 |
+-------------------------------+

Hive DDL and queries for Parquet table:

hive> create table h1 (x timestamp) stored as parquet;
OK
hive> insert into h1 select * from p1;
...
OK
Time taken: 35.573 seconds
hive> select x from p1;
OK
2015-04-07 15:43:02.892403
2015-04-08 15:43:02.892403
Time taken: 0.324 seconds, Fetched: 2 row(s)
hive> select x from h1;
OK
2015-04-07 15:43:02.892403
2015-04-08 15:43:02.892403
Time taken: 0.197 seconds, Fetched: 2 row(s)

The discrepancy arises when Impala queries the Hive-created Parquet table. The underlying values in the TIMESTAMP
column are different from the ones written by Impala, even though they were copied from one table to another by an
INSERT ... SELECT statement in Hive. Hive did an implicit conversion from the local time zone to UTC as it wrote
the values to Parquet.

Impala query for TIMESTAMP values from Impala-written and Hive-written data:

[localhost:21000] > select * from p1;
+-------------------------------+
| x |
+-------------------------------+

Apache Impala Guide | 151

Impala SQL Language Reference

| 2015-04-07 15:43:02.892403000 |
| 2015-04-08 15:43:02.892403000 |
+-------------------------------+
Fetched 2 row(s) in 0.29s
[localhost:21000] > select * from h1;
+-------------------------------+
| x |
+-------------------------------+
| 2015-04-07 22:43:02.892403000 |
| 2015-04-08 22:43:02.892403000 |
+-------------------------------+
Fetched 2 row(s) in 0.41s

Underlying integer values for Impala-written and Hive-written data:

[localhost:21000] > select cast(x as bigint) from p1;
+-------------------+
| cast(x as bigint) |
+-------------------+
| 1428421382 |
| 1428507782 |
+-------------------+
Fetched 2 row(s) in 0.38s
[localhost:21000] > select cast(x as bigint) from h1;
+-------------------+
| cast(x as bigint) |
+-------------------+
| 1428446582 |
| 1428532982 |
+-------------------+
Fetched 2 row(s) in 0.20s

When the -convert_legacy_hive_parquet_utc_timestamps setting is enabled, Impala recognizes the Parquet
data files written by Hive, and applies the same UTC-to-local-timezone conversion logic during the query as Hive uses,
making the contents of the Impala-written P1 table and theHive-written H1 table appear identical, whether represented
as TIMESTAMP values or the underlying BIGINT integers:

[localhost:21000] > select x from p1;
+-------------------------------+
| x |
+-------------------------------+
| 2015-04-07 15:43:02.892403000 |
| 2015-04-08 15:43:02.892403000 |
+-------------------------------+
Fetched 2 row(s) in 0.37s
[localhost:21000] > select x from h1;
+-------------------------------+
| x |
+-------------------------------+
| 2015-04-07 15:43:02.892403000 |
| 2015-04-08 15:43:02.892403000 |
+-------------------------------+
Fetched 2 row(s) in 0.19s
[localhost:21000] > select cast(x as bigint) from p1;
+-------------------+
| cast(x as bigint) |
+-------------------+
| 1428446582 |
| 1428532982 |
+-------------------+
Fetched 2 row(s) in 0.29s
[localhost:21000] > select cast(x as bigint) from h1;
+-------------------+
| cast(x as bigint) |
+-------------------+
| 1428446582 |
| 1428532982 |
+-------------------+
Fetched 2 row(s) in 0.22s

Conversions:

152 | Apache Impala Guide

Impala SQL Language Reference

Impala automatically converts STRING literals of the correct format into TIMESTAMP values. Timestamp values are
accepted in the format "yyyy-MM-dd HH:mm:ss.SSSSSS", and can consist of just the date, or just the time, with
or without the fractional second portion. For example, you can specify TIMESTAMP values such as '1966-07-30',
'08:30:00', or '1985-09-25 17:45:30.005'. Casting an integer or floating-point value N to TIMESTAMP produces
a value that is N seconds past the start of the epoch date (January 1, 1970). By default, the result value represents a
date and time in the UTC time zone. If the setting --use_local_tz_for_unix_timestamp_conversions=true
is in effect, the resulting TIMESTAMP represents a date and time in the local time zone.

In Impala 1.3 and higher, the FROM_UNIXTIME() and UNIX_TIMESTAMP() functions allow a wider range of format
strings, with more flexibility in element order, repetition of letter placeholders, and separator characters. In CDH 5.5
/ Impala 2.3 and higher, the UNIX_TIMESTAMP() function also allows a numeric timezone offset to be specified as
part of the input string. See Impala Date and Time Functions on page 364 for details.

In Impala 2.2.0 and higher, built-in functions that accept or return integers representing TIMESTAMP values use the
BIGINT type for parameters and return values, rather than INT. This change lets the date and time functions avoid
an overflow error that would otherwise occur on January 19th, 2038 (known as the “Year 2038 problem” or “Y2K38
problem”). This change affects the from_unixtime() and unix_timestamp() functions. Youmight need to change
application code that interacts with these functions, change the types of columns that store the return values, or add
CAST() calls to SQL statements that call these functions.

Partitioning:

Although you cannot use a TIMESTAMP column as a partition key, you can extract the individual years, months, days,
hours, and so on and partition based on those columns. Because the partition key column values are represented in
HDFS directory names, rather than as fields in the data files themselves, you can also keep the original TIMESTAMP
values if desired, without duplicating data or wasting storage space. See Partition Key Columns on page 526 for more
details on partitioning with date and time values.

[localhost:21000] > create table timeline (event string) partitioned by (happened
timestamp);
ERROR: AnalysisException: Type 'TIMESTAMP' is not supported as partition-column type in
 column: happened

Examples:

select cast('1966-07-30' as timestamp);
select cast('1985-09-25 17:45:30.005' as timestamp);
select cast('08:30:00' as timestamp);
select hour('1970-01-01 15:30:00'); -- Succeeds, returns 15.
select hour('1970-01-01 15:30'); -- Returns NULL because seconds field
required.
select hour('1970-01-01 27:30:00'); -- Returns NULL because hour value out of
range.
select dayofweek('2004-06-13'); -- Returns 1, representing Sunday.
select dayname('2004-06-13'); -- Returns 'Sunday'.
select date_add('2004-06-13', 365); -- Returns 2005-06-13 with zeros for hh:mm:ss
 fields.
select day('2004-06-13'); -- Returns 13.
select datediff('1989-12-31','1984-09-01'); -- How many days between these 2 dates?
select now(); -- Returns current date and time in local
timezone.

create table dates_and_times (t timestamp);
insert into dates_and_times values
 ('1966-07-30'), ('1985-09-25 17:45:30.005'), ('08:30:00'), (now());

NULL considerations: Casting any unrecognized STRING value to this type produces a NULL value.

Partitioning: Because this type potentially has so many distinct values, it is often not a sensible choice for a partition
key column. For example, events 1millisecond apart would be stored in different partitions. Consider using the TRUNC()
function to condense the number of distinct values, and partition on a new column with the truncated values.

HBase considerations: This data type is fully compatible with HBase tables.

Parquet considerations: This type is fully compatible with Parquet tables.

Apache Impala Guide | 153

Impala SQL Language Reference

http://en.wikipedia.org/wiki/Year_2038_problem
http://en.wikipedia.org/wiki/Year_2038_problem

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as a 16-byte value.

Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COMPUTE STATS statement.

Sqoop considerations:

If you use Sqoop to convert RDBMS data to Parquet, be careful with interpreting any resulting values from DATE,
DATETIME, or TIMESTAMP columns. The underlying values are represented as the Parquet INT64 type, which is
represented as BIGINT in the Impala table. The Parquet values represent the time in milliseconds, while Impala
interprets BIGINT as the time in seconds. Therefore, if you have a BIGINT column in a Parquet table that was imported
this way from Sqoop, divide the values by 1000 when interpreting as the TIMESTAMP type.

Restrictions:

If you cast a STRING with an unrecognized format to a TIMESTAMP, the result is NULL rather than an error. Make sure
to test your data pipeline to be sure any textual date and time values are in a format that Impala TIMESTAMP can
recognize.

Currently, Avro tables cannot contain TIMESTAMP columns. If you need to store date and time values in Avro tables,
as a workaround you can use a STRING representation of the values, convert the values to BIGINT with the
UNIX_TIMESTAMP() function, or create separate numeric columns for individual date and time fields using the
EXTRACT() function.

Related information:

• Timestamp Literals on page 188.
• To convert to or fromdifferent date formats, or perform date arithmetic, use the date and time functions described

in Impala Date and Time Functions on page 364. In particular, the from_unixtime() function requires a
case-sensitive format string such as "yyyy-MM-dd HH:mm:ss.SSSS", matching one of the allowed variations
of a TIMESTAMP value (date plus time, only date, only time, optional fractional seconds).

• See SQL Differences Between Impala and Hive on page 462 for details about differences in TIMESTAMP handling
between Impala and Hive.

TINYINT Data Type

A 1-byte integer data type used in CREATE TABLE and ALTER TABLE statements.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name TINYINT

Range: -128 .. 127. There is no UNSIGNED subtype.

Conversions: Impala automatically converts to a larger integer type (SMALLINT, INT, or BIGINT) or a floating-point
type (FLOAT or DOUBLE) automatically. Use CAST() to convert to STRING or TIMESTAMP. Casting an integer or
floating-point value N to TIMESTAMP produces a value that is N seconds past the start of the epoch date (January 1,
1970). By default, the result value represents a date and time in the UTC time zone. If the setting
--use_local_tz_for_unix_timestamp_conversions=true is in effect, the resulting TIMESTAMP represents a
date and time in the local time zone.

Impala does not return column overflows as NULL, so that customers can distinguish between NULL data and overflow
conditions similar to how they do so with traditional database systems. Impala returns the largest or smallest value in
the range for the type. For example, valid values for a tinyint range from -128 to 127. In Impala, a tinyint with a
value of -200 returns -128 rather than NULL. A tinyint with a value of 200 returns 127.

Usage notes:

154 | Apache Impala Guide

Impala SQL Language Reference

For a convenient and automated way to check the bounds of the TINYINT type, call the functions MIN_TINYINT()
and MAX_TINYINT().

If an integer value is too large to be represented as a TINYINT, use a SMALLINT instead.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Examples:

CREATE TABLE t1 (x TINYINT);
SELECT CAST(100 AS TINYINT);

Parquet considerations:

Physically, Parquet files represent TINYINT and SMALLINT values as 32-bit integers. Although Impala rejects attempts
to insert out-of-range values into such columns, if you create a new tablewith theCREATE TABLE ... LIKE PARQUET
syntax, any TINYINT or SMALLINT columns in the original table turn into INT columns in the new table.

HBase considerations: This data type is fully compatible with HBase tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as a 1-byte value.

Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COMPUTE STATS statement.

Related information:

Numeric Literals on page 185, TINYINTData Type on page 154, SMALLINTData Type on page 141, INTData Type on page
136, BIGINT Data Type on page 121, DECIMAL Data Type (CDH 5.1 or higher only) on page 126, Impala Mathematical
Functions on page 340

VARCHAR Data Type (CDH 5.2 or higher only)

A variable-length character type, truncated during processing if necessary to fit within the specified length.

Syntax:

In the column definition of a CREATE TABLE statement:

column_name VARCHAR(max_length)

The maximum length you can specify is 65,535.

Partitioning: This type can be used for partition key columns. Because of the efficiency advantage of numeric values
over character-based values, if the partition key is a string representation of a number, prefer to use an integer type
with sufficient range (INT, BIGINT, and so on) where practical.

HBase considerations: This data type cannot be used with HBase tables.

Parquet considerations:

• This type can be read from and written to Parquet files.
• There is no requirement for a particular level of Parquet.
• Parquet files generated by Impala and containing this type can be freely interchanged with other components

such as Hive and MapReduce.
• Parquet data files can contain values that are longer than allowed by the VARCHAR(n) length limit. Impala ignores

any extra trailing characters when it processes those values during a query.

Text table considerations:

Apache Impala Guide | 155

Impala SQL Language Reference

Text data files can contain values that are longer than allowed by the VARCHAR(n) length limit. Any extra trailing
characters are ignored when Impala processes those values during a query.

Avro considerations:

The Avro specification allows string values up to 2**64 bytes in length. Impala queries for Avro tables use 32-bit integers
to hold string lengths. In CDH 5.7 / Impala 2.5 and higher, Impala truncates CHAR and VARCHAR values in Avro tables
to (2**31)-1 bytes. If a query encounters a STRING value longer than (2**31)-1 bytes in an Avro table, the query fails.
In earlier releases, encountering such long values in an Avro table could cause a crash.

Schema evolution considerations:

You can use ALTER TABLE ... CHANGE to switch column data types to and from VARCHAR. You can convert from
STRING to VARCHAR(n), or from VARCHAR(n) to STRING, or from CHAR(n) to VARCHAR(n), or from VARCHAR(n)

to CHAR(n). When switching back and forth between VARCHAR and CHAR, you can also change the length value. This
schema evolution works the same for tables using any file format. If a table contains values longer than the maximum
length defined for a VARCHAR column, Impala does not return an error. Any extra trailing characters are ignored when
Impala processes those values during a query.

Compatibility:

This type is available on CDH 5.2 or higher.

Internal details: Represented in memory as a byte array with the minimum size needed to represent each value.

Added in: CDH 5.2.0 (Impala 2.0.0)

Column statistics considerations: Because the values of this type have variable size, none of the column statistics fields
are filled in until you run the COMPUTE STATS statement.

Restrictions:

All data in CHAR and VARCHAR columns must be in a character encoding that is compatible with UTF-8. If you have
binary data from another database system (that is, a BLOB type), use a STRING column to hold it.

Examples:

The following examples show how long and short VARCHAR values are treated. Values longer than the maximum
specified length are truncated by CAST(), or when queried from existing data files. Values shorter than the maximum
specified length are represented as the actual length of the value, with no extra padding as seen with CHAR values.

create table varchar_1 (s varchar(1));
create table varchar_4 (s varchar(4));
create table varchar_20 (s varchar(20));

insert into varchar_1 values (cast('a' as varchar(1))), (cast('b' as varchar(1))),
(cast('hello' as varchar(1))), (cast('world' as varchar(1)));
insert into varchar_4 values (cast('a' as varchar(4))), (cast('b' as varchar(4))),
(cast('hello' as varchar(4))), (cast('world' as varchar(4)));
insert into varchar_20 values (cast('a' as varchar(20))), (cast('b' as varchar(20))),
(cast('hello' as varchar(20))), (cast('world' as varchar(20)));

select * from varchar_1;
+---+
| s |
+---+
| a |
| b |
| h |
| w |
+---+
select * from varchar_4;
+------+
| s |
+------+
| a |
| b |
| hell |
| worl |

156 | Apache Impala Guide

Impala SQL Language Reference

+------+
[localhost:21000] > select * from varchar_20;
+-------+
| s |
+-------+
| a |
| b |
| hello |
| world |
+-------+
select concat('[',s,']') as s from varchar_20;
+---------+
| s |
+---------+
| [a] |
| [b] |
| [hello] |
| [world] |
+---------+

The following example shows how identical VARCHAR values compare as equal, even if the columns are defined with
different maximum lengths. Both tables contain 'a' and 'b' values. The longer 'hello' and 'world' values from
the VARCHAR_20 table were truncated when inserted into the VARCHAR_1 table.

select s from varchar_1 join varchar_20 using (s);
+-------+
| s |
+-------+
| a |
| b |
+-------+

The following examples show how VARCHAR values are freely interchangeable with STRING values in contexts such
as comparison operators and built-in functions:

select length(cast('foo' as varchar(100))) as length;
+--------+
| length |
+--------+
| 3 |
+--------+
select cast('xyz' as varchar(5)) > cast('abc' as varchar(10)) as greater;
+---------+
| greater |
+---------+
| true |
+---------+

UDF considerations: This type cannot be used for the argument or return type of a user-defined function (UDF) or
user-defined aggregate function (UDA).

Related information:

STRINGData Type on page 142, CHARData Type (CDH 5.2 or higher only) on page 123, String Literals on page 186, Impala
String Functions on page 395

Complex Types (CDH 5.5 or higher only)

Complex types (also referred to as nested types) let you represent multiple data values within a single row/column
position. They differ from the familiar column types such as BIGINT and STRING, known as scalar types or primitive
types, which represent a single data value within a given row/column position. Impala supports the complex types
ARRAY, MAP, and STRUCT in CDH 5.5 / Impala 2.3 and higher. The Hive UNION type is not currently supported.

Once you understand the basics of complex types, refer to the individual type topics when you need to refresh your
memory about syntax and examples:

• ARRAY Complex Type (CDH 5.5 or higher only) on page 118

Apache Impala Guide | 157

Impala SQL Language Reference

• STRUCT Complex Type (CDH 5.5 or higher only) on page 143
• MAP Complex Type (CDH 5.5 or higher only) on page 137

Benefits of Impala Complex Types

The reasons for using Impala complex types include the following:

• You already have data produced by Hive or other non-Impala component that uses the complex type column
names. You might need to convert the underlying data to Parquet to use it with Impala.

• Your data model originates with a non-SQL programming language or a NoSQL data management system. For
example, if you are representing Python data expressed as nested lists, dictionaries, and tuples, those data
structures correspond closely to Impala ARRAY, MAP, and STRUCT types.

• Your analytic queries involvingmultiple tables could benefit from greater locality during join processing. By packing
more related data items within each HDFS data block, complex types let join queries avoid the network overhead
of the traditional Hadoop shuffle or broadcast join techniques.

The Impala complex type support produces result sets with all scalar values, and the scalar components of complex
types can be used with all SQL clauses, such as GROUP BY, ORDER BY, all kinds of joins, subqueries, and inline views.
The ability to process complex type data entirely in SQL reduces the need to write application-specific code in Java or
other programming languages to deconstruct the underlying data structures.

Overview of Impala Complex Types

The ARRAY and MAP types are closely related: they represent collections with arbitrary numbers of elements, where
each element is the same type. In contrast, STRUCT groups together a fixed number of items into a single element.
The parts of a STRUCT element (the fields) can be of different types, and each field has a name.

The elements of an ARRAY or MAP, or the fields of a STRUCT, can also be other complex types. You can construct
elaborate data structures with up to 100 levels of nesting. For example, you can make an ARRAY whose elements are
STRUCTs. Within each STRUCT, you can have some fields that are ARRAY, MAP, or another kind of STRUCT. The Impala
documentation uses the terms complex and nested types interchangeably; for simplicity, it primarily uses the term
complex types, to encompass all the properties of these types.

When visualizing your data model in familiar SQL terms, you can think of each ARRAY or MAP as a miniature table, and
each STRUCT as a row within such a table. By default, the table represented by an ARRAY has two columns, POS to
represent ordering of elements, and ITEM representing the value of each element. Likewise, by default, the table
represented by a MAP encodes key-value pairs, and therefore has two columns, KEY and VALUE.

The ITEM and VALUE names are only required for the very simplest kinds of ARRAY and MAP columns, ones that hold
only scalar values. When the elements within the ARRAY or MAP are of type STRUCT rather than a scalar type, then the
result set contains columns with names corresponding to the STRUCT fields rather than ITEM or VALUE.

You write most queries that process complex type columns using familiar join syntax, even though the data for both
sides of the join resides in a single table. The join notation brings together the scalar values from a row with the values
from the complex type columns for that same row. The final result set contains all scalar values, allowing you to do all
the familiar filtering, aggregation, ordering, and so on for the complex data entirely in SQL or using business intelligence
tools that issue SQL queries.

Behind the scenes, Impala ensures that the processing for each row is done efficiently on a single host, without the
network traffic involved in broadcast or shuffle joins. The most common type of join query for tables with complex
type columns isINNER JOIN, which returns results only in those caseswhere the complex type contains someelements.
Therefore, most query examples in this section use either the INNER JOIN clause or the equivalent comma notation.

158 | Apache Impala Guide

Impala SQL Language Reference

Note:

Although Impala can query complex types that are present in Parquet files, Impala currently cannot
create new Parquet files containing complex types. Therefore, the discussion and examples presume
that you are working with existing Parquet data produced through Hive, Spark, or some other source.
See Constructing Parquet Files with Complex Columns Using Hive on page 180 for examples of
constructing Parquet data files with complex type columns.

For learning purposes, you can create empty tables with complex type columns and practice query
syntax, even if you do not have sample data with the required structure.

Design Considerations for Complex Types

When planning to use Impala complex types, and designing the Impala schema, first learn how this kind of schema
differs from traditional table layouts from the relational database and data warehousing fields. Because you might
have already encountered complex types in a Hadoop context while using Hive for ETL, also learn how to write
high-performance analytic queries for complex type data using Impala SQL syntax.

How Complex Types Differ from Traditional Data Warehouse Schemas

Complex types let you associate arbitrary data structures with a particular row. If you are familiar with schema design
for relational database management systems or data warehouses, a schema with complex types has the following
differences:

• Logically, related values can now be grouped tightly together in the same table.

In traditional data warehousing, related values were typically arranged in one of two ways:

– Split across multiple normalized tables. Foreign key columns specified which rows from each table were
associated with each other. This arrangement avoided duplicate data and therefore the data was compact,
but join queries could be expensive because the related data had to be retrieved from separate locations.
(In the case of distributed Hadoop queries, the joined tables might even be transmitted between different
hosts in a cluster.)

– Flattened into a single denormalized table. Although this layout eliminated some potential performance
issues by removing the need for join queries, the table typically became larger because values were repeated.
The extra data volume could cause performance issues in other parts of the workflow, such as longer ETL
cycles or more expensive full-table scans during queries.

Complex types represent a middle ground that addresses these performance and volume concerns. By physically
locating related data within the same data files, complex types increase locality and reduce the expense of join
queries. By associating an arbitrary amount of data with a single row, complex types avoid the need to repeat
lengthy values such as strings. Because Impala knows which complex type values are associated with each row,
you can save storage by avoiding artificial foreign key values that are only used for joins. The flexibility of the
STRUCT, ARRAY, and MAP types lets you model familiar constructs such as fact and dimension tables from a data
warehouse, and wide tables representing sparse matrixes.

Physical Storage for Complex Types

Physically, the scalar and complex columns in each row are located adjacent to each other in the same Parquet data
file, ensuring that they are processed on the same host rather than being broadcast across the network when
cross-referenced within a query. This co-location simplifies the process of copying, converting, and backing all the
columns up at once. Because of the column-oriented layout of Parquet files, you can still query only the scalar columns
of a table without imposing the I/O penalty of reading the (possibly large) values of the composite columns.

Within each Parquet data file, the constituent parts of complex type columns are stored in column-oriented format:

• Each field of a STRUCT type is stored like a column, with all the scalar values adjacent to each other and encoded,
compressed, and so on using the Parquet space-saving techniques.

Apache Impala Guide | 159

Impala SQL Language Reference

• For an ARRAY containing scalar values, all those values (represented by the ITEM pseudocolumn) are stored
adjacent to each other.

• For a MAP, the values of the KEY pseudocolumn are stored adjacent to each other. If the VALUE pseudocolumn is
a scalar type, its values are also stored adjacent to each other.

• If an ARRAY element, STRUCT field, or MAP VALUE part is another complex type, the column-oriented storage
applies to the next level down (or the next level after that, and so on for deeply nested types) where the final
elements, fields, or values are of scalar types.

The numbers represented by the POS pseudocolumn of an ARRAY are not physically stored in the data files. They are
synthesized at query time based on the order of the ARRAY elements associated with each row.

File Format Support for Impala Complex Types

Currently, Impala queries support complex type data only in the Parquet file format. See Using the Parquet File Format
with Impala Tables on page 536 for details about the performance benefits and physical layout of this file format.

Each table, or each partition within a table, can have a separate file format, and you can change file format at the table
or partition level through an ALTER TABLE statement. Because this flexibility makes it difficult to guarantee ahead of
time that all the data files for a table or partition are in a compatible format, Impala does not throw any errors when
you change the file format for a table or partition using ALTER TABLE. Any errors come at runtime when Impala
actually processes a table or partition that contains nested types and is not in one of the supported formats. If a query
on a partitioned table only processes some partitions, and all those partitions are in one of the supported formats, the
query succeeds.

Because Impala does not parse the data structures containing nested types for unsupported formats such as text, Avro,
SequenceFile, or RCFile, you cannot use data files in these formats with Impala, even if the query does not refer to the
nested type columns. Also, if a table using an unsupported format originally contained nested type columns, and then
those columns were dropped from the table using ALTER TABLE ... DROP COLUMN, any existing data files in the
table still contain the nested type data and Impala queries on that table will generate errors.

You can perform DDL operations (even CREATE TABLE) for tables involving complex types in file formats other than
Parquet. The DDL support lets you set up intermediate tables in your ETL pipeline, to be populated by Hive, before the
final stage where the data resides in a Parquet table and is queryable by Impala. Also, you can have a partitioned table
with complex type columns that uses a non-Parquet format, and useALTER TABLE to change the file format to Parquet
for individual partitions. When you put Parquet data files into those partitions, Impala can execute queries against
that data as long as the query does not involve any of the non-Parquet partitions.

If you use the parquet-tools command to examine the structure of a Parquet data file that includes complex types,
you see that both ARRAY and MAP are represented as a Bag in Parquet terminology, with all fields marked Optional
because Impala allows any column to be nullable.

Impala supports either 2-level and 3-level encoding within each Parquet data file. When constructing Parquet data
files outside Impala, use either encoding style but do not mix 2-level and 3-level encoding within the same data file.

Choosing Between Complex Types and Normalized Tables

Choosing between multiple normalized fact and dimension tables, or a single table containing complex types, is an
important design decision.

• If you are coming from a traditional database or data warehousing background, you might be familiar with how
to split up data between tables. Your business intelligence tools might already be optimized for dealing with this
kind of multi-table scenario through join queries.

• If you are pulling data from Impala into an application written in a programming language that has data structures
analogous to the complex types, such as Python or Java, complex types in Impala could simplify data interchange
and improve understandability and reliability of your program logic.

• You might already be faced with existing infrastructure or receive high volumes of data that assume one layout
or the other. For example, complex types are popular with web-oriented applications, for example to keep
information about an online user all in one place for convenient lookup and analysis, or to deal with sparse or
constantly evolving data fields.

160 | Apache Impala Guide

Impala SQL Language Reference

• If some parts of the data change over time while related data remains constant, using multiple normalized tables
lets you replace certain parts of the data without reloading the entire data set. Conversely, if you receive related
data all bundled together, such as in JSON files, using complex types can save the overhead of splitting the related
items across multiple tables.

• From a performance perspective:

– In Parquet tables, Impala can skip columns that are not referenced in a query, avoiding the I/O penalty of
reading the embedded data. When complex types are nested within a column, the data is physically divided
at a very granular level; for example, a query referring to data nested multiple levels deep in a complex type
column does not have to read all the data from that column, only the data for the relevant parts of the column
type hierarchy.

– Complex types avoid the possibility of expensive join queries when data from fact and dimension tables is
processed in parallel across multiple hosts. All the information for a row containing complex types is typically
to be in the same data block, and therefore does not need to be transmitted across the network when joining
fields that are all part of the same row.

– The tradeoff with complex types is that fewer rows fit in each data block. Whether it is better to have more
data blocks with fewer rows, or fewer data blocks with many rows, depends on the distribution of your data
and the characteristics of your query workload. If the complex columns are rarely referenced, using them
might lower efficiency. If you are seeing low parallelism due to a small volume of data (relatively few data
blocks) in each table partition, increasing the row size by including complex columns might produce more
data blocks and thus spread theworkmore evenly across the cluster. See Scalability Considerations for Impala
on page 517 for more on this advanced topic.

Differences Between Impala and Hive Complex Types

Impala can query Parquet tables containing ARRAY, STRUCT, and MAP columns produced by Hive. There are some
differences to be aware of between the Impala SQL and HiveQL syntax for complex types, primarily for queries.

The syntax for specifying ARRAY, STRUCT, and MAP types in a CREATE TABLE statement is compatible between Impala
and Hive.

Because Impala STRUCT columns include user-specified field names, you use the NAMED_STRUCT() constructor in
Hive rather than the STRUCT() constructor when you populate an Impala STRUCT column using a Hive INSERT
statement.

The Hive UNION type is not currently supported in Impala.

While Impala usually aims for a high degree of compatibility with HiveQL query syntax, Impala syntax differs from Hive
for queries involving complex types. The differences are intended to provide extra flexibility for queries involving these
kinds of tables.

• Impala uses dot notation for referring to element names or elements within complex types, and join notation for
cross-referencing scalar columnswith the elements of complex typeswithin the same row, rather than theLATERAL
VIEW clause and EXPLODE() function of HiveQL.

• Using join notation lets you use all the kinds of join queries with complex type columns. For example, you can use
a LEFT OUTER JOIN, LEFT ANTI JOIN, or LEFT SEMI JOIN query to evaluate different scenarios where the
complex columns do or do not contain any elements.

• You can include references to collection types inside subqueries and inline views. For example, you can construct
a FROM clause where one of the “tables” is a subquery against a complex type column, or use a subquery against
a complex type column as the argument to an IN or EXISTS clause.

• The Impala pseudocolumn POS lets you retrieve the position of elements in an array along with the elements
themselves, equivalent to the POSEXPLODE() function of HiveQL. You do not use index notation to retrieve a
single array element in a query; the join query loops through the array elements and you use WHERE clauses to
specify which elements to return.

• Join clauses involving complex type columns do not require an ON or USING clause. Impala implicitly applies the
join key so that the correct array entries or map elements are associated with the correct row from the table.

Apache Impala Guide | 161

Impala SQL Language Reference

• Impala does not currently support the UNION complex type.

Limitations and Restrictions for Complex Types

Complex type columns can only be used in tables or partitions with the Parquet file format.

Complex type columns cannot be used as partition key columns in a partitioned table.

When you use complex types with the ORDER BY, GROUP BY, HAVING, or WHERE clauses, you cannot refer to the
column name by itself. Instead, you refer to the names of the scalar values within the complex type, such as the ITEM,
POS, KEY, or VALUE pseudocolumns, or the field names from a STRUCT.

The maximum depth of nesting for complex types is 100 levels.

The maximum length of the column definition for any complex type, including declarations for any nested types, is
4000 characters.

For ideal performance and scalability, use small or medium-sized collections, where all the complex columns contain
at most a few hundred megabytes per row. Remember, all the columns of a row are stored in the same HDFS data
block, whose size in Parquet files typically ranges from 256 MB to 1 GB.

Including complex type columns in a table introduces some overhead that might make queries that do not reference
those columns somewhat slower than Impala queries against tables without any complex type columns. Expect at
most a 2x slowdown compared to tables that do not have any complex type columns.

Currently, the COMPUTE STATS statement does not collect any statistics for columns containing complex types. Impala
uses heuristics to construct execution plans involving complex type columns.

Currently, Impala built-in functions and user-defined functions cannot accept complex types as parameters or produce
them as function return values. (When the complex type values are materialized in an Impala result set, the result set
contains the scalar components of the values, such as the POS or ITEM for an ARRAY, the KEY or VALUE for a MAP, or
the fields of a STRUCT; these scalar data items can be used with built-in functions and UDFs as usual.)

Impala currently cannot write new data files containing complex type columns. Therefore, although the SELECT
statement works for queries involving complex type columns, you cannot use a statement form that writes data, such
as CREATE TABLE AS SELECT or INSERT ... SELECT. To create data files containing complex type data, use the
Hive INSERT statement, or another ETL mechanism such as MapReduce jobs, Spark jobs, Pig, and so on.

Currently, Impala can query complex type columns only from Parquet tables or Parquet partitions within partitioned
tables. Although you can use complex types in tables with Avro, text, and other file formats as part of your ETL pipeline,
for example as intermediate tables populated through Hive, doing analytics through Impala requires that the data
eventually ends up in a Parquet table. The requirement for Parquet data files means that you can use complex types
with Impala tables hosted on other kinds of file storage systems such as Isilon and Amazon S3, but you cannot use
Impala to query complex types from HBase tables. See File Format Support for Impala Complex Types on page 160 for
more details.

Using Complex Types from SQL

When using complex types through SQL in Impala, you learn the notation for < > delimiters for the complex type
columns in CREATE TABLE statements, and how to construct join queries to “unpack” the scalar values nested inside
the complex data structures. You might need to condense a traditional RDBMS or data warehouse schema into a
smaller number of Parquet tables, and use Hive, Spark, Pig, or other mechanism outside Impala to populate the tables
with data.

Complex Type Syntax for DDL Statements

The definition of data_type, as seen in the CREATE TABLE and ALTER TABLE statements, now includes complex types
in addition to primitive types:

 primitive_type
| array_type
| map_type
| struct_type

162 | Apache Impala Guide

Impala SQL Language Reference

Unions are not currently supported.

Array, struct, and map column type declarations are specified in the CREATE TABLE statement. You can also add or
change the type of complex columns through the ALTER TABLE statement.

Note:

Currently, Impala queries allow complex types only in tables that use the Parquet format. If an Impala
query encounters complex types in a table or partition using another file format, the query returns a
runtime error.

The Impala DDL support for complex types works for all file formats, so that you can create tables
using text or other non-Parquet formats for Hive to use as staging tables in an ETL cycle that ends
with the data in a Parquet table. You can also use ALTER TABLE ... SET FILEFORMAT PARQUET
to change the file format of an existing table containing complex types to Parquet, after which Impala
can query it. Make sure to load Parquet files into the table after changing the file format, because the
ALTER TABLE ... SET FILEFORMAT statement does not convert existing data to the new file
format.

Partitioned tables can contain complex type columns. All the partition key columns must be scalar types.

Because use cases for Impala complex types require that you already have Parquet data files produced outside of
Impala, you can use the Impala CREATE TABLE LIKE PARQUET syntax to produce a table with columns that match
the structure of an existing Parquet file, including complex type columns for nested data structures. Remember to
include the STORED AS PARQUET clause in this case, because even with CREATE TABLE LIKE PARQUET, the default
file format of the resulting table is still text.

Because the complex columns are omitted from the result set of an Impala SELECT * or SELECT col_name query,
and because Impala currently does not support writing Parquet files with complex type columns, you cannot use the
CREATE TABLE AS SELECT syntax to create a table with nested type columns.

Note:

Once you have a table set up with complex type columns, use the DESCRIBE and SHOW CREATE
TABLE statements to see the correct notationwith < and > delimiters and comma and colon separators
within the complex type definitions. If you do not have existing data with the same layout as the table,
you can query the empty table to practice with the notation for the SELECT statement. In the SELECT
list, you use dot notation and pseudocolumns such as ITEM, KEY, and VALUE for referring to items
within the complex type columns. In the FROM clause, you use join notation to construct table aliases
for any referenced ARRAY and MAP columns.

For example, when defining a table that holds contact information, you might represent phone numbers differently
depending on the expected layout and relationships of the data, and how well you can predict those properties in
advance.

Here are different ways that you might represent phone numbers in a traditional relational schema, with equivalent
representations using complex types.

The traditional, simplest way to represent phone numbers in a relational table is to store all contact info in a single
table, with all columns having scalar types, and each potential phone number represented as a separate column. In
this example, each person can only have these 3 types of phone numbers. If the person does not have a particular kind
of phone number, the corresponding column is NULL for that row.

CREATE TABLE contacts_fixed_phones
(
 id BIGINT
 , name STRING
 , address STRING

Apache Impala Guide | 163

Impala SQL Language Reference

 , home_phone STRING
 , work_phone STRING
 , mobile_phone STRING
) STORED AS PARQUET;

Figure 3: Traditional Relational Representation of Phone Numbers: Single Table

Using a complex type column to represent the phone numbers adds some extra flexibility. Now there could be an
unlimited number of phone numbers. Because the array elements have an order but not symbolic names, you could
decide in advance that phone_number[0] is the home number, [1] is the work number, [2] is the mobile number, and
so on. (In subsequent examples, you will see how to create a more flexible naming scheme using other complex type
variations, such as a MAP or an ARRAY where each element is a STRUCT.)

CREATE TABLE contacts_array_of_phones
(
 id BIGINT
 , name STRING
 , address STRING
 , phone_number ARRAY < STRING >
) STORED AS PARQUET;

Figure 4: An Array of Phone Numbers

Another way to represent an arbitrary set of phone numbers is with a MAP column. With a MAP, each element is
associated with a key value that you specify, which could be a numeric, string, or other scalar type. This example uses
a STRING key to give each phone number a name, such as 'home' or 'mobile'. A query could filter the data based
on the key values, or display the key values in reports.

CREATE TABLE contacts_unlimited_phones
(
 id BIGINT, name STRING, address STRING, phone_number MAP < STRING,STRING >
) STORED AS PARQUET;

Figure 5: A Map of Phone Numbers

If you are an experienced database designer, you already know how to work around the limitations of the single-table
schema fromFigure 3: Traditional Relational Representation of PhoneNumbers: Single Table on page 163. By normalizing
the schema, with the phone numbers in their own table, you can associate an arbitrary set of phone numbers with
each person, and associate additional details with each phone number, such as whether it is a home, work, or mobile
phone.

The flexibility of this approach comeswith some drawbacks. Reconstructing all the data for a particular person requires
a join query, whichmight require performance tuning onHadoop because the data fromeach tablemight be transmitted
from a different host. Data management tasks such as backups and refreshing the data require dealing with multiple
tables instead of a single table.

This example illustrates a traditional database schema to store contact info normalized across 2 tables. The fact table
establishes the identity and basic information about person. A dimension table stores information only about phone
numbers, using an ID value to associate each phone number with a person ID from the fact table. Each person can
have 0, 1, or many phones; the categories are not restricted to a few predefined ones; and the phone table can contain
as many columns as desired, to represent all sorts of details about each phone number.

CREATE TABLE fact_contacts (id BIGINT, name STRING, address STRING) STORED AS PARQUET;
CREATE TABLE dim_phones
(
 contact_id BIGINT
 , category STRING
 , international_code STRING

164 | Apache Impala Guide

Impala SQL Language Reference

 , area_code STRING
 , exchange STRING
 , extension STRING
 , mobile BOOLEAN
 , carrier STRING
 , current BOOLEAN
 , service_start_date TIMESTAMP
 , service_end_date TIMESTAMP
)
STORED AS PARQUET;

Figure 6: Traditional Relational Representation of Phone Numbers: Normalized Tables

To represent a schema equivalent to the one from Figure 6: Traditional Relational Representation of Phone Numbers:
Normalized Tables on page 164 using complex types, this example uses an ARRAYwhere each array element is a STRUCT.
Aswith the earlier complex type examples, each person can have an arbitrary set of associated phone numbers.Making
each array element into a STRUCT lets us associate multiple data items with each phone number, and give a separate
name and type to each data item. The STRUCT fields of the ARRAY elements reproduce the columns of the dimension
table from the previous example.

You can do all the same kinds of queries with the complex type schema as with the normalized schema from the
previous example. The advantages of the complex type design are in the areas of convenience and performance. Now
your backup and ETL processes only deal with a single table.When a query uses a join to cross-reference the information
about a person with their associated phone numbers, all the relevant data for each row resides in the same HDFS data
block, meaning each row can be processed on a single host without requiring network transmission.

CREATE TABLE contacts_detailed_phones
(
 id BIGINT, name STRING, address STRING
 , phone ARRAY < STRUCT <
 category: STRING
 , international_code: STRING
 , area_code: STRING
 , exchange: STRING
 , extension: STRING
 , mobile: BOOLEAN
 , carrier: STRING
 , current: BOOLEAN
 , service_start_date: TIMESTAMP
 , service_end_date: TIMESTAMP
 >>
) STORED AS PARQUET;

Figure 7: Phone Numbers Represented as an Array of Structs

SQL Statements that Support Complex Types

The Impala SQL statements that support complex types are currently CREATE TABLE, ALTER TABLE, DESCRIBE,
LOAD DATA, and SELECT. That is, currently Impala can create or alter tables containing complex type columns, examine
the structure of a table containing complex type columns, import existing data files containing complex type columns
into a table, and query Parquet tables containing complex types.

Impala currently cannot write new data files containing complex type columns. Therefore, although the SELECT
statement works for queries involving complex type columns, you cannot use a statement form that writes data, such
as CREATE TABLE AS SELECT or INSERT ... SELECT. To create data files containing complex type data, use the
Hive INSERT statement, or another ETL mechanism such as MapReduce jobs, Spark jobs, Pig, and so on.

DDL Statements and Complex Types

Column specifications for complex or nested types use < and > delimiters:

-- What goes inside the < > for an ARRAY is a single type, either a scalar or another
-- complex type (ARRAY, STRUCT, or MAP).

Apache Impala Guide | 165

Impala SQL Language Reference

CREATE TABLE array_t
(
 id BIGINT,
 a1 ARRAY <STRING>,
 a2 ARRAY <BIGINT>,
 a3 ARRAY <TIMESTAMP>,
 a4 ARRAY <STRUCT <f1: STRING, f2: INT, f3: BOOLEAN>>
)
STORED AS PARQUET;

-- What goes inside the < > for a MAP is two comma-separated types specifying the types
 of the key-value pair:
-- a scalar type representing the key, and a scalar or complex type representing the
value.
CREATE TABLE map_t
(
 id BIGINT,
 m1 MAP <STRING, STRING>,
 m2 MAP <STRING, BIGINT>,
 m3 MAP <BIGINT, STRING>,
 m4 MAP <BIGINT, BIGINT>,
 m5 MAP <STRING, ARRAY <STRING>>
)
STORED AS PARQUET;

-- What goes inside the < > for a STRUCT is a comma-separated list of fields, each field
 defined as
-- name:type. The type can be a scalar or a complex type. The field names for each STRUCT
 do not clash
-- with the names of table columns or fields in other STRUCTs. A STRUCT is most often
used inside
-- an ARRAY or a MAP rather than as a top-level column.
CREATE TABLE struct_t
(
 id BIGINT,
 s1 STRUCT <f1: STRING, f2: BIGINT>,
 s2 ARRAY <STRUCT <f1: INT, f2: TIMESTAMP>>,
 s3 MAP <BIGINT, STRUCT <name: STRING, birthday: TIMESTAMP>>
)
STORED AS PARQUET;

Queries and Complex Types

The result set of an Impala query always contains all scalar types; the elements and fields within any complex type
queries must be “unpacked” using join queries. A query cannot directly retrieve the entire value for a complex type
column. Impala returns an error in this case. Queries using SELECT * are allowed for tables with complex types, but
the columns with complex types are skipped.

The following example shows how referring directly to a complex type column returns an error, while SELECT * on
the same table succeeds, but only retrieves the scalar columns.

Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted
from the tables used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with
Impala Complex Types on page 179 for the table definitions.

SELECT c_orders FROM customer LIMIT 1;
ERROR: AnalysisException: Expr 'c_orders' in select list returns a complex type
'ARRAY<STRUCT<o_orderkey:BIGINT,o_orderstatus:STRING, ...
l_receiptdate:STRING,l_shipinstruct:STRING,l_shipmode:STRING,l_comment:STRING>>>>'.
Only scalar types are allowed in the select list.

-- Original column has several scalar and one complex column.
DESCRIBE customer;
+--------------+------------------------------------+
| name | type |
+--------------+------------------------------------+
| c_custkey | bigint |
| c_name | string |

166 | Apache Impala Guide

Impala SQL Language Reference

...
c_orders	array<struct<
	o_orderkey:bigint,
	o_orderstatus:string,
	o_totalprice:decimal(12,2),
...	
	>>
+--------------+------------------------------------+

-- When we SELECT * from that table, only the scalar columns come back in the result
set.
CREATE TABLE select_star_customer STORED AS PARQUET AS SELECT * FROM customer;
+------------------------+
| summary |
+------------------------+
| Inserted 150000 row(s) |
+------------------------+

-- The c_orders column, being of complex type, was not included in the SELECT * result
 set.
DESC select_star_customer;
+--------------+---------------+
| name | type |
+--------------+---------------+
c_custkey	bigint
c_name	string
c_address	string
c_nationkey	smallint
c_phone	string
c_acctbal	decimal(12,2)
c_mktsegment	string
c_comment	string
+--------------+---------------+

References to fields within STRUCT columns use dot notation. If the field name is unambiguous, you can omit qualifiers
such as table name, column name, or even the ITEM or VALUE pseudocolumn names for STRUCT elements inside an
ARRAY or a MAP.

SELECT id, address.city FROM customers WHERE address.zip = 94305;

References to elements within ARRAY columns use the ITEM pseudocolumn:

select r_name, r_nations.item.n_name from region, region.r_nations limit 7;
+--------+----------------+
| r_name | item.n_name |
+--------+----------------+
EUROPE	UNITED KINGDOM
EUROPE	RUSSIA
EUROPE	ROMANIA
EUROPE	GERMANY
EUROPE	FRANCE
ASIA	VIETNAM
ASIA	CHINA
+--------+----------------+

References to fields within MAP columns use the KEY and VALUE pseudocolumns. In this example, once the query
establishes the alias MAP_FIELD for a MAP column with a STRING key and an INT value, the query can refer to
MAP_FIELD.KEY and MAP_FIELD.VALUE, which have zero, one, or many instances for each row from the containing
table.

DESCRIBE table_0;
+---------+-----------------------+
| name | type |
+---------+-----------------------+
| field_0 | string |
| field_1 | map<string,int> |
...

Apache Impala Guide | 167

Impala SQL Language Reference

SELECT field_0, map_field.key, map_field.value
 FROM table_0, table_0.field_1 AS map_field
WHERE length(field_0) = 1
LIMIT 10;
+---------+-----------+-------+
| field_0 | key | value |
+---------+-----------+-------+
b	gshsgkvd	NULL
b	twrtcxj6	18
b	2vp5	39
b	fh0s	13
v	2	41
v	8b58mz	20
v	hw	16
v	65l388pyt	29
v	03k68g91z	30
v	r2hlg5b	NULL
+---------+-----------+-------+

When complex types are nested inside each other, you use a combination of joins, pseudocolumn names, and dot
notation to refer to specific fields at the appropriate level. This is the most frequent form of query syntax for complex
columns, because the typical use case involves two levels of complex types, such as an ARRAY of STRUCT elements.

SELECT id, phone_numbers.area_code FROM contact_info_many_structs INNER JOIN
contact_info_many_structs.phone_numbers phone_numbers LIMIT 3;

You can express relationships between ARRAY and MAP columns at different levels as joins. You include comparison
operators between fields at the top level and within the nested type columns so that Impala can do the appropriate
join operation.

Note: Many of the complex type examples refer to tables such as CUSTOMER and REGION adapted
from the tables used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with
Impala Complex Types on page 179 for the table definitions.

For example, the following queries work equivalently. They each return customer and order data for customers that
have at least one order.

SELECT c.c_name, o.o_orderkey FROM customer c, c.c_orders o LIMIT 5;
+--------------------+------------+
| c_name | o_orderkey |
+--------------------+------------+
Customer#000072578	558821
Customer#000072578	2079810
Customer#000072578	5768068
Customer#000072578	1805604
Customer#000072578	3436389
+--------------------+------------+

SELECT c.c_name, o.o_orderkey FROM customer c INNER JOIN c.c_orders o LIMIT 5;
+--------------------+------------+
| c_name | o_orderkey |
+--------------------+------------+
Customer#000072578	558821
Customer#000072578	2079810
Customer#000072578	5768068
Customer#000072578	1805604
Customer#000072578	3436389
+--------------------+------------+

The following query using an outer join returns customers that have orders, plus customers with no orders (no entries
in the C_ORDERS array):

SELECT c.c_custkey, o.o_orderkey
 FROM customer c LEFT OUTER JOIN c.c_orders o

168 | Apache Impala Guide

Impala SQL Language Reference

LIMIT 5;
+-----------+------------+
| c_custkey | o_orderkey |
+-----------+------------+
60210	NULL
147873	NULL
72578	558821
72578	2079810
72578	5768068
+-----------+------------+

The following query returns only customers that have no orders. (With LEFT ANTI JOIN or LEFT SEMI JOIN, the
query can only refer to columns from the left-hand table, because by definition there is no matching information in
the right-hand table.)

SELECT c.c_custkey, c.c_name
 FROM customer c LEFT ANTI JOIN c.c_orders o
LIMIT 5;
+-----------+--------------------+
| c_custkey | c_name |
+-----------+--------------------+
60210	Customer#000060210
147873	Customer#000147873
141576	Customer#000141576
85365	Customer#000085365
70998	Customer#000070998
+-----------+--------------------+

You can also perform correlated subqueries to examine the properties of complex type columns for each row in the
result set.

Count the number of orders per customer. Note the correlated reference to the table alias C. The COUNT(*) operation
applies to all the elements of the C_ORDERS array for the corresponding row, avoiding the need for a GROUP BY clause.

select c_name, howmany FROM customer c, (SELECT COUNT(*) howmany FROM c.c_orders) v
limit 5;
+--------------------+---------+
| c_name | howmany |
+--------------------+---------+
Customer#000030065	15
Customer#000065455	18
Customer#000113644	21
Customer#000111078	0
Customer#000024621	0
+--------------------+---------+

Count the number of orders per customer, ignoring any customers that have not placed any orders:

SELECT c_name, howmany_orders
FROM
 customer c,
 (SELECT COUNT(*) howmany_orders FROM c.c_orders) subq1
WHERE howmany_orders > 0
LIMIT 5;
+--------------------+----------------+
| c_name | howmany_orders |
+--------------------+----------------+
Customer#000072578	7
Customer#000046378	26
Customer#000069815	11
Customer#000079058	12
Customer#000092239	26
+--------------------+----------------+

Apache Impala Guide | 169

Impala SQL Language Reference

Count the number of line items in each order. The reference to C.C_ORDERS in the FROM clause is needed because
the O_ORDERKEY field is a member of the elements in the C_ORDERS array. The subquery labelled SUBQ1 is correlated:
it is re-evaluated for the C_ORDERS.O_LINEITEMS array from each row of the CUSTOMERS table.

SELECT c_name, o_orderkey, howmany_line_items
FROM
 customer c,
 c.c_orders t2,
 (SELECT COUNT(*) howmany_line_items FROM c.c_orders.o_lineitems) subq1
WHERE howmany_line_items > 0
LIMIT 5;
+--------------------+------------+--------------------+
| c_name | o_orderkey | howmany_line_items |
+--------------------+------------+--------------------+
Customer#000020890	1884930	95
Customer#000020890	4570754	95
Customer#000020890	3771072	95
Customer#000020890	2555489	95
Customer#000020890	919171	95
+--------------------+------------+--------------------+

Get the number of orders, the average order price, and themaximum items in any order per customer. For this example,
the subqueries labelledSUBQ1 andSUBQ2 are correlated: they are re-evaluated for each row from the originalCUSTOMER
table, and only apply to the complex columns associated with that row.

SELECT c_name, howmany, average_price, most_items
FROM
 customer c,
 (SELECT COUNT(*) howmany, AVG(o_totalprice) average_price FROM c.c_orders) subq1,
 (SELECT MAX(l_quantity) most_items FROM c.c_orders.o_lineitems) subq2
LIMIT 5;
+--------------------+---------+---------------+------------+
| c_name | howmany | average_price | most_items |
+--------------------+---------+---------------+------------+
Customer#000030065	15	128908.34	50.00
Customer#000088191	0	NULL	NULL
Customer#000101555	10	164250.31	50.00
Customer#000022092	0	NULL	NULL
Customer#000036277	27	166040.06	50.00
+--------------------+---------+---------------+------------+

For example, these queries show how to access information about the ARRAY elements within the CUSTOMER table
from the “nested TPC-H” schema, starting with the initial ARRAY elements and progressing to examine the STRUCT
fields of the ARRAY, and then the elements nested within another ARRAY of STRUCT:

-- How many orders does each customer have?
-- The type of the ARRAY column doesn't matter, this is just counting the elements.
SELECT c_custkey, count(*)
 FROM customer, customer.c_orders
GROUP BY c_custkey
LIMIT 5;
+-----------+----------+
| c_custkey | count(*) |
+-----------+----------+
61081	21
115987	15
69685	19
109124	15
50491	12
+-----------+----------+

-- How many line items are part of each customer order?
-- Now we examine a field from a STRUCT nested inside the ARRAY.
SELECT c_custkey, c_orders.o_orderkey, count(*)
 FROM customer, customer.c_orders c_orders, c_orders.o_lineitems
GROUP BY c_custkey, c_orders.o_orderkey
LIMIT 5;
+-----------+------------+----------+
| c_custkey | o_orderkey | count(*) |

170 | Apache Impala Guide

Impala SQL Language Reference

+-----------+------------+----------+
63367	4985959	7
53989	1972230	2
143513	5750498	5
17849	4857989	1
89881	1046437	1
+-----------+------------+----------+

-- What are the line items in each customer order?
-- One of the STRUCT fields inside the ARRAY is another
-- ARRAY containing STRUCT elements. The join finds
-- all the related items from both levels of ARRAY.
SELECT c_custkey, o_orderkey, l_partkey
 FROM customer, customer.c_orders, c_orders.o_lineitems
LIMIT 5;
+-----------+------------+-----------+
| c_custkey | o_orderkey | l_partkey |
+-----------+------------+-----------+
113644	2738497	175846
113644	2738497	27309
113644	2738497	175873
113644	2738497	88559
113644	2738497	8032
+-----------+------------+-----------+

Pseudocolumns for ARRAY and MAP Types

Each element in an ARRAY type has a position, indexed starting from zero, and a value. Each element in a MAP type
represents a key-value pair. Impala provides pseudocolumns that let you retrieve this metadata as part of a query, or
filter query results by including such things in a WHERE clause. You refer to the pseudocolumns as part of qualified
column names in queries:

• ITEM: The value of an array element. If the ARRAY contains STRUCT elements, you can refer to either
array_name.ITEM.field_name or use the shorthand array_name.field_name.

• POS: The position of an element within an array.
• KEY: The value forming the first part of a key-value pair in a map. It is not necessarily unique.
• VALUE: The data item forming the second part of a key-value pair in a map. If the VALUE part of the MAP element

is aSTRUCT, you can refer to eithermap_name.VALUE.field_nameoruse the shorthandmap_name.field_name.

ITEM and POS Pseudocolumns

When an ARRAY column contains STRUCT elements, you can refer to a field within the STRUCT using a qualified name
of the form array_column.field_name. If the ARRAY contains scalar values, Impala recognizes the special name
array_column.ITEM to represent the value of each scalar array element. For example, if a column contained an
ARRAY where each element was a STRING, you would use array_name.ITEM to refer to each scalar value in the
SELECT list, or the WHERE or other clauses.

This example shows a table with two ARRAY columns whose elements are of the scalar type STRING. When referring
to the values of the array elements in the SELECT list, WHERE clause, or ORDER BY clause, you use the ITEM
pseudocolumn because within the array, the individual elements have no defined names.

create TABLE persons_of_interest
(
person_id BIGINT,
aliases ARRAY <STRING>,
associates ARRAY <STRING>,
real_name STRING
)
STORED AS PARQUET;

-- Get all the aliases of each person.
SELECT real_name, aliases.ITEM
 FROM persons_of_interest, persons_of_interest.aliases
ORDER BY real_name, aliases.item;

-- Search for particular associates of each person.

Apache Impala Guide | 171

Impala SQL Language Reference

SELECT real_name, associates.ITEM
 FROM persons_of_interest, persons_of_interest.associates
WHERE associates.item LIKE '% MacGuffin';

Because an array is inherently an ordered data structure, Impala recognizes the special name array_column.POS to
represent the numeric position of each element within the array. The POS pseudocolumn lets you filter or reorder the
result set based on the sequence of array elements.

The following example uses a table from a flattened version of the TPC-H schema. The REGION table only has a few
rows, such as one row for Europe and one for Asia. The row for each region represents all the countries in that region
as an ARRAY of STRUCT elements:

[localhost:21000] > desc region;
+-------------+--+
| name | type |
+-------------+--+
r_regionkey	smallint
r_name	string
r_comment	string
r_nations	array<struct<n_nationkey:smallint,n_name:string,n_comment:string>>
+-------------+--+

To find the countries within a specific region, you use a join query. To find out the order of elements in the array, you
also refer to the POS pseudocolumn in the select list:

[localhost:21000] > SELECT r1.r_name, r2.n_name, r2.POS
 > FROM region r1 INNER JOIN r1.r_nations r2
 > WHERE r1.r_name = 'ASIA';
+--------+-----------+-----+
| r_name | n_name | pos |
+--------+-----------+-----+
ASIA	VIETNAM	0
ASIA	CHINA	1
ASIA	JAPAN	2
ASIA	INDONESIA	3
ASIA	INDIA	4
+--------+-----------+-----+

Once you know the positions of the elements, you can use that information in subsequent queries, for example to
change the ordering of results from the complex type column or to filter certain elements from the array:

[localhost:21000] > SELECT r1.r_name, r2.n_name, r2.POS
 > FROM region r1 INNER JOIN r1.r_nations r2
 > WHERE r1.r_name = 'ASIA'
 > ORDER BY r2.POS DESC;
+--------+-----------+-----+
| r_name | n_name | pos |
+--------+-----------+-----+
ASIA	INDIA	4
ASIA	INDONESIA	3
ASIA	JAPAN	2
ASIA	CHINA	1
ASIA	VIETNAM	0
+--------+-----------+-----+
[localhost:21000] > SELECT r1.r_name, r2.n_name, r2.POS
 > FROM region r1 INNER JOIN r1.r_nations r2
 > WHERE r1.r_name = 'ASIA' AND r2.POS BETWEEN 1 and 3;
+--------+-----------+-----+
| r_name | n_name | pos |
+--------+-----------+-----+
ASIA	CHINA	1
ASIA	JAPAN	2
ASIA	INDONESIA	3
+--------+-----------+-----+

172 | Apache Impala Guide

Impala SQL Language Reference

KEY and VALUE Pseudocolumns

The MAP data type is suitable for representing sparse or wide data structures, where each row might only have entries
for a small subset of named fields. Because the element names (the map keys) vary depending on the row, a query
must be able to refer to both the key and the value parts of each key-value pair. The KEY and VALUE pseudocolumns
let you refer to the parts of the key-value pair independently within the query, as map_column.KEY and
map_column.VALUE.

The KEYmust always be a scalar type, such as STRING, BIGINT, or TIMESTAMP. It can be NULL. Values of the KEY field
are not necessarily unique within the same MAP. You apply any required DISTINCT, GROUP BY, and other clauses in
the query, and loop through the result set to process all the values matching any specified keys.

The VALUE can be either a scalar type or another complex type. If the VALUE is a STRUCT, you can construct a qualified
name map_column.VALUE.struct_field to refer to the individual fields inside the value part. If the VALUE is an
ARRAY or another MAP, you must include another join condition that establishes a table alias for map_column.VALUE,
and then construct another qualified name using that alias, for example table_alias.ITEM or table_alias.KEY
and table_alias.VALUE

The following example shows different ways to access a MAP column using the KEY and VALUE pseudocolumns. The
DETAILS column has a STRING first part with short, standardized values such as 'Recurring', 'Lucid', or
'Anxiety'. This is the “key” that is used to look up particular kinds of elements from the MAP. The second part, also
a STRING, is a longer free-form explanation. Impala gives you the standard pseudocolumn names KEY and VALUE for
the two parts, and you apply your own conventions and interpretations to the underlying values.

Note: If you find that the single-item nature of the VALUEmakes it difficult to model your data
accurately, the solution is typically to add some nesting to the complex type. For example, to have
several sets of key-value pairs, make the column an ARRAY whose elements are MAP. To make a set
of key-value pairs that holds more elaborate information, make a MAP column whose VALUE part
contains an ARRAY or a STRUCT.

CREATE TABLE dream_journal
(
 dream_id BIGINT,
 details MAP <STRING,STRING>
)
STORED AS PARQUET;

-- What are all the types of dreams that are recorded?
SELECT DISTINCT details.KEY FROM dream_journal, dream_journal.details;

-- How many lucid dreams were recorded?
-- Because there is no GROUP BY, we count the 'Lucid' keys across all rows.
SELECT COUNT(details.KEY)
 FROM dream_journal, dream_journal.details
WHERE details.KEY = 'Lucid';

-- Print a report of a subset of dreams, filtering based on both the lookup key
-- and the detailed value.
SELECT dream_id, details.KEY AS "Dream Type", details.VALUE AS "Dream Summary"
 FROM dream_journal, dream_journal.details
WHERE
details.KEY IN ('Happy', 'Pleasant', 'Joyous')

 AND details.VALUE LIKE '%childhood%';

The following example shows a more elaborate version of the previous table, where the VALUE part of the MAP entry
is a STRUCT rather than a scalar type. Now instead of referring to the VALUE pseudocolumn directly, you use dot
notation to refer to the STRUCT fields inside it.

CREATE TABLE better_dream_journal
(
 dream_id BIGINT,
 details MAP <STRING,STRUCT <summary: STRING, when_happened: TIMESTAMP, duration:
DECIMAL(5,2), woke_up: BOOLEAN> >

Apache Impala Guide | 173

Impala SQL Language Reference

)
STORED AS PARQUET;

-- Do more elaborate reporting and filtering by examining multiple attributes within
the same dream.
SELECT dream_id, details.KEY AS "Dream Type", details.VALUE.summary AS "Dream Summary",
details.VALUE.duration AS "Duration"

 FROM better_dream_journal, better_dream_journal.details
WHERE
details.KEY IN ('Anxiety', 'Nightmare')

 AND details.VALUE.duration > 60
 AND details.VALUE.woke_up = TRUE;

-- Remember that if the ITEM or VALUE contains a STRUCT, you can reference
-- the STRUCT fields directly without the .ITEM or .VALUE qualifier.
SELECT dream_id, details.KEY AS "Dream Type", details.summary AS "Dream Summary",
details.duration AS "Duration"
 FROM better_dream_journal, better_dream_journal.details
WHERE
details.KEY IN ('Anxiety', 'Nightmare')

 AND details.duration > 60
 AND details.woke_up = TRUE;

Loading Data Containing Complex Types

Because the Impala INSERT statement does not currently support creating new data with complex type columns, or
copying existing complex type values from one table to another, you primarily use Impala to query Parquet tables with
complex types where the data was inserted through Hive, or create tables with complex types where you already have
existing Parquet data files.

If you have created a Hive table with the Parquet file format and containing complex types, use the same table for
Impala queries with no changes. If you have such a Hive table in some other format, use a Hive CREATE TABLE AS
SELECT ... STORED AS PARQUET or INSERT ... SELECT statement to produce an equivalent Parquet table that
Impala can query.

If you have existing Parquet data files containing complex types, located outside of any Impala or Hive table, such as
data files created by Spark jobs, you can use an Impala CREATE TABLE ... STORED AS PARQUET statement,
followed by an Impala LOAD DATA statement to move the data files into the table. As an alternative, you can use an
Impala CREATE EXTERNAL TABLE statement to create a table pointing to the HDFS directory that already contains
the data files.

Perhaps the simplest way to get started with complex type data is to take a denormalized table containing duplicated
values, and use an INSERT ... SELECT statement to copy the data into a Parquet table and condense the repeated
values into complex types. With the Hive INSERT statement, you use the COLLECT_LIST(), NAMED_STRUCT(), and
MAP() constructor functions within a GROUP BY query to produce the complex type values. COLLECT_LIST() turns
a sequence of values into an ARRAY. NAMED_STRUCT() uses the first, third, and so on arguments as the field names
for a STRUCT, to match the field names from the CREATE TABLE statement.

Note: Because Hive currently cannot construct individual rows using complex types through the
INSERT ... VALUES syntax, you prepare the data in flat form in a separate table, then copy it to
the table with complex columns using INSERT ... SELECT and the complex type constructors. See
Constructing Parquet Files with Complex Columns Using Hive on page 180 for examples.

Using Complex Types as Nested Types

The ARRAY, STRUCT, and MAP types can be the top-level types for “nested type” columns. That is, each of these types
can contain other complex or scalar types, with multiple levels of nesting to a maximum depth of 100. For example,
you can have an array of structures, a map containing other maps, a structure containing an array of other structures,
and so on. At the lowest level, there are always scalar types making up the fields of a STRUCT, elements of an ARRAY,
and keys and values of a MAP.

Schemas involving complex types typically use some level of nesting for the complex type columns.

174 | Apache Impala Guide

Impala SQL Language Reference

For example, to model a relationship like a dimension table and a fact table, you typically use an ARRAY where each
array element is a STRUCT. The STRUCT fields represent what would traditionally be columns in a separate joined
table. It makes little sense to use a STRUCT as the top-level type for a column, because you could just make the fields
of the STRUCT into regular table columns.

Perhaps the only use case for a top-level STRUCT would be to to allow STRUCT fields with the same name as columns
to coexist in the same table. The following example shows how a table could have a columnnamed ID, and two separate
STRUCT fields also named ID. Because the STRUCT fields are always referenced using qualified names, the identical
ID names do not cause a conflict.

CREATE TABLE struct_namespaces
(
 id BIGINT
 , s1 STRUCT < id: BIGINT, field1: STRING >
 , s2 STRUCT < id: BIGINT, when_happened: TIMESTAMP >
)
STORED AS PARQUET;

select id, s1.id, s2.id from struct_namespaces;

It is common to make the value portion of each key-value pair in a MAP a STRUCT, ARRAY of STRUCT, or other complex
type variation. That way, each key in the MAP can be associated with a flexible and extensible data structure. The key
values are not predefined ahead of time (other than by specifying their data type). Therefore, the MAP can accommodate
a rapidly evolving schema, or sparse data structures where each row contains only a few data values drawn from a
large set of possible choices.

Although you can use an ARRAY of scalar values as the top-level column in a table, such a simple array is typically of
limited use for analytic queries. The only property of the array elements, aside from the element value, is the ordering
sequence available through the POS pseudocolumn. To record any additional item about each array element, such as
a TIMESTAMP or a symbolic name, you use an ARRAY of STRUCT rather than of scalar values.

If you are considering having multiple ARRAY or MAP columns, with related items under the same position in each
ARRAY or the same key in each MAP, prefer to use a STRUCT to group all the related items into a single ARRAY or MAP.
Doing so avoids the additional storage overhead and potential duplication of key values from having an extra complex
type column. Also, because each ARRAY or MAP that you reference in the query SELECT list requires an additional join
clause, minimizing the number of complex type columns also makes the query easier to read and maintain, relying
more on dot notation to refer to the relevant fields rather than a sequence of join clauses.

For example, here is a table with several complex type columns all at the top level and containing only scalar types.
To retrieve every data item for the row requires a separate join for each ARRAY or MAP column. The fields of the STRUCT
can be referenced using dot notation, but there is no real advantage to using the STRUCT at the top level rather than
just making separate columns FIELD1 and FIELD2.

CREATE TABLE complex_types_top_level
(
 id BIGINT,
 a1 ARRAY<INT>,
 a2 ARRAY<STRING>,
 s STRUCT<field1: INT, field2: STRING>,
-- Numeric lookup key for a string value.
 m1 MAP<INT,STRING>,
-- String lookup key for a numeric value.
 m2 MAP<STRING,INT>
)
STORED AS PARQUET;

describe complex_types_top_level;
+------+-----------------+
| name | type |
+------+-----------------+
id	bigint
a1	array<int>
a2	array<string>
s	struct<

Apache Impala Guide | 175

Impala SQL Language Reference

	field1:int,
	field2:string
	>
m1	map<int,string>
m2	map<string,int>
+------+-----------------+

select
 id,
 a1.item,
 a2.item,
 s.field1,
 s.field2,
 m1.key,
 m1.value,
 m2.key,
 m2.value
from
 complex_types_top_level,
 complex_types_top_level.a1,
 complex_types_top_level.a2,
 complex_types_top_level.m1,
 complex_types_top_level.m2;

For example, here is a table with columns containing an ARRAY of STRUCT, a MAP where each key value is a STRUCT,
and a MAP where each key value is an ARRAY of STRUCT.

CREATE TABLE nesting_demo
(
 user_id BIGINT,
 family_members ARRAY < STRUCT < name: STRING, email: STRING, date_joined: TIMESTAMP
>>,
 foo map < STRING, STRUCT < f1: INT, f2: INT, f3: TIMESTAMP, f4: BOOLEAN >>,
 gameplay MAP < STRING , ARRAY < STRUCT <
 name: STRING, highest: BIGINT, lives_used: INT, total_spent: DECIMAL(16,2)
 >>>
)
STORED AS PARQUET;

TheDESCRIBE statement rearranges the< and> separators and the field nameswithin eachSTRUCT for easy readability:

DESCRIBE nesting_demo;
+----------------+-----------------------------+
| name | type |
+----------------+-----------------------------+
user_id	bigint
family_members	array<struct<
	name:string,
	email:string,
	date_joined:timestamp
	>>
foo	map<string,struct<
	f1:int,
	f2:int,
	f3:timestamp,
	f4:boolean
	>>
gameplay	map<string,array<struct<
	name:string,
	highest:bigint,
	lives_used:int,
	total_spent:decimal(16,2)
	>>>
+----------------+-----------------------------+

To query the complex type columns, you use join notation to refer to the lowest-level scalar values. If the value is an
ARRAY element, the fully qualified name includes the ITEM pseudocolumn. If the value is inside a MAP, the fully qualified

176 | Apache Impala Guide

Impala SQL Language Reference

name includes the KEY or VALUE pseudocolumn. Each reference to a different ARRAY or MAP (even if nested inside
another complex type) requires an additional join clause.

SELECT
-- The lone scalar field doesn't require any dot notation or join clauses.
 user_id
-- Retrieve the fields of a STRUCT inside an ARRAY.
-- The FAMILY_MEMBERS name refers to the FAMILY_MEMBERS table alias defined later in
the FROM clause.
 , family_members.item.name
 , family_members.item.email
 , family_members.item.date_joined
-- Retrieve the KEY and VALUE fields of a MAP, with the value being a STRUCT consisting
 of more fields.
-- The FOO name refers to the FOO table alias defined later in the FROM clause.
 , foo.key
 , foo.value.f1
 , foo.value.f2
 , foo.value.f3
 , foo.value.f4
-- Retrieve the KEY fields of a MAP, and expand the VALUE part into ARRAY items consisting
 of STRUCT fields.
-- The GAMEPLAY name refers to the GAMEPLAY table alias defined later in the FROM clause
 (referring to the MAP item).
-- The GAME_N name refers to the GAME_N table alias defined later in the FROM clause
(referring to the ARRAY
-- inside the MAP item's VALUE part.)
 , gameplay.key
 , game_n.name
 , game_n.highest
 , game_n.lives_used
 , game_n.total_spent
FROM
 nesting_demo
 , nesting_demo.family_members AS family_members
 , nesting_demo.foo AS foo
 , nesting_demo.gameplay AS gameplay
 , nesting_demo.gameplay.value AS game_n;

Once you understand the notation to refer to a particular data item in the SELECT list, you can use the same qualified
name to refer to that data item in other parts of the query, such as the WHERE clause, ORDER BY or GROUP BY clauses,
or calls to built-in functions. For example, youmight frequently retrieve the VALUE part of each MAP item in the SELECT
list, while choosing the specific MAP items by running comparisons against the KEY part in the WHERE clause.

Accessing Complex Type Data in Flattened Form Using Views

The layout of complex and nested types is largely a physical consideration. The complex type columns reside in the
same data files rather than in separate normalized tables, for your convenience in managing related data sets and
performance in querying related data sets. You can use views to treat tables with complex types as if they were
flattened. By putting the join logic and references to the complex type columns in the view definition, you can query
the same tables using existing queries intended for tables containing only scalar columns. This technique also lets you
use tables with complex types with BI tools that are not aware of the data types and query notation for accessing
complex type columns.

For example, the variation of the TPC-H schema containing complex types has a table REGION. This table has 5 rows,
corresponding to 5 regions such as NORTH AMERICA and AFRICA. Each row has an ARRAY column, where each array
item is a STRUCT containing details about a country in that region.

DESCRIBE region;
+-------------+-------------------------+
| name | type |
+-------------+-------------------------+
r_regionkey	smallint
r_name	string
r_comment	string
r_nations	array<struct<
	n_nationkey:smallint,

Apache Impala Guide | 177

Impala SQL Language Reference

	n_name:string,
	n_comment:string
	>>
+-------------+-------------------------+

The same data could be represented in traditional denormalized form, as a single table where the information about
each region is repeated over and over, alongside the information about each country. The nested complex types let
us avoid the repetition, while still keeping the data in a single table rather than normalizing across multiple tables.

To use this tablewith a JDBCorODBC application that expected scalar columns,we could create a view that represented
the result set as a set of scalar columns (three columns from the original table, plus three more from the STRUCT fields
of the array elements). In the following examples, any column with an R_* prefix is taken unchanged from the original
table, while any column with an N_* prefix is extracted from the STRUCT inside the ARRAY.

CREATE VIEW region_view AS
 SELECT
 r_regionkey,
 r_name,
 r_comment,
 array_field.item.n_nationkey AS n_nationkey,
 array_field.item.n_name AS n_name,
 array_field.n_comment AS n_comment
FROM
 region, region.r_nations AS array_field;

Then we point the application queries at the view rather than the original table. From the perspective of the view,
there are 25 rows in the result set, one for each nation in each region, and queries can refer freely to fields related to
the region or the nation.

-- Retrieve info such as the nation name from the original R_NATIONS array elements.
select n_name from region_view where r_name in ('EUROPE', 'ASIA');
+----------------+
| n_name |
+----------------+
| UNITED KINGDOM |
| RUSSIA |
| ROMANIA |
| GERMANY |
| FRANCE |
| VIETNAM |
| CHINA |
| JAPAN |
| INDONESIA |
| INDIA |
+----------------+

-- UNITED STATES in AMERICA and UNITED KINGDOM in EUROPE.
SELECT DISTINCT r_name FROM region_view WHERE n_name LIKE 'UNITED%';
+---------+
| r_name |
+---------+
| AMERICA |
| EUROPE |
+---------+

-- For conciseness, we only list some view columns in the SELECT list.
-- SELECT * would bring back all the data, unlike SELECT *
-- queries on the original table with complex type columns.
SELECT r_regionkey, r_name, n_nationkey, n_name FROM region_view LIMIT 7;
+-------------+--------+-------------+----------------+
| r_regionkey | r_name | n_nationkey | n_name |
+-------------+--------+-------------+----------------+
3	EUROPE	23	UNITED KINGDOM
3	EUROPE	22	RUSSIA
3	EUROPE	19	ROMANIA
3	EUROPE	7	GERMANY
3	EUROPE	6	FRANCE
2	ASIA	21	VIETNAM

178 | Apache Impala Guide

Impala SQL Language Reference

| 2 | ASIA | 18 | CHINA |
+-------------+--------+-------------+----------------+

Tutorials and Examples for Complex Types

The following examples illustrate the query syntax for some common use cases involving complex type columns.

Sample Schema and Data for Experimenting with Impala Complex Types

The tables used for earlier examples of complex type syntax are trivial ones with no actual data. The more substantial
examples of the complex type feature use these tables, adapted from the schema used for TPC-H testing:

SHOW TABLES;
+----------+
| name |
+----------+
| customer |
| part |
| region |
| supplier |
+----------+

DESCRIBE customer;
+--------------+------------------------------------+
| name | type |
+--------------+------------------------------------+
c_custkey	bigint
c_name	string
c_address	string
c_nationkey	smallint
c_phone	string
c_acctbal	decimal(12,2)
c_mktsegment	string
c_comment	string
c_orders	array<struct<
	o_orderkey:bigint,
	o_orderstatus:string,
	o_totalprice:decimal(12,2),
	o_orderdate:string,
	o_orderpriority:string,
	o_clerk:string,
	o_shippriority:int,
	o_comment:string,
	o_lineitems:array<struct<
	l_partkey:bigint,
	l_suppkey:bigint,
	l_linenumber:int,
	l_quantity:decimal(12,2),
	l_extendedprice:decimal(12,2),
	l_discount:decimal(12,2),
	l_tax:decimal(12,2),
	l_returnflag:string,
	l_linestatus:string,
	l_shipdate:string,
	l_commitdate:string,
	l_receiptdate:string,
	l_shipinstruct:string,
	l_shipmode:string,
	l_comment:string
	>>
	>>
+--------------+------------------------------------+

DESCRIBE part;
+---------------+---------------+
| name | type |
+---------------+---------------+
p_partkey	bigint
p_name	string
p_mfgr	string
p_brand	string
p_type	string

Apache Impala Guide | 179

Impala SQL Language Reference

p_size	int
p_container	string
p_retailprice	decimal(12,2)
p_comment	string
+---------------+---------------+

DESCRIBE region;
+-------------+--+
| name | type |
+-------------+--+
r_regionkey	smallint
r_name	string
r_comment	string
r_nations	array<struct<n_nationkey:smallint,n_name:string,n_comment:string>>
+-------------+--+

DESCRIBE supplier;
+-------------+--+
| name | type |
+-------------+--+
s_suppkey	bigint
s_name	string
s_address	string
s_nationkey	smallint
s_phone	string
s_acctbal	decimal(12,2)
s_comment	string
s_partsupps	array<struct<ps_partkey:bigint,
	ps_availqty:int,ps_supplycost:decimal(12,2),
	ps_comment:string>>
+-------------+--+

The volume of data used in the following examples is:

SELECT count(*) FROM customer;
+----------+
| count(*) |
+----------+
| 150000 |
+----------+

SELECT count(*) FROM part;
+----------+
| count(*) |
+----------+
| 200000 |
+----------+

SELECT count(*) FROM region;
+----------+
| count(*) |
+----------+
| 5 |
+----------+

SELECT count(*) FROM supplier;
+----------+
| count(*) |
+----------+
| 10000 |
+----------+

Constructing Parquet Files with Complex Columns Using Hive

The following examples demonstrate the Hive syntax to transform flat data (tables with all scalar columns) into Parquet
tables where Impala can query the complex type columns. Each example shows the full sequence of steps, including
switching back and forth between Impala and Hive. Although the source table can use any file format, the destination
table must use the Parquet file format.

180 | Apache Impala Guide

Impala SQL Language Reference

Create table with ARRAY in Impala, load data in Hive, query in Impala:

This example shows the cycle of creating the tables and querying the complex data in Impala, and using Hive (either
the hive shell or beeline) for the data loading step. The data starts in flattened, denormalized form in a text table.
Hive writes the corresponding Parquet data, including an ARRAY column. Then Impala can run analytic queries on the
Parquet table, using join notation to unpack the ARRAY column.

/* Initial DDL and loading of flat, denormalized data happens in impala-shell */CREATE
 TABLE flat_array (country STRING, city STRING);INSERT INTO flat_array VALUES
 ('Canada', 'Toronto') , ('Canada', 'Vancouver') , ('Canada', "St. John\'s")
 , ('Canada', 'Saint John') , ('Canada', 'Montreal') , ('Canada', 'Halifax')
 , ('Canada', 'Winnipeg') , ('Canada', 'Calgary') , ('Canada', 'Saskatoon')
 , ('Canada', 'Ottawa') , ('Canada', 'Yellowknife') , ('France', 'Paris')
 , ('France', 'Nice') , ('France', 'Marseilles') , ('France', 'Cannes')
 , ('Greece', 'Athens') , ('Greece', 'Piraeus') , ('Greece', 'Hania')
 , ('Greece', 'Heraklion') , ('Greece', 'Rethymnon') , ('Greece', 'Fira');

CREATE TABLE complex_array (country STRING, city ARRAY <STRING>) STORED AS PARQUET;

/* Conversion to Parquet and complex and/or nested columns happens in Hive */

INSERT INTO complex_array SELECT country, collect_list(city) FROM flat_array GROUP BY
country;
Query ID = dev_20151108160808_84477ff2-82bd-4ba4-9a77-554fa7b8c0cb
Total jobs = 1
Launching Job 1 out of 1
...

/* Back to impala-shell again for analytic queries */

REFRESH complex_array;
SELECT country, city.item FROM complex_array, complex_array.city
+---------+-------------+
| country | item |
+---------+-------------+
Canada	Toronto
Canada	Vancouver
Canada	St. John's
Canada	Saint John
Canada	Montreal
Canada	Halifax
Canada	Winnipeg
Canada	Calgary
Canada	Saskatoon
Canada	Ottawa
Canada	Yellowknife
France	Paris
France	Nice
France	Marseilles
France	Cannes
Greece	Athens
Greece	Piraeus
Greece	Hania
Greece	Heraklion
Greece	Rethymnon
Greece	Fira
+---------+-------------+

Create table with STRUCT and ARRAY in Impala, load data in Hive, query in Impala:

This example shows the cycle of creating the tables and querying the complex data in Impala, and using Hive (either
the hive shell or beeline) for the data loading step. The data starts in flattened, denormalized form in a text table.

Apache Impala Guide | 181

Impala SQL Language Reference

Hive writes the corresponding Parquet data, including a STRUCT column with an ARRAY field. Then Impala can run
analytic queries on the Parquet table, using join notation to unpack the ARRAY field from the STRUCT column.

/* Initial DDL and loading of flat, denormalized data happens in impala-shell */

CREATE TABLE flat_struct_array (continent STRING, country STRING, city STRING);
INSERT INTO flat_struct_array VALUES
 ('North America', 'Canada', 'Toronto') , ('North America', 'Canada', 'Vancouver')
 , ('North America', 'Canada', "St. John\'s") , ('North America', 'Canada', 'Saint
John')
 , ('North America', 'Canada', 'Montreal') , ('North America', 'Canada', 'Halifax')
 , ('North America', 'Canada', 'Winnipeg') , ('North America', 'Canada', 'Calgary')
 , ('North America', 'Canada', 'Saskatoon') , ('North America', 'Canada', 'Ottawa')
 , ('North America', 'Canada', 'Yellowknife') , ('Europe', 'France', 'Paris')
 , ('Europe', 'France', 'Nice') , ('Europe', 'France', 'Marseilles')
 , ('Europe', 'France', 'Cannes') , ('Europe', 'Greece', 'Athens')
 , ('Europe', 'Greece', 'Piraeus') , ('Europe', 'Greece', 'Hania')
 , ('Europe', 'Greece', 'Heraklion') , ('Europe', 'Greece', 'Rethymnon')
 , ('Europe', 'Greece', 'Fira');

CREATE TABLE complex_struct_array (continent STRING, country STRUCT <name: STRING, city:
 ARRAY <STRING> >) STORED AS PARQUET;

/* Conversion to Parquet and complex and/or nested columns happens in Hive */

INSERT INTO complex_struct_array SELECT continent, named_struct('name', country, 'city',
 collect_list(city)) FROM flat_array_array GROUP BY continent, country;
Query ID = dev_20151108163535_11a4fa53-0003-4638-97e6-ef13cdb8e09e
Total jobs = 1
Launching Job 1 out of 1
...

/* Back to impala-shell again for analytic queries */

REFRESH complex_struct_array;
SELECT t1.continent, t1.country.name, t2.item
 FROM complex_struct_array t1, t1.country.city t2
+---------------+--------------+-------------+
| continent | country.name | item |
+---------------+--------------+-------------+
Europe	France	Paris
Europe	France	Nice
Europe	France	Marseilles
Europe	France	Cannes
Europe	Greece	Athens
Europe	Greece	Piraeus
Europe	Greece	Hania
Europe	Greece	Heraklion
Europe	Greece	Rethymnon
Europe	Greece	Fira
North America	Canada	Toronto
North America	Canada	Vancouver
North America	Canada	St. John's
North America	Canada	Saint John
North America	Canada	Montreal
North America	Canada	Halifax
North America	Canada	Winnipeg
North America	Canada	Calgary
North America	Canada	Saskatoon
North America	Canada	Ottawa
North America	Canada	Yellowknife
+---------------+--------------+-------------+

Flattening Normalized Tables into a Single Table with Complex Types

One common use for complex types is to embed the contents of one table into another. The traditional technique of
denormalizing results in a huge number of rows with some column values repeated over and over.With complex types,

182 | Apache Impala Guide

Impala SQL Language Reference

you can keep the same number of rows as in the original normalized table, and put all the associated data from the
other table in a single new column.

In this flattening scenario, you might frequently use a column that is an ARRAY consisting of STRUCT elements, where
each field within the STRUCT corresponds to a column name from the table that you are combining.

The following example shows a traditional normalized layout using two tables, and then an equivalent layout using
complex types in a single table.

/* Traditional relational design */

-- This table just stores numbers, allowing us to look up details about the employee
-- and details about their vacation time using a three-table join query.
CREATE table employee_vacations
(
 employee_id BIGINT,
 vacation_id BIGINT
)
STORED AS PARQUET;

-- Each kind of information to track gets its own "fact table".
CREATE table vacation_details
(
 vacation_id BIGINT,
 vacation_start TIMESTAMP,
 duration INT
)
STORED AS PARQUET;

-- Any time we print a human-readable report, we join with this table to
-- display info about employee #1234.
CREATE TABLE employee_contact
(
 employee_id BIGINT,
 name STRING,
 address STRING,
 phone STRING,
 email STRING,
 address_type STRING /* 'home', 'work', 'remote', etc. */
)
STORED AS PARQUET;

/* Equivalent flattened schema using complex types */

-- For analytic queries using complex types, we can bundle the dimension table
-- and multiple fact tables into a single table.
CREATE TABLE employee_vacations_nested_types
(
-- We might still use the employee_id for other join queries.
-- The table needs at least one scalar column to serve as an identifier
-- for the complex type columns.
 employee_id BIGINT,

-- Columns of the VACATION_DETAILS table are folded into a STRUCT.
-- We drop the VACATION_ID column because Impala doesn't need
-- synthetic IDs to join a complex type column.
-- Each row from the VACATION_DETAILS table becomes an array element.
 vacation ARRAY < STRUCT <
 vacation_start: TIMESTAMP,
 duration: INT
 >>,

-- The ADDRESS_TYPE column, with a small number of predefined values that are distinct
-- for each employee, makes the EMPLOYEE_CONTACT table a good candidate to turn into a
 MAP,
-- with each row represented as a STRUCT. The string value from ADDRESS_TYPE becomes
the
-- "key" (the anonymous first field) of the MAP.
 contact MAP < STRING, STRUCT <
 address: STRING,
 phone: STRING,
 email: STRING

Apache Impala Guide | 183

Impala SQL Language Reference

 >>
)
STORED AS PARQUET;

Interchanging Complex Type Tables and Data Files with Hive and Other Components

You can produce Parquet data files through several Hadoop components and APIs, as explained in
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_parquet.html.

If you have a Hive-created Parquet table that includes ARRAY, STRUCT, or MAP columns, Impala can query that same
table in Impala 2.3 / CDH 5.5 and higher, subject to the usual restriction that all other columns are of data types
supported by Impala, and also that the file type of the table must be Parquet.

If you have a Parquet data file produced outside of Impala, Impala can automatically deduce the appropriate table
structure using the syntax CREATE TABLE ... LIKE PARQUET 'hdfs_path_of_parquet_file'. In Impala 2.3
/ CDH 5.5 and higher, this feature works for Parquet files that include ARRAY, STRUCT, or MAP types.

/* In impala-shell, find the HDFS data directory of the original table.
DESCRIBE FORMATTED tpch_nested_parquet.customer;
...
| Location: | hdfs://localhost:20500/test-warehouse/tpch_nested_parquet.db/customer
| NULL |
...

In the Unix shell, find the path of any Parquet data file in that HDFS directory.
$ hdfs dfs -ls hdfs://localhost:20500/test-warehouse/tpch_nested_parquet.db/customer
Found 4 items
-rwxr-xr-x 3 dev supergroup 171298918 2015-09-22 23:30
hdfs://localhost:20500/blah/tpch_nested_parquet.db/customer/000000_0
...

/* Back in impala-shell, use the HDFS path in a CREATE TABLE LIKE PARQUET statement. */
CREATE TABLE customer_ctlp
 LIKE PARQUET 'hdfs://localhost:20500/blah/tpch_nested_parquet.db/customer/000000_0'
 STORED AS PARQUET;

/* Confirm that old and new tables have the same column layout, including complex types.
 */
DESCRIBE tpch_nested_parquet.customer
+--------------+------------------------------------+---------+
| name | type | comment |
+--------------+------------------------------------+---------+
c_custkey	bigint	
c_name	string	
c_address	string	
c_nationkey	smallint	
c_phone	string	
c_acctbal	decimal(12,2)	
c_mktsegment	string	
c_comment	string	
c_orders	array<struct<	
	o_orderkey:bigint,	
	o_orderstatus:string,	
	o_totalprice:decimal(12,2),	
	o_orderdate:string,	
	o_orderpriority:string,	
	o_clerk:string,	
	o_shippriority:int,	
	o_comment:string,	
	o_lineitems:array<struct<	
	l_partkey:bigint,	
	l_suppkey:bigint,	
	l_linenumber:int,	
	l_quantity:decimal(12,2),	
	l_extendedprice:decimal(12,2),	
	l_discount:decimal(12,2),	
	l_tax:decimal(12,2),	
	l_returnflag:string,	
	l_linestatus:string,	
	l_shipdate:string,	

184 | Apache Impala Guide

Impala SQL Language Reference

http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_parquet.html

	l_commitdate:string,	
	l_receiptdate:string,	
	l_shipinstruct:string,	
	l_shipmode:string,	
	l_comment:string	
	>>	
	>>	
+--------------+------------------------------------+---------+

describe customer_ctlp;
+--------------+------------------------------------+-----------------------------+
| name | type | comment |
+--------------+------------------------------------+-----------------------------+
c_custkey	bigint	Inferred from Parquet file.
c_name	string	Inferred from Parquet file.
c_address	string	Inferred from Parquet file.
c_nationkey	int	Inferred from Parquet file.
c_phone	string	Inferred from Parquet file.
c_acctbal	decimal(12,2)	Inferred from Parquet file.
c_mktsegment	string	Inferred from Parquet file.
c_comment	string	Inferred from Parquet file.
c_orders	array<struct<	Inferred from Parquet file.
	o_orderkey:bigint,	
	o_orderstatus:string,	
	o_totalprice:decimal(12,2),	
	o_orderdate:string,	
	o_orderpriority:string,	
	o_clerk:string,	
	o_shippriority:int,	
	o_comment:string,	
	o_lineitems:array<struct<	
	l_partkey:bigint,	
	l_suppkey:bigint,	
	l_linenumber:int,	
	l_quantity:decimal(12,2),	
	l_extendedprice:decimal(12,2),	
	l_discount:decimal(12,2),	
	l_tax:decimal(12,2),	
	l_returnflag:string,	
	l_linestatus:string,	
	l_shipdate:string,	
	l_commitdate:string,	
	l_receiptdate:string,	
	l_shipinstruct:string,	
	l_shipmode:string,	
	l_comment:string	
	>>	
	>>	
+--------------+------------------------------------+-----------------------------+

Literals
Each of the Impala data types has corresponding notation for literal values of that type. You specify literal values in
SQL statements, such as in the SELECT list or WHERE clause of a query, or as an argument to a function call. See Data
Types on page 117 for a complete list of types, ranges, and conversion rules.

Numeric Literals

To write literals for the integer types (TINYINT, SMALLINT, INT, and BIGINT), use a sequence of digits with optional
leading zeros.

To write literals for the floating-point types (DECIMAL, FLOAT, and DOUBLE), use a sequence of digits with an optional
decimal point (. character). To preserve accuracy during arithmetic expressions, Impala interprets floating-point literals
as the DECIMAL type with the smallest appropriate precision and scale, until required by the context to convert the
result to FLOAT or DOUBLE.

Integer values are promoted to floating-point when necessary, based on the context.

Apache Impala Guide | 185

Impala SQL Language Reference

You can also use exponential notation by including an e character. For example, 1e6 is 1 times 10 to the power of 6
(1 million). A number in exponential notation is always interpreted as floating-point.

When Impala encounters a numeric literal, it considers the type to be the “smallest” that can accurately represent the
value. The type is promoted to larger or more accurate types if necessary, based on subsequent parts of an expression.

For example, you can see by the types Impala defines for the following table columns how it interprets the corresponding
numeric literals:

[localhost:21000] > create table ten as select 10 as x;
+-------------------+
| summary |
+-------------------+
| Inserted 1 row(s) |
+-------------------+
[localhost:21000] > desc ten;
+------+---------+---------+
| name | type | comment |
+------+---------+---------+
| x | tinyint | |
+------+---------+---------+

[localhost:21000] > create table four_k as select 4096 as x;
+-------------------+
| summary |
+-------------------+
| Inserted 1 row(s) |
+-------------------+
[localhost:21000] > desc four_k;
+------+----------+---------+
| name | type | comment |
+------+----------+---------+
| x | smallint | |
+------+----------+---------+

[localhost:21000] > create table one_point_five as select 1.5 as x;
+-------------------+
| summary |
+-------------------+
| Inserted 1 row(s) |
+-------------------+
[localhost:21000] > desc one_point_five;
+------+--------------+---------+
| name | type | comment |
+------+--------------+---------+
| x | decimal(2,1) | |
+------+--------------+---------+

[localhost:21000] > create table one_point_three_three_three as select 1.333 as x;
+-------------------+
| summary |
+-------------------+
| Inserted 1 row(s) |
+-------------------+
[localhost:21000] > desc one_point_three_three_three;
+------+--------------+---------+
| name | type | comment |
+------+--------------+---------+
| x | decimal(4,3) | |
+------+--------------+---------+

String Literals

String literals are quoted using either single or double quotation marks. You can use either kind of quotes for string
literals, even both kinds for different literals within the same statement.

Quoted literals are considered to be of type STRING. To use quoted literals in contexts requiring a CHAR or VARCHAR
value, CAST() the literal to a CHAR or VARCHAR of the appropriate length.

Escaping special characters:

186 | Apache Impala Guide

Impala SQL Language Reference

To encode special characters within a string literal, precede them with the backslash (\) escape character:

• \t represents a tab.
• \n represents a newline or linefeed. This might cause extra line breaks in impala-shell output.
• \r represents a carriage return. This might cause unusual formatting (making it appear that some content is

overwritten) in impala-shell output.
• \b represents a backspace. Thismight cause unusual formatting (making it appear that some content is overwritten)

in impala-shell output.
• \0 represents an ASCII nul character (not the same as a SQL NULL). This might not be visible in impala-shell

output.
• \Z represents a DOS end-of-file character. This might not be visible in impala-shell output.
• \% and _ can be used to escape wildcard characters within the string passed to the LIKE operator.
• \ followed by 3 octal digits represents the ASCII code of a single character; for example, \101 is ASCII 65, the

character A.
• Use two consecutive backslashes (\\) to prevent the backslash from being interpreted as an escape character.
• Use the backslash to escape single or double quotation mark characters within a string literal, if the literal is

enclosed by the same type of quotation mark.
• If the character following the \ does not represent the start of a recognized escape sequence, the character is

passed through unchanged.

Quotes within quotes:

To include a single quotation character within a string value, enclose the literal with either single or double quotation
marks, and optionally escape the single quote as a \' sequence. Earlier releases required escaping a single quote inside
double quotes. Continue using escape sequences in this case if you also need to run your SQL code on older versions
of Impala.

To include a double quotation character within a string value, enclose the literal with single quotation marks, no
escaping is necessary in this case. Or, enclose the literal with double quotation marks and escape the double quote as
a \" sequence.

[localhost:21000] > select "What\'s happening?" as single_within_double,
 > 'I\'m not sure.' as single_within_single,
 > "Homer wrote \"The Iliad\"." as double_within_double,
 > 'Homer also wrote "The Odyssey".' as double_within_single;
+----------------------+----------------------+--------------------------+---------------------------------+
| single_within_double | single_within_single | double_within_double |
double_within_single |
+----------------------+----------------------+--------------------------+---------------------------------+
| What's happening? | I'm not sure. | Homer wrote "The Iliad". | Homer also
wrote "The Odyssey". |
+----------------------+----------------------+--------------------------+---------------------------------+

Field terminator character in CREATE TABLE:

Note: TheCREATE TABLE clausesFIELDS TERMINATED BY,ESCAPED BY, andLINES TERMINATED
BY have special rules for the string literal used for their argument, because they all require a single
character. You can use a regular character surrounded by single or double quotation marks, an octal
sequence such as '\054' (representing a comma), or an integer in the range '-127'..'128' (with
quotation marks but no backslash), which is interpreted as a single-byte ASCII character. Negative
values are subtracted from 256; for example, FIELDS TERMINATED BY '-2' sets the field delimiter
to ASCII code 254, the “Icelandic Thorn” character used as a delimiter by some data formats.

impala-shell considerations:

When dealing with output that includes non-ASCII or non-printable characters such as linefeeds and backspaces, use
the impala-shell options to save to a file, turn off pretty printing, or both rather than relying on how the output
appears visually. See impala-shell Configuration Options on page 471 for a list of impala-shell options.

Apache Impala Guide | 187

Impala SQL Language Reference

Boolean Literals

For BOOLEAN values, the literals are TRUE and FALSE, with no quotation marks and case-insensitive.

Examples:

select true;
select * from t1 where assertion = false;
select case bool_col when true then 'yes' when false 'no' else 'null' end from t1;

Timestamp Literals

Impala automatically converts STRING literals of the correct format into TIMESTAMP values. Timestamp values are
accepted in the format "yyyy-MM-dd HH:mm:ss.SSSSSS", and can consist of just the date, or just the time, with
or without the fractional second portion. For example, you can specify TIMESTAMP values such as '1966-07-30',
'08:30:00', or '1985-09-25 17:45:30.005'. Casting an integer or floating-point value N to TIMESTAMP produces
a value that is N seconds past the start of the epoch date (January 1, 1970). By default, the result value represents a
date and time in the UTC time zone. If the setting --use_local_tz_for_unix_timestamp_conversions=true
is in effect, the resulting TIMESTAMP represents a date and time in the local time zone.

You can also use INTERVAL expressions to add or subtract from timestamp literal values, such as CAST('1966-07-30'
AS TIMESTAMP) + INTERVAL 5 YEARS + INTERVAL 3 DAYS. See TIMESTAMP Data Type on page 149 for details.

Depending on your data pipeline, youmight receive date and time data as text, in notation that does not exactly match
the format for Impala TIMESTAMP literals. See Impala Date and Time Functions on page 364 for functions that can
convert between a variety of string literals (including different field order, separators, and timezone notation) and
equivalent TIMESTAMP or numeric values.

NULL

The notion of NULL values is familiar from all kinds of database systems, but each SQL dialect can have its own behavior
and restrictions on NULL values. For Big Data processing, the precise semantics of NULL values are significant: any
misunderstanding could lead to inaccurate results or misformatted data, that could be time-consuming to correct for
large data sets.

• NULL is a different value than an empty string. The empty string is represented by a string literal with nothing
inside, "" or ''.

• In a delimited text file, the NULL value is represented by the special token \N.
• When Impala inserts data into a partitioned table, and the value of one of the partitioning columns is NULL or the

empty string, the data is placed in a special partition that holds only these two kinds of values. When these values
are returned in a query, the result is NULLwhether the value was originally NULL or an empty string. This behavior
is compatible with the way Hive treats NULL values in partitioned tables. Hive does not allow empty strings as
partition keys, and it returns a string value such as __HIVE_DEFAULT_PARTITION__ instead of NULLwhen such
values are returned from a query. For example:

create table t1 (i int) partitioned by (x int, y string);
-- Select an INT column from another table, with all rows going into a special HDFS
subdirectory
-- named __HIVE_DEFAULT_PARTITION__. Depending on whether one or both of the partitioning
 keys
-- are null, this special directory name occurs at different levels of the physical data
 directory
-- for the table.
insert into t1 partition(x=NULL, y=NULL) select c1 from some_other_table;
insert into t1 partition(x, y=NULL) select c1, c2 from some_other_table;
insert into t1 partition(x=NULL, y) select c1, c3 from some_other_table;

• There is no NOT NULL clause when defining a column to prevent NULL values in that column.
• There is no DEFAULT clause to specify a non-NULL default value.
• If an INSERT operation mentions some columns but not others, the unmentioned columns contain NULL for all

inserted rows.

188 | Apache Impala Guide

Impala SQL Language Reference

• In Impala 1.2.1 and higher, all NULL values come at the end of the result set for ORDER BY ... ASC queries, and
at the beginning of the result set for ORDER BY ... DESC queries. In effect, NULL is considered greater than all
other values for sorting purposes. The original Impala behavior always put NULL values at the end, even for ORDER
BY ... DESC queries. The new behavior in Impala 1.2.1 makes Impala more compatible with other popular
database systems. In Impala 1.2.1 and higher, you can override or specify the sorting behavior for NULL by adding
the clause NULLS FIRST or NULLS LAST at the end of the ORDER BY clause.

Note: Because the NULLS FIRST and NULLS LAST keywords are not currently available in Hive
queries, any views you create using those keywords will not be available through Hive.

• In all other contexts besides sorting with ORDER BY, comparing a NULL to anything else returns NULL, making
the comparison meaningless. For example, 10 > NULL produces NULL, 10 < NULL also produces NULL, 5
BETWEEN 1 AND NULL produces NULL, and so on.

Several built-in functions serve as shorthand for evaluating expressions and returningNULL, 0, or someother substitution
value depending on the expression result: ifnull(), isnull(), nvl(), nullif(), nullifzero(), and
zeroifnull(). See Impala Conditional Functions on page 392 for details.

SQL Operators
SQL operators are a class of comparison functions that arewidely usedwithin theWHERE clauses ofSELECT statements.

Arithmetic Operators

The arithmetic operators use expressionswith a left-hand argument, the operator, and then (inmost cases) a right-hand
argument.

Syntax:

left_hand_arg binary_operator right_hand_arg
unary_operator single_arg

• + and -: Can be used either as unary or binary operators.

– With unary notation, such as +5, -2.5, or -col_name, they multiply their single numeric argument by +1
or -1. Therefore, unary + returns its argument unchanged, while unary - flips the sign of its argument.
Although you can double up these operators in expressions such as ++5 (always positive) or -+2 or +-2 (both
always negative), you cannot double the unary minus operator because -- is interpreted as the start of a
comment. (You can use a double unary minus operator if you separate the - characters, for example with a
space or parentheses.)

– With binary notation, such as 2+2, 5-2.5, or col1 + col2, they add or subtract respectively the right-hand
argument to (or from) the left-hand argument. Both arguments must be of numeric types.

• * and /: Multiplication and division respectively. Both arguments must be of numeric types.

Whenmultiplying, the shorter argument is promoted if necessary (such as SMALLINT to INT or BIGINT, or FLOAT
to DOUBLE), and then the result is promoted again to the next larger type. Thus, multiplying a TINYINT and an
INT produces a BIGINT result. Multiplying a FLOAT and a FLOAT produces a DOUBLE result. Multiplying a FLOAT
and a DOUBLE or a DOUBLE and a DOUBLE produces a DECIMAL(38,17), because DECIMAL values can represent
much larger and more precise values than DOUBLE.

When dividing, Impala always treats the arguments and result as DOUBLE values to avoid losing precision. If you
need to insert the results of a division operation into a FLOAT column, use the CAST() function to convert the
result to the correct type.

Apache Impala Guide | 189

Impala SQL Language Reference

• DIV: Integer division. Arguments are not promoted to a floating-point type, and any fractional result is discarded.
For example, 13 DIV 7 returns 1, 14 DIV 7 returns 2, and 15 DIV 7 returns 2. This operator is the same as
the QUOTIENT() function.

• %: Modulo operator. Returns the remainder of the left-hand argument divided by the right-hand argument. Both
arguments must be of one of the integer types.

• &, |, ~, and ^: Bitwise operators that return the logical AND, logical OR, NOT, or logical XOR (exclusive OR) of their
argument values. Both arguments must be of one of the integer types. If the arguments are of different type, the
argument with the smaller type is implicitly extended to match the argument with the longer type.

You can chain a sequence of arithmetic expressions, optionally grouping them with parentheses.

The arithmetic operators generally do not have equivalent calling conventions using functional notation. For example,
prior to Impala 2.2.0 / CDH 5.4.0, there is no MOD() function equivalent to the %modulo operator. Conversely, there
are some arithmetic functions that do not have a corresponding operator. For example, for exponentiation you use
the POW() function, but there is no ** exponentiation operator. See Impala Mathematical Functions on page 340 for
the arithmetic functions you can use.

Complex type considerations:

To access a columnwith a complex type (ARRAY, STRUCT, or MAP) in an aggregation function, you unpack the individual
elements using join notation in the query, and then apply the function to the final scalar item, field, key, or value at
the bottom of any nested type hierarchy in the column. See Complex Types (CDH 5.5 or higher only) on page 157 for
details about using complex types in Impala.

The following example demonstrates calls to several aggregation functions using values from a column containing
nested complex types (an ARRAY of STRUCT items). The array is unpacked inside the query using join notation. The
array elements are referenced using the ITEM pseudocolumn, and the structure fields inside the array elements are
referencedusing dot notation. Numeric values such asSUM() andAVG() are computed using the numericR_NATIONKEY
field, and the general-purpose MAX() and MIN() values are computed from the string N_NAME field.

describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

select r_name, r_nations.item.n_nationkey
 from region, region.r_nations as r_nations
order by r_name, r_nations.item.n_nationkey;
+-------------+------------------+
| r_name | item.n_nationkey |
+-------------+------------------+
AFRICA	0
AFRICA	5
AFRICA	14
AFRICA	15
AFRICA	16
AMERICA	1
AMERICA	2
AMERICA	3
AMERICA	17
AMERICA	24
ASIA	8
ASIA	9
ASIA	12
ASIA	18
ASIA	21

190 | Apache Impala Guide

Impala SQL Language Reference

EUROPE	6
EUROPE	7
EUROPE	19
EUROPE	22
EUROPE	23
MIDDLE EAST	4
MIDDLE EAST	10
MIDDLE EAST	11
MIDDLE EAST	13
MIDDLE EAST	20
+-------------+------------------+

select
 r_name,
 count(r_nations.item.n_nationkey) as count,
 sum(r_nations.item.n_nationkey) as sum,
 avg(r_nations.item.n_nationkey) as avg,
 min(r_nations.item.n_name) as minimum,
 max(r_nations.item.n_name) as maximum,
 ndv(r_nations.item.n_nationkey) as distinct_vals
from
 region, region.r_nations as r_nations
group by r_name
order by r_name;
+-------------+-------+-----+------+-----------+----------------+---------------+
| r_name | count | sum | avg | minimum | maximum | distinct_vals |
+-------------+-------+-----+------+-----------+----------------+---------------+
AFRICA	5	50	10	ALGERIA	MOZAMBIQUE	5
AMERICA	5	47	9.4	ARGENTINA	UNITED STATES	5
ASIA	5	68	13.6	CHINA	VIETNAM	5
EUROPE	5	77	15.4	FRANCE	UNITED KINGDOM	5
MIDDLE EAST	5	58	11.6	EGYPT	SAUDI ARABIA	5
+-------------+-------+-----+------+-----------+----------------+---------------+

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP) directly in an operator. You can apply
operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY, or the key
or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot notation or
ITEM, KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that is an item
within an ARRAY column. Once the scalar numeric value R_NATIONKEY is extracted, it can be used in an arithmetic
expression, such as multiplying by 10:

-- The SMALLINT is a field within an array of structs.
describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

-- When we refer to the scalar value using dot notation,
-- we can use arithmetic and comparison operators on it
-- like any other number.
select r_name, nation.item.n_name, nation.item.n_nationkey * 10
 from region, region.r_nations as nation
where nation.item.n_nationkey < 5;
+-------------+-------------+------------------------------+
| r_name | item.n_name | nation.item.n_nationkey * 10 |
+-------------+-------------+------------------------------+
AMERICA	CANADA	30
AMERICA	BRAZIL	20
AMERICA	ARGENTINA	10

Apache Impala Guide | 191

Impala SQL Language Reference

| MIDDLE EAST | EGYPT | 40 |
| AFRICA | ALGERIA | 0 |
+-------------+-------------+------------------------------+

BETWEEN Operator

In a WHERE clause, compares an expression to both a lower and upper bound. The comparison is successful is the
expression is greater than or equal to the lower bound, and less than or equal to the upper bound. If the bound values
are switched, so the lower bound is greater than the upper bound, does not match any values.

Syntax:

expression BETWEEN lower_bound AND upper_bound

Data types: Typically used with numeric data types.Works with any data type, although not very practical for BOOLEAN
values. (BETWEEN false AND true will match all BOOLEAN values.) Use CAST() if necessary to ensure the lower
and upper bound values are compatible types. Call string or date/time functions if necessary to extract or transform
the relevant portion to compare, especially if the value can be transformed into a number.

Usage notes:

Be careful when using short string operands. A longer string that starts with the upper bound valuewill not be included,
because it is considered greater than the upper bound. For example, BETWEEN 'A' and 'M' would not match the
string value 'Midway'. Use functions such as upper(), lower(), substr(), trim(), and so on if necessary to ensure
the comparison works as expected.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP) directly in an operator. You can apply
operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY, or the key
or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot notation or
ITEM, KEY, or VALUE pseudocolumn names.

Examples:

-- Retrieve data for January through June, inclusive.
select c1 from t1 where month between 1 and 6;

-- Retrieve data for names beginning with 'A' through 'M' inclusive.
-- Only test the first letter to ensure all the values starting with 'M' are matched.
-- Do a case-insensitive comparison to match names with various capitalization
conventions.
select last_name from customers where upper(substr(last_name,1,1)) between 'A' and 'M';

-- Retrieve data for only the first week of each month.
select count(distinct visitor_id)) from web_traffic where dayofmonth(when_viewed) between
 1 and 7;

The following example shows how to do a BETWEEN comparison using a numeric field of a STRUCT type that is an item
within an ARRAY column. Once the scalar numeric value R_NATIONKEY is extracted, it can be used in a comparison
operator:

-- The SMALLINT is a field within an array of structs.
describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	

192 | Apache Impala Guide

Impala SQL Language Reference

| | >> | |
+-------------+-------------------------+---------+

-- When we refer to the scalar value using dot notation,
-- we can use arithmetic and comparison operators on it
-- like any other number.
select r_name, nation.item.n_name, nation.item.n_nationkey
from region, region.r_nations as nation
where nation.item.n_nationkey between 3 and 5
+-------------+-------------+------------------+
| r_name | item.n_name | item.n_nationkey |
+-------------+-------------+------------------+
AMERICA	CANADA	3
MIDDLE EAST	EGYPT	4
AFRICA	ETHIOPIA	5
+-------------+-------------+------------------+

Comparison Operators

Impala supports the familiar comparison operators for checking equality and sort order for the column data types:

Syntax:

left_hand_expression comparison_operator right_hand_expression

• =, !=, <>: apply to all scalar types.
• <, <=, >, >=: apply to all scalar types; for BOOLEAN, TRUE is considered greater than FALSE.

Alternatives:

The IN and BETWEEN operators provide shorthand notation for expressing combinations of equality, less than, and
greater than comparisons with a single operator.

Because comparing any value to NULL produces NULL rather than TRUE or FALSE, use the IS NULL and IS NOT
NULL operators to check if a value is NULL or not.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP) directly in an operator. You can apply
operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY, or the key
or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot notation or
ITEM, KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that is an item
within an ARRAY column. Once the scalar numeric value R_NATIONKEY is extracted, it can be used with a comparison
operator such as <:

-- The SMALLINT is a field within an array of structs.
describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

-- When we refer to the scalar value using dot notation,
-- we can use arithmetic and comparison operators on it
-- like any other number.
select r_name, nation.item.n_name, nation.item.n_nationkey
from region, region.r_nations as nation

Apache Impala Guide | 193

Impala SQL Language Reference

where nation.item.n_nationkey < 5
+-------------+-------------+------------------+
| r_name | item.n_name | item.n_nationkey |
+-------------+-------------+------------------+
AMERICA	CANADA	3
AMERICA	BRAZIL	2
AMERICA	ARGENTINA	1
MIDDLE EAST	EGYPT	4
AFRICA	ALGERIA	0
+-------------+-------------+------------------+

EXISTS Operator

The EXISTS operator tests whether a subquery returns any results. You typically use it to find values from one table
that have corresponding values in another table.

The converse, NOT EXISTS, helps to find all the values from one table that do not have any corresponding values in
another table.

Syntax:

EXISTS (subquery)
NOT EXISTS (subquery)

Usage notes:

The subquery can refer to a different table than the outer query block, or the same table. For example, you might use
EXISTS or NOT EXISTS to check the existence of parent/child relationships between two columns of the same table.

You can also use operators and function calls within the subquery to test for other kinds of relationships other than
strict equality. For example, youmight use a call to COUNT() in the subquery to checkwhether the number ofmatching
values is higher or lower than some limit. You might call a UDF in the subquery to check whether values in one table
matches a hashed representation of those same values in a different table.

NULL considerations:

If the subquery returns any value at all (even NULL), EXISTS returns TRUE and NOT EXISTS returns false.

The following example shows how even when the subquery returns only NULL values, EXISTS still returns TRUE and
thus matches all the rows from the table in the outer query block.

[localhost:21000] > create table all_nulls (x int);
[localhost:21000] > insert into all_nulls values (null), (null), (null);
[localhost:21000] > select y from t2 where exists (select x from all_nulls);
+---+
| y |
+---+
| 2 |
| 4 |
| 6 |
+---+

However, if the table in the subquery is empty and so the subquery returns an empty result set, EXISTS returns FALSE:

[localhost:21000] > create table empty (x int);
[localhost:21000] > select y from t2 where exists (select x from empty);
[localhost:21000] >

Added in: CDH 5.2.0 (Impala 2.0.0)

Restrictions:

Correlated subqueries used in EXISTS and IN operators cannot include a LIMIT clause.

The NOT EXISTS operator requires a correlated subquery.

Complex type considerations:

194 | Apache Impala Guide

Impala SQL Language Reference

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP) directly in an operator. You can apply
operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY, or the key
or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot notation or
ITEM, KEY, or VALUE pseudocolumn names.

Examples:

The following examples refer to these simple tables containing small sets of integers or strings:

[localhost:21000] > create table t1 (x int);
[localhost:21000] > insert into t1 values (1), (2), (3), (4), (5), (6);

[localhost:21000] > create table t2 (y int);
[localhost:21000] > insert into t2 values (2), (4), (6);

[localhost:21000] > create table t3 (z int);
[localhost:21000] > insert into t3 values (1), (3), (5);

[localhost:21000] > create table month_names (m string);
[localhost:21000] > insert into month_names values
 > ('January'), ('February'), ('March'),
 > ('April'), ('May'), ('June'), ('July'),
 > ('August'), ('September'), ('October'),
 > ('November'), ('December');

The following example shows a correlated subquery that finds all the values in one table that exist in another table.
For each value X from T1, the query checks if the Y column of T2 contains an identical value, and the EXISTS operator
returns TRUE or FALSE as appropriate in each case.

localhost:21000] > select x from t1 where exists (select y from t2 where t1.x = y);
+---+
| x |
+---+
| 2 |
| 4 |
| 6 |
+---+

An uncorrelated query is less interesting in this case. Because the subquery always returns TRUE, all rows from T1 are
returned. If the table contents where changed so that the subquery did not match any rows, none of the rows from
T1 would be returned.

[localhost:21000] > select x from t1 where exists (select y from t2 where y > 5);
+---+
| x |
+---+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
+---+

The following example shows how an uncorrelated subquery can test for the existence of some condition within a
table. By using LIMIT 1 or an aggregate function, the query returns a single result or no result based on whether the
subquery matches any rows. Here, we know that T1 and T2 contain some even numbers, but T3 does not.

[localhost:21000] > select "contains an even number" from t1 where exists (select x from
 t1 where x % 2 = 0) limit 1;
+---------------------------+
| 'contains an even number' |
+---------------------------+
| contains an even number |
+---------------------------+
[localhost:21000] > select "contains an even number" as assertion from t1 where exists
 (select x from t1 where x % 2 = 0) limit 1;

Apache Impala Guide | 195

Impala SQL Language Reference

+-------------------------+
| assertion |
+-------------------------+
| contains an even number |
+-------------------------+
[localhost:21000] > select "contains an even number" as assertion from t2 where exists
 (select x from t2 where y % 2 = 0) limit 1;
ERROR: AnalysisException: couldn't resolve column reference: 'x'
[localhost:21000] > select "contains an even number" as assertion from t2 where exists
 (select y from t2 where y % 2 = 0) limit 1;
+-------------------------+
| assertion |
+-------------------------+
| contains an even number |
+-------------------------+
[localhost:21000] > select "contains an even number" as assertion from t3 where exists
 (select z from t3 where z % 2 = 0) limit 1;
[localhost:21000] >

The following example finds numbers in one table that are 1 greater than numbers from another table. The EXISTS
notation is simpler than an equivalent CROSS JOIN between the tables. (The example then also illustrates how the
same test could be performed using an IN operator.)

[localhost:21000] > select x from t1 where exists (select y from t2 where x = y + 1);
+---+
| x |
+---+
| 3 |
| 5 |
+---+
[localhost:21000] > select x from t1 where x in (select y + 1 from t2);
+---+
| x |
+---+
| 3 |
| 5 |
+---+

The following example finds values from one table that do not exist in another table.

[localhost:21000] > select x from t1 where not exists (select y from t2 where x = y);
+---+
| x |
+---+
| 1 |
| 3 |
| 5 |
+---+

The following example uses the NOT EXISTS operator to find all the leaf nodes in tree-structured data. This simplified
“tree of life” has multiple levels (class, order, family, and so on), with each item pointing upward through a PARENT
pointer. The example runs an outer query and a subquery on the same table, returning only those items whose ID
value is not referenced by the PARENT of any other item.

[localhost:21000] > create table tree (id int, parent int, name string);
[localhost:21000] > insert overwrite tree values
 > (0, null, "animals"),
 > (1, 0, "placentals"),
 > (2, 0, "marsupials"),
 > (3, 1, "bats"),
 > (4, 1, "cats"),
 > (5, 2, "kangaroos"),
 > (6, 4, "lions"),
 > (7, 4, "tigers"),
 > (8, 5, "red kangaroo"),
 > (9, 2, "wallabies");
[localhost:21000] > select name as "leaf node" from tree one
 > where not exists (select parent from tree two where one.id =

196 | Apache Impala Guide

Impala SQL Language Reference

two.parent);
+--------------+
| leaf node |
+--------------+
| bats |
| lions |
| tigers |
| red kangaroo |
| wallabies |
+--------------+

Related information:

Subqueries in Impala SELECT Statements on page 298

IN Operator

The IN operator compares an argument value to a set of values, and returns TRUE if the argument matches any value
in the set. The NOT IN operator reverses the comparison, and checks if the argument value is not part of a set of
values.

Syntax:

expression IN (expression [, expression])
expression IN (subquery)

expression NOT IN (expression [, expression])
expression NOT IN (subquery)

The left-hand expression and the set of comparison values must be of compatible types.

The left-hand expression must consist only of a single value, not a tuple. Although the left-hand expression is typically
a column name, it could also be some other value. For example, the WHERE clauses WHERE id IN (5) and WHERE
5 IN (id) produce the same results.

The set of values to check against can be specified as constants, function calls, column names, or other expressions in
the query text. The maximum number of expressions in the IN list is 9999. (The maximum number of elements of a
single expression is 10,000 items, and the IN operator itself counts as one.)

In Impala 2.0 and higher, the set of values can also be generated by a subquery. IN can evaluate an unlimited number
of results using a subquery.

Usage notes:

Any expression using the IN operator could be rewritten as a series of equality tests connected with OR, but the IN
syntax is often clearer, more concise, and easier for Impala to optimize. For example, with partitioned tables, queries
frequently use IN clauses to filter data by comparing the partition key columns to specific values.

NULL considerations:

If there really is a matching non-null value, IN returns TRUE:

[localhost:21000] > select 1 in (1,null,2,3);
+----------------------+
| 1 in (1, null, 2, 3) |
+----------------------+
| true |
+----------------------+
[localhost:21000] > select 1 not in (1,null,2,3);
+--------------------------+
| 1 not in (1, null, 2, 3) |
+--------------------------+
| false |
+--------------------------+

Apache Impala Guide | 197

Impala SQL Language Reference

If the searched value is not found in the comparison values, and the comparison values include NULL, the result is
NULL:

[localhost:21000] > select 5 in (1,null,2,3);
+----------------------+
| 5 in (1, null, 2, 3) |
+----------------------+
| NULL |
+----------------------+
[localhost:21000] > select 5 not in (1,null,2,3);
+--------------------------+
| 5 not in (1, null, 2, 3) |
+--------------------------+
| NULL |
+--------------------------+
[localhost:21000] > select 1 in (null);
+-------------+
| 1 in (null) |
+-------------+
| NULL |
+-------------+
[localhost:21000] > select 1 not in (null);
+-----------------+
| 1 not in (null) |
+-----------------+
| NULL |
+-----------------+

If the left-hand argument is NULL, IN always returns NULL. This rule applies even if the comparison values include
NULL.

[localhost:21000] > select null in (1,2,3);
+-------------------+
| null in (1, 2, 3) |
+-------------------+
| NULL |
+-------------------+
[localhost:21000] > select null not in (1,2,3);
+-----------------------+
| null not in (1, 2, 3) |
+-----------------------+
| NULL |
+-----------------------+
[localhost:21000] > select null in (null);
+----------------+
| null in (null) |
+----------------+
| NULL |
+----------------+
[localhost:21000] > select null not in (null);
+--------------------+
| null not in (null) |
+--------------------+
| NULL |
+--------------------+

Added in: Available in earlier Impala releases, but new capabilities were added in CDH 5.2.0 / Impala 2.0.0

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP) directly in an operator. You can apply
operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY, or the key
or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot notation or
ITEM, KEY, or VALUE pseudocolumn names.

198 | Apache Impala Guide

Impala SQL Language Reference

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that is an item
within an ARRAY column. Once the scalar numeric value R_NATIONKEY is extracted, it can be used in an arithmetic
expression, such as multiplying by 10:

-- The SMALLINT is a field within an array of structs.
describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

-- When we refer to the scalar value using dot notation,
-- we can use arithmetic and comparison operators on it
-- like any other number.
select r_name, nation.item.n_name, nation.item.n_nationkey
from region, region.r_nations as nation
where nation.item.n_nationkey in (1,3,5)
+---------+-------------+------------------+
| r_name | item.n_name | item.n_nationkey |
+---------+-------------+------------------+
AMERICA	CANADA	3
AMERICA	ARGENTINA	1
AFRICA	ETHIOPIA	5
+---------+-------------+------------------+

Restrictions:

Correlated subqueries used in EXISTS and IN operators cannot include a LIMIT clause.

Examples:

-- Using IN is concise and self-documenting.
SELECT * FROM t1 WHERE c1 IN (1,2,10);
-- Equivalent to series of = comparisons ORed together.
SELECT * FROM t1 WHERE c1 = 1 OR c1 = 2 OR c1 = 10;

SELECT c1 AS "starts with vowel" FROM t2 WHERE upper(substr(c1,1,1)) IN
('A','E','I','O','U');

SELECT COUNT(DISTINCT(visitor_id)) FROM web_traffic WHERE month IN
('January','June','July');

Related information:

Subqueries in Impala SELECT Statements on page 298

IS NULL Operator

The IS NULL operator, and its converse the IS NOT NULL operator, test whether a specified value is NULL. Because
using NULLwith any of the other comparison operators such as = or != also returns NULL rather than TRUE or FALSE,
you use a special-purpose comparison operator to check for this special condition.

Syntax:

expression IS NULL
expression IS NOT NULL

Usage notes:

Apache Impala Guide | 199

Impala SQL Language Reference

In many cases, NULL values indicate some incorrect or incomplete processing during data ingestion or conversion. You
might check whether any values in a column are NULL, and if so take some followup action to fill them in.

With sparse data, often represented in “wide” tables, it is common for most values to be NULLwith only an occasional
non-NULL value. In those cases, you can use the IS NOT NULL operator to identify the rows containing any data at
all for a particular column, regardless of the actual value.

With a well-designed database schema, effective use of NULL values and IS NULL and IS NOT NULL operators can
save having to design custom logic around special values such as 0, -1, 'N/A', empty string, and so on. NULL lets you
distinguish between a value that is known to be 0, false, or empty, and a truly unknown value.

Complex type considerations:

This operator is not applicable to complex type columns (STRUCT, ARRAY, or MAP). Using a complex type column with
IS NULL or IS NOT NULL causes a query error.

Examples:

-- If this value is non-zero, something is wrong.
select count(*) from employees where employee_id is null;

-- With data from disparate sources, some fields might be blank.
-- Not necessarily an error condition.
select count(*) from census where household_income is null;

-- Sometimes we expect fields to be null, and followup action
-- is needed when they are not.
select count(*) from web_traffic where weird_http_code is not null;

LIKE Operator

A comparison operator for STRING data, with basic wildcard capability using _ to match a single character and % to
match multiple characters. The argument expression must match the entire string value. Typically, it is more efficient
to put any % wildcard match at the end of the string.

Syntax:

string_expression LIKE wildcard_expression
string_expression NOT LIKE wildcard_expression

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP) directly in an operator. You can apply
operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY, or the key
or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot notation or
ITEM, KEY, or VALUE pseudocolumn names.

Examples:

select distinct c_last_name from customer where c_last_name like 'Mc%' or c_last_name
like 'Mac%';
select count(c_last_name) from customer where c_last_name like 'M%';
select c_email_address from customer where c_email_address like '%.edu';

-- We can find 4-letter names beginning with 'M' by calling functions...
select distinct c_last_name from customer where length(c_last_name) = 4 and
substr(c_last_name,1,1) = 'M';
-- ...or in a more readable way by matching M followed by exactly 3 characters.
select distinct c_last_name from customer where c_last_name like 'M___';

For a more general kind of search operator using regular expressions, see REGEXP Operator on page 203.

Logical Operators

Logical operators return a BOOLEAN value, based on a binary or unary logical operation between arguments that are
also Booleans. Typically, the argument expressions use comparison operators.

200 | Apache Impala Guide

Impala SQL Language Reference

Syntax:

boolean_expression binary_logical_operator boolean_expression
unary_logical_operator boolean_expression

The Impala logical operators are:

• AND: A binary operator that returns true if its left-hand and right-hand arguments both evaluate to true, NULL
if either argument is NULL, and false otherwise.

• OR: A binary operator that returns true if either of its left-hand and right-hand arguments evaluate to true, NULL
if one argument is NULL and the other is either NULL or false, and false otherwise.

• NOT: A unary operator that flips the state of a Boolean expression from true to false, or false to true. If the
argument expression is NULL, the result remains NULL. (When NOT is used this way as a unary logical operator, it
works differently than the IS NOT NULL comparison operator, which returns true when applied to a NULL.)

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP) directly in an operator. You can apply
operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY, or the key
or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot notation or
ITEM, KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that is an item
within an ARRAY column. Once the scalar numeric value R_NATIONKEY is extracted, it can be used in an arithmetic
expression, such as multiplying by 10:

-- The SMALLINT is a field within an array of structs.
describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

-- When we refer to the scalar value using dot notation,
-- we can use arithmetic and comparison operators on it
-- like any other number.
select r_name, nation.item.n_name, nation.item.n_nationkey
 from region, region.r_nations as nation
where
 nation.item.n_nationkey between 3 and 5
 or nation.item.n_nationkey < 15;
+-------------+----------------+------------------+
| r_name | item.n_name | item.n_nationkey |
+-------------+----------------+------------------+
EUROPE	UNITED KINGDOM	23
EUROPE	RUSSIA	22
EUROPE	ROMANIA	19
ASIA	VIETNAM	21
ASIA	CHINA	18
AMERICA	UNITED STATES	24
AMERICA	PERU	17
AMERICA	CANADA	3
MIDDLE EAST	SAUDI ARABIA	20
MIDDLE EAST	EGYPT	4
AFRICA	MOZAMBIQUE	16
AFRICA	ETHIOPIA	5
+-------------+----------------+------------------+

Examples:

Apache Impala Guide | 201

Impala SQL Language Reference

These examples demonstrate the AND operator:

[localhost:21000] > select true and true;
+---------------+
| true and true |
+---------------+
| true |
+---------------+
[localhost:21000] > select true and false;
+----------------+
| true and false |
+----------------+
| false |
+----------------+
[localhost:21000] > select false and false;
+-----------------+
| false and false |
+-----------------+
| false |
+-----------------+
[localhost:21000] > select true and null;
+---------------+
| true and null |
+---------------+
| NULL |
+---------------+
[localhost:21000] > select (10 > 2) and (6 != 9);
+-----------------------+
| (10 > 2) and (6 != 9) |
+-----------------------+
| true |
+-----------------------+

These examples demonstrate the OR operator:

[localhost:21000] > select true or true;
+--------------+
| true or true |
+--------------+
| true |
+--------------+
[localhost:21000] > select true or false;
+---------------+
| true or false |
+---------------+
| true |
+---------------+
[localhost:21000] > select false or false;
+----------------+
| false or false |
+----------------+
| false |
+----------------+
[localhost:21000] > select true or null;
+--------------+
| true or null |
+--------------+
| true |
+--------------+
[localhost:21000] > select null or true;
+--------------+
| null or true |
+--------------+
| true |
+--------------+
[localhost:21000] > select false or null;
+---------------+
| false or null |
+---------------+
| NULL |
+---------------+
[localhost:21000] > select (1 = 1) or ('hello' = 'world');

202 | Apache Impala Guide

Impala SQL Language Reference

+--------------------------------+
| (1 = 1) or ('hello' = 'world') |
+--------------------------------+
| true |
+--------------------------------+
[localhost:21000] > select (2 + 2 != 4) or (-1 > 0);
+--------------------------+
| (2 + 2 != 4) or (-1 > 0) |
+--------------------------+
| false |
+--------------------------+

These examples demonstrate the NOT operator:

[localhost:21000] > select not true;
+----------+
| not true |
+----------+
| false |
+----------+
[localhost:21000] > select not false;
+-----------+
| not false |
+-----------+
| true |
+-----------+
[localhost:21000] > select not null;
+----------+
| not null |
+----------+
| NULL |
+----------+
[localhost:21000] > select not (1=1);
+-------------+
| not (1 = 1) |
+-------------+
| false |
+-------------+

REGEXP Operator

Tests whether a value matches a regular expression. Uses the POSIX regular expression syntax where ^ and $match
the beginning and end of the string, . represents any single character, * represents a sequence of zero or more items,
+ represents a sequence of one or more items, ? produces a non-greedy match, and so on.

Syntax:

string_expression REGEXP regular_expression

Usage notes:

The RLIKE operator is a synonym for REGEXP.

The | symbol is the alternation operator, typically used within () to match different sequences. The () groups do not
allow backreferences. To retrieve the part of a valuematchedwithin a () section, use the regexp_extract() built-in
function.

In Impala 1.3.1 and higher, the REGEXP and RLIKE operators now match a regular expression string that occurs
anywhere inside the target string, the same as if the regular expression was enclosed on each side by .*. See REGEXP
Operator on page 203 for examples. Previously, these operators only succeeded when the regular expression matched
the entire target string. This change improves compatibility with the regular expression support for popular database
systems. There is no change to the behavior of the regexp_extract() and regexp_replace() built-in functions.

In Impala 2.0 and later, the Impala regular expression syntax conforms to the POSIX Extended Regular Expression syntax
used by the Google RE2 library. For details, see the RE2 documentation. It has most idioms familiar from regular
expressions in Perl, Python, and so on, including .*? for non-greedy matches.

Apache Impala Guide | 203

Impala SQL Language Reference

https://code.google.com/p/re2/

In Impala 2.0 and later, a change in the underlying regular expression library could cause changes in the way regular
expressions are interpreted by this function. Test any queries that use regular expressions and adjust the expression
patterns if necessary. See Incompatible Changes Introduced in Impala 2.0.0 / CDH 5.2.0 on page 629 for details.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP) directly in an operator. You can apply
operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY, or the key
or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot notation or
ITEM, KEY, or VALUE pseudocolumn names.

Examples:

The following examples demonstrate the identical syntax for the REGEXP and RLIKE operators.

-- Find all customers whose first name starts with 'J', followed by 0 or more of any
character.
select c_first_name, c_last_name from customer where c_first_name regexp '^J.*';
select c_first_name, c_last_name from customer where c_first_name rlike '^J.*';

-- Find 'Macdonald', where the first 'a' is optional and the 'D' can be upper- or
lowercase.
-- The ^...$ are required, to match the start and end of the value.
select c_first_name, c_last_name from customer where c_last_name regexp '^Ma?c[Dd]onald$';
select c_first_name, c_last_name from customer where c_last_name rlike '^Ma?c[Dd]onald$';

-- Match multiple character sequences, either 'Mac' or 'Mc'.
select c_first_name, c_last_name from customer where c_last_name regexp
'^(Mac|Mc)donald$';
select c_first_name, c_last_name from customer where c_last_name rlike '^(Mac|Mc)donald$';

-- Find names starting with 'S', then one or more vowels, then 'r', then any other
characters.
-- Matches 'Searcy', 'Sorenson', 'Sauer'.
select c_first_name, c_last_name from customer where c_last_name regexp '^S[aeiou]+r.*$';
select c_first_name, c_last_name from customer where c_last_name rlike '^S[aeiou]+r.*$';

-- Find names that end with 2 or more vowels: letters from the set a,e,i,o,u.
select c_first_name, c_last_name from customer where c_last_name regexp '.*[aeiou]{2,}$';
select c_first_name, c_last_name from customer where c_last_name rlike '.*[aeiou]{2,}$';

-- You can use letter ranges in the [] blocks, for example to find names starting with
 A, B, or C.
select c_first_name, c_last_name from customer where c_last_name regexp '^[A-C].*';
select c_first_name, c_last_name from customer where c_last_name rlike '^[A-C].*';

-- If you are not sure about case, leading/trailing spaces, and so on, you can process
 the
-- column using string functions first.
select c_first_name, c_last_name from customer where lower(trim(c_last_name)) regexp
'^de.*';
select c_first_name, c_last_name from customer where lower(trim(c_last_name)) rlike
'^de.*';

RLIKE Operator

Synonym for the REGEXP operator. See REGEXP Operator on page 203 for details.

Examples:

The following examples demonstrate the identical syntax for the REGEXP and RLIKE operators.

-- Find all customers whose first name starts with 'J', followed by 0 or more of any
character.
select c_first_name, c_last_name from customer where c_first_name regexp '^J.*';
select c_first_name, c_last_name from customer where c_first_name rlike '^J.*';

-- Find 'Macdonald', where the first 'a' is optional and the 'D' can be upper- or
lowercase.
-- The ^...$ are required, to match the start and end of the value.

204 | Apache Impala Guide

Impala SQL Language Reference

select c_first_name, c_last_name from customer where c_last_name regexp '^Ma?c[Dd]onald$';
select c_first_name, c_last_name from customer where c_last_name rlike '^Ma?c[Dd]onald$';

-- Match multiple character sequences, either 'Mac' or 'Mc'.
select c_first_name, c_last_name from customer where c_last_name regexp
'^(Mac|Mc)donald$';
select c_first_name, c_last_name from customer where c_last_name rlike '^(Mac|Mc)donald$';

-- Find names starting with 'S', then one or more vowels, then 'r', then any other
characters.
-- Matches 'Searcy', 'Sorenson', 'Sauer'.
select c_first_name, c_last_name from customer where c_last_name regexp '^S[aeiou]+r.*$';
select c_first_name, c_last_name from customer where c_last_name rlike '^S[aeiou]+r.*$';

-- Find names that end with 2 or more vowels: letters from the set a,e,i,o,u.
select c_first_name, c_last_name from customer where c_last_name regexp '.*[aeiou]{2,}$';
select c_first_name, c_last_name from customer where c_last_name rlike '.*[aeiou]{2,}$';

-- You can use letter ranges in the [] blocks, for example to find names starting with
 A, B, or C.
select c_first_name, c_last_name from customer where c_last_name regexp '^[A-C].*';
select c_first_name, c_last_name from customer where c_last_name rlike '^[A-C].*';

-- If you are not sure about case, leading/trailing spaces, and so on, you can process
 the
-- column using string functions first.
select c_first_name, c_last_name from customer where lower(trim(c_last_name)) regexp
'^de.*';
select c_first_name, c_last_name from customer where lower(trim(c_last_name)) rlike
'^de.*';

Impala Schema Objects and Object Names
With Impala, you work with schema objects that are familiar to database users: primarily databases, tables, views, and
functions. The SQL syntax to work with these objects is explained in Impala SQL Statements on page 215. This section
explains the conceptual knowledge you need to work with these objects and the various ways to specify their names.

Within a table, partitions can also be considered a kind of object. Partitioning is an important subject for Impala, with
its own documentation section covering use cases and performance considerations. See Partitioning for Impala Tables
on page 523 for details.

Impala does not have a counterpart of the “tablespace” notion from some database systems. By default, all the data
files for a database, table, or partition are located within nested folders within the HDFS file system. You can also
specify a particular HDFS location for a given Impala table or partition. The raw data for these objects is represented
as a collection of data files, providing the flexibility to load data by simply moving files into the expected HDFS location.

Information about the schema objects is held in the metastore database. This database is shared between Impala and
Hive, allowing each to create, drop, and query each other's databases, tables, and so on.When Impala makes a change
to schema objects through a CREATE, ALTER, DROP, INSERT, or LOAD DATA statement, it broadcasts those changes
to all nodes in the cluster through the catalog service. When you make such changes through Hive or directly through
manipulating HDFS files, you use the REFRESH or INVALIDATE METADATA statements on the Impala side to recognize
the newly loaded data, new tables, and so on.

Overview of Impala Aliases

When you write the names of tables, columns, or column expressions in a query, you can assign an alias at the same
time. Then you can specify the alias rather than the original namewhenmaking other references to the table or column
in the same statement. You typically specify aliases that are shorter, easier to remember, or both than the original
names. The aliases are printed in the query header, making them useful for self-documenting output.

Apache Impala Guide | 205

Impala SQL Language Reference

To set up an alias, add the AS alias clause immediately after any table, column, or expression name in the SELECT
list or FROM list of a query. The AS keyword is optional; you can also specify the alias immediately after the original
name.

-- Make the column headers of the result set easier to understand.
SELECT c1 AS name, c2 AS address, c3 AS phone FROM table_with_terse_columns;
SELECT SUM(ss_xyz_dollars_net) AS total_sales FROM table_with_cryptic_columns;
-- The alias can be a quoted string for extra readability.
SELECT c1 AS "Employee ID", c2 AS "Date of hire" FROM t1;
-- The AS keyword is optional.
SELECT c1 "Employee ID", c2 "Date of hire" FROM t1;

-- The table aliases assigned in the FROM clause can be used both earlier
-- in the query (the SELECT list) and later (the WHERE clause).
SELECT one.name, two.address, three.phone
 FROM census one, building_directory two, phonebook three
WHERE one.id = two.id and two.id = three.id;

-- The aliases c1 and c2 let the query handle columns with the same names from 2 joined
 tables.
-- The aliases t1 and t2 let the query abbreviate references to long or cryptically
named tables.
SELECT t1.column_n AS c1, t2.column_n AS c2 FROM long_name_table AS t1,
very_long_name_table2 AS t2
 WHERE c1 = c2;
SELECT t1.column_n c1, t2.column_n c2 FROM table1 t1, table2 t2
 WHERE c1 = c2;

To use an alias name that matches one of the Impala reserved keywords (listed in Impala Reserved Words on page
586), surround the identifier with either single or double quotation marks, or `` characters (backticks).

Aliases follow the same rules as identifiers when it comes to case insensitivity. Aliases can be longer than identifiers
(up to the maximum length of a Java string) and can include additional characters such as spaces and dashes when
they are quoted using backtick characters.

Complex type considerations:

Queries involving the complex types (ARRAY, STRUCT, and MAP), typically make extensive use of table aliases. These
queries involve join clauses where the complex type column is treated as a joined table. To construct two-part or
three-part qualified names for the complex column elements in the FROM list, sometimes it is syntactically required to
construct a table alias for the complex column where it is referenced in the join clause. See Complex Types (CDH 5.5
or higher only) on page 157 for details and examples.

Alternatives:

Another way to define different names for the same tables or columns is to create views. See Overview of Impala Views
on page 211 for details.

Overview of Impala Databases

In Impala, a database is a logical container for a group of tables. Each database defines a separate namespace. Within
a database, you can refer to the tables inside it using their unqualified names. Different databases can contain tables
with identical names.

Creating a database is a lightweight operation. There are minimal database-specific properties to configure, only
LOCATION and COMMENT. There is no ALTER DATABASE statement.

Typically, you create a separate database for each project or application, to avoid naming conflicts between tables and
tomake clearwhich tables are related to each other. The USE statement lets you switch between databases. Unqualified
references to tables, views, and functions refer to objects within the current database. You can also refer to objects
in other databases by using qualified names of the form dbname.object_name.

Each database is physically represented by a directory in HDFS. When you do not specify a LOCATION attribute, the
directory is located in the Impala data directory with the associated tables managed by Impala. When you do specify
a LOCATION attribute, any read and write operations for tables in that database are relative to the specified HDFS
directory.

206 | Apache Impala Guide

Impala SQL Language Reference

There is a special database, named default, where you beginwhen you connect to Impala. Tables created in default
are physically located one level higher in HDFS than all the user-created databases.

Impala includes another predefined database,_impala_builtins, that serves as the location for the built-in functions.
To see the built-in functions, use a statement like the following:

show functions in _impala_builtins;
show functions in _impala_builtins like '*substring*';

Related statements:

CREATEDATABASE Statement on page 232, DROPDATABASE Statement on page 253, USE Statement on page 338, SHOW
DATABASES on page 327

Overview of Impala Functions

Functions let you apply arithmetic, string, or other computations and transformations to Impala data. You typically
use them in SELECT lists and WHERE clauses to filter and format query results so that the result set is exactly what you
want, with no further processing needed on the application side.

Scalar functions return a single result for each input row. See Impala Built-In Functions on page 339.

[localhost:21000] > select name, population from country where continent = 'North America'
 order by population desc limit 4;
[localhost:21000] > select upper(name), population from country where continent = 'North
 America' order by population desc limit 4;
+-------------+------------+
| upper(name) | population |
+-------------+------------+
USA	320000000
MEXICO	122000000
CANADA	25000000
GUATEMALA	16000000
+-------------+------------+

Aggregate functions combine the results from multiple rows: either a single result for the entire table, or a separate
result for each group of rows. Aggregate functions are frequently used in combination with GROUP BY and HAVING
clauses in the SELECT statement. See Impala Aggregate Functions on page 404.

[localhost:21000] > select continent, sum(population) as howmany from country group by
 continent order by howmany desc;
+---------------+------------+
| continent | howmany |
+---------------+------------+
Asia	4298723000
Africa	1110635000
Europe	742452000
North America	565265000
South America	406740000
Oceania	38304000
+---------------+------------+

User-defined functions (UDFs) let you code your own logic. They can be either scalar or aggregate functions. UDFs let
you implement important business or scientific logic using high-performance code for Impala to automatically parallelize.
You can also use UDFs to implement convenience functions to simplify reporting or porting SQL from other database
systems. See Impala User-Defined Functions (UDFs) on page 448.

[localhost:21000] > select rot13('Hello world!') as 'Weak obfuscation';
+------------------+
| weak obfuscation |
+------------------+
| Uryyb jbeyq! |
+------------------+
[localhost:21000] > select likelihood_of_new_subatomic_particle(sensor1, sensor2, sensor3)
 as probability
 > from experimental_results group by experiment;

Apache Impala Guide | 207

Impala SQL Language Reference

Each function is associated with a specific database. For example, if you issue a USE somedb statement followed by
CREATE FUNCTION somefunc, the new function is created in the somedb database, and you could refer to it through
the fully qualified name somedb.somefunc. You could then issue another USE statement and create a function with
the same name in a different database.

Impala built-in functions are associated with a special database named _impala_builtins, which lets you refer to
them from any database without qualifying the name.

[localhost:21000] > show databases;
+-------------------------+
| name |
+-------------------------+
| _impala_builtins |
| analytic_functions |
| avro_testing |
| data_file_size |
...
[localhost:21000] > show functions in _impala_builtins like '*subs*';
+-------------+-----------------------------------+
| return type | signature |
+-------------+-----------------------------------+
STRING	substr(STRING, BIGINT)
STRING	substr(STRING, BIGINT, BIGINT)
STRING	substring(STRING, BIGINT)
STRING	substring(STRING, BIGINT, BIGINT)
+-------------+-----------------------------------+

Related statements: CREATE FUNCTION Statement on page 233, DROP FUNCTION Statement on page 255

Overview of Impala Identifiers

Identifiers are the names of databases, tables, or columns that you specify in a SQL statement. The rules for identifiers
governwhat names you can give to things you create, the notation for referring to names containing unusual characters,
and other aspects such as case sensitivity.

• The minimum length of an identifier is 1 character.

• The maximum length of an identifier is currently 128 characters, enforced by the metastore database.

• An identifiermust start with an alphabetic character. The remainder can contain any combination of alphanumeric
characters and underscores. Quoting the identifier with backticks has no effect on the allowed characters in the
name.

• An identifier can contain only ASCII characters.

• To use an identifier name that matches one of the Impala reserved keywords (listed in Impala Reserved Words
on page 586), surround the identifier with `` characters (backticks). Quote the reserved word even if it is part of
a fully qualified name. The following example shows how a reserved word can be used as a column name if it is
quoted with backticks in the CREATE TABLE statement, and how the column name must also be quoted with
backticks in a query:

[localhost:21000] > create table reserved (`data` string);

[localhost:21000] > select data from reserved;
ERROR: AnalysisException: Syntax error in line 1:
select data from reserved
 ^
Encountered: DATA
Expected: ALL, CASE, CAST, DISTINCT, EXISTS, FALSE, IF, INTERVAL, NOT, NULL,
STRAIGHT_JOIN, TRUE, IDENTIFIER
CAUSED BY: Exception: Syntax error

[localhost:21000] > select reserved.data from reserved;
ERROR: AnalysisException: Syntax error in line 1:
select reserved.data from reserved
 ^
Encountered: DATA

208 | Apache Impala Guide

Impala SQL Language Reference

Expected: IDENTIFIER
CAUSED BY: Exception: Syntax error

[localhost:21000] > select reserved.`data` from reserved;

[localhost:21000] >

Important: Because the list of reserved words grows over time as new SQL syntax is added,
consider adopting coding conventions (especially for any automated scripts or in packaged
applications) to always quote all identifiers with backticks. Quoting all identifiers protects your
SQL from compatibility issues if new reserved words are added in later releases.

• Impala identifiers are always case-insensitive. That is, tables named t1 and T1 always refer to the same table,
regardless of quote characters. Internally, Impala always folds all specified table and column names to lowercase.
This is why the column headers in query output are always displayed in lowercase.

See Overview of Impala Aliases on page 205 for how to define shorter or easier-to-remember aliases if the original
names are long or cryptic identifiers. Aliases follow the same rules as identifiers when it comes to case insensitivity.
Aliases can be longer than identifiers (up to themaximum length of a Java string) and can include additional characters
such as spaces and dashes when they are quoted using backtick characters.

Another way to define different names for the same tables or columns is to create views. See Overview of Impala Views
on page 211 for details.

Overview of Impala Tables

Tables are the primary containers for data in Impala. They have the familiar row and column layout similar to other
database systems, plus some features such as partitioning often associated with higher-end data warehouse systems.

Logically, each table has a structure based on the definition of its columns, partitions, and other properties.

Physically, each table that uses HDFS storage is associated with a directory in HDFS. The table data consists of all the
data files underneath that directory:

• Internal tables are managed by Impala, and use directories inside the designated Impala work area.
• External tables use arbitrary HDFS directories, where the data files are typically shared between different Hadoop

components.
• Large-scale data is usually handled by partitioned tables, where the data files are divided among different HDFS

subdirectories.

Impala tables can also represent data that is stored in HBase, or in the Amazon S3 filesystem (CDH 5.4.0 or higher), or
on Isilon storage devices (CDH 5.4.3 or higher). See Using Impala to Query HBase Tables on page 558, Using Impala to
Query the Amazon S3 Filesystem on page 567, and Using Impala with Isilon Storage on page 573 for details about those
special kinds of tables.

Impala queries ignore files with extensions commonly used for temporary work files by Hadoop tools. Any files with
extensions .tmp or .copying are not considered part of the Impala table. The suffix matching is case-insensitive, so
for example Impala ignores both .copying and .COPYING suffixes.

Related statements:CREATE TABLE Statement on page 236, DROP TABLE Statement on page 259, ALTER TABLE Statement
on page 216 INSERT Statement on page 264, LOAD DATA Statement on page 275, SELECT Statement on page 281

Internal Tables

The default kind of table produced by the CREATE TABLE statement is known as an internal table. (Its counterpart is
the external table, produced by the CREATE EXTERNAL TABLE syntax.)

• Impala creates a directory in HDFS to hold the data files.

• You can create data in internal tables by issuing INSERT or LOAD DATA statements.

Apache Impala Guide | 209

Impala SQL Language Reference

• If you add or replace data using HDFS operations, issue the REFRESH command in impala-shell so that Impala
recognizes the changes in data files, block locations, and so on.

• When you issue a DROP TABLE statement, Impala physically removes all the data files from the directory.

• To see whether a table is internal or external, and its associated HDFS location, issue the statement DESCRIBE
FORMATTED table_name. The Table Type field displays MANAGED_TABLE for internal tables and
EXTERNAL_TABLE for external tables. The Location field displays the path of the table directory as an HDFS
URI.

• When you issue an ALTER TABLE statement to rename an internal table, all data files are moved into the new
HDFS directory for the table. The files are moved even if they were formerly in a directory outside the Impala data
directory, for example in an internal table with a LOCATION attribute pointing to an outside HDFS directory.

Examples:

You can switch a table from internal to external, or from external to internal, by using the ALTER TABLE statement:

-- Switch a table from internal to external.
ALTER TABLE table_name SET TBLPROPERTIES('EXTERNAL'='TRUE');

-- Switch a table from external to internal.
ALTER TABLE table_name SET TBLPROPERTIES('EXTERNAL'='FALSE');

Related information:

External Tables on page 210, CREATE TABLE Statement on page 236, DROP TABLE Statement on page 259, ALTER TABLE
Statement on page 216, DESCRIBE Statement on page 246

External Tables

The syntax CREATE EXTERNAL TABLE sets up an Impala table that points at existing data files, potentially in HDFS
locations outside the normal Impala data directories.. This operation saves the expense of importing the data into a
new table when you already have the data files in a known location in HDFS, in the desired file format.

• You can use Impala to query the data in this table.

• You can create data in external tables by issuing INSERT or LOAD DATA statements.

• If you add or replace data using HDFS operations, issue the REFRESH command in impala-shell so that Impala
recognizes the changes in data files, block locations, and so on.

• When you issue a DROP TABLE statement in Impala, that removes the connection that Impala has with the
associated data files, but does not physically remove the underlying data. You can continue to use the data files
with other Hadoop components and HDFS operations.

• To see whether a table is internal or external, and its associated HDFS location, issue the statement DESCRIBE
FORMATTED table_name. The Table Type field displays MANAGED_TABLE for internal tables and
EXTERNAL_TABLE for external tables. The Location field displays the path of the table directory as an HDFS
URI.

• When you issue an ALTER TABLE statement to rename an external table, all data files are left in their original
locations.

• You can point multiple external tables at the same HDFS directory by using the same LOCATION attribute for each
one. The tables could have different columndefinitions, as long as the number and types of columns are compatible
with the schema evolution considerations for the underlying file type. For example, for text data files, one table
might define a certain column as a STRING while another defines the same column as a BIGINT.

Examples:

210 | Apache Impala Guide

Impala SQL Language Reference

You can switch a table from internal to external, or from external to internal, by using the ALTER TABLE statement:

-- Switch a table from internal to external.
ALTER TABLE table_name SET TBLPROPERTIES('EXTERNAL'='TRUE');

-- Switch a table from external to internal.
ALTER TABLE table_name SET TBLPROPERTIES('EXTERNAL'='FALSE');

Related information:

Internal Tables on page 209, CREATE TABLE Statement on page 236, DROP TABLE Statement on page 259, ALTER TABLE
Statement on page 216, DESCRIBE Statement on page 246

File Formats

Each table has an associated file format, which determines how Impala interprets the associated data files. See How
Impala Works with Hadoop File Formats on page 528 for details.

You set the file format during the CREATE TABLE statement, or change it later using the ALTER TABLE statement.
Partitioned tables can have a different file format for individual partitions, allowing you to change the file format used
in your ETL process for new data without going back and reconverting all the existing data in the same table.

Any INSERT statements produce newdata fileswith the current file format of the table. For existing data files, changing
the file format of the table does not automatically do any data conversion. Youmust use TRUNCATE TABLE or INSERT
OVERWRITE to remove any previous data files that use the old file format. Then you use the LOAD DATA statement,
INSERT ... SELECT, or other mechanism to put data files of the correct format into the table.

The default file format, text, is the most flexible and easy to produce when you are just getting started with Impala.
The Parquet file format offers the highest query performance and uses compression to reduce storage requirements;
therefore, Cloudera recommends using Parquet for Impala tables with substantial amounts of data. Also, the complex
types (ARRAY, STRUCT, and MAP) available in CDH 5.5 / Impala 2.3 and higher are currently only supported with the
Parquet file type. Based on your existing ETL workflow, you might use other file formats such as Avro, possibly doing
a final conversion step to Parquet to take advantage of its performance for analytic queries.

Overview of Impala Views

Views are lightweight logical constructs that act as aliases for queries. You can specify a view name in a query (a SELECT
statement or the SELECT portion of an INSERT statement) where you would usually specify a table name.

A view lets you:

• Issue complicated queries with compact and simple syntax:

-- Take a complicated reporting query, plug it into a CREATE VIEW statement...
create view v1 as select c1, c2, avg(c3) from t1 group by c3 order by c1 desc limit 10;
-- ... and now you can produce the report with 1 line of code.
select * from v1;

• Reduce maintenance, by avoiding the duplication of complicated queries across multiple applications in multiple
languages:

create view v2 as select t1.c1, t1.c2, t2.c3 from t1 join t2 on (t1.id = t2.id);
-- This simple query is safer to embed in reporting applications than the longer query
 above.
-- The view definition can remain stable even if the structure of the underlying tables
 changes.
select c1, c2, c3 from v2;

• Build a new,more refined query on top of the original query by adding new clauses, select-list expressions, function
calls, and so on:

create view average_price_by_category as select category, avg(price) as avg_price from
 products group by category;

Apache Impala Guide | 211

Impala SQL Language Reference

create view expensive_categories as select category, avg_price from
average_price_by_category order by avg_price desc limit 10000;
create view top_10_expensive_categories as select category, avg_price from
expensive_categories limit 10;

This technique lets you build up several more or less granular variations of the same query, and switch between
them when appropriate.

• Set up aliases with intuitive names for tables, columns, result sets from joins, and so on:

-- The original tables might have cryptic names inherited from a legacy system.
create view action_items as select rrptsk as assignee, treq as due_date, dmisc as notes
 from vxy_t1_br;
-- You can leave original names for compatibility, build new applications using more
intuitive ones.
select assignee, due_date, notes from action_items;

• Swap tables with others that use different file formats, partitioning schemes, and so on without any downtime
for data copying or conversion:

create table slow (x int, s string) stored as textfile;
create view report as select s from slow where x between 20 and 30;
-- Query is kind of slow due to inefficient table definition, but it works.
select * from report;

create table fast (s string) partitioned by (x int) stored as parquet;
-- ...Copy data from SLOW to FAST. Queries against REPORT view continue to work...

-- After changing the view definition, queries will be faster due to partitioning,
-- binary format, and compression in the new table.
alter view report as select s from fast where x between 20 and 30;
select * from report;

• Avoid coding lengthy subqueries and repeating the same subquery text in many other queries.
• Set up fine-grained security where a user can query some columns from a table but not other columns. Because

CDH 5.5 / Impala 2.3 and higher support column-level authorization, this technique is no longer required. If you
formerly implemented column-level security through views, see
https://www.cloudera.com/documentation/enterprise/latest/topics/sg_hive_sql.html for details about the
column-level authorization feature.

The SQL statements that configure views are CREATE VIEW Statement on page 244, ALTER VIEW Statement on page
225, and DROP VIEW Statement on page 260. You can specify view names when querying data (SELECT Statement on
page 281) and copying data from one table to another (INSERT Statement on page 264). The WITH clause creates an
inline view, that only exists for the duration of a single query.

[localhost:21000] > create view trivial as select * from customer;
[localhost:21000] > create view some_columns as select c_first_name, c_last_name, c_login
 from customer;
[localhost:21000] > select * from some_columns limit 5;
Query finished, fetching results ...
+--------------+-------------+---------+
| c_first_name | c_last_name | c_login |
+--------------+-------------+---------+
Javier	Lewis	
Amy	Moses	
Latisha	Hamilton	
Michael	White	
Robert	Moran	
+--------------+-------------+---------+		
[localhost:21000] > create view ordered_results as select * from some_columns order by		
c_last_name desc, c_first_name desc limit 1000;		
[localhost:21000] > select * from ordered_results limit 5;		
Query: select * from ordered_results limit 5		
Query finished, fetching results ...		
+--------------+-------------+---------+		
c_first_name	c_last_name	c_login
+--------------+-------------+---------+

212 | Apache Impala Guide

Impala SQL Language Reference

https://www.cloudera.com/documentation/enterprise/latest/topics/sg_hive_sql.html

Thomas	Zuniga	
Sarah	Zuniga	
Norma	Zuniga	
Lloyd	Zuniga	
Lisa	Zuniga	
+--------------+-------------+---------+
Returned 5 row(s) in 0.48s

The previous example uses descending order for ORDERED_RESULTS because in the sample TPCD-H data, there are
some rowswith empty strings for both C_FIRST_NAME and C_LAST_NAME, making the lowest-ordered names unuseful
in a sample query.

create view visitors_by_day as select day, count(distinct visitors) as howmany from
web_traffic group by day;
create view top_10_days as select day, howmany from visitors_by_day order by howmany
limit 10;
select * from top_10_days;

Usage notes:

To see the definition of a view, issue a DESCRIBE FORMATTED statement, which shows the query from the original
CREATE VIEW statement:

[localhost:21000] > create view v1 as select * from t1;
[localhost:21000] > describe formatted v1;
Query finished, fetching results ...
+------------------------------+------------------------------+------------+
| name | type | comment |
+------------------------------+------------------------------+------------+
# col_name	data_type	comment
	NULL	NULL
x	int	None
y	int	None
s	string	None
	NULL	NULL
# Detailed Table Information	NULL	NULL
Database:	views	NULL
Owner:	cloudera	NULL
CreateTime:	Mon Jul 08 15:56:27 EDT 2013	NULL
LastAccessTime:	UNKNOWN	NULL
Protect Mode:	None	NULL
Retention:	0	NULL
Table Type:	VIRTUAL_VIEW	NULL
Table Parameters:	NULL	NULL
	transient_lastDdlTime	1373313387
	NULL	NULL
# Storage Information	NULL	NULL
SerDe Library:	null	NULL
InputFormat:	null	NULL
OutputFormat:	null	NULL
Compressed:	No	NULL
Num Buckets:	0	NULL
Bucket Columns:	[]	NULL
Sort Columns:	[]	NULL
	NULL	NULL
# View Information	NULL	NULL
View Original Text:	SELECT * FROM t1	NULL
View Expanded Text:	SELECT * FROM t1	NULL
+------------------------------+------------------------------+------------+

Prior to Impala 1.4.0, it was not possible to use the CREATE TABLE LIKE view_name syntax. In Impala 1.4.0 and
higher, you can create a table with the same column definitions as a view using the CREATE TABLE LIKE technique.
Although CREATE TABLE LIKE normally inherits the file format of the original table, a view has no underlying file
format, so CREATE TABLE LIKE view_name produces a text table by default. To specify a different file format,
include a STORED AS file_format clause at the end of the CREATE TABLE LIKE statement.

Complex type considerations:

Apache Impala Guide | 213

Impala SQL Language Reference

For tables containing complex type columns (ARRAY, STRUCT, or MAP), you typically use join queries to refer to the
complex values. You can use views to hide the join notation, making such tables seem like traditional denormalized
tables, and making those tables queryable by business intelligence tools that do not have built-in support for those
complex types. See Accessing Complex Type Data in Flattened Form Using Views on page 177 for details.

The STRAIGHT_JOIN hint affects the join order of table references in the query block containing the hint. It does not
affect the join order of nested queries, such as views, inline views, or WHERE-clause subqueries. To use this hint for
performance tuning of complex queries, apply the hint to all query blocks that need a fixed join order.

Restrictions:

• You cannot insert into an Impala view. (In some database systems, this operation is allowed and inserts rows into
the base table.) You can use a view name on the right-hand side of an INSERT statement, in the SELECT part.

• If a view applies to a partitioned table, any partition pruning considers the clauses on both the original query and
any additional WHERE predicates in the query that refers to the view. Prior to Impala 1.4, only the WHERE clauses
on the original query from the CREATE VIEW statement were used for partition pruning.

• An ORDER BY clause without an additional LIMIT clause is ignored in any view definition. If you need to sort the
entire result set from a view, use an ORDER BY clause in the SELECT statement that queries the view. You can
still make a simple “top 10” report by combining the ORDER BY and LIMIT clauses in the same view definition:

[localhost:21000] > create table unsorted (x bigint);
[localhost:21000] > insert into unsorted values (1), (9), (3), (7), (5), (8), (4), (6),
 (2);
[localhost:21000] > create view sorted_view as select x from unsorted order by x;
[localhost:21000] > select x from sorted_view; -- ORDER BY clause in view has no effect.
+---+
| x |
+---+
| 1 |
| 9 |
| 3 |
| 7 |
| 5 |
| 8 |
| 4 |
| 6 |
| 2 |
+---+
[localhost:21000] > select x from sorted_view order by x; -- View query requires ORDER
 BY at outermost level.
+---+
| x |
+---+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
| 8 |
| 9 |
+---+
[localhost:21000] > create view top_3_view as select x from unsorted order by x limit
3;
[localhost:21000] > select x from top_3_view; -- ORDER BY and LIMIT together in view
definition are preserved.
+---+
| x |
+---+
| 1 |
| 2 |
| 3 |
+---+

Related statements: CREATE VIEWStatement on page 244, ALTER VIEWStatement on page 225, DROP VIEWStatement
on page 260

214 | Apache Impala Guide

Impala SQL Language Reference

Impala SQL Statements
The Impala SQL dialect supports a range of standard elements, plus some extensions for Big Data use cases related to
data loading and data warehousing.

Note:

In the impala-shell interpreter, a semicolon at the end of each statement is required. Since the
semicolon is not actually part of the SQL syntax, we do not include it in the syntax definition of each
statement, but we do show it in examples intended to be run in impala-shell.

DDL Statements

DDL refers to “Data Definition Language”, a subset of SQL statements that change the structure of the database schema
in some way, typically by creating, deleting, or modifying schema objects such as databases, tables, and views. Most
Impala DDL statements start with the keywords CREATE, DROP, or ALTER.

The Impala DDL statements are:

• ALTER TABLE Statement on page 216
• ALTER VIEW Statement on page 225
• COMPUTE STATS Statement on page 227
• CREATE DATABASE Statement on page 232
• CREATE FUNCTION Statement on page 233
• CREATE ROLE Statement (CDH 5.2 or higher only) on page 236
• CREATE TABLE Statement on page 236
• CREATE VIEW Statement on page 244
• DROP DATABASE Statement on page 253
• DROP FUNCTION Statement on page 255
• DROP ROLE Statement (CDH 5.2 or higher only) on page 255
• DROP TABLE Statement on page 259
• DROP VIEW Statement on page 260
• GRANT Statement (CDH 5.2 or higher only) on page 264
• REVOKE Statement (CDH 5.2 or higher only) on page 280

After Impala executes a DDL command, information about available tables, columns, views, partitions, and so on is
automatically synchronized between all the Impala nodes in a cluster. (Prior to Impala 1.2, you had to issue a REFRESH
or INVALIDATE METADATA statement manually on the other nodes to make them aware of the changes.)

If the timing of metadata updates is significant, for example if you use round-robin scheduling where each query could
be issued through a different Impala node, you can enable the SYNC_DDL query option to make the DDL statement
wait until all nodes have been notified about the metadata changes.

SeeUsing Impala toQuery the Amazon S3 Filesystemon page 567 for details about how Impala DDL statements interact
with tables and partitions stored in the Amazon S3 filesystem.

Although the INSERT statement is officially classified as a DML (datamanipulation language) statement, it also involves
metadata changes that must be broadcast to all Impala nodes, and so is also affected by the SYNC_DDL query option.

Because the SYNC_DDL query option makes each DDL operation take longer than normal, you might only enable it
before the last DDL operation in a sequence. For example, if you are running a script that issues multiple of DDL
operations to set up an entire new schema, add several new partitions, and so on, youmightminimize the performance
overhead by enabling the query option only before the last CREATE, DROP, ALTER, or INSERT statement. The script
only finishes when all the relevant metadata changes are recognized by all the Impala nodes, so you could connect to
any node and issue queries through it.

Apache Impala Guide | 215

Impala SQL Language Reference

The classification of DDL, DML, and other statements is not necessarily the same between Impala and Hive. Impala
organizes these statements in a way intended to be familiar to people familiar with relational databases or data
warehouse products. Statements that modify the metastore database, such as COMPUTE STATS, are classified as DDL.
Statements that only query the metastore database, such as SHOW or DESCRIBE, are put into a separate category of
utility statements.

Note: The query types shown in the Impala debug web user interface might not match exactly the
categories listed here. For example, currently the USE statement is shown as DDL in the debug web
UI. The query types shown in the debug web UI are subject to change, for improved consistency.

Related information:

The other major classifications of SQL statements are data manipulation language (see DML Statements on page 216)
and queries (see SELECT Statement on page 281).

DML Statements

DML refers to “DataManipulation Language”, a subset of SQL statements thatmodify the data stored in tables. Because
Impala focuses on query performance and leverages the append-only nature of HDFS storage, currently Impala only
supports a small set of DML statements:

• INSERT Statement on page 264
• LOAD DATA Statement on page 275

INSERT in Impala is primarily optimized for inserting large volumes of data in a single statement, to make effective
use of the multi-megabyte HDFS blocks. This is the way in Impala to create new data files. If you intend to insert one
or a few rows at a time, such as using the INSERT ... VALUES syntax, that technique is much more efficient for
Impala tables stored in HBase. See Using Impala to Query HBase Tables on page 558 for details.

LOAD DATAmoves existing data files into the directory for an Impala table, making them immediately available for
Impala queries. This is one way in Impala to work with data files produced by other Hadoop components. (CREATE
EXTERNAL TABLE is the other alternative; with external tables, you can query existing data files, while the files remain
in their original location.)

To simulate the effects of an UPDATE or DELETE statement in other database systems, typically you use INSERT or
CREATE TABLE AS SELECT to copy data from one table to another, filtering out or changing the appropriate rows
during the copy operation.

Although Impala currently does not have an UPDATE statement, you can achieve a similar result by using Impala tables
stored in HBase. When you insert a row into an HBase table, and the table already contains a row with the same value
for the key column, the older row is hidden, effectively the same as a single-row UPDATE.

Currently, Impala cannot perform DML operations for tables or partitions stored in the Amazon S3 filesystem. See
Using Impala to Query the Amazon S3 Filesystem on page 567 for details.

Related information:

The other major classifications of SQL statements are data definition language (see DDL Statements on page 215) and
queries (see SELECT Statement on page 281).

ALTER TABLE Statement

The ALTER TABLE statement changes the structure or properties of an existing Impala table.

In Impala, this is primarily a logical operation that updates the table metadata in the metastore database that Impala
shares with Hive. Most ALTER TABLE operations do not actually rewrite, move, and so on the actual data files. (The
RENAME TO clause is the one exception; it can cause HDFS files to bemoved to different paths.)When you do an ALTER
TABLE operation, you typically need to perform corresponding physical filesystem operations, such as rewriting the
data files to include extra fields, or converting them to a different file format.

216 | Apache Impala Guide

Impala SQL Language Reference

Syntax:

ALTER TABLE [old_db_name.]old_table_name RENAME TO [new_db_name.]new_table_name

ALTER TABLE name ADD COLUMNS (col_spec[, col_spec ...])
ALTER TABLE name DROP [COLUMN] column_name
ALTER TABLE name CHANGE column_name new_name new_type
ALTER TABLE name REPLACE COLUMNS (col_spec[, col_spec ...])

ALTER TABLE name { ADD [IF NOT EXISTS] | DROP [IF EXISTS] } PARTITION (partition_spec)
[PURGE]

ALTER TABLE name RECOVER PARTITIONS

ALTER TABLE name [PARTITION (partition_spec)]
 SET { FILEFORMAT file_format
 | LOCATION 'hdfs_path_of_directory'
 | TBLPROPERTIES (table_properties)
 | SERDEPROPERTIES (serde_properties) }

ALTER TABLE name [PARTITION (partition_spec)] SET { CACHED IN 'pool_name' [WITH
REPLICATION = integer] | UNCACHED }

new_name ::= [new_database.]new_table_name

col_spec ::= col_name type_name

partition_spec ::= partition_col=constant_value

table_properties ::= 'name'='value'[, 'name'='value' ...]

serde_properties ::= 'name'='value'[, 'name'='value' ...]

file_format ::= { PARQUET | TEXTFILE | RCFILE | SEQUENCEFILE | AVRO }

Statement type: DDL

Complex type considerations:

In CDH 5.5 / Impala 2.3 and higher, the ALTER TABLE statement can change the metadata for tables containing
complex types (ARRAY, STRUCT, and MAP). For example, you can use an ADD COLUMNS, DROP COLUMN, or CHANGE
clause to modify the table layout for complex type columns. Although Impala queries only work for complex type
columns in Parquet tables, the complex type support in the ALTER TABLE statement applies to all file formats. For
example, you can use Impala to update metadata for a staging table in a non-Parquet file format where the data is
populated by Hive. Or you can use ALTER TABLE SET FILEFORMAT to change the format of an existing table to
Parquet so that Impala can query it. Remember that changing the file format for a table does not convert the data files
within the table; you must prepare any Parquet data files containing complex types outside Impala, and bring them
into the table using LOAD DATA or updating the table's LOCATION property. See Complex Types (CDH 5.5 or higher
only) on page 157 for details about using complex types.

Usage notes:

Whenever you specify partitions in an ALTER TABLE statement, through thePARTITION (partition_spec) clause,
you must include all the partitioning columns in the specification.

Most of the ALTER TABLE operations work the same for internal tables (managed by Impala) as for external tables
(with data files located in arbitrary locations). The exception is renaming a table; for an external table, the underlying
data directory is not renamed or moved.

Amazon S3 considerations:

You can specify an s3a:// prefix in the LOCATION attribute of a table or partition to make Impala query data from
the Amazon S3 filesystem. See Using Impala to Query the Amazon S3 Filesystem on page 567 for details.

HDFS caching (CACHED IN clause):

If you specify the CACHED IN clause, any existing or future data files in the table directory or the partition subdirectories
are designated to be loaded into memory with the HDFS caching mechanism. See Using HDFS Caching with Impala
(CDH 5.1 or higher only) on page 502 for details about using the HDFS caching feature.

Apache Impala Guide | 217

Impala SQL Language Reference

In Impala 2.2 / CDH 5.4 and higher, the optional WITH REPLICATION clause for CREATE TABLE and ALTER TABLE
lets you specify a replication factor, the number of hosts on which to cache the same data blocks. When Impala
processes a cached data block, where the cache replication factor is greater than 1, Impala randomly selects a host
that has a cached copy of that data block. This optimization avoids excessive CPU usage on a single host when the
same cached data block is processed multiple times. Cloudera recommends specifying a value greater than or equal
to the HDFS block replication factor.

If you connect to different Impala nodeswithin an impala-shell session for load-balancing purposes, you can enable
the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata
has been received by all the Impala nodes. See SYNC_DDL Query Option on page 322 for details.

The following sections show examples of the use cases for various ALTER TABLE clauses.

To rename a table (RENAME TO clause):

The RENAME TO clause lets you change the name of an existing table, and optionally which database it is located in.

For internal tables, this operation physically renames the directory within HDFS that contains the data files; the original
directory name no longer exists. By qualifying the table names with database names, you can use this technique to
move an internal table (and its associated data directory) from one database to another. For example:

create database d1;
create database d2;
create database d3;
use d1;
create table mobile (x int);
use d2;
-- Move table from another database to the current one.
alter table d1.mobile rename to mobile;
use d1;
-- Move table from one database to another.
alter table d2.mobile rename to d3.mobile;

For external tables,

To change the physical location where Impala looks for data files associated with a table or partition:

ALTER TABLE table_name [PARTITION (partition_spec)] SET LOCATION 'hdfs_path_of_directory';

The path you specify is the full HDFS path where the data files reside, or will be created. Impala does not create any
additional subdirectory named after the table. Impala does not move any data files to this new location or change any
data files that might already exist in that directory.

To set the location for a single partition, include the PARTITION clause. Specify all the same partitioning columns for
the table, with a constant value for each, to precisely identify the single partition affected by the statement:

create table p1 (s string) partitioned by (month int, day int);
-- Each ADD PARTITION clause creates a subdirectory in HDFS.
alter table p1 add partition (month=1, day=1);
alter table p1 add partition (month=1, day=2);
alter table p1 add partition (month=2, day=1);
alter table p1 add partition (month=2, day=2);
-- Redirect queries, INSERT, and LOAD DATA for one partition
-- to a specific different directory.
alter table p1 partition (month=1, day=1) set location '/usr/external_data/new_years_day';

Note: If you are creating a partition for the first time and specifying its location, formaximumefficiency,
use a single ALTER TABLE statement including both the ADD PARTITION and LOCATION clauses,
rather than separate statements with ADD PARTITION and SET LOCATION clauses.

To automatically detect new partition directories added through Hive or HDFS operations:

218 | Apache Impala Guide

Impala SQL Language Reference

In CDH 5.5 / Impala 2.3 and higher, the RECOVER PARTITIONS clause scans a partitioned table to detect if any new
partition directories were added outside of Impala, such as by Hive ALTER TABLE statements or by hdfs dfs or
hadoop fs commands. The RECOVER PARTITIONS clause automatically recognizes any data files present in these
new directories, the same as the REFRESH statement does.

For example, here is a sequence of examples showing how you might create a partitioned table in Impala, create new
partitions through Hive, copy data files into the new partitions with the hdfs command, and have Impala recognize
the new partitions and new data:

In Impala, create the table, and a single partition for demonstration purposes:

create database recover_partitions;
use recover_partitions;
create table t1 (s string) partitioned by (yy int, mm int);
insert into t1 partition (yy = 2016, mm = 1) values ('Partition exists');
show files in t1;
+---+------+--------------+
| Path | Size | Partition
 |
+---+------+--------------+
| /user/hive/warehouse/recover_partitions.db/t1/yy=2016/mm=1/data.txt | 17B |
yy=2016/mm=1 |
+---+------+--------------+
quit;

In Hive, create some new partitions. In a real use case, you might create the partitions and populate them with data
as the final stages of an ETL pipeline.

hive> use recover_partitions;
OK
hive> alter table t1 add partition (yy = 2016, mm = 2);
OK
hive> alter table t1 add partition (yy = 2016, mm = 3);
OK
hive> quit;

For demonstration purposes,manually copy data (a single row) into these newpartitions, usingmanual HDFS operations:

$ hdfs dfs -ls /user/hive/warehouse/recover_partitions.db/t1/yy=2016/
Found 3 items
drwxr-xr-x - impala hive 0 2016-05-09 16:06
/user/hive/warehouse/recover_partitions.db/t1/yy=2016/mm=1
drwxr-xr-x - jrussell hive 0 2016-05-09 16:14
/user/hive/warehouse/recover_partitions.db/t1/yy=2016/mm=2
drwxr-xr-x - jrussell hive 0 2016-05-09 16:13
/user/hive/warehouse/recover_partitions.db/t1/yy=2016/mm=3

$ hdfs dfs -cp /user/hive/warehouse/recover_partitions.db/t1/yy=2016/mm=1/data.txt \
 /user/hive/warehouse/recover_partitions.db/t1/yy=2016/mm=2/data.txt
$ hdfs dfs -cp /user/hive/warehouse/recover_partitions.db/t1/yy=2016/mm=1/data.txt \
 /user/hive/warehouse/recover_partitions.db/t1/yy=2016/mm=3/data.txt

hive> select * from t1;
OK
Partition exists 2016 1
Partition exists 2016 2
Partition exists 2016 3

Apache Impala Guide | 219

Impala SQL Language Reference

hive> quit;

In Impala, initially the partitions and data are not visible. Running ALTER TABLE with the RECOVER PARTITIONS
clause scans the table data directory to find any new partition directories, and the data files inside them:

select * from t1;
+------------------+------+----+
| s | yy | mm |
+------------------+------+----+
| Partition exists | 2016 | 1 |
+------------------+------+----+

alter table t1 recover partitions;
select * from t1;
+------------------+------+----+
| s | yy | mm |
+------------------+------+----+
Partition exists	2016	1
Partition exists	2016	3
Partition exists	2016	2
+------------------+------+----+

To change the key-value pairs of the TBLPROPERTIES and SERDEPROPERTIES fields:

ALTER TABLE table_name SET TBLPROPERTIES ('key1'='value1', 'key2'='value2'[, ...]);
ALTER TABLE table_name SET SERDEPROPERTIES ('key1'='value1', 'key2'='value2'[, ...]);

The TBLPROPERTIES clause is primarily a way to associate arbitrary user-specified data items with a particular table.

The SERDEPROPERTIES clause sets up metadata defining how tables are read or written, needed in some cases by
Hive but not used extensively by Impala. You would use this clause primarily to change the delimiter in an existing text
table or partition, by setting the'serialization.format' and'field.delim'property values to the newdelimiter
character:

-- This table begins life as pipe-separated text format.
create table change_to_csv (s1 string, s2 string) row format delimited fields terminated
 by '|';
-- Then we change it to a CSV table.
alter table change_to_csv set SERDEPROPERTIES ('serialization.format'=',',
'field.delim'=',');
insert overwrite change_to_csv values ('stop','go'), ('yes','no');
!hdfs dfs -cat 'hdfs://hostname:8020/data_directory/dbname.db/change_to_csv/data_file';
stop,go
yes,no

Use the DESCRIBE FORMATTED statement to see the current values of these properties for an existing table. See
CREATE TABLE Statement on page 236 formore details about these clauses. See Setting the NUMROWS ValueManually
through ALTER TABLE on page 497 for an example of using table properties to fine-tune the performance-related table
statistics.

To reorganize columns for a table:

ALTER TABLE table_name ADD COLUMNS (column_defs);
ALTER TABLE table_name REPLACE COLUMNS (column_defs);
ALTER TABLE table_name CHANGE column_name new_name new_type;
ALTER TABLE table_name DROP column_name;

The column_spec is the same as in the CREATE TABLE statement: the columnname, then its data type, then an optional
comment. You can add multiple columns at a time. The parentheses are required whether you add a single column or
multiple columns. When you replace columns, all the original column definitions are discarded. You might use this
technique if you receive a new set of data files with different data types or columns in a different order. (The data files

220 | Apache Impala Guide

Impala SQL Language Reference

are retained, so if the new columns are incompatible with the old ones, use INSERT OVERWRITE or LOAD DATA
OVERWRITE to replace all the data before issuing any further queries.)

For example, here is how you might add columns to an existing table. The first ALTER TABLE adds two new columns,
and the second ALTER TABLE adds one new column. A single Impala query reads both the old and new data files,
containing different numbers of columns. For any columns not present in a particular data file, all the column values
are considered to be NULL.

create table t1 (x int);
insert into t1 values (1), (2);

alter table t1 add columns (s string, t timestamp);
insert into t1 values (3, 'three', now());

alter table t1 add columns (b boolean);
insert into t1 values (4, 'four', now(), true);

select * from t1 order by x;
+---+-------+-------------------------------+------+
| x | s | t | b |
+---+-------+-------------------------------+------+
1	NULL	NULL	NULL
2	NULL	NULL	NULL
3	three	2016-05-11 11:19:45.054457000	NULL
4	four	2016-05-11 11:20:20.260733000	true
+---+-------+-------------------------------+------+

You might use the CHANGE clause to rename a single column, or to treat an existing column as a different type than
before, such as to switch between treating a column as STRING and TIMESTAMP, or between INT and BIGINT. You
can only drop a single column at a time; to drop multiple columns, issue multiple ALTER TABLE statements, or define
the new set of columns with a single ALTER TABLE ... REPLACE COLUMNS statement.

The following examples show some safe operations to drop or change columns. Dropping the final column in a table
lets Impala ignore the data causing any disruption to existing data files. Changing the type of a columnworks if existing
data values can be safely converted to the new type. The type conversion rules depend on the file format of the
underlying table. For example, in a text table, the same value can be interpreted as a STRING or a numeric value, while
in a binary format such as Parquet, the rules are stricter and type conversions only work between certain sizes of
integers.

create table optional_columns (x int, y int, z int, a1 int, a2 int);
insert into optional_columns values (1,2,3,0,0), (2,3,4,100,100);

-- When the last column in the table is dropped, Impala ignores the
-- values that are no longer needed. (Dropping A1 but leaving A2
-- would cause problems, as we will see in a subsequent example.)
alter table optional_columns drop column a2;
alter table optional_columns drop column a1;

select * from optional_columns;
+---+---+---+
| x | y | z |
+---+---+---+
| 1 | 2 | 3 |
| 2 | 3 | 4 |
+---+---+---+

create table int_to_string (s string, x int);
insert into int_to_string values ('one', 1), ('two', 2);

-- What was an INT column will now be interpreted as STRING.
-- This technique works for text tables but not other file formats.
-- The second X represents the new name of the column, which we keep the same.
alter table int_to_string change x x string;

Apache Impala Guide | 221

Impala SQL Language Reference

-- Once the type is changed, we can insert non-integer values into the X column
-- and treat that column as a string, for example by uppercasing or concatenating.
insert into int_to_string values ('three', 'trois');
select s, upper(x) from int_to_string;
+-------+----------+
| s | upper(x) |
+-------+----------+
one	1
two	2
three	TROIS
+-------+----------+

Remember that Impala does not actually do any conversion for the underlying data files as a result of ALTER TABLE
statements. If you use ALTER TABLE to create a table layout that does not agree with the contents of the underlying
files, youmust replace the files yourself, such as using LOAD DATA to load a new set of data files, or INSERT OVERWRITE
to copy from another table and replace the original data.

The following example shows what happens if you delete the middle column from a Parquet table containing three
columns. The underlying data files still contain three columns of data. Because the columns are interpreted based on
their positions in the data file instead of the specific column names, a SELECT * query now reads the first and second
columns from the data file, potentially leading to unexpected results or conversion errors. For this reason, if you expect
to someday drop a column, declare it as the last column in the table, where its data can be ignored by queries after
the column is dropped. Or, re-run your ETL process and create new data files if you drop or change the type of a column
in a way that causes problems with existing data files.

-- Parquet table showing how dropping a column can produce unexpected results.
create table p1 (s1 string, s2 string, s3 string) stored as parquet;

insert into p1 values ('one', 'un', 'uno'), ('two', 'deux', 'dos'),
 ('three', 'trois', 'tres');
select * from p1;
+-------+-------+------+
| s1 | s2 | s3 |
+-------+-------+------+
one	un	uno
two	deux	dos
three	trois	tres
+-------+-------+------+

alter table p1 drop column s2;
-- The S3 column contains unexpected results.
-- Because S2 and S3 have compatible types, the query reads
-- values from the dropped S2, because the existing data files
-- still contain those values as the second column.
select * from p1;
+-------+-------+
| s1 | s3 |
+-------+-------+
one	un
two	deux
three	trois
+-------+-------+

-- Parquet table showing how dropping a column can produce conversion errors.
create table p2 (s1 string, x int, s3 string) stored as parquet;

insert into p2 values ('one', 1, 'uno'), ('two', 2, 'dos'), ('three', 3, 'tres');
select * from p2;
+-------+---+------+
| s1 | x | s3 |
+-------+---+------+
one	1	uno
two	2	dos
three	3	tres
+-------+---+------+

222 | Apache Impala Guide

Impala SQL Language Reference

alter table p2 drop column x;
select * from p2;
WARNINGS:
File 'hdfs_filename' has an incompatible Parquet schema for column 'add_columns.p2.s3'.
Column type: STRING, Parquet schema:
optional int32 x [i:1 d:1 r:0]

File 'hdfs_filename' has an incompatible Parquet schema for column 'add_columns.p2.s3'.
Column type: STRING, Parquet schema:
optional int32 x [i:1 d:1 r:0]

To change the file format that Impala expects data to be in, for a table or partition:

Use an ALTER TABLE ... SET FILEFORMAT clause. You can include an optional PARTITION (col1=val1,
col2=val2, ... clause so that the file format is changed for a specific partition rather than the entire table.

Because this operation only changes the table metadata, you must do any conversion of existing data using regular
Hadoop techniques outside of Impala. Any new data created by the Impala INSERT statement will be in the new
format. You cannot specify the delimiter for Text files; the data files must be comma-delimited.

To set the file format for a single partition, include the PARTITION clause. Specify all the same partitioning columns
for the table, with a constant value for each, to precisely identify the single partition affected by the statement:

create table p1 (s string) partitioned by (month int, day int);
-- Each ADD PARTITION clause creates a subdirectory in HDFS.
alter table p1 add partition (month=1, day=1);
alter table p1 add partition (month=1, day=2);
alter table p1 add partition (month=2, day=1);
alter table p1 add partition (month=2, day=2);
-- Queries and INSERT statements will read and write files
-- in this format for this specific partition.
alter table p1 partition (month=2, day=2) set fileformat parquet;

To add or drop partitions for a table, the table must already be partitioned (that is, created with a PARTITIONED BY
clause). The partition is a physical directory in HDFS, with a name that encodes a particular column value (the partition
key). The Impala INSERT statement already creates the partition if necessary, so the ALTER TABLE ... ADD
PARTITION is primarily useful for importing data by moving or copying existing data files into the HDFS directory
corresponding to a partition. (You can use the LOAD DATA statement to move files into the partition directory, or
ALTER TABLE ... PARTITION (...) SET LOCATION to point a partition at a directory that already contains data
files.

The DROP PARTITION clause is used to remove the HDFS directory and associated data files for a particular set of
partition key values; for example, if you always analyze the last 3months worth of data, at the beginning of eachmonth
you might drop the oldest partition that is no longer needed. Removing partitions reduces the amount of metadata
associated with the table and the complexity of calculating the optimal query plan, which can simplify and speed up
queries on partitioned tables, particularly join queries. Here is an example showing the ADD PARTITION and DROP
PARTITION clauses.

To avoid errors while adding or dropping partitionswhose existence is not certain, add the optional IF [NOT] EXISTS
clause between the ADD or DROP keyword and the PARTITION keyword. That is, the entire clause becomes ADD IF
NOT EXISTS PARTITION or DROP IF EXISTS PARTITION. The following example shows how partitions can be
created automatically through INSERT statements, or manually through ALTER TABLE statements. The IF [NOT]
EXISTS clauses let the ALTER TABLE statements succeed even if a new requested partition already exists, or a partition
to be dropped does not exist.

Inserting 2 year values creates 2 partitions:

create table partition_t (s string) partitioned by (y int);
insert into partition_t (s,y) values ('two thousand',2000), ('nineteen ninety',1990);
show partitions partition_t;
+-------+-------+--------+------+--------------+-------------------+--------+-------------------+
| y | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format | Incremental
 stats |
+-------+-------+--------+------+--------------+-------------------+--------+-------+

Apache Impala Guide | 223

Impala SQL Language Reference

1990	-1	1	16B	NOT CACHED	NOT CACHED	TEXT	false
2000	-1	1	13B	NOT CACHED	NOT CACHED	TEXT	false
Total	-1	2	29B	0B			
+-------+-------+--------+------+--------------+-------------------+--------+-------+

Without the IF NOT EXISTS clause, an attempt to add a new partition might fail:

alter table partition_t add partition (y=2000);
ERROR: AnalysisException: Partition spec already exists: (y=2000).

The IF NOT EXISTS clause makes the statement succeed whether or not there was already a partition with the
specified key value:

alter table partition_t add if not exists partition (y=2000);
alter table partition_t add if not exists partition (y=2010);
show partitions partition_t;
+-------+-------+--------+------+--------------+-------------------+--------+-------------------+
| y | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format | Incremental
 stats |
+-------+-------+--------+------+--------------+-------------------+--------+-------+
1990	-1	1	16B	NOT CACHED	NOT CACHED	TEXT	false
2000	-1	1	13B	NOT CACHED	NOT CACHED	TEXT	false
2010	-1	0	0B	NOT CACHED	NOT CACHED	TEXT	false
Total	-1	2	29B	0B			
+-------+-------+--------+------+--------------+-------------------+--------+-------+

Likewise, the IF EXISTS clause lets DROP PARTITION succeed whether or not the partition is already in the table:

alter table partition_t drop if exists partition (y=2000);
alter table partition_t drop if exists partition (y=1950);
show partitions partition_t;
+-------+-------+--------+------+--------------+-------------------+--------+-------------------+
| y | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format | Incremental
 stats |
+-------+-------+--------+------+--------------+-------------------+--------+-------+
1990	-1	1	16B	NOT CACHED	NOT CACHED	TEXT	false
2010	-1	0	0B	NOT CACHED	NOT CACHED	TEXT	false
Total	-1	1	16B	0B			
+-------+-------+--------+------+--------------+-------------------+--------+-------+

The optional PURGE keyword, available in CDH 5.5 / Impala 2.3 and higher, is used with the DROP PARTITION clause
to remove associated HDFS data files immediately rather than going through the HDFS trashcan mechanism. Use this
keyword when dropping a partition if it is crucial to remove the data as quickly as possible to free up space, or if there
is a problem with the trashcan, such as the trashcan not being configured or being in a different HDFS encryption zone
than the data files.

-- Create an empty table and define the partitioning scheme.
create table part_t (x int) partitioned by (month int);
-- Create an empty partition into which you could copy data files from some other source.
alter table part_t add partition (month=1);
-- After changing the underlying data, issue a REFRESH statement to make the data visible
 in Impala.
refresh part_t;
-- Later, do the same for the next month.
alter table part_t add partition (month=2);

-- Now you no longer need the older data.
alter table part_t drop partition (month=1);
-- If the table was partitioned by month and year, you would issue a statement like:
-- alter table part_t drop partition (year=2003,month=1);
-- which would require 12 ALTER TABLE statements to remove a year's worth of data.

-- If the data files for subsequent months were in a different file format,

224 | Apache Impala Guide

Impala SQL Language Reference

-- you could set a different file format for the new partition as you create it.
alter table part_t add partition (month=3) set fileformat=parquet;

The value specified for a partition key can be an arbitrary constant expression, without any references to columns. For
example:

alter table time_data add partition (month=concat('Decem','ber'));
alter table sales_data add partition (zipcode = cast(9021 * 10 as string));

Note:

An alternative way to reorganize a table and its associated data files is to use CREATE TABLE to create
a variation of the original table, then use INSERT to copy the transformed or reordered data to the
new table. The advantage of ALTER TABLE is that it avoids making a duplicate copy of the data files,
allowing you to reorganize huge volumes of data in a space-efficient way using familiar Hadoop
techniques.

To switch a table between internal and external:

You can switch a table from internal to external, or from external to internal, by using the ALTER TABLE statement:

-- Switch a table from internal to external.
ALTER TABLE table_name SET TBLPROPERTIES('EXTERNAL'='TRUE');

-- Switch a table from external to internal.
ALTER TABLE table_name SET TBLPROPERTIES('EXTERNAL'='FALSE');

Cancellation: Cannot be cancelled.

HDFS permissions:

Most ALTER TABLE clauses do not actually read or write any HDFS files, and so do not depend on specific HDFS
permissions. For example, the SET FILEFORMAT clause does not actually check the file format existing data files or
convert them to the new format, and the SET LOCATION clause does not require any special permissions on the new
location. (Any permission-related failures would come later, when you actually query or insert into the table.)

In general, ALTER TABLE clauses that do touch HDFS files and directories require the same HDFS permissions as
corresponding CREATE, INSERT, or SELECT statements. The permissions allow the user ID that the impalad daemon
runs under, typically the impala user, to read or write files or directories, or (in the case of the execute bit) descend
into a directory. The RENAME TO clause requires read, write, and execute permission in the source and destination
database directories and in the table data directory, and read and write permission for the data files within the table.
TheADD PARTITION andDROP PARTITION clauses requirewrite and execute permissions for the associated partition
directory.

Related information:

Overview of Impala Tables on page 209, CREATE TABLE Statement on page 236, DROP TABLE Statement on page 259,
Partitioning for Impala Tables on page 523, Internal Tables on page 209, External Tables on page 210

ALTER VIEW Statement

Changes the characteristics of a view. The syntax has two forms:

• The AS clause associates the view with a different query.
• The RENAME TO clause changes the name of the view, moves the view to a different database, or both.

Because a view is purely a logical construct (an alias for a query) with no physical data behind it, ALTER VIEW only
involves changes to metadata in the metastore database, not any data files in HDFS.

Apache Impala Guide | 225

Impala SQL Language Reference

Syntax:

ALTER VIEW [database_name.]view_name AS select_statement
ALTER VIEW [database_name.]view_name RENAME TO [database_name.]view_name

Statement type: DDL

If you connect to different Impala nodeswithin an impala-shell session for load-balancing purposes, you can enable
the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata
has been received by all the Impala nodes. See SYNC_DDL Query Option on page 322 for details.

Security considerations:

If these statements in your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statements in log files and other administrative
contexts. See http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/sg_redaction.html
for details.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Examples:

create table t1 (x int, y int, s string);
create table t2 like t1;
create view v1 as select * from t1;
alter view v1 as select * from t2;
alter view v1 as select x, upper(s) s from t2;

To see the definition of a view, issue a DESCRIBE FORMATTED statement, which shows the query from the original
CREATE VIEW statement:

[localhost:21000] > create view v1 as select * from t1;
[localhost:21000] > describe formatted v1;
Query finished, fetching results ...
+------------------------------+------------------------------+------------+
| name | type | comment |
+------------------------------+------------------------------+------------+
# col_name	data_type	comment
	NULL	NULL
x	int	None
y	int	None
s	string	None
	NULL	NULL
# Detailed Table Information	NULL	NULL
Database:	views	NULL
Owner:	cloudera	NULL
CreateTime:	Mon Jul 08 15:56:27 EDT 2013	NULL
LastAccessTime:	UNKNOWN	NULL
Protect Mode:	None	NULL
Retention:	0	NULL
Table Type:	VIRTUAL_VIEW	NULL
Table Parameters:	NULL	NULL
	transient_lastDdlTime	1373313387
	NULL	NULL
# Storage Information	NULL	NULL
SerDe Library:	null	NULL
InputFormat:	null	NULL
OutputFormat:	null	NULL
Compressed:	No	NULL
Num Buckets:	0	NULL
Bucket Columns:	[]	NULL
Sort Columns:	[]	NULL
	NULL	NULL
# View Information	NULL	NULL
View Original Text:	SELECT * FROM t1	NULL

226 | Apache Impala Guide

Impala SQL Language Reference

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/sg_redaction.html

| View Expanded Text: | SELECT * FROM t1 | NULL |
+------------------------------+------------------------------+------------+

Related information:

Overview of Impala Views on page 211, CREATE VIEW Statement on page 244, DROP VIEW Statement on page 260

COMPUTE STATS Statement

Gathers information about volume and distribution of data in a table and all associated columns and partitions. The
information is stored in the metastore database, and used by Impala to help optimize queries. For example, if Impala
can determine that a table is large or small, or has many or few distinct values it can organize parallelize the work
appropriately for a join query or insert operation. For details about the kinds of information gathered by this statement,
see Table and Column Statistics on page 490.

Syntax:

COMPUTE STATS [db_name.]table_name
COMPUTE INCREMENTAL STATS [db_name.]table_name [PARTITION (partition_spec)]

partition_spec ::= partition_col=constant_value

The PARTITION clause is only allowed in combination with the INCREMENTAL clause. It is optional for COMPUTE
INCREMENTAL STATS, and required for DROP INCREMENTAL STATS. Whenever you specify partitions through the
PARTITION (partition_spec) clause in a COMPUTE INCREMENTAL STATS or DROP INCREMENTAL STATS
statement, you must include all the partitioning columns in the specification, and specify constant values for all the
partition key columns.

Usage notes:

Originally, Impala relied on users to run the Hive ANALYZE TABLE statement, but that method of gathering statistics
proved unreliable and difficult to use. The Impala COMPUTE STATS statement is built from the ground up to improve
the reliability and user-friendliness of this operation. COMPUTE STATS does not require any setup steps or special
configuration. You only run a single Impala COMPUTE STATS statement to gather both table and column statistics,
rather than separate Hive ANALYZE TABLE statements for each kind of statistics.

The COMPUTE INCREMENTAL STATS variation is a shortcut for partitioned tables that works on a subset of partitions
rather than the entire table. The incremental nature makes it suitable for large tables with many partitions, where a
full COMPUTE STATS operation takes too long to be practical each time a partition is added or dropped. See Overview
of Incremental Statistics on page 494 for full usage details.

COMPUTE INCREMENTAL STATS only applies to partitioned tables. If you use the INCREMENTAL clause for an
unpartitioned table, Impala automatically uses the original COMPUTE STATS statement. Such tables display false
under the Incremental stats column of the SHOW TABLE STATS output.

Note: Becausemany of themost performance-critical and resource-intensive operations rely on table
and column statistics to construct accurate and efficient plans, COMPUTE STATS is an important step
at the end of your ETL process. Run COMPUTE STATS on all tables as your first step during performance
tuning for slow queries, or troubleshooting for out-of-memory conditions:

• Accurate statistics help Impala construct an efficient query plan for join queries, improving
performance and reducing memory usage.

• Accurate statistics help Impala distribute the work effectively for insert operations into Parquet
tables, improving performance and reducing memory usage.

• Accurate statistics help Impala estimate the memory required for each query, which is important
when you use resource management features, such as admission control and the YARN resource
management framework. The statistics help Impala to achieve high concurrency, full utilization
of available memory, and avoid contention with workloads from other Hadoop components.

Complex type considerations:

Apache Impala Guide | 227

Impala SQL Language Reference

Currently, the statistics created by the COMPUTE STATS statement do not include information about complex type
columns. The column stats metrics for complex columns are always shown as -1. For queries involving complex type
columns, Impala uses heuristics to estimate the data distribution within such columns.

HBase considerations:

COMPUTE STATS works for HBase tables also. The statistics gathered for HBase tables are somewhat different than
for HDFS-backed tables, but that metadata is still used for optimization when HBase tables are involved in join queries.

Amazon S3 considerations:

COMPUTE STATS also works for tables where data resides in the Amazon Simple Storage Service (S3). See Using Impala
to Query the Amazon S3 Filesystem on page 567 for details.

Performance considerations:

The statistics collected by COMPUTE STATS are used to optimize join queries INSERT operations into Parquet tables,
and other resource-intensive kinds of SQL statements. See Table and Column Statistics on page 490 for details.

For large tables, the COMPUTE STATS statement itself might take a long time and you might need to tune its
performance. The COMPUTE STATS statement does not work with the EXPLAIN statement, or the SUMMARY command
in impala-shell. You can use the PROFILE statement in impala-shell to examine timing information for the
statement as awhole. If a basic COMPUTE STATS statement takes a long time for a partitioned table, consider switching
to the COMPUTE INCREMENTAL STATS syntax so that only newly added partitions are analyzed each time.

Examples:

This example shows two tables, T1 and T2, with a small number distinct values linked by a parent-child relationship
between T1.ID and T2.PARENT. T1 is tiny, while T2 has approximately 100K rows. Initially, the statistics includes
physical measurements such as the number of files, the total size, and size measurements for fixed-length columns
such as with the INT type. Unknown values are represented by -1. After running COMPUTE STATS for each table, much
more information is available through the SHOW STATS statements. If you were running a join query involving both
of these tables, you would need statistics for both tables to get the most effective optimization for the query.

[localhost:21000] > show table stats t1;
Query: show table stats t1
+-------+--------+------+--------+
| #Rows | #Files | Size | Format |
+-------+--------+------+--------+
| -1 | 1 | 33B | TEXT |
+-------+--------+------+--------+
Returned 1 row(s) in 0.02s
[localhost:21000] > show table stats t2;
Query: show table stats t2
+-------+--------+----------+--------+
| #Rows | #Files | Size | Format |
+-------+--------+----------+--------+
| -1 | 28 | 960.00KB | TEXT |
+-------+--------+----------+--------+
Returned 1 row(s) in 0.01s
[localhost:21000] > show column stats t1;
Query: show column stats t1
+--------+--------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+--------+--------+------------------+--------+----------+----------+
| id | INT | -1 | -1 | 4 | 4 |
| s | STRING | -1 | -1 | -1 | -1 |
+--------+--------+------------------+--------+----------+----------+
Returned 2 row(s) in 1.71s
[localhost:21000] > show column stats t2;
Query: show column stats t2
+--------+--------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+--------+--------+------------------+--------+----------+----------+
| parent | INT | -1 | -1 | 4 | 4 |
| s | STRING | -1 | -1 | -1 | -1 |
+--------+--------+------------------+--------+----------+----------+
Returned 2 row(s) in 0.01s
[localhost:21000] > compute stats t1;

228 | Apache Impala Guide

Impala SQL Language Reference

Query: compute stats t1
+---+
| summary |
+---+
| Updated 1 partition(s) and 2 column(s). |
+---+
Returned 1 row(s) in 5.30s
[localhost:21000] > show table stats t1;
Query: show table stats t1
+-------+--------+------+--------+
| #Rows | #Files | Size | Format |
+-------+--------+------+--------+
| 3 | 1 | 33B | TEXT |
+-------+--------+------+--------+
Returned 1 row(s) in 0.01s
[localhost:21000] > show column stats t1;
Query: show column stats t1
+--------+--------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+--------+--------+------------------+--------+----------+----------+
| id | INT | 3 | -1 | 4 | 4 |
| s | STRING | 3 | -1 | -1 | -1 |
+--------+--------+------------------+--------+----------+----------+
Returned 2 row(s) in 0.02s
[localhost:21000] > compute stats t2;
Query: compute stats t2
+---+
| summary |
+---+
| Updated 1 partition(s) and 2 column(s). |
+---+
Returned 1 row(s) in 5.70s
[localhost:21000] > show table stats t2;
Query: show table stats t2
+-------+--------+----------+--------+
| #Rows | #Files | Size | Format |
+-------+--------+----------+--------+
| 98304 | 1 | 960.00KB | TEXT |
+-------+--------+----------+--------+
Returned 1 row(s) in 0.03s
[localhost:21000] > show column stats t2;
Query: show column stats t2
+--------+--------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+--------+--------+------------------+--------+----------+----------+
| parent | INT | 3 | -1 | 4 | 4 |
| s | STRING | 6 | -1 | 14 | 9.3 |
+--------+--------+------------------+--------+----------+----------+
Returned 2 row(s) in 0.01s

The following example shows how to use the INCREMENTAL clause, available in Impala 2.1.0 and higher. The COMPUTE
INCREMENTAL STATS syntax lets you collect statistics for newly added or changed partitions, without rescanning the
entire table.

-- Initially the table has no incremental stats, as indicated
-- by -1 under #Rows and false under Incremental stats.
show table stats item_partitioned;
+-------------+-------+--------+----------+--------------+---------+------------------
| i_category | #Rows | #Files | Size | Bytes Cached | Format | Incremental stats
+-------------+-------+--------+----------+--------------+---------+------------------
| Books | -1 | 1 | 223.74KB | NOT CACHED | PARQUET | false
| Children | -1 | 1 | 230.05KB | NOT CACHED | PARQUET | false
| Electronics | -1 | 1 | 232.67KB | NOT CACHED | PARQUET | false
| Home | -1 | 1 | 232.56KB | NOT CACHED | PARQUET | false
| Jewelry | -1 | 1 | 223.72KB | NOT CACHED | PARQUET | false
| Men | -1 | 1 | 231.25KB | NOT CACHED | PARQUET | false
| Music | -1 | 1 | 237.90KB | NOT CACHED | PARQUET | false
| Shoes | -1 | 1 | 234.90KB | NOT CACHED | PARQUET | false
| Sports | -1 | 1 | 227.97KB | NOT CACHED | PARQUET | false
| Women | -1 | 1 | 226.27KB | NOT CACHED | PARQUET | false
| Total | -1 | 10 | 2.25MB | 0B | |
+-------------+-------+--------+----------+--------------+---------+------------------

Apache Impala Guide | 229

Impala SQL Language Reference

-- After the first COMPUTE INCREMENTAL STATS,
-- all partitions have stats.
compute incremental stats item_partitioned;
+---+
| summary |
+---+
| Updated 10 partition(s) and 21 column(s). |
+---+
show table stats item_partitioned;
+-------------+-------+--------+----------+--------------+---------+------------------
| i_category | #Rows | #Files | Size | Bytes Cached | Format | Incremental stats
+-------------+-------+--------+----------+--------------+---------+------------------
| Books | 1733 | 1 | 223.74KB | NOT CACHED | PARQUET | true
| Children | 1786 | 1 | 230.05KB | NOT CACHED | PARQUET | true
| Electronics | 1812 | 1 | 232.67KB | NOT CACHED | PARQUET | true
| Home | 1807 | 1 | 232.56KB | NOT CACHED | PARQUET | true
| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED | PARQUET | true
| Men | 1811 | 1 | 231.25KB | NOT CACHED | PARQUET | true
| Music | 1860 | 1 | 237.90KB | NOT CACHED | PARQUET | true
| Shoes | 1835 | 1 | 234.90KB | NOT CACHED | PARQUET | true
| Sports | 1783 | 1 | 227.97KB | NOT CACHED | PARQUET | true
| Women | 1790 | 1 | 226.27KB | NOT CACHED | PARQUET | true
| Total | 17957 | 10 | 2.25MB | 0B | |
+-------------+-------+--------+----------+--------------+---------+------------------

-- Add a new partition...
alter table item_partitioned add partition (i_category='Camping');
-- Add or replace files in HDFS outside of Impala,
-- rendering the stats for a partition obsolete.
!import_data_into_sports_partition.sh
refresh item_partitioned;
drop incremental stats item_partitioned partition (i_category='Sports');
-- Now some partitions have incremental stats
-- and some do not.
show table stats item_partitioned;
+-------------+-------+--------+----------+--------------+---------+------------------
| i_category | #Rows | #Files | Size | Bytes Cached | Format | Incremental stats
+-------------+-------+--------+----------+--------------+---------+------------------
| Books | 1733 | 1 | 223.74KB | NOT CACHED | PARQUET | true
| Camping | -1 | 1 | 408.02KB | NOT CACHED | PARQUET | false
| Children | 1786 | 1 | 230.05KB | NOT CACHED | PARQUET | true
| Electronics | 1812 | 1 | 232.67KB | NOT CACHED | PARQUET | true
| Home | 1807 | 1 | 232.56KB | NOT CACHED | PARQUET | true
| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED | PARQUET | true
| Men | 1811 | 1 | 231.25KB | NOT CACHED | PARQUET | true
| Music | 1860 | 1 | 237.90KB | NOT CACHED | PARQUET | true
| Shoes | 1835 | 1 | 234.90KB | NOT CACHED | PARQUET | true
| Sports | -1 | 1 | 227.97KB | NOT CACHED | PARQUET | false
| Women | 1790 | 1 | 226.27KB | NOT CACHED | PARQUET | true
| Total | 17957 | 11 | 2.65MB | 0B | |
+-------------+-------+--------+----------+--------------+---------+------------------

-- After another COMPUTE INCREMENTAL STATS,
-- all partitions have incremental stats, and only the 2
-- partitions without incremental stats were scanned.
compute incremental stats item_partitioned;
+--+
| summary |
+--+
| Updated 2 partition(s) and 21 column(s). |
+--+
show table stats item_partitioned;
+-------------+-------+--------+----------+--------------+---------+------------------
| i_category | #Rows | #Files | Size | Bytes Cached | Format | Incremental stats
+-------------+-------+--------+----------+--------------+---------+------------------
| Books | 1733 | 1 | 223.74KB | NOT CACHED | PARQUET | true
| Camping | 5328 | 1 | 408.02KB | NOT CACHED | PARQUET | true
| Children | 1786 | 1 | 230.05KB | NOT CACHED | PARQUET | true
| Electronics | 1812 | 1 | 232.67KB | NOT CACHED | PARQUET | true
| Home | 1807 | 1 | 232.56KB | NOT CACHED | PARQUET | true
| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED | PARQUET | true
| Men | 1811 | 1 | 231.25KB | NOT CACHED | PARQUET | true

230 | Apache Impala Guide

Impala SQL Language Reference

| Music | 1860 | 1 | 237.90KB | NOT CACHED | PARQUET | true
| Shoes | 1835 | 1 | 234.90KB | NOT CACHED | PARQUET | true
| Sports | 1783 | 1 | 227.97KB | NOT CACHED | PARQUET | true
| Women | 1790 | 1 | 226.27KB | NOT CACHED | PARQUET | true
| Total | 17957 | 11 | 2.65MB | 0B | |
+-------------+-------+--------+----------+--------------+---------+------------------

File format considerations:

The COMPUTE STATS statement works with tables created with any of the file formats supported by Impala. See How
Impala Works with Hadoop File Formats on page 528 for details about working with the different file formats. The
following considerations apply to COMPUTE STATS depending on the file format of the table.

The COMPUTE STATS statement works with text tables with no restrictions. These tables can be created through either
Impala or Hive.

The COMPUTE STATS statement works with Parquet tables. These tables can be created through either Impala or Hive.

The COMPUTE STATS statement works with Avro tables without restriction in CDH 5.4 / Impala 2.2 and higher. In
earlier releases, COMPUTE STATSworked only for Avro tables created through Hive, and required the CREATE TABLE
statement to use SQL-style column names and types rather than an Avro-style schema specification.

The COMPUTE STATS statement works with RCFile tables with no restrictions. These tables can be created through
either Impala or Hive.

The COMPUTE STATS statement works with SequenceFile tables with no restrictions. These tables can be created
through either Impala or Hive.

The COMPUTE STATS statement works with partitioned tables, whether all the partitions use the same file format, or
some partitions are defined through ALTER TABLE to use different file formats.

Statement type: DDL

Cancellation: Certain multi-stage statements (CREATE TABLE AS SELECT and COMPUTE STATS) can be cancelled
during some stages, when running INSERT or SELECT operations internally. To cancel this statement, use Ctrl-C from
the impala-shell interpreter, the Cancel button from theWatch page in Hue, Actions > Cancel from the Queries
list in Cloudera Manager, or Cancel from the list of in-flight queries (for a particular node) on the Queries tab in the
Impala web UI (port 25000).

Restrictions:

Currently, the COMPUTE STATS statement under CDH 4 does not store any statistics for DECIMAL columns. When
Impala runs under CDH 5, which has better support for DECIMAL in the metastore database, COMPUTE STATS does
collect statistics for DECIMAL columns and Impala uses the statistics to optimize query performance.

Note: Prior to Impala 1.4.0, COMPUTE STATS counted the number of NULL values in each column
and recorded that figure in the metastore database. Because Impala does not currently make use of
the NULL count during query planning, Impala 1.4.0 and higher speeds up the COMPUTE STATS
statement by skipping this NULL counting.

Internal details:

Behind the scenes, the COMPUTE STATS statement executes two statements: one to count the rows of each partition
in the table (or the entire table if unpartitioned) through the COUNT(*) function, and another to count the approximate
number of distinct values in each column through the NDV() function. You might see these queries in your monitoring
and diagnostic displays. The same factors that affect the performance, scalability, and execution of other queries (such
as parallel execution, memory usage, admission control, and timeouts) also apply to the queries run by the COMPUTE
STATS statement.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user,must have read permission for all affected
files in the source directory: all files in the case of an unpartitioned table or a partitioned table in the case of COMPUTE
STATS; or all the files in partitions without incremental stats in the case of COMPUTE INCREMENTAL STATS. It must

Apache Impala Guide | 231

Impala SQL Language Reference

also have read and execute permissions for all relevant directories holding the data files. (Essentially, COMPUTE STATS
requires the same permissions as the underlying SELECT queries it runs against the table.)

Related information:

DROP STATS Statement on page 256, SHOW TABLE STATS Statement on page 331, SHOW COLUMN STATS Statement
on page 333, Table and Column Statistics on page 490

CREATE DATABASE Statement

Creates a new database.

In Impala, a database is both:

• A logical construct for grouping together related tables, views, and functions within their own namespace. You
might use a separate database for each application, set of related tables, or round of experimentation.

• A physical construct represented by a directory tree in HDFS. Tables (internal tables), partitions, and data files are
all located under this directory. You can perform HDFS-level operations such as backing it up andmeasuring space
usage, or remove it with a DROP DATABASE statement.

Syntax:

CREATE (DATABASE|SCHEMA) [IF NOT EXISTS] database_name[COMMENT 'database_comment']
 [LOCATION hdfs_path];

Statement type: DDL

Usage notes:

A database is physically represented as a directory in HDFS, with a filename extension .db, under the main Impala
data directory. If the associated HDFS directory does not exist, it is created for you. All databases and their associated
directories are top-level objects, with no physical or logical nesting.

After creating a database, to make it the current database within an impala-shell session, use the USE statement.
You can refer to tables in the current database without prepending any qualifier to their names.

When you first connect to Impala through impala-shell, the database you start in (before issuing any CREATE
DATABASE or USE statements) is named default.

Impala includes another predefined database,_impala_builtins, that serves as the location for the built-in functions.
To see the built-in functions, use a statement like the following:

show functions in _impala_builtins;
show functions in _impala_builtins like '*substring*';

After creating a database, your impala-shell session or another impala-shell connected to the same node can
immediately access that database. To access the database through the Impala daemon on a different node, issue the
INVALIDATE METADATA statement first while connected to that other node.

Setting the LOCATION attribute for a new database is a way to work with sets of files in an HDFS directory structure
outside the default Impala data directory, as opposed to setting the LOCATION attribute for each individual table.

If you connect to different Impala nodeswithin an impala-shell session for load-balancing purposes, you can enable
the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata
has been received by all the Impala nodes. See SYNC_DDL Query Option on page 322 for details.

Hive considerations:

When you create a database in Impala, the database can also be used by Hive. When you create a database in Hive,
issue an INVALIDATE METADATA statement in Impala to make Impala permanently aware of the new database.

The SHOW DATABASES statement lists all databases, or the databases whose name matches a wildcard pattern.

Cancellation: Cannot be cancelled.

HDFS permissions:

232 | Apache Impala Guide

Impala SQL Language Reference

The user ID that the impalad daemon runs under, typically the impala user, must have write permission for the
parent HDFS directory under which the database is located.

Examples:

create database first_db;
use first_db;
create table t1 (x int);

create database second_db;
use second_db;
-- Each database has its own namespace for tables.
-- You can reuse the same table names in each database.
create table t1 (s string);

create database temp;

-- You can either USE a database after creating it,
-- or qualify all references to the table name with the name of the database.
-- Here, tables T2 and T3 are both created in the TEMP database.

create table temp.t2 (x int, y int);
use database temp;
create table t3 (s string);

-- You cannot drop a database while it is selected by the USE statement.
drop database temp;
ERROR: AnalysisException: Cannot drop current default database: temp

-- The always-available database 'default' is a convenient one to USE
-- before dropping a database you created.
use default;

-- Before dropping a database, first drop all the tables inside it,
-- or in CDH 5.5 and higher use the CASCADE clause.
drop database temp;
ERROR: ImpalaRuntimeException: Error making 'dropDatabase' RPC to Hive Metastore:
CAUSED BY: InvalidOperationException: Database temp is not empty
show tables in temp;
+------+
| name |
+------+
| t3 |
+------+

-- CDH 5.5 and higher:
drop database temp cascade;

-- CDH 5.4 and lower:
drop table temp.t3;
drop database temp;

Related information:

Overviewof ImpalaDatabases on page 206, DROPDATABASE Statement on page 253, USE Statement on page 338, SHOW
DATABASES on page 327, Overview of Impala Tables on page 209

CREATE FUNCTION Statement

Creates a user-defined function (UDF), which you can use to implement custom logic during SELECT or INSERT
operations.

Syntax:

The syntax is different depending onwhether you create a scalar UDF,which is called once for each rowand implemented
by a single function, or a user-defined aggregate function (UDA), which is implemented by multiple functions that
compute intermediate results across sets of rows.

Apache Impala Guide | 233

Impala SQL Language Reference

To create a scalar UDF, issue a CREATE FUNCTION statement:

CREATE FUNCTION [IF NOT EXISTS] [db_name.]function_name([arg_type[, arg_type...])
 RETURNS return_type
 LOCATION 'hdfs_path'
 SYMBOL='symbol_or_class'

To create a UDA, issue a CREATE AGGREGATE FUNCTION statement:

CREATE [AGGREGATE] FUNCTION [IF NOT EXISTS] [db_name.]function_name([arg_type[,
arg_type...])
 RETURNS return_type
[INTERMEDIATE type_spec]

 LOCATION 'hdfs_path'
 [INIT_FN='function]
 UPDATE_FN='function
 MERGE_FN='function
 [PREPARE_FN='function]
 [CLOSEFN='function]
[SERIALIZE_FN='function]

 [FINALIZE_FN='function]

Statement type: DDL

Varargs notation:

Note:

Variable-length argument lists are supported for C++ UDFs, but currently not for Java UDFs.

If the underlying implementation of your function accepts a variable number of arguments:

• The variable arguments must go last in the argument list.
• The variable arguments must all be of the same type.
• You must include at least one instance of the variable arguments in every function call invoked from SQL.
• You designate the variable portion of the argument list in the CREATE FUNCTION statement by including ...

immediately after the type name of the first variable argument. For example, to create a function that accepts an
INT argument, followed by a BOOLEAN, followed by one or more STRING arguments, your CREATE FUNCTION
statement would look like:

CREATE FUNCTION func_name (INT, BOOLEAN, STRING ...)
 RETURNS type LOCATION 'path' SYMBOL='entry_point';

See Variable-Length Argument Lists on page 453 for how to code a C++ UDF to accept variable-length argument lists.

Scalar and aggregate functions:

The simplest kind of user-defined function returns a single scalar value each time it is called, typically once for each
row in the result set. This general kind of function is what is usually meant by UDF. User-defined aggregate functions
(UDAs) are a specialized kind of UDF that produce a single value based on the contents of multiple rows. You usually
use UDAs in combination with a GROUP BY clause to condense a large result set into a smaller one, or even a single
row summarizing column values across an entire table.

You create UDAs by using the CREATE AGGREGATE FUNCTION syntax. The clauses INIT_FN, UPDATE_FN, MERGE_FN,
SERIALIZE_FN, FINALIZE_FN, and INTERMEDIATE only apply when you create a UDA rather than a scalar UDF.

The *_FN clauses specify functions to call at different phases of function processing.

• Initialize: The function you specify with the INIT_FN clause does any initial setup, such as initializing member
variables in internal data structures. This function is often a stub for simple UDAs. You can omit this clause and a
default (no-op) function will be used.

• Update: The function you specify with the UPDATE_FN clause is called once for each row in the original result set,
that is, before any GROUP BY clause is applied. A separate instance of the function is called for each different

234 | Apache Impala Guide

Impala SQL Language Reference

value returned by the GROUP BY clause. The final argument passed to this function is a pointer, to which you
write an updated value based on its original value and the value of the first argument.

• Merge: The function you specify with the MERGE_FN clause is called an arbitrary number of times, to combine
intermediate values produced by different nodes or different threads as Impala reads and processes data files in
parallel. The final argument passed to this function is a pointer, to which you write an updated value based on its
original value and the value of the first argument.

• Serialize: The function you specify with the SERIALIZE_FN clause freesmemory allocated to intermediate results.
It is required if any memory was allocated by the Allocate function in the Init, Update, or Merge functions, or if
the intermediate type contains any pointers. See the UDA code samples for details.

• Finalize: The function you specifywith theFINALIZE_FN clause does any required teardown for resources acquired
by your UDF, such as freeingmemory, closing file handles if you explicitly opened any files, and so on. This function
is often a stub for simple UDAs. You can omit this clause and a default (no-op) function will be used. It is required
in UDAs where the final return type is different than the intermediate type. or if any memory was allocated by
the Allocate function in the Init, Update, or Merge functions. See the UDA code samples for details.

If you use a consistent naming convention for each of the underlying functions, Impala can automatically determine
the names based on the first such clause, so the others are optional.

For end-to-end examples of UDAs, see Impala User-Defined Functions (UDFs) on page 448.

Complex type considerations:

Currently, Impala UDFs cannot accept arguments or return values of the Impala complex types (STRUCT, ARRAY, or
MAP).

Usage notes:

• You can write Impala UDFs in either C++ or Java. C++ UDFs are new to Impala, and are the recommended format
for high performance utilizing native code. Java-based UDFs are compatible between Impala and Hive, and are
most suited to reusing existing Hive UDFs. (Impala can run Java-based Hive UDFs but not Hive UDAs.)

• The body of the UDF is represented by a .so or .jar file, which you store in HDFS and the CREATE FUNCTION
statement distributes to each Impala node.

• Impala calls the underlying code during SQL statement evaluation, as many times as needed to process all the
rows from the result set. All UDFs are assumed to be deterministic, that is, to always return the same result when
passed the same argument values. Impala might or might not skip some invocations of a UDF if the result value
is already known from a previous call. Therefore, do not rely on the UDF being called a specific number of times,
and do not return different result values based on some external factor such as the current time, a randomnumber
function, or an external data source that could be updated while an Impala query is in progress.

• The names of the function arguments in the UDF are not significant, only their number, positions, and data types.
• You can overload the same function name by creating multiple versions of the function, each with a different

argument signature. For security reasons, you cannot make a UDF with the same name as any built-in function.
• In the UDF code, you represent the function return result as a struct. This struct contains 2 fields. The first

field is a boolean representing whether the value is NULL or not. (When this field is true, the return value is
interpreted as NULL.) The second field is the same type as the specified function return type, and holds the return
value when the function returns something other than NULL.

• In the UDF code, you represent the function arguments as an initial pointer to a UDF context structure, followed
by references to zero or more structs, corresponding to each of the arguments. Each struct has the same 2
fields as with the return value, a boolean field representing whether the argument is NULL, and a field of the
appropriate type holding any non-NULL argument value.

• For sample code and build instructions for UDFs, see the sample UDFs in the Impala github repo.
• Because the file representing the body of the UDF is stored in HDFS, it is automatically available to all the Impala

nodes. You do not need to manually copy any UDF-related files between servers.
• Because Impala currently does not have any ALTER FUNCTION statement, if you need to rename a function,

move it to a different database, or change its signature or other properties, issue a DROP FUNCTION statement
for the original function followed by a CREATE FUNCTION with the desired properties.

• Because each UDF is associated with a particular database, either issue a USE statement before doing any CREATE
FUNCTION statements, or specify the name of the function as db_name.function_name.

Apache Impala Guide | 235

Impala SQL Language Reference

https://github.com/cloudera/impala-udf-samples/blob/master/uda-sample.cc
https://github.com/cloudera/impala-udf-samples/blob/master/uda-sample.cc
https://github.com/cloudera/impala/tree/master/be/src/udf_samples

If you connect to different Impala nodeswithin an impala-shell session for load-balancing purposes, you can enable
the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata
has been received by all the Impala nodes. See SYNC_DDL Query Option on page 322 for details.

Compatibility:

Impala can run UDFs that were created through Hive, as long as they refer to Impala-compatible data types (not
composite or nested column types). Hive can run Java-based UDFs that were created through Impala, but not Impala
UDFs written in C++.

Restrictions:

The Hive current_user() function cannot be called from a Java UDF through Impala.

Currently, Impala UDFs and UDAs are not persisted in the metastore database. Information about these functions is
held in the memory of the catalogd daemon. You must reload them by running the CREATE FUNCTION statements
again each time you restart the catalogd daemon.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

ImpalaUser-Defined Functions (UDFs) on page 448 formore background information, usage instructions, and examples
for Impala UDFs; DROP FUNCTION Statement on page 255

CREATE ROLE Statement (CDH 5.2 or higher only)

The CREATE ROLE statement creates a role to which privileges can be granted. Privileges can be granted to roles,
which can then be assigned to users. A user that has been assigned a role will only be able to exercise the privileges
of that role. Only users that have administrative privileges can create/drop roles. By default, the hive, impala and
hue users have administrative privileges in Sentry.

Syntax:

CREATE ROLE role_name

Required privileges:

Only administrative users (those with ALL privileges on the server, defined in the Sentry policy file) can use this
statement.

Compatibility:

Impala makes use of any roles and privileges specified by the GRANT and REVOKE statements in Hive, and Hive makes
use of any roles and privileges specified by the GRANT and REVOKE statements in Impala. The Impala GRANT and REVOKE
statements for privileges do not require the ROLE keyword to be repeated before each role name, unlike the equivalent
Hive statements.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

Enabling Sentry Authorization for Impala on page 96, GRANT Statement (CDH 5.2 or higher only) on page 264, REVOKE
Statement (CDH 5.2 or higher only) on page 280, DROP ROLE Statement (CDH 5.2 or higher only) on page 255, SHOW
Statement on page 323

CREATE TABLE Statement

Creates a new table and specifies its characteristics. While creating a table, you optionally specify aspects such as:

236 | Apache Impala Guide

Impala SQL Language Reference

• Whether the table is internal or external.
• The columns and associated data types.
• The columns used for physically partitioning the data.
• The file format for data files.
• The HDFS directory where the data files are located.

Syntax:

The general syntax for creating a table and specifying its columns is as follows:

Explicit column definitions:

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name
 (col_name data_type [COMMENT 'col_comment'], ...)
 [PARTITIONED BY (col_name data_type [COMMENT 'col_comment'], ...)]
 [COMMENT 'table_comment']
 [WITH SERDEPROPERTIES ('key1'='value1', 'key2'='value2', ...)]
 [
 [ROW FORMAT row_format] [STORED AS file_format]
]
 [LOCATION 'hdfs_path']
 [TBLPROPERTIES ('key1'='value1', 'key2'='value2', ...)]
 [CACHED IN 'pool_name' [WITH REPLICATION = integer] | UNCACHED]

Column definitions inferred from data file:

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name
 LIKE PARQUET 'hdfs_path_of_parquet_file'
 [COMMENT 'table_comment']
 [PARTITIONED BY (col_name data_type [COMMENT 'col_comment'], ...)]
 [WITH SERDEPROPERTIES ('key1'='value1', 'key2'='value2', ...)]
 [
 [ROW FORMAT row_format] [STORED AS file_format]
]
 [LOCATION 'hdfs_path']
 [TBLPROPERTIES ('key1'='value1', 'key2'='value2', ...)]
 [CACHED IN 'pool_name' [WITH REPLICATION = integer] | UNCACHED]
data_type:

primitive_type
 | array_type
 | map_type
 | struct_type

CREATE TABLE AS SELECT:

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] db_name.]table_name
 [COMMENT 'table_comment']
 [WITH SERDEPROPERTIES ('key1'='value1', 'key2'='value2', ...)]
 [
 [ROW FORMAT row_format] [STORED AS ctas_file_format]
]
 [LOCATION 'hdfs_path']
 [TBLPROPERTIES ('key1'='value1', 'key2'='value2', ...)]
 [CACHED IN 'pool_name' [WITH REPLICATION = integer] | UNCACHED]
AS
select_statement

primitive_type:
 TINYINT
 | SMALLINT
 | INT
 | BIGINT
 | BOOLEAN
 | FLOAT
 | DOUBLE
| DECIMAL

 | STRING
| CHAR

Apache Impala Guide | 237

Impala SQL Language Reference

| VARCHAR
 | TIMESTAMP

complex_type:
 struct_type
 | array_type
 | map_type

struct_type: STRUCT < name : primitive_or_complex_type [COMMENT 'comment_string'], ...
 >

array_type: ARRAY < primitive_or_complex_type >

map_type: MAP < primitive_type, primitive_or_complex_type >

row_format:
 DELIMITED [FIELDS TERMINATED BY 'char' [ESCAPED BY 'char']]
 [LINES TERMINATED BY 'char']

file_format:
 PARQUET
 | TEXTFILE
 | AVRO
 | SEQUENCEFILE
 | RCFILE

ctas_file_format:
 PARQUET
 | TEXTFILE

Statement type: DDL

Column definitions:

Depending on the form of the CREATE TABLE statement, the column definitions are required or not allowed.

With the CREATE TABLE AS SELECT and CREATE TABLE LIKE syntax, you do not specify the columns at all; the
column names and types are derived from the source table, query, or data file.

With the basic CREATE TABLE syntax, you must list one or more columns, its name, type, and optionally a comment,
in addition to any columns used as partitioning keys. There is one exception where the column list is not required:
when creating an Avro table with the STORED AS AVRO clause, you can omit the list of columns and specify the same
metadata as part of the TBLPROPERTIES clause.

Complex type considerations:

The Impala complex types (STRUCT, ARRAY, or MAP) are available in CDH 5.5 / Impala 2.3 and higher. Because you can
nest these types (for example, to make an array of maps or a struct with an array field), these types are also sometimes
referred to as nested types. See Complex Types (CDH 5.5 or higher only) on page 157 for usage details.

Impala can create tables containing complex type columns, with any supported file format. Because currently Impala
can only query complex type columns in Parquet tables, creating tables with complex type columns and other file
formats such as text is of limited use. For example, you might create a text table including some columns with complex
types with Impala, and use Hive as part of your to ingest the nested type data and copy it to an identical Parquet table.
Or youmight create a partitioned table containing complex type columns using one file format, and use ALTER TABLE
to change the file format of individual partitions to Parquet; Impala can then query only the Parquet-format partitions
in that table.

Partitioned tables can contain complex type columns. All the partition key columns must be scalar types.

Internal and external tables (EXTERNAL and LOCATION clauses):

By default, Impala creates an “internal” table, where Impala manages the underlying data files for the table, and
physically deletes the data files when you drop the table. If you specify the EXTERNAL clause, Impala treats the table
as an “external” table, where the data files are typically produced outside Impala and queried from their original
locations in HDFS, and Impala leaves the data files in place when you drop the table. For details about internal and
external tables, see Overview of Impala Tables on page 209.

238 | Apache Impala Guide

Impala SQL Language Reference

Typically, for an external table you include a LOCATION clause to specify the path to the HDFS directory where Impala
reads and writes files for the table. For example, if your data pipeline produces Parquet files in the HDFS directory
/user/etl/destination, you might create an external table as follows:

CREATE EXTERNAL TABLE external_parquet (c1 INT, c2 STRING, c3 TIMESTAMP)
 STORED AS PARQUET LOCATION '/user/etl/destination';

Although the EXTERNAL and LOCATION clauses are often specified together, LOCATION is optional for external tables,
and you can also specify LOCATION for internal tables. The difference is all about whether Impala “takes control” of
the underlying data files and moves them when you rename the table, or deletes them when you drop the table. For
more about internal and external tables and how they interact with the LOCATION attribute, see Overview of Impala
Tables on page 209.

Partitioned tables (PARTITIONED BY clause):

The PARTITIONED BY clause divides the data files based on the values from one or more specified columns. Impala
queries can use the partition metadata to minimize the amount of data that is read from disk or transmitted across
the network, particularly during join queries. For details about partitioning, see Partitioning for Impala Tables on page
523.

Specifying file format (STORED AS and ROW FORMAT clauses):

The STORED AS clause identifies the format of the underlying data files. Currently, Impala can query more types of
file formats than it can create or insert into. Use Hive to perform any create or data load operations that are not
currently available in Impala. For example, Impala can create an Avro, SequenceFile, or RCFile table but cannot insert
data into it. There are also Impala-specific procedures for using compression with each kind of file format. For details
about working with data files of various formats, see How Impala Works with Hadoop File Formats on page 528.

Note: In Impala 1.4.0 and higher, Impala can create Avro tables, which formerly required doing the
CREATE TABLE statement in Hive. See Using the Avro File Format with Impala Tables on page 548 for
details and examples.

By default (when no STORED AS clause is specified), data files in Impala tables are created as text files with Ctrl-A (hex
01) characters as the delimiter. Specify the ROW FORMAT DELIMITED clause to produce or ingest data files that use
a different delimiter character such as tab or |, or a different line end character such as carriage return or newline.
When specifying delimiter and line end characters with the FIELDS TERMINATED BY and LINES TERMINATED BY
clauses, use '\t' for tab, '\n' for newline or linefeed, '\r' for carriage return, and \0 for ASCII nul (hex 00). For
more examples of text tables, see Using Text Data Files with Impala Tables on page 529.

TheESCAPED BY clause applies both to text files that you create through anINSERT statement to an ImpalaTEXTFILE
table, and to existing data files that you put into an Impala table directory. (You can ingest existing data files either by
creating the table with CREATE EXTERNAL TABLE ... LOCATION, the LOAD DATA statement, or through an HDFS
operation such as hdfs dfs -put file hdfs_path.) Choose an escape character that is not used anywhere else
in the file, and put it in front of each instance of the delimiter character that occurs within a field value. Surrounding
field values with quotation marks does not help Impala to parse fields with embedded delimiter characters; the
quotation marks are considered to be part of the column value. If you want to use \ as the escape character, specify
the clause in impala-shell as ESCAPED BY '\\'.

Note: TheCREATE TABLE clausesFIELDS TERMINATED BY,ESCAPED BY, andLINES TERMINATED
BY have special rules for the string literal used for their argument, because they all require a single
character. You can use a regular character surrounded by single or double quotation marks, an octal
sequence such as '\054' (representing a comma), or an integer in the range '-127'..'128' (with
quotation marks but no backslash), which is interpreted as a single-byte ASCII character. Negative
values are subtracted from 256; for example, FIELDS TERMINATED BY '-2' sets the field delimiter
to ASCII code 254, the “Icelandic Thorn” character used as a delimiter by some data formats.

Cloning tables (LIKE clause):

Apache Impala Guide | 239

Impala SQL Language Reference

To create an empty table with the same columns, comments, and other attributes as another table, use the following
variation. The CREATE TABLE ... LIKE form allows a restricted set of clauses, currently only the LOCATION,
COMMENT, and STORED AS clauses.

CREATE [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name
LIKE { [db_name.]table_name | PARQUET 'hdfs_path_of_parquet_file' }

 [COMMENT 'table_comment']
 [STORED AS file_format]
 [LOCATION 'hdfs_path']

Note:

To clone the structure of a table and transfer data into it in a single operation, use the CREATE TABLE
AS SELECT syntax described in the next subsection.

When you clone the structure of an existing table using the CREATE TABLE ... LIKE syntax, the new table keeps
the same file format as the original one, so you only need to specify the STORED AS clause if youwant to use a different
file format, or when specifying a view as the original table. (Creating a table “like” a view produces a text table by
default.)

Although normally Impala cannot create an HBase table directly, Impala can clone the structure of an existing HBase
table with the CREATE TABLE ... LIKE syntax, preserving the file format and metadata from the original table.

There are some exceptions to the ability to use CREATE TABLE ... LIKE with an Avro table. For example, you
cannot use this technique for an Avro table that is specified with an Avro schema but no columns. When in doubt,
check if a CREATE TABLE ... LIKE operation works in Hive; if not, it typically will not work in Impala either.

If the original table is partitioned, the new table inherits the same partition key columns. Because the new table is
initially empty, it does not inherit the actual partitions that exist in the original one. To create partitions in the new
table, insert data or issue ALTER TABLE ... ADD PARTITION statements.

Prior to Impala 1.4.0, it was not possible to use the CREATE TABLE LIKE view_name syntax. In Impala 1.4.0 and
higher, you can create a table with the same column definitions as a view using the CREATE TABLE LIKE technique.
Although CREATE TABLE LIKE normally inherits the file format of the original table, a view has no underlying file
format, so CREATE TABLE LIKE view_name produces a text table by default. To specify a different file format,
include a STORED AS file_format clause at the end of the CREATE TABLE LIKE statement.

Because CREATE TABLE ... LIKE onlymanipulates tablemetadata, not the physical data of the table, issue INSERT
INTO TABLE statements afterward to copy any data from the original table into the new one, optionally converting
the data to a new file format. (For some file formats, Impala can do a CREATE TABLE ... LIKE to create the table,
but Impala cannot insert data in that file format; in these cases, you must load the data in Hive. See How ImpalaWorks
with Hadoop File Formats on page 528 for details.)

CREATE TABLE AS SELECT:

The CREATE TABLE AS SELECT syntax is a shorthand notation to create a table based on column definitions from
another table, and copy data from the source table to the destination table without issuing any separate INSERT
statement. This idiom is so popular that it has its own acronym, “CTAS”.

The following examples show how to copy data from a source table T1 to a variety of destinations tables, applying
various transformations to the table properties, table layout, or the data itself as part of the operation:

-- Sample table to be the source of CTAS operations.
CREATE TABLE t1 (x INT, y STRING);
INSERT INTO t1 VALUES (1, 'one'), (2, 'two'), (3, 'three');

-- Clone all the columns and data from one table to another.
CREATE TABLE clone_of_t1 AS SELECT * FROM t1;
+-------------------+
| summary |
+-------------------+
| Inserted 3 row(s) |

240 | Apache Impala Guide

Impala SQL Language Reference

+-------------------+

-- Clone the columns and data, and convert the data to a different file format.
CREATE TABLE parquet_version_of_t1 STORED AS PARQUET AS SELECT * FROM t1;
+-------------------+
| summary |
+-------------------+
| Inserted 3 row(s) |
+-------------------+

-- Copy only some rows to the new table.
CREATE TABLE subset_of_t1 AS SELECT * FROM t1 WHERE x >= 2;
+-------------------+
| summary |
+-------------------+
| Inserted 2 row(s) |
+-------------------+

-- Same idea as CREATE TABLE LIKE: clone table layout but do not copy any data.
CREATE TABLE empty_clone_of_t1 AS SELECT * FROM t1 WHERE 1=0;
+-------------------+
| summary |
+-------------------+
| Inserted 0 row(s) |
+-------------------+

-- Reorder and rename columns and transform the data.
CREATE TABLE t5 AS SELECT upper(y) AS s, x+1 AS a, 'Entirely new column' AS n FROM t1;
+-------------------+
| summary |
+-------------------+
| Inserted 3 row(s) |
+-------------------+
SELECT * FROM t5;
+-------+---+---------------------+
| s | a | n |
+-------+---+---------------------+
ONE	2	Entirely new column
TWO	3	Entirely new column
THREE	4	Entirely new column
+-------+---+---------------------+

See SELECT Statement on page 281 for details about query syntax for the SELECT portion of a CREATE TABLE AS
SELECT statement.

The newly created table inherits the column names that you select from the original table, which you can override by
specifying column aliases in the query. Any column or table comments from the original table are not carried over to
the new table.

Sorting considerations: Although you can specify an ORDER BY clause in an INSERT ... SELECT statement, any
ORDER BY clause is ignored and the results are not necessarily sorted. An INSERT ... SELECT operation potentially
creates many different data files, prepared on different data nodes, and therefore the notion of the data being stored
in sorted order is impractical.

Note: When using the STORED AS clause with a CREATE TABLE AS SELECT statement, the
destination table must be a file format that Impala can write to: currently, text or Parquet. You cannot
specify an Avro, SequenceFile, or RCFile table as the destination table for a CTAS operation.

For example, the following statements show how you can clone all the data in a table, or a subset of the columns
and/or rows, or reorder columns, rename them, or construct them out of expressions:

As part of a CTAS operation, you can convert the data to any file format that Impala can write (currently, TEXTFILE
and PARQUET). You cannot specify the lower-level properties of a text table, such as the delimiter. Although you can
use a partitioned table as the source and copy data from it, you cannot specify any partitioning clauses for the new
table.

Apache Impala Guide | 241

Impala SQL Language Reference

Sorting considerations: Although you can specify an ORDER BY clause in an INSERT ... SELECT statement, any
ORDER BY clause is ignored and the results are not necessarily sorted. An INSERT ... SELECT operation potentially
creates many different data files, prepared on different data nodes, and therefore the notion of the data being stored
in sorted order is impractical.

CREATE TABLE LIKE PARQUET:

The variation CREATE TABLE ... LIKE PARQUET 'hdfs_path_of_parquet_file' lets you skip the column
definitions of the CREATE TABLE statement. The column names and data types are automatically configured based
on the organization of the specified Parquet data file, whichmust already reside in HDFS. You can use a data file located
outside the Impala database directories, or a file from an existing Impala Parquet table; either way, Impala only uses
the column definitions from the file and does not use the HDFS location for the LOCATION attribute of the new table.
(Although you can also specify the enclosing directory with the LOCATION attribute, to both use the same schema as
the data file and point the Impala table at the associated directory for querying.)

The following considerations apply when you use the CREATE TABLE LIKE PARQUET technique:

• Any column comments from the original table are not preserved in the new table. Each column in the new table
has a comment stating the low-level Parquet field type used to deduce the appropriate SQL column type.

• If you use a data file from a partitioned Impala table, any partition key columns from the original table are left
out of the new table, because they are represented in HDFS directory names rather than stored in the data file.
To preserve the partition information, repeat the same PARTITION clause as in the original CREATE TABLE
statement.

• The file format of the new table defaults to text, as with other kinds of CREATE TABLE statements. To make the
new table also use Parquet format, include the clause STORED AS PARQUET in the CREATE TABLE LIKE
PARQUET statement.

• If the Parquet data file comes from an existing Impala table, currently, any TINYINT or SMALLINT columns are
turned into INT columns in the new table. Internally, Parquet stores such values as 32-bit integers.

• When the destination table uses the Parquet file format, the CREATE TABLE AS SELECT and INSERT ...
SELECT statements always create at least one data file, even if the SELECT part of the statement does not match
any rows. You can use such an empty Parquet data file as a template for subsequent CREATE TABLE LIKE
PARQUET statements.

For more details about creating Parquet tables, and examples of the CREATE TABLE LIKE PARQUET syntax, see
Using the Parquet File Format with Impala Tables on page 536.

Visibility and Metadata (TBLPROPERTIES and WITH SERDEPROPERTIES clauses):

You can associate arbitrary items of metadata with a table by specifying the TBLPROPERTIES clause. This clause takes
a comma-separated list of key-value pairs and stores those items in the metastore database. You can also change the
table properties later with an ALTER TABLE statement. You can observe the table properties for different delimiter
and escape characters using the DESCRIBE FORMATTED command, and change those settings for an existing table
with ALTER TABLE ... SET TBLPROPERTIES.

You can also associate SerDes properties with the table by specifying key-value pairs through the WITH
SERDEPROPERTIES clause. This metadata is not used by Impala, which has its own built-in serializer and deserializer
for the file formats it supports. Particular property valuesmight be needed for Hive compatibilitywith certain variations
of file formats, particularly Avro.

Some DDL operations that interact with other Hadoop components require specifying particular values in the
SERDEPROPERTIES or TBLPROPERTIES fields, such as creating an Avro table or an HBase table. (You typically create
HBase tables in Hive, because they require additional clauses not currently available in Impala.)

To see the column definitions and column comments for an existing table, for example before issuing a CREATE TABLE
... LIKE or a CREATE TABLE ... AS SELECT statement, issue the statement DESCRIBE table_name. To see
even more detail, such as the location of data files and the values for clauses such as ROW FORMAT and STORED AS,
issue the statement DESCRIBE FORMATTED table_name. DESCRIBE FORMATTED is also needed to see any overall
table comment (as opposed to individual column comments).

After creating a table, your impala-shell session or another impala-shell connected to the same node can
immediately query that table. Theremight be a brief interval (one statestore heartbeat) before the table can be queried

242 | Apache Impala Guide

Impala SQL Language Reference

through a different Impala node. To make the CREATE TABLE statement return only when the table is recognized by
all Impala nodes in the cluster, enable the SYNC_DDL query option.

HDFS caching (CACHED IN clause):

If you specify the CACHED IN clause, any existing or future data files in the table directory or the partition subdirectories
are designated to be loaded into memory with the HDFS caching mechanism. See Using HDFS Caching with Impala
(CDH 5.1 or higher only) on page 502 for details about using the HDFS caching feature.

In Impala 2.2 / CDH 5.4 and higher, the optional WITH REPLICATION clause for CREATE TABLE and ALTER TABLE
lets you specify a replication factor, the number of hosts on which to cache the same data blocks. When Impala
processes a cached data block, where the cache replication factor is greater than 1, Impala randomly selects a host
that has a cached copy of that data block. This optimization avoids excessive CPU usage on a single host when the
same cached data block is processed multiple times. Cloudera recommends specifying a value greater than or equal
to the HDFS block replication factor.

Column order:

If you intend to use the table to hold data files produced by some external source, specify the columns in the same
order as they appear in the data files.

If you intend to insert or copy data into the table through Impala, or if you have control over theway externally produced
data files are arranged, use your judgment to specify columns in the most convenient order:

• If certain columns are often NULL, specify those columns last. Youmight produce data files that omit these trailing
columns entirely. Impala automatically fills in the NULL values if so.

• If an unpartitioned table will be used as the source for an INSERT ... SELECT operation into a partitioned
table, specify last in the unpartitioned table any columns that correspond to partition key columns in the partitioned
table, and in the same order as the partition key columns are declared in the partitioned table. This technique
lets you use INSERT ... SELECT * when copying data to the partitioned table, rather than specifying each
column name individually.

• If you specify columns in an order that you later discover is suboptimal, you can sometimes work around the
problem without recreating the table. You can create a view that selects columns from the original table in a
permuted order, then do a SELECT * from the view.When inserting data into a table, you can specify a permuted
order for the inserted columns to match the order in the destination table.

Hive considerations:

Impala queries can make use of metadata about the table and columns, such as the number of rows in a table or the
number of different values in a column. Prior to Impala 1.2.2, to create this metadata, you issued the ANALYZE TABLE
statement in Hive to gather this information, after creating the table and loading representative data into it. In Impala
1.2.2 and higher, the COMPUTE STATS statement produces these statistics within Impala, without needing to use Hive
at all.

HBase considerations:

Note:

The Impala CREATE TABLE statement cannot create an HBase table, because it currently does not
support the STORED BY clause needed for HBase tables. Create such tables in Hive, then query them
through Impala. For information on using Impala with HBase tables, see Using Impala to Query HBase
Tables on page 558.

Amazon S3 considerations:

To create a table where the data resides in the Amazon Simple Storage Service (S3), specify a s3a:// prefix LOCATION
attribute pointing to the data files in S3. You can use this special LOCATION syntax when creating an empty table, but
not as part of a CREATE TABLE AS SELECT statement. See Using Impala to Query the Amazon S3 Filesystem on page
567 for details.

Apache Impala Guide | 243

Impala SQL Language Reference

Sorting considerations: Although you can specify an ORDER BY clause in an INSERT ... SELECT statement, any
ORDER BY clause is ignored and the results are not necessarily sorted. An INSERT ... SELECT operation potentially
creates many different data files, prepared on different data nodes, and therefore the notion of the data being stored
in sorted order is impractical.

HDFS considerations:

The CREATE TABLE statement for an internal table creates a directory in HDFS. The CREATE EXTERNAL TABLE
statement associates the table with an existing HDFS directory, and does not create any new directory in HDFS. To
locate the HDFS data directory for a table, issue a DESCRIBE FORMATTED table statement. To examine the contents
of that HDFS directory, use an OS command such as hdfs dfs -ls hdfs://path, either from the OS command
line or through the shell or ! commands in impala-shell.

The CREATE TABLE AS SELECT syntax creates data files under the table data directory to hold any data copied by
the INSERT portion of the statement. (Even if no data is copied, Impala might create one or more empty data files.)

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have both execute and write
permission for the database directory where the table is being created.

Security considerations:

If these statements in your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statements in log files and other administrative
contexts. See http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/sg_redaction.html
for details.

Cancellation: Certain multi-stage statements (CREATE TABLE AS SELECT and COMPUTE STATS) can be cancelled
during some stages, when running INSERT or SELECT operations internally. To cancel this statement, use Ctrl-C from
the impala-shell interpreter, the Cancel button from theWatch page in Hue, Actions > Cancel from the Queries
list in Cloudera Manager, or Cancel from the list of in-flight queries (for a particular node) on the Queries tab in the
Impala web UI (port 25000).

Related information:

Overview of Impala Tables on page 209, ALTER TABLE Statement on page 216, DROP TABLE Statement on page 259,
Partitioning for Impala Tables on page 523, Internal Tables on page 209, External Tables on page 210, COMPUTE STATS
Statement on page 227, SYNC_DDL Query Option on page 322, SHOW TABLES Statement on page 328, SHOW CREATE
TABLE Statement on page 330, DESCRIBE Statement on page 246

CREATE VIEW Statement

The CREATE VIEW statement lets you create a shorthand abbreviation for a more complicated query. The base query
can involve joins, expressions, reordered columns, column aliases, and other SQL features that can make a query hard
to understand or maintain.

Because a view is purely a logical construct (an alias for a query) with no physical data behind it, ALTER VIEW only
involves changes to metadata in the metastore database, not any data files in HDFS.

Syntax:

CREATE VIEW [IF NOT EXISTS] view_name
 [(column_name [COMMENT 'column_comment'][, ...])]
 [COMMENT 'view_comment']
 AS select_statement

Statement type: DDL

Usage notes:

The CREATE VIEW statement can be useful in scenarios such as the following:

244 | Apache Impala Guide

Impala SQL Language Reference

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/sg_redaction.html

• To turn even the most lengthy and complicated SQL query into a one-liner. You can issue simple queries against
the view from applications, scripts, or interactive queries in impala-shell. For example:

select * from view_name;
select * from view_name order by c1 desc limit 10;

The more complicated and hard-to-read the original query, the more benefit there is to simplifying the query
using a view.

• To hide the underlying table and column names, to minimize maintenance problems if those names change. In
that case, you re-create the view using the newnames, and all queries that use the view rather than the underlying
tables keep running with no changes.

• To experiment with optimization techniques and make the optimized queries available to all applications. For
example, if you find a combination of WHERE conditions, join order, join hints, and so on that works the best for
a class of queries, you can establish a view that incorporates the best-performing techniques. Applications can
then make relatively simple queries against the view, without repeating the complicated and optimized logic over
and over. If you later find a better way to optimize the original query, when you re-create the view, all the
applications immediately take advantage of the optimized base query.

• To simplify awhole class of related queries, especially complicated queries involving joins betweenmultiple tables,
complicated expressions in the column list, and other SQL syntax that makes the query difficult to understand
and debug. For example, you might create a view that joins several tables, filters using several WHERE conditions,
and selects several columns from the result set. Applications might issue queries against this view that only vary
in their LIMIT, ORDER BY, and similar simple clauses.

For queries that require repeating complicated clauses over and over again, for example in the select list, ORDER BY,
and GROUP BY clauses, you can use the WITH clause as an alternative to creating a view.

You can optionally specify the table-level and the column-level comments as in the CREATE TABLE statement.

Complex type considerations:

For tables containing complex type columns (ARRAY, STRUCT, or MAP), you typically use join queries to refer to the
complex values. You can use views to hide the join notation, making such tables seem like traditional denormalized
tables, and making those tables queryable by business intelligence tools that do not have built-in support for those
complex types. See Accessing Complex Type Data in Flattened Form Using Views on page 177 for details.

Because you cannot directly issue SELECT col_name against a column of complex type, you cannot use a view or a
WITH clause to “rename” a column by selecting it with a column alias.

If you connect to different Impala nodeswithin an impala-shell session for load-balancing purposes, you can enable
the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata
has been received by all the Impala nodes. See SYNC_DDL Query Option on page 322 for details.

Security considerations:

If these statements in your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statements in log files and other administrative
contexts. See http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/sg_redaction.html
for details.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Examples:

-- Create a view that is exactly the same as the underlying table.
CREATE VIEW v1 AS SELECT * FROM t1;

-- Create a view that includes only certain columns from the underlying table.
CREATE VIEW v2 AS SELECT c1, c3, c7 FROM t1;

-- Create a view that filters the values from the underlying table.

Apache Impala Guide | 245

Impala SQL Language Reference

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/sg_redaction.html

CREATE VIEW v3 AS SELECT DISTINCT c1, c3, c7 FROM t1 WHERE c1 IS NOT NULL AND c5 > 0;

-- Create a view that that reorders and renames columns from the underlying table.
CREATE VIEW v4 AS SELECT c4 AS last_name, c6 AS address, c2 AS birth_date FROM t1;

-- Create a view that runs functions to convert or transform certain columns.
CREATE VIEW v5 AS SELECT c1, CAST(c3 AS STRING) c3, CONCAT(c4,c5) c5, TRIM(c6) c6,
"Constant" c8 FROM t1;

-- Create a view that hides the complexity of a view query.
CREATE VIEW v6 AS SELECT t1.c1, t2.c2 FROM t1 JOIN t2 ON t1.id = t2.id;

-- Create a view with a column comment and a table comment.
CREATE VIEW v7 (c1 COMMENT 'Comment for c1', c2) COMMENT 'Comment for v7' AS SELECT
t1.c1, t1.c2 FROM t1;

Related information:

Overview of Impala Views on page 211, ALTER VIEW Statement on page 225, DROP VIEW Statement on page 260

DESCRIBE Statement

The DESCRIBE statement displays metadata about a table, such as the column names and their data types. Its syntax
is:

DESCRIBE [FORMATTED] [db_name.]table_name[.complex_col_name ...]

You can use the abbreviation DESC for the DESCRIBE statement.

The DESCRIBE FORMATTED variation displays additional information, in a format familiar to users of Apache Hive.
The extra information includes low-level details such as whether the table is internal or external, when it was created,
the file format, the location of the data in HDFS, whether the object is a table or a view, and (for views) the text of the
query from the view definition.

Note: The Compressed field is not a reliable indicator of whether the table contains compressed
data. It typically always shows No, because the compression settings only apply during the session
that loads data and are not stored persistently with the table metadata.

Complex type considerations:

Because the column definitions for complex types can become long, particularly when such types are nested, the
DESCRIBE statement uses special formatting for complex type columns to make the output readable.

For the ARRAY, STRUCT, and MAP types available in CDH 5.5 / Impala 2.3 and higher, the DESCRIBE output is formatted
to avoid excessively long lines for multiple fields within a STRUCT, or a nested sequence of complex types.

You can pass a qualified name to DESCRIBE to specify an ARRAY, STRUCT, or MAP column and visualize its structure
as if it were a table. An ARRAY is shown as a two-column table, with ITEM and POS columns. A STRUCT is shown as a
table with each field representing a column in the table. A MAP is shown as a two-column table, with KEY and VALUE
columns.

For example, here is the DESCRIBE output for a table containing a single top-level column of each complex type:

create table t1 (x int, a array<int>, s struct<f1: string, f2: bigint>, m map<string,int>)
 stored as parquet;

describe t1;
+------+-----------------+---------+
| name | type | comment |
+------+-----------------+---------+
x	int	
a	array<int>	
s	struct<	
	f1:string,	
	f2:bigint	

246 | Apache Impala Guide

Impala SQL Language Reference

| | > | |
| m | map<string,int> | |
+------+-----------------+---------+

Here are examples showing how to “drill down” into the layouts of complex types, including using multi-part names
to examine the definitions of nested types. The < > delimiters identify the columns with complex types; these are the
columns where you can descend another level to see the parts that make up the complex type. This technique helps
you to understand the multi-part names you use as table references in queries involving complex types, and the
corresponding column names you refer to in the SELECT list. These tables are from the “nested TPC-H” schema, shown
in detail in Sample Schema and Data for Experimenting with Impala Complex Types on page 179.

The REGION table contains an ARRAY of STRUCT elements:

• The first DESCRIBE specifies the table name, to display the definition of each top-level column.

• The second DESCRIBE specifies the name of a complex column, REGION.R_NATIONS, showing that when you
include the name of an ARRAY column in a FROM clause, that table reference acts like a two-column table with
columns ITEM and POS.

• The final DESCRIBE specifies the fully qualified name of the ITEM field, to display the layout of its underlying
STRUCT type in table format, with the fields mapped to column names.

-- #1: The overall layout of the entire table.
describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

-- #2: The ARRAY column within the table.
describe region.r_nations;
+------+-------------------------+---------+
| name | type | comment |
+------+-------------------------+---------+
item	struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>	
pos	bigint	
+------+-------------------------+---------+

-- #3: The STRUCT that makes up each ARRAY element.
-- The fields of the STRUCT act like columns of a table.
describe region.r_nations.item;
+-------------+----------+---------+
| name | type | comment |
+-------------+----------+---------+
n_nationkey	smallint	
n_name	string	
n_comment	string	
+-------------+----------+---------+

The CUSTOMER table contains an ARRAY of STRUCT elements, where one field in the STRUCT is another ARRAY of
STRUCT elements:

• Again, the initial DESCRIBE specifies only the table name.

Apache Impala Guide | 247

Impala SQL Language Reference

• The second DESCRIBE specifies the qualified name of the complex column, CUSTOMER.C_ORDERS, showing how
an ARRAY is represented as a two-column table with columns ITEM and POS.

• The third DESCRIBE specifies the qualified name of the ITEM of the ARRAY column, to see the structure of the
nested ARRAY. Again, it has has two parts, ITEM and POS. Because the ARRAY contains a STRUCT, the layout of
the STRUCT is shown.

• The fourth and fifth DESCRIBE statements drill down into a STRUCT field that is itself a complex type, an ARRAY
of STRUCT. The ITEM portion of the qualified name is only required when the ARRAY elements are anonymous.
The fields of the STRUCT give names to any other complex types nested inside the STRUCT. Therefore, the
DESCRIBE parameters CUSTOMER.C_ORDERS.ITEM.O_LINEITEMS and CUSTOMER.C_ORDERS.O_LINEITEMS
are equivalent. (For brevity, Cloudera recommends leaving out the ITEM portion of a qualified name when it is
not required.)

• The final DESCRIBE shows the layout of the deeply nested STRUCT type. Because there are no more complex
types nested inside this STRUCT, this is as far as you can drill down into the layout for this table.

-- #1: The overall layout of the entire table.
describe customer;
+--------------+------------------------------------+
| name | type |
+--------------+------------------------------------+
| c_custkey | bigint |
... more scalar columns ...
c_orders	array<struct<
	o_orderkey:bigint,
	o_orderstatus:string,
	o_totalprice:decimal(12,2),
	o_orderdate:string,
	o_orderpriority:string,
	o_clerk:string,
	o_shippriority:int,
	o_comment:string,
	o_lineitems:array<struct<
	l_partkey:bigint,
	l_suppkey:bigint,
	l_linenumber:int,
	l_quantity:decimal(12,2),
	l_extendedprice:decimal(12,2),
	l_discount:decimal(12,2),
	l_tax:decimal(12,2),
	l_returnflag:string,
	l_linestatus:string,
	l_shipdate:string,
	l_commitdate:string,
	l_receiptdate:string,
	l_shipinstruct:string,
	l_shipmode:string,
	l_comment:string
	>>
	>>
+--------------+------------------------------------+

-- #2: The ARRAY column within the table.
describe customer.c_orders;
+------+------------------------------------+
| name | type |
+------+------------------------------------+
item	struct<
	o_orderkey:bigint,
	o_orderstatus:string,
... more struct fields ...	
	o_lineitems:array<struct<
	l_partkey:bigint,
	l_suppkey:bigint,
... more nested struct fields ...	
	l_comment:string
	>>
	>

248 | Apache Impala Guide

Impala SQL Language Reference

| pos | bigint |
+------+------------------------------------+

-- #3: The STRUCT that makes up each ARRAY element.
-- The fields of the STRUCT act like columns of a table.
describe customer.c_orders.item;
+-----------------+----------------------------------+
| name | type |
+-----------------+----------------------------------+
o_orderkey	bigint
o_orderstatus	string
o_totalprice	decimal(12,2)
o_orderdate	string
o_orderpriority	string
o_clerk	string
o_shippriority	int
o_comment	string
o_lineitems	array<struct<
	l_partkey:bigint,
	l_suppkey:bigint,
... more struct fields ...	
	l_comment:string
	>>
+-----------------+----------------------------------+

-- #4: The ARRAY nested inside the STRUCT elements of the first ARRAY.
describe customer.c_orders.item.o_lineitems;
+------+----------------------------------+
| name | type |
+------+----------------------------------+
item	struct<
	l_partkey:bigint,
	l_suppkey:bigint,
... more struct fields ...	
	l_comment:string
	>
pos	bigint
+------+----------------------------------+

-- #5: Shorter form of the previous DESCRIBE. Omits the .ITEM portion of the name
-- because O_LINEITEMS and other field names provide a way to refer to things
-- inside the ARRAY element.
describe customer.c_orders.o_lineitems;
+------+----------------------------------+
| name | type |
+------+----------------------------------+
item	struct<
	l_partkey:bigint,
	l_suppkey:bigint,
... more struct fields ...	
	l_comment:string
	>
pos	bigint
+------+----------------------------------+

-- #6: The STRUCT representing ARRAY elements nested inside
-- another ARRAY of STRUCTs. The lack of any complex types
-- in this output means this is as far as DESCRIBE can
-- descend into the table layout.
describe customer.c_orders.o_lineitems.item;
+-----------------+---------------+
| name | type |
+-----------------+---------------+
| l_partkey | bigint |
| l_suppkey | bigint |
... more scalar columns ...
| l_comment | string |
+-----------------+---------------+

Usage notes:

Apache Impala Guide | 249

Impala SQL Language Reference

After the impalad daemons are restarted, the first query against a table can take longer than subsequent queries,
because the metadata for the table is loaded before the query is processed. This one-time delay for each table can
cause misleading results in benchmark tests or cause unnecessary concern. To “warm up” the Impala metadata cache,
you can issue a DESCRIBE statement in advance for each table you intend to access later.

When you are dealing with data files stored in HDFS, sometimes it is important to know details such as the path of the
data files for an Impala table, and the hostname for the namenode. You can get this information from the DESCRIBE
FORMATTED output. You specify HDFSURIs or path specificationswith statements such asLOAD DATA and theLOCATION
clause of CREATE TABLE or ALTER TABLE. You might also use HDFS URIs or paths with Linux commands such as
hadoop and hdfs to copy, rename, and so on, data files in HDFS.

If you connect to different Impala nodeswithin an impala-shell session for load-balancing purposes, you can enable
the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata
has been received by all the Impala nodes. See SYNC_DDL Query Option on page 322 for details.

Each table can also have associated table statistics and column statistics. To see these categories of information, use
the SHOW TABLE STATS table_name and SHOW COLUMN STATS table_name statements. See SHOW Statement
on page 323 for details.

Important: After adding or replacing data in a table used in performance-critical queries, issue a
COMPUTE STATS statement to make sure all statistics are up-to-date. Consider updating statistics for
a table after any INSERT, LOAD DATA, or CREATE TABLE AS SELECT statement in Impala, or after
loading data through Hive and doing a REFRESH table_name in Impala. This technique is especially
important for tables that are very large, used in join queries, or both.

Examples:

The following example shows the results of both a standard DESCRIBE and DESCRIBE FORMATTED for different kinds
of schema objects:

• DESCRIBE for a table or a view returns the name, type, and comment for each of the columns. For a view, if the
column value is computed by an expression, the column name is automatically generated as _c0, _c1, and so on
depending on the ordinal number of the column.

• A table created with no special format or storage clauses is designated as a MANAGED_TABLE (an “internal table”
in Impala terminology). Its data files are stored in an HDFS directory under the default Hive data directory. By
default, it uses Text data format.

• A view is designated as VIRTUAL_VIEW in DESCRIBE FORMATTED output. Some of its properties are NULL or
blank because they are inherited from the base table. The text of the query that defines the view is part of the
DESCRIBE FORMATTED output.

• A tablewith additional clauses in theCREATE TABLE statement has differences inDESCRIBE FORMATTEDoutput.
The output for T2 includes the EXTERNAL_TABLE keyword because of the CREATE EXTERNAL TABLE syntax,
and different InputFormat and OutputFormat fields to reflect the Parquet file format.

[localhost:21000] > create table t1 (x int, y int, s string);
Query: create table t1 (x int, y int, s string)
[localhost:21000] > describe t1;
Query: describe t1
Query finished, fetching results ...
+------+--------+---------+
| name | type | comment |
+------+--------+---------+
x	int	
y	int	
s	string	
+------+--------+---------+		
Returned 3 row(s) in 0.13s		
[localhost:21000] > describe formatted t1;		
Query: describe formatted t1		
Query finished, fetching results ...		
+------------------------------+--+------------+		
name	type	comment

250 | Apache Impala Guide

Impala SQL Language Reference

+------------------------------+--+------------+
| # col_name | data_type | comment
 |
| | NULL | NULL
 |
| x | int | None
 |
| y | int | None
 |
| s | string | None
 |
| | NULL | NULL
 |
| # Detailed Table Information | NULL | NULL
 |
| Database: | describe_formatted | NULL
 |
| Owner: | cloudera | NULL
 |
| CreateTime: | Mon Jul 22 17:03:16 EDT 2013 | NULL
 |
| LastAccessTime: | UNKNOWN | NULL
 |
| Protect Mode: | None | NULL
 |
| Retention: | 0 | NULL
 |
| Location: | hdfs://127.0.0.1:8020/user/hive/warehouse/ |
 |
| | describe_formatted.db/t1 | NULL
 |
| Table Type: | MANAGED_TABLE | NULL
 |
| Table Parameters: | NULL | NULL
 |
| | transient_lastDdlTime | 1374526996
 |
| | NULL | NULL
 |
| # Storage Information | NULL | NULL
 |
| SerDe Library: | org.apache.hadoop.hive.serde2.lazy. |
 |
| | LazySimpleSerDe | NULL
 |
| InputFormat: | org.apache.hadoop.mapred.TextInputFormat | NULL
 |
| OutputFormat: | org.apache.hadoop.hive.ql.io. |
 |
| | HiveIgnoreKeyTextOutputFormat | NULL
 |
| Compressed: | No | NULL
 |
| Num Buckets: | 0 | NULL
 |
| Bucket Columns: | [] | NULL
 |
| Sort Columns: | [] | NULL
 |
+------------------------------+--+------------+
Returned 26 row(s) in 0.03s
[localhost:21000] > create view v1 as select x, upper(s) from t1;
Query: create view v1 as select x, upper(s) from t1
[localhost:21000] > describe v1;
Query: describe v1
Query finished, fetching results ...
+------+--------+---------+
| name | type | comment |
+------+--------+---------+
| x | int | |
| _c1 | string | |
+------+--------+---------+
Returned 2 row(s) in 0.10s

Apache Impala Guide | 251

Impala SQL Language Reference

[localhost:21000] > describe formatted v1;
Query: describe formatted v1
Query finished, fetching results ...
+------------------------------+------------------------------+----------------------+
| name | type | comment |
+------------------------------+------------------------------+----------------------+
# col_name	data_type	comment
	NULL	NULL
x	int	None
_c1	string	None
	NULL	NULL
# Detailed Table Information	NULL	NULL
Database:	describe_formatted	NULL
Owner:	cloudera	NULL
CreateTime:	Mon Jul 22 16:56:38 EDT 2013	NULL
LastAccessTime:	UNKNOWN	NULL
Protect Mode:	None	NULL
Retention:	0	NULL
Table Type:	VIRTUAL_VIEW	NULL
Table Parameters:	NULL	NULL
	transient_lastDdlTime	1374526598
	NULL	NULL
# Storage Information	NULL	NULL
SerDe Library:	null	NULL
InputFormat:	null	NULL
OutputFormat:	null	NULL
Compressed:	No	NULL
Num Buckets:	0	NULL
Bucket Columns:	[]	NULL
Sort Columns:	[]	NULL
	NULL	NULL
# View Information	NULL	NULL
View Original Text:	SELECT x, upper(s) FROM t1	NULL
View Expanded Text:	SELECT x, upper(s) FROM t1	NULL
+------------------------------+------------------------------+----------------------+		
Returned 28 row(s) in 0.03s		
[localhost:21000] > create external table t2 (x int, y int, s string) stored as parquet		
location '/user/cloudera/sample_data';		
[localhost:21000] > describe formatted t2;		
Query: describe formatted t2		
Query finished, fetching results ...		
+------------------------------+--+------------+		
name	type	
comment		
+------------------------------+--+------------+		
# col_name	data_type	
comment		
	NULL	
NULL		
x	int	
None		
y	int	
None		
s	string	
None		
	NULL	
NULL		
# Detailed Table Information	NULL	
NULL		
Database:	describe_formatted	
NULL		
Owner:	cloudera	
NULL		
CreateTime:	Mon Jul 22 17:01:47 EDT 2013	
NULL		
LastAccessTime:	UNKNOWN	
NULL		
Protect Mode:	None	
NULL		
Retention:	0	
NULL		
Location:	hdfs://127.0.0.1:8020/user/cloudera/sample_data	
NULL |

252 | Apache Impala Guide

Impala SQL Language Reference

| Table Type: | EXTERNAL_TABLE |
NULL |
| Table Parameters: | NULL |
NULL |
| | EXTERNAL |
TRUE |
| | transient_lastDdlTime |
1374526907 |
| | NULL |
NULL |
| # Storage Information | NULL |
NULL |
| SerDe Library: | org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe |
NULL |
| InputFormat: | com.cloudera.impala.hive.serde.ParquetInputFormat |
NULL |
| OutputFormat: | com.cloudera.impala.hive.serde.ParquetOutputFormat |
NULL |
| Compressed: | No |
NULL |
| Num Buckets: | 0 |
NULL |
| Bucket Columns: | [] |
NULL |
| Sort Columns: | [] |
NULL |
+------------------------------+--+------------+
Returned 27 row(s) in 0.17s

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read and execute permissions
for all directories that are part of the table. (A table could span multiple different HDFS directories if it is partitioned.
The directories could be widely scattered because a partition can reside in an arbitrary HDFS directory based on its
LOCATION attribute.)

Related information:

Overview of Impala Tables on page 209, CREATE TABLE Statement on page 236, SHOW TABLES Statement on page 328,
SHOW CREATE TABLE Statement on page 330

DROP DATABASE Statement

Removes a database from the system. The physical operations involve removing the metadata for the database from
the metastore, and deleting the corresponding *.db directory from HDFS.

Syntax:

DROP (DATABASE|SCHEMA) [IF EXISTS] database_name [RESTRICT | CASCADE];

Statement type: DDL

Usage notes:

By default, the database must be empty before it can be dropped, to avoid losing any data.

In CDH 5.5 / Impala 2.3 and higher, you can include the CASCADE clause to make Impala drop all tables and other
objects in the database before dropping the database itself. The RESTRICT clause enforces the original requirement
that the database be empty before being dropped. Because the RESTRICT behavior is still the default, this clause is
optional.

The automatic dropping resulting from the CASCADE clause follows the same rules as the corresponding DROP TABLE,
DROP VIEW, and DROP FUNCTION statements. In particular, the HDFS directories and data files for any external tables
are left behind when the tables are removed.

Apache Impala Guide | 253

Impala SQL Language Reference

When you do not use the CASCADE clause, drop or move all the objects inside the database manually before dropping
the database itself:

• Use the SHOW TABLES statement to locate all tables and views in the database, and issue DROP TABLE and DROP
VIEW statements to remove them all.

• Use the SHOW FUNCTIONS and SHOW AGGREGATE FUNCTIONS statements to locate all user-defined functions
in the database, and issue DROP FUNCTION and DROP AGGREGATE FUNCTION statements to remove them all.

• To keep tables or views contained by a database while removing the database itself, use ALTER TABLE and ALTER
VIEW to move the relevant objects to a different database before dropping the original database.

You cannot drop the current database, that is, the database your session connected to either through the USE statement
or the -d option of impala-shell. Issue a USE statement to switch to a different database first. Because the default
database is always available, issuing USE default is a convenient way to leave the current database before dropping
it.

Hive considerations:

When you drop a database in Impala, the database can no longer be used by Hive.

Examples:

See CREATE DATABASE Statement on page 232 for examples covering CREATE DATABASE, USE, and DROP DATABASE.

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have write permission for the
directory associated with the database.

Examples:

create database first_db;
use first_db;
create table t1 (x int);

create database second_db;
use second_db;
-- Each database has its own namespace for tables.
-- You can reuse the same table names in each database.
create table t1 (s string);

create database temp;

-- You can either USE a database after creating it,
-- or qualify all references to the table name with the name of the database.
-- Here, tables T2 and T3 are both created in the TEMP database.

create table temp.t2 (x int, y int);
use database temp;
create table t3 (s string);

-- You cannot drop a database while it is selected by the USE statement.
drop database temp;
ERROR: AnalysisException: Cannot drop current default database: temp

-- The always-available database 'default' is a convenient one to USE
-- before dropping a database you created.
use default;

-- Before dropping a database, first drop all the tables inside it,
-- or in CDH 5.5 and higher use the CASCADE clause.
drop database temp;
ERROR: ImpalaRuntimeException: Error making 'dropDatabase' RPC to Hive Metastore:
CAUSED BY: InvalidOperationException: Database temp is not empty
show tables in temp;
+------+
| name |

254 | Apache Impala Guide

Impala SQL Language Reference

+------+
| t3 |
+------+

-- CDH 5.5 and higher:
drop database temp cascade;

-- CDH 5.4 and lower:
drop table temp.t3;
drop database temp;

Related information:

Overview of Impala Databases on page 206, CREATE DATABASE Statement on page 232, USE Statement on page 338,
SHOW DATABASES on page 327, DROP TABLE Statement on page 259

DROP FUNCTION Statement

Removes a user-defined function (UDF), so that it is not available for execution during Impala SELECT or INSERT
operations.

Syntax:

DROP [AGGREGATE] FUNCTION [IF EXISTS] [db_name.]function_name(type[, type...])

Statement type: DDL

Usage notes:

Because the same function name could be overloaded with different argument signatures, you specify the argument
types to identify the exact function to drop.

Restrictions:

Currently, Impala UDFs and UDAs are not persisted in the metastore database. Information about these functions is
held in the memory of the catalogd daemon. You must reload them by running the CREATE FUNCTION statements
again each time you restart the catalogd daemon.

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, does not need any particular HDFS
permissions to perform this statement. All read and write operations are on the metastore database, not HDFS files
and directories.

Related information:

Impala User-Defined Functions (UDFs) on page 448, CREATE FUNCTION Statement on page 233

DROP ROLE Statement (CDH 5.2 or higher only)

The DROP ROLE statement removes a role from the metastore database. Once dropped, the role is revoked for all
users to whom it was previously assigned, and all privileges granted to that role are revoked. Queries that are already
executing are not affected. Impala verifies the role information approximately every 60 seconds, so the effects of DROP
ROLEmight not take effect for new Impala queries for a brief period.

Syntax:

DROP ROLE role_name

Required privileges:

Only administrative users (initially, a predefined set of users specified in the Sentry service configuration file) can use
this statement.

Apache Impala Guide | 255

Impala SQL Language Reference

Compatibility:

Impala makes use of any roles and privileges specified by the GRANT and REVOKE statements in Hive, and Hive makes
use of any roles and privileges specified by the GRANT and REVOKE statements in Impala. The Impala GRANT and REVOKE
statements for privileges do not require the ROLE keyword to be repeated before each role name, unlike the equivalent
Hive statements.

Related information:

Enabling Sentry Authorization for Impala on page 96, GRANT Statement (CDH 5.2 or higher only) on page 264 REVOKE
Statement (CDH 5.2 or higher only) on page 280, CREATE ROLE Statement (CDH 5.2 or higher only) on page 236, SHOW
Statement on page 323

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

DROP STATS Statement

Removes the specified statistics from a table or partition. The statistics were originally created by the COMPUTE STATS
or COMPUTE INCREMENTAL STATS statement.

Syntax:

DROP STATS [database_name.]table_name
DROP INCREMENTAL STATS [database_name.]table_name PARTITION (partition_spec)

partition_spec ::= partition_col=constant_value

The PARTITION clause is only allowed in combination with the INCREMENTAL clause. It is optional for COMPUTE
INCREMENTAL STATS, and required for DROP INCREMENTAL STATS. Whenever you specify partitions through the
PARTITION (partition_spec) clause in a COMPUTE INCREMENTAL STATS or DROP INCREMENTAL STATS
statement, you must include all the partitioning columns in the specification, and specify constant values for all the
partition key columns.

DROP STATS removes all statistics from the table, whether created by COMPUTE STATS or COMPUTE INCREMENTAL
STATS.

DROP INCREMENTAL STATS only affects incremental statistics for a single partition, specified through the PARTITION
clause. The incremental stats aremarked as outdated, so that they are recomputed by the nextCOMPUTE INCREMENTAL
STATS statement.

Usage notes:

You typically use this statement when the statistics for a table or a partition have become stale due to data files being
added to or removed from the associated HDFS data directories, whether by manual HDFS operations or INSERT,
INSERT OVERWRITE, or LOAD DATA statements, or adding or dropping partitions.

When a table or partition has no associated statistics, Impala treats it as essentially zero-sized when constructing the
execution plan for a query. In particular, the statistics influence the order in which tables are joined in a join query. To
ensure proper query planning and good query performance and scalability, make sure to run COMPUTE STATS or
COMPUTE INCREMENTAL STATS on the table or partition after removing any stale statistics.

Dropping the statistics is not required for an unpartitioned table or a partitioned table covered by the original type of
statistics. A subsequent COMPUTE STATS statement replaces any existing statistics with new ones, for all partitions,
regardless of whether the old ones were outdated. Therefore, this statement was rarely used before the introduction
of incremental statistics.

Dropping the statistics is required for a partitioned table containing incremental statistics, to make a subsequent
COMPUTE INCREMENTAL STATS statement rescan an existing partition. See Table and Column Statistics on page 490
for information about incremental statistics, a new feature available in Impala 2.1.0 and higher.

Statement type: DDL

256 | Apache Impala Guide

Impala SQL Language Reference

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, does not need any particular HDFS
permissions to perform this statement. All read and write operations are on the metastore database, not HDFS files
and directories.

Examples:

The following example shows a partitioned table that has associated statistics produced by the COMPUTE INCREMENTAL
STATS statement, and how the situation evolves as statistics are dropped from specific partitions, then the entire
table.

Initially, all table and column statistics are filled in.

show table stats item_partitioned;
+-------------+-------+--------+----------+--------------+---------+-----------------
| i_category | #Rows | #Files | Size | Bytes Cached | Format | Incremental stats
+-------------+-------+--------+----------+--------------+---------+-----------------
| Books | 1733 | 1 | 223.74KB | NOT CACHED | PARQUET | true
| Children | 1786 | 1 | 230.05KB | NOT CACHED | PARQUET | true
| Electronics | 1812 | 1 | 232.67KB | NOT CACHED | PARQUET | true
| Home | 1807 | 1 | 232.56KB | NOT CACHED | PARQUET | true
| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED | PARQUET | true
| Men | 1811 | 1 | 231.25KB | NOT CACHED | PARQUET | true
| Music | 1860 | 1 | 237.90KB | NOT CACHED | PARQUET | true
| Shoes | 1835 | 1 | 234.90KB | NOT CACHED | PARQUET | true
| Sports | 1783 | 1 | 227.97KB | NOT CACHED | PARQUET | true
| Women | 1790 | 1 | 226.27KB | NOT CACHED | PARQUET | true
| Total | 17957 | 10 | 2.25MB | 0B | |
+-------------+-------+--------+----------+--------------+---------+-----------------
show column stats item_partitioned;
+------------------+-----------+------------------+--------+----------+--------------
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size
+------------------+-----------+------------------+--------+----------+--------------
| i_item_sk | INT | 19443 | -1 | 4 | 4
| i_item_id | STRING | 9025 | -1 | 16 | 16
| i_rec_start_date | TIMESTAMP | 4 | -1 | 16 | 16
| i_rec_end_date | TIMESTAMP | 3 | -1 | 16 | 16
| i_item_desc | STRING | 13330 | -1 | 200 | 100.302803039
| i_current_price | FLOAT | 2807 | -1 | 4 | 4
| i_wholesale_cost | FLOAT | 2105 | -1 | 4 | 4
| i_brand_id | INT | 965 | -1 | 4 | 4
| i_brand | STRING | 725 | -1 | 22 | 16.1776008605
| i_class_id | INT | 16 | -1 | 4 | 4
| i_class | STRING | 101 | -1 | 15 | 7.76749992370
| i_category_id | INT | 10 | -1 | 4 | 4
| i_manufact_id | INT | 1857 | -1 | 4 | 4
| i_manufact | STRING | 1028 | -1 | 15 | 11.3295001983
| i_size | STRING | 8 | -1 | 11 | 4.33459997177
| i_formulation | STRING | 12884 | -1 | 20 | 19.9799995422
| i_color | STRING | 92 | -1 | 10 | 5.38089990615
| i_units | STRING | 22 | -1 | 7 | 4.18690013885
| i_container | STRING | 2 | -1 | 7 | 6.99259996414
| i_manager_id | INT | 105 | -1 | 4 | 4
| i_product_name | STRING | 19094 | -1 | 25 | 18.0233001708
| i_category | STRING | 10 | 0 | -1 | -1
+------------------+-----------+------------------+--------+----------+--------------

To remove statistics for particular partitions, use the DROP INCREMENTAL STATS statement. After removing statistics
for two partitions, the table-level statistics reflect that change in the #Rows and Incremental stats fields. The
counts, maximums, and averages of the column-level statistics are unaffected.

Apache Impala Guide | 257

Impala SQL Language Reference

Note: (It is possible that the row count might be preserved in future after a DROP INCREMENTAL
STATS statement. Check the resolution of the issue IMPALA-1615.)

drop incremental stats item_partitioned partition (i_category='Sports');
drop incremental stats item_partitioned partition (i_category='Electronics');

show table stats item_partitioned
+-------------+-------+--------+----------+--------------+---------+------------------
| i_category | #Rows | #Files | Size | Bytes Cached | Format | Incremental stats
+-------------+-------+--------+----------+--------------+---------+-----------------
| Books | 1733 | 1 | 223.74KB | NOT CACHED | PARQUET | true
| Children | 1786 | 1 | 230.05KB | NOT CACHED | PARQUET | true
| Electronics | -1 | 1 | 232.67KB | NOT CACHED | PARQUET | false
| Home | 1807 | 1 | 232.56KB | NOT CACHED | PARQUET | true
| Jewelry | 1740 | 1 | 223.72KB | NOT CACHED | PARQUET | true
| Men | 1811 | 1 | 231.25KB | NOT CACHED | PARQUET | true
| Music | 1860 | 1 | 237.90KB | NOT CACHED | PARQUET | true
| Shoes | 1835 | 1 | 234.90KB | NOT CACHED | PARQUET | true
| Sports | -1 | 1 | 227.97KB | NOT CACHED | PARQUET | false
| Women | 1790 | 1 | 226.27KB | NOT CACHED | PARQUET | true
| Total | 17957 | 10 | 2.25MB | 0B | |
+-------------+-------+--------+----------+--------------+---------+-----------------
show column stats item_partitioned
+------------------+-----------+------------------+--------+----------+--------------
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size
+------------------+-----------+------------------+--------+----------+--------------
| i_item_sk | INT | 19443 | -1 | 4 | 4
| i_item_id | STRING | 9025 | -1 | 16 | 16
| i_rec_start_date | TIMESTAMP | 4 | -1 | 16 | 16
| i_rec_end_date | TIMESTAMP | 3 | -1 | 16 | 16
| i_item_desc | STRING | 13330 | -1 | 200 | 100.302803039
| i_current_price | FLOAT | 2807 | -1 | 4 | 4
| i_wholesale_cost | FLOAT | 2105 | -1 | 4 | 4
| i_brand_id | INT | 965 | -1 | 4 | 4
| i_brand | STRING | 725 | -1 | 22 | 16.1776008605
| i_class_id | INT | 16 | -1 | 4 | 4
| i_class | STRING | 101 | -1 | 15 | 7.76749992370
| i_category_id | INT | 10 | -1 | 4 | 4
| i_manufact_id | INT | 1857 | -1 | 4 | 4
| i_manufact | STRING | 1028 | -1 | 15 | 11.3295001983
| i_size | STRING | 8 | -1 | 11 | 4.33459997177
| i_formulation | STRING | 12884 | -1 | 20 | 19.9799995422
| i_color | STRING | 92 | -1 | 10 | 5.38089990615
| i_units | STRING | 22 | -1 | 7 | 4.18690013885
| i_container | STRING | 2 | -1 | 7 | 6.99259996414
| i_manager_id | INT | 105 | -1 | 4 | 4
| i_product_name | STRING | 19094 | -1 | 25 | 18.0233001708
| i_category | STRING | 10 | 0 | -1 | -1
+------------------+-----------+------------------+--------+----------+--------------

To remove all statistics from the table, whether produced by COMPUTE STATS or COMPUTE INCREMENTAL STATS,
use the DROP STATS statement without the INCREMENTAL clause). Now, both table-level and column-level statistics
are reset.

drop stats item_partitioned;

show table stats item_partitioned
+-------------+-------+--------+----------+--------------+---------+------------------
| i_category | #Rows | #Files | Size | Bytes Cached | Format | Incremental stats
+-------------+-------+--------+----------+--------------+---------+------------------
| Books | -1 | 1 | 223.74KB | NOT CACHED | PARQUET | false
| Children | -1 | 1 | 230.05KB | NOT CACHED | PARQUET | false
| Electronics | -1 | 1 | 232.67KB | NOT CACHED | PARQUET | false
| Home | -1 | 1 | 232.56KB | NOT CACHED | PARQUET | false
| Jewelry | -1 | 1 | 223.72KB | NOT CACHED | PARQUET | false
| Men | -1 | 1 | 231.25KB | NOT CACHED | PARQUET | false
| Music | -1 | 1 | 237.90KB | NOT CACHED | PARQUET | false
| Shoes | -1 | 1 | 234.90KB | NOT CACHED | PARQUET | false
| Sports | -1 | 1 | 227.97KB | NOT CACHED | PARQUET | false

258 | Apache Impala Guide

Impala SQL Language Reference

https://issues.cloudera.org/browse/IMPALA-1615

| Women | -1 | 1 | 226.27KB | NOT CACHED | PARQUET | false
| Total | -1 | 10 | 2.25MB | 0B | |
+-------------+-------+--------+----------+--------------+---------+------------------
show column stats item_partitioned
+------------------+-----------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+------------------+-----------+------------------+--------+----------+----------+
i_item_sk	INT	-1	-1	4	4
i_item_id	STRING	-1	-1	-1	-1
i_rec_start_date	TIMESTAMP	-1	-1	16	16
i_rec_end_date	TIMESTAMP	-1	-1	16	16
i_item_desc	STRING	-1	-1	-1	-1
i_current_price	FLOAT	-1	-1	4	4
i_wholesale_cost	FLOAT	-1	-1	4	4
i_brand_id	INT	-1	-1	4	4
i_brand	STRING	-1	-1	-1	-1
i_class_id	INT	-1	-1	4	4
i_class	STRING	-1	-1	-1	-1
i_category_id	INT	-1	-1	4	4
i_manufact_id	INT	-1	-1	4	4
i_manufact	STRING	-1	-1	-1	-1
i_size	STRING	-1	-1	-1	-1
i_formulation	STRING	-1	-1	-1	-1
i_color	STRING	-1	-1	-1	-1
i_units	STRING	-1	-1	-1	-1
i_container	STRING	-1	-1	-1	-1
i_manager_id	INT	-1	-1	4	4
i_product_name	STRING	-1	-1	-1	-1
i_category	STRING	10	0	-1	-1
+------------------+-----------+------------------+--------+----------+----------+

Related information:

COMPUTE STATS Statement on page 227, SHOWTABLE STATS Statement on page 331, SHOWCOLUMNSTATS Statement
on page 333, Table and Column Statistics on page 490

DROP TABLE Statement

Removes an Impala table. Also removes the underlying HDFS data files for internal tables, although not for external
tables.

Syntax:

DROP TABLE [IF EXISTS] [db_name.]table_name [PURGE]

IF EXISTS clause:

The optional IF EXISTS clause makes the statement succeed whether or not the table exists. If the table does exist,
it is dropped; if it does not exist, the statement has no effect. This capability is useful in standardized setup scripts that
remove existing schemaobjects and create newones. By using some combination ofIF EXISTS for theDROP statements
and IF NOT EXISTS clauses for the CREATE statements, the script can run successfully the first time you run it (when
the objects do not exist yet) and subsequent times (when some or all of the objects do already exist).

PURGE clause:

The optional PURGE keyword, available in CDH 5.5 / Impala 2.3 and higher, causes Impala to remove the associated
HDFS data files immediately, rather than going through theHDFS trashcanmechanism. Use this keywordwhen dropping
a table if it is crucial to remove the data as quickly as possible to free up space, or if there is a problemwith the trashcan,
such as the trashcan not being configured or being in a different HDFS encryption zone than the data files.

Statement type: DDL

Usage notes:

By default, Impala removes the associated HDFS directory and data files for the table. If you issue a DROP TABLE and
the data files are not deleted, it might be for the following reasons:

Apache Impala Guide | 259

Impala SQL Language Reference

• If the table was created with the EXTERNAL clause, Impala leaves all files and directories untouched. Use external
tables when the data is under the control of other Hadoop components, and Impala is only used to query the data
files from their original locations.

• Impala might leave the data files behind unintentionally, if there is no HDFS location available to hold the HDFS
trashcan for the impala user. See User Account Requirements on page 24 for the procedure to set up the required
HDFS home directory.

Make sure that you are in the correct database before dropping a table, either by issuing a USE statement first or by
using a fully qualified name db_name.table_name.

If you intend to issue a DROP DATABASE statement, first issue DROP TABLE statements to remove all the tables in
that database.

Examples:

create database temporary;
use temporary;
create table unimportant (x int);
create table trivial (s string);
-- Drop a table in the current database.
drop table unimportant;
-- Switch to a different database.
use default;
-- To drop a table in a different database...
drop table trivial;
ERROR: AnalysisException: Table does not exist: default.trivial
-- ...use a fully qualified name.
drop table temporary.trivial;

For other tips about managing and reclaiming Impala disk space, see Managing Disk Space for Impala Data on page
89.

Amazon S3 considerations:

Although Impala cannot write new data to a table stored in the Amazon S3 filesystem, the DROP TABLE statement
can remove data files from S3 if the associated S3 table is an internal table. See Using Impala to Query the Amazon S3
Filesystem on page 567 for details about working with S3 tables.

Cancellation: Cannot be cancelled.

HDFS permissions:

For an internal table, the user ID that the impalad daemon runs under, typically the impala user, must have write
permission for all the files and directories that make up the table.

For an external table, dropping the table only involves changes tometadata in themetastore database. Because Impala
does not remove any HDFS files or directories when external tables are dropped, no particular permissions are needed
for the associated HDFS files or directories.

Related information:

Overview of Impala Tables on page 209, ALTER TABLE Statement on page 216, CREATE TABLE Statement on page 236,
Partitioning for Impala Tables on page 523, Internal Tables on page 209, External Tables on page 210

DROP VIEW Statement

Removes the specified view, which was originally created by the CREATE VIEW statement. Because a view is purely a
logical construct (an alias for a query) with no physical data behind it, DROP VIEW only involves changes to metadata
in the metastore database, not any data files in HDFS.

Syntax:

DROP VIEW [IF EXISTS] [db_name.]view_name

Statement type: DDL

260 | Apache Impala Guide

Impala SQL Language Reference

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Examples:

The following example creates a series of views and then drops them. These examples illustrate how views are associated
with a particular database, and both the view definitions and the view names for CREATE VIEW and DROP VIEW can
refer to a view in the current database or a fully qualified view name.

-- Create and drop a view in the current database.
CREATE VIEW few_rows_from_t1 AS SELECT * FROM t1 LIMIT 10;
DROP VIEW few_rows_from_t1;

-- Create and drop a view referencing a table in a different database.
CREATE VIEW table_from_other_db AS SELECT x FROM db1.foo WHERE x IS NOT NULL;
DROP VIEW table_from_other_db;

USE db1;
-- Create a view in a different database.
CREATE VIEW db2.v1 AS SELECT * FROM db2.foo;
-- Switch into the other database and drop the view.
USE db2;
DROP VIEW v1;

USE db1;
-- Create a view in a different database.
CREATE VIEW db2.v1 AS SELECT * FROM db2.foo;
-- Drop a view in the other database.
DROP VIEW db2.v1;

Related information:

Overview of Impala Views on page 211, CREATE VIEW Statement on page 244, ALTER VIEW Statement on page 225

EXPLAIN Statement

Returns the execution plan for a statement, showing the low-level mechanisms that Impala will use to read the data,
divide the work among nodes in the cluster, and transmit intermediate and final results across the network. Use
explain followed by a complete SELECT query. For example:

Syntax:

EXPLAIN { select_query | ctas_stmt | insert_stmt }

The select_query is a SELECT statement, optionally prefixed by a WITH clause. See SELECT Statement on page 281 for
details.

The insert_stmt is an INSERT statement that inserts into or overwrites an existing table. It can use either the INSERT
... SELECT or INSERT ... VALUES syntax. See INSERT Statement on page 264 for details.

The ctas_stmt is a CREATE TABLE statement using the AS SELECT clause, typically abbreviated as a “CTAS” operation.
See CREATE TABLE Statement on page 236 for details.

Usage notes:

You can interpret the output to judge whether the query is performing efficiently, and adjust the query and/or the
schema if not. For example, you might change the tests in the WHERE clause, add hints to make join operations more
efficient, introduce subqueries, change the order of tables in a join, add or change partitioning for a table, collect
column statistics and/or table statistics in Hive, or any other performance tuning steps.

The EXPLAIN output reminds you if table or column statistics are missing from any table involved in the query. These
statistics are important for optimizing queries involving large tables ormulti-table joins. See COMPUTE STATS Statement
on page 227 for how to gather statistics, and Table and Column Statistics on page 490 for how to use this information
for query tuning.

Apache Impala Guide | 261

Impala SQL Language Reference

Read the EXPLAIN plan from bottom to top:

• The last part of the plan shows the low-level details such as the expected amount of data that will be read, where
you can judge the effectiveness of your partitioning strategy and estimate how long it will take to scan a table
based on total data size and the size of the cluster.

• As you work your way up, next you see the operations that will be parallelized and performed on each Impala
node.

• At the higher levels, you see how data flows when intermediate result sets are combined and transmitted from
one node to another.

• See EXPLAIN_LEVELQueryOption on page 310 for details about the EXPLAIN_LEVEL query option, which lets you
customize how much detail to show in the EXPLAIN plan depending on whether you are doing high-level or
low-level tuning, dealing with logical or physical aspects of the query.

If you come from a traditional database background and are not familiar with data warehousing, keep in mind that
Impala is optimized for full table scans across very large tables. The structure and distribution of this data is typically
not suitable for the kind of indexing and single-row lookups that are common in OLTP environments. Seeing a query
scan entirely through a large table is common, not necessarily an indication of an inefficient query. Of course, if you
can reduce the volume of scanned data by orders of magnitude, for example by using a query that affects only certain
partitions within a partitioned table, then you might be able to optimize a query so that it executes in seconds rather
than minutes.

Formore information and examples to help you interpretEXPLAINoutput, seeUsing the EXPLAINPlan for Performance
Tuning on page 508.

Extended EXPLAIN output:

For performance tuning of complex queries, and capacity planning (such as using the admission control and resource
management features), you can enable more detailed and informative output for the EXPLAIN statement. In the
impala-shell interpreter, issue the command SET EXPLAIN_LEVEL=level, where level is an integer from 0 to 3
or corresponding mnemonic values minimal, standard, extended, or verbose.

When extended EXPLAIN output is enabled, EXPLAIN statements print information about estimated memory
requirements, minimum number of virtual cores, and so on.

See EXPLAIN_LEVEL Query Option on page 310 for details and examples.

Examples:

This example shows how the standard EXPLAIN output moves from the lowest (physical) level to the higher (logical)
levels. The query begins by scanning a certain amount of data; each node performs an aggregation operation (evaluating
COUNT(*)) on some subset of data that is local to that node; the intermediate results are transmitted back to the
coordinator node (labelled here as the EXCHANGE node); lastly, the intermediate results are summed to display the
final result.

[impalad-host:21000] > explain select count(*) from customer_address;
+--+
| Explain String |
+--+
| Estimated Per-Host Requirements: Memory=42.00MB VCores=1 |
| |
| 03:AGGREGATE [MERGE FINALIZE] |
| | output: sum(count(*)) |
| | |
| 02:EXCHANGE [PARTITION=UNPARTITIONED] |
| | |
| 01:AGGREGATE |
| | output: count(*) |
| | |
| 00:SCAN HDFS [default.customer_address] |
| partitions=1/1 size=5.25MB |
+--+

These examples show how the extended EXPLAIN output becomes more accurate and informative as statistics are
gathered by the COMPUTE STATS statement. Initially, much of the information about data size and distribution is

262 | Apache Impala Guide

Impala SQL Language Reference

marked “unavailable”. Impala can determine the raw data size, but not the number of rows or number of distinct
values for each column without additional analysis. The COMPUTE STATS statement performs this analysis, so a
subsequent EXPLAIN statement has additional information to use in deciding how to optimize the distributed query.

[localhost:21000] > set explain_level=extended;
EXPLAIN_LEVEL set to extended
[localhost:21000] > explain select x from t1;
[localhost:21000] > explain select x from t1;
+--+
| Explain String |
+--+
| Estimated Per-Host Requirements: Memory=32.00MB VCores=1 |
| |
| 01:EXCHANGE [PARTITION=UNPARTITIONED] |
	hosts=1 per-host-mem=unavailable
	tuple-ids=0 row-size=4B cardinality=unavailable
00:SCAN HDFS [default.t2, PARTITION=RANDOM]	
partitions=1/1 size=36B	
table stats: unavailable	
column stats: unavailable	
hosts=1 per-host-mem=32.00MB	
tuple-ids=0 row-size=4B cardinality=unavailable	
+--+

[localhost:21000] > compute stats t1;
+---+
| summary |
+---+
| Updated 1 partition(s) and 1 column(s). |
+---+
[localhost:21000] > explain select x from t1;
+--+
| Explain String |
+--+
| Estimated Per-Host Requirements: Memory=64.00MB VCores=1 |
| |
| 01:EXCHANGE [PARTITION=UNPARTITIONED] |
	hosts=1 per-host-mem=unavailable
	tuple-ids=0 row-size=4B cardinality=0
00:SCAN HDFS [default.t1, PARTITION=RANDOM]	
partitions=1/1 size=36B	
table stats: 0 rows total	
column stats: all	
hosts=1 per-host-mem=64.00MB	
tuple-ids=0 row-size=4B cardinality=0	
+--+

Security considerations:

If these statements in your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statements in log files and other administrative
contexts. See http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/sg_redaction.html
for details.

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read and execute permissions
for all applicable directories in all source tables for the query that is being explained. (A SELECT operation could read
files from multiple different HDFS directories if the source table is partitioned.)

Related information:

SELECT Statement on page 281, INSERT Statement on page 264, CREATE TABLE Statement on page 236, Understanding
Impala Query Performance - EXPLAIN Plans and Query Profiles on page 508

Apache Impala Guide | 263

Impala SQL Language Reference

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/sg_redaction.html

GRANT Statement (CDH 5.2 or higher only)

The GRANT statement grants roles or privileges on specified objects to groups. Only Sentry administrative users can
grant roles to a group.

Syntax:

GRANT ROLE role_name TO GROUP group_name

GRANT privilege ON object_type object_name
 TO [ROLE] roleName
 [WITH GRANT OPTION]

privilege ::= SELECT | SELECT(column_name) | INSERT | ALL
object_type ::= TABLE | DATABASE | SERVER | URI

Typically, the object name is an identifier. For URIs, it is a string literal.

Required privileges:

Only administrative users (initially, a predefined set of users specified in the Sentry service configuration file) can use
this statement.

The WITH GRANT OPTION clause allows members of the specified role to issue GRANT and REVOKE statements for
those same privileges Hence, if a role has the ALL privilege on a database and the WITH GRANT OPTION set, users
granted that role can execute GRANT/REVOKE statements only for that database or child tables of the database. This
means a user could revoke the privileges of the user that provided them the GRANT OPTION.

Impala does not currently support revoking only the WITH GRANT OPTION from a privilege previously granted to a
role. To remove the WITH GRANT OPTION, revoke the privilege and grant it again without the WITH GRANT OPTION
flag.

The ability to grant or revoke SELECT privilege on specific columns is available in CDH 5.5 / Impala 2.3 and higher. See
https://www.cloudera.com/documentation/enterprise/latest/topics/sg_hive_sql.html for details.

Compatibility:

• The Impala GRANT and REVOKE statements are available in CDH 5.2 and later.
• In CDH5.1 and later, Impala canmake use of any roles and privileges specified by theGRANT andREVOKE statements

in Hive, when your system is configured to use the Sentry service instead of the file-based policy mechanism.
• The Impala GRANT and REVOKE statements for privileges do not require the ROLE keyword to be repeated before

each role name, unlike the equivalent Hive statements.
• Currently, each Impala GRANT or REVOKE statement can only grant or revoke a single privilege to or from a single

role.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

Enabling Sentry Authorization for Impala on page 96, REVOKE Statement (CDH 5.2 or higher only) on page 280, CREATE
ROLE Statement (CDH 5.2 or higher only) on page 236, DROP ROLE Statement (CDH 5.2 or higher only) on page 255,
SHOW Statement on page 323

INSERT Statement

Impala supports inserting into tables and partitions that you create with the Impala CREATE TABLE statement, or
pre-defined tables and partitions created through Hive.

Syntax:

[with_clause]
INSERT { INTO | OVERWRITE } [TABLE] table_name

264 | Apache Impala Guide

Impala SQL Language Reference

https://www.cloudera.com/documentation/enterprise/latest/topics/sg_hive_sql.html

 [(column_list)]
 [PARTITION (partition_clause)]
{
 [hint_clause] select_statement
 | VALUES (value [, value ...]) [, (value [, value ...]) ...]
}

partition_clause ::= col_name [= constant] [, col_name [= constant] ...]

hint_clause ::= [SHUFFLE] | [NOSHUFFLE] (Note: the square brackets are part of the
syntax.)

Appending or replacing (INTO and OVERWRITE clauses):

The INSERT INTO syntax appends data to a table. The existing data files are left as-is, and the inserted data is put
into one or more new data files.

The INSERT OVERWRITE syntax replaces the data in a table. Currently, the overwritten data files are deleted
immediately; they do not go through the HDFS trash mechanism.

Complex type considerations:

The INSERT statement currently does not support writing data files containing complex types (ARRAY, STRUCT, and
MAP). To prepare Parquet data for such tables, you generate the data files outside Impala and then use LOAD DATA
or CREATE EXTERNAL TABLE to associate those data files with the table. Currently, such tables must use the Parquet
file format. See Complex Types (CDH 5.5 or higher only) on page 157 for details about working with complex types.

Usage notes:

Impala currently supports:

• Copy data from another table using SELECT query. In Impala 1.2.1 and higher, you can combine CREATE TABLE
and INSERT operations into a single step with the CREATE TABLE AS SELECT syntax, which bypasses the actual
INSERT keyword.

• An optional WITH clause before the INSERT keyword, to define a subquery referenced in the SELECT portion.
• Create one or more new rows using constant expressions through VALUES clause. (The VALUES clause was added

in Impala 1.0.1.)
• By default, the first column of each newly inserted row goes into the first column of the table, the second column

into the second column, and so on.

You can also specify the columns to be inserted, an arbitrarily ordered subset of the columns in the destination
table, by specifying a column list immediately after the name of the destination table. This feature lets you adjust
the inserted columns to match the layout of a SELECT statement, rather than the other way around. (This feature
was added in Impala 1.1.)

The number of columns mentioned in the column list (known as the “column permutation”) must match the
number of columns in the SELECT list or the VALUES tuples. The order of columns in the column permutation
can be different than in the underlying table, and the columns of each input row are reordered to match. If the
number of columns in the column permutation is less than in the destination table, all unmentioned columns are
set to NULL.

• For a partitioned table, the optional PARTITION clause identifies which partition or partitions the new values go
into. If a partition key column is given a constant value such as PARTITION (year=2012) or PARTITION
(year=2012, month=2), all the inserted rows use those same values for those partition key columns and you
omit any corresponding columns in the source table from theSELECT list. This form is known as “static partitioning”.

If a partition key column is mentioned but not assigned a value, such as in PARTITION (year, region) (both
columnsunassigned) orPARTITION(year, region='CA') (year columnunassigned), theunassigned columns
are filled in with the final columns of the SELECT list. In this case, the number of columns in the SELECT list must
equal the number of columns in the column permutation plus the number of partition key columns not assigned
a constant value. This form is known as “dynamic partitioning”.

See Static and Dynamic Partitioning Clauses on page 524 for examples and performance characteristics of static
and dynamic partitioned inserts.

Apache Impala Guide | 265

Impala SQL Language Reference

• Anoptional hint clause immediately before theSELECT keyword, to fine-tune the behaviorwhendoing anINSERT
... SELECT operation into partitioned Parquet tables. The hint keywords are [SHUFFLE] and [NOSHUFFLE],
including the square brackets. Inserting into partitioned Parquet tables can be a resource-intensive operation
because it potentially involves many files being written to HDFS simultaneously, and separate large memory
buffers being allocated to buffer the data for each partition. For usage details, see Loading Data into Parquet
Tables on page 537.

Note:

• Insert commands that partition or add files result in changes to Hive metadata. Because Impala
uses Hive metadata, such changes may necessitate a metadata refresh. For more information,
see the REFRESH function.

• Currently, Impala can only insert data into tables that use the text and Parquet formats. For other
file formats, insert the data using Hive and use Impala to query it.

• As an alternative to the INSERT statement, if you have existing data files elsewhere in HDFS, the
LOAD DATA statement can move those files into a table. This statement works with tables of any
file format.

Statement type: DML (but still affected by SYNC_DDL query option)

Usage notes:

When you insert the results of an expression, particularly of a built-in function call, into a small numeric column such
asINT,SMALLINT,TINYINT, orFLOAT, youmight need to use aCAST() expression to coerce values into the appropriate
type. Impala does not automatically convert from a larger type to a smaller one. For example, to insert cosine values
into a FLOAT column,write CAST(COS(angle) AS FLOAT) in the INSERT statement tomake the conversion explicit.

File format considerations:

Because Impala can read certain file formats that it cannot write, the INSERT statement does not work for all kinds
of Impala tables. See How Impala Works with Hadoop File Formats on page 528 for details about what file formats are
supported by the INSERT statement.

Any INSERT statement for a Parquet table requires enough free space in the HDFS filesystem to write one block.
Because Parquet data files use a block size of 1 GB by default, an INSERTmight fail (even for a very small amount of
data) if your HDFS is running low on space.

If you connect to different Impala nodeswithin an impala-shell session for load-balancing purposes, you can enable
the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata
has been received by all the Impala nodes. See SYNC_DDL Query Option on page 322 for details.

Important: After adding or replacing data in a table used in performance-critical queries, issue a
COMPUTE STATS statement to make sure all statistics are up-to-date. Consider updating statistics for
a table after any INSERT, LOAD DATA, or CREATE TABLE AS SELECT statement in Impala, or after
loading data through Hive and doing a REFRESH table_name in Impala. This technique is especially
important for tables that are very large, used in join queries, or both.

Examples:

The following example sets up new tables with the same definition as the TAB1 table from the Tutorial section, using
different file formats, and demonstrates inserting data into the tables created with the STORED AS TEXTFILE and
STORED AS PARQUET clauses:

CREATE DATABASE IF NOT EXISTS file_formats;
USE file_formats;

DROP TABLE IF EXISTS text_table;
CREATE TABLE text_table
(id INT, col_1 BOOLEAN, col_2 DOUBLE, col_3 TIMESTAMP)
STORED AS TEXTFILE;

266 | Apache Impala Guide

Impala SQL Language Reference

DROP TABLE IF EXISTS parquet_table;
CREATE TABLE parquet_table
(id INT, col_1 BOOLEAN, col_2 DOUBLE, col_3 TIMESTAMP)
STORED AS PARQUET;

With the INSERT INTO TABLE syntax, each new set of inserted rows is appended to any existing data in the table.
This is how you would record small amounts of data that arrive continuously, or ingest new batches of data alongside
the existing data. For example, after running 2 INSERT INTO TABLE statements with 5 rows each, the table contains
10 rows total:

[localhost:21000] > insert into table text_table select * from default.tab1;
Inserted 5 rows in 0.41s

[localhost:21000] > insert into table text_table select * from default.tab1;
Inserted 5 rows in 0.46s

[localhost:21000] > select count(*) from text_table;
+----------+
| count(*) |
+----------+
| 10 |
+----------+
Returned 1 row(s) in 0.26s

With the INSERT OVERWRITE TABLE syntax, each new set of inserted rows replaces any existing data in the table.
This is how you load data to query in a data warehousing scenario where you analyze just the data for a particular day,
quarter, and so on, discarding the previous data each time. You might keep the entire set of data in one raw table, and
transfer and transform certain rows into a more compact and efficient form to perform intensive analysis on that
subset.

For example, here we insert 5 rows into a table using the INSERT INTO clause, then replace the data by inserting 3
rows with the INSERT OVERWRITE clause. Afterward, the table only contains the 3 rows from the final INSERT
statement.

[localhost:21000] > insert into table parquet_table select * from default.tab1;
Inserted 5 rows in 0.35s

[localhost:21000] > insert overwrite table parquet_table select * from default.tab1
limit 3;
Inserted 3 rows in 0.43s
[localhost:21000] > select count(*) from parquet_table;
+----------+
| count(*) |
+----------+
| 3 |
+----------+
Returned 1 row(s) in 0.43s

The VALUES clause lets you insert one or more rows by specifying constant values for all the columns. The number,
types, and order of the expressions must match the table definition.

Note: The INSERT ... VALUES technique is not suitable for loading large quantities of data into
HDFS-based tables, because the insert operations cannot be parallelized, and each one produces a
separate data file. Use it for setting up small dimension tables or tiny amounts of data for experimenting
with SQL syntax, or with HBase tables. Do not use it for large ETL jobs or benchmark tests for load
operations. Do not run scripts with thousands of INSERT ... VALUES statements that insert a single
row each time. If you do run INSERT ... VALUES operations to load data into a staging table as
one stage in an ETL pipeline, include multiple row values if possible within each VALUES clause, and
use a separate database to make cleanup easier if the operation does produce many tiny files.

Apache Impala Guide | 267

Impala SQL Language Reference

The following example shows how to insert one row or multiple rows, with expressions of different types, using literal
values, expressions, and function return values:

create table val_test_1 (c1 int, c2 float, c3 string, c4 boolean, c5 timestamp);
insert into val_test_1 values (100, 99.9/10, 'abc', true, now());
create table val_test_2 (id int, token string);
insert overwrite val_test_2 values (1, 'a'), (2, 'b'), (-1,'xyzzy');

These examples show the type of “not implemented” error that you see when attempting to insert data into a table
with a file format that Impala currently does not write to:

DROP TABLE IF EXISTS sequence_table;
CREATE TABLE sequence_table
(id INT, col_1 BOOLEAN, col_2 DOUBLE, col_3 TIMESTAMP)
STORED AS SEQUENCEFILE;

DROP TABLE IF EXISTS rc_table;
CREATE TABLE rc_table
(id INT, col_1 BOOLEAN, col_2 DOUBLE, col_3 TIMESTAMP)
STORED AS RCFILE;

[localhost:21000] > insert into table rc_table select * from default.tab1;
Remote error
Backend 0:RC_FILE not implemented.

[localhost:21000] > insert into table sequence_table select * from default.tab1;
Remote error
Backend 0:SEQUENCE_FILE not implemented.

Inserting data into partitioned tables requires slightly different syntax that divides the partitioning columns from the
others:

create table t1 (i int) partitioned by (x int, y string);
-- Select an INT column from another table.
-- All inserted rows will have the same x and y values, as specified in the INSERT
statement.
-- This technique of specifying all the partition key values is known as static
partitioning.
insert into t1 partition(x=10, y='a') select c1 from some_other_table;
-- Select two INT columns from another table.
-- All inserted rows will have the same y value, as specified in the INSERT statement.
-- Values from c2 go into t1.x.
-- Any partitioning columns whose value is not specified are filled in
-- from the columns specified last in the SELECT list.
-- This technique of omitting some partition key values is known as dynamic partitioning.
insert into t1 partition(x, y='b') select c1, c2 from some_other_table;
-- Select an INT and a STRING column from another table.
-- All inserted rows will have the same x value, as specified in the INSERT statement.
-- Values from c3 go into t1.y.
insert into t1 partition(x=20, y) select c1, c3 from some_other_table;

The following examples show how you can copy the data in all the columns from one table to another, copy the data
from only some columns, or specify the columns in the select list in a different order than they actually appear in the
table:

-- Start with 2 identical tables.
create table t1 (c1 int, c2 int);
create table t2 like t1;

-- If there is no () part after the destination table name,
-- all columns must be specified, either as * or by name.
insert into t2 select * from t1;
insert into t2 select c1, c2 from t1;

-- With the () notation following the destination table name,
-- you can omit columns (all values for that column are NULL
-- in the destination table), and/or reorder the values
-- selected from the source table. This is the "column permutation" feature.

268 | Apache Impala Guide

Impala SQL Language Reference

insert into t2 (c1) select c1 from t1;
insert into t2 (c2, c1) select c1, c2 from t1;

-- The column names can be entirely different in the source and destination tables.
-- You can copy any columns, not just the corresponding ones, from the source table.
-- But the number and type of selected columns must match the columns mentioned in the
 () part.
alter table t2 replace columns (x int, y int);
insert into t2 (y) select c1 from t1;

-- For partitioned tables, all the partitioning columns must be mentioned in the ()
column list
-- or a PARTITION clause; these columns cannot be defaulted to NULL.
create table pt1 (x int, y int) partitioned by (z int);
-- The values from c1 are copied into the column x in the new table,
-- all in the same partition based on a constant value for z.
-- The values of y in the new table are all NULL.
insert into pt1 (x) partition (z=5) select c1 from t1;
-- Again we omit the values for column y so they are all NULL.
-- The inserted x values can go into different partitions, based on
-- the different values inserted into the partitioning column z.
insert into pt1 (x,z) select x, z from t2;

SELECT * for a partitioned table requires that all partition key columns in the source table be declared as the last
columns in theCREATE TABLE statement. You still include aPARTITION BY clause listing all the partition key columns.
These partition columns are automatically mapped to the last columns from the SELECT * list.

create table source (x int, y int, year int, month int, day int);
create table destination (x int, y int) partitioned by (year int, month int, day int);
...load some data into the unpartitioned source table...
-- Insert a single partition of data.
-- The SELECT * means you cannot specify partition (year=2014, month, day).
insert overwrite destination partition (year, month, day) select * from source where
year=2014;
-- Insert the data for all year/month/day combinations.
insert overwrite destination partition (year, month, day) select * from source;

-- If one of the partition columns is omitted from the source table,
-- then you can specify a specific value for that column in the PARTITION clause.
-- Here the source table holds only data from 2014, and so does not include a year
column.
create table source_2014 (x int, y int, month, day);
...load some data into the unpartitioned source_2014 table...
insert overwrite destination partition (year=2014, month, day) select * from source_2014;

Sorting considerations: Although you can specify an ORDER BY clause in an INSERT ... SELECT statement, any
ORDER BY clause is ignored and the results are not necessarily sorted. An INSERT ... SELECT operation potentially
creates many different data files, prepared on different data nodes, and therefore the notion of the data being stored
in sorted order is impractical.

Concurrency considerations: Each INSERT operation creates newdata files with unique names, so you can runmultiple
INSERT INTO statements simultaneously without filename conflicts.While data is being inserted into an Impala table,
the data is staged temporarily in a subdirectory inside the data directory; during this period, you cannot issue queries
against that table in Hive. If an INSERT operation fails, the temporary data file and the subdirectory could be left
behind in the data directory. If so, remove the relevant subdirectory and any data files it contains manually, by issuing
an hdfs dfs -rm -r command, specifying the full path of the work subdirectory, whose name ends in _dir.

VALUES Clause

The VALUES clause is a general-purpose way to specify the columns of one or more rows, typically within an INSERT
statement.

Apache Impala Guide | 269

Impala SQL Language Reference

Note: The INSERT ... VALUES technique is not suitable for loading large quantities of data into
HDFS-based tables, because the insert operations cannot be parallelized, and each one produces a
separate data file. Use it for setting up small dimension tables or tiny amounts of data for experimenting
with SQL syntax, or with HBase tables. Do not use it for large ETL jobs or benchmark tests for load
operations. Do not run scripts with thousands of INSERT ... VALUES statements that insert a single
row each time. If you do run INSERT ... VALUES operations to load data into a staging table as
one stage in an ETL pipeline, include multiple row values if possible within each VALUES clause, and
use a separate database to make cleanup easier if the operation does produce many tiny files.

The following examples illustrate:

• How to insert a single row using a VALUES clause.
• How to insert multiple rows using a VALUES clause.
• How the row or rows from a VALUES clause can be appended to a table through INSERT INTO, or replace the

contents of the table through INSERT OVERWRITE.
• How the entries in a VALUES clause can be literals, function results, or any other kind of expression. See Literals

on page 185 for the notation to use for literal values, especially String Literals on page 186 for quoting and escaping
conventions for strings. See SQL Operators on page 189 and Impala Built-In Functions on page 339 for other things
you can include in expressions with the VALUES clause.

[localhost:21000] > describe val_example;
Query: describe val_example
Query finished, fetching results ...
+-------+---------+---------+
| name | type | comment |
+-------+---------+---------+
id	int	
col_1	boolean	
col_2	double	
+-------+---------+---------+

[localhost:21000] > insert into val_example values (1,true,100.0);
Inserted 1 rows in 0.30s
[localhost:21000] > select * from val_example;
+----+-------+-------+
| id | col_1 | col_2 |
+----+-------+-------+
| 1 | true | 100 |
+----+-------+-------+

[localhost:21000] > insert overwrite val_example values (10,false,pow(2,5)),
(50,true,10/3);
Inserted 2 rows in 0.16s
[localhost:21000] > select * from val_example;
+----+-------+-------------------+
| id | col_1 | col_2 |
+----+-------+-------------------+
| 10 | false | 32 |
| 50 | true | 3.333333333333333 |
+----+-------+-------------------+

Whenused in anINSERT statement, the ImpalaVALUES clause can specify someor all of the columns in the destination
table, and the columns can be specified in a different order than they actually appear in the table. To specify a different
set or order of columns than in the table, use the syntax:

INSERT INTO destination
 (col_x, col_y, col_z)
 VALUES
 (val_x, val_y, val_z);

Any columns in the table that are not listed in the INSERT statement are set to NULL.

270 | Apache Impala Guide

Impala SQL Language Reference

To use a VALUES clause like a table in other statements, wrap it in parentheses and use AS clauses to specify aliases
for the entire object and any columns you need to refer to:

[localhost:21000] > select * from (values(4,5,6),(7,8,9)) as t;
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 4 | 5 | 6 |
| 7 | 8 | 9 |
+---+---+---+
[localhost:21000] > select * from (values(1 as c1, true as c2, 'abc' as
c3),(100,false,'xyz')) as t;
+-----+-------+-----+
| c1 | c2 | c3 |
+-----+-------+-----+
| 1 | true | abc |
| 100 | false | xyz |
+-----+-------+-----+

For example, you might use a tiny table constructed like this from constant literals or function return values as part of
a longer statement involving joins or UNION ALL.

HDFS considerations:

Impala physically writes all inserted files under the ownership of its default user, typically impala. Therefore, this user
must have HDFS write permission in the corresponding table directory.

The permission requirement is independent of the authorization performedby the Sentry framework. (If the connected
user is not authorized to insert into a table, Sentry blocks that operation immediately, regardless of the privileges
available to the impala user.) Files created by Impala are not owned by and do not inherit permissions from the
connected user.

The number of data files produced by an INSERT statement depends on the size of the cluster, the number of data
blocks that are processed, the partition key columns in a partitioned table, and themechanism Impala uses for dividing
the work in parallel. Do not assume that an INSERT statement will produce some particular number of output files.
In case of performance issues with data written by Impala, check that the output files do not suffer from issues such
as many tiny files or many tiny partitions. (In the Hadoop context, even files or partitions of a few tens of megabytes
are considered “tiny”.)

The INSERT statement has always left behind a hidden work directory inside the data directory of the table. Formerly,
this hidden work directory was named .impala_insert_staging . In Impala 2.0.1 and later, this directory name is
changed to _impala_insert_staging . (While HDFS tools are expected to treat names beginning either with
underscore and dot as hidden, in practice names beginning with an underscore are more widely supported.) If you
have any scripts, cleanup jobs, and so on that rely on the name of this work directory, adjust them to use the new
name.

HBase considerations:

You can use the INSERT statement with HBase tables as follows:

• You can insert a single row or a small set of rows into an HBase table with the INSERT ... VALUES syntax. This
is a good use case for HBase tables with Impala, because HBase tables are not subject to the same kind of
fragmentation from many small insert operations as HDFS tables are.

• You can insert any number of rows at once into an HBase table using the INSERT ... SELECT syntax.

• If more than one inserted row has the same value for the HBase key column, only the last inserted row with that
value is visible to Impala queries. You can take advantage of this fact with INSERT ... VALUES statements to
effectively update rows one at a time, by inserting new rows with the same key values as existing rows. Be aware
that after an INSERT ... SELECT operation copying from an HDFS table, the HBase table might contain fewer
rows than were inserted, if the key column in the source table contained duplicate values.

• You cannot INSERT OVERWRITE into an HBase table. New rows are always appended.

Apache Impala Guide | 271

Impala SQL Language Reference

• When you create an Impala or Hive table that maps to an HBase table, the column order you specify with the
INSERT statement might be different than the order you declare with the CREATE TABLE statement. Behind the
scenes, HBase arranges the columns based on how they are divided into column families. This might cause a
mismatch during insert operations, especially if you use the syntax INSERT INTO hbase_table SELECT *
FROM hdfs_table. Before inserting data, verify the column order by issuing a DESCRIBE statement for the table,
and adjust the order of the select list in the INSERT statement.

See Using Impala to Query HBase Tables on page 558 for more details about using Impala with HBase.

Amazon S3 considerations:

Currently, Impala cannot insert or load data into a table or partition that resides in the Amazon Simple Storage Service
(S3). Bring data into S3 using the normal S3 transfer mechanisms, then use Impala to query the S3 data. See Using
Impala to Query the Amazon S3 Filesystem on page 567 for details about using Impala with S3.

Security considerations:

If these statements in your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statements in log files and other administrative
contexts. See http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/sg_redaction.html
for details.

Cancellation: Can be cancelled. To cancel this statement, use Ctrl-C from the impala-shell interpreter, the Cancel
button from theWatch page in Hue, Actions > Cancel from the Queries list in Cloudera Manager, or Cancel from the
list of in-flight queries (for a particular node) on the Queries tab in the Impala web UI (port 25000).

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read permission for the files
in the source directory of an INSERT ... SELECT operation, and write permission for all affected directories in the
destination table. (An INSERT operation could write files to multiple different HDFS directories if the destination table
is partitioned.) This user must also have write permission to create a temporary work directory in the top-level HDFS
directory of the destination table. An INSERT OVERWRITE operation does not require write permission on the original
data files in the table, only on the table directories themselves.

Restrictions:

For INSERT operations into CHAR or VARCHAR columns, you must cast all STRING literals or expressions returning
STRING to to a CHAR or VARCHAR type with the appropriate length.

Related startup options:

By default, if an INSERT statement creates any new subdirectories underneath a partitioned table, those subdirectories
are assigned default HDFS permissions for the impala user. To make each subdirectory have the same permissions
as its parent directory in HDFS, specify the --insert_inherit_permissions startup option for the impalad
daemon.

INVALIDATE METADATA Statement

Marks the metadata for one or all tables as stale. Required after a table is created through the Hive shell, before the
table is available for Impala queries. The next time the current Impala node performs a query against a table whose
metadata is invalidated, Impala reloads the associatedmetadata before the query proceeds. This is a relatively expensive
operation compared to the incremental metadata update done by the REFRESH statement, so in the common scenario
of adding new data files to an existing table, prefer REFRESH rather than INVALIDATE METADATA. If you are not
familiar with the way Impala uses metadata and how it shares the same metastore database as Hive, see Overview of
Impala Metadata and the Metastore on page 21 for background information.

Syntax:

INVALIDATE METADATA [[db_name.]table_name]

272 | Apache Impala Guide

Impala SQL Language Reference

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/sg_redaction.html

By default, the cached metadata for all tables is flushed. If you specify a table name, only the metadata for that one
table is flushed. Even for a single table, INVALIDATE METADATA is more expensive than REFRESH, so prefer REFRESH
in the common case where you add new data files for an existing table.

Internal details:

To accurately respond to queries, Impala must have current metadata about those databases and tables that clients
query directly. Therefore, if some other entity modifies information used by Impala in the metastore that Impala and
Hive share, the information cached by Impalamust be updated. However, this does notmean that all metadata updates
require an Impala update.

Note:

In Impala 1.2.4 and higher, you can specify a table namewith INVALIDATE METADATA after the table
is created in Hive, allowing you to make individual tables visible to Impala without doing a full reload
of the catalog metadata. Impala 1.2.4 also includes other changes to make the metadata broadcast
mechanism faster andmore responsive, especially during Impala startup. See New Features in Impala
Version 1.2.4 on page 618 for details.

In Impala 1.2 and higher, a dedicated daemon (catalogd) broadcasts DDL changes made through
Impala to all Impala nodes. Formerly, after you created a database or table while connected to one
Impala node, you needed to issue an INVALIDATE METADATA statement on another Impala node
before accessing the new database or table from the other node. Now, newly created or altered
objects are picked up automatically by all Impala nodes. Youmust still use the INVALIDATE METADATA
technique after creating or altering objects through Hive. See The Impala Catalog Service on page 19
for more information on the catalog service.

The INVALIDATE METADATA statement is new in Impala 1.1 and higher, and takes over some of the
use cases of the Impala 1.0 REFRESH statement. Because REFRESH now requires a table name
parameter, to flush the metadata for all tables at once, use the INVALIDATE METADATA statement.

Because REFRESH table_name only works for tables that the current Impala node is already aware
of, when you create a new table in the Hive shell, enter INVALIDATE METADATA new_table before
you can see the new table in impala-shell. Once the table is known by Impala, you can issue
REFRESH table_name after you add data files for that table.

INVALIDATE METADATA andREFRESH are counterparts:INVALIDATE METADATAwaits to reload themetadatawhen
needed for a subsequent query, but reloads all the metadata for the table, which can be an expensive operation,
especially for large tables with many partitions. REFRESH reloads the metadata immediately, but only loads the block
location data for newly added data files, making it a less expensive operation overall. If data was altered in somemore
extensive way, such as being reorganized by the HDFS balancer, use INVALIDATE METADATA to avoid a performance
penalty from reduced local reads. If you used Impala version 1.0, the INVALIDATE METADATA statement works just
like the Impala 1.0 REFRESH statement did, while the Impala 1.1 REFRESH is optimized for the common use case of
adding new data files to an existing table, thus the table name argument is now required.

Usage notes:

A metadata update for an impalad instance is required if:

• A metadata change occurs.
• and the change is made from another impalad instance in your cluster, or through Hive.
• and the change ismade to ametastore database towhich clients such as the Impala shell or ODBC directly connect.

A metadata update for an Impala node is not required when you issue queries from the same Impala node where you
ran ALTER TABLE, INSERT, or other table-modifying statement.

Database and table metadata is typically modified by:

• Hive - via ALTER, CREATE, DROP or INSERT operations.
• Impalad - via CREATE TABLE, ALTER TABLE, and INSERT operations.

Apache Impala Guide | 273

Impala SQL Language Reference

INVALIDATE METADATA causes the metadata for that table to be marked as stale, and reloaded the next time the
table is referenced. For a huge table, that process could take a noticeable amount of time; thus you might prefer to
use REFRESH where practical, to avoid an unpredictable delay later, for example if the next reference to the table is
during a benchmark test.

Examples:

The following example shows how you might use the INVALIDATE METADATA statement after creating new tables
(such as SequenceFile or HBase tables) through the Hive shell. Before the INVALIDATE METADATA statement was
issued, Impalawould give a “table not found” error if you tried to refer to those table names. TheDESCRIBE statements
cause the latest metadata to be immediately loaded for the tables, avoiding a delay the next time those tables are
queried.

[impalad-host:21000] > invalidate metadata;
[impalad-host:21000] > describe t1;
...
[impalad-host:21000] > describe t2;
...

Formore examples of using REFRESH and INVALIDATE METADATAwith a combination of Impala and Hive operations,
see Switching Back and Forth Between Impala and Hive on page 60.

If you need to ensure that the metadata is up-to-date when you start an impala-shell session, run impala-shell
with the -r or --refresh_after_connect command-line option. Because this operation adds a delay to the next
query against each table, potentially expensive for large tables with many partitions, try to avoid using this option for
day-to-day operations in a production environment.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have execute permissions for all
the relevant directories holding table data. (A table could have data spread acrossmultiple directories, or in unexpected
paths, if it uses partitioning or specifies a LOCATION attribute for individual partitions or the entire table.) Issues with
permissions might not cause an immediate error for this statement, but subsequent statements such as SELECT or
SHOW TABLE STATS could fail.

HDFS considerations:

By default, theINVALIDATE METADATA command checks HDFS permissions of the underlying data files and directories,
caching this information so that a statement can be cancelled immediately if for example the impala user does not
have permission towrite to the data directory for the table. (This checking does not apply if you have set the catalogd
configuration option --load_catalog_in_background=false.) Impala reports any lack of write permissions as
an INFOmessage in the log file, in case that represents an oversight. If you change HDFS permissions to make data
readable or writeable by the Impala user, issue another INVALIDATE METADATA tomake Impala aware of the change.

Usage notes:

This example illustrates creating a new database and new table in Hive, then doing an INVALIDATE METADATA
statement in Impala using the fully qualified table name, after which both the new table and the new database are
visible to Impala. The ability to specify INVALIDATE METADATA table_name for a table created in Hive is a new
capability in Impala 1.2.4. In earlier releases, that statement would have returned an error indicating an unknown
table, requiring you to do INVALIDATE METADATA with no table name, a more expensive operation that reloaded
metadata for all tables and databases.

$ hive
hive> create database new_db_from_hive;
OK
Time taken: 4.118 seconds
hive> create table new_db_from_hive.new_table_from_hive (x int);
OK
Time taken: 0.618 seconds
hive> quit;
$ impala-shell
[localhost:21000] > show databases like 'new*';
[localhost:21000] > refresh new_db_from_hive.new_table_from_hive;

274 | Apache Impala Guide

Impala SQL Language Reference

ERROR: AnalysisException: Database does not exist: new_db_from_hive
[localhost:21000] > invalidate metadata new_db_from_hive.new_table_from_hive;
[localhost:21000] > show databases like 'new*';
+--------------------+
| name |
+--------------------+
| new_db_from_hive |
+--------------------+
[localhost:21000] > show tables in new_db_from_hive;
+---------------------+
| name |
+---------------------+
| new_table_from_hive |
+---------------------+

Amazon S3 considerations:

The REFRESH and INVALIDATE METADATA statements also cache metadata for tables where the data resides in the
Amazon Simple Storage Service (S3). In particular, issue a REFRESH for a table after adding or removing files in the
associated S3 data directory. SeeUsing Impala toQuery the Amazon S3 Filesystemon page 567 for details aboutworking
with S3 tables.

Cancellation: Cannot be cancelled.

Related information:

Overview of Impala Metadata and the Metastore on page 21, REFRESH Statement on page 278

LOAD DATA Statement

The LOAD DATA statement streamlines the ETL process for an internal Impala table by moving a data file or all the
data files in a directory from an HDFS location into the Impala data directory for that table.

Syntax:

LOAD DATA INPATH 'hdfs_file_or_directory_path' [OVERWRITE] INTO TABLE tablename
 [PARTITION (partcol1=val1, partcol2=val2 ...)]

When the LOAD DATA statement operates on a partitioned table, it always operates on one partition at a time. Specify
the PARTITION clauses and list all the partition key columns, with a constant value specified for each.

Statement type: DML (but still affected by SYNC_DDL query option)

Usage notes:

• The loaded data files are moved, not copied, into the Impala data directory.
• You can specify the HDFS path of a single file to be moved, or the HDFS path of a directory to move all the files

inside that directory. You cannot specify any sort of wildcard to take only some of the files from a directory. When
loading a directory full of data files, keep all the data files at the top level, with no nested directories underneath.

• Currently, the Impala LOAD DATA statement only imports files from HDFS, not from the local filesystem. It does
not support the LOCAL keyword of the Hive LOAD DATA statement. You must specify a path, not an hdfs://
URI.

• In the interest of speed, only limited error checking is done. If the loaded files have thewrong file format, different
columns than the destination table, or other kind ofmismatch, Impala does not raise any error for the LOAD DATA
statement. Querying the table afterward could produce a runtime error or unexpected results. Currently, the only
checking the LOAD DATA statement does is to avoid mixing together uncompressed and LZO-compressed text
files in the same table.

• When you specify an HDFS directory name as the LOAD DATA argument, any hidden files in that directory (files
whose names start with a .) are not moved to the Impala data directory.

• The loaded data files retain their original names in the new location, unless a name conflicts with an existing data
file, in which case the name of the new file is modified slightly to be unique. (The name-mangling is a slight
difference from the Hive LOAD DATA statement, which replaces identically named files.)

Apache Impala Guide | 275

Impala SQL Language Reference

• By providing an easy way to transport files from known locations in HDFS into the Impala data directory structure,
the LOAD DATA statement lets you avoid memorizing the locations and layout of HDFS directory tree containing
the Impala databases and tables. (For a quick way to check the location of the data files for an Impala table, issue
the statement DESCRIBE FORMATTED table_name.)

• The PARTITION clause is especially convenient for ingesting new data for a partitioned table. As you receive new
data for a time period, geographic region, or other division that corresponds to one or more partitioning columns,
you can load that data straight into the appropriate Impala data directory, which might be nested several levels
down if the table is partitioned by multiple columns. When the table is partitioned, you must specify constant
values for all the partitioning columns.

Complex type considerations:

Because Impala currently cannot create Parquet data files containing complex types (ARRAY, STRUCT, and MAP), the
LOAD DATA statement is especially important when working with tables containing complex type columns. You create
the Parquet data files outside Impala, then use either LOAD DATA, an external table, or HDFS-level file operations
followed by REFRESH to associate the data files with the corresponding table. See Complex Types (CDH 5.5 or higher
only) on page 157 for details about using complex types.

If you connect to different Impala nodeswithin an impala-shell session for load-balancing purposes, you can enable
the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata
has been received by all the Impala nodes. See SYNC_DDL Query Option on page 322 for details.

Important: After adding or replacing data in a table used in performance-critical queries, issue a
COMPUTE STATS statement to make sure all statistics are up-to-date. Consider updating statistics for
a table after any INSERT, LOAD DATA, or CREATE TABLE AS SELECT statement in Impala, or after
loading data through Hive and doing a REFRESH table_name in Impala. This technique is especially
important for tables that are very large, used in join queries, or both.

Examples:

First, we use a trivial Python script to write different numbers of strings (one per line) into files stored in the cloudera
HDFS user account. (Substitute the path for your own HDFS user account when doing hdfs dfs operations like these.)

$ random_strings.py 1000 | hdfs dfs -put - /user/cloudera/thousand_strings.txt
$ random_strings.py 100 | hdfs dfs -put - /user/cloudera/hundred_strings.txt
$ random_strings.py 10 | hdfs dfs -put - /user/cloudera/ten_strings.txt

Next, we create a table and load an initial set of data into it. Remember, unless you specify a STORED AS clause, Impala
tables default to TEXTFILE format with Ctrl-A (hex 01) as the field delimiter. This example uses a single-column table,
so the delimiter is not significant. For large-scale ETL jobs, you would typically use binary format data files such as
Parquet or Avro, and load them into Impala tables that use the corresponding file format.

[localhost:21000] > create table t1 (s string);
[localhost:21000] > load data inpath '/user/cloudera/thousand_strings.txt' into table
t1;
Query finished, fetching results ...
+--+
| summary |
+--+
| Loaded 1 file(s). Total files in destination location: 1 |
+--+
Returned 1 row(s) in 0.61s
[kilo2-202-961.cs1cloud.internal:21000] > select count(*) from t1;
Query finished, fetching results ...
+------+
| _c0 |
+------+
| 1000 |
+------+
Returned 1 row(s) in 0.67s
[localhost:21000] > load data inpath '/user/cloudera/thousand_strings.txt' into table
t1;

276 | Apache Impala Guide

Impala SQL Language Reference

ERROR: AnalysisException: INPATH location '/user/cloudera/thousand_strings.txt' does
not exist.

As indicated by the message at the end of the previous example, the data file was moved from its original location.
The following example illustrates how the data file was moved into the Impala data directory for the destination table,
keeping its original filename:

$ hdfs dfs -ls /user/hive/warehouse/load_data_testing.db/t1
Found 1 items
-rw-r--r-- 1 cloudera cloudera 13926 2013-06-26 15:40
/user/hive/warehouse/load_data_testing.db/t1/thousand_strings.txt

The following example demonstrates the difference between the INTO TABLE and OVERWRITE TABLE clauses. The
table already contains 1000 rows. After issuing the LOAD DATA statement with the INTO TABLE clause, the table
contains 100 more rows, for a total of 1100. After issuing the LOAD DATA statement with the OVERWRITE INTO
TABLE clause, the former contents are gone, and now the table only contains the 10 rows from the just-loaded data
file.

[localhost:21000] > load data inpath '/user/cloudera/hundred_strings.txt' into table
t1;
Query finished, fetching results ...
+--+
| summary |
+--+
| Loaded 1 file(s). Total files in destination location: 2 |
+--+
Returned 1 row(s) in 0.24s
[localhost:21000] > select count(*) from t1;
Query finished, fetching results ...
+------+
| _c0 |
+------+
| 1100 |
+------+
Returned 1 row(s) in 0.55s
[localhost:21000] > load data inpath '/user/cloudera/ten_strings.txt' overwrite into
table t1;
Query finished, fetching results ...
+--+
| summary |
+--+
| Loaded 1 file(s). Total files in destination location: 1 |
+--+
Returned 1 row(s) in 0.26s
[localhost:21000] > select count(*) from t1;
Query finished, fetching results ...
+-----+
| _c0 |
+-----+
| 10 |
+-----+
Returned 1 row(s) in 0.62s

Amazon S3 considerations:

Currently, Impala cannot insert or load data into a table or partition that resides in the Amazon Simple Storage Service
(S3). Bring data into S3 using the normal S3 transfer mechanisms, then use Impala to query the S3 data. See Using
Impala to Query the Amazon S3 Filesystem on page 567 for details about using Impala with S3.

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read and write permissions
for the files in the source directory, and write permission for the destination directory.

HBase considerations:

Apache Impala Guide | 277

Impala SQL Language Reference

The LOAD DATA statement cannot be used with HBase tables.

Related information:

The LOAD DATA statement is an alternative to the INSERT statement. Use LOAD DATA when you have the data files
in HDFS but outside of any Impala table.

The LOAD DATA statement is also an alternative to the CREATE EXTERNAL TABLE statement. Use LOAD DATAwhen
it is appropriate to move the data files under Impala control rather than querying them from their original location.
See External Tables on page 210 for information about working with external tables.

REFRESH Statement

To accurately respond to queries, the Impala node that acts as the coordinator (the node to which you are connected
through impala-shell, JDBC, or ODBC) must have current metadata about those databases and tables that are
referenced in Impala queries. If you are not familiar with the way Impala uses metadata and how it shares the same
metastore database as Hive, see Overview of Impala Metadata and the Metastore on page 21 for background
information.

Syntax:

REFRESH [db_name.]table_name

Usage notes:

Use the REFRESH statement to load the latest metastore metadata and block location data for a particular table in
these scenarios:

• After loading new data files into the HDFS data directory for the table. (Once you have set up an ETL pipeline to
bring data into Impala on a regular basis, this is typically the most frequent reason why metadata needs to be
refreshed.)

• After issuing ALTER TABLE, INSERT, LOAD DATA, or other table-modifying SQL statement in Hive.

Note:

In CDH 5.5 / Impala 2.3 and higher, the syntax ALTER TABLE table_name RECOVER PARTITIONS
is a faster alternative to REFRESH when the only change to the table data is the addition of new
partition directories through Hive or manual HDFS operations. See ALTER TABLE Statement on page
216 for details.

You only need to issue the REFRESH statement on the node to which you connect to issue queries. The coordinator
node divides the work among all the Impala nodes in a cluster, and sends read requests for the correct HDFS blocks
without relying on the metadata on the other nodes.

REFRESH reloads the metadata for the table from the metastore database, and does an incremental reload of the
low-level block location data to account for any new data files added to the HDFS data directory for the table. It is a
low-overhead, single-table operation, specifically tuned for the common scenario where new data files are added to
HDFS.

Only the metadata for the specified table is flushed. The table must already exist and be known to Impala, either
because the CREATE TABLE statement was run in Impala rather than Hive, or because a previous INVALIDATE
METADATA statement caused Impala to reload its entire metadata catalog.

278 | Apache Impala Guide

Impala SQL Language Reference

Note:

The catalog service broadcasts any changed metadata as a result of Impala ALTER TABLE, INSERT
and LOAD DATA statements to all Impala nodes. Thus, the REFRESH statement is only required if you
load data through Hive or by manipulating data files in HDFS directly. See The Impala Catalog Service
on page 19 for more information on the catalog service.

Another way to avoid inconsistency across nodes is to enable the SYNC_DDL query option before
performing a DDL statement or an INSERT or LOAD DATA.

The table name is a required parameter. To flush the metadata for all tables, use the INVALIDATE
METADATA command.

Because REFRESH table_name only works for tables that the current Impala node is already aware
of, when you create a new table in the Hive shell, enter INVALIDATE METADATA new_table before
you can see the new table in impala-shell. Once the table is known by Impala, you can issue
REFRESH table_name after you add data files for that table.

INVALIDATE METADATA andREFRESH are counterparts:INVALIDATE METADATAwaits to reload themetadatawhen
needed for a subsequent query, but reloads all the metadata for the table, which can be an expensive operation,
especially for large tables with many partitions. REFRESH reloads the metadata immediately, but only loads the block
location data for newly added data files, making it a less expensive operation overall. If data was altered in somemore
extensive way, such as being reorganized by the HDFS balancer, use INVALIDATE METADATA to avoid a performance
penalty from reduced local reads. If you used Impala version 1.0, the INVALIDATE METADATA statement works just
like the Impala 1.0 REFRESH statement did, while the Impala 1.1 REFRESH is optimized for the common use case of
adding new data files to an existing table, thus the table name argument is now required.

A metadata update for an impalad instance is required if:

• A metadata change occurs.
• and the change is made through Hive.
• and the change ismade to ametastore database towhich clients such as the Impala shell or ODBC directly connect.

A metadata update for an Impala node is not required after you run ALTER TABLE, INSERT, or other table-modifying
statement in Impala rather than Hive. Impala handles the metadata synchronization automatically through the catalog
service.

Database and table metadata is typically modified by:

• Hive - through ALTER, CREATE, DROP or INSERT operations.
• Impalad - through CREATE TABLE, ALTER TABLE, and INSERT operations. Such changes are propagated to all

Impala nodes by the Impala catalog service.

REFRESH causes the metadata for that table to be immediately reloaded. For a huge table, that process could take a
noticeable amount of time; but doing the refresh up front avoids an unpredictable delay later, for example if the next
reference to the table is during a benchmark test.

If you connect to different Impala nodeswithin an impala-shell session for load-balancing purposes, you can enable
the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata
has been received by all the Impala nodes. See SYNC_DDL Query Option on page 322 for details.

Examples:

The following example shows how you might use the REFRESH statement after manually adding new HDFS data files
to the Impala data directory for a table:

[impalad-host:21000] > refresh t1;
[impalad-host:21000] > refresh t2;
[impalad-host:21000] > select * from t1;
...
[impalad-host:21000] > select * from t2;
...

Apache Impala Guide | 279

Impala SQL Language Reference

Formore examples of using REFRESH and INVALIDATE METADATAwith a combination of Impala and Hive operations,
see Switching Back and Forth Between Impala and Hive on page 60.

Related impala-shell options:

The impala-shell option -r issues an INVALIDATE METADATA statement when starting up the shell, effectively
performing a REFRESH of all tables. Due to the expense of reloading the metadata for all tables, the impala-shell
-r option is not recommended for day-to-day use in a production environment. (This option was mainly intended as
a workaround for synchronization issues in very old Impala versions.)

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have execute permissions for all
the relevant directories holding table data. (A table could have data spread acrossmultiple directories, or in unexpected
paths, if it uses partitioning or specifies a LOCATION attribute for individual partitions or the entire table.) Issues with
permissions might not cause an immediate error for this statement, but subsequent statements such as SELECT or
SHOW TABLE STATS could fail.

HDFS considerations:

The REFRESH command checks HDFS permissions of the underlying data files and directories, caching this information
so that a statement can be cancelled immediately if for example the impala user does not have permission to write
to the data directory for the table. Impala reports any lack of write permissions as an INFOmessage in the log file, in
case that represents an oversight. If you change HDFS permissions to make data readable or writeable by the Impala
user, issue another REFRESH to make Impala aware of the change.

Important: After adding or replacing data in a table used in performance-critical queries, issue a
COMPUTE STATS statement to make sure all statistics are up-to-date. Consider updating statistics for
a table after any INSERT, LOAD DATA, or CREATE TABLE AS SELECT statement in Impala, or after
loading data through Hive and doing a REFRESH table_name in Impala. This technique is especially
important for tables that are very large, used in join queries, or both.

Amazon S3 considerations:

The REFRESH and INVALIDATE METADATA statements also cache metadata for tables where the data resides in the
Amazon Simple Storage Service (S3). In particular, issue a REFRESH for a table after adding or removing files in the
associated S3 data directory. SeeUsing Impala toQuery the Amazon S3 Filesystemon page 567 for details aboutworking
with S3 tables.

Cancellation: Cannot be cancelled.

Related information:

Overview of Impala Metadata and the Metastore on page 21, INVALIDATE METADATA Statement on page 272

REVOKE Statement (CDH 5.2 or higher only)

The REVOKE statement revokes roles or privileges on a specified object from groups. Only Sentry administrative users
can revoke the role from a group. The revocation has a cascading effect. For example, revoking the ALL privilege on a
database also revokes the same privilege for all the tables in that database.

Syntax:

REVOKE ROLE role_name FROM GROUP group_name

REVOKE privilege ON object_type object_name
 FROM [ROLE] role_name

privilege ::= SELECT | SELECT(column_name) | INSERT | ALL
object_type ::= TABLE | DATABASE | SERVER | URI

Typically, the object name is an identifier. For URIs, it is a string literal.

280 | Apache Impala Guide

Impala SQL Language Reference

The ability to grant or revoke SELECT privilege on specific columns is available in CDH 5.5 / Impala 2.3 and higher. See
https://www.cloudera.com/documentation/enterprise/latest/topics/sg_hive_sql.html for details.

Required privileges:

Only administrative users (those with ALL privileges on the server, defined in the Sentry policy file) can use this
statement.

Compatibility:

• The Impala GRANT and REVOKE statements are available in CDH 5.2 and higher.
• In CDH5.1 and higher, Impalamakes use of any roles and privileges specified by theGRANT andREVOKE statements

in Hive, when your system is configured to use the Sentry service instead of the file-based policy mechanism.
• The Impala GRANT and REVOKE statements do not require the ROLE keyword to be repeated before each role

name, unlike the equivalent Hive statements.
• Currently, each Impala GRANT or REVOKE statement can only grant or revoke a single privilege to or from a single

role.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

Enabling Sentry Authorization for Impala on page 96, GRANT Statement (CDH 5.2 or higher only) on page 264 CREATE
ROLE Statement (CDH 5.2 or higher only) on page 236, DROP ROLE Statement (CDH 5.2 or higher only) on page 255,
SHOW Statement on page 323

SELECT Statement

The SELECT statement performs queries, retrieving data from one or more tables and producing result sets consisting
of rows and columns.

The Impala INSERT statement also typically ends with a SELECT statement, to define data to copy from one table to
another.

Syntax:

[WITH name AS (select_expression) [, ...]]
SELECT
 [ALL | DISTINCT]
 [STRAIGHT_JOIN]
expression [, expression ...]

FROM table_reference [, table_reference ...]
[[FULL | [LEFT | RIGHT] INNER | [LEFT | RIGHT] OUTER | [LEFT | RIGHT] SEMI | [LEFT |
RIGHT] ANTI | CROSS]
 JOIN table_reference
 [ON join_equality_clauses | USING (col1[, col2 ...]] ...
WHERE conditions
GROUP BY { column | expression [, ...] }
HAVING conditions
ORDER BY { column | expression [ASC | DESC] [NULLS FIRST | NULLS LAST] [, ...] }
LIMIT expression [OFFSET expression]
[UNION [ALL] select_statement] ...]

Impala SELECT queries support:

• SQL scalar data types: BOOLEAN, TINYINT, SMALLINT, INT, BIGINT, DECIMAL FLOAT, DOUBLE, TIMESTAMP,
STRING, VARCHAR, CHAR.

• The complex data types ARRAY, STRUCT, and MAP, are available in CDH 5.5 / Impala 2.3 and higher. Queries
involving these types typically involve special qualified names using dot notation for referring to the complex
column fields, and join clauses for bringing the complex columns into the result set. See Complex Types (CDH 5.5
or higher only) on page 157 for details.

Apache Impala Guide | 281

Impala SQL Language Reference

https://www.cloudera.com/documentation/enterprise/latest/topics/sg_hive_sql.html

• An optional WITH clause before the SELECT keyword, to define a subquery whose name or column names can
be referenced from later in the main query. This clause lets you abstract repeated clauses, such as aggregation
functions, that are referenced multiple times in the same query.

• By default, one DISTINCT clause per query. See DISTINCT Operator on page 302 for details. See
APPX_COUNT_DISTINCT Query Option (CDH 5.2 or higher only) on page 307 for a query option to allow multiple
COUNT(DISTINCT) impressions in the same query.

• Subqueries in a FROM clause. In CDH 5.2 / Impala 2.0 and higher, subqueries can also go in the WHERE clause, for
example with the IN(), EXISTS, and NOT EXISTS operators.

• WHERE, GROUP BY, HAVING clauses.
• ORDER BY. Prior to Impala 1.4.0, Impala required that queries using an ORDER BY clause also include a LIMIT

clause. In Impala 1.4.0 and higher, this restriction is lifted; sort operations that would exceed the Impala memory
limit automatically use a temporary disk work area to perform the sort.

• Impala supports a wide variety of JOIN clauses. Left, right, semi, full, and outer joins are supported in all Impala
versions. The CROSS JOIN operator is available in Impala 1.2.2 and higher. During performance tuning, you can
override the reordering of join clauses that Impala does internally by including the keyword STRAIGHT_JOIN
immediately after the SELECT and any DISTINCT or ALL keywords.

See Joins in Impala SELECT Statements on page 283 for details and examples of join queries.

• UNION ALL.
• LIMIT.
• External tables.
• Relational operators such as greater than, less than, or equal to.
• Arithmetic operators such as addition or subtraction.
• Logical/Boolean operators AND, OR, and NOT. Impala does not support the corresponding symbols &&, ||, and !.
• Common SQL built-in functions such as COUNT, SUM, CAST, LIKE, IN, BETWEEN, and COALESCE. Impala specifically

supports built-ins described in Impala Built-In Functions on page 339.

Impala queries ignore files with extensions commonly used for temporary work files by Hadoop tools. Any files with
extensions .tmp or .copying are not considered part of the Impala table. The suffix matching is case-insensitive, so
for example Impala ignores both .copying and .COPYING suffixes.

Security considerations:

If these statements in your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statements in log files and other administrative
contexts. See http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/sg_redaction.html
for details.

Cancellation: Can be cancelled. To cancel this statement, use Ctrl-C from the impala-shell interpreter, the Cancel
button from theWatch page in Hue, Actions > Cancel from the Queries list in Cloudera Manager, or Cancel from the
list of in-flight queries (for a particular node) on the Queries tab in the Impala web UI (port 25000).

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read permissions for the files
in all applicable directories in all source tables, and read and execute permissions for the relevant data directories. (A
SELECT operation could read files frommultiple different HDFS directories if the source table is partitioned.) If a query
attempts to read a data file and is unable to because of an HDFS permission error, the query halts and does not return
any further results.

Related information:

The SELECT syntax is so extensive that it forms its own category of statements: queries. The othermajor classifications
of SQL statements are data definition language (see DDL Statements on page 215) and datamanipulation language (see
DML Statements on page 216).

Because the focus of Impala is on fast queries with interactive response times over huge data sets, query performance
and scalability are important considerations. See Tuning Impala for Performance on page 480 and Scalability
Considerations for Impala on page 517 for details.

282 | Apache Impala Guide

Impala SQL Language Reference

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/sg_redaction.html

Joins in Impala SELECT Statements

A join query is a SELECT statement that combines data from two or more tables, and returns a result set containing
items from some or all of those tables. It is a way to cross-reference and correlate related data that is organized into
multiple tables, typically using identifiers that are repeated in each of the joined tables.

Syntax:

Impala supports a wide variety of JOIN clauses. Left, right, semi, full, and outer joins are supported in all Impala
versions. The CROSS JOIN operator is available in Impala 1.2.2 and higher. During performance tuning, you can override
the reordering of join clauses that Impala does internally by including the keyword STRAIGHT_JOIN immediately after
the SELECT and any DISTINCT or ALL keywords.

SELECT select_list FROM
table_or_subquery1 [INNER] JOIN table_or_subquery2 |
table_or_subquery1 {LEFT [OUTER] | RIGHT [OUTER] | FULL [OUTER]} JOIN table_or_subquery2

 |
table_or_subquery1 {LEFT | RIGHT} SEMI JOIN table_or_subquery2 |
table_or_subquery1 {LEFT | RIGHT} ANTI JOIN table_or_subquery2 |

 [ON col1 = col2 [AND col3 = col4 ...] |
 USING (col1 [, col2 ...])]
 [other_join_clause ...]
[WHERE where_clauses]

SELECT select_list FROM
table_or_subquery1, table_or_subquery2 [, table_or_subquery3 ...]

 [other_join_clause ...]
WHERE

col1 = col2 [AND col3 = col4 ...]

SELECT select_list FROM
table_or_subquery1 CROSS JOIN table_or_subquery2

 [other_join_clause ...]
[WHERE where_clauses]

SQL-92 and SQL-89 Joins:

Queries with the explicit JOIN keywords are known as SQL-92 style joins, referring to the level of the SQL standard
where they were introduced. The corresponding ON or USING clauses clearly show which columns are used as the join
keys in each case:

SELECT t1.c1, t2.c2 FROM t1 JOIN t2
ON t1.id = t2.id and t1.type_flag = t2.type_flag

 WHERE t1.c1 > 100;

SELECT t1.c1, t2.c2 FROM t1 JOIN t2
USING (id, type_flag)

 WHERE t1.c1 > 100;

The ON clause is a general way to compare columns across the two tables, even if the column names are different. The
USING clause is a shorthand notation for specifying the join columns, when the column names are the same in both
tables. You can code equivalent WHERE clauses that compare the columns, instead of ON or USING clauses, but that
practice is not recommended becausemixing the join comparisons with other filtering clauses is typically less readable
and harder to maintain.

Queries with a comma-separated list of tables and subqueries are known as SQL-89 style joins. In these queries, the
equality comparisons between columns of the joined tables go in theWHERE clause alongside other kinds of comparisons.
This syntax is easy to learn, but it is also easy to accidentally remove a WHERE clause needed for the join to work
correctly.

SELECT t1.c1, t2.c2 FROM t1, t2
 WHERE
t1.id = t2.id AND t1.type_flag = t2.type_flag

 AND t1.c1 > 100;

Self-joins:

Apache Impala Guide | 283

Impala SQL Language Reference

Impala can do self-joins, for example to join on two different columns in the same table to represent parent-child
relationships or other tree-structured data. There is no explicit syntax for this; just use the same table name for both
the left-hand and right-hand table, and assign different table aliases to use when referring to the fully qualified column
names:

-- Combine fields from both parent and child rows.
SELECT lhs.id, rhs.parent, lhs.c1, rhs.c2 FROM tree_data lhs, tree_data rhs WHERE lhs.id
 = rhs.parent;

Cartesian joins:

To avoid producing huge result sets by mistake, Impala does not allow Cartesian joins of the form:

SELECT ... FROM t1 JOIN t2;
SELECT ... FROM t1, t2;

If you intend to join the tables based on common values, add ON or WHERE clauses to compare columns across the
tables. If you truly intend to do a Cartesian join, use the CROSS JOIN keyword as the join operator. The CROSS JOIN
form does not use any ON clause, because it produces a result set with all combinations of rows from the left-hand and
right-hand tables. The result set can still be filtered by subsequent WHERE clauses. For example:

SELECT ... FROM t1 CROSS JOIN t2;
SELECT ... FROM t1 CROSS JOIN t2 WHERE tests_on_non_join_columns;

Inner and outer joins:

An inner join is the most common and familiar type: rows in the result set contain the requested columns from the
appropriate tables, for all combinations of rows where the join columns of the tables have identical values. If a column
with the same name occurs in both tables, use a fully qualified name or a column alias to refer to the column in the
select list or other clauses. Impala performs inner joins by default for both SQL-89 and SQL-92 join syntax:

-- The following 3 forms are all equivalent.
SELECT t1.id, c1, c2 FROM t1, t2 WHERE t1.id = t2.id;
SELECT t1.id, c1, c2 FROM t1 JOIN t2 ON t1.id = t2.id;
SELECT t1.id, c1, c2 FROM t1 INNER JOIN t2 ON t1.id = t2.id;

An outer join retrieves all rows from the left-hand table, or the right-hand table, or both; wherever there is nomatching
data in the table on the other side of the join, the corresponding columns in the result set are set to NULL. To perform
an outer join, include the OUTER keyword in the join operator, along with either LEFT, RIGHT, or FULL:

SELECT * FROM t1 LEFT OUTER JOIN t2 ON t1.id = t2.id;
SELECT * FROM t1 RIGHT OUTER JOIN t2 ON t1.id = t2.id;
SELECT * FROM t1 FULL OUTER JOIN t2 ON t1.id = t2.id;

For outer joins, Impala requires SQL-92 syntax; that is, the JOIN keyword instead of comma-separated table names.
Impala does not support vendor extensions such as (+) or *= notation for doing outer joins with SQL-89 query syntax.

Equijoins and Non-Equijoins:

By default, Impala requires an equality comparison between the left-hand and right-hand tables, either through ON,
USING, or WHERE clauses. These types of queries are classified broadly as equijoins. Inner, outer, full, and semi joins
can all be equijoins based on the presence of equality tests between columns in the left-hand and right-hand tables.

In Impala 1.2.2 and higher, non-equijoin queries are also possible, with comparisons such as != or < between the join
columns. These kinds of queries require care to avoid producing huge result sets that could exceed resource limits.
Once you have planned a non-equijoin query that produces a result set of acceptable size, you can code the query
using the CROSS JOIN operator, and add the extra comparisons in the WHERE clause:

SELECT * FROM t1 CROSS JOIN t2 WHERE t1.total > t2.maximum_price;

In CDH 5.5 / Impala 2.3 and higher, additional non-equijoin queries are possible due to the addition of nested loop
joins. These queries typically involve SEMI JOIN, ANTI JOIN, or FULL OUTER JOIN clauses. Impala sometimes also

284 | Apache Impala Guide

Impala SQL Language Reference

uses nested loop joins internally when evaluating OUTER JOIN queries involving complex type columns. Query phases
involving nested loop joins do not use the spill-to-disk mechanism if they exceed the memory limit. Impala decides
internally when to use each join mechanism; you cannot specify any query hint to choose between the nested loop
join or the original hash join algorithm.

SELECT * FROM t1 LEFT OUTER JOIN t2 ON t1.int_col < t2.int_col;

Semi-joins:

Semi-joins are a relatively rarely used variation. With the left semi-join, only data from the left-hand table is returned,
for rows where there is matching data in the right-hand table, based on comparisons between join columns in ON or
WHERE clauses. Only one instance of each row from the left-hand table is returned, regardless of how many matching
rows exist in the right-hand table. A right semi-join (available in Impala 2.0 and higher) reverses the comparison and
returns data from the right-hand table.

SELECT t1.c1, t1.c2, t1.c2 FROM t1 LEFT SEMI JOIN t2 ON t1.id = t2.id;

Natural joins (not supported):

Impala does not support the NATURAL JOIN operator, again to avoid inconsistent or huge result sets. Natural joins
do away with the ON and USING clauses, and instead automatically join on all columns with the same names in the
left-hand and right-hand tables. This kind of query is not recommended for rapidly evolving data structures such as
are typically used in Hadoop. Thus, Impala does not support the NATURAL JOIN syntax, which can produce different
query results as columns are added to or removed from tables.

If you do have any queries that use NATURAL JOIN, make sure to rewrite them with explicit USING clauses, because
Impala could interpret the NATURAL keyword as a table alias:

-- 'NATURAL' is interpreted as an alias for 't1' and Impala attempts an inner join,
-- resulting in an error because inner joins require explicit comparisons between columns.
SELECT t1.c1, t2.c2 FROM t1 NATURAL JOIN t2;
ERROR: NotImplementedException: Join with 't2' requires at least one conjunctive equality
 predicate.
 To perform a Cartesian product between two tables, use a CROSS JOIN.

-- If you expect the tables to have identically named columns with matching values,
-- list the corresponding column names in a USING clause.
SELECT t1.c1, t2.c2 FROM t1 JOIN t2 USING (id, type_flag, name, address);

Anti-joins (Impala 2.0 / CDH 5.2 and higher only):

Impala supports the LEFT ANTI JOIN and RIGHT ANTI JOIN clauses in Impala 2.0 and higher on CDH 4, or CDH
5.2 and higher on CDH 5. The LEFT or RIGHT keyword is required for this kind of join. For LEFT ANTI JOIN, this
clause returns those values from the left-hand table that have nomatching value in the right-hand table. RIGHT ANTI
JOIN reverses the comparison and returns values from the right-hand table. You can express this negative relationship
either through the ANTI JOIN clause or through a NOT EXISTS operator with a subquery.

Complex type considerations:

When referring to a columnwith a complex type (STRUCT, ARRAY, or MAP) in a query, you use join notation to “unpack”
the scalar fields of the struct, the elements of the array, or the key-value pairs of the map. (The join notation is not
required for aggregation operations, such as COUNT() or SUM() for array elements.) Because Impala recognizes which
complex type elements are associated with which row of the result set, you use the same syntax as for a cross or
cartesian join, without an explicit join condition. See Complex Types (CDH 5.5 or higher only) on page 157 for details
about Impala support for complex types.

Usage notes:

You typically use join queries in situations like these:

• When related data arrives from different sources, with each data set physically residing in a separate table. For
example, youmight have address data from business records that you cross-check against phone listings or census
data.

Apache Impala Guide | 285

Impala SQL Language Reference

Note: Impala can join tables of different file formats, including Impala-managed tables and HBase
tables. For example, youmight keep small dimension tables in HBase, for convenience of single-row
lookups and updates, and for the larger fact tables use Parquet or other binary file format
optimized for scan operations. Then, you can issue a join query to cross-reference the fact tables
with the dimension tables.

• When data is normalized, a technique for reducing data duplication by dividing it across multiple tables. This kind
of organization is often found in data that comes from traditional relational database systems. For example,
instead of repeating some long string such as a customer name in multiple tables, each table might contain a
numeric customer ID. Queries that need to display the customer name could “join” the table that specifies which
customer ID corresponds to which name.

• When certain columns are rarely needed for queries, so they are moved into separate tables to reduce overhead
for commonqueries. For example, a biography fieldmight be rarely needed in queries on employee data. Putting
that field in a separate table reduces the amount of I/O for common queries on employee addresses or phone
numbers. Queries that do need the biography column can retrieve it by performing a join with that separate
table.

• In CDH 5.5 / Impala 2.3 or higher, when referring to complex type columns in queries. See Complex Types (CDH
5.5 or higher only) on page 157 for details.

When comparing columns with the same names in ON or WHERE clauses, use the fully qualified names such as
db_name.table_name, or assign table aliases, column aliases, or both to make the code more compact and
understandable:

select t1.c1 as first_id, t2.c2 as second_id from
 t1 join t2 on first_id = second_id;

select fact.custno, dimension.custno from
 customer_data as fact join customer_address as dimension
 using (custno)

Note:

Performance for join queries is a crucial aspect for Impala, because complex join queries are
resource-intensive operations. An efficient join query produces much less network traffic and CPU
overhead than an inefficient one. For best results:

• Make sure that both table and column statistics are available for all the tables involved in a join
query, and especially for the columns referenced in any join conditions. Impala uses the statistics
to automatically deduce an efficient join order. Use SHOW TABLE STATS table_name and
SHOW COLUMN STATS table_name to check if statistics are already present. Issue the COMPUTE
STATS table_name for a nonpartitioned table, or (in Impala 2.1.0 and higher) COMPUTE
INCREMENTAL STATS table_name for a partitioned table, to collect the initial statistics at both
the table and column levels, and to keep the statistics up to date after any substantial INSERT
or LOAD DATA operations.

• If table or column statistics are not available, join the largest table first. You can check the existence
of statisticswith theSHOW TABLE STATS table_name andSHOW COLUMN STATS table_name
statements.

• If table or column statistics are not available, join subsequent tables according to which table
has the most selective filter, based on overall size and WHERE clauses. Joining the table with the
most selective filter results in the fewest number of rows being returned.

For more information and examples of performance for join queries, see Performance Considerations
for Join Queries on page 483.

286 | Apache Impala Guide

Impala SQL Language Reference

To control the result set from a join query, include the names of corresponding column names in both tables in an ON
or USING clause, or by coding equality comparisons for those columns in the WHERE clause.

[localhost:21000] > select c_last_name, ca_city from customer join customer_address
where c_customer_sk = ca_address_sk;
+-------------+-----------------+
| c_last_name | ca_city |
+-------------+-----------------+
Lewis	Fairfield
Moses	Fairview
Hamilton	Pleasant Valley
White	Oak Ridge
Moran	Glendale
...	
Richards	Lakewood
Day	Lebanon
Painter	Oak Hill
Bentley	Greenfield
Jones	Stringtown
+-------------+------------------+
Returned 50000 row(s) in 9.82s

One potential downside of joins is the possibility of excess resource usage in poorly constructed queries. Impala imposes
restrictions on join queries to guard against such issues. To minimize the chance of runaway queries on large data sets,
Impala requires every join query to contain at least one equality predicate between the columns of the various tables.
For example, if T1 contains 1000 rows and T2 contains 1,000,000 rows, a query SELECT columns FROM t1 JOIN
t2 could return up to 1 billion rows (1000 * 1,000,000); Impala requires that the query include a clause such as ON
t1.c1 = t2.c2 or WHERE t1.c1 = t2.c2.

Because even with equality clauses, the result set can still be large, as we saw in the previous example, you might use
a LIMIT clause to return a subset of the results:

[localhost:21000] > select c_last_name, ca_city from customer, customer_address where
c_customer_sk = ca_address_sk limit 10;
+-------------+-----------------+
| c_last_name | ca_city |
+-------------+-----------------+
Lewis	Fairfield
Moses	Fairview
Hamilton	Pleasant Valley
White	Oak Ridge
Moran	Glendale
Sharp	Lakeview
Wiles	Farmington
Shipman	Union
Gilbert	New Hope
Brunson	Martinsville
+-------------+-----------------+
Returned 10 row(s) in 0.63s

Or youmight use additional comparison operators or aggregation functions to condense a large result set into a smaller
set of values:

[localhost:21000] > -- Find the names of customers who live in one particular town.
[localhost:21000] > select distinct c_last_name from customer, customer_address where
 c_customer_sk = ca_address_sk
 and ca_city = "Green Acres";
+---------------+
| c_last_name |
+---------------+
| Hensley |
| Pearson |
| Mayer |
| Montgomery |
| Ricks |
...
| Barrett |
| Price |
| Hill |

Apache Impala Guide | 287

Impala SQL Language Reference

| Hansen |
| Meeks |
+---------------+
Returned 332 row(s) in 0.97s

[localhost:21000] > -- See how many different customers in this town have names starting
 with "A".
[localhost:21000] > select count(distinct c_last_name) from customer, customer_address
 where
 c_customer_sk = ca_address_sk
 and ca_city = "Green Acres"
 and substr(c_last_name,1,1) = "A";
+-----------------------------+
| count(distinct c_last_name) |
+-----------------------------+
| 12 |
+-----------------------------+
Returned 1 row(s) in 1.00s

Because a join query can involve reading large amounts of data from disk, sending large amounts of data across the
network, and loading large amounts of data into memory to do the comparisons and filtering, you might do
benchmarking, performance analysis, and query tuning to find themost efficient join queries for your data set, hardware
capacity, network configuration, and cluster workload.

The two categories of joins in Impala are known as partitioned joins and broadcast joins. If inaccurate table or column
statistics, or some quirk of the data distribution, causes Impala to choose the wrong mechanism for a particular join,
consider using query hints as a temporary workaround. For details, see Query Hints in Impala SELECT Statements on
page 302.

Examples:

The following examples refer to these simple tables containing small sets of integers:

[localhost:21000] > create table t1 (x int);
[localhost:21000] > insert into t1 values (1), (2), (3), (4), (5), (6);

[localhost:21000] > create table t2 (y int);
[localhost:21000] > insert into t2 values (2), (4), (6);

[localhost:21000] > create table t3 (z int);
[localhost:21000] > insert into t3 values (1), (3), (5);

The following example demonstrates an anti-join, returning the values from T1 that do not exist in T2 (in this case,
the odd numbers 1, 3, and 5):

[localhost:21000] > select x from t1 left anti join t2 on (t1.x = t2.y);
+---+
| x |
+---+
| 1 |
| 3 |
| 5 |
+---+

Related information:

See these tutorials for examples of different kinds of joins:

• Cross Joins and Cartesian Products with the CROSS JOIN Operator on page 61

ORDER BY Clause

The ORDER BY clause of a SELECT statement sorts the result set based on the values from one or more columns.

First, data is sorted locally by each impalad daemon, then streamed to the coordinator daemon, which merges the
sorted result sets. For distributed queries, this is a relatively expensive operation and can requiremorememory capacity
than a query without ORDER BY. Even if the query takes approximately the same time to finish with or without the
ORDER BY clause, subjectively it can appear slower because no results are available until all processing is finished,

288 | Apache Impala Guide

Impala SQL Language Reference

rather than results coming back gradually as rows matching the WHERE clause are found. Therefore, if you only need
the first N results from the sorted result set, also include the LIMIT clause, which reduces network overhead and the
memory requirement on the coordinator node.

Note:

In Impala 1.4.0 and higher, the LIMIT clause is now optional (rather than required) for queries that
use the ORDER BY clause. Impala automatically uses a temporary disk work area to perform the sort
if the sort operation would otherwise exceed the Impala memory limit for a particular DataNode.

Syntax:

The full syntax for the ORDER BY clause is:

ORDER BY col_ref [, col_ref ...] [ASC | DESC] [NULLS FIRST | NULLS LAST]

col_ref ::= column_name | integer_literal

Although the most common usage is ORDER BY column_name, you can also specify ORDER BY 1 to sort by the first
column of the result set, ORDER BY 2 to sort by the second column, and so on. The number must be a numeric literal,
not some other kind of constant expression. (If the argument is some other expression, even a STRING value, the query
succeeds but the order of results is undefined.)

ORDER BY column_number can only be used when the query explicitly lists the columns in the SELECT list, not with
SELECT * queries.

Ascending and descending sorts:

The default sort order (the same as using the ASC keyword) puts the smallest values at the start of the result set, and
the largest values at the end. Specifying the DESC keyword reverses that order.

Sort order for NULL values:

See NULL on page 188 for details about how NULL values are positioned in the sorted result set, and how to use the
NULLS FIRST and NULLS LAST clauses. (The sort position for NULL values in ORDER BY ... DESC queries is changed
in Impala 1.2.1 and higher to be more standards-compliant, and the NULLS FIRST and NULLS LAST keywords are
new in Impala 1.2.1.)

Prior to Impala 1.4.0, Impala required any query including an ORDER BY clause to also use a LIMIT clause. In Impala
1.4.0 and higher, the LIMIT clause is optional for ORDER BY queries. In cases where sorting a huge result set requires
enough memory to exceed the Impala memory limit for a particular node, Impala automatically uses a temporary disk
work area to perform the sort operation.

Complex type considerations:

In CDH 5.5 / Impala 2.3 and higher, the complex data types STRUCT, ARRAY, and MAP are available. These columns
cannot be referenced directly in the ORDER BY clause. When you query a complex type column, you use join notation
to “unpack” the elements of the complex type, andwithin the join query you can include an ORDER BY clause to control
the order in the result set of the scalar elements from the complex type. See Complex Types (CDH 5.5 or higher only)
on page 157 for details about Impala support for complex types.

The following query shows how a complex type column cannot be directly used in an ORDER BY clause:

CREATE TABLE games (id BIGINT, score ARRAY <BIGINT>) STORED AS PARQUET;
...use LOAD DATA to load externally created Parquet files into the table...
SELECT id FROM games ORDER BY score DESC;
ERROR: AnalysisException: ORDER BY expression 'score' with complex type 'ARRAY<BIGINT>'
 is not supported.

Examples:

The following query retrieves the user ID and score, only for scores greater than one million, with the highest scores
for each user listed first. Because the individual array elements are now represented as separate rows in the result

Apache Impala Guide | 289

Impala SQL Language Reference

set, they can be used in the ORDER BY clause, referenced using the ITEM pseudocolumn that represents each array
element.

SELECT id, item FROM games, games.score
 WHERE item > 1000000
ORDER BY id, item desc;

The following queries use similar ORDER BY techniques with variations of the GAMES table, where the complex type
is an ARRAY containing STRUCT or MAP elements to represent additional details about each game that was played. For
an array of structures, the fields of the structure are referenced as ITEM.field_name. For an array of maps, the keys
and values within each array element are referenced as ITEM.KEY and ITEM.VALUE.

CREATE TABLE games2 (id BIGINT, play array < struct <game_name: string, score: BIGINT,
 high_score: boolean> >) STORED AS PARQUET
...use LOAD DATA to load externally created Parquet files into the table...
SELECT id, item.game_name, item.score FROM games2, games2.play
 WHERE item.score > 1000000
ORDER BY id, item.score DESC;

CREATE TABLE games3 (id BIGINT, play ARRAY < MAP <STRING, BIGINT> >) STORED AS PARQUET;
...use LOAD DATA to load externally created Parquet files into the table...
SELECT id, info.key AS k, info.value AS v from games3, games3.play AS plays,
games3.play.item AS info
 WHERE info.KEY = 'score' AND info.VALUE > 1000000
ORDER BY id, info.value desc;

Usage notes:

Although the LIMIT clause is now optional on ORDER BY queries, if your query only needs some number of rows that
you can predict in advance, use the LIMIT clause to reduce unnecessary processing. For example, if the query has a
clause LIMIT 10, each data node sorts its portion of the relevant result set and only returns 10 rows to the coordinator
node. The coordinator node picks the 10 highest or lowest row values out of this small intermediate result set.

If an ORDER BY clause is applied to an early phase of query processing, such as a subquery or a view definition, Impala
ignores the ORDER BY clause. To get ordered results from a subquery or view, apply an ORDER BY clause to the
outermost or final SELECT level.

ORDER BY is often used in combination with LIMIT to perform “top-N” queries:

SELECT user_id AS "Top 10 Visitors", SUM(page_views) FROM web_stats
 GROUP BY page_views, user_id
 ORDER BY SUM(page_views) DESC LIMIT 10;

ORDER BY is sometimes used in combinationwithOFFSET and LIMIT to paginate query results, although it is relatively
inefficient to issue multiple queries like this against the large tables typically used with Impala:

SELECT page_title AS "Page 1 of search results", page_url FROM search_content
 WHERE LOWER(page_title) LIKE '%game%')
 ORDER BY page_title LIMIT 10 OFFSET 0;
SELECT page_title AS "Page 2 of search results", page_url FROM search_content
 WHERE LOWER(page_title) LIKE '%game%')
 ORDER BY page_title LIMIT 10 OFFSET 10;
SELECT page_title AS "Page 3 of search results", page_url FROM search_content
 WHERE LOWER(page_title) LIKE '%game%')
 ORDER BY page_title LIMIT 10 OFFSET 20;

Internal details:

Impala sorts the intermediate results of an ORDER BY clause inmemorywhenever practical. In a cluster of NDataNodes,
each node sorts roughly 1/Nth of the result set, the exact proportion varying depending on how the data matching
the query is distributed in HDFS.

If the size of the sorted intermediate result set on any DataNode would cause the query to exceed the Impala memory
limit, Impala sorts as much as practical in memory, then writes partially sorted data to disk. (This technique is known
in industry terminology as “external sorting” and “spilling to disk”.) As each 8MBbatch of data is written to disk, Impala

290 | Apache Impala Guide

Impala SQL Language Reference

frees the correspondingmemory to sort a new 8MB batch of data.When all the data has been processed, a final merge
sort operation is performed to correctly order the in-memory and on-disk results as the result set is transmitted back
to the coordinator node. When external sorting becomes necessary, Impala requires approximately 60 MB of RAM at
a minimum for the buffers needed to read, write, and sort the intermediate results. If more RAM is available on the
DataNode, Impala will use the additional RAM to minimize the amount of disk I/O for sorting.

This external sort technique is used as appropriate on each DataNode (possibly including the coordinator node) to sort
the portion of the result set that is processed on that node. When the sorted intermediate results are sent back to the
coordinator node to produce the final result set, the coordinator node uses a merge sort technique to produce a final
sorted result set without using any extra resources on the coordinator node.

Configuration for disk usage:

By default, intermediate files used during large sort, join, aggregation, or analytic function operations are stored in
the directory /tmp/impala-scratch . These files are removed when the operation finishes. (Multiple concurrent
queries can perform operations that use the “spill to disk” technique, without any name conflicts for these temporary
files.) You can specify a different location by starting the impalad daemon with the
--scratch_dirs="path_to_directory" configurationoptionor the equivalent configurationoption in theCloudera
Manager user interface. You can specify a single directory, or a comma-separated list of directories. The scratch
directories must be on the local filesystem, not in HDFS. You might specify different directory paths for different hosts,
depending on the capacity and speed of the available storage devices. In CDH 5.5 / Impala 2.3 or higher, Impala
successfully starts (with a warning written to the log) if it cannot create or read and write files in one of the scratch
directories. If there is less than 1 GB free on the filesystem where that directory resides, Impala still runs, but writes a
warning message to its log. If Impala encounters an error reading or writing files in a scratch directory during a query,
Impala logs the error and the query fails.

Sorting considerations: Although you can specify an ORDER BY clause in an INSERT ... SELECT statement, any
ORDER BY clause is ignored and the results are not necessarily sorted. An INSERT ... SELECT operation potentially
creates many different data files, prepared on different data nodes, and therefore the notion of the data being stored
in sorted order is impractical.

An ORDER BY clause without an additional LIMIT clause is ignored in any view definition. If you need to sort the entire
result set from a view, use an ORDER BY clause in the SELECT statement that queries the view. You can still make a
simple “top 10” report by combining the ORDER BY and LIMIT clauses in the same view definition:

[localhost:21000] > create table unsorted (x bigint);
[localhost:21000] > insert into unsorted values (1), (9), (3), (7), (5), (8), (4), (6),
 (2);
[localhost:21000] > create view sorted_view as select x from unsorted order by x;
[localhost:21000] > select x from sorted_view; -- ORDER BY clause in view has no effect.
+---+
| x |
+---+
| 1 |
| 9 |
| 3 |
| 7 |
| 5 |
| 8 |
| 4 |
| 6 |
| 2 |
+---+
[localhost:21000] > select x from sorted_view order by x; -- View query requires ORDER
 BY at outermost level.
+---+
| x |
+---+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
| 8 |

Apache Impala Guide | 291

Impala SQL Language Reference

| 9 |
+---+
[localhost:21000] > create view top_3_view as select x from unsorted order by x limit
3;
[localhost:21000] > select x from top_3_view; -- ORDER BY and LIMIT together in view
definition are preserved.
+---+
| x |
+---+
| 1 |
| 2 |
| 3 |
+---+

With the lifting of the requirement to include a LIMIT clause in every ORDER BY query (in Impala 1.4 and higher):

• Now the use of scratch disk space raises the possibility of an “out of disk space” error on a particular DataNode,
as opposed to the previous possibility of an “out of memory” error. Make sure to keep at least 1 GB free on the
filesystem used for temporary sorting work.

• The query options DEFAULT_ORDER_BY_LIMIT and ABORT_ON_DEFAULT_LIMIT_EXCEEDED, which formerly
controlled the behavior of ORDER BY queries with no limit specified, are now ignored.

In Impala 1.2.1 and higher, all NULL values come at the end of the result set for ORDER BY ... ASC queries, and at
the beginning of the result set for ORDER BY ... DESC queries. In effect, NULL is considered greater than all other
values for sorting purposes. The original Impala behavior always put NULL values at the end, even for ORDER BY ...
DESC queries. The new behavior in Impala 1.2.1 makes Impala more compatible with other popular database systems.
In Impala 1.2.1 and higher, you can override or specify the sorting behavior for NULL by adding the clause NULLS
FIRST or NULLS LAST at the end of the ORDER BY clause.

[localhost:21000] > create table numbers (x int);
[localhost:21000] > insert into numbers values (1), (null), (2), (null), (3);
[localhost:21000] > select x from numbers order by x nulls first;
+------+
| x |
+------+
| NULL |
| NULL |
| 1 |
| 2 |
| 3 |
+------+
[localhost:21000] > select x from numbers order by x desc nulls first;
+------+
| x |
+------+
| NULL |
| NULL |
| 3 |
| 2 |
| 1 |
+------+
[localhost:21000] > select x from numbers order by x nulls last;
+------+
| x |
+------+
| 1 |
| 2 |
| 3 |
| NULL |
| NULL |
+------+
[localhost:21000] > select x from numbers order by x desc nulls last;
+------+
| x |
+------+
| 3 |
| 2 |
| 1 |

292 | Apache Impala Guide

Impala SQL Language Reference

| NULL |
| NULL |
+------+

Related information:

See SELECT Statement on page 281 for further examples of queries with the ORDER BY clause.

Analytic functions use the ORDER BY clause in a different context to define the sequence in which rows are analyzed.
See Impala Analytic Functions on page 430 for details.

GROUP BY Clause

Specify the GROUP BY clause in queries that use aggregation functions, such as COUNT(), SUM(), AVG(), MIN(), and
MAX(). Specify in theGROUP BY clause the names of all the columns that do not participate in the aggregation operation.

Complex type considerations:

In CDH 5.5 / Impala 2.3 and higher, the complex data types STRUCT, ARRAY, and MAP are available. These columns
cannot be referenced directly in the ORDER BY clause. When you query a complex type column, you use join notation
to “unpack” the elements of the complex type, andwithin the join query you can include an ORDER BY clause to control
the order in the result set of the scalar elements from the complex type. See Complex Types (CDH 5.5 or higher only)
on page 157 for details about Impala support for complex types.

Zero-length strings: For purposes of clauses such as DISTINCT and GROUP BY, Impala considers zero-length strings
(""), NULL, and space to all be different values.

Examples:

For example, the following query finds the 5 items that sold the highest total quantity (using the SUM() function, and
also counts the number of sales transactions for those items (using the COUNT() function). Because the column
representing the item IDs is not used in any aggregation functions, we specify that column in the GROUP BY clause.

select
ss_item_sk as Item,
count(ss_item_sk) as Times_Purchased,
sum(ss_quantity) as Total_Quantity_Purchased

from store_sales
group by ss_item_sk

 order by sum(ss_quantity) desc
 limit 5;
+-------+-----------------+--------------------------+
| item | times_purchased | total_quantity_purchased |
+-------+-----------------+--------------------------+
9325	372	19072
4279	357	18501
7507	371	18475
5953	369	18451
16753	375	18446
+-------+-----------------+--------------------------+

The HAVING clause lets you filter the results of aggregate functions, because you cannot refer to those expressions in
the WHERE clause. For example, to find the 5 lowest-selling items that were included in at least 100 sales transactions,
we could use this query:

select
ss_item_sk as Item,
count(ss_item_sk) as Times_Purchased,
sum(ss_quantity) as Total_Quantity_Purchased

from store_sales
group by ss_item_sk
having times_purchased >= 100

 order by sum(ss_quantity)
 limit 5;
+-------+-----------------+--------------------------+
| item | times_purchased | total_quantity_purchased |
+-------+-----------------+--------------------------+

Apache Impala Guide | 293

Impala SQL Language Reference

13943	105	4087
2992	101	4176
4773	107	4204
14350	103	4260
11956	102	4275
+-------+-----------------+--------------------------+

When performing calculations involving scientific or financial data, remember that columnswith type FLOAT or DOUBLE
are stored as true floating-point numbers, which cannot precisely represent every possible fractional value. Thus, if
you include a FLOAT or DOUBLE column in a GROUP BY clause, the results might not precisely match literal values in
your query or from an original Text data file. Use rounding operations, the BETWEEN operator, or another arithmetic
technique to match floating-point values that are “near” literal values you expect. For example, this query on the
ss_wholesale_cost column returns cost values that are close but not identical to the original figures that were
entered as decimal fractions.

select ss_wholesale_cost, avg(ss_quantity * ss_sales_price) as avg_revenue_per_sale
 from sales
 group by ss_wholesale_cost
 order by avg_revenue_per_sale desc
 limit 5;
+-------------------+----------------------+
| ss_wholesale_cost | avg_revenue_per_sale |
+-------------------+----------------------+
96.94000244140625	4454.351539300434
95.93000030517578	4423.119941283189
98.37999725341797	4332.516490316291
97.97000122070312	4330.480601655014
98.52999877929688	4291.316953108634
+-------------------+----------------------+

Notice how wholesale cost values originally entered as decimal fractions such as 96.94 and 98.38 are slightly larger
or smaller in the result set, due to precision limitations in the hardware floating-point types. The imprecise representation
of FLOAT and DOUBLE values is why financial data processing systems often store currency using data types that are
less space-efficient but avoid these types of rounding errors.

Related information:

SELECT Statement on page 281, Impala Aggregate Functions on page 404

HAVING Clause

Performs a filter operation on a SELECT query, by examining the results of aggregation functions rather than testing
each individual table row. Therefore, it is always used in conjunction with a function such as COUNT(), SUM(), AVG(),
MIN(), or MAX(), and typically with the GROUP BY clause also.

Restrictions:

The filter expression in the HAVING clause cannot include a scalar subquery.

Related information:

SELECT Statement on page 281, GROUP BY Clause on page 293, Impala Aggregate Functions on page 404

LIMIT Clause

The LIMIT clause in a SELECT query sets a maximum number of rows for the result set. Pre-selecting the maximum
size of the result set helps Impala to optimize memory usage while processing a distributed query.

Syntax:

LIMIT constant_integer_expression

The argument to the LIMIT clause must evaluate to a constant value. It can be a numeric literal, or another kind of
numeric expression involving operators, casts, and function return values. You cannot refer to a column or use a
subquery.

294 | Apache Impala Guide

Impala SQL Language Reference

Usage notes:

This clause is useful in contexts such as:

• To return exactly N items from a top-N query, such as the 10 highest-rated items in a shopping category or the
50 hostnames that refer the most traffic to a web site.

• To demonstrate some sample values from a table or a particular query. (To display some arbitrary items, use a
query with no ORDER BY clause. An ORDER BY clause causes additional memory and/or disk usage during the
query.)

• To keep queries from returning huge result sets by accident if a table is larger than expected, or a WHERE clause
matches more rows than expected.

Originally, the value for the LIMIT clause had to be a numeric literal. In Impala 1.2.1 and higher, it can be a numeric
expression.

Prior to Impala 1.4.0, Impala required any query including an ORDER BY clause to also use a LIMIT clause. In Impala
1.4.0 and higher, the LIMIT clause is optional for ORDER BY queries. In cases where sorting a huge result set requires
enough memory to exceed the Impala memory limit for a particular node, Impala automatically uses a temporary disk
work area to perform the sort operation.

See ORDER BY Clause on page 288 for details.

In Impala 1.2.1 and higher, you can combine a LIMIT clause with an OFFSET clause to produce a small result set that
is different from a top-N query, for example, to return items 11 through 20. This technique can be used to simulate
“paged” results. Because Impala queries typically involve substantial amounts of I/O, use this technique only for
compatibility in cases where you cannot rewrite the application logic. For best performance and scalability, wherever
practical, query as many items as you expect to need, cache them on the application side, and display small groups of
results to users using application logic.

Restrictions:

Correlated subqueries used in EXISTS and IN operators cannot include a LIMIT clause.

Examples:

The following example shows how the LIMIT clause caps the size of the result set, with the limit being applied after
any other clauses such as WHERE.

[localhost:21000] > create database limits;
[localhost:21000] > use limits;
[localhost:21000] > create table numbers (x int);
[localhost:21000] > insert into numbers values (1), (3), (4), (5), (2);
Inserted 5 rows in 1.34s
[localhost:21000] > select x from numbers limit 100;
+---+
| x |
+---+
| 1 |
| 3 |
| 4 |
| 5 |
| 2 |
+---+
Returned 5 row(s) in 0.26s
[localhost:21000] > select x from numbers limit 3;
+---+
| x |
+---+
| 1 |
| 3 |
| 4 |
+---+
Returned 3 row(s) in 0.27s
[localhost:21000] > select x from numbers where x > 2 limit 2;
+---+
| x |
+---+
| 3 |

Apache Impala Guide | 295

Impala SQL Language Reference

| 4 |
+---+
Returned 2 row(s) in 0.27s

For top-N and bottom-N queries, you use the ORDER BY and LIMIT clauses together:

[localhost:21000] > select x as "Top 3" from numbers order by x desc limit 3;
+-------+
| top 3 |
+-------+
| 5 |
| 4 |
| 3 |
+-------+
[localhost:21000] > select x as "Bottom 3" from numbers order by x limit 3;
+----------+
| bottom 3 |
+----------+
| 1 |
| 2 |
| 3 |
+----------+

You can use constant values besides integer literals as the LIMIT argument:

-- Other expressions that yield constant integer values work too.
SELECT x FROM t1 LIMIT 1e6; -- Limit is one million.
SELECT x FROM t1 LIMIT length('hello world'); -- Limit is 11.
SELECT x FROM t1 LIMIT 2+2; -- Limit is 4.
SELECT x FROM t1 LIMIT cast(truncate(9.9) AS INT); -- Limit is 9.

OFFSET Clause

The OFFSET clause in a SELECT query causes the result set to start some number of rows after the logical first item.
The result set is numbered starting from zero, so OFFSET 0 produces the same result as leaving out the OFFSET clause.
Always use this clause in combination with ORDER BY (so that it is clear which item should be first, second, and so on)
and LIMIT (so that the result set covers a bounded range, such as items 0-9, 100-199, and so on).

In Impala 1.2.1 and higher, you can combine a LIMIT clause with an OFFSET clause to produce a small result set that
is different from a top-N query, for example, to return items 11 through 20. This technique can be used to simulate
“paged” results. Because Impala queries typically involve substantial amounts of I/O, use this technique only for
compatibility in cases where you cannot rewrite the application logic. For best performance and scalability, wherever
practical, query as many items as you expect to need, cache them on the application side, and display small groups of
results to users using application logic.

Examples:

The following example shows howyou could run a “paging” query originallywritten for a traditional database application.
Because typical Impala queries process megabytes or gigabytes of data and read large data files from disk each time,
it is inefficient to run a separate query to retrieve each small group of items. Use this technique only for compatibility
while porting older applications, then rewrite the application code to use a single query with a large result set, and
display pages of results from the cached result set.

[localhost:21000] > create table numbers (x int);
[localhost:21000] > insert into numbers select x from very_long_sequence;
Inserted 1000000 rows in 1.34s
[localhost:21000] > select x from numbers order by x limit 5 offset 0;
+----+
| x |
+----+
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
+----+

296 | Apache Impala Guide

Impala SQL Language Reference

[localhost:21000] > select x from numbers order by x limit 5 offset 5;
+----+
| x |
+----+
| 6 |
| 7 |
| 8 |
| 9 |
| 10 |
+----+

UNION Clause

The UNION clause lets you combine the result sets of multiple queries. By default, the result sets are combined as if
the DISTINCT operator was applied.

Syntax:

query_1 UNION [DISTINCT | ALL] query_2

Usage notes:

TheUNION keyword by itself is the sameasUNION DISTINCT. Because eliminating duplicates can be amemory-intensive
process for a large result set, prefer UNION ALL where practical. (That is, when you know the different queries in the
union will not produce any duplicates, or where the duplicate values are acceptable.)

When an ORDER BY clause applies to a UNION ALL or UNION query, in Impala 1.4 and higher, the LIMIT clause is no
longer required. To make the ORDER BY and LIMIT clauses apply to the entire result set, turn the UNION query into
a subquery, SELECT from the subquery, and put the ORDER BY clause at the end, outside the subquery.

Examples:

First, set up some sample data, including duplicate 1 values:

[localhost:21000] > create table few_ints (x int);
[localhost:21000] > insert into few_ints values (1), (1), (2), (3);
[localhost:21000] > set default_order_by_limit=1000;

This example shows how UNION ALL returns all rows from both queries, without any additional filtering to eliminate
duplicates. For the large result sets common with Impala queries, this is the most memory-efficient technique.

[localhost:21000] > select x from few_ints order by x;
+---+
| x |
+---+
| 1 |
| 1 |
| 2 |
| 3 |
+---+
Returned 4 row(s) in 0.41s
[localhost:21000] > select x from few_ints union all select x from few_ints;
+---+
| x |
+---+
| 1 |
| 1 |
| 2 |
| 3 |
| 1 |
| 1 |
| 2 |
| 3 |
+---+
Returned 8 row(s) in 0.42s
[localhost:21000] > select * from (select x from few_ints union all select x from
few_ints) as t1 order by x;
+---+

Apache Impala Guide | 297

Impala SQL Language Reference

| x |
+---+
| 1 |
| 1 |
| 1 |
| 1 |
| 2 |
| 2 |
| 3 |
| 3 |
+---+
Returned 8 row(s) in 0.53s
[localhost:21000] > select x from few_ints union all select 10;
+----+
| x |
+----+
| 10 |
| 1 |
| 1 |
| 2 |
| 3 |
+----+
Returned 5 row(s) in 0.38s

This example shows how the UNION clause without the ALL keyword condenses the result set to eliminate all duplicate
values, making the query take more time and potentially more memory. The extra processing typically makes this
technique not recommended for queries that return result sets with millions or billions of values.

[localhost:21000] > select x from few_ints union select x+1 from few_ints;
+---+
| x |
+---+
| 3 |
| 4 |
| 1 |
| 2 |
+---+
Returned 4 row(s) in 0.51s
[localhost:21000] > select x from few_ints union select 10;
+----+
| x |
+----+
| 2 |
| 10 |
| 1 |
| 3 |
+----+
Returned 4 row(s) in 0.49s
[localhost:21000] > select * from (select x from few_ints union select x from few_ints)
 as t1 order by x;
+---+
| x |
+---+
| 1 |
| 2 |
| 3 |
+---+
Returned 3 row(s) in 0.53s

Subqueries in Impala SELECT Statements

A subquery is a query that is nestedwithin another query. Subqueries let queries on one table dynamically adapt based
on the contents of another table. This technique provides great flexibility and expressive power for SQL queries.

A subquery can return a result set for use in the FROM or WITH clauses, or with operators such as IN or EXISTS.

A scalar subquery produces a result setwith a single row containing a single column, typically produced by an aggregation
function such as MAX() or SUM(). This single result value can be substituted in scalar contexts such as arguments to
comparison operators. If the result set is empty, the value of the scalar subquery is NULL. For example, the following

298 | Apache Impala Guide

Impala SQL Language Reference

query finds the maximum value of T2.Y and then substitutes that value into the WHERE clause of the outer block that
queries T1:

SELECT x FROM t1 WHERE x > (SELECT MAX(y) FROM t2);

Uncorrelated subqueries do not refer to any tables from the outer block of the query. The same value or set of values
produced by the subquery is used when evaluating each row from the outer query block. In this example, the subquery
returns an arbitrary number of values from T2.Y, and each value of T1.X is tested for membership in that same set
of values:

SELECT x FROM t1 WHERE x IN (SELECT y FROM t2);

Correlated subqueries compare one or more values from the outer query block to values referenced in the WHERE
clause of the subquery. Each row evaluated by the outer WHERE clause can be evaluated using a different set of values.
These kinds of subqueries are restricted in the kinds of comparisons they can do between columns of the inner and
outer tables. (See the following Restrictions item.)

For example, the following query finds all the employeeswith salaries that are higher than average for their department.
The subquery potentially computes a different AVG() value for each employee.

SELECT employee_name, employee_id FROM employees one WHERE
 salary > (SELECT avg(salary) FROM employees two WHERE one.dept_id = two.dept_id);

Syntax:

Subquery in the FROM clause:

SELECT select_list FROM table_ref [, table_ref ...]

table_ref ::= table_name | (select_statement)

Subqueries in WHERE clause:

WHERE value comparison_operator (scalar_select_statement)
WHERE value [NOT] IN (select_statement)
WHERE [NOT] EXISTS (correlated_select_statement)
WHERE NOT EXISTS (correlated_select_statement)

comparison_operator is a numeric comparison such as =, <=, !=, and so on, or a string comparison operator such
as LIKE or REGEXP.

Although you can use non-equality comparison operators such as < or >=, the subquery must include at least one
equality comparison between the columns of the inner and outer query blocks.

All syntax is available for both correlated and uncorrelated queries, except that the NOT EXISTS clause cannot be
used with an uncorrelated subquery.

Impala subqueries can be nested arbitrarily deep.

Standards compliance: Introduced in SQL:1999.

Examples:

This example illustrates how subqueries can be used in the FROM clause to organize the table names, column names,
and column values by producing intermediate result sets, especially for join queries.

SELECT avg(t1.x), max(t2.y) FROM
 (SELECT id, cast(a AS DECIMAL(10,5)) AS x FROM raw_data WHERE a BETWEEN 0 AND 100) AS
 t1
 JOIN
 (SELECT id, length(s) AS y FROM raw_data WHERE s LIKE 'A%') AS t2;
 USING (id);

Apache Impala Guide | 299

Impala SQL Language Reference

http://en.wikipedia.org/wiki/SQL:1999

These examples show how a query can test for the existence of values in a separate table using the EXISTS() operator
with a subquery.

The following examples show how a value can be compared against a set of values returned by a subquery.

SELECT count(x) FROM t1 WHERE EXISTS(SELECT 1 FROM t2 WHERE t1.x = t2.y * 10);

SELECT x FROM t1 WHERE x IN (SELECT y FROM t2 WHERE state = 'CA');

The following examples demonstrate scalar subqueries. When a subquery is known to return a single value, you can
substitute it where you would normally put a constant value.

SELECT x FROM t1 WHERE y = (SELECT max(z) FROM t2);
SELECT x FROM t1 WHERE y > (SELECT count(z) FROM t2);

Usage notes:

If the same table is referenced in both the outer and inner query blocks, construct a table alias in the outer query block
and use a fully qualified name to distinguish the inner and outer table references:

SELECT * FROM t1 one WHERE id IN (SELECT parent FROM t1 two WHERE t1.parent = t2.id);

The STRAIGHT_JOIN hint affects the join order of table references in the query block containing the hint. It does not
affect the join order of nested queries, such as views, inline views, or WHERE-clause subqueries. To use this hint for
performance tuning of complex queries, apply the hint to all query blocks that need a fixed join order.

Internal details:

Internally, subqueries involving IN, NOT IN, EXISTS, or NOT EXISTS clauses are rewritten into join queries. Depending
on the syntax, the subquery might be rewritten to an outer join, semi join, cross join, or anti join.

A query is processed differently depending onwhether the subquery calls any aggregation functions. There are correlated
and uncorrelated forms, with and without calls to aggregation functions. Each of these four categories is rewritten
differently.

Column statistics considerations:

Because queries that include correlated and uncorrelated subqueries in the WHERE clause are written into join queries,
to achieve best performance, follow the same guidelines for running the COMPUTE STATS statement as you do for
tables involved in regular join queries. Run the COMPUTE STATS statement for each associated tables after loading or
substantially changing the data in that table. See Table and Column Statistics on page 490 for details.

Added in: Subqueries are substantially enhanced starting in Impala 2.0 for CDH 4, and CDH 5.2.0. Now, they can be
used in the WHERE clause, in combination with clauses such as EXISTS and IN, rather than just in the FROM clause.

Restrictions:

The initial Impala support for nested subqueries addresses the most common use cases. Some restrictions remain:

• Although you can use subqueries in a query involving UNION or UNION ALL in Impala 2.1.0 and higher, currently
you cannot construct a union of two subqueries (for example, in the argument of an IN or EXISTS operator).

• Subqueries returning scalar values cannot be usedwith the operators ANY or ALL. (Impala does not currently have
a SOME operator, but if it did, the same restriction would apply.)

• For the EXISTS and NOT EXISTS clauses, any subquery comparing values from the outer query block to another
table must use at least one equality comparison, not exclusively other kinds of comparisons such as less than,
greater than, BETWEEN, or !=.

• Currently, a scalar subquery cannot be used as the first or second argument to the BETWEEN operator.

• A subquery cannot be used inside an OR conjunction. Expressions inside a subquery, for example in the WHERE
clause, can use OR conjunctions; the restriction only applies to parts of the query “above” the subquery.

300 | Apache Impala Guide

Impala SQL Language Reference

• Scalar subqueries are only supported in numeric contexts. You cannot use a scalar subquery as an argument to
the LIKE, REGEXP, or RLIKE operators, or compare it to a value of a non-numeric type such as TIMESTAMP or
BOOLEAN.

• You cannot use subqueries with the CASE function to generate the comparison value, the values to be compared
against, or the return value.

• A subquery is not allowed in the filter condition for the HAVING clause. (Strictly speaking, a subquery cannot
appear anywhere outside the WITH, FROM, and WHERE clauses.)

• You must use a fully qualified name (table_name.column_name or
database_name.table_name.column_name) when referring to any column from the outer query block within
a subquery.

Complex type considerations:

For the complex types (ARRAY, STRUCT, and MAP) available in CDH 5.5 / Impala 2.3 and higher, the join queries that
“unpack” complex type columns often use correlated subqueries in the FROM clause. For example, if the first table in
the join clause is CUSTOMER, the second join clause might have a subquery that selects from the column
CUSTOMER.C_ORDERS, which is an ARRAY. The subquery re-evaluates the ARRAY elements corresponding to each row
from the CUSTOMER table. See Complex Types (CDH 5.5 or higher only) on page 157 for details and examples of using
subqueries with complex types.

Related information:

EXISTS Operator on page 194, IN Operator on page 197

WITH Clause

A clause that can be added before a SELECT statement, to define aliases for complicated expressions that are referenced
multiple times within the body of the SELECT. Similar to CREATE VIEW, except that the table and column names
defined in the WITH clause do not persist after the query finishes, and do not conflict with names used in actual tables
or views. Also known as “subquery factoring”.

You can rewrite a query using subqueries to work the same as with the WITH clause. The purposes of the WITH clause
are:

• Convenience and ease of maintenance from less repetition with the body of the query. Typically used with queries
involving UNION, joins, or aggregation functionswhere the similar complicated expressions are referencedmultiple
times.

• SQL code that is easier to read and understand by abstracting the most complex part of the query into a separate
block.

• Improved compatibility with SQL from other database systems that support the same clause (primarily Oracle
Database).

Note:

The Impala WITH clause does not support recursive queries in the WITH, which is supported in
some other database systems.

Standards compliance: Introduced in SQL:1999.

Examples:

-- Define 2 subqueries that can be referenced from the body of a longer query.
with t1 as (select 1), t2 as (select 2) insert into tab select * from t1 union all select
 * from t2;

-- Define one subquery at the outer level, and another at the inner level as part of
the
-- initial stage of the UNION ALL query.

Apache Impala Guide | 301

Impala SQL Language Reference

http://en.wikipedia.org/wiki/SQL:1999

with t1 as (select 1) (with t2 as (select 2) select * from t2) union all select * from
 t1;

DISTINCT Operator

The DISTINCT operator in a SELECT statement filters the result set to remove duplicates:

-- Returns the unique values from one column.
-- NULL is included in the set of values if any rows have a NULL in this column.
select distinct c_birth_country from customer;
-- Returns the unique combinations of values from multiple columns.
select distinct c_salutation, c_last_name from customer;

You can use DISTINCT in combination with an aggregation function, typically COUNT(), to find how many different
values a column contains:

-- Counts the unique values from one column.
-- NULL is not included as a distinct value in the count.
select count(distinct c_birth_country) from customer;
-- Counts the unique combinations of values from multiple columns.
select count(distinct c_salutation, c_last_name) from customer;

One construct that Impala SQL does not support is using DISTINCT in more than one aggregation function in the same
query. For example, you could not have a single query with both COUNT(DISTINCT c_first_name) and
COUNT(DISTINCT c_last_name) in the SELECT list.

Zero-length strings: For purposes of clauses such as DISTINCT and GROUP BY, Impala considers zero-length strings
(""), NULL, and space to all be different values.

Note:

By default, Impala only allows a single COUNT(DISTINCT columns) expression in each query.

If you do not need precise accuracy, you can produce an estimate of the distinct values for a column
by specifyingNDV(column); a query can containmultiple instances ofNDV(column). Tomake Impala
automatically rewrite COUNT(DISTINCT) expressions to NDV(), enable the APPX_COUNT_DISTINCT
query option.

To produce the same result as multiple COUNT(DISTINCT) expressions, you can use the following
technique for queries involving a single table:

select v1.c1 result1, v2.c1 result2 from
 (select count(distinct col1) as c1 from t1) v1
 cross join
 (select count(distinct col2) as c1 from t1) v2;

BecauseCROSS JOIN is an expensive operation, prefer to use theNDV() techniquewherever practical.

Note:

In contrast with some database systems that always return DISTINCT values in sorted order, Impala
does not do any ordering of DISTINCT values. Always include an ORDER BY clause if you need the
values in alphabetical or numeric sorted order.

Query Hints in Impala SELECT Statements

The Impala SQL dialect supports query hints, for fine-tuning the inner workings of queries. Specify hints as a temporary
workaround for expensive queries, where missing statistics or other factors cause inefficient performance.

Hints are most often used for the most resource-intensive kinds of Impala queries:

302 | Apache Impala Guide

Impala SQL Language Reference

• Join queries involving large tables, where intermediate result sets are transmitted across the network to evaluate
the join conditions.

• Inserting into partitioned Parquet tables, where many memory buffers could be allocated on each host to hold
intermediate results for each partition.

Syntax:

You can represent the hints as keywords surrounded by [] square brackets; include the brackets in the text of the SQL
statement.

SELECT STRAIGHT_JOIN select_list FROM
join_left_hand_table
 JOIN [{BROADCAST|SHUFFLE}]
join_right_hand_table
remainder_of_query;

INSERT insert_clauses
 [{SHUFFLE|NOSHUFFLE}]
 SELECT remainder_of_query;

In Impala 2.0 and higher, or CDH 5.2 and higher, you can also specify the hints inside comments that use either the /*
*/ or -- notation. Specify a + symbol immediately before the hint name.

SELECT STRAIGHT_JOIN select_list FROM
join_left_hand_table
 JOIN /* +BROADCAST|SHUFFLE */
join_right_hand_table
remainder_of_query;

SELECT select_list FROM
join_left_hand_table
 JOIN -- +BROADCAST|SHUFFLE
join_right_hand_table
remainder_of_query;

INSERT insert_clauses
 /* +SHUFFLE|NOSHUFFLE */
 SELECT remainder_of_query;

INSERT insert_clauses
 -- +SHUFFLE|NOSHUFFLE
 SELECT remainder_of_query;

Usage notes:

With both forms of hint syntax, include theSTRAIGHT_JOIN keyword immediately after theSELECT and any DISTINCT
or ALL keywords to prevent Impala from reordering the tables in a way that makes the join-related hints ineffective.

The STRAIGHT_JOIN hint affects the join order of table references in the query block containing the hint. It does not
affect the join order of nested queries, such as views, inline views, or WHERE-clause subqueries. To use this hint for
performance tuning of complex queries, apply the hint to all query blocks that need a fixed join order.

To reduce the need to use hints, run the COMPUTE STATS statement against all tables involved in joins, or used as the
source tables for INSERT ... SELECT operations where the destination is a partitioned Parquet table. Do this
operation after loading data or making substantial changes to the data within each table. Having up-to-date statistics
helps Impala choose more efficient query plans without the need for hinting. See Table and Column Statistics on page
490 for details and examples.

To see which join strategy is used for a particular query, examine the EXPLAIN output for that query. See Using the
EXPLAIN Plan for Performance Tuning on page 508 for details and examples.

Hints for join queries:

The [BROADCAST] and [SHUFFLE] hints control the execution strategy for join queries. Specify one of the following
constructs immediately after the JOIN keyword in a query:

Apache Impala Guide | 303

Impala SQL Language Reference

• [SHUFFLE] - Makes that join operation use the “partitioned” technique, which divides up corresponding rows
from both tables using a hashing algorithm, sending subsets of the rows to other nodes for processing. (The
keyword SHUFFLE is used to indicate a “partitioned join”, because that type of join is not related to “partitioned
tables”.) Since the alternative “broadcast” join mechanism is the default when table and index statistics are
unavailable, you might use this hint for queries where broadcast joins are unsuitable; typically, partitioned joins
are more efficient for joins between large tables of similar size.

• [BROADCAST] - Makes that join operation use the “broadcast” technique that sends the entire contents of the
right-hand table to all nodes involved in processing the join. This is the default mode of operation when table and
index statistics are unavailable, so you would typically only need it if stale metadata caused Impala to mistakenly
choose a partitioned join operation. Typically, broadcast joins are more efficient in cases where one table is much
smaller than the other. (Put the smaller table on the right side of the JOIN operator.)

Hints for INSERT ... SELECT queries:

When inserting into partitioned tables, especially using the Parquet file format, you can include a hint in the INSERT
statement to fine-tune the overall performance of the operation and its resource usage:

• These hints are available in Impala 1.2.2 and higher.
• You would only use these hints if an INSERT into a partitioned Parquet table was failing due to capacity limits, or

if such an INSERT was succeeding but with less-than-optimal performance.
• To use these hints, put the hint keyword [SHUFFLE] or [NOSHUFFLE] (including the square brackets) after the

PARTITION clause, immediately before the SELECT keyword.
• [SHUFFLE] selects an execution plan that minimizes the number of files being written simultaneously to HDFS,

and the number of memory buffers holding data for individual partitions. Thus it reduces overall resource usage
for the INSERT operation, allowing some INSERT operations to succeed that otherwise would fail. It does involve
some data transfer between the nodes so that the data files for a particular partition are all constructed on the
same node.

• [NOSHUFFLE] selects an execution plan that might be faster overall, but might also produce a larger number of
small data files or exceed capacity limits, causing the INSERT operation to fail. Use [SHUFFLE] in cases where
an INSERT statement fails or runs inefficiently due to all nodes attempting to construct data for all partitions.

• Impala automatically uses the [SHUFFLE]method if any partition key column in the source table, mentioned in
the INSERT ... SELECT query, does not have column statistics. In this case, only the [NOSHUFFLE] hint would
have any effect.

• If column statistics are available for all partition key columns in the source table mentioned in the INSERT ...
SELECT query, Impala chooseswhether to use the[SHUFFLE] or[NOSHUFFLE] technique based on the estimated
number of distinct values in those columns and the number of nodes involved in the INSERT operation. In this
case, youmight need the [SHUFFLE] or the [NOSHUFFLE] hint to override the execution plan selected by Impala.

Suggestions versus directives:

In early Impala releases, hints were always obeyed and so acted more like directives. Once Impala gained join order
optimizations, sometimes join queries were automatically reordered in a way that made a hint irrelevant. Therefore,
the hints act more like suggestions in Impala 1.2.2 and higher.

To force Impala to follow the hinted execution mechanism for a join query, include the STRAIGHT_JOIN keyword in
the SELECT statement. See Overriding Join Reordering with STRAIGHT_JOIN on page 484 for details. When you use
this technique, Impala does not reorder the joined tables at all, so you must be careful to arrange the join order to put
the largest table (or subquery result set) first, then the smallest, second smallest, third smallest, and so on. This ordering
lets Impala do the most I/O-intensive parts of the query using local reads on the DataNodes, and then reduce the size
of the intermediate result set as much as possible as each subsequent table or subquery result set is joined.

Restrictions:

Queries that include subqueries in the WHERE clause can be rewritten internally as join queries. Currently, you cannot
apply hints to the joins produced by these types of queries.

Because hints can prevent queries from taking advantage of new metadata or improvements in query planning, use
them only when required to work around performance issues, and be prepared to remove them when they are no
longer required, such as after a new Impala release or bug fix.

304 | Apache Impala Guide

Impala SQL Language Reference

In particular, the [BROADCAST] and [SHUFFLE] hints are expected to be neededmuch less frequently in Impala 1.2.2
and higher, because the join order optimization feature in combination with the COMPUTE STATS statement now
automatically choose join order and join mechanism without the need to rewrite the query and add hints. See
Performance Considerations for Join Queries on page 483 for details.

Compatibility:

The hints embedded within -- comments are compatible with Hive queries. The hints embedded within /* */
comments or [] square brackets are not recognized by or not compatible with Hive. For example, Hive raises an error
for Impala hints within /* */ comments because it does not recognize the Impala hint names.

Considerations for views:

If you use a hint in the query that defines a view, the hint is preserved when you query the view. Impala internally
rewrites all hints in views to use the -- comment notation, so that Hive can query such views without errors due to
unrecognized hint names.

Examples:

For example, this query joins a large customer table with a small lookup table of less than 100 rows. The right-hand
table can be broadcast efficiently to all nodes involved in the join. Thus, you would use the [broadcast] hint to force
a broadcast join strategy:

select straight_join customer.address, state_lookup.state_name
 from customer join [broadcast] state_lookup
 on customer.state_id = state_lookup.state_id;

This query joins two large tables of unpredictable size. You might benchmark the query with both kinds of hints and
find that it is more efficient to transmit portions of each table to other nodes for processing. Thus, you would use the
[shuffle] hint to force a partitioned join strategy:

select straight_join weather.wind_velocity, geospatial.altitude
 from weather join [shuffle] geospatial
 on weather.lat = geospatial.lat and weather.long = geospatial.long;

For joins involving three or more tables, the hint applies to the tables on either side of that specific JOIN keyword.
The STRAIGHT_JOIN keyword ensures that joins are processed in a predictable order from left to right. For example,
this query joins t1 and t2 using a partitioned join, then joins that result set to t3 using a broadcast join:

select straight_join t1.name, t2.id, t3.price
 from t1 join [shuffle] t2 join [broadcast] t3
 on t1.id = t2.id and t2.id = t3.id;

Related information:

Formorebackground information about join queries, see Joins in Impala SELECT Statements onpage283. For performance
considerations, see Performance Considerations for Join Queries on page 483.

SET Statement

Specifies values for query options that control the runtime behavior of other statements within the same session.

Syntax:

SET [query_option=option_value]

SET with no arguments returns a result set consisting of all available query options and their current values.

The query option name and any string argument values are case-insensitive.

Each query option has a specific allowed notation for its arguments. Boolean options can be enabled and disabled by
assigning values of either true and false, or 1 and 0. Some numeric options accept a final character signifying the
unit, such as 2g for 2 gigabytes or 100m for 100 megabytes. See Query Options for the SET Statement on page 306 for
the details of each query option.

Apache Impala Guide | 305

Impala SQL Language Reference

Usage notes:

MEM_LIMIT is probably themost commonly used query option. You can specify a high value to allow a resource-intensive
query to complete. For testing howquerieswouldwork onmemory-constrained systems, youmight specify an artificially
low value.

Complex type considerations:

Examples:

The following example sets some numeric and some Boolean query options to control usage of memory, disk space,
and timeout periods, then runs a query whose success could depend on the options in effect:

set mem_limit=64g;
set DISABLE_UNSAFE_SPILLS=true;
set parquet_file_size=400m;
set RESERVATION_REQUEST_TIMEOUT=900000;
insert overwrite parquet_table select c1, c2, count(c3) from text_table group by c1,
c2, c3;

Added in: CDH 5.2.0 (Impala 2.0.0)

SET has always been available as an impala-shell command. Promoting it to a SQL statement lets you use this
feature in client applications through the JDBC and ODBC APIs.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

See Query Options for the SET Statement on page 306 for the query options you can adjust using this statement.

Query Options for the SET Statement

You can specify the following options using the SET statement, and those settings affect all queries issued from that
session.

Some query options are useful in day-to-day operations for improving usability, performance, or flexibility.

Other query options control special-purpose aspects of Impala operation and are intended primarily for advanced
debugging or troubleshooting.

Options with Boolean parameters can be set to 1 or true to enable, or 0 or false to turn off.

Note:

In Impala 2.0 and later, you can set query options directly through the JDBC and ODBC interfaces by
using the SET statement. Formerly, SETwas only available as a command within the impala-shell
interpreter.

Related information:

SET Statement on page 305

ABORT_ON_DEFAULT_LIMIT_EXCEEDED Query Option

Now that the ORDER BY clause no longer requires an accompanying LIMIT clause in Impala 1.4.0 and higher, this
query option is deprecated and has no effect.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

306 | Apache Impala Guide

Impala SQL Language Reference

ABORT_ON_ERROR Query Option

When this option is enabled, Impala cancels a query immediately when any of the nodes encounters an error, rather
than continuing and possibly returning incomplete results. This option is disabled by default, to help gather maximum
diagnostic information when an error occurs, for example, whether the same problem occurred on all nodes or only
a single node. Currently, the errors that Impala can skip over involve data corruption, such as a column that contains
a string value when expected to contain an integer value.

To control howmuch logging Impala does for non-fatal errorswhenABORT_ON_ERROR is turnedoff, use theMAX_ERRORS
option.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

Related information:

MAX_ERRORS Query Option on page 317, Using Impala Logging on page 575

ALLOW_UNSUPPORTED_FORMATS Query Option

An obsolete query option from early work on support for file formats. Do not use. Might be removed in the future.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

APPX_COUNT_DISTINCT Query Option (CDH 5.2 or higher only)

Allows multiple COUNT(DISTINCT) operations within a single query, by internally rewriting each COUNT(DISTINCT)
to use the NDV() function. The resulting count is approximate rather than precise.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

Examples:

The following examples show how the APPX_COUNT_DISTINCT lets you work around the restriction where a query
can only evaluate COUNT(DISTINCT col_name) for a single column. By default, you can count the distinct values of
one column or another, but not both in a single query:

[localhost:21000] > select count(distinct x) from int_t;
+-------------------+
| count(distinct x) |
+-------------------+
| 10 |
+-------------------+
[localhost:21000] > select count(distinct property) from int_t;
+--------------------------+
| count(distinct property) |
+--------------------------+
| 7 |
+--------------------------+
[localhost:21000] > select count(distinct x), count(distinct property) from int_t;
ERROR: AnalysisException: all DISTINCT aggregate functions need to have the same set of
 parameters
as count(DISTINCT x); deviating function: count(DISTINCT property)

When you enable the APPX_COUNT_DISTINCT query option, now the query withmultiple COUNT(DISTINCT)works.
The reason this behavior requires a query option is that each COUNT(DISTINCT) is rewritten internally to use the
NDV() function instead, which provides an approximate result rather than a precise count.

[localhost:21000] > set APPX_COUNT_DISTINCT=true;
[localhost:21000] > select count(distinct x), count(distinct property) from int_t;
+-------------------+--------------------------+
| count(distinct x) | count(distinct property) |
+-------------------+--------------------------+

Apache Impala Guide | 307

Impala SQL Language Reference

| 10 | 7 |
+-------------------+--------------------------+

Related information:

COUNT Function on page 409, DISTINCT Operator on page 302, NDV Function on page 422

BATCH_SIZE Query Option

Number of rows evaluated at a time by SQL operators. Unspecified or a size of 0 uses a predefined default size. Using
a large number improves responsiveness, especially for scan operations, at the cost of a higher memory footprint.

This option is primarily for Cloudera testing, or for use under the direction of Cloudera Support.

Type: numeric

Default: 0 (meaning the predefined default of 1024)

COMPRESSION_CODEC Query Option (CDH 5.2 or higher only)

When Impala writes Parquet data files using the INSERT statement, the underlying compression is controlled by the
COMPRESSION_CODEC query option.

Note: Prior to Impala 2.0, this optionwas named PARQUET_COMPRESSION_CODEC. In Impala 2.0 and
later, the PARQUET_COMPRESSION_CODEC name is not recognized. Use the more general name
COMPRESSION_CODEC for new code.

Syntax:

SET COMPRESSION_CODEC=codec_name;

The allowed values for this query option are SNAPPY (the default), GZIP, and NONE.

Note: AParquet file createdwithCOMPRESSION_CODEC=NONE is still typically smaller than the original
data, due to encoding schemes such as run-length encoding and dictionary encoding that are applied
separately from compression.

The option value is not case-sensitive.

If the option is set to an unrecognized value, all kinds of queries will fail due to the invalid option setting, not just
queries involving Parquet tables. (The value BZIP2 is also recognized, but is not compatible with Parquet tables.)

Type: STRING

Default: SNAPPY

Examples:

set compression_codec=gzip;
insert into parquet_table_highly_compressed select * from t1;

set compression_codec=snappy;
insert into parquet_table_compression_plus_fast_queries select * from t1;

set compression_codec=none;
insert into parquet_table_no_compression select * from t1;

set compression_codec=foo;
select * from t1 limit 5;
ERROR: Invalid compression codec: foo

Related information:

For information about how compressing Parquet data files affects query performance, see Snappy andGZip Compression
for Parquet Data Files on page 540.

308 | Apache Impala Guide

Impala SQL Language Reference

DEBUG_ACTION Query Option

Introduces artificial problem conditions within queries. For internal Cloudera debugging and troubleshooting.

Type: STRING

Default: empty string

DEFAULT_ORDER_BY_LIMIT Query Option

Now that the ORDER BY clause no longer requires an accompanying LIMIT clause in Impala 1.4.0 and higher, this
query option is deprecated and has no effect.

Prior to Impala 1.4.0, Impala queries that use theORDER BY clausemust also include aLIMIT clause, to avoid accidentally
producing huge result sets that must be sorted. Sorting a huge result set is a memory-intensive operation. In Impala
1.4.0 and higher, Impala uses a temporary disk work area to perform the sort if that operation would otherwise exceed
the Impala memory limit on a particular host.

Type: numeric

Default: -1 (no default limit)

DISABLE_CODEGEN Query Option

This is a debug option, intended for diagnosing and working around issues that cause crashes. If a query fails with an
“illegal instruction” or other hardware-specific message, try setting DISABLE_CODEGEN=true and running the query
again. If the query succeeds only when the DISABLE_CODEGEN option is turned on, submit the problem to Cloudera
support and include that detail in the problem report. Do not otherwise run with this setting turned on, because it
results in lower overall performance.

Because the code generation phase adds a small amount of overhead for each query, you might turn on the
DISABLE_CODEGEN option to achieve maximum throughput when running many short-lived queries against small
tables.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

DISABLE_UNSAFE_SPILLS Query Option (CDH 5.2 or higher only)

Enable this option if you prefer to have queries fail when they exceed the Impala memory limit, rather than write
temporary data to disk.

Queries that “spill” to disk typically complete successfully, when in earlier Impala releases they would have failed.
However, queries with exorbitant memory requirements due to missing statistics or inefficient join clauses could
become so slow as a result that you would rather have them cancelled automatically and reduce the memory usage
through standard Impala tuning techniques.

This option prevents only “unsafe” spill operations, meaning that one or more tables are missing statistics or the query
does not include a hint to set themost efficient mechanism for a join or INSERT ... SELECT into a partitioned table.
These are the tablesmost likely to result in suboptimal execution plans that could cause unnecessary spilling. Therefore,
leaving this option enabled is a good way to find tables on which to run the COMPUTE STATS statement.

See SQLOperations that Spill to Disk on page 518 for information about the “spill to disk” feature for queries processing
large result sets with joins, ORDER BY, GROUP BY, DISTINCT, aggregation functions, or analytic functions.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

Added in: CDH 5.2.0 (Impala 2.0.0)

EXEC_SINGLE_NODE_ROWS_THRESHOLD Query Option (CDH 5.3 or higher only)

This setting controls the cutoff point (in terms of number of rows scanned) below which Impala treats a query as a
“small” query, turning off optimizations such as parallel execution and native code generation. The overhead for these
optimizations is applicable for queries involving substantial amounts of data, but it makes sense to skip them for queries

Apache Impala Guide | 309

Impala SQL Language Reference

involving tiny amounts of data. Reducing the overhead for small queries allows Impala to complete themmore quickly,
keeping YARN resources, admission control slots, and so on available for data-intensive queries.

Syntax:

SET EXEC_SINGLE_NODE_ROWS_THRESHOLD=number_of_rows

Type: numeric

Default: 100

Usage notes: Typically, you increase the default value to make this optimization apply to more queries. If incorrect or
corrupted table and column statistics cause Impala to apply this optimization incorrectly to queries that actually involve
substantial work, you might see the queries being slower as a result of remote reads. In that case, recompute statistics
with the COMPUTE STATS or COMPUTE INCREMENTAL STATS statement. If there is a problem collecting accurate
statistics, you can turn this feature off by setting the value to -1.

Internal details:

This setting applies to query fragments where the amount of data to scan can be accurately determined, either through
table and column statistics, or by the presence of a LIMIT clause. If Impala cannot accurately estimate the size of the
input data, this setting does not apply.

In CDH 5.5 / Impala 2.3 and higher, where Impala supports the complex data types STRUCT, ARRAY, and MAP, if a query
refers to any column of those types, the small-query optimization is turned off for that query regardless of the
EXEC_SINGLE_NODE_ROWS_THRESHOLD setting.

For a query that is determined to be “small”, all work is performed on the coordinator node. This might result in some
I/O being performed by remote reads. The savings from not distributing the query work and not generating native
code are expected to outweigh any overhead from the remote reads.

Added in: CDH 5.3.0 (Impala 2.1.0)

Examples:

A common use case is to query just a few rows from a table to inspect typical data values. In this example, Impala does
not parallelize the query or perform native code generation because the result set is guaranteed to be smaller than
the threshold value from this query option:

SET EXEC_SINGLE_NODE_ROWS_THRESHOLD=500;
SELECT * FROM enormous_table LIMIT 300;

EXPLAIN_LEVEL Query Option

Controls the amount of detail provided in the output of the EXPLAIN statement. The basic output can help you identify
high-level performance issues such as scanning a higher volume of data or more partitions than you expect. The higher
levels of detail show how intermediate results flow between nodes and how different SQL operations such as ORDER
BY, GROUP BY, joins, and WHERE clauses are implemented within a distributed query.

Type: STRING or INT

Default: 1

Arguments:

The allowed range of numeric values for this option is 0 to 3:

• 0 or MINIMAL: A barebones list, one line per operation. Primarily useful for checking the join order in very long
queries where the regular EXPLAIN output is too long to read easily.

• 1 or STANDARD: The default level of detail, showing the logical way that work is split up for the distributed query.
• 2 or EXTENDED: Includes additional detail about how the query planner uses statistics in its decision-making

process, to understand how a query could be tuned by gathering statistics, using query hints, adding or removing
predicates, and so on.

310 | Apache Impala Guide

Impala SQL Language Reference

• 3 or VERBOSE: Themaximum level of detail, showing howwork is split upwithin each node into “query fragments”
that are connected in a pipeline. This extra detail is primarily useful for low-level performance testing and tuning
within Impala itself, rather than for rewriting the SQL code at the user level.

Note: Prior to Impala 1.3, the allowed argument range for EXPLAIN_LEVEL was 0 to 1: level 0 had
the mnemonic NORMAL, and level 1 was VERBOSE. In Impala 1.3 and higher, NORMAL is not a valid
mnemonic value, and VERBOSE still applies to the highest level of detail but now corresponds to level
3. You might need to adjust the values if you have any older impala-shell script files that set the
EXPLAIN_LEVEL query option.

Changing the value of this option controls the amount of detail in the output of the EXPLAIN statement. The extended
information from level 2 or 3 is especially useful during performance tuning, when you need to confirm whether the
work for the query is distributed the way you expect, particularly for the most resource-intensive operations such as
join queries against large tables, queries against tables with large numbers of partitions, and insert operations for
Parquet tables. The extended information also helps to check estimated resource usage when you use the admission
control or resource management features explained in Integrated Resource Management with YARN on page 83. See
EXPLAIN Statement on page 261 for the syntax of the EXPLAIN statement, andUsing the EXPLAIN Plan for Performance
Tuning on page 508 for details about how to use the extended information.

Usage notes:

As always, read the EXPLAIN output from bottom to top. The lowest lines represent the initial work of the query
(scanning data files), the lines in the middle represent calculations done on each node and how intermediate results
are transmitted from one node to another, and the topmost lines represent the final results being sent back to the
coordinator node.

The numbers in the left column are generated internally during the initial planning phase and do not represent the
actual order of operations, so it is not significant if they appear out of order in the EXPLAIN output.

At all EXPLAIN levels, the plan contains a warning if any tables in the query are missing statistics. Use the COMPUTE
STATS statement to gather statistics for each table and suppress this warning. See Table and Column Statistics on page
490 for details about how the statistics help query performance.

The PROFILE command in impala-shell always starts with an explain plan showing full detail, the same as with
EXPLAIN_LEVEL=3. After the explain plan comes the executive summary, the sameoutput as produced by theSUMMARY
command in impala-shell.

Examples:

These examples use a trivial, empty table to illustrate how the essential aspects of query planning are shown in EXPLAIN
output:

[localhost:21000] > create table t1 (x int, s string);
[localhost:21000] > set explain_level=1;
[localhost:21000] > explain select count(*) from t1;
+--+
| Explain String |
+--+
| Estimated Per-Host Requirements: Memory=10.00MB VCores=1 |
| WARNING: The following tables are missing relevant table and/or column |
| statistics. |
| explain_plan.t1 |
| |
| 03:AGGREGATE [MERGE FINALIZE] |
| | output: sum(count(*)) |
| | |
| 02:EXCHANGE [PARTITION=UNPARTITIONED] |
| | |
| 01:AGGREGATE |
| | output: count(*) |
| | |
| 00:SCAN HDFS [explain_plan.t1] |
| partitions=1/1 size=0B |
+--+

Apache Impala Guide | 311

Impala SQL Language Reference

[localhost:21000] > explain select * from t1;
+--+
| Explain String |
+--+
| Estimated Per-Host Requirements: Memory=-9223372036854775808B VCores=0 |
| WARNING: The following tables are missing relevant table and/or column |
| statistics. |
| explain_plan.t1 |
| |
| 01:EXCHANGE [PARTITION=UNPARTITIONED] |
| | |
| 00:SCAN HDFS [explain_plan.t1] |
| partitions=1/1 size=0B |
+--+
[localhost:21000] > set explain_level=2;
[localhost:21000] > explain select * from t1;
+--+
| Explain String |
+--+
| Estimated Per-Host Requirements: Memory=-9223372036854775808B VCores=0 |
| WARNING: The following tables are missing relevant table and/or column |
| statistics. |
| explain_plan.t1 |
| |
| 01:EXCHANGE [PARTITION=UNPARTITIONED] |
	hosts=0 per-host-mem=unavailable
	tuple-ids=0 row-size=19B cardinality=unavailable
00:SCAN HDFS [explain_plan.t1, PARTITION=RANDOM]	
partitions=1/1 size=0B	
table stats: unavailable	
column stats: unavailable	
hosts=0 per-host-mem=0B	
tuple-ids=0 row-size=19B cardinality=unavailable	
+--+	
[localhost:21000] > set explain_level=3;	
[localhost:21000] > explain select * from t1;	
+--+	
Explain String	
+--+	
Estimated Per-Host Requirements: Memory=-9223372036854775808B VCores=0	
WARNING: The following tables are missing relevant table and/or column	
statistics.	
explain_plan.t1	
F01:PLAN FRAGMENT [PARTITION=UNPARTITIONED]	
01:EXCHANGE [PARTITION=UNPARTITIONED]	
hosts=0 per-host-mem=unavailable	
tuple-ids=0 row-size=19B cardinality=unavailable	
F00:PLAN FRAGMENT [PARTITION=RANDOM]	
DATASTREAM SINK [FRAGMENT=F01, EXCHANGE=01, PARTITION=UNPARTITIONED]	
00:SCAN HDFS [explain_plan.t1, PARTITION=RANDOM]	
partitions=1/1 size=0B	
table stats: unavailable	
column stats: unavailable	
hosts=0 per-host-mem=0B	
tuple-ids=0 row-size=19B cardinality=unavailable	
+--+

As the warning message demonstrates, most of the information needed for Impala to do efficient query planning, and
for you to understand the performance characteristics of the query, requires running the COMPUTE STATS statement
for the table:

[localhost:21000] > compute stats t1;
+---+
| summary |
+---+
| Updated 1 partition(s) and 2 column(s). |
+---+
[localhost:21000] > explain select * from t1;
+--+

312 | Apache Impala Guide

Impala SQL Language Reference

| Explain String |
+--+
| Estimated Per-Host Requirements: Memory=-9223372036854775808B VCores=0 |
| |
| F01:PLAN FRAGMENT [PARTITION=UNPARTITIONED] |
| 01:EXCHANGE [PARTITION=UNPARTITIONED] |
| hosts=0 per-host-mem=unavailable |
| tuple-ids=0 row-size=20B cardinality=0 |
| |
| F00:PLAN FRAGMENT [PARTITION=RANDOM] |
| DATASTREAM SINK [FRAGMENT=F01, EXCHANGE=01, PARTITION=UNPARTITIONED] |
| 00:SCAN HDFS [explain_plan.t1, PARTITION=RANDOM] |
| partitions=1/1 size=0B |
| table stats: 0 rows total |
| column stats: all |
| hosts=0 per-host-mem=0B |
| tuple-ids=0 row-size=20B cardinality=0 |
+--+

Joins and other complicated,multi-part queries are the oneswhere youmost commonly need to examine the EXPLAIN
output and customize the amount of detail in the output. This example shows the default EXPLAIN output for a
three-way join query, then the equivalent output with a [SHUFFLE] hint to change the join mechanism between the
first two tables from a broadcast join to a shuffle join.

[localhost:21000] > set explain_level=1;
[localhost:21000] > explain select one.*, two.*, three.* from t1 one, t1 two, t1 three
 where one.x = two.x and two.x = three.x;
+---+
| Explain String |
+---+
| Estimated Per-Host Requirements: Memory=4.00GB VCores=3 |
| |
| 07:EXCHANGE [PARTITION=UNPARTITIONED] |
| | |
| 04:HASH JOIN [INNER JOIN, BROADCAST] |
	hash predicates: two.x = three.x	
	--06:EXCHANGE [BROADCAST]	
	02:SCAN HDFS [explain_plan.t1 three]	
	partitions=1/1 size=0B	
03:HASH JOIN [INNER JOIN, BROADCAST]		
	hash predicates: one.x = two.x	
	--05:EXCHANGE [BROADCAST]	
	01:SCAN HDFS [explain_plan.t1 two]	
	partitions=1/1 size=0B	
00:SCAN HDFS [explain_plan.t1 one]		
partitions=1/1 size=0B		
+---+
[localhost:21000] > explain select one.*, two.*, three.*
 > from t1 one join [shuffle] t1 two join t1 three
 > where one.x = two.x and two.x = three.x;
+---+
| Explain String |
+---+
| Estimated Per-Host Requirements: Memory=4.00GB VCores=3 |
| |
| 08:EXCHANGE [PARTITION=UNPARTITIONED] |
| | |
| 04:HASH JOIN [INNER JOIN, BROADCAST] |
	hash predicates: two.x = three.x	
	--07:EXCHANGE [BROADCAST]	
	02:SCAN HDFS [explain_plan.t1 three]	
	partitions=1/1 size=0B	

Apache Impala Guide | 313

Impala SQL Language Reference

| 03:HASH JOIN [INNER JOIN, PARTITIONED] |
	hash predicates: one.x = two.x	
	--06:EXCHANGE [PARTITION=HASH(two.x)]	
	01:SCAN HDFS [explain_plan.t1 two]	
	partitions=1/1 size=0B	
05:EXCHANGE [PARTITION=HASH(one.x)]		
00:SCAN HDFS [explain_plan.t1 one]		
partitions=1/1 size=0B		
+---+

For a join involving many different tables, the default EXPLAIN output might stretch over several pages, and the only
details you care about might be the join order and themechanism (broadcast or shuffle) for joining each pair of tables.
In that case, youmight set EXPLAIN_LEVEL to its lowest value of 0, to focus on just the join order and join mechanism
for each stage. The following example shows how the rows from the first and second joined tables are hashed and
divided among the nodes of the cluster for further filtering; then the entire contents of the third table are broadcast
to all nodes for the final stage of join processing.

[localhost:21000] > set explain_level=0;
[localhost:21000] > explain select one.*, two.*, three.*
 > from t1 one join [shuffle] t1 two join t1 three
 > where one.x = two.x and two.x = three.x;
+---+
| Explain String |
+---+
| Estimated Per-Host Requirements: Memory=4.00GB VCores=3 |
| |
| 08:EXCHANGE [PARTITION=UNPARTITIONED] |
| 04:HASH JOIN [INNER JOIN, BROADCAST] |
| |--07:EXCHANGE [BROADCAST] |
| | 02:SCAN HDFS [explain_plan.t1 three] |
| 03:HASH JOIN [INNER JOIN, PARTITIONED] |
| |--06:EXCHANGE [PARTITION=HASH(two.x)] |
| | 01:SCAN HDFS [explain_plan.t1 two] |
| 05:EXCHANGE [PARTITION=HASH(one.x)] |
| 00:SCAN HDFS [explain_plan.t1 one] |
+---+

HBASE_CACHE_BLOCKS Query Option

Setting this option is equivalent to calling the setCacheBlocksmethod of the class
org.apache.hadoop.hbase.client.Scan, in an HBase Java application. Helps to control the memory pressure on the
HBase RegionServer, in conjunction with the HBASE_CACHING query option.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

Related information:

Using Impala to Query HBase Tables on page 558, HBASE_CACHING Query Option on page 314

HBASE_CACHING Query Option

Setting this option is equivalent to calling the setCachingmethod of the class org.apache.hadoop.hbase.client.Scan,
in an HBase Java application. Helps to control the memory pressure on the HBase RegionServer, in conjunction with
the HBASE_CACHE_BLOCKS query option.

Type: BOOLEAN

Default: 0

Related information:

Using Impala to Query HBase Tables on page 558, HBASE_CACHE_BLOCKS Query Option on page 314

314 | Apache Impala Guide

Impala SQL Language Reference

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html

LIVE_PROGRESS Query Option (CDH 5.5 or higher only)

For queries submitted through the impala-shell command, displays an interactive progress bar showing roughly
what percentage of processing has been completed. When the query finishes, the progress bar is erased from the
impala-shell console output.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

Command-line equivalent:

You can enable this query optionwithinimpala-shell by starting the shell with the--live_progress command-line
option. You can still turn this setting off and on again within the shell through the SET command.

Usage notes:

The output from this query option is printed to standard error. The output is only displayed in interactive mode, that
is, not when the -q or -f options are used.

For a more detailed way of tracking the progress of an interactive query through all phases of processing, see
LIVE_SUMMARY Query Option (CDH 5.5 or higher only) on page 316.

Restrictions:

Because the percentage complete figure is calculated using the number of issued and completed “scan ranges”, which
occurwhile reading the table data, the progress barmight reach 100%before the query is entirely finished. For example,
the query might do work to perform aggregations after all the table data has been read. If many of your queries fall
into this category, consider using the LIVE_SUMMARY option instead for more granular progress reporting.

The LIVE_PROGRESS and LIVE_SUMMARY query options currently do not produce any output during COMPUTE STATS
operations.

Because the LIVE_PROGRESS and LIVE_SUMMARY query options are available only within the impala-shell
interpreter:

• You cannot change these query options through the SQL SET statement using the JDBC or ODBC interfaces. The
SET command in impala-shell recognizes these names as shell-only options.

• Be careful when using impala-shell on a pre-CDH 5.5 system to connect to Impala running on a CDH 5.5 or
higher system. The older impala-shell does not recognize these query option names. Upgrade impala-shell
on the systems where you intend to use these query options.

• Likewise, the impala-shell command relies on some information only available in Impala 2.3 / CDH 5.5 and
higher to prepare live progress reports and query summaries. The LIVE_PROGRESS and LIVE_SUMMARY query
options have no effect when impala-shell connects to a cluster running an older version of Impala.

Added in: CDH 5.5.0 (Impala 2.3.0)

Examples:

[localhost:21000] > set live_progress=true;
LIVE_PROGRESS set to true
[localhost:21000] > select count(*) from customer;
+----------+
| count(*) |
+----------+
| 150000 |
+----------+
[localhost:21000] > select count(*) from customer t1 cross join customer t2;
[###################################] 50%
[##] 100%

To see how the LIVE_PROGRESS and LIVE_SUMMARY query options work in real time, see this animated demo.

Apache Impala Guide | 315

Impala SQL Language Reference

https://asciinema.org/a/1rv7qippo0fe7h5k1b6k4nexk

LIVE_SUMMARY Query Option (CDH 5.5 or higher only)

For queries submitted through the impala-shell command, displays the same output as the SUMMARY command,
with the measurements updated in real time as the query progresses. When the query finishes, the final SUMMARY
output remains visible in the impala-shell console output.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

Command-line equivalent:

You can enable this query optionwithinimpala-shellby starting the shell with the--live_summary command-line
option. You can still turn this setting off and on again within the shell through the SET command.

Usage notes:

The live summary output can be useful for evaluating long-running queries, to evaluate which phase of execution takes
up the most time, or if some hosts take much longer than others for certain operations, dragging overall performance
down. By making the information available in real time, this feature lets you decide what action to take even before
you cancel a query that is taking much longer than normal.

For example, you might see the HDFS scan phase taking a long time, and therefore revisit performance-related aspects
of your schema design such as constructing a partitioned table, switching to the Parquet file format, running the
COMPUTE STATS statement for the table, and so on. Or you might see a wide variation between the average and
maximum times for all hosts to perform some phase of the query, and therefore investigate if one particular host
needed more memory or was experiencing a network problem.

The output from this query option is printed to standard error. The output is only displayed in interactive mode, that
is, not when the -q or -f options are used.

For a simple and concise way of tracking the progress of an interactive query, see LIVE_PROGRESS Query Option (CDH
5.5 or higher only) on page 315.

Restrictions:

The LIVE_PROGRESS and LIVE_SUMMARY query options currently do not produce any output during COMPUTE STATS
operations.

Because the LIVE_PROGRESS and LIVE_SUMMARY query options are available only within the impala-shell
interpreter:

• You cannot change these query options through the SQL SET statement using the JDBC or ODBC interfaces. The
SET command in impala-shell recognizes these names as shell-only options.

• Be careful when using impala-shell on a pre-CDH 5.5 system to connect to Impala running on a CDH 5.5 or
higher system. The older impala-shell does not recognize these query option names. Upgrade impala-shell
on the systems where you intend to use these query options.

• Likewise, the impala-shell command relies on some information only available in Impala 2.3 / CDH 5.5 and
higher to prepare live progress reports and query summaries. The LIVE_PROGRESS and LIVE_SUMMARY query
options have no effect when impala-shell connects to a cluster running an older version of Impala.

Added in: CDH 5.5.0 (Impala 2.3.0)

Examples:

The following example shows a series of LIVE_SUMMARY reports that are displayed during the course of a query,
showing how the numbers increase to show the progress of different phases of the distributed query. When you do
the same in impala-shell, only a single report is displayed at any one time,with each update overwriting the previous
numbers.

[localhost:21000] > set live_summary=true;
LIVE_SUMMARY set to true
[localhost:21000] > select count(*) from customer t1 cross join customer t2;
+---------------------+--------+----------+----------+---------+------------+----------+---------------+-----------------------+
| Operator | #Hosts | Avg Time | Max Time | #Rows | Est. #Rows | Peak Mem | Est. Peak Mem | Detail |

316 | Apache Impala Guide

Impala SQL Language Reference

+---------------------+--------+----------+----------+---------+------------+----------+---------------+-----------------------+
06:AGGREGATE	0	0ns	0ns	0	1	0 B	-1 B	FINALIZE	
05:EXCHANGE	0	0ns	0ns	0	1	0 B	-1 B	UNPARTITIONED	
03:AGGREGATE	0	0ns	0ns	0	1	0 B	10.00 MB		
02:NESTED LOOP JOIN	0	0ns	0ns	0	22.50B	0 B	0 B	CROSS JOIN, BROADCAST	
	--04:EXCHANGE	0	0ns	0ns	0	150.00K	0 B	0 B	BROADCAST
	01:SCAN HDFS	1	503.57ms	503.57ms	150.00K	150.00K	24.09 MB	64.00 MB	tpch.customer t2
00:SCAN HDFS	0	0ns	0ns	0	150.00K	0 B	64.00 MB	tpch.customer t1	
+---------------------+--------+----------+----------+---------+------------+----------+---------------+-----------------------+

+---------------------+--------+----------+----------+---------+------------+----------+---------------+-----------------------+
| Operator | #Hosts | Avg Time | Max Time | #Rows | Est. #Rows | Peak Mem | Est. Peak Mem | Detail |
+---------------------+--------+----------+----------+---------+------------+----------+---------------+-----------------------+
06:AGGREGATE	0	0ns	0ns	0	1	0 B	-1 B	FINALIZE	
05:EXCHANGE	0	0ns	0ns	0	1	0 B	-1 B	UNPARTITIONED	
03:AGGREGATE	1	0ns	0ns	0	1	20.00 KB	10.00 MB		
02:NESTED LOOP JOIN	1	17.62s	17.62s	81.14M	22.50B	3.23 MB	0 B	CROSS JOIN, BROADCAST	
	--04:EXCHANGE	1	26.29ms	26.29ms	150.00K	150.00K	0 B	0 B	BROADCAST
	01:SCAN HDFS	1	503.57ms	503.57ms	150.00K	150.00K	24.09 MB	64.00 MB	tpch.customer t2
00:SCAN HDFS	1	247.53ms	247.53ms	1.02K	150.00K	24.39 MB	64.00 MB	tpch.customer t1	
+---------------------+--------+----------+----------+---------+------------+----------+---------------+-----------------------+

+---------------------+--------+----------+----------+---------+------------+----------+---------------+-----------------------+
| Operator | #Hosts | Avg Time | Max Time | #Rows | Est. #Rows | Peak Mem | Est. Peak Mem | Detail |
+---------------------+--------+----------+----------+---------+------------+----------+---------------+-----------------------+
06:AGGREGATE	0	0ns	0ns	0	1	0 B	-1 B	FINALIZE	
05:EXCHANGE	0	0ns	0ns	0	1	0 B	-1 B	UNPARTITIONED	
03:AGGREGATE	1	0ns	0ns	0	1	20.00 KB	10.00 MB		
02:NESTED LOOP JOIN	1	61.85s	61.85s	283.43M	22.50B	3.23 MB	0 B	CROSS JOIN, BROADCAST	
	--04:EXCHANGE	1	26.29ms	26.29ms	150.00K	150.00K	0 B	0 B	BROADCAST
	01:SCAN HDFS	1	503.57ms	503.57ms	150.00K	150.00K	24.09 MB	64.00 MB	tpch.customer t2
00:SCAN HDFS	1	247.59ms	247.59ms	2.05K	150.00K	24.39 MB	64.00 MB	tpch.customer t1	
+---------------------+--------+----------+----------+---------+------------+----------+---------------+-----------------------+

To see how the LIVE_PROGRESS and LIVE_SUMMARY query options work in real time, see this animated demo.

MAX_ERRORS Query Option

Maximum number of non-fatal errors for any particular query that are recorded in the Impala log file. For example, if
a billion-row table had a non-fatal data error in every row, you could diagnose the problem without all billion errors
being logged. Unspecified or 0 indicates the built-in default value of 1000.

This option only controls howmany errors are reported. To specifywhether Impala continues or haltswhen it encounters
such errors, use the ABORT_ON_ERROR option.

Type: numeric

Default: 0 (meaning 1000 errors)

Related information:

ABORT_ON_ERROR Query Option on page 307, Using Impala Logging on page 575

MAX_IO_BUFFERS Query Option

Deprecated query option. Currently has no effect.

Type: numeric

Default: 0

MAX_SCAN_RANGE_LENGTH Query Option

Maximum length of the scan range. Interacts with the number of HDFS blocks in the table to determine how many
CPU cores across the cluster are involved with the processing for a query. (Each core processes one scan range.)

Lowering the value can sometimes increase parallelism if you have unused CPU capacity, but a too-small value can
limit query performance because each scan range involves extra overhead.

Only applicable to HDFS tables. Has no effect on Parquet tables. Unspecified or 0 indicates backend default, which is
the same as the HDFS block size for each table.

Although the scan range can be arbitrarily long, Impala internally uses an 8 MB read buffer so that it can query tables
with huge block sizes without allocating equivalent blocks of memory.

Type: numeric

Default: 0

Apache Impala Guide | 317

Impala SQL Language Reference

https://asciinema.org/a/1rv7qippo0fe7h5k1b6k4nexk

MEM_LIMIT Query Option

The MEM_LIMIT query option defines the maximum amount of memory a query can allocate on each node. The total
memory that can be used by a query is the MEM_LIMIT times the number of nodes.

There are two levels of memory limit for Impala. The -mem_limit startup option sets an overall limit for the impalad
process (which handles multiple queries concurrently). That limit is typically expressed in terms of a percentage of the
RAM available on the host, such as -mem_limit=70%. The MEM_LIMIT query option, which you set through
impala-shell or the SET statement in a JDBC or ODBC application, applies to each individual query. The MEM_LIMIT
query option is usually expressed as a fixed size such as 10gb, and must always be less than the impaladmemory
limit.

If query processing exceeds the specified memory limit on any node, either the per-query limit or the impalad limit,
Impala cancels the query automatically. Memory limits are checked periodically during query processing, so the actual
memory in use might briefly exceed the limit without the query being cancelled.

Type: numeric

Units: A numeric argument represents memory size in bytes; you can also use a suffix of m or mb for megabytes, or
more commonly g or gb for gigabytes. If you specify a value with unrecognized formats, subsequent queries fail with
an error.

Default: 0 (unlimited)

Usage notes:

The MEM_LIMIT setting is primarily useful in a high-concurrency setting, or on a cluster with aworkload shared between
Impala and other data processing components. You can prevent any query from accidentally usingmuchmorememory
than expected, which could negatively impact other Impala queries.

Use the output of the SUMMARY command in impala-shell to get a report of memory used for each phase of your
most heavyweight queries on each node, and then set a MEM_LIMIT somewhat higher than that. See Using the
SUMMARY Report for Performance Tuning on page 509 for usage information about the SUMMARY command.

Examples:

The following examples show how to set the MEM_LIMIT query option using a fixed number of bytes, or suffixes
representing gigabytes or megabytes.

[localhost:21000] > set mem_limit=3000000000;
MEM_LIMIT set to 3000000000
[localhost:21000] > select 5;
Query: select 5
+---+
| 5 |
+---+
| 5 |
+---+

[localhost:21000] > set mem_limit=3g;
MEM_LIMIT set to 3g
[localhost:21000] > select 5;
Query: select 5
+---+
| 5 |
+---+
| 5 |
+---+

[localhost:21000] > set mem_limit=3gb;
MEM_LIMIT set to 3gb
[localhost:21000] > select 5;
+---+
| 5 |
+---+
| 5 |
+---+

318 | Apache Impala Guide

Impala SQL Language Reference

[localhost:21000] > set mem_limit=3m;
MEM_LIMIT set to 3m
[localhost:21000] > select 5;
+---+
| 5 |
+---+
| 5 |
+---+
[localhost:21000] > set mem_limit=3mb;
MEM_LIMIT set to 3mb
[nightly55-2.vpc.cloudera.com:21000] > select 5;
+---+
| 5 |
+---+

The following examples show how unrecognized MEM_LIMIT values lead to errors for subsequent queries.

[localhost:21000] > set mem_limit=3tb;
MEM_LIMIT set to 3tb
[localhost:21000] > select 5;
ERROR: Failed to parse query memory limit from '3tb'.

[localhost:21000] > set mem_limit=xyz;
MEM_LIMIT set to xyz
[localhost:21000] > select 5;
Query: select 5
ERROR: Failed to parse query memory limit from 'xyz'.

The following examples shows the automatic query cancellation when the MEM_LIMIT value is exceeded on any host
involved in the Impala query. First it runs a successful query and checks the largest amount of memory used on any
node for any stage of the query. Then it sets an artificially low MEM_LIMIT setting so that the same query cannot run.

[localhost:21000] > select count(*) from customer;
Query: select count(*) from customer
+----------+
| count(*) |
+----------+
| 150000 |
+----------+

[localhost:21000] > select count(distinct c_name) from customer;
Query: select count(distinct c_name) from customer
+------------------------+
| count(distinct c_name) |
+------------------------+
| 150000 |
+------------------------+

[localhost:21000] > summary;
+--------------+--------+----------+----------+---------+------------+----------+---------------+---------------+
| Operator | #Hosts | Avg Time | Max Time | #Rows | Est. #Rows | Peak Mem | Est. Peak Mem | Detail |
+--------------+--------+----------+----------+---------+------------+----------+---------------+---------------+
06:AGGREGATE	1	230.00ms	230.00ms	1	1	16.00 KB	-1 B	FINALIZE
05:EXCHANGE	1	43.44us	43.44us	1	1	0 B	-1 B	UNPARTITIONED
02:AGGREGATE	1	227.14ms	227.14ms	1	1	12.00 KB	10.00 MB	
04:AGGREGATE	1	126.27ms	126.27ms	150.00K	150.00K	15.17 MB	10.00 MB	
03:EXCHANGE	1	44.07ms	44.07ms	150.00K	150.00K	0 B	0 B	HASH(c_name)
01:AGGREGATE	1	361.94ms	361.94ms	150.00K	150.00K	23.04 MB	10.00 MB	
00:SCAN HDFS	1	43.64ms	43.64ms	150.00K	150.00K	24.19 MB	64.00 MB	tpch.customer
+--------------+--------+----------+----------+---------+------------+----------+---------------+---------------+

[localhost:21000] > set mem_limit=15mb;
MEM_LIMIT set to 15mb
[localhost:21000] > select count(distinct c_name) from customer;
Query: select count(distinct c_name) from customer
ERROR:
Memory limit exceeded
Query did not have enough memory to get the minimum required buffers in the block manager.

NUM_NODES Query Option

Limit the number of nodes that process a query, typically during debugging.

Type: numeric

Allowed values:Only accepts the values 0 (meaning all nodes) or 1 (meaning all work is done on the coordinator node).

Default: 0

Usage notes:

Apache Impala Guide | 319

Impala SQL Language Reference

If you are diagnosing a problem that you suspect is due to a timing issue due to distributed query processing, you can
set NUM_NODES=1 to verify if the problem still occurs when all the work is done on a single node.

Youmight set theNUM_NODES option to 1 briefly, duringINSERT orCREATE TABLE AS SELECT statements. Normally,
those statements produce one or more data files per data node. If the write operation involves small amounts of data,
a Parquet table, and/or a partitioned table, the default behavior could produce many small files when intuitively you
might expect only a single output file. SET NUM_NODES=1 turns off the “distributed” aspect of the write operation,
making it more likely to produce only one or a few data files.

Warning:

Because this option results in increased resource utilization on a single host, it could cause problems
due to contention with other Impala statements or high resource usage. Symptoms could include
queries running slowly, exceeding the memory limit, or appearing to hang. Use it only in a single-user
development/test environment; do not use it in a production environment or in a cluster with a
high-concurrency or high-volume or performance-critical workload.

NUM_SCANNER_THREADS Query Option

Maximum number of scanner threads (on each node) used for each query. By default, Impala uses as many cores as
are available (one thread per core). Youmight lower this value if queries are using excessive resources on a busy cluster.
Impala imposes a maximum value automatically, so a high value has no practical effect.

Type: numeric

Default: 0

PARQUET_COMPRESSION_CODEC Query Option

Deprecated. Use COMPRESSION_CODEC in Impala 2.0 and later. See COMPRESSION_CODEC Query Option (CDH 5.2 or
higher only) on page 308 for details.

PARQUET_FILE_SIZE Query Option

Specifies the maximum size of each Parquet data file produced by Impala INSERT statements.

Syntax:

Specify the size in bytes, or with a trailing m or g character to indicate megabytes or gigabytes. For example:

-- 128 megabytes.
set PARQUET_FILE_SIZE=134217728
INSERT OVERWRITE parquet_table SELECT * FROM text_table;

-- 512 megabytes.
set PARQUET_FILE_SIZE=512m;
INSERT OVERWRITE parquet_table SELECT * FROM text_table;

-- 1 gigabyte.
set PARQUET_FILE_SIZE=1g;
INSERT OVERWRITE parquet_table SELECT * FROM text_table;

Usage notes:

With tables that are small or finely partitioned, the default Parquet block size (formerly 1 GB, now 256 MB in Impala
2.0 and later) could be much larger than needed for each data file. For INSERT operations into such tables, you can
increase parallelism by specifying a smaller PARQUET_FILE_SIZE value, resulting in more HDFS blocks that can be
processed by different nodes.

Type: numeric, with optional unit specifier

320 | Apache Impala Guide

Impala SQL Language Reference

Important:

Currently, the maximum value for this setting is 1 gigabyte (1g). Setting a value higher than 1 gigabyte
could result in errors during an INSERT operation.

Default: 0 (produces files with a target size of 256 MB; files might be larger for very wide tables)

Isilon considerations:

Because the EMC Isilon storage devices use a global value for the block size rather than a configurable value for each
file, the PARQUET_FILE_SIZE query option has no effect when Impala inserts data into a table or partition residing
on Isilon storage. Use the isi command to set the default block size globally on the Isilon device. For example, to set
the Isilon default block size to 256 MB, the recommended size for Parquet data files for Impala, issue the following
command:

isi hdfs settings modify --default-block-size=256MB

Related information:

For information about the Parquet file format, and how the number and size of data files affects query performance,
see Using the Parquet File Format with Impala Tables on page 536.

QUERY_TIMEOUT_S Query Option (CDH 5.2 or higher only)

Sets the idle query timeout value for the session, in seconds. Queries that sit idle for longer than the timeout value
are automatically cancelled. If the system administrator specified the --idle_query_timeout startup option,
QUERY_TIMEOUT_Smust be smaller than or equal to the --idle_query_timeout value.

Note:

The timeout clock for queries and sessions only starts ticking when the query or session is idle. For
queries, this means the query has results ready but is waiting for a client to fetch the data. A query
can run for an arbitrary time without triggering a timeout, because the query is computing results
rather than sitting idle waiting for the results to be fetched. The timeout period is intended to prevent
unclosed queries from consuming resources and taking up slots in the admission count of running
queries, potentially preventing other queries from starting.

For sessions, this means that no query has been submitted for some period of time.

Syntax:

SET QUERY_TIMEOUT_S=seconds;

Type: numeric

Default: 0 (no timeout if --idle_query_timeout not in effect; otherwise, use --idle_query_timeout value)

Added in: CDH 5.2.0 (Impala 2.0.0)

Related information:

Setting Timeout Periods for Daemons, Queries, and Sessions on page 84

REQUEST_POOL Query Option

The pool or queue name that queries should be submitted to. Only applies when you enable the Impala admission
control feature (CDH 4 or CDH 5; see Admission Control and Query Queuing on page 75), or the YARN resource
management feature (CDH 5 only; see Integrated Resource Management with YARN on page 83). Specifies the name
of the pool used by requests from Impala to the resource manager.

Formerly known as YARN_POOL during the CDH 5 beta period. Renamed to reflect that it can be used both with YARN
and with the lightweight admission control feature introduced in Impala 1.3.

Apache Impala Guide | 321

Impala SQL Language Reference

Type: STRING

Default: empty (use the user-to-pool mapping defined by an impalad startup option in the Impala configuration file)

RESERVATION_REQUEST_TIMEOUT Query Option (CDH 5 only)

Note:

This query option is no longer supported, because it affects interaction between Impala and Llama.
The use of the Llama component for integrated resource management within YARN is no longer
supported with CDH 5.5 / Impala 2.3 and higher.

Maximum number of milliseconds Impala will wait for a reservation to be completely granted or denied. Used in
conjunction with the Impala resource management feature in Impala 1.2 and higher with CDH 5.

Type: numeric

Default: 300000 (5 minutes)

SUPPORT_START_OVER Query Option

Leave this setting at its default value. It is a read-only setting, tested by some client applications such as Hue.

If you accidentally change it through impala-shell, subsequent queries encounter errors until you undo the change
by issuing UNSET support_start_over.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false

SYNC_DDL Query Option

When enabled, causes any DDL operation such as CREATE TABLE or ALTER TABLE to return only when the changes
have been propagated to all other Impala nodes in the cluster by the Impala catalog service. That way, if you issue a
subsequent CONNECT statement in impala-shell to connect to a different node in the cluster, you can be sure that
other node will already recognize any added or changed tables. (The catalog service automatically broadcasts the DDL
changes to all nodes automatically, but without this option there could be a period of inconsistency if you quickly
switched to another node, such as by issuing a subsequent query through a load-balancing proxy.)

Although INSERT is classified as a DML statement, when the SYNC_DDL option is enabled, INSERT statements also
delay their completion until all the underlying data andmetadata changes are propagated to all Impala nodes. Internally,
Impala inserts have similarities with DDL statements in traditional database systems, because they create metadata
needed to track HDFS block locations for new files and they potentially add new partitions to partitioned tables.

Note: Because this option can introduce a delay after each write operation, if you are running a
sequence of CREATE DATABASE, CREATE TABLE, ALTER TABLE, INSERT, and similar statements
within a setup script, to minimize the overall delay you can enable the SYNC_DDL query option only
near the end, before the final DDL statement.

Type: Boolean; recognized values are 1 and 0, or true and false; any other value interpreted as false

Default: false (shown as 0 in output of SET statement)

Related information:

DDL Statements on page 215

322 | Apache Impala Guide

Impala SQL Language Reference

V_CPU_CORES Query Option (CDH 5 only)

Note:

This query option is no longer supported, because it affects interaction between Impala and Llama.
The use of the Llama component for integrated resource management within YARN is no longer
supported with CDH 5.5 / Impala 2.3 and higher.

The number of per-host virtual CPU cores to request from YARN. If set, the query option overrides the automatic
estimate from Impala. Used in conjunction with the Impala resource management feature in Impala 1.2 and higher
and CDH 5.

Type: numeric

Default: 0 (use automatic estimates)

SHOW Statement

The SHOW statement is a flexible way to get information about different types of Impala objects.

Syntax:

SHOW DATABASES [[LIKE] 'pattern']
SHOW SCHEMAS [[LIKE] 'pattern'] - an alias for SHOW DATABASES
SHOW TABLES [IN database_name] [[LIKE] 'pattern']
SHOW [AGGREGATE | ANALYTIC] FUNCTIONS [IN database_name] [[LIKE] 'pattern']
SHOW CREATE TABLE [database_name].table_name
SHOW CREATE VIEW [database_name].view_name
SHOW TABLE STATS [database_name.]table_name
SHOW COLUMN STATS [database_name.]table_name
SHOW PARTITIONS [database_name.]table_name
SHOW FILES IN [database_name.]table_name [PARTITION (key_col=value [, key_col=value]]

SHOW ROLES
SHOW CURRENT ROLES
SHOW ROLE GRANT GROUP group_name
SHOW GRANT ROLE role_name

Issue a SHOW object_type statement to see the appropriate objects in the current database, or SHOW object_type
IN database_name to see objects in a specific database.

The optional pattern argument is a quoted string literal, using Unix-style * wildcards and allowing | for alternation.
The preceding LIKE keyword is also optional. All object names are stored in lowercase, so use all lowercase letters in
the pattern string. For example:

show databases 'a*';
show databases like 'a*';
show tables in some_db like '*fact*';
use some_db;
show tables '*dim*|*fact*';

Cancellation: Cannot be cancelled.

SHOW FILES Statement

The SHOW FILES statement displays the files that constitute a specified table, or a partition within a partitioned table.
This syntax is available in CDH 5.4 and higher only. The output includes the names of the files, the size of each file, and
the applicable partition for a partitioned table. The size includes a suffix of B for bytes, MB for megabytes, and GB for
gigabytes.

Note: This statement applies to tables and partitions stored onHDFS, or in the Amazon Simple Storage
System (S3). It does not apply to views. It does not apply to tablesmapped onto HBase, because HBase
does not use the same file-based storage layout.

Apache Impala Guide | 323

Impala SQL Language Reference

Usage notes:

You can use this statement to verify the results of your ETL process: that is, that the expected files are present, with
the expected sizes. You can examine the file information to detect conditions such as empty files, missing files, or
inefficient layouts due to a large number of small files. When you use INSERT statements to copy from one table to
another, you can see how the file layout changes due to file format conversions, compaction of small input files into
large data blocks, and multiple output files from parallel queries and partitioned inserts.

The output from this statement does not include files that Impala considers to be hidden or invisible, such as those
whose names start with a dot or an underscore, or that end with the suffixes .copying or .tmp.

The information for partitioned tables complements the output of theSHOW PARTITIONS statement,which summarizes
information about each partition. SHOW PARTITIONS produces some output for each partition, while SHOW FILES
does not produce any output for empty partitions because they do not include any data files.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read permission for all the
table files, read and execute permission for all the directories that make up the table, and execute permission for the
database directory and all its parent directories.

Examples:

The following example shows a SHOW FILES statement for an unpartitioned table using text format:

[localhost:21000] > create table unpart_text (x bigint, s string);
[localhost:21000] > insert into unpart_text (x, s) select id, name
 > from oreilly.sample_data limit 20e6;
[localhost:21000] > show files in unpart_text;
+---+----------+-----------+
| path | size | partition |
+---+----------+-----------+
| hdfs://impala_data_dir/d.db/unpart_text/35665776ef85cfaf_1012432410_data.0. | 448.31MB | |
+---+----------+-----------+
[localhost:21000] > insert into unpart_text (x, s) select id, name from oreilly.sample_data limit 100e6;
[localhost:21000] > show files in unpart_text;
+---+----------+-----------+
| path | size | partition |
+---+----------+-----------+
| hdfs://impala_data_dir/d.db/unpart_text/35665776ef85cfaf_1012432410_data.0. | 448.31MB | |
| hdfs://impala_data_dir/d.db/unpart_text/ac3dba252a8952b8_1663177415_data.0. | 2.19GB | |
+---+----------+-----------+

This example illustrates how, after issuing some INSERT ... VALUES statements, the table now contains some tiny
files of just a few bytes. Such small files could cause inefficient processing of parallel queries that are expecting
multi-megabyte input files. The example shows how you might compact the small files by doing an INSERT ...
SELECT into a different table, possibly converting the data to Parquet in the process:

[localhost:21000] > insert into unpart_text values (10,'hello'), (20, 'world');
[localhost:21000] > insert into unpart_text values (-1,'foo'), (-1000, 'bar');
[localhost:21000] > show files in unpart_text;
+---+----------+
| path | size |
+---+----------+
| hdfs://impala_data_dir/d.db/unpart_text/4f11b8bdf8b6aa92_238145083_data.0. | 18B
| hdfs://impala_data_dir/d.db/unpart_text/35665776ef85cfaf_1012432410_data.0. | 448.31MB
| hdfs://impala_data_dir/d.db/unpart_text/ac3dba252a8952b8_1663177415_data.0. | 2.19GB
| hdfs://impala_data_dir/d.db/unpart_text/cfb8252452445682_1868457216_data.0. | 17B
+---+----------+
[localhost:21000] > create table unpart_parq stored as parquet as select * from unpart_text;
+---------------------------+
| summary |
+---------------------------+
| Inserted 120000002 row(s) |
+---------------------------+
[localhost:21000] > show files in unpart_parq;
+---+----------+
| path | size |
+---+----------+
hdfs://impala_data_dir/d.db/unpart_parq/60798d96ba630184_549959007_data.0.parq	255.36MB
hdfs://impala_data_dir/d.db/unpart_parq/60798d96ba630184_549959007_data.1.parq	178.52MB
hdfs://impala_data_dir/d.db/unpart_parq/60798d96ba630185_549959007_data.0.parq	255.37MB
hdfs://impala_data_dir/d.db/unpart_parq/60798d96ba630185_549959007_data.1.parq	57.71MB
hdfs://impala_data_dir/d.db/unpart_parq/60798d96ba630186_2141167244_data.0.parq	255.40MB
hdfs://impala_data_dir/d.db/unpart_parq/60798d96ba630186_2141167244_data.1.parq	175.52MB
hdfs://impala_data_dir/d.db/unpart_parq/60798d96ba630187_1006832086_data.0.parq	255.40MB
hdfs://impala_data_dir/d.db/unpart_parq/60798d96ba630187_1006832086_data.1.parq	214.61MB
+---+----------+

324 | Apache Impala Guide

Impala SQL Language Reference

The following example shows a SHOW FILES statement for a partitioned text tablewith data in two different partitions,
and two empty partitions. The partitions with no data are not represented in the SHOW FILES output.

[localhost:21000] > create table part_text (x bigint, y int, s string)
 > partitioned by (year bigint, month bigint, day bigint);
[localhost:21000] > insert overwrite part_text (x, y, s) partition (year=2014,month=1,day=1)
 > select id, val, name from oreilly.normalized_parquet
where id between 1 and 1000000;
[localhost:21000] > insert overwrite part_text (x, y, s) partition (year=2014,month=1,day=2)
 > select id, val, name from oreilly.normalized_parquet
 > where id between 1000001 and 2000000;
[localhost:21000] > alter table part_text add partition (year=2014,month=1,day=3);
[localhost:21000] > alter table part_text add partition (year=2014,month=1,day=4);
[localhost:21000] > show partitions part_text;
+-------+-------+-----+-------+--------+---------+--------------+-------------------+--------+-------------------+
| year | month | day | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format | Incremental stats |
+-------+-------+-----+-------+--------+---------+--------------+-------------------+--------+-------------------+
2014	1	1	-1	4	25.16MB	NOT CACHED	NOT CACHED	TEXT	false
2014	1	2	-1	4	26.22MB	NOT CACHED	NOT CACHED	TEXT	false
2014	1	3	-1	0	0B	NOT CACHED	NOT CACHED	TEXT	false
2014	1	4	-1	0	0B	NOT CACHED	NOT CACHED	TEXT	false
Total			-1	8	51.38MB	0B			
+-------+-------+-----+-------+--------+---------+--------------+-------------------+--------+-------------------+									
[localhost:21000] > show files in part_text;									
+--+--------+-------------------------+									
path	size	partition							
+--+--------+-------------------------+									
hdfs://impala_data_dir/d.db/part_text/year=2014/month=1/day=1/80732d9dc80689f_1418645991_data.0.	5.77MB	year=2014/month=1/day=1							
hdfs://impala_data_dir/d.db/part_text/year=2014/month=1/day=1/80732d9dc8068a0_1418645991_data.0.	6.25MB	year=2014/month=1/day=1							
hdfs://impala_data_dir/d.db/part_text/year=2014/month=1/day=1/80732d9dc8068a1_147082319_data.0.	7.16MB	year=2014/month=1/day=1							
hdfs://impala_data_dir/d.db/part_text/year=2014/month=1/day=1/80732d9dc8068a2_2111411753_data.0.	5.98MB	year=2014/month=1/day=1							
hdfs://impala_data_dir/d.db/part_text/year=2014/month=1/day=2/21a828cf494b5bbb_501271652_data.0.	6.42MB	year=2014/month=1/day=2							
hdfs://impala_data_dir/d.db/part_text/year=2014/month=1/day=2/21a828cf494b5bbc_501271652_data.0.	6.62MB	year=2014/month=1/day=2							
hdfs://impala_data_dir/d.db/part_text/year=2014/month=1/day=2/21a828cf494b5bbd_1393490200_data.0.	6.98MB	year=2014/month=1/day=2							
hdfs://impala_data_dir/d.db/part_text/year=2014/month=1/day=2/21a828cf494b5bbe_1393490200_data.0.	6.20MB	year=2014/month=1/day=2							
+--+--------+-------------------------+

The following example shows a SHOW FILES statement for a partitioned Parquet table. The number and sizes of files
are different from the equivalent partitioned text table used in the previous example, because INSERT operations for
Parquet tables are parallelized differently than for text tables. (Also, the amount of data is so small that it can bewritten
to Parquet without involving all the hosts in this 4-node cluster.)

[localhost:21000] > create table part_parq (x bigint, y int, s string)
 > partitioned by (year bigint, month bigint, day bigint) stored as parquet;
[localhost:21000] > insert into part_parq partition (year,month,day) select x, y, s, year, month, day from partitioned_text;
[localhost:21000] > show partitions part_parq;
+-------+-------+-----+-------+--------+---------+--------------+-------------------+---------+-------------------+
| year | month | day | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format | Incremental stats |
+-------+-------+-----+-------+--------+---------+--------------+-------------------+---------+-------------------+
2014	1	1	-1	3	17.89MB	NOT CACHED	NOT CACHED	PARQUET	false
2014	1	2	-1	3	17.89MB	NOT CACHED	NOT CACHED	PARQUET	false
Total			-1	6	35.79MB	0B			
+-------+-------+-----+-------+--------+---------+--------------+-------------------+---------+-------------------+									
[localhost:21000] > show files in part_parq;									
+--+--------+-------------------------+									
path	size	partition							
+--+--------+-------------------------+									
hdfs://impala_data_dir/d.db/part_parq/year=2014/month=1/day=1/1134113650_data.0.parq	4.49MB	year=2014/month=1/day=1							
hdfs://impala_data_dir/d.db/part_parq/year=2014/month=1/day=1/617567880_data.0.parq	5.14MB	year=2014/month=1/day=1							
hdfs://impala_data_dir/d.db/part_parq/year=2014/month=1/day=1/2099499416_data.0.parq	8.27MB	year=2014/month=1/day=1							
hdfs://impala_data_dir/d.db/part_parq/year=2014/month=1/day=2/945567189_data.0.parq	8.80MB	year=2014/month=1/day=2							
hdfs://impala_data_dir/d.db/part_parq/year=2014/month=1/day=2/2145850112_data.0.parq	4.80MB	year=2014/month=1/day=2							
hdfs://impala_data_dir/d.db/part_parq/year=2014/month=1/day=2/665613448_data.0.parq	4.29MB	year=2014/month=1/day=2							
+--+--------+-------------------------+

The following example shows output from the SHOW FILES statement for a table where the data files are stored in
Amazon S3:

[localhost:21000] > show files in s3_testing.sample_data_s3;
+---+---------+
| path | size |
+---+---------+
| s3a://impala-demo/sample_data/e065453cba1988a6_1733868553_data.0.parq | 24.84MB |
+---+---------+

SHOW ROLES Statement

The SHOW ROLES statement displays roles. This syntax is available in CDH 5.2 and later only, when you are using the
Sentry authorization framework along with the Sentry service, as described in Using Impala with the Sentry Service
(CDH 5.1 or higher only) on page 98. It does not apply when you use the Sentry framework with privileges defined in
a policy file.

Apache Impala Guide | 325

Impala SQL Language Reference

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some
privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object
exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new
privilege for that object. See Enabling Sentry Authorization for Impala on page 96 for how to set up authorization and
add privileges for specific kinds of objects.

Examples:

Depending on the roles set up within your organization by the CREATE ROLE statement, the output might look
something like this:

show roles;
+-----------+
| role_name |
+-----------+
| analyst |
| role1 |
| sales |
| superuser |
| test_role |
+-----------+

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

Enabling Sentry Authorization for Impala on page 96

SHOW CURRENT ROLE

The SHOW CURRENT ROLE statement displays roles assigned to the current user. This syntax is available in CDH 5.2
and later only, when you are using the Sentry authorization framework along with the Sentry service, as described in
Using Impala with the Sentry Service (CDH 5.1 or higher only) on page 98. It does not apply when you use the Sentry
framework with privileges defined in a policy file.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some
privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object
exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new
privilege for that object. See Enabling Sentry Authorization for Impala on page 96 for how to set up authorization and
add privileges for specific kinds of objects.

Examples:

Depending on the roles set up within your organization by the CREATE ROLE statement, the output might look
something like this:

show current roles;
+-----------+
| role_name |
+-----------+
| role1 |
| superuser |
+-----------+

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

Enabling Sentry Authorization for Impala on page 96

326 | Apache Impala Guide

Impala SQL Language Reference

SHOW ROLE GRANT Statement

The SHOW ROLE GRANT statement lists all the roles assigned to the specified group. This statement is only allowed
for Sentry administrative users and others users that are part of the specified group. This syntax is available in CDH
5.2 and later only, when you are using the Sentry authorization framework along with the Sentry service, as described
in Using Impala with the Sentry Service (CDH 5.1 or higher only) on page 98. It does not apply when you use the Sentry
framework with privileges defined in a policy file.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some
privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object
exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new
privilege for that object. See Enabling Sentry Authorization for Impala on page 96 for how to set up authorization and
add privileges for specific kinds of objects.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

Enabling Sentry Authorization for Impala on page 96

SHOW GRANT ROLE Statement

The SHOW GRANT ROLE statement list all the grants for the given role name. This statement is only allowed for Sentry
administrative users and other users that have been granted the specified role. This syntax is available in CDH 5.2 and
later only, when you are using the Sentry authorization framework along with the Sentry service, as described in Using
Impalawith the Sentry Service (CDH5.1 or higher only) on page 98. It does not applywhen you use the Sentry framework
with privileges defined in a policy file.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some
privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object
exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new
privilege for that object. See Enabling Sentry Authorization for Impala on page 96 for how to set up authorization and
add privileges for specific kinds of objects.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

Enabling Sentry Authorization for Impala on page 96

SHOW DATABASES

The SHOW DATABASES statement is often the first one you issue when connecting to an instance for the first time.
You typically issue SHOW DATABASES to see the names you can specify in a USE db_name statement, then after
switching to a database you issue SHOW TABLES to see the names you can specify in SELECT and INSERT statements.

The output of SHOW DATABASES includes the special _impala_builtins database, which lets you view definitions
of built-in functions, as described under SHOW FUNCTIONS.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some
privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object
exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new
privilege for that object. See Enabling Sentry Authorization for Impala on page 96 for how to set up authorization and
add privileges for specific kinds of objects.

Examples:

Apache Impala Guide | 327

Impala SQL Language Reference

This example shows how you might locate a particular table on an unfamiliar system. The DEFAULT database is the
one you initially connect to; a database with that name is present on every system. You can issue SHOW TABLES IN
db_name without going into a database, or SHOW TABLES once you are inside a particular database.

[localhost:21000] > show databases;
+--------------------+
| name |
+--------------------+
| _impala_builtins |
| analyze_testing |
| avro |
| ctas |
| d1 |
| d2 |
| d3 |
| default |
| file_formats |
| hbase |
| load_data |
| partitioning |
| regexp_testing |
| reports |
| temporary |
+--------------------+
Returned 14 row(s) in 0.02s
[localhost:21000] > show tables in file_formats;
+--------------------+
| name |
+--------------------+
| parquet_table |
| rcfile_table |
| sequencefile_table |
| textfile_table |
+--------------------+
Returned 4 row(s) in 0.01s
[localhost:21000] > use file_formats;
[localhost:21000] > show tables like '*parq*';
+--------------------+
| name |
+--------------------+
| parquet_table |
+--------------------+
Returned 1 row(s) in 0.01s

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

Overview of Impala Databases on page 206, CREATE DATABASE Statement on page 232, DROP DATABASE Statement on
page 253, USE Statement on page 338 SHOWTABLES Statement on page 328, SHOWFUNCTIONS Statement on page 336

SHOW TABLES Statement

Displays the names of tables. By default, lists tables in the current database, or with the IN clause, in a specified
database. By default, lists all tables, or with the LIKE clause, only those whose namematch a pattern with *wildcards.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some
privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object
exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new
privilege for that object. See Enabling Sentry Authorization for Impala on page 96 for how to set up authorization and
add privileges for specific kinds of objects.

The user ID that the impalad daemon runs under, typically the impala user, must have read and execute permissions
for all directories that are part of the table. (A table could span multiple different HDFS directories if it is partitioned.
The directories could be widely scattered because a partition can reside in an arbitrary HDFS directory based on its
LOCATION attribute.)

328 | Apache Impala Guide

Impala SQL Language Reference

Examples:

The following examples demonstrate the SHOW TABLES statement. If the database contains no tables, the result set
is empty. If the database does contain tables, SHOW TABLES IN db_name lists all the table names. SHOW TABLES
with no qualifiers lists all the table names in the current database.

create database empty_db;
show tables in empty_db;
Fetched 0 row(s) in 0.11s

create database full_db;
create table full_db.t1 (x int);
create table full_db.t2 like full_db.t1;

show tables in full_db;
+------+
| name |
+------+
| t1 |
| t2 |
+------+

use full_db;
show tables;
+------+
| name |
+------+
| t1 |
| t2 |
+------+

This example demonstrates how SHOW TABLES LIKE 'wildcard_pattern' lists table names thatmatch a pattern,
ormultiple alternative patterns. The ability to dowildcardmatches for table namesmakes it helpful to establish naming
conventions for tables to conveniently locate a group of related tables.

create table fact_tbl (x int);
create table dim_tbl_1 (s string);
create table dim_tbl_2 (s string);

/* Asterisk is the wildcard character. Only 2 out of the 3 just-created tables are
returned. */
show tables like 'dim*';
+-----------+
| name |
+-----------+
| dim_tbl_1 |
| dim_tbl_2 |
+-----------+

/* We are already in the FULL_DB database, but just to be sure we can specify the database
 name also. */
show tables in full_db like 'dim*';
+-----------+
| name |
+-----------+
| dim_tbl_1 |
| dim_tbl_2 |
+-----------+

/* The pipe character separates multiple wildcard patterns. */
show tables like '*dim*|t*';
+-----------+
| name |
+-----------+
| dim_tbl_1 |
| dim_tbl_2 |
| t1 |
| t2 |
+-----------+

Apache Impala Guide | 329

Impala SQL Language Reference

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

Overview of Impala Tables on page 209, CREATE TABLE Statement on page 236, ALTER TABLE Statement on page 216,
DROP TABLE Statement on page 259, DESCRIBE Statement on page 246, SHOW CREATE TABLE Statement on page 330,
SHOW TABLE STATS Statement on page 331, SHOW DATABASES on page 327, SHOW FUNCTIONS Statement on page
336

SHOW CREATE TABLE Statement

As a schema changes over time, you might run a CREATE TABLE statement followed by several ALTER TABLE
statements. To capture the cumulative effect of all those statements, SHOW CREATE TABLE displays a CREATE TABLE
statement that would reproduce the current structure of a table. You can use this output in scripts that set up or clone
a group of tables, rather than trying to reproduce the original sequence of CREATE TABLE and ALTER TABLE
statements. When creating variations on the original table, or cloning the original table on a different system, you
might need to edit the SHOW CREATE TABLE output to change things such as the database name, LOCATION field,
and so on that might be different on the destination system.

If you specify a view name in the SHOW CREATE TABLE, it returns a CREATE VIEW statement with column names and
the original SQL statement to reproduce the view. You need the VIEW_METADATA privilege on the view and SELECT
privilege on all underlying views and tables to successfully run the SHOW CREATE VIEW statement for a view. The
SHOW CREATE VIEW is available as an alias for SHOW CREATE TABLE.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some
privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object
exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new
privilege for that object. See Enabling Sentry Authorization for Impala on page 96 for how to set up authorization and
add privileges for specific kinds of objects.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Examples:

The following example shows how various clauses from the CREATE TABLE statement are represented in the output
of SHOW CREATE TABLE.

create table show_create_table_demo (id int comment "Unique ID", y double, s string)
 partitioned by (year smallint)
 stored as parquet;

show create table show_create_table_demo;
+--+
| result
 |
+--+
| CREATE TABLE scratch.show_create_table_demo (
 |
| id INT COMMENT 'Unique ID',
 |
| y DOUBLE,
 |
| s STRING
 |
|)
 |
| PARTITIONED BY (
 |
| year SMALLINT
 |
|)
 |
| STORED AS PARQUET

330 | Apache Impala Guide

Impala SQL Language Reference

 |
| LOCATION 'hdfs://127.0.0.1:8020/user/hive/warehouse/scratch.db/show_create_table_demo'
 |
| TBLPROPERTIES ('transient_lastDdlTime'='1418152582')
 |
+--+

The following example shows how, after a sequence of ALTER TABLE statements, the output from SHOW CREATE

TABLE represents the current state of the table. This output could be used to create a matching table rather than
executing the original CREATE TABLE and sequence of ALTER TABLE statements.

alter table show_create_table_demo drop column s;
alter table show_create_table_demo set fileformat textfile;

show create table show_create_table_demo;
+--+
| result
 |
+--+
| CREATE TABLE scratch.show_create_table_demo (
 |
| id INT COMMENT 'Unique ID',
 |
| y DOUBLE
 |
|)
 |
| PARTITIONED BY (
 |
| year SMALLINT
 |
|)
 |
| STORED AS TEXTFILE
 |
| LOCATION 'hdfs://127.0.0.1:8020/user/hive/warehouse/demo.db/show_create_table_demo'
 |
| TBLPROPERTIES ('transient_lastDdlTime'='1418152638')
 |
+--+

Related information:

CREATE TABLE Statement on page 236, DESCRIBE Statement on page 246, SHOW TABLES Statement on page 328

SHOW CREATE VIEW Statement

The SHOW CREATE VIEW, it returns a CREATE VIEW statement with column names and the original SQL statement
to reproduce the view. You need the VIEW_METADATA privilege on the view and SELECT privilege on all underlying
views and tables to successfully run the SHOW CREATE VIEW statement for a view.

The SHOW CREATE VIEW is an alias for SHOW CREATE TABLE.

SHOW TABLE STATS Statement

The SHOW TABLE STATS and SHOW COLUMN STATS variants are important for tuning performance and diagnosing
performance issues, especially with the largest tables and the most complex join queries.

Any values that are not available (because the COMPUTE STATS statement has not been run yet) are displayed as -1.

SHOW TABLE STATS provides some general information about the table, such as the number of files, overall size of
the data, whether some or all of the data is in the HDFS cache, and the file format, that is useful whether or not you
have run the COMPUTE STATS statement. A -1 in the #Rows output column indicates that the COMPUTE STATS
statement has never been run for this table. If the table is partitioned, SHOW TABLE STATS provides this information
for each partition. (It produces the same output as the SHOW PARTITIONS statement in this case.)

Apache Impala Guide | 331

Impala SQL Language Reference

The output of SHOW COLUMN STATS is primarily only useful after the COMPUTE STATS statement has been run on
the table. A -1 in the #Distinct Values output column indicates that the COMPUTE STATS statement has never
been run for this table. Currently, Impala always leaves the #Nulls column as -1, even after COMPUTE STATS has
been run.

These SHOW statements work on actual tables only, not on views.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some
privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object
exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new
privilege for that object. See Enabling Sentry Authorization for Impala on page 96 for how to set up authorization and
add privileges for specific kinds of objects.

Examples:

The following examples show how the SHOW TABLE STATS statement displays physical information about a table
and the associated data files:

show table stats store_sales;
+-------+--------+----------+--------------+--------+-------------------+
| #Rows | #Files | Size | Bytes Cached | Format | Incremental stats |
+-------+--------+----------+--------------+--------+-------------------+
| -1 | 1 | 370.45MB | NOT CACHED | TEXT | false |
+-------+--------+----------+--------------+--------+-------------------+

show table stats customer;
+-------+--------+---------+--------------+--------+-------------------+
| #Rows | #Files | Size | Bytes Cached | Format | Incremental stats |
+-------+--------+---------+--------------+--------+-------------------+
| -1 | 1 | 12.60MB | NOT CACHED | TEXT | false |
+-------+--------+---------+--------------+--------+-------------------+

The following example shows how, after a COMPUTE STATS or COMPUTE INCREMENTAL STATS statement, the #Rows
field is now filled in. Because the STORE_SALES table in this example is not partitioned, the COMPUTE INCREMENTAL
STATS statement produces regular stats rather than incremental stats, therefore the Incremental stats field
remains false.

compute stats customer;
+--+
| summary |
+--+
| Updated 1 partition(s) and 18 column(s). |
+--+

show table stats customer;
+--------+--------+---------+--------------+--------+-------------------+
| #Rows | #Files | Size | Bytes Cached | Format | Incremental stats |
+--------+--------+---------+--------------+--------+-------------------+
| 100000 | 1 | 12.60MB | NOT CACHED | TEXT | false |
+--------+--------+---------+--------------+--------+-------------------+

compute incremental stats store_sales;
+--+
| summary |
+--+
| Updated 1 partition(s) and 23 column(s). |
+--+

show table stats store_sales;
+---------+--------+----------+--------------+--------+-------------------+
| #Rows | #Files | Size | Bytes Cached | Format | Incremental stats |
+---------+--------+----------+--------------+--------+-------------------+
| 2880404 | 1 | 370.45MB | NOT CACHED | TEXT | false |
+---------+--------+----------+--------------+--------+-------------------+

HDFS permissions:

332 | Apache Impala Guide

Impala SQL Language Reference

The user ID that the impalad daemon runs under, typically the impala user, must have read and execute permissions
for all directories that are part of the table. (A table could span multiple different HDFS directories if it is partitioned.
The directories could be widely scattered because a partition can reside in an arbitrary HDFS directory based on its
LOCATION attribute.) The Impala user must also have execute permission for the database directory, and any parent
directories of the database directory in HDFS.

Related information:

COMPUTE STATS Statement on page 227, SHOW COLUMN STATS Statement on page 333

See Table and Column Statistics on page 490 for usage information and examples.

SHOW COLUMN STATS Statement

The SHOW TABLE STATS and SHOW COLUMN STATS variants are important for tuning performance and diagnosing
performance issues, especially with the largest tables and the most complex join queries.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some
privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object
exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new
privilege for that object. See Enabling Sentry Authorization for Impala on page 96 for how to set up authorization and
add privileges for specific kinds of objects.

Examples:

The following examples show the output of the SHOW COLUMN STATS statement for some tables, before the COMPUTE
STATS statement is run. Impala deduces some information, such asmaximumand average size for fixed-length columns,
and leaves and unknown values as -1.

show column stats customer;
+------------------------+--------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+------------------------+--------+------------------+--------+----------+----------+
c_customer_sk	INT	-1	-1	4	4
c_customer_id	STRING	-1	-1	-1	-1
c_current_cdemo_sk	INT	-1	-1	4	4
c_current_hdemo_sk	INT	-1	-1	4	4
c_current_addr_sk	INT	-1	-1	4	4
c_first_shipto_date_sk	INT	-1	-1	4	4
c_first_sales_date_sk	INT	-1	-1	4	4
c_salutation	STRING	-1	-1	-1	-1
c_first_name	STRING	-1	-1	-1	-1
c_last_name	STRING	-1	-1	-1	-1
c_preferred_cust_flag	STRING	-1	-1	-1	-1
c_birth_day	INT	-1	-1	4	4
c_birth_month	INT	-1	-1	4	4
c_birth_year	INT	-1	-1	4	4
c_birth_country	STRING	-1	-1	-1	-1
c_login	STRING	-1	-1	-1	-1
c_email_address	STRING	-1	-1	-1	-1
c_last_review_date	STRING	-1	-1	-1	-1
+------------------------+--------+------------------+--------+----------+----------+

show column stats store_sales;
+-----------------------+-------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+-----------------------+-------+------------------+--------+----------+----------+
ss_sold_date_sk	INT	-1	-1	4	4
ss_sold_time_sk	INT	-1	-1	4	4
ss_item_sk	INT	-1	-1	4	4
ss_customer_sk	INT	-1	-1	4	4
ss_cdemo_sk	INT	-1	-1	4	4
ss_hdemo_sk	INT	-1	-1	4	4
ss_addr_sk	INT	-1	-1	4	4
ss_store_sk	INT	-1	-1	4	4
ss_promo_sk	INT	-1	-1	4	4
ss_ticket_number	INT	-1	-1	4	4

Apache Impala Guide | 333

Impala SQL Language Reference

ss_quantity	INT	-1	-1	4	4
ss_wholesale_cost	FLOAT	-1	-1	4	4
ss_list_price	FLOAT	-1	-1	4	4
ss_sales_price	FLOAT	-1	-1	4	4
ss_ext_discount_amt	FLOAT	-1	-1	4	4
ss_ext_sales_price	FLOAT	-1	-1	4	4
ss_ext_wholesale_cost	FLOAT	-1	-1	4	4
ss_ext_list_price	FLOAT	-1	-1	4	4
ss_ext_tax	FLOAT	-1	-1	4	4
ss_coupon_amt	FLOAT	-1	-1	4	4
ss_net_paid	FLOAT	-1	-1	4	4
ss_net_paid_inc_tax	FLOAT	-1	-1	4	4
ss_net_profit	FLOAT	-1	-1	4	4
+-----------------------+-------+------------------+--------+----------+----------+

The following examples show the output of the SHOW COLUMN STATS statement for some tables, after the COMPUTE
STATS statement is run. Now most of the -1 values are changed to reflect the actual table data. The #Nulls column
remains -1 because Impala does not use the number of NULL values to influence query planning.

compute stats customer;
+--+
| summary |
+--+
| Updated 1 partition(s) and 18 column(s). |
+--+

compute stats store_sales;
+--+
| summary |
+--+
| Updated 1 partition(s) and 23 column(s). |
+--+

show column stats customer;
+------------------------+--------+------------------+--------+----------+--------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size
+------------------------+--------+------------------+--------+----------+--------+
c_customer_sk	INT	139017	-1	4	4
c_customer_id	STRING	111904	-1	16	16
c_current_cdemo_sk	INT	95837	-1	4	4
c_current_hdemo_sk	INT	8097	-1	4	4
c_current_addr_sk	INT	57334	-1	4	4
c_first_shipto_date_sk	INT	4374	-1	4	4
c_first_sales_date_sk	INT	4409	-1	4	4
c_salutation	STRING	7	-1	4	3.1308
c_first_name	STRING	3887	-1	11	5.6356
c_last_name	STRING	4739	-1	13	5.9106
c_preferred_cust_flag	STRING	3	-1	1	0.9656
c_birth_day	INT	31	-1	4	4
c_birth_month	INT	12	-1	4	4
c_birth_year	INT	71	-1	4	4
c_birth_country	STRING	205	-1	20	8.4001
c_login	STRING	1	-1	0	0
c_email_address	STRING	94492	-1	46	26.485
c_last_review_date	STRING	349	-1	7	6.7561
+------------------------+--------+------------------+--------+----------+--------+

show column stats store_sales;
+-----------------------+-------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+-----------------------+-------+------------------+--------+----------+----------+
ss_sold_date_sk	INT	4395	-1	4	4
ss_sold_time_sk	INT	63617	-1	4	4
ss_item_sk	INT	19463	-1	4	4
ss_customer_sk	INT	122720	-1	4	4
ss_cdemo_sk	INT	242982	-1	4	4
ss_hdemo_sk	INT	8097	-1	4	4
ss_addr_sk	INT	70770	-1	4	4
ss_store_sk	INT	6	-1	4	4
ss_promo_sk	INT	355	-1	4	4
ss_ticket_number	INT	304098	-1	4	4
ss_quantity	INT	105	-1	4	4

334 | Apache Impala Guide

Impala SQL Language Reference

ss_wholesale_cost	FLOAT	9600	-1	4	4
ss_list_price	FLOAT	22191	-1	4	4
ss_sales_price	FLOAT	20693	-1	4	4
ss_ext_discount_amt	FLOAT	228141	-1	4	4
ss_ext_sales_price	FLOAT	433550	-1	4	4
ss_ext_wholesale_cost	FLOAT	406291	-1	4	4
ss_ext_list_price	FLOAT	574871	-1	4	4
ss_ext_tax	FLOAT	91806	-1	4	4
ss_coupon_amt	FLOAT	228141	-1	4	4
ss_net_paid	FLOAT	493107	-1	4	4
ss_net_paid_inc_tax	FLOAT	653523	-1	4	4
ss_net_profit	FLOAT	611934	-1	4	4
+-----------------------+-------+------------------+--------+----------+----------+

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read and execute permissions
for all directories that are part of the table. (A table could span multiple different HDFS directories if it is partitioned.
The directories could be widely scattered because a partition can reside in an arbitrary HDFS directory based on its
LOCATION attribute.) The Impala user must also have execute permission for the database directory, and any parent
directories of the database directory in HDFS.

Related information:

COMPUTE STATS Statement on page 227, SHOW TABLE STATS Statement on page 331

See Table and Column Statistics on page 490 for usage information and examples.

SHOW PARTITIONS Statement

SHOW PARTITIONS displays information about each partition for a partitioned table. (The output is the same as the
SHOW TABLE STATS statement, but SHOW PARTITIONS only works on a partitioned table.) Because it displays table
statistics for all partitions, the output is more informative if you have run the COMPUTE STATS statement after creating
all the partitions. See COMPUTE STATS Statement on page 227 for details. For example, on a CENSUS table partitioned
on the YEAR column:

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some
privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object
exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new
privilege for that object. See Enabling Sentry Authorization for Impala on page 96 for how to set up authorization and
add privileges for specific kinds of objects.

Examples:

[localhost:21000] > show partitions census;
+-------+-------+--------+------+---------+
| year | #Rows | #Files | Size | Format |
+-------+-------+--------+------+---------+
2000	-1	0	0B	TEXT
2004	-1	0	0B	TEXT
2008	-1	0	0B	TEXT
2010	-1	0	0B	TEXT
2011	4	1	22B	TEXT
2012	4	1	22B	TEXT
2013	1	1	231B	PARQUET
Total	9	3	275B	
+-------+-------+--------+------+---------+

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have read and execute permissions
for all directories that are part of the table. (A table could span multiple different HDFS directories if it is partitioned.
The directories could be widely scattered because a partition can reside in an arbitrary HDFS directory based on its
LOCATION attribute.) The Impala user must also have execute permission for the database directory, and any parent
directories of the database directory in HDFS.

Apache Impala Guide | 335

Impala SQL Language Reference

Related information:

See Table and Column Statistics on page 490 for usage information and examples.

SHOW TABLE STATS Statement on page 331, Partitioning for Impala Tables on page 523

SHOW FUNCTIONS Statement

By default, SHOW FUNCTIONS displays user-defined functions (UDFs) and SHOW AGGREGATE FUNCTIONS displays
user-defined aggregate functions (UDAFs) associated with a particular database. The output from SHOW FUNCTIONS

includes the argument signature of each function. You specify this argument signature as part of the DROP FUNCTION
statement. You might have several UDFs with the same name, each accepting different argument data types.

Security considerations:

When authorization is enabled, the output of the SHOW statement is limited to those objects for which you have some
privilege. There might be other database, tables, and so on, but their names are concealed. If you believe an object
exists but you cannot see it in the SHOW output, check with the system administrator if you need to be granted a new
privilege for that object. See Enabling Sentry Authorization for Impala on page 96 for how to set up authorization and
add privileges for specific kinds of objects.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Examples:

To display Impala built-in functions, specify the special database name _impala_builtins:

show functions in _impala_builtins;
+----------------+--+
| return type | signature |
+----------------+--+
BOOLEAN	ifnull(BOOLEAN, BOOLEAN)
TINYINT	ifnull(TINYINT, TINYINT)
SMALLINT	ifnull(SMALLINT, SMALLINT)
INT	ifnull(INT, INT)
...

show functions in _impala_builtins like '*week*';
+-------------+------------------------------+
| return type | signature |
+-------------+------------------------------+
INT	weekofyear(TIMESTAMP)
TIMESTAMP	weeks_add(TIMESTAMP, INT)
TIMESTAMP	weeks_add(TIMESTAMP, BIGINT)
TIMESTAMP	weeks_sub(TIMESTAMP, INT)
TIMESTAMP	weeks_sub(TIMESTAMP, BIGINT)
INT	dayofweek(TIMESTAMP)
+-------------+------------------------------+

Related information:

Overviewof Impala Functions on page 207, Impala Built-In Functions on page 339, ImpalaUser-Defined Functions (UDFs)
on page 448, SHOW DATABASES on page 327, SHOW TABLES Statement on page 328

TRUNCATE TABLE Statement (CDH 5.5 or higher only)

Removes the data from an Impala table while leaving the table itself.

Syntax:

TRUNCATE [TABLE] [db_name.]table_name

Statement type: DDL

Usage notes:

336 | Apache Impala Guide

Impala SQL Language Reference

Often used to empty tables that are used during ETL cycles, after the data has been copied to another table for the
next stage of processing. This statement is a low-overhead alternative to dropping and recreating the table, or using
INSERT OVERWRITE to replace the data during the next ETL cycle.

This statement removes all the data and associated data files in the table. It can remove data files from internal tables,
external tables, partitioned tables, and tables mapped to HBase or the Amazon Simple Storage Service (S3). The data
removal applies to the entire table, including all partitions of a partitioned table.

Any statistics produced by the COMPUTE STATS statement are reset when the data is removed.

Make sure that you are in the correct database before truncating a table, either by issuing a USE statement first or by
using a fully qualified name db_name.table_name.

The optional TABLE keyword does not affect the behavior of the statement.

For other tips about managing and reclaiming Impala disk space, see Managing Disk Space for Impala Data on page
89.

Amazon S3 considerations:

Although Impala cannotwrite newdata to a table stored in the Amazon S3 filesystem, the TRUNCATE TABLE statement
can remove data files from S3. See Using Impala to Query the Amazon S3 Filesystem on page 567 for details about
working with S3 tables.

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that the impalad daemon runs under, typically the impala user, must have write permission for all the
files and directories that make up the table.

Examples:

The following example shows a table containing some data and with table and column statistics. After the TRUNCATE
TABLE statement, the data is removed and the statistics are reset.

CREATE TABLE truncate_demo (x INT);
INSERT INTO truncate_demo VALUES (1), (2), (4), (8);
SELECT COUNT(*) FROM truncate_demo;
+----------+
| count(*) |
+----------+
| 4 |
+----------+
COMPUTE STATS truncate_demo;
+---+
| summary |
+---+
| Updated 1 partition(s) and 1 column(s). |
+---+
SHOW TABLE STATS truncate_demo;
+-------+--------+------+--------------+-------------------+--------+-------------------+
| #Rows | #Files | Size | Bytes Cached | Cache Replication | Format | Incremental stats
 |
+-------+--------+------+--------------+-------------------+--------+-------------------+
| 4 | 1 | 8B | NOT CACHED | NOT CACHED | TEXT | false
 |
+-------+--------+------+--------------+-------------------+--------+-------------------+
SHOW COLUMN STATS truncate_demo;
+--------+------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+--------+------+------------------+--------+----------+----------+
| x | INT | 4 | -1 | 4 | 4 |
+--------+------+------------------+--------+----------+----------+

-- After this statement, the data and the table/column stats will be gone.
TRUNCATE TABLE truncate_demo;

SELECT COUNT(*) FROM truncate_demo;
+----------+

Apache Impala Guide | 337

Impala SQL Language Reference

| count(*) |
+----------+
| 0 |
+----------+
SHOW TABLE STATS truncate_demo;
+-------+--------+------+--------------+-------------------+--------+-------------------+
| #Rows | #Files | Size | Bytes Cached | Cache Replication | Format | Incremental stats
 |
+-------+--------+------+--------------+-------------------+--------+-------------------+
| -1 | 0 | 0B | NOT CACHED | NOT CACHED | TEXT | false
 |
+-------+--------+------+--------------+-------------------+--------+-------------------+
SHOW COLUMN STATS truncate_demo;
+--------+------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+--------+------+------------------+--------+----------+----------+
| x | INT | -1 | -1 | 4 | 4 |
+--------+------+------------------+--------+----------+----------+

Related information:

Overview of Impala Tables on page 209, ALTER TABLE Statement on page 216, CREATE TABLE Statement on page 236,
Partitioning for Impala Tables on page 523, Internal Tables on page 209, External Tables on page 210

USE Statement

Switches the current session to a specified database. The current database is where any CREATE TABLE, INSERT,
SELECT, or other statements act when you specify a table or other object name, without prefixing it with a database
name. The new current database applies for the duration of the session or unti another USE statement is executed.

Syntax:

USE db_name

By default, when you connect to an Impala instance, you begin in a database named default.

Usage notes:

Switching the default database is convenient in the following situations:

• To avoid qualifying each reference to a table with the database name. For example, SELECT * FROM t1 JOIN
t2 rather than SELECT * FROM db.t1 JOIN db.t2.

• To do a sequence of operations all within the same database, such as creating a table, inserting data, and querying
the table.

To start the impala-shell interpreter and automatically issue a USE statement for a particular database, specify the
option -d db_name for the impala-shell command. The -d option is useful to run SQL scripts, such as setup or
test scripts, against multiple databases without hardcoding a USE statement into the SQL source.

Examples:

See CREATE DATABASE Statement on page 232 for examples covering CREATE DATABASE, USE, and DROP DATABASE.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

CREATE DATABASE Statement on page 232, DROP DATABASE Statement on page 253, SHOW DATABASES on page 327

338 | Apache Impala Guide

Impala SQL Language Reference

Impala Built-In Functions
Impala supports several categories of built-in functions. These functions let you perform mathematical calculations,
string manipulation, date calculations, and other kinds of data transformations directly in SELECT statements. The
built-in functions let a SQL query return results with all formatting, calculating, and type conversions applied, rather
than performing time-consuming postprocessing in another application. By applying function calls where practical,
you can make a SQL query that is as convenient as an expression in a procedural programming language or a formula
in a spreadsheet.

The categories of functions supported by Impala are:

• Impala Mathematical Functions on page 340
• Impala Type Conversion Functions on page 361
• Impala Date and Time Functions on page 364
• Impala Conditional Functions on page 392
• Impala String Functions on page 395
• Aggregation functions, explained in Impala Aggregate Functions on page 404.

You call any of these functions through the SELECT statement. For most functions, you can omit the FROM clause and
supply literal values for any required arguments:

select abs(-1);
+---------+
| abs(-1) |
+---------+
| 1 |
+---------+

select concat('The rain ', 'in Spain');
+---------------------------------+
| concat('the rain ', 'in spain') |
+---------------------------------+
| The rain in Spain |
+---------------------------------+

select power(2,5);
+-------------+
| power(2, 5) |
+-------------+
| 32 |
+-------------+

When you use a FROM clause and specify a column name as a function argument, the function is applied for each item
in the result set:

select concat('Country = ',country_code) from all_countries where population > 100000000;
select round(price) as dollar_value from product_catalog where price between 0.0 and
100.0;

Typically, if any argument to a built-in function is NULL, the result value is also NULL:

select cos(null);
+-----------+
| cos(null) |
+-----------+
| NULL |
+-----------+

select power(2,null);
+----------------+
| power(2, null) |
+----------------+
| NULL |
+----------------+

Apache Impala Guide | 339

Impala SQL Language Reference

select concat('a',null,'b');
+------------------------+
| concat('a', null, 'b') |
+------------------------+
| NULL |
+------------------------+

Aggregate functions are a special category with different rules. These functions calculate a return value across all the
items in a result set, so they require a FROM clause in the query:

select count(product_id) from product_catalog;
select max(height), avg(height) from census_data where age > 20;

Aggregate functions also ignore NULL values rather than returning a NULL result. For example, if some rows have NULL
for a particular column, those rows are ignored when computing the AVG() for that column. Likewise, specifying
COUNT(col_name) in a query counts only those rows where col_name contains a non-NULL value.

Aggregate functions are a special category with different rules. These functions calculate a return value across all the
items in a result set, so they do require a FROM clause in the query:

select count(product_id) from product_catalog;
select max(height), avg(height) from census_data where age > 20;

Aggregate functions also ignore NULL values rather than returning a NULL result. For example, if some rows have NULL
for a particular column, those rows are ignored when computing the AVG() for that column. Likewise, specifying
COUNT(col_name) in a query counts only those rows where col_name contains a non-NULL value.

Analytic functions are a variation on aggregate functions. Instead of returning a single value, or an identical value for
each group of rows, they can compute values that vary based on a “window” consisting of other rows around them in
the result set.

Impala Mathematical Functions

Mathematical functions, or arithmetic functions, perform numeric calculations that are typically more complex than
basic addition, subtraction,multiplication, and division. For example, these functions include trigonometric, logarithmic,
and base conversion operations.

Note: In Impala, exponentiation uses the pow() function rather than an exponentiation operator
such as **.

Related information:

Themathematical functions operatemainly on these data types: INT Data Type on page 136, BIGINT Data Type on page
121, SMALLINT Data Type on page 141, TINYINT Data Type on page 154, DOUBLE Data Type on page 134, FLOAT Data
Type on page 135, and DECIMAL Data Type (CDH 5.1 or higher only) on page 126. For the operators that perform the
standard operations such as addition, subtraction, multiplication, and division, see Arithmetic Operators on page 189.

Functions that perform bitwise operations are explained in Impala Bit Functions on page 352.

Function reference:

Impala supports the following mathematical functions:

abs(numeric_type a)

Purpose: Returns the absolute value of the argument.

Return type: Same as the input value

Usage notes: Use this function to ensure all return values are positive. This is different than the positive()
function, which returns its argument unchanged (even if the argument was negative).

340 | Apache Impala Guide

Impala SQL Language Reference

acos(double a)

Purpose: Returns the arccosine of the argument.

Return type: double

asin(double a)

Purpose: Returns the arcsine of the argument.

Return type: double

atan(double a)

Purpose: Returns the arctangent of the argument.

Return type: double

atan2(double a, double b)

Purpose: Returns the arctangent of the two arguments, with the signs of the arguments used to determine the
quadrant of the result.

Return type: double

bin(bigint a)

Purpose: Returns the binary representation of an integer value, that is, a string of 0 and 1 digits.

Return type: string

ceil(double a),ceil(decimal(p,s) a),ceiling(double a),ceiling(decimal(p,s) a),dceil(double
a), dceil(decimal(p,s) a)

Purpose: Returns the smallest integer that is greater than or equal to the argument.

Return type: bigint or decimal(p,s) depending on the type of the input argument

conv(bigint num, int from_base, int to_base), conv(string num, int from_base, int to_base)

Purpose: Returns a string representation of an integer value in a particular base. The input value can be a string,
for example to convert a hexadecimal number such as fce2 to decimal. To use the return value as a number (for
example, when converting to base 10), use CAST() to convert to the appropriate type.

Return type: string

cos(double a)

Purpose: Returns the cosine of the argument.

Return type: double

cosh(double a)

Purpose: Returns the hyperbolic cosine of the argument.

Return type: double

cot(double a)

Purpose: Returns the cotangent of the argument.

Return type: double

Added in: CDH 5.5.0 (Impala 2.3.0)

degrees(double a)

Purpose: Converts argument value from radians to degrees.

Return type: double

e()

Purpose: Returns the mathematical constant e.

Return type: double

Apache Impala Guide | 341

Impala SQL Language Reference

https://en.wikipedia.org/wiki/E_(mathematical_constant

exp(double a), dexp(double a)

Purpose: Returns the mathematical constant e raised to the power of the argument.

Return type: double

factorial(integer_type a)

Purpose: Computes the factorial of an integer value. It works with any integer type.

Added in: CDH 5.5.0 (Impala 2.3.0)

Usage notes: You can use either the factorial() function or the ! operator. The factorial of 0 is 1. Likewise, the
factorial() function returns 1 for any negative value. The maximum positive value for the input argument is 20;
a value of 21 or greater overflows the range for a BIGINT and causes an error.

Return type: bigint

Added in: CDH 5.5.0 (Impala 2.3.0)

select factorial(5);
+--------------+
| factorial(5) |
+--------------+
| 120 |
+--------------+

select 5!;
+-----+
| 5! |
+-----+
| 120 |
+-----+

select factorial(0);
+--------------+
| factorial(0) |
+--------------+
| 1 |
+--------------+

select factorial(-100);
+-----------------+
| factorial(-100) |
+-----------------+
| 1 |
+-----------------+

floor(double a), floor(decimal(p,s) a), dfloor(double a), dfloor(decimal(p,s) a)

Purpose: Returns the largest integer that is less than or equal to the argument.

Return type: bigint or decimal(p,s) depending on the type of the input argument

fmod(double a, double b), fmod(float a, float b)

Purpose: Returns the modulus of a floating-point number.

Return type: float or double, depending on type of arguments

Added in: Impala 1.1.1

Usage notes:

Because this function operates on DOUBLE or FLOAT values, it is subject to potential rounding errors for values that
cannot be represented precisely. Prefer to usewhole numbers, or values that you know can be represented precisely
by the DOUBLE or FLOAT types.

Examples:

342 | Apache Impala Guide

Impala SQL Language Reference

https://en.wikipedia.org/wiki/E_(mathematical_constant
https://en.wikipedia.org/wiki/Factorial

The following examples show equivalent operations with the fmod() function and the % arithmetic operator, for
values not subject to any rounding error.

select fmod(10,3);
+-------------+
| fmod(10, 3) |
+-------------+
| 1 |
+-------------+

select fmod(5.5,2);
+--------------+
| fmod(5.5, 2) |
+--------------+
| 1.5 |
+--------------+

select 10 % 3;
+--------+
| 10 % 3 |
+--------+
| 1 |
+--------+

select 5.5 % 2;
+---------+
| 5.5 % 2 |
+---------+
| 1.5 |
+---------+

The following examples show operations with the fmod() function for values that cannot be represented precisely
by the DOUBLE or FLOAT types, and thus are subject to rounding error. fmod(9.9,3.0) returns a value slightly
different than the expected 0.9 because of rounding. fmod(9.9,3.3) returns a value quite different from the
expected value of 0 because of rounding error during intermediate calculations.

select fmod(9.9,3.0);
+--------------------+
| fmod(9.9, 3.0) |
+--------------------+
| 0.8999996185302734 |
+--------------------+

select fmod(9.9,3.3);
+-------------------+
| fmod(9.9, 3.3) |
+-------------------+
| 3.299999713897705 |
+-------------------+

fnv_hash(type v),

Purpose: Returns a consistent 64-bit value derived from the input argument, for convenience of implementing
hashing logic in an application.

Return type: BIGINT

Usage notes:

You might use the return value in an application where you perform load balancing, bucketing, or some other
technique to divide processing or storage.

Because the result can be any 64-bit value, to restrict the value to a particular range, you can use an expression
that includes the ABS() function and the % (modulo) operator. For example, to produce a hash value in the range
0-9, you could use the expression ABS(FNV_HASH(x)) % 10.

This function implements the same algorithm that Impala uses internally for hashing, on systems where the CRC32
instructions are not available.

Apache Impala Guide | 343

Impala SQL Language Reference

This function implements the Fowler–Noll–Vo hash function, in particular the FNV-1a variation. This is not a perfect
hash function: some combinations of values could produce the same result value. It is not suitable for cryptographic
use.

Similar input values of different types could produce different hash values, for example the same numeric value
represented as SMALLINT or BIGINT, FLOAT or DOUBLE, or DECIMAL(5,2) or DECIMAL(20,5).

Examples:

[localhost:21000] > create table h (x int, s string);
[localhost:21000] > insert into h values (0, 'hello'), (1,'world'),
(1234567890,'antidisestablishmentarianism');
[localhost:21000] > select x, fnv_hash(x) from h;
+------------+----------------------+
| x | fnv_hash(x) |
+------------+----------------------+
0	-2611523532599129963
1	4307505193096137732
1234567890	3614724209955230832
+------------+----------------------+	
[localhost:21000] > select s, fnv_hash(s) from h;	
+------------------------------+---------------------+	
s	fnv_hash(s)
+------------------------------+---------------------+	
hello	6414202926103426347
world	6535280128821139475
antidisestablishmentarianism	-209330013948433970
+------------------------------+---------------------+	
[localhost:21000] > select s, abs(fnv_hash(s)) % 10 from h;	
+------------------------------+-------------------------+	
s	abs(fnv_hash(s)) % 10.0
+------------------------------+-------------------------+	
hello	8
world	6
antidisestablishmentarianism	4
+------------------------------+-------------------------+

For short argument values, the high-order bits of the result have relatively low entropy:

[localhost:21000] > create table b (x boolean);
[localhost:21000] > insert into b values (true), (true), (false), (false);
[localhost:21000] > select x, fnv_hash(x) from b;
+-------+---------------------+
| x | fnv_hash(x) |
+-------+---------------------+
true	2062020650953872396
true	2062020650953872396
false	2062021750465500607
false	2062021750465500607
+-------+---------------------+

Added in: Impala 1.2.2

greatest(bigint a[, bigint b ...]),greatest(double a[, double b ...]),greatest(decimal(p,s)
a[, decimal(p,s) b ...]), greatest(string a[, string b ...]), greatest(timestamp a[,
timestamp b ...])

Purpose: Returns the largest value from a list of expressions.

Return type: sameas the initial argument value, except that integer values are promoted toBIGINT and floating-point
values are promoted to DOUBLE; use CAST() when inserting into a smaller numeric column

hex(bigint a), hex(string a)

Purpose: Returns the hexadecimal representation of an integer value, or of the characters in a string.

Return type: string

is_inf(double a),

Purpose: Tests whether a value is equal to the special value “inf”, signifying infinity.

344 | Apache Impala Guide

Impala SQL Language Reference

http://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function

Return type: boolean

Usage notes:

Infinity and NaN can be specified in text data files as inf and nan respectively, and Impala interprets them as these
special values. They can also be produced by certain arithmetic expressions; for example, 1/0 returns Infinity
and pow(-1, 0.5) returns NaN. Or you can cast the literal values, such as CAST('nan' AS DOUBLE) or
CAST('inf' AS DOUBLE).

is_nan(double a),

Purpose: Tests whether a value is equal to the special value “NaN”, signifying “not a number”.

Return type: boolean

Usage notes:

Infinity and NaN can be specified in text data files as inf and nan respectively, and Impala interprets them as these
special values. They can also be produced by certain arithmetic expressions; for example, 1/0 returns Infinity
and pow(-1, 0.5) returns NaN. Or you can cast the literal values, such as CAST('nan' AS DOUBLE) or
CAST('inf' AS DOUBLE).

least(bigint a[, bigint b ...]), least(double a[, double b ...]), least(decimal(p,s) a[,
decimal(p,s) b ...]), least(string a[, string b ...]), least(timestamp a[, timestamp b
...])

Purpose: Returns the smallest value from a list of expressions.

Return type: sameas the initial argument value, except that integer values are promoted toBIGINT and floating-point
values are promoted to DOUBLE; use CAST() when inserting into a smaller numeric column

ln(double a), dlog1(double a)

Purpose: Returns the natural logarithm of the argument.

Return type: double

log(double base, double a)

Purpose: Returns the logarithm of the second argument to the specified base.

Return type: double

log10(double a), dlog10(double a)

Purpose: Returns the logarithm of the argument to the base 10.

Return type: double

log2(double a)

Purpose: Returns the logarithm of the argument to the base 2.

Return type: double

max_int(), max_tinyint(), max_smallint(), max_bigint()

Purpose: Returns the largest value of the associated integral type.

Return type: The same as the integral type being checked.

Usage notes: Use the corresponding min_ and max_ functions to check if all values in a column are within the
allowed range, before copying data or altering column definitions. If not, switch to the next higher integral type or
to a DECIMAL with sufficient precision.

min_int(), min_tinyint(), min_smallint(), min_bigint()

Purpose: Returns the smallest value of the associated integral type (a negative number).

Return type: The same as the integral type being checked.

Apache Impala Guide | 345

Impala SQL Language Reference

https://en.wikipedia.org/wiki/Natural_logarithm

Usage notes: Use the corresponding min_ and max_ functions to check if all values in a column are within the
allowed range, before copying data or altering column definitions. If not, switch to the next higher integral type or
to a DECIMAL with sufficient precision.

mod(numeric_type a, same_type b)

Purpose: Returns the modulus of a number. Equivalent to the % arithmetic operator. Works with any size integer
type, any size floating-point type, and DECIMAL with any precision and scale.

Return type: Same as the input value

Added in: CDH 5.4.0 (Impala 2.2.0)

Usage notes:

Because this function works with DECIMAL values, prefer it over fmod() when working with fractional values. It is
not subject to the rounding errors that make fmod() problematic with floating-point numbers. The % arithmetic
operator nowuses themod() function in caseswhere its arguments can be interpreted asDECIMAL values, increasing
the accuracy of that operator.

Examples:

The following examples show how the mod() function works for whole numbers and fractional values, and how
the % operator works the same way. In the case of mod(9.9,3), the type conversion for the second argument
results in the first argument being interpreted as DOUBLE, so to produce an accurate DECIMAL result requires casting
the second argument or writing it as a DECIMAL literal, 3.0.

select mod(10,3);
+-------------+
| fmod(10, 3) |
+-------------+
| 1 |
+-------------+

select mod(5.5,2);
+--------------+
| fmod(5.5, 2) |
+--------------+
| 1.5 |
+--------------+

select 10 % 3;
+--------+
| 10 % 3 |
+--------+
| 1 |
+--------+

select 5.5 % 2;
+---------+
| 5.5 % 2 |
+---------+
| 1.5 |
+---------+

select mod(9.9,3.3);
+---------------+
| mod(9.9, 3.3) |
+---------------+
| 0.0 |
+---------------+

select mod(9.9,3);
+--------------------+
| mod(9.9, 3) |
+--------------------+
| 0.8999996185302734 |
+--------------------+

select mod(9.9, cast(3 as decimal(2,1)));
+-----------------------------------+

346 | Apache Impala Guide

Impala SQL Language Reference

| mod(9.9, cast(3 as decimal(2,1))) |
+-----------------------------------+
| 0.9 |
+-----------------------------------+

select mod(9.9,3.0);
+---------------+
| mod(9.9, 3.0) |
+---------------+
| 0.9 |
+---------------+

negative(numeric_type a)

Purpose: Returns the argumentwith the sign reversed; returns a positive value if the argumentwas already negative.

Return type: Same as the input value

Usage notes: Use -abs(a) instead if you need to ensure all return values are negative.

pi()

Purpose: Returns the constant pi.

Return type: double

pmod(bigint a, bigint b), pmod(double a, double b)

Purpose: Returns the positive modulus of a number. Primarily for HiveQL compatibility.

Return type: int or double, depending on type of arguments

Examples:

The following examples show how the fmod() function sometimes returns a negative value depending on the sign
of its arguments, and the pmod() function returns the same value as fmod(), but sometimes with the sign flipped.

select fmod(-5,2);
+-------------+
| fmod(-5, 2) |
+-------------+
| -1 |
+-------------+

select pmod(-5,2);
+-------------+
| pmod(-5, 2) |
+-------------+
| 1 |
+-------------+

select fmod(-5,-2);
+--------------+
| fmod(-5, -2) |
+--------------+
| -1 |
+--------------+

select pmod(-5,-2);
+--------------+
| pmod(-5, -2) |
+--------------+
| -1 |
+--------------+

select fmod(5,-2);
+-------------+
| fmod(5, -2) |
+-------------+
| 1 |
+-------------+

select pmod(5,-2);

Apache Impala Guide | 347

Impala SQL Language Reference

https://issues.apache.org/jira/browse/HIVE-656

+-------------+
| pmod(5, -2) |
+-------------+
| -1 |
+-------------+

positive(numeric_type a)

Purpose: Returns the original argument unchanged (even if the argument is negative).

Return type: Same as the input value

Usage notes: Use abs() instead if you need to ensure all return values are positive.

pow(double a, double p), power(double a, double p), dpow(double a, double p), fpow(double
a, double p)

Purpose: Returns the first argument raised to the power of the second argument.

Return type: double

precision(numeric_expression)

Purpose:Computes the precision (number of decimal digits) needed to represent the type of the argument expression
as a DECIMAL value.

Usage notes:

Typically used in combination with the scale() function, to determine the appropriate
DECIMAL(precision,scale) type to declare in a CREATE TABLE statement or CAST() function.

Return type: int

Examples:

The following examples demonstrate how to check the precision and scale of numeric literals or other numeric
expressions. Impala represents numeric literals in the smallest appropriate type. 5 is a TINYINT value, which ranges
from -128 to 127, therefore 3 decimal digits are needed to represent the entire range, and because it is an integer
value there are no fractional digits. 1.333 is interpreted as a DECIMAL value, with 4 digits total and 3 digits after
the decimal point.

[localhost:21000] > select precision(5), scale(5);
+--------------+----------+
| precision(5) | scale(5) |
+--------------+----------+
| 3 | 0 |
+--------------+----------+
[localhost:21000] > select precision(1.333), scale(1.333);
+------------------+--------------+
| precision(1.333) | scale(1.333) |
+------------------+--------------+
| 4 | 3 |
+------------------+--------------+
[localhost:21000] > with t1 as
 (select cast(12.34 as decimal(20,2)) x union select cast(1 as decimal(8,6)) x)
 select precision(x), scale(x) from t1 limit 1;
+--------------+----------+
| precision(x) | scale(x) |
+--------------+----------+
| 24 | 6 |
+--------------+----------+

quotient(bigint numerator, bigint denominator), quotient(double numerator, double
denominator)

Purpose:Returns the first argument divided by the second argument, discarding any fractional part. Avoids promoting
integer arguments to DOUBLE as happens with the / SQL operator. Also includes an overload that accepts DOUBLE
arguments, discards the fractional part of each argument value before dividing, and again returns BIGINT. This
function is the same as the DIV operator.

348 | Apache Impala Guide

Impala SQL Language Reference

Return type: bigint

radians(double a)

Purpose: Converts argument value from degrees to radians.

Return type: double

rand(), rand(bigint seed), random(), random(bigint seed)

Purpose: Returns a random value between 0 and 1. After rand() is called with a seed argument, it produces a
consistent random sequence based on the seed value.

Return type: double

Usage notes: Currently, the random sequence is reset after each query, and multiple calls to rand() within the
same query return the same value each time. For different number sequences that are different for each query,
pass a unique seed value to each call to rand(). For example, select rand(unix_timestamp()) from ...

Examples:

The following examples showhowrand() can produce sequences of varying predictability, so that you can reproduce
query results involving random values or generate unique sequences of random values for each query. When
rand() is called with no argument, it generates the same sequence of values each time, regardless of the ordering
of the result set. When rand() is called with a constant integer, it generates a different sequence of values, but
still always the same sequence for the same seed value. If you pass in a seed value that changes, such as the return
value of the expression unix_timestamp(now()), each query will use a different sequence of random values,
potentially more useful in probability calculations although more difficult to reproduce at a later time. Therefore,
the final two examples with an unpredictable seed value also include the seed in the result set, to make it possible
to reproduce the same random sequence later.

select x, rand() from three_rows;
+---+-----------------------+
| x | rand() |
+---+-----------------------+
1	0.0004714746030380365
2	0.5895895192351144
3	0.4431900859080209
+---+-----------------------+

select x, rand() from three_rows order by x desc;
+---+-----------------------+
| x | rand() |
+---+-----------------------+
3	0.0004714746030380365
2	0.5895895192351144
1	0.4431900859080209
+---+-----------------------+

select x, rand(1234) from three_rows order by x;
+---+----------------------+
| x | rand(1234) |
+---+----------------------+
1	0.7377511392057646
2	0.009428468537250751
3	0.208117277924026
+---+----------------------+

select x, rand(1234) from three_rows order by x desc;
+---+----------------------+
| x | rand(1234) |
+---+----------------------+
3	0.7377511392057646
2	0.009428468537250751
1	0.208117277924026
+---+----------------------+

select x, unix_timestamp(now()), rand(unix_timestamp(now()))
 from three_rows order by x;
+---+-----------------------+-----------------------------+

Apache Impala Guide | 349

Impala SQL Language Reference

| x | unix_timestamp(now()) | rand(unix_timestamp(now())) |
+---+-----------------------+-----------------------------+
1	1440777752	0.002051228658320023
2	1440777752	0.5098743483004506
3	1440777752	0.9517714925817081
+---+-----------------------+-----------------------------+

select x, unix_timestamp(now()), rand(unix_timestamp(now()))
 from three_rows order by x desc;
+---+-----------------------+-----------------------------+
| x | unix_timestamp(now()) | rand(unix_timestamp(now())) |
+---+-----------------------+-----------------------------+
3	1440777761	0.9985985015512437
2	1440777761	0.3251255333074953
1	1440777761	0.02422675025846192
+---+-----------------------+-----------------------------+

round(double a), round(double a, int d), round(decimal a, int_type d), dround(double a),
dround(double a, int d), dround(decimal(p,s) a, int_type d)

Purpose: Rounds a floating-point value. By default (with a single argument), rounds to the nearest integer. Values
ending in .5 are rounded up for positive numbers, down for negative numbers (that is, away from zero). The optional
second argument specifies how many digits to leave after the decimal point; values greater than zero produce a
floating-point return value rounded to the requested number of digits to the right of the decimal point.

Return type: bigint for single double argument. double for two-argument signature when second argument
greater than zero. For DECIMAL values, the smallest DECIMAL(p,s) type with appropriate precision and scale.

scale(numeric_expression)

Purpose: Computes the scale (number of decimal digits to the right of the decimal point) needed to represent the
type of the argument expression as a DECIMAL value.

Usage notes:

Typically used in combination with the precision() function, to determine the appropriate
DECIMAL(precision,scale) type to declare in a CREATE TABLE statement or CAST() function.

Return type: int

Examples:

The following examples demonstrate how to check the precision and scale of numeric literals or other numeric
expressions. Impala represents numeric literals in the smallest appropriate type. 5 is a TINYINT value, which ranges
from -128 to 127, therefore 3 decimal digits are needed to represent the entire range, and because it is an integer
value there are no fractional digits. 1.333 is interpreted as a DECIMAL value, with 4 digits total and 3 digits after
the decimal point.

[localhost:21000] > select precision(5), scale(5);
+--------------+----------+
| precision(5) | scale(5) |
+--------------+----------+
| 3 | 0 |
+--------------+----------+
[localhost:21000] > select precision(1.333), scale(1.333);
+------------------+--------------+
| precision(1.333) | scale(1.333) |
+------------------+--------------+
| 4 | 3 |
+------------------+--------------+
[localhost:21000] > with t1 as
 (select cast(12.34 as decimal(20,2)) x union select cast(1 as decimal(8,6)) x)
 select precision(x), scale(x) from t1 limit 1;
+--------------+----------+
| precision(x) | scale(x) |
+--------------+----------+
| 24 | 6 |
+--------------+----------+

350 | Apache Impala Guide

Impala SQL Language Reference

sign(double a)

Purpose: Returns -1, 0, or 1 to indicate the signedness of the argument value.

Return type: int

sin(double a)

Purpose: Returns the sine of the argument.

Return type: double

sinh(double a)

Purpose: Returns the hyperbolic sine of the argument.

Return type: double

sqrt(double a), dsqrt(double a)

Purpose: Returns the square root of the argument.

Return type: double

tan(double a)

Purpose: Returns the tangent of the argument.

Return type: double

tanh(double a)

Purpose: Returns the hyperbolic tangent of the argument.

Return type: double

truncate(double_or_decimal a[, digits_to_leave]), dtrunc(double_or_decimal a[,
digits_to_leave])

Purpose: Removes some or all fractional digits from a numeric value. With no argument, removes all fractional
digits, leaving an integer value. The optional argument specifies the number of fractional digits to include in the
return value, and only applies with the argument type is DECIMAL. truncate() and dtrunc() are aliases for the
same function.

Return type: decimal for DECIMAL arguments; bigint for DOUBLE arguments

Examples:

select truncate(3.45)
+----------------+
| truncate(3.45) |
+----------------+
| 3 |
+----------------+

select truncate(-3.45)
+-----------------+
| truncate(-3.45) |
+-----------------+
| -3 |
+-----------------+

select truncate(3.456,1)
+--------------------+
| truncate(3.456, 1) |
+--------------------+
| 3.4 |
+--------------------+

select dtrunc(3.456,1)
+------------------+
| dtrunc(3.456, 1) |
+------------------+
| 3.4 |

Apache Impala Guide | 351

Impala SQL Language Reference

+------------------+

select truncate(3.456,2)
+--------------------+
| truncate(3.456, 2) |
+--------------------+
| 3.45 |
+--------------------+

select truncate(3.456,7)
+--------------------+
| truncate(3.456, 7) |
+--------------------+
| 3.4560000 |
+--------------------+

unhex(string a)

Purpose:Returns a string of characterswith ASCII values corresponding to pairs of hexadecimal digits in the argument.

Return type: string

Impala Bit Functions

Bitmanipulation functions perform bitwise operations involved in scientific processing or computer science algorithms.
For example, these functions include setting, clearing, or testing bits within an integer value, or changing the positions
of bits with or without wraparound.

If a function takes two integer arguments that are required to be of the same type, the smaller argument is promoted
to the type of the larger one if required. For example, BITAND(1,4096) treats both arguments as SMALLINT, because
1 can be represented as a TINYINT but 4096 requires a SMALLINT.

Remember that all Impala integer values are signed. Therefore, when dealing with binary values where the most
significant bit is 1, the specified or returned values might be negative when represented in base 10.

Whenever any argument is NULL, either the input value, bit position, or number of shift or rotate positions, the return
value from any of these functions is also NULL

Related information:

The bit functions operate on all the integral data types: INT Data Type on page 136, BIGINT Data Type on page 121,
SMALLINT Data Type on page 141, and TINYINT Data Type on page 154.

Function reference:

Impala supports the following bit functions:

bitand(integer_type a, same_type b)

Purpose: Returns an integer value representing the bits that are set to 1 in both of the arguments. If the arguments
are of different sizes, the smaller is promoted to the type of the larger.

Usage notes: The bitand() function is equivalent to the & binary operator.

Return type: Same as the input value

Added in: CDH 5.5.0 (Impala 2.3.0)

Examples:

The following examples show the results of ANDing integer values. 255 contains all 1 bits in its lowermost 7 bits.
32767 contains all 1 bits in its lowermost 15 bits. You can use the bin() function to check the binary representation
of any integer value, although the result is always represented as a 64-bit value. If necessary, the smaller argument
is promoted to the type of the larger one.

select bitand(255, 32767); /* 0000000011111111 & 0111111111111111 */
+--------------------+
| bitand(255, 32767) |
+--------------------+

352 | Apache Impala Guide

Impala SQL Language Reference

| 255 |
+--------------------+

select bitand(32767, 1); /* 0111111111111111 & 0000000000000001 */
+------------------+
| bitand(32767, 1) |
+------------------+
| 1 |
+------------------+

select bitand(32, 16); /* 00010000 & 00001000 */
+----------------+
| bitand(32, 16) |
+----------------+
| 0 |
+----------------+

select bitand(12,5); /* 00001100 & 00000101 */
+---------------+
| bitand(12, 5) |
+---------------+
| 4 |
+---------------+

select bitand(-1,15); /* 11111111 & 00001111 */
+----------------+
| bitand(-1, 15) |
+----------------+
| 15 |
+----------------+

bitnot(integer_type a)

Purpose: Inverts all the bits of the input argument.

Usage notes: The bitnot() function is equivalent to the ~ unary operator.

Return type: Same as the input value

Added in: CDH 5.5.0 (Impala 2.3.0)

Examples:

These examples illustrate what happens when you flip all the bits of an integer value. The sign always changes. The
decimal representation is one different between the positive and negative values.

select bitnot(127); /* 01111111 -> 10000000 */
+-------------+
| bitnot(127) |
+-------------+
| -128 |
+-------------+

select bitnot(16); /* 00010000 -> 11101111 */
+------------+
| bitnot(16) |
+------------+
| -17 |
+------------+

select bitnot(0); /* 00000000 -> 11111111 */
+-----------+
| bitnot(0) |
+-----------+
| -1 |
+-----------+

select bitnot(-128); /* 10000000 -> 01111111 */
+--------------+
| bitnot(-128) |
+--------------+

Apache Impala Guide | 353

Impala SQL Language Reference

| 127 |
+--------------+

bitor(integer_type a, same_type b)

Purpose: Returns an integer value representing the bits that are set to 1 in either of the arguments. If the arguments
are of different sizes, the smaller is promoted to the type of the larger.

Usage notes: The bitor() function is equivalent to the | binary operator.

Return type: Same as the input value

Added in: CDH 5.5.0 (Impala 2.3.0)

Examples:

The following examples show the results of ORing integer values.

select bitor(1,4); /* 00000001 | 00000100 */
+-------------+
| bitor(1, 4) |
+-------------+
| 5 |
+-------------+

select bitor(16,48); /* 00001000 | 00011000 */
+---------------+
| bitor(16, 48) |
+---------------+
| 48 |
+---------------+

select bitor(0,7); /* 00000000 | 00000111 */
+-------------+
| bitor(0, 7) |
+-------------+
| 7 |
+-------------+

bitxor(integer_type a, same_type b)

Purpose: Returns an integer value representing the bits that are set to 1 in one but not both of the arguments. If
the arguments are of different sizes, the smaller is promoted to the type of the larger.

Usage notes: The bitxor() function is equivalent to the ^ binary operator.

Return type: Same as the input value

Added in: CDH 5.5.0 (Impala 2.3.0)

Examples:

The following examples show the results of XORing integer values. XORing a non-zero value with zero returns the
non-zero value. XORing two identical values returns zero, because all the 1 bits from the first argument are also 1
bits in the second argument. XORing different non-zero values turns off some bits and leaves others turned on,
based on whether the same bit is set in both arguments.

select bitxor(0,15); /* 00000000 ^ 00001111 */
+---------------+
| bitxor(0, 15) |
+---------------+
| 15 |
+---------------+

select bitxor(7,7); /* 00000111 ^ 00000111 */
+--------------+
| bitxor(7, 7) |
+--------------+
| 0 |
+--------------+

354 | Apache Impala Guide

Impala SQL Language Reference

select bitxor(8,4); /* 00001000 ^ 00000100 */
+--------------+
| bitxor(8, 4) |
+--------------+
| 12 |
+--------------+

select bitxor(3,7); /* 00000011 ^ 00000111 */
+--------------+
| bitxor(3, 7) |
+--------------+
| 4 |
+--------------+

countset(integer_type a [, int zero_or_one])

Purpose: By default, returns the number of 1 bits in the specified integer value. If the optional second argument is
set to zero, it returns the number of 0 bits instead.

Usage notes:

In discussions of information theory, this operation is referred to as the “population count” or “popcount”.

Return type: Same as the input value

Added in: CDH 5.5.0 (Impala 2.3.0)

Examples:

The following examples show how to count the number of 1 bits in an integer value.

select countset(1); /* 00000001 */
+-------------+
| countset(1) |
+-------------+
| 1 |
+-------------+

select countset(3); /* 00000011 */
+-------------+
| countset(3) |
+-------------+
| 2 |
+-------------+

select countset(16); /* 00010000 */
+--------------+
| countset(16) |
+--------------+
| 1 |
+--------------+

select countset(17); /* 00010001 */
+--------------+
| countset(17) |
+--------------+
| 2 |
+--------------+

select countset(7,1); /* 00000111 = 3 1 bits; the function counts 1 bits by default */
+----------------+
| countset(7, 1) |
+----------------+
| 3 |
+----------------+

select countset(7,0); /* 00000111 = 5 0 bits; third argument can only be 0 or 1 */
+----------------+
| countset(7, 0) |
+----------------+

Apache Impala Guide | 355

Impala SQL Language Reference

https://en.wikipedia.org/wiki/Hamming_weight

| 5 |
+----------------+

getbit(integer_type a, int position)

Purpose: Returns a 0 or 1 representing the bit at a specified position. The positions are numbered right to left,
starting at zero. The position argument cannot be negative.

Usage notes:

When you use a literal input value, it is treated as an 8-bit, 16-bit, and so on value, the smallest type that is
appropriate. The type of the input value limits the range of the positions. Cast the input value to the appropriate
type if you need to ensure it is treated as a 64-bit, 32-bit, and so on value.

Return type: Same as the input value

Added in: CDH 5.5.0 (Impala 2.3.0)

Examples:

The following examples show how to test a specific bit within an integer value.

select getbit(1,0); /* 00000001 */
+--------------+
| getbit(1, 0) |
+--------------+
| 1 |
+--------------+

select getbit(16,1) /* 00010000 */
+---------------+
| getbit(16, 1) |
+---------------+
| 0 |
+---------------+

select getbit(16,4) /* 00010000 */
+---------------+
| getbit(16, 4) |
+---------------+
| 1 |
+---------------+

select getbit(16,5) /* 00010000 */
+---------------+
| getbit(16, 5) |
+---------------+
| 0 |
+---------------+

select getbit(-1,3); /* 11111111 */
+---------------+
| getbit(-1, 3) |
+---------------+
| 1 |
+---------------+

select getbit(-1,25); /* 11111111 */
ERROR: Invalid bit position: 25

select getbit(cast(-1 as int),25); /* 11111111111111111111111111111111 */
+-----------------------------+
| getbit(cast(-1 as int), 25) |
+-----------------------------+
| 1 |
+-----------------------------+

rotateleft(integer_type a, int positions)

Purpose: Rotates an integer value left by a specified number of bits. As the most significant bit is taken out of the
original value, if it is a 1 bit, it is “rotated” back to the least significant bit. Therefore, the final value has the same

356 | Apache Impala Guide

Impala SQL Language Reference

number of 1 bits as the original value, just in different positions. In computer science terms, this operation is a
“circular shift”.

Usage notes:

Specifying a second argument of zero leaves the original value unchanged. Rotating a -1 value by any number of
positions still returns -1, because the original value has all 1 bits and all the 1 bits are preserved during rotation.
Similarly, rotating a 0 value by any number of positions still returns 0. Rotating a value by the same number of bits
as in the value returns the same value. Because this is a circular operation, the number of positions is not limited
to the number of bits in the input value. For example, rotating an 8-bit value by 1, 9, 17, and so on positions returns
an identical result in each case.

Return type: Same as the input value

Added in: CDH 5.5.0 (Impala 2.3.0)

Examples:

select rotateleft(1,4); /* 00000001 -> 00010000 */
+------------------+
| rotateleft(1, 4) |
+------------------+
| 16 |
+------------------+

select rotateleft(-1,155); /* 11111111 -> 11111111 */
+---------------------+
| rotateleft(-1, 155) |
+---------------------+
| -1 |
+---------------------+

select rotateleft(-128,1); /* 10000000 -> 00000001 */
+---------------------+
| rotateleft(-128, 1) |
+---------------------+
| 1 |
+---------------------+

select rotateleft(-127,3); /* 10000001 -> 00001100 */
+---------------------+
| rotateleft(-127, 3) |
+---------------------+
| 12 |
+---------------------+

rotateright(integer_type a, int positions)

Purpose: Rotates an integer value right by a specified number of bits. As the least significant bit is taken out of the
original value, if it is a 1 bit, it is “rotated” back to the most significant bit. Therefore, the final value has the same
number of 1 bits as the original value, just in different positions. In computer science terms, this operation is a
“circular shift”.

Usage notes:

Specifying a second argument of zero leaves the original value unchanged. Rotating a -1 value by any number of
positions still returns -1, because the original value has all 1 bits and all the 1 bits are preserved during rotation.
Similarly, rotating a 0 value by any number of positions still returns 0. Rotating a value by the same number of bits
as in the value returns the same value. Because this is a circular operation, the number of positions is not limited
to the number of bits in the input value. For example, rotating an 8-bit value by 1, 9, 17, and so on positions returns
an identical result in each case.

Return type: Same as the input value

Added in: CDH 5.5.0 (Impala 2.3.0)

Apache Impala Guide | 357

Impala SQL Language Reference

https://en.wikipedia.org/wiki/Circular_shift
https://en.wikipedia.org/wiki/Circular_shift

Examples:

select rotateright(16,4); /* 00010000 -> 00000001 */
+--------------------+
| rotateright(16, 4) |
+--------------------+
| 1 |
+--------------------+

select rotateright(-1,155); /* 11111111 -> 11111111 */
+----------------------+
| rotateright(-1, 155) |
+----------------------+
| -1 |
+----------------------+

select rotateright(-128,1); /* 10000000 -> 01000000 */
+----------------------+
| rotateright(-128, 1) |
+----------------------+
| 64 |
+----------------------+

select rotateright(-127,3); /* 10000001 -> 00110000 */
+----------------------+
| rotateright(-127, 3) |
+----------------------+
| 48 |
+----------------------+

setbit(integer_type a, int position [, int zero_or_one])

Purpose: By default, changes a bit at a specified position to a 1, if it is not already. If the optional third argument
is set to zero, the specified bit is set to 0 instead.

Usage notes:

If the bit at the specified position was already 1 (by default) or 0 (with a third argument of zero), the return value
is the same as the first argument. The positions are numbered right to left, starting at zero. (Therefore, the return
value could be different from the first argument even if the position argument is zero.) The position argument
cannot be negative.

When you use a literal input value, it is treated as an 8-bit, 16-bit, and so on value, the smallest type that is
appropriate. The type of the input value limits the range of the positions. Cast the input value to the appropriate
type if you need to ensure it is treated as a 64-bit, 32-bit, and so on value.

Return type: Same as the input value

Added in: CDH 5.5.0 (Impala 2.3.0)

Examples:

select setbit(0,0); /* 00000000 -> 00000001 */
+--------------+
| setbit(0, 0) |
+--------------+
| 1 |
+--------------+

select setbit(0,3); /* 00000000 -> 00001000 */
+--------------+
| setbit(0, 3) |
+--------------+
| 8 |
+--------------+

select setbit(7,3); /* 00000111 -> 00001111 */
+--------------+
| setbit(7, 3) |
+--------------+
| 15 |

358 | Apache Impala Guide

Impala SQL Language Reference

+--------------+

select setbit(15,3); /* 00001111 -> 00001111 */
+---------------+
| setbit(15, 3) |
+---------------+
| 15 |
+---------------+

select setbit(0,32); /* By default, 0 is a TINYINT with only 8 bits. */
ERROR: Invalid bit position: 32

select setbit(cast(0 as bigint),32); /* For BIGINT, the position can be 0..63. */
+-------------------------------+
| setbit(cast(0 as bigint), 32) |
+-------------------------------+
| 4294967296 |
+-------------------------------+

select setbit(7,3,1); /* 00000111 -> 00001111; setting to 1 is the default */
+-----------------+
| setbit(7, 3, 1) |
+-----------------+
| 15 |
+-----------------+

select setbit(7,2,0); /* 00000111 -> 00000011; third argument of 0 clears instead of
sets */
+-----------------+
| setbit(7, 2, 0) |
+-----------------+
| 3 |
+-----------------+

shiftleft(integer_type a, int positions)

Purpose: Shifts an integer value left by a specified number of bits. As the most significant bit is taken out of the
original value, it is discarded and the least significant bit becomes 0. In computer science terms, this operation is a
“logical shift”.

Usage notes:

The final value has either the same number of 1 bits as the original value, or fewer. Shifting an 8-bit value by 8
positions, a 16-bit value by 16 positions, and so on produces a result of zero.

Specifying a second argument of zero leaves the original value unchanged. Shifting any value by 0 returns the original
value. Shifting any value by 1 is the same as multiplying it by 2, as long as the value is small enough; larger values
eventually become negative when shifted, as the sign bit is set. Starting with the value 1 and shifting it left by N
positions gives the same result as 2 to the Nth power, or pow(2,N).

Return type: Same as the input value

Added in: CDH 5.5.0 (Impala 2.3.0)

Examples:

select shiftleft(1,0); /* 00000001 -> 00000001 */
+-----------------+
| shiftleft(1, 0) |
+-----------------+
| 1 |
+-----------------+

select shiftleft(1,3); /* 00000001 -> 00001000 */
+-----------------+
| shiftleft(1, 3) |
+-----------------+
| 8 |
+-----------------+

select shiftleft(8,2); /* 00001000 -> 00100000 */

Apache Impala Guide | 359

Impala SQL Language Reference

https://en.wikipedia.org/wiki/Logical_shift

+-----------------+
| shiftleft(8, 2) |
+-----------------+
| 32 |
+-----------------+

select shiftleft(127,1); /* 01111111 -> 11111110 */
+-------------------+
| shiftleft(127, 1) |
+-------------------+
| -2 |
+-------------------+

select shiftleft(127,5); /* 01111111 -> 11100000 */
+-------------------+
| shiftleft(127, 5) |
+-------------------+
| -32 |
+-------------------+

select shiftleft(-1,4); /* 11111111 -> 11110000 */
+------------------+
| shiftleft(-1, 4) |
+------------------+
| -16 |
+------------------+

shiftright(integer_type a, int positions)

Purpose: Shifts an integer value right by a specified number of bits. As the least significant bit is taken out of the
original value, it is discarded and the most significant bit becomes 0. In computer science terms, this operation is
a “logical shift”.

Usage notes:

Therefore, the final value has either the same number of 1 bits as the original value, or fewer. Shifting an 8-bit value
by 8 positions, a 16-bit value by 16 positions, and so on produces a result of zero.

Specifying a second argument of zero leaves the original value unchanged. Shifting any value by 0 returns the original
value. Shifting any positive value right by 1 is the same as dividing it by 2. Negative values become positive when
shifted right.

Return type: Same as the input value

Added in: CDH 5.5.0 (Impala 2.3.0)

Examples:

select shiftright(16,0); /* 00010000 -> 00010000 */
+-------------------+
| shiftright(16, 0) |
+-------------------+
| 16 |
+-------------------+

select shiftright(16,4); /* 00010000 -> 00000001 */
+-------------------+
| shiftright(16, 4) |
+-------------------+
| 1 |
+-------------------+

select shiftright(16,5); /* 00010000 -> 00000000 */
+-------------------+
| shiftright(16, 5) |
+-------------------+
| 0 |
+-------------------+

select shiftright(-1,1); /* 11111111 -> 01111111 */
+-------------------+

360 | Apache Impala Guide

Impala SQL Language Reference

https://en.wikipedia.org/wiki/Logical_shift

| shiftright(-1, 1) |
+-------------------+
| 127 |
+-------------------+

select shiftright(-1,5); /* 11111111 -> 00000111 */
+-------------------+
| shiftright(-1, 5) |
+-------------------+
| 7 |
+-------------------+

Impala Type Conversion Functions

Conversion functions are usually used in combination with other functions, to explicitly pass the expected data types.
Impala has strict rules regarding data types for function parameters. For example, Impala does not automatically
convert a DOUBLE value to FLOAT, a BIGINT value to INT, or other conversionwhere precision could be lost or overflow
could occur. Also, for reporting or dealing with loosely defined schemas in big data contexts, you might frequently
need to convert values to or from the STRING type.

Note: Although in CDH5.5.0, theSHOW FUNCTIONSoutput for database_IMPALA_BUILTINS contains
some function signatures matching the pattern castto*, these functions are not intended for public
use and are expected to be hidden in future.

Function reference:

Impala supports the following type conversion functions:

cast(expr AS type)

Purpose: Converts the value of an expression to any other type. If the expression value is of a type that cannot be
converted to the target type, the result is NULL.

Usage notes:Use CASTwhen passing a column value or literal to a function that expects a parameterwith a different
type. Frequently used in SQL operations such as CREATE TABLE AS SELECT and INSERT ... VALUES to ensure
that values from various sources are of the appropriate type for the destination columns. Where practical, do a
one-time CAST() operation during the ingestion process to make each column into the appropriate type, rather
than using many CAST() operations in each query; doing type conversions for each row during each query can be
expensive for tables with millions or billions of rows.

The way this function deals with time zones when converting to or from TIMESTAMP values is affected by the
--use_local_tz_for_unix_timestamp_conversions startup flag for theimpalad daemon. See TIMESTAMP
Data Type on page 149 for details about how Impala handles time zone considerations for the TIMESTAMP data
type.

Examples:

select concat('Here are the first ',10,' results.'); -- Fails
select concat('Here are the first ',cast(10 as string),' results.'); -- Succeeds

The following example starts with a text table where every column has a type of STRING, which might be how you
ingest data of unknown schema until you can verify the cleanliness of the underly values. Then it uses CAST() to
create a new Parquet table with the same data, but using specific numeric data types for the columns with numeric
data. Using numeric types of appropriate sizes can result in substantial space savings on disk and in memory, and
performance improvements in queries, over using strings or larger-than-necessary numeric types.

create table t1 (name string, x string, y string, z string);

create table t2 stored as parquet
as select
 name,
 cast(x as bigint) x,
 cast(y as timestamp) y,

Apache Impala Guide | 361

Impala SQL Language Reference

 cast(z as smallint) z
from t1;

describe t2;
+------+----------+---------+
| name | type | comment |
+------+----------+---------+
name	string	
x	bigint	
y	smallint	
z	tinyint	
+------+----------+---------+

Related information:

For details of casts from each kind of data type, see the description of the appropriate type: TINYINT Data Type on
page 154, SMALLINT Data Type on page 141, INT Data Type on page 136, BIGINT Data Type on page 121, FLOAT Data
Type on page 135, DOUBLEData Type on page 134, DECIMALData Type (CDH 5.1 or higher only) on page 126, STRING
Data Type on page 142, CHAR Data Type (CDH 5.2 or higher only) on page 123, VARCHAR Data Type (CDH 5.2 or
higher only) on page 155, TIMESTAMP Data Type on page 149, BOOLEAN Data Type on page 122

typeof(type value)

Purpose: Returns the name of the data type corresponding to an expression. For types with extra attributes, such
as length for CHAR and VARCHAR, or precision and scale for DECIMAL, includes the full specification of the type.

Return type: string

Usage notes: Typically used in interactive exploration of a schema, or in application code that programmatically
generates schema definitions such as CREATE TABLE statements. For example, previously, to understand the type
of an expression such as col1 / col2 or concat(col1, col2, col3), you might have created a dummy table
with a single row, using syntax such as CREATE TABLE foo AS SELECT 5 / 3.0, and then doing a DESCRIBE
to see the type of the row. Or you might have done a CREATE TABLE AS SELECT operation to create a table and
copy data into it, only learning the types of the columns by doing a DESCRIBE afterward. This technique is especially
useful for arithmetic expressions involving DECIMAL types, because the precision and scale of the result is typically
different than that of the operands.

Added in: CDH 5.5.0 (Impala 2.3.0)

Examples:

These examples show how to check the type of a simple literal or function value. Notice how adding even tiny
integers together changes the data type of the result to avoid overflow, and how the results of arithmetic operations
on DECIMAL values have specific precision and scale attributes.

select typeof(2)
+-----------+
| typeof(2) |
+-----------+
| TINYINT |
+-----------+

select typeof(2+2)
+---------------+
| typeof(2 + 2) |
+---------------+
| SMALLINT |
+---------------+

select typeof('xyz')
+---------------+
| typeof('xyz') |
+---------------+
| STRING |
+---------------+

select typeof(now())
+---------------+

362 | Apache Impala Guide

Impala SQL Language Reference

| typeof(now()) |
+---------------+
| TIMESTAMP |
+---------------+

select typeof(5.3 / 2.1)
+-------------------+
| typeof(5.3 / 2.1) |
+-------------------+
| DECIMAL(6,4) |
+-------------------+

select typeof(5.30001 / 2342.1);
+--------------------------+
| typeof(5.30001 / 2342.1) |
+--------------------------+
| DECIMAL(13,11) |
+--------------------------+

select typeof(typeof(2+2))
+-----------------------+
| typeof(typeof(2 + 2)) |
+-----------------------+
| STRING |
+-----------------------+

This example shows how even if you do not have a record of the type of a column, for example because the type
was changed by ALTER TABLE after the original CREATE TABLE, you can still find out the type in a more compact
form than examining the full DESCRIBE output. Remember to use LIMIT 1 in such cases, to avoid an identical
result value for every row in the table.

create table typeof_example (a int, b tinyint, c smallint, d bigint);

/* Empty result set if there is no data in the table. */
select typeof(a) from typeof_example;

/* OK, now we have some data but the type of column A is being changed. */
insert into typeof_example values (1, 2, 3, 4);
alter table typeof_example change a a bigint;

/* We can always find out the current type of that column without doing a full DESCRIBE.
 */
select typeof(a) from typeof_example limit 1;
+-----------+
| typeof(a) |
+-----------+
| BIGINT |
+-----------+

This example shows how you might programmatically generate a CREATE TABLE statement with the appropriate
column definitions to hold the result values of arbitrary expressions. The typeof() function lets you construct a
detailed CREATE TABLE statement without actually creating the table, as opposed to CREATE TABLE AS SELECT
operationswhere you create the destination table but only learn the columndata types afterward throughDESCRIBE.

describe typeof_example;
+------+----------+---------+
| name | type | comment |
+------+----------+---------+
a	bigint	
b	tinyint	
c	smallint	
d	bigint	
+------+----------+---------+

/* An ETL or business intelligence tool might create variations on a table with different
 file formats,
 different sets of columns, and so on. TYPEOF() lets an application introspect the
types of the original columns. */
select concat('create table derived_table (a ', typeof(a), ', b ', typeof(b), ', c ',

Apache Impala Guide | 363

Impala SQL Language Reference

 typeof(c), ', d ', typeof(d), ') stored as parquet;')
 as 'create table statement'
from typeof_example limit 1;
+---+
| create table statement
 |
+---+
| create table derived_table (a BIGINT, b TINYINT, c SMALLINT, d BIGINT) stored as
parquet; |
+---+

Impala Date and Time Functions

The underlying Impala data type for date and time data is TIMESTAMP, which has both a date and a time portion.
Functions that extract a single field, such as hour() or minute(), typically return an integer value. Functions that
format the date portion, such as date_add() or to_date(), typically return a string value.

You can also adjust a TIMESTAMP value by adding or subtracting an INTERVAL expression. See TIMESTAMP Data Type
on page 149 for details. INTERVAL expressions are also allowed as the second argument for the date_add() and
date_sub() functions, rather than integers.

Some of these functions are affected by the setting of the -use_local_tz_for_unix_timestamp_conversions
startup flag for the impalad daemon. This setting is off by default, meaning that functions such as from_unixtime()
and unix_timestamp() consider the input values to always represent the UTC time zone. This setting also applies
when you CAST() a BIGINT value to TIMESTAMP, or a TIMESTAMP value to BIGINT. When this setting is enabled,
these functions and operations convert to and from values representing the local time zone. See TIMESTAMP Data
Type on page 149 for details about how Impala handles time zone considerations for the TIMESTAMP data type.

Function reference:

Impala supports the following data and time functions:

add_months(timestamp date, int months), add_months(timestamp date, bigint months)

Purpose: Returns the specified date and time plus some number of months.

Return type: timestamp

Usage notes:

Same as months_add(). Available in Impala 1.4 and higher. For compatibility when porting code with vendor
extensions.

Examples:

The following examples demonstrate adding months to construct the same day of the month in a different month;
how if the current day of the month does not exist in the target month, the last day of that month is substituted;
and how a negative argument produces a return value from a previous month.

select now(), add_months(now(), 2);
+-------------------------------+-------------------------------+
| now() | add_months(now(), 2) |
+-------------------------------+-------------------------------+
| 2016-05-31 10:47:00.429109000 | 2016-07-31 10:47:00.429109000 |
+-------------------------------+-------------------------------+

select now(), add_months(now(), 1);
+-------------------------------+-------------------------------+
| now() | add_months(now(), 1) |
+-------------------------------+-------------------------------+
| 2016-05-31 10:47:14.540226000 | 2016-06-30 10:47:14.540226000 |
+-------------------------------+-------------------------------+

select now(), add_months(now(), -1);
+-------------------------------+-------------------------------+
| now() | add_months(now(), -1) |

364 | Apache Impala Guide

Impala SQL Language Reference

+-------------------------------+-------------------------------+
| 2016-05-31 10:47:31.732298000 | 2016-04-30 10:47:31.732298000 |
+-------------------------------+-------------------------------+

adddate(timestamp startdate, int days), adddate(timestamp startdate, bigint days),

Purpose: Adds a specified number of days to a TIMESTAMP value. Similar to date_add(), but starts with an actual
TIMESTAMP value instead of a string that is converted to a TIMESTAMP.

Return type: timestamp

Examples:

The following examples show how to add a number of days to a TIMESTAMP. The number of days can also be
negative, which gives the same effect as the subdate() function.

select now() as right_now, adddate(now(), 30) as now_plus_30;
+-------------------------------+-------------------------------+
| right_now | now_plus_30 |
+-------------------------------+-------------------------------+
| 2016-05-20 10:23:08.640111000 | 2016-06-19 10:23:08.640111000 |
+-------------------------------+-------------------------------+

select now() as right_now, adddate(now(), -15) as now_minus_15;
+-------------------------------+-------------------------------+
| right_now | now_minus_15 |
+-------------------------------+-------------------------------+
| 2016-05-20 10:23:38.214064000 | 2016-05-05 10:23:38.214064000 |
+-------------------------------+-------------------------------+

current_timestamp()

Purpose: Alias for the now() function.

Return type: timestamp

Examples:

select now(), current_timestamp();
+-------------------------------+-------------------------------+
| now() | current_timestamp() |
+-------------------------------+-------------------------------+
| 2016-05-19 16:10:14.237849000 | 2016-05-19 16:10:14.237849000 |
+-------------------------------+-------------------------------+

select current_timestamp() as right_now,
 current_timestamp() + interval 3 hours as in_three_hours;
+-------------------------------+-------------------------------+
| right_now | in_three_hours |
+-------------------------------+-------------------------------+
| 2016-05-19 16:13:20.017117000 | 2016-05-19 19:13:20.017117000 |
+-------------------------------+-------------------------------+

date_add(timestamp startdate, int days),date_add(timestamp startdate, interval_expression)

Purpose: Adds a specified number of days to a TIMESTAMP value. With an INTERVAL expression as the second
argument, you can calculate a delta value using other units such as weeks, years, hours, seconds, and so on; see
TIMESTAMP Data Type on page 149 for details.

Return type: timestamp

Examples:

The following example shows the simplest usage, of adding a specified number of days to a TIMESTAMP value:

select now() as right_now, date_add(now(), 7) as next_week;
+-------------------------------+-------------------------------+

Apache Impala Guide | 365

Impala SQL Language Reference

| right_now | next_week |
+-------------------------------+-------------------------------+
| 2016-05-20 11:03:48.687055000 | 2016-05-27 11:03:48.687055000 |
+-------------------------------+-------------------------------+

The following examples show the shorthand notation of an INTERVAL expression, instead of specifying the precise
number of days. The INTERVAL notation also lets you work with units smaller than a single day.

select now() as right_now, date_add(now(), interval 3 weeks) as in_3_weeks;
+-------------------------------+-------------------------------+
| right_now | in_3_weeks |
+-------------------------------+-------------------------------+
| 2016-05-20 11:05:39.173331000 | 2016-06-10 11:05:39.173331000 |
+-------------------------------+-------------------------------+

select now() as right_now, date_add(now(), interval 6 hours) as in_6_hours;
+-------------------------------+-------------------------------+
| right_now | in_6_hours |
+-------------------------------+-------------------------------+
| 2016-05-20 11:13:51.492536000 | 2016-05-20 17:13:51.492536000 |
+-------------------------------+-------------------------------+

Like all date/time functions that deal withmonths, date_add() handles nonexistent dates past the end of amonth
by setting the date to the last day of the month. The following example shows how the nonexistent date April 31st
is normalized to April 30th:

select date_add(cast('2016-01-31' as timestamp), interval 3 months) as 'april_31st';
+---------------------+
| april_31st |
+---------------------+
| 2016-04-30 00:00:00 |
+---------------------+

date_part(string, timestamp)

Purpose: Similar to EXTRACT(), with the argument order reversed. Supports the same date and time units as
EXTRACT(). For compatibility with SQL code containing vendor extensions.

Return type: int

Examples:

select date_part('year',now()) as current_year;
+--------------+
| current_year |
+--------------+
| 2016 |
+--------------+

select date_part('hour',now()) as hour_of_day;
+-------------+
| hour_of_day |
+-------------+
| 11 |
+-------------+

date_sub(timestamp startdate, int days),date_sub(timestamp startdate, interval_expression)

Purpose: Subtracts a specified number of days from a TIMESTAMP value. With an INTERVAL expression as the
second argument, you can calculate a delta value using other units such as weeks, years, hours, seconds, and so
on; see TIMESTAMP Data Type on page 149 for details.

Return type: timestamp

Examples:

366 | Apache Impala Guide

Impala SQL Language Reference

The following example shows the simplest usage, of subtracting a specified number of days from a TIMESTAMP
value:

select now() as right_now, date_sub(now(), 7) as last_week;
+-------------------------------+-------------------------------+
| right_now | last_week |
+-------------------------------+-------------------------------+
| 2016-05-20 11:21:30.491011000 | 2016-05-13 11:21:30.491011000 |
+-------------------------------+-------------------------------+

The following examples show the shorthand notation of an INTERVAL expression, instead of specifying the precise
number of days. The INTERVAL notation also lets you work with units smaller than a single day.

select now() as right_now, date_sub(now(), interval 3 weeks) as 3_weeks_ago;
+-------------------------------+-------------------------------+
| right_now | 3_weeks_ago |
+-------------------------------+-------------------------------+
| 2016-05-20 11:23:05.176953000 | 2016-04-29 11:23:05.176953000 |
+-------------------------------+-------------------------------+

select now() as right_now, date_sub(now(), interval 6 hours) as 6_hours_ago;
+-------------------------------+-------------------------------+
| right_now | 6_hours_ago |
+-------------------------------+-------------------------------+
| 2016-05-20 11:23:35.439631000 | 2016-05-20 05:23:35.439631000 |
+-------------------------------+-------------------------------+

Like all date/time functions that deal withmonths, date_add() handles nonexistent dates past the end of amonth
by setting the date to the last day of the month. The following example shows how the nonexistent date April 31st
is normalized to April 30th:

select date_sub(cast('2016-05-31' as timestamp), interval 1 months) as 'april_31st';
+---------------------+
| april_31st |
+---------------------+
| 2016-04-30 00:00:00 |
+---------------------+

datediff(timestamp enddate, timestamp startdate)

Purpose: Returns the number of days between two TIMESTAMP values.

Return type: int

Usage notes:

If the first argument represents a later date than the second argument, the return value is positive. If both arguments
represent the same date, the return value is zero. The time portions of the TIMESTAMP values are irrelevant. For
example, 11:59 PM on one day and 12:01 on the next day represent a datediff() of -1 because the date/time
values represent different days, even though the TIMESTAMP values differ by only 2 minutes.

Examples:

The following example shows how comparing a “late” value with an “earlier” value produces a positive number. In
this case, the result is (365 * 5) + 1, because one of the intervening years is a leap year.

select now() as right_now, datediff(now() + interval 5 years, now()) as in_5_years;
+-------------------------------+------------+
| right_now | in_5_years |
+-------------------------------+------------+
| 2016-05-20 13:43:55.873826000 | 1826 |
+-------------------------------+------------+

Apache Impala Guide | 367

Impala SQL Language Reference

The following examples show how the return value represent the number of days between the associated dates,
regardless of the time portion of each TIMESTAMP. For example, different times on the same day produce a
date_diff() of 0, regardless of which one is earlier or later. But if the arguments represent different dates,
date_diff() returns a non-zero integer value, regardless of the time portions of the dates.

select now() as right_now, datediff(now(), now() + interval 4 hours) as in_4_hours;
+-------------------------------+------------+
| right_now | in_4_hours |
+-------------------------------+------------+
| 2016-05-20 13:42:05.302747000 | 0 |
+-------------------------------+------------+

select now() as right_now, datediff(now(), now() - interval 4 hours) as 4_hours_ago;
+-------------------------------+-------------+
| right_now | 4_hours_ago |
+-------------------------------+-------------+
| 2016-05-20 13:42:21.134958000 | 0 |
+-------------------------------+-------------+

select now() as right_now, datediff(now(), now() + interval 12 hours) as in_12_hours;
+-------------------------------+-------------+
| right_now | in_12_hours |
+-------------------------------+-------------+
| 2016-05-20 13:42:44.765873000 | -1 |
+-------------------------------+-------------+

select now() as right_now, datediff(now(), now() - interval 18 hours) as 18_hours_ago;
+-------------------------------+--------------+
| right_now | 18_hours_ago |
+-------------------------------+--------------+
| 2016-05-20 13:54:38.829827000 | 1 |
+-------------------------------+--------------+

day(timestamp date), dayofmonth(timestamp date)

Purpose: Returns the day field from the date portion of a TIMESTAMP. The value represents the day of the month,
therefore is in the range 1-31, or less for months without 31 days.

Return type: int

Examples:

The following examples show how the day value corresponds to the day of the month, resetting back to 1 at the
start of each month.

select now(), day(now());
+-------------------------------+------------+
| now() | day(now()) |
+-------------------------------+------------+
| 2016-05-20 15:01:51.042185000 | 20 |
+-------------------------------+------------+

select now() + interval 11 days, day(now() + interval 11 days);
+-------------------------------+-------------------------------+
| now() + interval 11 days | day(now() + interval 11 days) |
+-------------------------------+-------------------------------+
| 2016-05-31 15:05:56.843139000 | 31 |
+-------------------------------+-------------------------------+

select now() + interval 12 days, day(now() + interval 12 days);
+-------------------------------+-------------------------------+
| now() + interval 12 days | day(now() + interval 12 days) |
+-------------------------------+-------------------------------+
| 2016-06-01 15:06:05.074236000 | 1 |
+-------------------------------+-------------------------------+

368 | Apache Impala Guide

Impala SQL Language Reference

The following examples show how the day value is NULL for nonexistent dates or misformatted date strings.

-- 2016 is a leap year, so it has a Feb. 29.
select day('2016-02-29');
+-------------------+
| day('2016-02-29') |
+-------------------+
| 29 |
+-------------------+

-- 2015 is not a leap year, so Feb. 29 is nonexistent.
select day('2015-02-29');
+-------------------+
| day('2015-02-29') |
+-------------------+
| NULL |
+-------------------+

-- A string that does not match the expected YYYY-MM-DD format
-- produces an invalid TIMESTAMP, causing day() to return NULL.
select day('2016-02-028');
+--------------------+
| day('2016-02-028') |
+--------------------+
| NULL |
+--------------------+

dayname(timestamp date)

Purpose: Returns the day field from a TIMESTAMP value, converted to the string corresponding to that day name.
The range of return values is 'Sunday' to 'Saturday'. Used in report-generating queries, as an alternative to
calling dayofweek() and turning that numeric return value into a string using a CASE expression.

Return type: string

Examples:

The following examples show the day name associated with TIMESTAMP values representing different days.

select now() as right_now,
 dayofweek(now()) as todays_day_of_week,
 dayname(now()) as todays_day_name;
+-------------------------------+--------------------+-----------------+
| right_now | todays_day_of_week | todays_day_name |
+-------------------------------+--------------------+-----------------+
| 2016-05-31 10:57:03.953670000 | 3 | Tuesday |
+-------------------------------+--------------------+-----------------+

select now() + interval 1 day as tomorrow,
 dayname(now() + interval 1 day) as tomorrows_day_name;
+-------------------------------+--------------------+
| tomorrow | tomorrows_day_name |
+-------------------------------+--------------------+
| 2016-06-01 10:58:53.945761000 | Wednesday |
+-------------------------------+--------------------+

dayofweek(timestamp date)

Purpose: Returns the day field from the date portion of a TIMESTAMP, corresponding to the day of the week. The
range of return values is 1 (Sunday) to 7 (Saturday).

Return type: int

Examples:

select now() as right_now,
 dayofweek(now()) as todays_day_of_week,
 dayname(now()) as todays_day_name;

Apache Impala Guide | 369

Impala SQL Language Reference

+-------------------------------+--------------------+-----------------+
| right_now | todays_day_of_week | todays_day_name |
+-------------------------------+--------------------+-----------------+
| 2016-05-31 10:57:03.953670000 | 3 | Tuesday |
+-------------------------------+--------------------+-----------------+

dayofyear(timestamp date)

Purpose: Returns the day field from a TIMESTAMP value, corresponding to the day of the year. The range of return
values is 1 (January 1) to 366 (December 31 of a leap year).

Return type: int

Examples:

The following examples show return values from the dayofyear() function. The same date in different years
returns a different day number for all dates after February 28, because 2016 is a leap year while 2015 is not a leap
year.

select now() as right_now,
 dayofyear(now()) as today_day_of_year;
+-------------------------------+-------------------+
| right_now | today_day_of_year |
+-------------------------------+-------------------+
| 2016-05-31 11:05:48.314932000 | 152 |
+-------------------------------+-------------------+

select now() - interval 1 year as last_year,
 dayofyear(now() - interval 1 year) as year_ago_day_of_year;
+-------------------------------+----------------------+
| last_year | year_ago_day_of_year |
+-------------------------------+----------------------+
| 2015-05-31 11:07:03.733689000 | 151 |
+-------------------------------+----------------------+

days_add(timestamp startdate, int days), days_add(timestamp startdate, bigint days)

Purpose: Adds a specified number of days to a TIMESTAMP value. Similar to date_add(), but starts with an actual
TIMESTAMP value instead of a string that is converted to a TIMESTAMP.

Return type: timestamp

Examples:

select now() as right_now, days_add(now(), 31) as 31_days_later;
+-------------------------------+-------------------------------+
| right_now | 31_days_later |
+-------------------------------+-------------------------------+
| 2016-05-31 11:12:32.216764000 | 2016-07-01 11:12:32.216764000 |
+-------------------------------+-------------------------------+

days_sub(timestamp startdate, int days), days_sub(timestamp startdate, bigint days)

Purpose: Subtracts a specified number of days from a TIMESTAMP value. Similar to date_sub(), but starts with
an actual TIMESTAMP value instead of a string that is converted to a TIMESTAMP.

Return type: timestamp

Examples:

select now() as right_now, days_sub(now(), 31) as 31_days_ago;
+-------------------------------+-------------------------------+
| right_now | 31_days_ago |
+-------------------------------+-------------------------------+
| 2016-05-31 11:13:42.163905000 | 2016-04-30 11:13:42.163905000 |
+-------------------------------+-------------------------------+

370 | Apache Impala Guide

Impala SQL Language Reference

extract(timestamp, string unit)extract(unit FROM timestamp)

Purpose: Returns one of the numeric date or time fields from a TIMESTAMP value.

Unit argument: The unit string can be one of year, month, day, hour, minute, second, or millisecond. This
argument value is case-insensitive.

In Impala 2.0 and higher, you can use special syntax rather than a regular function call, for compatibility with code
that uses the SQL-99 format with the FROM keyword. With this style, the unit names are identifiers rather than
STRING literals. For example, the following calls are both equivalent:

extract(year from now());
extract(now(), "year");

Usage notes:

Typically used in GROUP BY queries to arrange results by hour, day, month, and so on. You can also use this function
in an INSERT ... SELECT into a partitioned table to split up TIMESTAMP values into individual parts, if the
partitioned table has separate partition key columns representing year, month, day, and so on. If you need to divide
by more complex units of time, such as by week or by quarter, use the TRUNC() function instead.

Return type: int

Examples:

select now() as right_now,
 extract(year from now()) as this_year,
 extract(month from now()) as this_month;
+-------------------------------+-----------+------------+
| right_now | this_year | this_month |
+-------------------------------+-----------+------------+
| 2016-05-31 11:18:43.310328000 | 2016 | 5 |
+-------------------------------+-----------+------------+

select now() as right_now,
 extract(day from now()) as this_day,
 extract(hour from now()) as this_hour;
+-------------------------------+----------+-----------+
| right_now | this_day | this_hour |
+-------------------------------+----------+-----------+
| 2016-05-31 11:19:24.025303000 | 31 | 11 |
+-------------------------------+----------+-----------+

from_timestamp(datetime timestamp, pattern string)

Purpose: Converts a TIMESTAMP value into a string representing the same value.

Return type: string

Added in: CDH 5.5.0 (Impala 2.3.0)

Usage notes:

The from_timestamp() function provides a flexibleway to convert TIMESTAMP values into arbitrary string formats
for reporting purposes.

Because Impala implicitly converts string values into TIMESTAMP, you can pass date/time values represented as
strings (in the standard yyyy-MM-dd HH:mm:ss.SSS format) to this function. The result is a string using different
separator characters, order of fields, spelled-out month names, or other variation of the date/time string
representation.

The allowed tokens for the pattern string are the same as for the from_unixtime() function.

Examples:

Apache Impala Guide | 371

Impala SQL Language Reference

The following examples show different ways to format a TIMESTAMP value as a string:

-- Reformat arbitrary TIMESTAMP value.
select from_timestamp(now(), 'yyyy/MM/dd');
+-------------------------------------+
| from_timestamp(now(), 'yyyy/mm/dd') |
+-------------------------------------+
| 2017/10/01 |
+-------------------------------------+

-- Reformat string literal representing date/time.
select from_timestamp('1984-09-25', 'yyyy/MM/dd');
+--+
| from_timestamp('1984-09-25', 'yyyy/mm/dd') |
+--+
| 1984/09/25 |
+--+

-- Alternative format for reporting purposes.
select from_timestamp('1984-09-25 16:45:30.125', 'MMM dd, yyyy HH:mm:ss.SSS');
+--+
| from_timestamp('1984-09-25 16:45:30.125', 'mmm dd, yyyy hh:mm:ss.sss') |
+--+
| Sep 25, 1984 16:45:30.125 |
+--+

from_unixtime(bigint unixtime[, string format])

Purpose: Converts the number of seconds from the Unix epoch to the specified time into a string in the local time
zone.

Return type: string

In Impala 2.2.0 and higher, built-in functions that accept or return integers representing TIMESTAMP values use the
BIGINT type for parameters and return values, rather than INT. This change lets the date and time functions avoid
an overflow error that would otherwise occur on January 19th, 2038 (known as the “Year 2038 problem” or “Y2K38
problem”). This change affects the from_unixtime() and unix_timestamp() functions. You might need to
change application code that interacts with these functions, change the types of columns that store the return
values, or add CAST() calls to SQL statements that call these functions.

Usage notes:

The format string accepts the variations allowed for the TIMESTAMP data type: date plus time, date by itself, time
by itself, and optional fractional seconds for the time. See TIMESTAMP Data Type on page 149 for details.

Currently, the format string is case-sensitive, especially to distinguish m for minutes and M for months. In Impala 1.3
and later, you can switch the order of elements, use alternative separator characters, and use a different number
of placeholders for each unit. Adding more instances of y, d, H, and so on produces output strings zero-padded to
the requested number of characters. The exception is M for months, where M produces a non-padded value such
as 3, MM produces a zero-padded value such as 03, MMM produces an abbreviated month name such as Mar, and
sequences of 4 or more M are not allowed. A date string including all fields could be "yyyy-MM-dd
HH:mm:ss.SSSSSS", "dd/MM/yyyy HH:mm:ss.SSSSSS", "MMM dd, yyyy HH.mm.ss (SSSSSS)" or other
combinations of placeholders and separator characters.

The way this function deals with time zones when converting to or from TIMESTAMP values is affected by the
--use_local_tz_for_unix_timestamp_conversions startup flag for theimpalad daemon. See TIMESTAMP
Data Type on page 149 for details about how Impala handles time zone considerations for the TIMESTAMP data
type.

372 | Apache Impala Guide

Impala SQL Language Reference

http://en.wikipedia.org/wiki/Year_2038_problem
http://en.wikipedia.org/wiki/Year_2038_problem

Note:

The more flexible format strings allowed with the built-in functions do not change the rules about
using CAST() to convert from a string to a TIMESTAMP value. Strings being converted through
CAST()must still have the elements in the specified order and use the specified delimiter characters,
as described in TIMESTAMP Data Type on page 149.

Examples:

select from_unixtime(1392394861,"yyyy-MM-dd HH:mm:ss.SSSS");
+---+
| from_unixtime(1392394861, 'yyyy-mm-dd hh:mm:ss.ssss') |
+---+
| 2014-02-14 16:21:01.0000 |
+---+

select from_unixtime(1392394861,"yyyy-MM-dd");
+---+
| from_unixtime(1392394861, 'yyyy-mm-dd') |
+---+
| 2014-02-14 |
+---+

select from_unixtime(1392394861,"HH:mm:ss.SSSS");
+--+
| from_unixtime(1392394861, 'hh:mm:ss.ssss') |
+--+
| 16:21:01.0000 |
+--+

select from_unixtime(1392394861,"HH:mm:ss");
+---------------------------------------+
| from_unixtime(1392394861, 'hh:mm:ss') |
+---------------------------------------+
| 16:21:01 |
+---------------------------------------+

unix_timestamp() and from_unixtime() are often used in combination to convert a TIMESTAMP value into
a particular string format. For example:

select from_unixtime(unix_timestamp(now() + interval 3 days),
 'yyyy/MM/dd HH:mm') as yyyy_mm_dd_hh_mm;
+------------------+
| yyyy_mm_dd_hh_mm |
+------------------+
| 2016/06/03 11:38 |
+------------------+

from_utc_timestamp(timestamp, string timezone)

Purpose: Converts a specified UTC timestamp value into the appropriate value for a specified time zone.

Return type: timestamp

Usage notes: Often used to translate UTC time zone data stored in a table back to the local date and time for
reporting. The opposite of the to_utc_timestamp() function.

To determine the time zone of the server you are connected to, in CDH 5.5 / Impala 2.3 and higher you can call the
timeofday() function, which includes the time zone specifier in its return value. Remember that with cloud
computing, the server you interact with might be in a different time zone than you are, or different sessions might
connect to servers in different time zones, or a cluster might include servers in more than one time zone.

Examples:

See discussion of time zones in TIMESTAMP Data Type on page 149 for information about using this function for
conversions between the local time zone and UTC.

Apache Impala Guide | 373

Impala SQL Language Reference

The following example shows how when TIMESTAMP values representing the UTC time zone are stored in a table,
a query can display the equivalent local date and time for a different time zone.

with t1 as (select cast('2016-06-02 16:25:36.116143000' as timestamp) as utc_datetime)
 select utc_datetime as 'Date/time in Greenwich UK',
 from_utc_timestamp(utc_datetime, 'PDT')
 as 'Equivalent in California USA'
 from t1;
+-------------------------------+-------------------------------+
| date/time in greenwich uk | equivalent in california usa |
+-------------------------------+-------------------------------+
| 2016-06-02 16:25:36.116143000 | 2016-06-02 09:25:36.116143000 |
+-------------------------------+-------------------------------+

The following example shows that for a date and time when daylight savings is in effect (PDT), the UTC time is 7
hours ahead of the local California time; while when daylight savings is not in effect (PST), the UTC time is 8 hours
ahead of the local California time.

select now() as local_datetime,
 to_utc_timestamp(now(), 'PDT') as utc_datetime;
+-------------------------------+-------------------------------+
| local_datetime | utc_datetime |
+-------------------------------+-------------------------------+
| 2016-05-31 11:50:02.316883000 | 2016-05-31 18:50:02.316883000 |
+-------------------------------+-------------------------------+

select '2016-01-05' as local_datetime,
 to_utc_timestamp('2016-01-05', 'PST') as utc_datetime;
+----------------+---------------------+
| local_datetime | utc_datetime |
+----------------+---------------------+
| 2016-01-05 | 2016-01-05 08:00:00 |
+----------------+---------------------+

hour(timestamp date)

Purpose: Returns the hour field from a TIMESTAMP field.

Return type: int

Examples:

select now() as right_now, hour(now()) as current_hour;
+-------------------------------+--------------+
| right_now | current_hour |
+-------------------------------+--------------+
| 2016-06-01 14:14:12.472846000 | 14 |
+-------------------------------+--------------+

select now() + interval 12 hours as 12_hours_from_now,
 hour(now() + interval 12 hours) as hour_in_12_hours;
+-------------------------------+-------------------+
| 12_hours_from_now | hour_in_12_hours |
+-------------------------------+-------------------+
| 2016-06-02 02:15:32.454750000 | 2 |
+-------------------------------+-------------------+

hours_add(timestamp date, int hours), hours_add(timestamp date, bigint hours)

Purpose: Returns the specified date and time plus some number of hours.

Return type: timestamp

Examples:

select now() as right_now,

374 | Apache Impala Guide

Impala SQL Language Reference

 hours_add(now(), 12) as in_12_hours;
+-------------------------------+-------------------------------+
| right_now | in_12_hours |
+-------------------------------+-------------------------------+
| 2016-06-01 14:19:48.948107000 | 2016-06-02 02:19:48.948107000 |
+-------------------------------+-------------------------------+

hours_sub(timestamp date, int hours), hours_sub(timestamp date, bigint hours)

Purpose: Returns the specified date and time minus some number of hours.

Return type: timestamp

Examples:

select now() as right_now,
 hours_sub(now(), 18) as 18_hours_ago;
+-------------------------------+-------------------------------+
| right_now | 18_hours_ago |
+-------------------------------+-------------------------------+
| 2016-06-01 14:23:13.868150000 | 2016-05-31 20:23:13.868150000 |
+-------------------------------+-------------------------------+

int_months_between(timestamp newer, timestamp older)

Purpose:Returns the number ofmonths between the date portions of twoTIMESTAMP values, as anINT representing
only the full months that passed.

Return type: int

Added in: CDH 5.5.0 (Impala 2.3.0)

Usage notes:

Typically used in business contexts, for example to determine whether a specified number of months have passed
or whether some end-of-month deadline was reached.

Themethod of determining the number of elapsedmonths includes some special handling ofmonths with different
numbers of days that creates edge cases for dates between the 28th and 31st days of certain months. See
months_between() for details. The int_months_between() result is essentially the floor() of the
months_between() result.

If either value is NULL, which could happen for example when converting a nonexistent date string such as
'2015-02-29' to a TIMESTAMP, the result is also NULL.

If the first argument represents an earlier time than the second argument, the result is negative.

Examples:

/* Less than a full month = 0. */
select int_months_between('2015-02-28', '2015-01-29');
+--+
| int_months_between('2015-02-28', '2015-01-29') |
+--+
| 0 |
+--+

/* Last day of month to last day of next month = 1. */
select int_months_between('2015-02-28', '2015-01-31');
+--+
| int_months_between('2015-02-28', '2015-01-31') |
+--+
| 1 |
+--+

/* Slightly less than 2 months = 1. */
select int_months_between('2015-03-28', '2015-01-31');
+--+
| int_months_between('2015-03-28', '2015-01-31') |

Apache Impala Guide | 375

Impala SQL Language Reference

+--+
| 1 |
+--+

/* 2 full months (identical days of the month) = 2. */
select int_months_between('2015-03-31', '2015-01-31');
+--+
| int_months_between('2015-03-31', '2015-01-31') |
+--+
| 2 |
+--+

/* Last day of month to last day of month-after-next = 2. */
select int_months_between('2015-03-31', '2015-01-30');
+--+
| int_months_between('2015-03-31', '2015-01-30') |
+--+
| 2 |
+--+

microseconds_add(timestamp date, int microseconds),microseconds_add(timestamp date, bigint
microseconds)

Purpose: Returns the specified date and time plus some number of microseconds.

Return type: timestamp

Examples:

select now() as right_now,
 microseconds_add(now(), 500000) as half_a_second_from_now;
+-------------------------------+-------------------------------+
| right_now | half_a_second_from_now |
+-------------------------------+-------------------------------+
| 2016-06-01 14:25:11.455051000 | 2016-06-01 14:25:11.955051000 |
+-------------------------------+-------------------------------+

microseconds_sub(timestamp date, int microseconds),microseconds_sub(timestamp date, bigint
microseconds)

Purpose: Returns the specified date and time minus some number of microseconds.

Return type: timestamp

Examples:

select now() as right_now,
 microseconds_sub(now(), 500000) as half_a_second_ago;
+-------------------------------+-------------------------------+
| right_now | half_a_second_ago |
+-------------------------------+-------------------------------+
| 2016-06-01 14:26:16.509990000 | 2016-06-01 14:26:16.009990000 |
+-------------------------------+-------------------------------+

milliseconds_add(timestamp date, int milliseconds),milliseconds_add(timestamp date, bigint
milliseconds)

Purpose: Returns the specified date and time plus some number of milliseconds.

Return type: timestamp

Examples:

select now() as right_now,
 milliseconds_add(now(), 1500) as 1_point_5_seconds_from_now;
+-------------------------------+-------------------------------+
| right_now | 1_point_5_seconds_from_now |

376 | Apache Impala Guide

Impala SQL Language Reference

+-------------------------------+-------------------------------+
| 2016-06-01 14:30:30.067366000 | 2016-06-01 14:30:31.567366000 |
+-------------------------------+-------------------------------+

milliseconds_sub(timestamp date, int milliseconds),milliseconds_sub(timestamp date, bigint
milliseconds)

Purpose: Returns the specified date and time minus some number of milliseconds.

Return type: timestamp

Examples:

select now() as right_now,
 milliseconds_sub(now(), 1500) as 1_point_5_seconds_ago;
+-------------------------------+-------------------------------+
| right_now | 1_point_5_seconds_ago |
+-------------------------------+-------------------------------+
| 2016-06-01 14:30:53.467140000 | 2016-06-01 14:30:51.967140000 |
+-------------------------------+-------------------------------+

minute(timestamp date)

Purpose: Returns the minute field from a TIMESTAMP value.

Return type: int

Examples:

select now() as right_now, minute(now()) as current_minute;
+-------------------------------+----------------+
| right_now | current_minute |
+-------------------------------+----------------+
| 2016-06-01 14:34:08.051702000 | 34 |
+-------------------------------+----------------+

minutes_add(timestamp date, int minutes), minutes_add(timestamp date, bigint minutes)

Purpose: Returns the specified date and time plus some number of minutes.

Return type: timestamp

Examples:

select now() as right_now, minutes_add(now(), 90) as 90_minutes_from_now;
+-------------------------------+-------------------------------+
| right_now | 90_minutes_from_now |
+-------------------------------+-------------------------------+
| 2016-06-01 14:36:04.887095000 | 2016-06-01 16:06:04.887095000 |
+-------------------------------+-------------------------------+

minutes_sub(timestamp date, int minutes), minutes_sub(timestamp date, bigint minutes)

Purpose: Returns the specified date and time minus some number of minutes.

Return type: timestamp

Examples:

select now() as right_now, minutes_sub(now(), 90) as 90_minutes_ago;
+-------------------------------+-------------------------------+
| right_now | 90_minutes_ago |
+-------------------------------+-------------------------------+
| 2016-06-01 14:36:32.643061000 | 2016-06-01 13:06:32.643061000 |
+-------------------------------+-------------------------------+

Apache Impala Guide | 377

Impala SQL Language Reference

month(timestamp date)

Purpose: Returns the month field, represented as an integer, from the date portion of a TIMESTAMP.

Return type: int

Examples:

select now() as right_now, month(now()) as current_month;
+-------------------------------+---------------+
| right_now | current_month |
+-------------------------------+---------------+
| 2016-06-01 14:43:37.141542000 | 6 |
+-------------------------------+---------------+

months_add(timestamp date, int months), months_add(timestamp date, bigint months)

Purpose: Returns the specified date and time plus some number of months.

Return type: timestamp

Examples:

The following example shows the effects of adding some number of months to a TIMESTAMP value, using both the
months_add() function and its add_months() alias. These examples use trunc() to strip off the time portion
and leave just the date.

with t1 as (select trunc(now(), 'dd') as today)
 select today, months_add(today,1) as next_month from t1;
+---------------------+---------------------+
| today | next_month |
+---------------------+---------------------+
| 2016-05-19 00:00:00 | 2016-06-19 00:00:00 |
+---------------------+---------------------+

with t1 as (select trunc(now(), 'dd') as today)
 select today, add_months(today,1) as next_month from t1;
+---------------------+---------------------+
| today | next_month |
+---------------------+---------------------+
| 2016-05-19 00:00:00 | 2016-06-19 00:00:00 |
+---------------------+---------------------+

The following examples show how if months_add() would return a nonexistent date, due to different months
having different numbers of days, the function returns a TIMESTAMP from the last day of the relevant month. For
example, adding one month to January 31 produces a date of February 29th in the year 2016 (a leap year), and
February 28th in the year 2015 (a non-leap year).

with t1 as (select cast('2016-01-31' as timestamp) as jan_31)
 select jan_31, months_add(jan_31,1) as feb_31 from t1;
+---------------------+---------------------+
| jan_31 | feb_31 |
+---------------------+---------------------+
| 2016-01-31 00:00:00 | 2016-02-29 00:00:00 |
+---------------------+---------------------+

with t1 as (select cast('2015-01-31' as timestamp) as jan_31)
 select jan_31, months_add(jan_31,1) as feb_31 from t1;
+---------------------+---------------------+
| jan_31 | feb_31 |
+---------------------+---------------------+
| 2015-01-31 00:00:00 | 2015-02-28 00:00:00 |
+---------------------+---------------------+

378 | Apache Impala Guide

Impala SQL Language Reference

months_between(timestamp newer, timestamp older)

Purpose: Returns the number of months between the date portions of two TIMESTAMP values. Can include a
fractional part representing extra days in addition to the full months between the dates. The fractional component
is computed by dividing the difference in days by 31 (regardless of the month).

Return type: double

Added in: CDH 5.5.0 (Impala 2.3.0)

Usage notes:

Typically used in business contexts, for example to determine whether a specified number of months have passed
or whether some end-of-month deadline was reached.

If the only consideration is the number of full months and any fractional value is not significant, use
int_months_between() instead.

Themethod of determining the number of elapsedmonths includes some special handling ofmonths with different
numbers of days that creates edge cases for dates between the 28th and 31st days of certain months.

If either value is NULL, which could happen for example when converting a nonexistent date string such as
'2015-02-29' to a TIMESTAMP, the result is also NULL.

If the first argument represents an earlier time than the second argument, the result is negative.

Examples:

The following examples show how dates that are on the same day of the month are considered to be exactly N
months apart, even if the months have different numbers of days.

select months_between('2015-02-28', '2015-01-28');
+--+
| months_between('2015-02-28', '2015-01-28') |
+--+
| 1 |
+--+

select months_between(now(), now() + interval 1 month);
+---+
| months_between(now(), now() + interval 1 month) |
+---+
| -1 |
+---+

select months_between(now() + interval 1 year, now());
+--+
| months_between(now() + interval 1 year, now()) |
+--+
| 12 |
+--+

The following examples showhowdates that are on the last day of themonth are considered to be exactly Nmonths
apart, even if the months have different numbers of days. For example, from January 28th to February 28th is
exactly one month because the day of the month is identical; January 31st to February 28th is exactly one month
because in both cases it is the last day of the month; but January 29th or 30th to February 28th is considered a
fractional month.

select months_between('2015-02-28', '2015-01-31');
+--+
| months_between('2015-02-28', '2015-01-31') |
+--+
| 1 |
+--+

select months_between('2015-02-28', '2015-01-29');
+--+
| months_between('2015-02-28', '2015-01-29') |
+--+

Apache Impala Guide | 379

Impala SQL Language Reference

| 0.967741935483871 |
+--+

select months_between('2015-02-28', '2015-01-30');;
+--+
| months_between('2015-02-28', '2015-01-30') |
+--+
| 0.935483870967742 |
+--+

The following examples show how dates that are not a precise number of months apart result in a fractional return
value.

select months_between('2015-03-01', '2015-01-28');
+--+
| months_between('2015-03-01', '2015-01-28') |
+--+
| 1.129032258064516 |
+--+

select months_between('2015-03-01', '2015-02-28');
+--+
| months_between('2015-03-01', '2015-02-28') |
+--+
| 0.1290322580645161 |
+--+

select months_between('2015-06-02', '2015-05-29');
+--+
| months_between('2015-06-02', '2015-05-29') |
+--+
| 0.1290322580645161 |
+--+

select months_between('2015-03-01', '2015-01-25');
+--+
| months_between('2015-03-01', '2015-01-25') |
+--+
| 1.225806451612903 |
+--+

select months_between('2015-03-01', '2015-02-25');
+--+
| months_between('2015-03-01', '2015-02-25') |
+--+
| 0.2258064516129032 |
+--+

select months_between('2015-02-28', '2015-02-01');
+--+
| months_between('2015-02-28', '2015-02-01') |
+--+
| 0.8709677419354839 |
+--+

select months_between('2015-03-28', '2015-03-01');
+--+
| months_between('2015-03-28', '2015-03-01') |
+--+
| 0.8709677419354839 |
+--+

The following examples show how the time portion of the TIMESTAMP values are irrelevant for calculating the
month interval. Even the fractional part of the result only depends on the number of full days between the argument
values, regardless of the time portion.

select months_between('2015-05-28 23:00:00', '2015-04-28 11:45:00');
+--+
| months_between('2015-05-28 23:00:00', '2015-04-28 11:45:00') |
+--+

380 | Apache Impala Guide

Impala SQL Language Reference

| 1 |
+--+

select months_between('2015-03-28', '2015-03-01');
+--+
| months_between('2015-03-28', '2015-03-01') |
+--+
| 0.8709677419354839 |
+--+

select months_between('2015-03-28 23:00:00', '2015-03-01 11:45:00');
+--+
| months_between('2015-03-28 23:00:00', '2015-03-01 11:45:00') |
+--+
| 0.8709677419354839 |
+--+

months_sub(timestamp date, int months), months_sub(timestamp date, bigint months)

Purpose: Returns the specified date and time minus some number of months.

Return type: timestamp

Examples:

with t1 as (select trunc(now(), 'dd') as today)
 select today, months_sub(today,1) as last_month from t1;
+---------------------+---------------------+
| today | last_month |
+---------------------+---------------------+
| 2016-06-01 00:00:00 | 2016-05-01 00:00:00 |
+---------------------+---------------------+

nanoseconds_add(timestamp date, int nanoseconds), nanoseconds_add(timestamp date, bigint
nanoseconds)

Purpose: Returns the specified date and time plus some number of nanoseconds.

Return type: timestamp

Examples:

select now() as right_now, nanoseconds_add(now(), 1) as 1_nanosecond_later;
+-------------------------------+-------------------------------+
| right_now | 1_nanosecond_later |
+-------------------------------+-------------------------------+
| 2016-06-01 15:42:00.361026000 | 2016-06-01 15:42:00.361026001 |
+-------------------------------+-------------------------------+

-- 1 billion nanoseconds = 1 second.
select now() as right_now, nanoseconds_add(now(), 1e9) as 1_second_later;
+-------------------------------+-------------------------------+
| right_now | 1_second_later |
+-------------------------------+-------------------------------+
| 2016-06-01 15:42:52.926706000 | 2016-06-01 15:42:53.926706000 |
+-------------------------------+-------------------------------+

nanoseconds_sub(timestamp date, int nanoseconds), nanoseconds_sub(timestamp date, bigint
nanoseconds)

Purpose: Returns the specified date and time minus some number of nanoseconds.

Return type: timestamp

select now() as right_now, nanoseconds_sub(now(), 1) as 1_nanosecond_earlier;
+-------------------------------+-------------------------------+
| right_now | 1_nanosecond_earlier |
+-------------------------------+-------------------------------+

Apache Impala Guide | 381

Impala SQL Language Reference

| 2016-06-01 15:44:14.355837000 | 2016-06-01 15:44:14.355836999 |
+-------------------------------+-------------------------------+

-- 1 billion nanoseconds = 1 second.
select now() as right_now, nanoseconds_sub(now(), 1e9) as 1_second_earlier;
+-------------------------------+-------------------------------+
| right_now | 1_second_earlier |
+-------------------------------+-------------------------------+
| 2016-06-01 15:44:54.474929000 | 2016-06-01 15:44:53.474929000 |
+-------------------------------+-------------------------------+

now()

Purpose: Returns the current date and time (in the local time zone) as a TIMESTAMP value.

Return type: timestamp

Usage notes:

To find a date/time value in the future or the past relative to the current date and time, add or subtract an INTERVAL
expression to the return value of now(). See TIMESTAMP Data Type on page 149 for examples.

To produce aTIMESTAMP representing the current date and time that can be shared or storedwithout interoperability
problems due to time zone differences, use the to_utc_timestamp() function and specify the time zone of the
server. When TIMESTAMP data is stored in UTC form, any application that queries those values can convert them
to the appropriate local time zone by calling the inverse function, from_utc_timestamp().

To determine the time zone of the server you are connected to, in CDH 5.5 / Impala 2.3 and higher you can call the
timeofday() function, which includes the time zone specifier in its return value. Remember that with cloud
computing, the server you interact with might be in a different time zone than you are, or different sessions might
connect to servers in different time zones, or a cluster might include servers in more than one time zone.

Any references to the now() function are evaluated at the start of a query. All calls to now()within the same query
return the same value, and the value does not depend on how long the query takes.

Examples:

select now() as 'Current time in California USA',
 to_utc_timestamp(now(), 'PDT') as 'Current time in Greenwich UK';
+--------------------------------+-------------------------------+
| current time in california usa | current time in greenwich uk |
+--------------------------------+-------------------------------+
| 2016-06-01 15:52:08.980072000 | 2016-06-01 22:52:08.980072000 |
+--------------------------------+-------------------------------+

select now() as right_now,
 now() + interval 1 day as tomorrow,
 now() + interval 1 week - interval 3 hours as almost_a_week_from_now;
+-------------------------------+-------------------------------+-------------------------------+
| right_now | tomorrow | almost_a_week_from_now
 |
+-------------------------------+-------------------------------+-------------------------------+
| 2016-06-01 15:55:39.671690000 | 2016-06-02 15:55:39.671690000 | 2016-06-08
12:55:39.671690000 |
+-------------------------------+-------------------------------+-------------------------------+

second(timestamp date)

Purpose: Returns the second field from a TIMESTAMP value.

Return type: int

Examples:

select now() as right_now,
 second(now()) as seconds_in_current_minute;

382 | Apache Impala Guide

Impala SQL Language Reference

+-------------------------------+---------------------------+
| right_now | seconds_in_current_minute |
+-------------------------------+---------------------------+
| 2016-06-01 16:03:57.006603000 | 57 |
+-------------------------------+---------------------------+

seconds_add(timestamp date, int seconds), seconds_add(timestamp date, bigint seconds)

Purpose: Returns the specified date and time plus some number of seconds.

Return type: timestamp

Examples:

select now() as right_now,
 seconds_add(now(), 10) as 10_seconds_from_now;
+-------------------------------+-------------------------------+
| right_now | 10_seconds_from_now |
+-------------------------------+-------------------------------+
| 2016-06-01 16:05:21.573935000 | 2016-06-01 16:05:31.573935000 |
+-------------------------------+-------------------------------+

seconds_sub(timestamp date, int seconds), seconds_sub(timestamp date, bigint seconds)

Purpose: Returns the specified date and time minus some number of seconds.

Return type: timestamp

Examples:

select now() as right_now,
 seconds_sub(now(), 10) as 10_seconds_ago;
+-------------------------------+-------------------------------+
| right_now | 10_seconds_ago |
+-------------------------------+-------------------------------+
| 2016-06-01 16:06:03.467931000 | 2016-06-01 16:05:53.467931000 |
+-------------------------------+-------------------------------+

subdate(timestamp startdate, int days), subdate(timestamp startdate, bigint days),

Purpose: Subtracts a specified number of days from a TIMESTAMP value. Similar to date_sub(), but starts with
an actual TIMESTAMP value instead of a string that is converted to a TIMESTAMP.

Return type: timestamp

Examples:

The following examples show how to subtract a number of days from a TIMESTAMP. The number of days can also
be negative, which gives the same effect as the adddate() function.

select now() as right_now, subdate(now(), 30) as now_minus_30;
+-------------------------------+-------------------------------+
| right_now | now_minus_30 |
+-------------------------------+-------------------------------+
| 2016-05-20 11:00:15.084991000 | 2016-04-20 11:00:15.084991000 |
+-------------------------------+-------------------------------+

select now() as right_now, subdate(now(), -15) as now_plus_15;
+-------------------------------+-------------------------------+
| right_now | now_plus_15 |
+-------------------------------+-------------------------------+
| 2016-05-20 11:00:44.766091000 | 2016-06-04 11:00:44.766091000 |
+-------------------------------+-------------------------------+

timeofday()

Purpose: Returns a string representation of the current date and time, according to the time of the local system,
including any time zone designation.

Apache Impala Guide | 383

Impala SQL Language Reference

Return type: string

Added in: CDH 5.5.0 (Impala 2.3.0)

Usage notes: The result value represents similar information as the now() function, only as a STRING type and
with somewhat different formatting. For example, the day of the week and the time zone identifier are included.
This function is intended primarily for compatibilitywith SQL code fromother systems that also have a timeofday()
function. Prefer to use now() if practical for any new Impala code.

Examples:

The following examples show the format of the timeofday() return value, illustrate how that value is represented
as a STRING that you can manipulate with string processing functions, and how the format compares with the
return value from the now() function.

/* Date and time fields in a STRING return value. */
select timeofday();
+------------------------------+
| timeofday() |
+------------------------------+
| Tue Sep 01 15:13:18 2015 PDT |
+------------------------------+

/* The return value can be processed by other string functions. */
select upper(timeofday());
+------------------------------+
| upper(timeofday()) |
+------------------------------+
| TUE SEP 01 15:13:38 2015 PDT |
+------------------------------+

/* The TIMEOFDAY() result is formatted differently than NOW(). NOW() returns a TIMESTAMP.
 */
select now(), timeofday();
+-------------------------------+------------------------------+
| now() | timeofday() |
+-------------------------------+------------------------------+
| 2015-09-01 15:15:25.930021000 | Tue Sep 01 15:15:25 2015 PDT |
+-------------------------------+------------------------------+

/* You can strip out the time zone field to use in calls to from_utc_timestamp(). */
select regexp_replace(timeofday(), '.* ([A-Z]+)$', '\\1') as current_timezone;
+------------------+
| current_timezone |
+------------------+
| PDT |
+------------------+

timestamp_cmp(timestamp t1, timestamp t2)

Purpose: Tests if one TIMESTAMP value is newer than, older than, or identical to another TIMESTAMP

Return type: int (either -1, 0, 1, or NULL)

Added in: CDH 5.5.0 (Impala 2.3.0)

Usage notes:

Usage notes: A comparison function for TIMESTAMP values that only tests whether the date and time increases,
decreases, or stays the same. Similar to the sign() function for numeric values.

Examples:

The following examples show all the possible return values for timestamp_cmp(). If the first argument represents
a later point in time than the second argument, the result is 1. The amount of the difference is irrelevant, only the
fact that one argument is greater than or less than the other. If the first argument represents an earlier point in

384 | Apache Impala Guide

Impala SQL Language Reference

time than the second argument, the result is -1. If the first and second arguments represent identical points in time,
the result is 0. If either argument is NULL, the result is NULL.

/* First argument 'later' than second argument. */

select timestamp_cmp(now() + interval 70 minutes, now())
 as now_vs_in_70_minutes;
+----------------------+
| now_vs_in_70_minutes |
+----------------------+
| 1 |
+----------------------+

select timestamp_cmp(now() +
 interval 3 days +
 interval 5 hours, now())
 as now_vs_days_from_now;
+----------------------+
| now_vs_days_from_now |
+----------------------+
| 1 |
+----------------------+

/* First argument 'earlier' than second argument. */
select timestamp_cmp(now(), now() + interval 2 hours)
 as now_vs_2_hours_ago;
+--------------------+
| now_vs_2_hours_ago |
+--------------------+
| -1 |
+--------------------+

/* Both arguments represent the same point in time. */

select timestamp_cmp(now(), now())
 as identical_timestamps;
+----------------------+
| identical_timestamps |
+----------------------+
| 0 |
+----------------------+

select timestamp_cmp
(
 now() + interval 1 hour,
 now() + interval 60 minutes
) as equivalent_date_times;
+-----------------------+
| equivalent_date_times |
+-----------------------+
| 0 |
+-----------------------+

/* Either argument NULL. */

select timestamp_cmp(now(), null)
 as now_vs_null;
+-------------+
| now_vs_null |
+-------------+
| NULL |
+-------------+

to_date(timestamp)

Purpose: Returns a string representation of the date field from a timestamp value.

Return type: string

Apache Impala Guide | 385

Impala SQL Language Reference

Examples:

select now() as right_now,
 concat('The date today is ',to_date(now()),'.') as date_announcement;
+-------------------------------+-------------------------------+
| right_now | date_announcement |
+-------------------------------+-------------------------------+
| 2016-06-01 16:30:36.890325000 | The date today is 2016-06-01. |
+-------------------------------+-------------------------------+

to_timestamp(bigint unixtime), to_timestamp(string date, string pattern)

Purpose: Converts an integer or string representing a date/time value into the corresponding TIMESTAMP value.

Return type: timestamp

Added in: CDH 5.5.0 (Impala 2.3.0)

Usage notes:

An integer argument represents the number of seconds past the epoch (midnight on January 1, 1970). It is the
converse of the unix_timestamp() function, which produces a BIGINT representing the number of seconds past
the epoch.

A string argument, plus another string argument representing the pattern, turns an arbitrary string representation
of a date and time into a true TIMESTAMP value. The ability to parse many kinds of date and time formats allows
you to deal with temporal data from diverse sources, and if desired to convert to efficient TIMESTAMP values during
your ETL process. Using TIMESTAMP directly in queries and expressions lets you perform date and time calculations
without the overhead of extra function calls and conversions each time you reference the applicable columns.

Examples:

The following examples demonstrate how to convert an arbitrary string representation to TIMESTAMP based on a
pattern string:

select to_timestamp('Sep 25, 1984', 'MMM dd, yyyy');
+--+
| to_timestamp('sep 25, 1984', 'mmm dd, yyyy') |
+--+
| 1984-09-25 00:00:00 |
+--+

select to_timestamp('1984/09/25', 'yyyy/MM/dd');
+--+
| to_timestamp('1984/09/25', 'yyyy/mm/dd') |
+--+
| 1984-09-25 00:00:00 |
+--+

The following examples show how to convert a BIGINT representing seconds past epoch into a TIMESTAMP value:

-- One day past the epoch.
select to_timestamp(24 * 60 * 60);
+----------------------------+
| to_timestamp(24 * 60 * 60) |
+----------------------------+
| 1970-01-02 00:00:00 |
+----------------------------+

-- 60 seconds in the past.
select now() as 'current date/time',
 unix_timestamp(now()) 'now in seconds',
 to_timestamp(unix_timestamp(now()) - 60) as '60 seconds ago';
+-------------------------------+----------------+---------------------+
| current date/time | now in seconds | 60 seconds ago |
+-------------------------------+----------------+---------------------+

386 | Apache Impala Guide

Impala SQL Language Reference

| 2017-10-01 22:03:46.885624000 | 1506895426 | 2017-10-01 22:02:46 |
+-------------------------------+----------------+---------------------+

to_utc_timestamp(timestamp, string timezone)

Purpose: Converts a specified timestamp value in a specified time zone into the corresponding value for the UTC
time zone.

Return type: timestamp

Usage notes:

Often used in combination with the now() function, to translate local date and time values to the UTC time zone
for consistent representation on disk. The opposite of the from_utc_timestamp() function.

See discussion of time zones in TIMESTAMP Data Type on page 149 for information about using this function for
conversions between the local time zone and UTC.

Examples:

The simplest use of this function is to turn a local date/time value to one with the standardized UTC time zone.
Because the time zone specifier is not saved as part of the Impala TIMESTAMP value, all applications that refer to
such datamust agree in advancewhich time zone the values represent. If different parts of the ETL cycle, or different
instances of the application, occur in different time zones, the ideal reference point is to convert all TIMESTAMP
values to UTC for storage.

select now() as 'Current time in California USA',
 to_utc_timestamp(now(), 'PDT') as 'Current time in Greenwich UK';
+--------------------------------+-------------------------------+
| current time in california usa | current time in greenwich uk |
+--------------------------------+-------------------------------+
| 2016-06-01 15:52:08.980072000 | 2016-06-01 22:52:08.980072000 |
+--------------------------------+-------------------------------+

Once a value is converted to the UTC time zone by to_utc_timestamp(), it can be converted back to the local
time zone with from_utc_timestamp(). You can combine these functions using different time zone identifiers
to convert a TIMESTAMP between any two time zones. This example starts with a TIMESTAMP value representing
Pacific Daylight Time, converts it to UTC, and converts it to the equivalent value in Eastern Daylight Time.

select now() as 'Current time in California USA',
 from_utc_timestamp
 (
 to_utc_timestamp(now(), 'PDT'),
 'EDT'
) as 'Current time in New York, USA';
+--------------------------------+-------------------------------+
| current time in california usa | current time in new york, usa |
+--------------------------------+-------------------------------+
| 2016-06-01 18:14:12.743658000 | 2016-06-01 21:14:12.743658000 |
+--------------------------------+-------------------------------+

trunc(timestamp, string unit)

Purpose: Strips off fields from a TIMESTAMP value.

Unit argument: The unit argument value is case-sensitive. This argument string can be one of:

• SYYYY, YYYY, YEAR, SYEAR, YYY, YY, Y: Year.
• Q: Quarter.
• MONTH, MON, MM, RM: Month.
• WW, W: Same day of the week as the first day of the month.
• DDD, DD, J: Day.
• DAY, DY, D: Starting day of the week. (Not necessarily the current day.)

Apache Impala Guide | 387

Impala SQL Language Reference

• HH, HH12, HH24: Hour. A TIMESTAMP value truncated to the hour is always represented in 24-hour notation,
even for the HH12 argument string.

• MI: Minute.

Usage notes:

Typically used in GROUP BY queries to aggregate results from the same hour, day, week, month, quarter, and so
on. You can also use this function in an INSERT ... SELECT into a partitioned table to divide TIMESTAMP values
into the correct partition.

Because the return value is a TIMESTAMP, if you cast the result of TRUNC() to STRING, youwill often see zeroed-out
portions such as 00:00:00 in the time field. If you only need the individual units such as hour, day, month, or year,
use the EXTRACT() function instead. If you need the individual units from a truncated TIMESTAMP value, run the
TRUNCATE() function on the original value, then run EXTRACT() on the result.

Return type: timestamp

Examples:

The following example shows how the argument 'Q' returns a TIMESTAMP representing the beginning of the
appropriate calendar quarter. This return value is the same for input values that could be separated by weeks or
months. If you stored the trunc() result in a partition key column, the table would have four partitions per year.

select now() as right_now, trunc(now(), 'Q') as current_quarter;
+-------------------------------+---------------------+
| right_now | current_quarter |
+-------------------------------+---------------------+
| 2016-06-01 18:32:02.097202000 | 2016-04-01 00:00:00 |
+-------------------------------+---------------------+

select now() + interval 2 weeks as 2_weeks_from_now,
 trunc(now() + interval 2 weeks, 'Q') as still_current_quarter;
+-------------------------------+-----------------------+
| 2_weeks_from_now | still_current_quarter |
+-------------------------------+-----------------------+
| 2016-06-15 18:36:19.584257000 | 2016-04-01 00:00:00 |
+-------------------------------+-----------------------+

unix_timestamp(), unix_timestamp(string datetime), unix_timestamp(string datetime, string

format), unix_timestamp(timestamp datetime)

Purpose: Returns a Unix time, which is a number of seconds elapsed since '1970-01-01 00:00:00' UTC. If called with
no argument, the current date and time is converted to its Unix time. If called with arguments, the first argument
represented as the TIMESTAMP or STRING is converted to its Unix time.

Return type: bigint

Usage notes:

See from_unixtime() for details about the patterns you can use in the format string to represent the position
of year, month, day, and so on in the date string. In Impala 1.3 and higher, you have more flexibility to switch the
positions of elements and use different separator characters.

In CDH 5.4.3 and higher, you can include a trailing uppercase Z qualifier to indicate “Zulu” time, a synonym for UTC.

In CDH 5.5.0 and higher, you can include a timezone offset specified asminutes and hours, provided you also specify
the details in the format string argument. The offset is specified in the format string as a plus or minus sign followed
by hh:mm, hhmm, or hh. The hhmust be lowercase, to distinguish it from the HH represent hours in the actual time
value. Currently, only numeric timezone offsets are allowed, not symbolic names.

In Impala 2.2.0 and higher, built-in functions that accept or return integers representing TIMESTAMP values use the
BIGINT type for parameters and return values, rather than INT. This change lets the date and time functions avoid
an overflow error that would otherwise occur on January 19th, 2038 (known as the “Year 2038 problem” or “Y2K38
problem”). This change affects the from_unixtime() and unix_timestamp() functions. You might need to

388 | Apache Impala Guide

Impala SQL Language Reference

http://en.wikipedia.org/wiki/Year_2038_problem
http://en.wikipedia.org/wiki/Year_2038_problem

change application code that interacts with these functions, change the types of columns that store the return
values, or add CAST() calls to SQL statements that call these functions.

unix_timestamp() and from_unixtime() are often used in combination to convert a TIMESTAMP value into
a particular string format. For example:

select from_unixtime(unix_timestamp(now() + interval 3 days),
 'yyyy/MM/dd HH:mm') as yyyy_mm_dd_hh_mm;
+------------------+
| yyyy_mm_dd_hh_mm |
+------------------+
| 2016/06/03 11:38 |
+------------------+

The way this function deals with time zones when converting to or from TIMESTAMP values is affected by the
--use_local_tz_for_unix_timestamp_conversions startup flag for theimpalad daemon. See TIMESTAMP
Data Type on page 149 for details about how Impala handles time zone considerations for the TIMESTAMP data
type.

Examples:

The following examples show different ways of turning the same date and time into an integer value. A format
string that Impala recognizes by default is interpreted as a UTC date and time. The trailing Z is a confirmation that
the timezone is UTC. If the date and time string is formatted differently, a second argument specifies the position
and units for each of the date and time values.

The final two examples show how to specify a timezone offset of Pacific Daylight Saving Time, which is 7 hours
earlier than UTC. You can use the numeric offset -07:00 and the equivalent suffix of -hh:mm in the format string,
or specify the mnemonic name for the time zone in a call to to_utc_timestamp(). This particular date and time
expressed in PDT translates to a different number than the same date and time expressed in UTC.

-- 3 ways of expressing the same date/time in UTC and converting to an integer.

select unix_timestamp('2015-05-15 12:00:00');
+---------------------------------------+
| unix_timestamp('2015-05-15 12:00:00') |
+---------------------------------------+
| 1431691200 |
+---------------------------------------+

select unix_timestamp('2015-05-15 12:00:00Z');
+--+
| unix_timestamp('2015-05-15 12:00:00z') |
+--+
| 1431691200 |
+--+

select unix_timestamp
(
 'May 15, 2015 12:00:00',
 'MMM dd, yyyy HH:mm:ss'
) as may_15_month_day_year;
+-----------------------+
| may_15_month_day_year |
+-----------------------+
| 1431691200 |
+-----------------------+

-- 2 ways of expressing the same date and time but in a different timezone.
-- The resulting integer is different from the previous examples.

select unix_timestamp
(
 '2015-05-15 12:00:00-07:00',
 'yyyy-MM-dd HH:mm:ss-hh:mm'
) as may_15_year_month_day;
+-----------------------+
| may_15_year_month_day |

Apache Impala Guide | 389

Impala SQL Language Reference

+-----------------------+
| 1431716400 |
+-----------------------+

select unix_timestamp
 (to_utc_timestamp(
 '2015-05-15 12:00:00',
 'PDT')
) as may_15_pdt;
+------------+
| may_15_pdt |
+------------+
| 1431716400 |
+------------+

weekofyear(timestamp date)

Purpose: Returns the corresponding week (1-53) from the date portion of a TIMESTAMP.

Return type: int

Examples:

select now() as right_now, weekofyear(now()) as this_week;
+-------------------------------+-----------+
| right_now | this_week |
+-------------------------------+-----------+
| 2016-06-01 22:40:06.763771000 | 22 |
+-------------------------------+-----------+

select now() + interval 2 weeks as in_2_weeks,
 weekofyear(now() + interval 2 weeks) as week_after_next;
+-------------------------------+-----------------+
| in_2_weeks | week_after_next |
+-------------------------------+-----------------+
| 2016-06-15 22:41:22.098823000 | 24 |
+-------------------------------+-----------------+

weeks_add(timestamp date, int weeks), weeks_add(timestamp date, bigint weeks)

Purpose: Returns the specified date and time plus some number of weeks.

Return type: timestamp

Examples:

select now() as right_now, weeks_add(now(), 2) as week_after_next;
+-------------------------------+-------------------------------+
| right_now | week_after_next |
+-------------------------------+-------------------------------+
| 2016-06-01 22:43:20.973834000 | 2016-06-15 22:43:20.973834000 |
+-------------------------------+-------------------------------+

weeks_sub(timestamp date, int weeks), weeks_sub(timestamp date, bigint weeks)

Purpose: Returns the specified date and time minus some number of weeks.

Return type: timestamp

Examples:

select now() as right_now, weeks_sub(now(), 2) as week_before_last;
+-------------------------------+-------------------------------+
| right_now | week_before_last |
+-------------------------------+-------------------------------+
| 2016-06-01 22:44:21.291913000 | 2016-05-18 22:44:21.291913000 |
+-------------------------------+-------------------------------+

390 | Apache Impala Guide

Impala SQL Language Reference

year(timestamp date)

Purpose: Returns the year field from the date portion of a TIMESTAMP.

Return type: int

Examples:

select now() as right_now, year(now()) as this_year;
+-------------------------------+-----------+
| right_now | this_year |
+-------------------------------+-----------+
| 2016-06-01 22:46:23.647925000 | 2016 |
+-------------------------------+-----------+

years_add(timestamp date, int years), years_add(timestamp date, bigint years)

Purpose: Returns the specified date and time plus some number of years.

Return type: timestamp

Examples:

select now() as right_now, years_add(now(), 1) as next_year;
+-------------------------------+-------------------------------+
| right_now | next_year |
+-------------------------------+-------------------------------+
| 2016-06-01 22:47:45.556851000 | 2017-06-01 22:47:45.556851000 |
+-------------------------------+-------------------------------+

The following example shows how if the equivalent date does not exist in the year of the result due to a leap year,
the date is changed to the last day of the appropriate month.

-- Spoiler alert: there is no Feb. 29, 2017
select cast('2016-02-29' as timestamp) as feb_29_2016,
 years_add('2016-02-29', 1) as feb_29_2017;
+---------------------+---------------------+
| feb_29_2016 | feb_29_2017 |
+---------------------+---------------------+
| 2016-02-29 00:00:00 | 2017-02-28 00:00:00 |
+---------------------+---------------------+

years_sub(timestamp date, int years), years_sub(timestamp date, bigint years)

Purpose: Returns the specified date and time minus some number of years.

Return type: timestamp

Examples:

select now() as right_now, years_sub(now(), 1) as last_year;
+-------------------------------+-------------------------------+
| right_now | last_year |
+-------------------------------+-------------------------------+
| 2016-06-01 22:48:11.851780000 | 2015-06-01 22:48:11.851780000 |
+-------------------------------+-------------------------------+

The following example shows how if the equivalent date does not exist in the year of the result due to a leap year,
the date is changed to the last day of the appropriate month.

-- Spoiler alert: there is no Feb. 29, 2015
select cast('2016-02-29' as timestamp) as feb_29_2016,
 years_sub('2016-02-29', 1) as feb_29_2015;
+---------------------+---------------------+

Apache Impala Guide | 391

Impala SQL Language Reference

| feb_29_2016 | feb_29_2015 |
+---------------------+---------------------+
| 2016-02-29 00:00:00 | 2015-02-28 00:00:00 |
+---------------------+---------------------+

Impala Conditional Functions

Impala supports the following conditional functions for testing equality, comparison operators, and nullity:

CASE a WHEN b THEN c [WHEN d THEN e]... [ELSE f] END

Purpose: Compares an expression to one ormore possible values, and returns a corresponding result when amatch
is found.

Return type: sameas the initial argument value, except that integer values are promoted toBIGINT and floating-point
values are promoted to DOUBLE; use CAST() when inserting into a smaller numeric column

Usage notes:

In this form of the CASE expression, the initial value A being evaluated for each row it typically a column reference,
or an expression involving a column. This form can only compare against a set of specified values, not ranges,
multi-value comparisons such as BETWEEN or IN, regular expressions, or NULL.

Examples:

Although this example is split across multiple lines, you can put any or all parts of a CASE expression on a single
line, with no punctuation or other separators between the WHEN, ELSE, and END clauses.

select case x
 when 1 then 'one'
 when 2 then 'two'
 when 0 then 'zero'
 else 'out of range'
 end
 from t1;

CASE WHEN a THEN b [WHEN c THEN d]... [ELSE e] END

Purpose: Tests whether any of a sequence of expressions is true, and returns a corresponding result for the first
true expression.

Return type: sameas the initial argument value, except that integer values are promoted toBIGINT and floating-point
values are promoted to DOUBLE; use CAST() when inserting into a smaller numeric column

Usage notes:

CASE expressions without an initial test value have more flexibility. For example, they can test different columns
in different WHEN clauses, or use comparison operators such as BETWEEN, IN and IS NULL rather than comparing
against discrete values.

CASE expressions are often the foundation of long queries that summarize and format results for easy-to-read
reports. For example, youmight use a CASE function call to turn values from a numeric column into category strings
corresponding to integer values, or labels such as “Small”, “Medium” and “Large” based on ranges. Then subsequent
parts of the query might aggregate based on the transformed values, such as how many values are classified as
small, medium, or large. You can also use CASE to signal problems with out-of-bounds values, NULL values, and so
on.

By using operators such as OR, IN, REGEXP, and so on in CASE expressions, you can build extensive tests and
transformations into a single query. Therefore, applications that construct SQL statements often rely heavily on
CASE calls in the generated SQL code.

Because this flexible form of the CASE expressions allows you to perform many comparisons and call multiple
functions when evaluating each row, be careful applying elaborate CASE expressions to queries that process large
amounts of data. For example, when practical, evaluate and transform values through CASE after applying operations
such as aggregations that reduce the size of the result set; transform numbers to strings after performing joins with
the original numeric values.

392 | Apache Impala Guide

Impala SQL Language Reference

Examples:

Although this example is split across multiple lines, you can put any or all parts of a CASE expression on a single
line, with no punctuation or other separators between the WHEN, ELSE, and END clauses.

select case
 when dayname(now()) in ('Saturday','Sunday') then 'result undefined on weekends'
 when x > y then 'x greater than y'
 when x = y then 'x and y are equal'
 when x is null or y is null then 'one of the columns is null'
 else null
 end
 from t1;

coalesce(type v1, type v2, ...)

Purpose: Returns the first specified argument that is not NULL, or NULL if all arguments are NULL.

Return type: sameas the initial argument value, except that integer values are promoted toBIGINT and floating-point
values are promoted to DOUBLE; use CAST() when inserting into a smaller numeric column

decode(type expression, type search1, type result1 [, type search2, type result2 ...] [,

type default])

Purpose: Compares an expression to one ormore possible values, and returns a corresponding result when amatch
is found.

Return type: sameas the initial argument value, except that integer values are promoted toBIGINT and floating-point
values are promoted to DOUBLE; use CAST() when inserting into a smaller numeric column

Usage notes:

Can be used as shorthand for a CASE expression.

The original expression and the search expressionsmust of the same type or convertible types. The result expression
can be a different type, but all result expressions must be of the same type.

Returns a successful match If the original expression is NULL and a search expression is also NULL. the

Returns NULL if the final default value is omitted and none of the search expressionsmatch the original expression.

Examples:

The following example translates numeric day values into descriptive names:

SELECT event, decode(day_of_week, 1, "Monday", 2, "Tuesday", 3, "Wednesday",
 4, "Thursday", 5, "Friday", 6, "Saturday", 7, "Sunday", "Unknown day")
 FROM calendar;

if(boolean condition, type ifTrue, type ifFalseOrNull)

Purpose: Tests an expression and returns a corresponding result depending on whether the result is true, false, or
NULL.

Return type: Same as the ifTrue argument value

ifnull(type a, type ifNull)

Purpose: Alias for the isnull() function, with the same behavior. To simplify porting SQL with vendor extensions
to Impala.

Added in: Impala 1.3.0

isfalse(boolean)

Purpose: Tests if a Boolean expression is false or not. Returns true if so. If the argument is NULL, returns false.
Identical to isnottrue(), except it returns the opposite value for a NULL argument.

Return type: BOOLEAN

Added in: CDH 5.4.0 (Impala 2.2.0)

Apache Impala Guide | 393

Impala SQL Language Reference

isnotfalse(boolean)

Purpose: Tests if a Boolean expression is not false (that is, either true or NULL). Returns true if so. If the argument
is NULL, returns true. Identical to istrue(), except it returns the opposite value for a NULL argument.

Return type: BOOLEAN

Usage notes: Primarily for compatibility with code containing industry extensions to SQL.

Added in: CDH 5.4.0 (Impala 2.2.0)

isnottrue(boolean)

Purpose: Tests if a Boolean expression is not true (that is, either false or NULL). Returns true if so. If the argument
is NULL, returns true. Identical to isfalse(), except it returns the opposite value for a NULL argument.

Return type: BOOLEAN

Added in: CDH 5.4.0 (Impala 2.2.0)

isnull(type a, type ifNull)

Purpose: Tests if an expression is NULL, and returns the expression result value if not. If the first argument is NULL,
returns the second argument.

Compatibility notes: Equivalent to the nvl() function fromOracle Database or ifnull() fromMySQL. The nvl()
and ifnull() functions are also available in Impala.

Return type: Same as the first argument value

istrue(boolean)

Purpose: Tests if a Boolean expression is true or not. Returns true if so. If the argument is NULL, returns false.
Identical to isnotfalse(), except it returns the opposite value for a NULL argument.

Return type: BOOLEAN

Usage notes: Primarily for compatibility with code containing industry extensions to SQL.

Added in: CDH 5.4.0 (Impala 2.2.0)

nonnullvalue(expression)

Purpose: Tests if an expression (of any type) is NULL or not. Returns false if so. The converse of nullvalue().

Return type: BOOLEAN

Usage notes: Primarily for compatibility with code containing industry extensions to SQL.

Added in: CDH 5.4.0 (Impala 2.2.0)

nullif(expr1,expr2)

Purpose: Returns NULL if the two specified arguments are equal. If the specified arguments are not equal, returns
the value of expr1. The data types of the expressions must be compatible, according to the conversion rules from
Data Types on page 117. You cannot use an expression that evaluates to NULL for expr1; that way, you can distinguish
a return value of NULL from an argument value of NULL, which would never match expr2.

Usage notes: This function is effectively shorthand for a CASE expression of the form:

CASE
 WHEN expr1 = expr2 THEN NULL
 ELSE expr1
END

It is commonly used in division expressions, to produce a NULL result instead of a divide-by-zero error when the
divisor is equal to zero:

select 1.0 / nullif(c1,0) as reciprocal from t1;

You might also use it for compatibility with other database systems that support the same NULLIF() function.

394 | Apache Impala Guide

Impala SQL Language Reference

Return type: sameas the initial argument value, except that integer values are promoted toBIGINT and floating-point
values are promoted to DOUBLE; use CAST() when inserting into a smaller numeric column

Added in: Impala 1.3.0

nullifzero(numeric_expr)

Purpose: Returns NULL if the numeric expression evaluates to 0, otherwise returns the result of the expression.

Usage notes: Used to avoid error conditions such as divide-by-zero in numeric calculations. Serves as shorthand
for a more elaborate CASE expression, to simplify porting SQL with vendor extensions to Impala.

Return type: Same type as the input argument

Added in: Impala 1.3.0

nullvalue(expression)

Purpose: Tests if an expression (of any type) is NULL or not. Returns true if so. The converse of nonnullvalue().

Return type: BOOLEAN

Usage notes: Primarily for compatibility with code containing industry extensions to SQL.

Added in: CDH 5.4.0 (Impala 2.2.0)

nvl(type a, type ifNull)

Purpose: Alias for the isnull() function. Tests if an expression is NULL, and returns the expression result value
if not. If the first argument is NULL, returns the second argument. Equivalent to the nvl() function from Oracle
Database or ifnull() from MySQL.

Return type: Same as the first argument value

Added in: Impala 1.1

zeroifnull(numeric_expr)

Purpose: Returns 0 if the numeric expression evaluates to NULL, otherwise returns the result of the expression.

Usage notes:Used to avoid unexpected results due to unexpected propagation ofNULL values in numeric calculations.
Serves as shorthand for amore elaborate CASE expression, to simplify porting SQLwith vendor extensions to Impala.

Return type: Same type as the input argument

Added in: Impala 1.3.0

Impala String Functions

String functions are classified as those primarily accepting or returning STRING, VARCHAR, or CHAR data types, for
example to measure the length of a string or concatenate two strings together.

• All the functions that accept STRING arguments also accept the VARCHAR and CHAR types introduced in Impala
2.0.

• WheneverVARCHAR orCHAR values are passed to a function that returns a string value, the return type is normalized
to STRING. For example, a call to concat() with a mix of STRING, VARCHAR, and CHAR arguments produces a
STRING result.

Related information:

The string functions operate mainly on these data types: STRING Data Type on page 142, VARCHAR Data Type (CDH 5.2
or higher only) on page 155, and CHAR Data Type (CDH 5.2 or higher only) on page 123.

Function reference:

Impala supports the following string functions:

ascii(string str)

Purpose: Returns the numeric ASCII code of the first character of the argument.

Return type: int

Apache Impala Guide | 395

Impala SQL Language Reference

btrim(string a), btrim(string a, string chars_to_trim)

Purpose: Removes all instances of one or more characters from the start and end of a STRING value. By default,
removes only spaces. If a non-NULL optional second argument is specified, the function removes all occurrences
of characters in that second argument from the beginning and end of the string.

Return type: string

Added in: CDH 5.5.0 (Impala 2.3.0)

Examples:

The following examples show the default btrim() behavior, and what changes when you specify the optional
second argument. All the examples bracket the output value with [] so that you can see any leading or trailing
spaces in the btrim() result. By default, the function removes and number of both leading and trailing spaces.
When the second argument is specified, any number of occurrences of any character in the second argument are
removed from the start and end of the input string; in this case, spaces are not removed (unless they are part of
the second argument) and any instances of the characters are not removed if they do not come right at the beginning
or end of the string.

-- Remove multiple spaces before and one space after.
select concat('[',btrim(' hello '),']');
+---------------------------------------+
| concat('[', btrim(' hello '), ']') |
+---------------------------------------+
| [hello] |
+---------------------------------------+

-- Remove any instances of x or y or z at beginning or end. Leave spaces alone.
select concat('[',btrim('xy hello zyzzxx','xyz'),']');
+--+
| concat('[', btrim('xy hello zyzzxx', 'xyz'), ']') |
+--+
| [hello] |
+--+

-- Remove any instances of x or y or z at beginning or end.
-- Leave x, y, z alone in the middle of the string.
select concat('[',btrim('xyhelxyzlozyzzxx','xyz'),']');
+--+
| concat('[', btrim('xyhelxyzlozyzzxx', 'xyz'), ']') |
+--+
| [helxyzlo] |
+--+

char_length(string a), character_length(string a)

Purpose: Returns the length in characters of the argument string. Aliases for the length() function.

Return type: int

chr(int character_code)

Purpose: Returns a character specified by a decimal code point value. The interpretation and display of the resulting
character depends on your system locale. Because consistent processing of Impala string values is only guaranteed
for values within the ASCII range, only use this function for values corresponding to ASCII characters. In particular,
parameter values greater than 255 return an empty string.

Return type: string

Usage notes: Can be used as the inverse of the ascii() function, which converts a character to its numeric ASCII
code.

Added in: CDH 5.5.0 (Impala 2.3.0)

Examples:

SELECT chr(65);
+---------+

396 | Apache Impala Guide

Impala SQL Language Reference

| chr(65) |
+---------+
| A |
+---------+

SELECT chr(97);
+---------+
| chr(97) |
+---------+
| a |
+---------+

concat(string a, string b...)

Purpose: Returns a single string representing all the argument values joined together.

Return type: string

Usage notes: concat() and concat_ws() are appropriate for concatenating the values ofmultiple columnswithin
the same row, while group_concat() joins together values from different rows.

concat_ws(string sep, string a, string b...)

Purpose: Returns a single string representing the second and following argument values joined together, delimited
by a specified separator.

Return type: string

Usage notes: concat() and concat_ws() are appropriate for concatenating the values ofmultiple columnswithin
the same row, while group_concat() joins together values from different rows.

find_in_set(string str, string strList)

Purpose: Returns the position (starting from1) of the first occurrence of a specified stringwithin a comma-separated
string. Returns NULL if either argument is NULL, 0 if the search string is not found, or 0 if the search string contains
a comma.

Return type: int

group_concat(string s [, string sep])

Purpose: Returns a single string representing the argument value concatenated together for each row of the result
set. If the optional separator string is specified, the separator is added between each pair of concatenated values.

Return type: string

Usage notes: concat() and concat_ws() are appropriate for concatenating the values ofmultiple columnswithin
the same row, while group_concat() joins together values from different rows.

By default, returns a single string covering the whole result set. To include other columns or values in the result
set, or to produce multiple concatenated strings for subsets of rows, include a GROUP BY clause in the query.

Strictly speaking, group_concat() is an aggregate function, not a scalar function like the others in this list. For
additional details and examples, see GROUP_CONCAT Function on page 413.

initcap(string str)

Purpose: Returns the input string with the first letter capitalized.

Return type: string

instr(string str, string substr)

Purpose: Returns the position (starting from 1) of the first occurrence of a substring within a longer string.

Return type: int

length(string a)

Purpose: Returns the length in characters of the argument string.

Return type: int

Apache Impala Guide | 397

Impala SQL Language Reference

locate(string substr, string str[, int pos])

Purpose: Returns the position (starting from 1) of the first occurrence of a substringwithin a longer string, optionally
after a particular position.

Return type: int

lower(string a), lcase(string a)

Purpose: Returns the argument string converted to all-lowercase.

Return type: string

lpad(string str, int len, string pad)

Purpose: Returns a string of a specified length, based on the first argument string. If the specified string is too short,
it is padded on the left with a repeating sequence of the characters from the pad string. If the specified string is too
long, it is truncated on the right.

Return type: string

ltrim(string a)

Purpose: Returns the argument string with any leading spaces removed from the left side.

Return type: string

parse_url(string urlString, string partToExtract [, string keyToExtract])

Purpose: Returns the portion of a URL corresponding to a specified part. The part argument can be 'PROTOCOL',
'HOST', 'PATH', 'REF', 'AUTHORITY', 'FILE', 'USERINFO', or 'QUERY'. Uppercase is required for these
literal values. When requesting the QUERY portion of the URL, you can optionally specify a key to retrieve just the
associated value from the key-value pairs in the query string.

Return type: string

Usage notes: This function is important for the traditional Hadoop use case of interpreting web logs. For example,
if theweb traffic data features rawURLs not divided into separate table columns, you can count visitors to a particular
page by extracting the 'PATH' or 'FILE' field, or analyze search terms by extracting the corresponding key from
the 'QUERY' field.

regexp_extract(string subject, string pattern, int index)

Purpose: Returns the specified () group from a string based on a regular expression pattern. Group 0 refers to the
entire extracted string, while group 1, 2, and so on refers to the first, second, and so on (...) portion.

Return type: string

In Impala 2.0 and later, the Impala regular expression syntax conforms to the POSIX Extended Regular Expression
syntax used by the Google RE2 library. For details, see the RE2 documentation. It has most idioms familiar from
regular expressions in Perl, Python, and so on, including .*? for non-greedy matches.

In Impala 2.0 and later, a change in the underlying regular expression library could cause changes in the way regular
expressions are interpreted by this function. Test any queries that use regular expressions and adjust the expression
patterns if necessary. See Incompatible Changes Introduced in Impala 2.0.0 / CDH 5.2.0 on page 629 for details.

Because theimpala-shell interpreter uses the\ character for escaping, use \\ to represent the regular expression
escape character in any regular expressions that you submit through impala-shell . You might prefer to use the
equivalent character class names, such as [[:digit:]] instead of \d which you would have to escape as \\d.

Examples:

This example shows how group 0 matches the full pattern string, including the portion outside any () group:

[localhost:21000] > select regexp_extract('abcdef123ghi456jkl','.*?(\\d+)',0);
+--+
| regexp_extract('abcdef123ghi456jkl', '.*?(\\d+)', 0) |
+--+
| abcdef123ghi456 |

398 | Apache Impala Guide

Impala SQL Language Reference

https://code.google.com/p/re2/

+--+
Returned 1 row(s) in 0.11s

This example shows how group 1 matches just the contents inside the first () group in the pattern string:

[localhost:21000] > select regexp_extract('abcdef123ghi456jkl','.*?(\\d+)',1);
+--+
| regexp_extract('abcdef123ghi456jkl', '.*?(\\d+)', 1) |
+--+
| 456 |
+--+
Returned 1 row(s) in 0.11s

Unlike in earlier Impala releases, the regular expression library used in Impala 2.0 and later supports the .*? idiom
for non-greedy matches. This example shows how a pattern string starting with .*?matches the shortest possible
portion of the source string, returning the rightmost set of lowercase letters. A pattern string both starting and
ending with .*? finds two potential matches of equal length, and returns the first one found (the leftmost set of
lowercase letters).

[localhost:21000] > select regexp_extract('AbcdBCdefGHI','.*?([[:lower:]]+)',1);
+--+
| regexp_extract('abcdbcdefghi', '.*?([[:lower:]]+)', 1) |
+--+
| def |
+--+
[localhost:21000] > select regexp_extract('AbcdBCdefGHI','.*?([[:lower:]]+).*?',1);
+---+
| regexp_extract('abcdbcdefghi', '.*?([[:lower:]]+).*?', 1) |
+---+
| bcd |
+---+

regexp_like(string source, string pattern[, string options])

Purpose: Returns true or false to indicate whether the source string contains anywhere inside it the regular
expression given by the pattern. The optional third argument consists of letter flags that change how the match is
performed, such as i for case-insensitive matching.

Syntax:

The flags that you can include in the optional third argument are:

• c: Case-sensitive matching (the default).
• i: Case-insensitive matching. If multiple instances of c and i are included in the third argument, the last such

option takes precedence.
• m: Multi-line matching. The ^ and $ operators match the start or end of any line within the source string, not

the start and end of the entire string.
• n: Newline matching. The . operator can match the newline character. A repetition operator such as .* can

match a portion of the source string that spans multiple lines.

Return type: boolean

In Impala 2.0 and later, the Impala regular expression syntax conforms to the POSIX Extended Regular Expression
syntax used by the Google RE2 library. For details, see the RE2 documentation. It has most idioms familiar from
regular expressions in Perl, Python, and so on, including .*? for non-greedy matches.

In Impala 2.0 and later, a change in the underlying regular expression library could cause changes in the way regular
expressions are interpreted by this function. Test any queries that use regular expressions and adjust the expression
patterns if necessary. See Incompatible Changes Introduced in Impala 2.0.0 / CDH 5.2.0 on page 629 for details.

Because theimpala-shell interpreter uses the\ character for escaping, use \\ to represent the regular expression
escape character in any regular expressions that you submit through impala-shell . You might prefer to use the
equivalent character class names, such as [[:digit:]] instead of \d which you would have to escape as \\d.

Examples:

Apache Impala Guide | 399

Impala SQL Language Reference

https://code.google.com/p/re2/

This example shows how regexp_like() can test for the existence of various kinds of regular expression patterns
within a source string:

-- Matches because the 'f' appears somewhere in 'foo'.
select regexp_like('foo','f');
+-------------------------+
| regexp_like('foo', 'f') |
+-------------------------+
| true |
+-------------------------+

-- Does not match because the comparison is case-sensitive by default.
select regexp_like('foo','F');
+-------------------------+
| regexp_like('foo', 'f') |
+-------------------------+
| false |
+-------------------------+

-- The 3rd argument can change the matching logic, such as 'i' meaning case-insensitive.
select regexp_like('foo','F','i');
+------------------------------+
| regexp_like('foo', 'f', 'i') |
+------------------------------+
| true |
+------------------------------+

-- The familiar regular expression notations work, such as ^ and $ anchors...
select regexp_like('foo','f$');
+--------------------------+
| regexp_like('foo', 'f$') |
+--------------------------+
| false |
+--------------------------+

select regexp_like('foo','o$');
+--------------------------+
| regexp_like('foo', 'o$') |
+--------------------------+
| true |
+--------------------------+

-- ...and repetition operators such as * and +
select regexp_like('foooooobar','fo+b');
+-----------------------------------+
| regexp_like('foooooobar', 'fo+b') |
+-----------------------------------+
| true |
+-----------------------------------+

select regexp_like('foooooobar','fx*y*o*b');
+---------------------------------------+
| regexp_like('foooooobar', 'fx*y*o*b') |
+---------------------------------------+
| true |
+---------------------------------------+

regexp_replace(string initial, string pattern, string replacement)

Purpose: Returns the initial argument with the regular expression pattern replaced by the final argument string.

Return type: string

In Impala 2.0 and later, the Impala regular expression syntax conforms to the POSIX Extended Regular Expression
syntax used by the Google RE2 library. For details, see the RE2 documentation. It has most idioms familiar from
regular expressions in Perl, Python, and so on, including .*? for non-greedy matches.

In Impala 2.0 and later, a change in the underlying regular expression library could cause changes in the way regular
expressions are interpreted by this function. Test any queries that use regular expressions and adjust the expression
patterns if necessary. See Incompatible Changes Introduced in Impala 2.0.0 / CDH 5.2.0 on page 629 for details.

400 | Apache Impala Guide

Impala SQL Language Reference

https://code.google.com/p/re2/

Because theimpala-shell interpreter uses the\ character for escaping, use \\ to represent the regular expression
escape character in any regular expressions that you submit through impala-shell . You might prefer to use the
equivalent character class names, such as [[:digit:]] instead of \d which you would have to escape as \\d.

Examples:

These examples show how you can replace parts of a string matching a pattern with replacement text, which can
include backreferences to any () groups in the pattern string. The backreference numbers start at 1, and any \
characters must be escaped as \\.

Replace a character pattern with new text:

[localhost:21000] > select regexp_replace('aaabbbaaa','b+','xyz');
+--+
| regexp_replace('aaabbbaaa', 'b+', 'xyz') |
+--+
| aaaxyzaaa |
+--+
Returned 1 row(s) in 0.11s

Replace a character pattern with substitution text that includes the original matching text:

[localhost:21000] > select regexp_replace('aaabbbaaa','(b+)','<\\1>');
+--+
| regexp_replace('aaabbbaaa', '(b+)', '<\\1>') |
+--+
| aaa<bbb>aaa |
+--+
Returned 1 row(s) in 0.11s

Remove all characters that are not digits:

[localhost:21000] > select regexp_replace('123-456-789','[^[:digit:]]','');
+---+
| regexp_replace('123-456-789', '[^[:digit:]]', '') |
+---+
| 123456789 |
+---+
Returned 1 row(s) in 0.12s

repeat(string str, int n)

Purpose: Returns the argument string repeated a specified number of times.

Return type: string

reverse(string a)

Purpose: Returns the argument string with characters in reversed order.

Return type: string

rpad(string str, int len, string pad)

Purpose: Returns a string of a specified length, based on the first argument string. If the specified string is too short,
it is padded on the right with a repeating sequence of the characters from the pad string. If the specified string is
too long, it is truncated on the right.

Return type: string

rtrim(string a)

Purpose: Returns the argument string with any trailing spaces removed from the right side.

Return type: string

space(int n)

Purpose: Returns a concatenated string of the specified number of spaces. Shorthand for repeat(' ',n).

Return type: string

Apache Impala Guide | 401

Impala SQL Language Reference

split_part(string source, string delimiter, bigint n)

Purpose: Returns the nth field within a delimited string. The fields are numbered starting from 1. The delimiter can
consist of multiple characters, not just a single character. All matching of the delimiter is done exactly, not using
any regular expression patterns.

Return type: string

In Impala 2.0 and later, the Impala regular expression syntax conforms to the POSIX Extended Regular Expression
syntax used by the Google RE2 library. For details, see the RE2 documentation. It has most idioms familiar from
regular expressions in Perl, Python, and so on, including .*? for non-greedy matches.

In Impala 2.0 and later, a change in the underlying regular expression library could cause changes in the way regular
expressions are interpreted by this function. Test any queries that use regular expressions and adjust the expression
patterns if necessary. See Incompatible Changes Introduced in Impala 2.0.0 / CDH 5.2.0 on page 629 for details.

Because theimpala-shell interpreter uses the\ character for escaping, use \\ to represent the regular expression
escape character in any regular expressions that you submit through impala-shell . You might prefer to use the
equivalent character class names, such as [[:digit:]] instead of \d which you would have to escape as \\d.

Examples:

These examples show how to retrieve the nth field from a delimited string:

select split_part('x,y,z',',',1);
+-----------------------------+
| split_part('x,y,z', ',', 1) |
+-----------------------------+
| x |
+-----------------------------+

select split_part('x,y,z',',',2);
+-----------------------------+
| split_part('x,y,z', ',', 2) |
+-----------------------------+
| y |
+-----------------------------+

select split_part('x,y,z',',',3);
+-----------------------------+
| split_part('x,y,z', ',', 3) |
+-----------------------------+
| z |
+-----------------------------+

These examples show what happens for out-of-range field positions. Specifying a value less than 1 produces an
error. Specifying a value greater than the number of fields returns a zero-length string (which is not the same as
NULL).

select split_part('x,y,z',',',0);
ERROR: Invalid field position: 0

with t1 as (select split_part('x,y,z',',',4) nonexistent_field)
 select
 nonexistent_field
 , concat('[',nonexistent_field,']')
 , length(nonexistent_field);
from t1
+-------------------+-------------------------------------+---------------------------+
| nonexistent_field | concat('[', nonexistent_field, ']') | length(nonexistent_field)
|
+-------------------+-------------------------------------+---------------------------+
| | [] | 0
|
+-------------------+-------------------------------------+---------------------------+

402 | Apache Impala Guide

Impala SQL Language Reference

https://code.google.com/p/re2/

These examples show how the delimiter can be a multi-character value:

select split_part('one***two***three','***',2);
+---+
| split_part('one***two***three', '***', 2) |
+---+
| two |
+---+

select split_part('one\|/two\|/three','\|/',3);
+---+
| split_part('one\|/two\|/three', '\|/', 3) |
+---+
| three |
+---+

strleft(string a, int num_chars)

Purpose: Returns the leftmost characters of the string. Shorthand for a call to substr() with 2 arguments.

Return type: string

strright(string a, int num_chars)

Purpose: Returns the rightmost characters of the string. Shorthand for a call to substr() with 2 arguments.

Return type: string

substr(string a, int start [, int len]), substring(string a, int start [, int len])

Purpose: Returns the portion of the string starting at a specified point, optionally with a specifiedmaximum length.
The characters in the string are indexed starting at 1.

Return type: string

translate(string input, string from, string to)

Purpose: Returns the input string with a set of characters replaced by another set of characters.

Return type: string

trim(string a)

Purpose: Returns the input string with both leading and trailing spaces removed. The same as passing the string
through both ltrim() and rtrim().

Usage notes: Often used during data cleansing operations during the ETL cycle, if input values might still have
surrounding spaces. For a more general-purpose function that can remove other leading and trailing characters
besides spaces, see btrim().

Return type: string

upper(string a), ucase(string a)

Purpose: Returns the argument string converted to all-uppercase.

Return type: string

Impala Miscellaneous Functions

Impala supports the following utility functions that do not operate on a particular column or data type:

current_database()

Purpose: Returns the database that the session is currently using, either default if no database has been selected,
or whatever database the session switched to through a USE statement or the impalad-d option.

Apache Impala Guide | 403

Impala SQL Language Reference

Return type: string

effective_user()

Purpose: Typically returns the same value as user(), except if delegation is enabled, in which case it returns the
ID of the delegated user.

Return type: string

Added in: CDH 5.4.5

pid()

Purpose: Returns the process ID of the impalad daemon that the session is connected to. You can use it during
low-level debugging, to issue Linux commands that trace, show the arguments, and so on the impalad process.

Return type: int

user()

Purpose: Returns the username of the Linux user who is connected to the impalad daemon. Typically called a
single time, in a querywithout any FROM clause, to understand how authorization settings apply in a security context;
once you know the logged-in user name, you can check which groups that user belongs to, and from the list of
groups you can check which roles are available to those groups through the authorization policy file.

In Impala 2.0 and later,user() returns the full Kerberos principal string, such asuser@example.com, in a Kerberized
environment.

When delegation is enabled, consider calling the effective_user() function instead.

Return type: string

version()

Purpose: Returns information such as the precise version number and build date for the impalad daemon that
you are currently connected to. Typically used to confirm that you are connected to the expected level of Impala
to use a particular feature, or to connect to several nodes and confirm they are all running the same level of impalad.

Return type: string (with one or more embedded newlines)

Impala Aggregate Functions

Aggregate functions are a special category with different rules. These functions calculate a return value across all the
items in a result set, so they require a FROM clause in the query:

select count(product_id) from product_catalog;
select max(height), avg(height) from census_data where age > 20;

Aggregate functions also ignore NULL values rather than returning a NULL result. For example, if some rows have NULL
for a particular column, those rows are ignored when computing the AVG() for that column. Likewise, specifying
COUNT(col_name) in a query counts only those rows where col_name contains a non-NULL value.

APPX_MEDIAN Function

An aggregate function that returns a value that is approximately the median (midpoint) of values in the set of input
values.

Syntax:

APPX_MEDIAN([DISTINCT | ALL] expression)

This function works with any input type, because the only requirement is that the type supports less-than and
greater-than comparison operators.

Usage notes:

404 | Apache Impala Guide

Impala SQL Language Reference

Because the return value represents the estimatedmidpoint, it might not reflect the precise midpoint value, especially
if the cardinality of the input values is very high. If the cardinality is low (up to approximately 20,000), the result is
more accurate because the sampling considers all or almost all of the different values.

Return type: Same as the input value, except for CHAR and VARCHAR arguments which produce a STRING result

The return value is always the same as one of the input values, not an “in-between” value produced by averaging.

Restrictions:

This function cannot be used in an analytic context. That is, the OVER() clause is not allowed at all with this function.

Examples:

The following example uses a table of a million random floating-point numbers ranging up to approximately 50,000.
The average is approximately 25,000. Because of the random distribution, we would expect the median to be close to
this same number. Computing the precise median is a more intensive operation than computing the average, because
it requires keeping track of every distinct value and how many times each occurs. The APPX_MEDIAN() function uses
a sampling algorithm to return an approximate result, which in this case is close to the expected value. To make sure
that the value is not substantially out of range due to a skewed distribution, subsequent queries confirm that there
are approximately 500,000 values higher than the APPX_MEDIAN() value, and approximately 500,000 values lower
than the APPX_MEDIAN() value.

[localhost:21000] > select min(x), max(x), avg(x) from million_numbers;
+-------------------+-------------------+-------------------+
| min(x) | max(x) | avg(x) |
+-------------------+-------------------+-------------------+
| 4.725693727250069 | 49994.56852674231 | 24945.38563793553 |
+-------------------+-------------------+-------------------+
[localhost:21000] > select appx_median(x) from million_numbers;
+----------------+
| appx_median(x) |
+----------------+
| 24721.6 |
+----------------+
[localhost:21000] > select count(x) as higher from million_numbers where x > (select
appx_median(x) from million_numbers);
+--------+
| higher |
+--------+
| 502013 |
+--------+
[localhost:21000] > select count(x) as lower from million_numbers where x < (select
appx_median(x) from million_numbers);
+--------+
| lower |
+--------+
| 497987 |
+--------+

The following example computes the approximatemedian using a subset of the values from the table, and then confirms
that the result is a reasonable estimate for the midpoint.

[localhost:21000] > select appx_median(x) from million_numbers where x between 1000 and
 5000;
+-------------------+
| appx_median(x) |
+-------------------+
| 3013.107787358159 |
+-------------------+
[localhost:21000] > select count(x) as higher from million_numbers where x between 1000
 and 5000 and x > 3013.107787358159;
+--------+
| higher |
+--------+
| 37692 |
+--------+
[localhost:21000] > select count(x) as lower from million_numbers where x between 1000
 and 5000 and x < 3013.107787358159;

Apache Impala Guide | 405

Impala SQL Language Reference

+-------+
| lower |
+-------+
| 37089 |
+-------+

AVG Function

An aggregate function that returns the average value from a set of numbers or TIMESTAMP values. Its single argument
can be numeric column, or the numeric result of a function or expression applied to the column value. Rows with a
NULL value for the specified column are ignored. If the table is empty, or all the values supplied to AVG are NULL, AVG
returns NULL.

Syntax:

AVG([DISTINCT | ALL] expression) [OVER (analytic_clause)]

When the query contains a GROUP BY clause, returns one value for each combination of grouping values.

Return type: DOUBLE for numeric values; TIMESTAMP for TIMESTAMP values

Complex type considerations:

To access a columnwith a complex type (ARRAY, STRUCT, or MAP) in an aggregation function, you unpack the individual
elements using join notation in the query, and then apply the function to the final scalar item, field, key, or value at
the bottom of any nested type hierarchy in the column. See Complex Types (CDH 5.5 or higher only) on page 157 for
details about using complex types in Impala.

The following example demonstrates calls to several aggregation functions using values from a column containing
nested complex types (an ARRAY of STRUCT items). The array is unpacked inside the query using join notation. The
array elements are referenced using the ITEM pseudocolumn, and the structure fields inside the array elements are
referencedusing dot notation. Numeric values such asSUM() andAVG() are computed using the numericR_NATIONKEY
field, and the general-purpose MAX() and MIN() values are computed from the string N_NAME field.

describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

select r_name, r_nations.item.n_nationkey
 from region, region.r_nations as r_nations
order by r_name, r_nations.item.n_nationkey;
+-------------+------------------+
| r_name | item.n_nationkey |
+-------------+------------------+
AFRICA	0
AFRICA	5
AFRICA	14
AFRICA	15
AFRICA	16
AMERICA	1
AMERICA	2
AMERICA	3
AMERICA	17
AMERICA	24
ASIA	8
ASIA	9
ASIA	12
ASIA	18

406 | Apache Impala Guide

Impala SQL Language Reference

ASIA	21
EUROPE	6
EUROPE	7
EUROPE	19
EUROPE	22
EUROPE	23
MIDDLE EAST	4
MIDDLE EAST	10
MIDDLE EAST	11
MIDDLE EAST	13
MIDDLE EAST	20
+-------------+------------------+

select
 r_name,
 count(r_nations.item.n_nationkey) as count,
 sum(r_nations.item.n_nationkey) as sum,
 avg(r_nations.item.n_nationkey) as avg,
 min(r_nations.item.n_name) as minimum,
 max(r_nations.item.n_name) as maximum,
 ndv(r_nations.item.n_nationkey) as distinct_vals
from
 region, region.r_nations as r_nations
group by r_name
order by r_name;
+-------------+-------+-----+------+-----------+----------------+---------------+
| r_name | count | sum | avg | minimum | maximum | distinct_vals |
+-------------+-------+-----+------+-----------+----------------+---------------+
AFRICA	5	50	10	ALGERIA	MOZAMBIQUE	5
AMERICA	5	47	9.4	ARGENTINA	UNITED STATES	5
ASIA	5	68	13.6	CHINA	VIETNAM	5
EUROPE	5	77	15.4	FRANCE	UNITED KINGDOM	5
MIDDLE EAST	5	58	11.6	EGYPT	SAUDI ARABIA	5
+-------------+-------+-----+------+-----------+----------------+---------------+

Examples:

-- Average all the non-NULL values in a column.
insert overwrite avg_t values (2),(4),(6),(null),(null);
-- The average of the above values is 4: (2+4+6) / 3. The 2 NULL values are ignored.
select avg(x) from avg_t;
-- Average only certain values from the column.
select avg(x) from t1 where month = 'January' and year = '2013';
-- Apply a calculation to the value of the column before averaging.
select avg(x/3) from t1;
-- Apply a function to the value of the column before averaging.
-- Here we are substituting a value of 0 for all NULLs in the column,
-- so that those rows do factor into the return value.
select avg(isnull(x,0)) from t1;
-- Apply some number-returning function to a string column and average the results.
-- If column s contains any NULLs, length(s) also returns NULL and those rows are ignored.
select avg(length(s)) from t1;
-- Can also be used in combination with DISTINCT and/or GROUP BY.
-- Return more than one result.
select month, year, avg(page_visits) from web_stats group by month, year;
-- Filter the input to eliminate duplicates before performing the calculation.
select avg(distinct x) from t1;
-- Filter the output after performing the calculation.
select avg(x) from t1 group by y having avg(x) between 1 and 20;

The following examples show how to use AVG() in an analytic context. They use a table containing integers from 1 to
10. Notice how the AVG() is reported for each input value, as opposed to the GROUP BY clause which condenses the
result set.

select x, property, avg(x) over (partition by property) as avg from int_t where property
 in ('odd','even');
+----+----------+-----+
| x | property | avg |
+----+----------+-----+
| 2 | even | 6 |
| 4 | even | 6 |

Apache Impala Guide | 407

Impala SQL Language Reference

6	even	6
8	even	6
10	even	6
1	odd	5
3	odd	5
5	odd	5
7	odd	5
9	odd	5
+----+----------+-----+

Adding an ORDER BY clause lets you experiment with results that are cumulative or apply to a moving set of rows (the
“window”). The following examples use AVG() in an analytic context (that is, with an OVER() clause) to produce a
running average of all the even values, then a running average of all the odd values. The basic ORDER BY x clause
implicitly activates a window clause of RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW, which is
effectively the sameasROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW, therefore all of these examples
produce the same results:

select x, property,
 avg(x) over (partition by property order by x) as 'cumulative average'
 from int_t where property in ('odd','even');
+----+----------+--------------------+
| x | property | cumulative average |
+----+----------+--------------------+
2	even	2
4	even	3
6	even	4
8	even	5
10	even	6
1	odd	1
3	odd	2
5	odd	3
7	odd	4
9	odd	5
+----+----------+--------------------+

select x, property,
 avg(x) over
 (
 partition by property

order by x
range between unbounded preceding and current row

) as 'cumulative average'
from int_t where property in ('odd','even');
+----+----------+--------------------+
| x | property | cumulative average |
+----+----------+--------------------+
2	even	2
4	even	3
6	even	4
8	even	5
10	even	6
1	odd	1
3	odd	2
5	odd	3
7	odd	4
9	odd	5
+----+----------+--------------------+

select x, property,
 avg(x) over
 (
 partition by property

order by x
rows between unbounded preceding and current row

) as 'cumulative average'
 from int_t where property in ('odd','even');
+----+----------+--------------------+
| x | property | cumulative average |
+----+----------+--------------------+
| 2 | even | 2 |
| 4 | even | 3 |

408 | Apache Impala Guide

Impala SQL Language Reference

6	even	4
8	even	5
10	even	6
1	odd	1
3	odd	2
5	odd	3
7	odd	4
9	odd	5
+----+----------+--------------------+

The following examples show how to construct a moving window, with a running average taking into account 1 row
before and 1 row after the current row, within the same partition (all the even values or all the odd values). Because
of a restriction in the Impala RANGE syntax, this type of moving window is possible with the ROWS BETWEEN clause
but not the RANGE BETWEEN clause:

select x, property,
 avg(x) over
 (
 partition by property

order by x
rows between 1 preceding and 1 following

) as 'moving average'
 from int_t where property in ('odd','even');
+----+----------+----------------+
| x | property | moving average |
+----+----------+----------------+
2	even	3
4	even	4
6	even	6
8	even	8
10	even	9
1	odd	2
3	odd	3
5	odd	5
7	odd	7
9	odd	8
+----+----------+----------------+

-- Doesn't work because of syntax restriction on RANGE clause.
select x, property,
 avg(x) over
 (
 partition by property

order by x
range between 1 preceding and 1 following

) as 'moving average'
from int_t where property in ('odd','even');
ERROR: AnalysisException: RANGE is only supported with both the lower and upper bounds
 UNBOUNDED or one UNBOUNDED and the other CURRENT ROW.

Restrictions:

Due to theway arithmetic onFLOAT andDOUBLE columns uses high-performance hardware instructions, and distributed
queries can perform these operations in different order for each query, results can vary slightly for aggregate function
calls such as SUM() and AVG() for FLOAT and DOUBLE columns, particularly on large data setswheremillions or billions
of values are summed or averaged. For perfect consistency and repeatability, use the DECIMAL data type for such
operations instead of FLOAT or DOUBLE.

Related information:

Impala Analytic Functions on page 430, MAX Function on page 415, MIN Function on page 418

COUNT Function

An aggregate function that returns the number of rows, or the number of non-NULL rows.

Syntax:

COUNT([DISTINCT | ALL] expression) [OVER (analytic_clause)]

Apache Impala Guide | 409

Impala SQL Language Reference

Depending on the argument, COUNT() considers rows that meet certain conditions:

• The notation COUNT(*) includes NULL values in the total.
• The notation COUNT(column_name) only considers rows where the column contains a non-NULL value.
• You can also combine COUNT with the DISTINCT operator to eliminate duplicates before counting, and to count

the combinations of values across multiple columns.

When the query contains a GROUP BY clause, returns one value for each combination of grouping values.

Return type: BIGINT

Complex type considerations:

To access a columnwith a complex type (ARRAY, STRUCT, or MAP) in an aggregation function, you unpack the individual
elements using join notation in the query, and then apply the function to the final scalar item, field, key, or value at
the bottom of any nested type hierarchy in the column. See Complex Types (CDH 5.5 or higher only) on page 157 for
details about using complex types in Impala.

The following example demonstrates calls to several aggregation functions using values from a column containing
nested complex types (an ARRAY of STRUCT items). The array is unpacked inside the query using join notation. The
array elements are referenced using the ITEM pseudocolumn, and the structure fields inside the array elements are
referencedusing dot notation. Numeric values such asSUM() andAVG() are computed using the numericR_NATIONKEY
field, and the general-purpose MAX() and MIN() values are computed from the string N_NAME field.

describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

select r_name, r_nations.item.n_nationkey
 from region, region.r_nations as r_nations
order by r_name, r_nations.item.n_nationkey;
+-------------+------------------+
| r_name | item.n_nationkey |
+-------------+------------------+
AFRICA	0
AFRICA	5
AFRICA	14
AFRICA	15
AFRICA	16
AMERICA	1
AMERICA	2
AMERICA	3
AMERICA	17
AMERICA	24
ASIA	8
ASIA	9
ASIA	12
ASIA	18
ASIA	21
EUROPE	6
EUROPE	7
EUROPE	19
EUROPE	22
EUROPE	23
MIDDLE EAST	4
MIDDLE EAST	10
MIDDLE EAST	11
MIDDLE EAST	13
MIDDLE EAST	20
+-------------+------------------+

410 | Apache Impala Guide

Impala SQL Language Reference

select
 r_name,
 count(r_nations.item.n_nationkey) as count,
 sum(r_nations.item.n_nationkey) as sum,
 avg(r_nations.item.n_nationkey) as avg,
 min(r_nations.item.n_name) as minimum,
 max(r_nations.item.n_name) as maximum,
 ndv(r_nations.item.n_nationkey) as distinct_vals
from
 region, region.r_nations as r_nations
group by r_name
order by r_name;
+-------------+-------+-----+------+-----------+----------------+---------------+
| r_name | count | sum | avg | minimum | maximum | distinct_vals |
+-------------+-------+-----+------+-----------+----------------+---------------+
AFRICA	5	50	10	ALGERIA	MOZAMBIQUE	5
AMERICA	5	47	9.4	ARGENTINA	UNITED STATES	5
ASIA	5	68	13.6	CHINA	VIETNAM	5
EUROPE	5	77	15.4	FRANCE	UNITED KINGDOM	5
MIDDLE EAST	5	58	11.6	EGYPT	SAUDI ARABIA	5
+-------------+-------+-----+------+-----------+----------------+---------------+

Examples:

-- How many rows total are in the table, regardless of NULL values?
select count(*) from t1;
-- How many rows are in the table with non-NULL values for a column?
select count(c1) from t1;
-- Count the rows that meet certain conditions.
-- Again, * includes NULLs, so COUNT(*) might be greater than COUNT(col).
select count(*) from t1 where x > 10;
select count(c1) from t1 where x > 10;
-- Can also be used in combination with DISTINCT and/or GROUP BY.
-- Combine COUNT and DISTINCT to find the number of unique values.
-- Must use column names rather than * with COUNT(DISTINCT ...) syntax.
-- Rows with NULL values are not counted.
select count(distinct c1) from t1;
-- Rows with a NULL value in _either_ column are not counted.
select count(distinct c1, c2) from t1;
-- Return more than one result.
select month, year, count(distinct visitor_id) from web_stats group by month, year;

The following examples show how to use COUNT() in an analytic context. They use a table containing integers from 1
to 10. Notice how the COUNT() is reported for each input value, as opposed to the GROUP BY clause which condenses
the result set.

select x, property, count(x) over (partition by property) as count from int_t where
property in ('odd','even');
+----+----------+-------+
| x | property | count |
+----+----------+-------+
2	even	5
4	even	5
6	even	5
8	even	5
10	even	5
1	odd	5
3	odd	5
5	odd	5
7	odd	5
9	odd	5
+----+----------+-------+

Adding an ORDER BY clause lets you experiment with results that are cumulative or apply to a moving set of rows (the
“window”). The following examples use COUNT() in an analytic context (that is, with an OVER() clause) to produce a
running count of all the even values, then a running count of all the odd values. The basic ORDER BY x clause implicitly
activates a window clause of RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW, which is effectively

Apache Impala Guide | 411

Impala SQL Language Reference

the same as ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW, therefore all of these examples produce
the same results:

select x, property,
 count(x) over (partition by property order by x) as 'cumulative count'
 from int_t where property in ('odd','even');
+----+----------+------------------+
| x | property | cumulative count |
+----+----------+------------------+
2	even	1
4	even	2
6	even	3
8	even	4
10	even	5
1	odd	1
3	odd	2
5	odd	3
7	odd	4
9	odd	5
+----+----------+------------------+

select x, property,
 count(x) over
 (
 partition by property

order by x
range between unbounded preceding and current row

) as 'cumulative total'
from int_t where property in ('odd','even');
+----+----------+------------------+
| x | property | cumulative count |
+----+----------+------------------+
2	even	1
4	even	2
6	even	3
8	even	4
10	even	5
1	odd	1
3	odd	2
5	odd	3
7	odd	4
9	odd	5
+----+----------+------------------+

select x, property,
 count(x) over
 (
 partition by property

order by x
rows between unbounded preceding and current row

) as 'cumulative total'
 from int_t where property in ('odd','even');
+----+----------+------------------+
| x | property | cumulative count |
+----+----------+------------------+
2	even	1
4	even	2
6	even	3
8	even	4
10	even	5
1	odd	1
3	odd	2
5	odd	3
7	odd	4
9	odd	5
+----+----------+------------------+

The following examples show how to construct a moving window, with a running count taking into account 1 row
before and 1 row after the current row, within the same partition (all the even values or all the odd values). Therefore,
the count is consistently 3 for rows in the middle of the window, and 2 for rows near the ends of the window, where

412 | Apache Impala Guide

Impala SQL Language Reference

there is no preceding or no following row in the partition. Because of a restriction in the Impala RANGE syntax, this
type of moving window is possible with the ROWS BETWEEN clause but not the RANGE BETWEEN clause:

select x, property,
 count(x) over
 (
 partition by property

order by x
rows between 1 preceding and 1 following

) as 'moving total'
 from int_t where property in ('odd','even');
+----+----------+--------------+
| x | property | moving total |
+----+----------+--------------+
2	even	2
4	even	3
6	even	3
8	even	3
10	even	2
1	odd	2
3	odd	3
5	odd	3
7	odd	3
9	odd	2
+----+----------+--------------+

-- Doesn't work because of syntax restriction on RANGE clause.
select x, property,
 count(x) over
 (
 partition by property

order by x
range between 1 preceding and 1 following

) as 'moving total'
from int_t where property in ('odd','even');
ERROR: AnalysisException: RANGE is only supported with both the lower and upper bounds
 UNBOUNDED or one UNBOUNDED and the other CURRENT ROW.

Note:

By default, Impala only allows a single COUNT(DISTINCT columns) expression in each query.

If you do not need precise accuracy, you can produce an estimate of the distinct values for a column
by specifyingNDV(column); a query can containmultiple instances ofNDV(column). Tomake Impala
automatically rewrite COUNT(DISTINCT) expressions to NDV(), enable the APPX_COUNT_DISTINCT
query option.

To produce the same result as multiple COUNT(DISTINCT) expressions, you can use the following
technique for queries involving a single table:

select v1.c1 result1, v2.c1 result2 from
 (select count(distinct col1) as c1 from t1) v1
 cross join
 (select count(distinct col2) as c1 from t1) v2;

BecauseCROSS JOIN is an expensive operation, prefer to use theNDV() techniquewherever practical.

Related information:

Impala Analytic Functions on page 430

GROUP_CONCAT Function

An aggregate function that returns a single string representing the argument value concatenated together for each
row of the result set. If the optional separator string is specified, the separator is added between each pair of
concatenated values. The default separator is a comma followed by a space.

Apache Impala Guide | 413

Impala SQL Language Reference

Syntax:

GROUP_CONCAT([ALL] expression [, separator])

Usage notes: concat() and concat_ws() are appropriate for concatenating the values of multiple columns within
the same row, while group_concat() joins together values from different rows.

By default, returns a single string covering the whole result set. To include other columns or values in the result set,
or to produce multiple concatenated strings for subsets of rows, include a GROUP BY clause in the query.

Return type: STRING

Restrictions:

You cannot apply the DISTINCT operator to the argument of this function.

This function cannot be used in an analytic context. That is, the OVER() clause is not allowed at all with this function.

Currently, Impala returns an error if the result value grows larger than 1 GiB.

Examples:

The following examples illustrate various aspects of the GROUP_CONCAT() function.

You can call the function directly on a STRING column. To use it with a numeric column, cast the value to STRING.

[localhost:21000] > create table t1 (x int, s string);
[localhost:21000] > insert into t1 values (1, "one"), (3, "three"), (2, "two"), (1,
"one");
[localhost:21000] > select group_concat(s) from t1;
+----------------------+
| group_concat(s) |
+----------------------+
| one, three, two, one |
+----------------------+
[localhost:21000] > select group_concat(cast(x as string)) from t1;
+---------------------------------+
| group_concat(cast(x as string)) |
+---------------------------------+
| 1, 3, 2, 1 |
+---------------------------------+

The optional separator lets you format the result in flexible ways. The separator can be an arbitrary string expression,
not just a single character.

[localhost:21000] > select group_concat(s,"|") from t1;
+----------------------+
| group_concat(s, '|') |
+----------------------+
| one|three|two|one |
+----------------------+
[localhost:21000] > select group_concat(s,'---') from t1;
+-------------------------+
| group_concat(s, '---') |
+-------------------------+
| one---three---two---one |
+-------------------------+

The default separator is a comma followed by a space. To get a comma-delimited result without extra spaces, specify
a delimiter character that is only a comma.

[localhost:21000] > select group_concat(s,',') from t1;
+----------------------+
| group_concat(s, ',') |
+----------------------+
| one,three,two,one |
+----------------------+

414 | Apache Impala Guide

Impala SQL Language Reference

Including a GROUP BY clause lets you produce a different concatenated result for each group in the result set. In this
example, the only X value that occurs more than once is 1, so that is the only row in the result set where
GROUP_CONCAT() returns a delimited value. For groups containing a single value, GROUP_CONCAT() returns the
original value of its STRING argument.

[localhost:21000] > select x, group_concat(s) from t1 group by x;
+---+-----------------+
| x | group_concat(s) |
+---+-----------------+
2	two
3	three
1	one, one
+---+-----------------+

MAX Function

An aggregate function that returns the maximum value from a set of numbers. Opposite of the MIN function. Its single
argument can be numeric column, or the numeric result of a function or expression applied to the column value. Rows
with a NULL value for the specified column are ignored. If the table is empty, or all the values supplied to MAX are NULL,
MAX returns NULL.

Syntax:

MAX([DISTINCT | ALL] expression) [OVER (analytic_clause)]

When the query contains a GROUP BY clause, returns one value for each combination of grouping values.

Restrictions: In Impala 2.0 and higher, this function can be used as an analytic function, but with restrictions on any
window clause. ForMAX() andMIN(), thewindow clause is only allowed if the start bound isUNBOUNDED PRECEDING.

Return type: Same as the input value, except for CHAR and VARCHAR arguments which produce a STRING result

Complex type considerations:

To access a columnwith a complex type (ARRAY, STRUCT, or MAP) in an aggregation function, you unpack the individual
elements using join notation in the query, and then apply the function to the final scalar item, field, key, or value at
the bottom of any nested type hierarchy in the column. See Complex Types (CDH 5.5 or higher only) on page 157 for
details about using complex types in Impala.

The following example demonstrates calls to several aggregation functions using values from a column containing
nested complex types (an ARRAY of STRUCT items). The array is unpacked inside the query using join notation. The
array elements are referenced using the ITEM pseudocolumn, and the structure fields inside the array elements are
referencedusing dot notation. Numeric values such asSUM() andAVG() are computed using the numericR_NATIONKEY
field, and the general-purpose MAX() and MIN() values are computed from the string N_NAME field.

describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

select r_name, r_nations.item.n_nationkey
 from region, region.r_nations as r_nations
order by r_name, r_nations.item.n_nationkey;
+-------------+------------------+
| r_name | item.n_nationkey |
+-------------+------------------+
| AFRICA | 0 |

Apache Impala Guide | 415

Impala SQL Language Reference

AFRICA	5
AFRICA	14
AFRICA	15
AFRICA	16
AMERICA	1
AMERICA	2
AMERICA	3
AMERICA	17
AMERICA	24
ASIA	8
ASIA	9
ASIA	12
ASIA	18
ASIA	21
EUROPE	6
EUROPE	7
EUROPE	19
EUROPE	22
EUROPE	23
MIDDLE EAST	4
MIDDLE EAST	10
MIDDLE EAST	11
MIDDLE EAST	13
MIDDLE EAST	20
+-------------+------------------+

select
 r_name,
 count(r_nations.item.n_nationkey) as count,
 sum(r_nations.item.n_nationkey) as sum,
 avg(r_nations.item.n_nationkey) as avg,
 min(r_nations.item.n_name) as minimum,
 max(r_nations.item.n_name) as maximum,
 ndv(r_nations.item.n_nationkey) as distinct_vals
from
 region, region.r_nations as r_nations
group by r_name
order by r_name;
+-------------+-------+-----+------+-----------+----------------+---------------+
| r_name | count | sum | avg | minimum | maximum | distinct_vals |
+-------------+-------+-----+------+-----------+----------------+---------------+
AFRICA	5	50	10	ALGERIA	MOZAMBIQUE	5
AMERICA	5	47	9.4	ARGENTINA	UNITED STATES	5
ASIA	5	68	13.6	CHINA	VIETNAM	5
EUROPE	5	77	15.4	FRANCE	UNITED KINGDOM	5
MIDDLE EAST	5	58	11.6	EGYPT	SAUDI ARABIA	5
+-------------+-------+-----+------+-----------+----------------+---------------+

Examples:

-- Find the largest value for this column in the table.
select max(c1) from t1;
-- Find the largest value for this column from a subset of the table.
select max(c1) from t1 where month = 'January' and year = '2013';
-- Find the largest value from a set of numeric function results.
select max(length(s)) from t1;
-- Can also be used in combination with DISTINCT and/or GROUP BY.
-- Return more than one result.
select month, year, max(purchase_price) from store_stats group by month, year;
-- Filter the input to eliminate duplicates before performing the calculation.
select max(distinct x) from t1;

The following examples show how to use MAX() in an analytic context. They use a table containing integers from 1 to
10. Notice how the MAX() is reported for each input value, as opposed to the GROUP BY clause which condenses the
result set.

select x, property, max(x) over (partition by property) as max from int_t where property
 in ('odd','even');
+----+----------+-----+
| x | property | max |
+----+----------+-----+

416 | Apache Impala Guide

Impala SQL Language Reference

2	even	10
4	even	10
6	even	10
8	even	10
10	even	10
1	odd	9
3	odd	9
5	odd	9
7	odd	9
9	odd	9
+----+----------+-----+

Adding an ORDER BY clause lets you experiment with results that are cumulative or apply to a moving set of rows (the
“window”). The following examples use MAX() in an analytic context (that is, with an OVER() clause) to display the
smallest value of X encountered up to each row in the result set. The examples use two columns in the ORDER BY
clause to produce a sequence of values that rises and falls, to illustrate how the MAX() result only increases or stays
the same throughout each partition within the result set. The basic ORDER BY x clause implicitly activates a window
clause of RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW, which is effectively the same as ROWS
BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW, therefore all of these examples produce the same results:

select x, property,
 max(x) over (order by property, x desc) as 'maximum to this point'
from int_t where property in ('prime','square');
+---+----------+-----------------------+
| x | property | maximum to this point |
+---+----------+-----------------------+
7	prime	7
5	prime	7
3	prime	7
2	prime	7
9	square	9
4	square	9
1	square	9
+---+----------+-----------------------+

select x, property,
 max(x) over
 (

order by property, x desc
rows between unbounded preceding and current row

) as 'maximum to this point'
from int_t where property in ('prime','square');
+---+----------+-----------------------+
| x | property | maximum to this point |
+---+----------+-----------------------+
7	prime	7
5	prime	7
3	prime	7
2	prime	7
9	square	9
4	square	9
1	square	9
+---+----------+-----------------------+

select x, property,
 max(x) over
 (

order by property, x desc
range between unbounded preceding and current row

) as 'maximum to this point'
from int_t where property in ('prime','square');
+---+----------+-----------------------+
| x | property | maximum to this point |
+---+----------+-----------------------+
7	prime	7
5	prime	7
3	prime	7
2	prime	7
9	square	9
4	square	9

Apache Impala Guide | 417

Impala SQL Language Reference

| 1 | square | 9 |
+---+----------+-----------------------+

The following examples show how to construct a moving window, with a running maximum taking into account all
rows before and 1 row after the current row. Because of a restriction in the Impala RANGE syntax, this type of moving
window is possible with the ROWS BETWEEN clause but not the RANGE BETWEEN clause. Because of an extra Impala
restriction on theMAX() andMIN() functions in an analytic context, the lower boundmust beUNBOUNDED PRECEDING.

select x, property,
 max(x) over
 (

order by property, x
rows between unbounded preceding and 1 following

) as 'local maximum'
from int_t where property in ('prime','square');
+---+----------+---------------+
| x | property | local maximum |
+---+----------+---------------+
2	prime	3
3	prime	5
5	prime	7
7	prime	7
1	square	7
4	square	9
9	square	9
+---+----------+---------------+

-- Doesn't work because of syntax restriction on RANGE clause.
select x, property,
 max(x) over
 (

order by property, x
range between unbounded preceding and 1 following

) as 'local maximum'
from int_t where property in ('prime','square');
ERROR: AnalysisException: RANGE is only supported with both the lower and upper bounds
 UNBOUNDED or one UNBOUNDED and the other CURRENT ROW.

Related information:

Impala Analytic Functions on page 430, MIN Function on page 418, AVG Function on page 406

MIN Function

An aggregate function that returns the minimum value from a set of numbers. Opposite of the MAX function. Its single
argument can be numeric column, or the numeric result of a function or expression applied to the column value. Rows
with a NULL value for the specified column are ignored. If the table is empty, or all the values supplied to MIN are NULL,
MIN returns NULL.

Syntax:

MIN([DISTINCT | ALL] expression) [OVER (analytic_clause)]

When the query contains a GROUP BY clause, returns one value for each combination of grouping values.

Restrictions: In Impala 2.0 and higher, this function can be used as an analytic function, but with restrictions on any
window clause. ForMAX() andMIN(), thewindow clause is only allowed if the start bound isUNBOUNDED PRECEDING.

Return type: Same as the input value, except for CHAR and VARCHAR arguments which produce a STRING result

Complex type considerations:

To access a columnwith a complex type (ARRAY, STRUCT, or MAP) in an aggregation function, you unpack the individual
elements using join notation in the query, and then apply the function to the final scalar item, field, key, or value at
the bottom of any nested type hierarchy in the column. See Complex Types (CDH 5.5 or higher only) on page 157 for
details about using complex types in Impala.

418 | Apache Impala Guide

Impala SQL Language Reference

The following example demonstrates calls to several aggregation functions using values from a column containing
nested complex types (an ARRAY of STRUCT items). The array is unpacked inside the query using join notation. The
array elements are referenced using the ITEM pseudocolumn, and the structure fields inside the array elements are
referencedusing dot notation. Numeric values such asSUM() andAVG() are computed using the numericR_NATIONKEY
field, and the general-purpose MAX() and MIN() values are computed from the string N_NAME field.

describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

select r_name, r_nations.item.n_nationkey
 from region, region.r_nations as r_nations
order by r_name, r_nations.item.n_nationkey;
+-------------+------------------+
| r_name | item.n_nationkey |
+-------------+------------------+
AFRICA	0
AFRICA	5
AFRICA	14
AFRICA	15
AFRICA	16
AMERICA	1
AMERICA	2
AMERICA	3
AMERICA	17
AMERICA	24
ASIA	8
ASIA	9
ASIA	12
ASIA	18
ASIA	21
EUROPE	6
EUROPE	7
EUROPE	19
EUROPE	22
EUROPE	23
MIDDLE EAST	4
MIDDLE EAST	10
MIDDLE EAST	11
MIDDLE EAST	13
MIDDLE EAST	20
+-------------+------------------+

select
 r_name,
 count(r_nations.item.n_nationkey) as count,
 sum(r_nations.item.n_nationkey) as sum,
 avg(r_nations.item.n_nationkey) as avg,
 min(r_nations.item.n_name) as minimum,
 max(r_nations.item.n_name) as maximum,
 ndv(r_nations.item.n_nationkey) as distinct_vals
from
 region, region.r_nations as r_nations
group by r_name
order by r_name;
+-------------+-------+-----+------+-----------+----------------+---------------+
| r_name | count | sum | avg | minimum | maximum | distinct_vals |
+-------------+-------+-----+------+-----------+----------------+---------------+
AFRICA	5	50	10	ALGERIA	MOZAMBIQUE	5
AMERICA	5	47	9.4	ARGENTINA	UNITED STATES	5
ASIA	5	68	13.6	CHINA	VIETNAM	5
EUROPE	5	77	15.4	FRANCE	UNITED KINGDOM	5

Apache Impala Guide | 419

Impala SQL Language Reference

| MIDDLE EAST | 5 | 58 | 11.6 | EGYPT | SAUDI ARABIA | 5 |
+-------------+-------+-----+------+-----------+----------------+---------------+

Examples:

-- Find the smallest value for this column in the table.
select min(c1) from t1;
-- Find the smallest value for this column from a subset of the table.
select min(c1) from t1 where month = 'January' and year = '2013';
-- Find the smallest value from a set of numeric function results.
select min(length(s)) from t1;
-- Can also be used in combination with DISTINCT and/or GROUP BY.
-- Return more than one result.
select month, year, min(purchase_price) from store_stats group by month, year;
-- Filter the input to eliminate duplicates before performing the calculation.
select min(distinct x) from t1;

The following examples show how to use MIN() in an analytic context. They use a table containing integers from 1 to
10. Notice how the MIN() is reported for each input value, as opposed to the GROUP BY clause which condenses the
result set.

select x, property, min(x) over (partition by property) as min from int_t where property
 in ('odd','even');
+----+----------+-----+
| x | property | min |
+----+----------+-----+
2	even	2
4	even	2
6	even	2
8	even	2
10	even	2
1	odd	1
3	odd	1
5	odd	1
7	odd	1
9	odd	1
+----+----------+-----+

Adding an ORDER BY clause lets you experiment with results that are cumulative or apply to a moving set of rows (the
“window”). The following examples use MIN() in an analytic context (that is, with an OVER() clause) to display the
smallest value of X encountered up to each row in the result set. The examples use two columns in the ORDER BY
clause to produce a sequence of values that rises and falls, to illustrate how the MIN() result only decreases or stays
the same throughout each partition within the result set. The basic ORDER BY x clause implicitly activates a window
clause of RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW, which is effectively the same as ROWS
BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW, therefore all of these examples produce the same results:

select x, property, min(x) over (order by property, x desc) as 'minimum to this point'
 from int_t where property in ('prime','square');
+---+----------+-----------------------+
| x | property | minimum to this point |
+---+----------+-----------------------+
7	prime	7
5	prime	5
3	prime	3
2	prime	2
9	square	2
4	square	2
1	square	1
+---+----------+-----------------------+

select x, property,
 min(x) over
 (

order by property, x desc
range between unbounded preceding and current row

) as 'minimum to this point'
from int_t where property in ('prime','square');
+---+----------+-----------------------+

420 | Apache Impala Guide

Impala SQL Language Reference

| x | property | minimum to this point |
+---+----------+-----------------------+
7	prime	7
5	prime	5
3	prime	3
2	prime	2
9	square	2
4	square	2
1	square	1
+---+----------+-----------------------+

select x, property,
 min(x) over
 (

order by property, x desc
rows between unbounded preceding and current row

) as 'minimum to this point'
from int_t where property in ('prime','square');
+---+----------+-----------------------+
| x | property | minimum to this point |
+---+----------+-----------------------+
7	prime	7
5	prime	5
3	prime	3
2	prime	2
9	square	2
4	square	2
1	square	1
+---+----------+-----------------------+

The following examples show how to construct a moving window, with a runningminimum taking into account all rows
before and 1 row after the current row. Because of a restriction in the Impala RANGE syntax, this type ofmovingwindow
is possible with the ROWS BETWEEN clause but not the RANGE BETWEEN clause. Because of an extra Impala restriction
on the MAX() and MIN() functions in an analytic context, the lower bound must be UNBOUNDED PRECEDING.

select x, property,
 min(x) over
 (

order by property, x desc
rows between unbounded preceding and 1 following

) as 'local minimum'
from int_t where property in ('prime','square');
+---+----------+---------------+
| x | property | local minimum |
+---+----------+---------------+
7	prime	5
5	prime	3
3	prime	2
2	prime	2
9	square	2
4	square	1
1	square	1
+---+----------+---------------+

-- Doesn't work because of syntax restriction on RANGE clause.
select x, property,
 min(x) over
 (

order by property, x desc
range between unbounded preceding and 1 following

) as 'local minimum'
from int_t where property in ('prime','square');
ERROR: AnalysisException: RANGE is only supported with both the lower and upper bounds
 UNBOUNDED or one UNBOUNDED and the other CURRENT ROW.

Related information:

Impala Analytic Functions on page 430, MAX Function on page 415, AVG Function on page 406

Apache Impala Guide | 421

Impala SQL Language Reference

NDV Function

An aggregate function that returns an approximate value similar to the result of COUNT(DISTINCT col), the “number
of distinct values”. It is much faster than the combination of COUNT and DISTINCT, and uses a constant amount of
memory and thus is less memory-intensive for columns with high cardinality.

Syntax:

NDV([DISTINCT | ALL] expression)

Usage notes:

This is the mechanism used internally by the COMPUTE STATS statement for computing the number of distinct values
in a column.

Because this number is an estimate, it might not reflect the precise number of different values in the column, especially
if the cardinality is very low or very high. If the estimated number is higher than the number of rows in the table, Impala
adjusts the value internally during query planning.

Return type: DOUBLE in Impala 2.0 and higher; STRING in earlier releases

Complex type considerations:

To access a columnwith a complex type (ARRAY, STRUCT, or MAP) in an aggregation function, you unpack the individual
elements using join notation in the query, and then apply the function to the final scalar item, field, key, or value at
the bottom of any nested type hierarchy in the column. See Complex Types (CDH 5.5 or higher only) on page 157 for
details about using complex types in Impala.

The following example demonstrates calls to several aggregation functions using values from a column containing
nested complex types (an ARRAY of STRUCT items). The array is unpacked inside the query using join notation. The
array elements are referenced using the ITEM pseudocolumn, and the structure fields inside the array elements are
referencedusing dot notation. Numeric values such asSUM() andAVG() are computed using the numericR_NATIONKEY
field, and the general-purpose MAX() and MIN() values are computed from the string N_NAME field.

describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

select r_name, r_nations.item.n_nationkey
 from region, region.r_nations as r_nations
order by r_name, r_nations.item.n_nationkey;
+-------------+------------------+
| r_name | item.n_nationkey |
+-------------+------------------+
AFRICA	0
AFRICA	5
AFRICA	14
AFRICA	15
AFRICA	16
AMERICA	1
AMERICA	2
AMERICA	3
AMERICA	17
AMERICA	24
ASIA	8
ASIA	9
ASIA	12
ASIA	18

422 | Apache Impala Guide

Impala SQL Language Reference

ASIA	21
EUROPE	6
EUROPE	7
EUROPE	19
EUROPE	22
EUROPE	23
MIDDLE EAST	4
MIDDLE EAST	10
MIDDLE EAST	11
MIDDLE EAST	13
MIDDLE EAST	20
+-------------+------------------+

select
 r_name,
 count(r_nations.item.n_nationkey) as count,
 sum(r_nations.item.n_nationkey) as sum,
 avg(r_nations.item.n_nationkey) as avg,
 min(r_nations.item.n_name) as minimum,
 max(r_nations.item.n_name) as maximum,
 ndv(r_nations.item.n_nationkey) as distinct_vals
from
 region, region.r_nations as r_nations
group by r_name
order by r_name;
+-------------+-------+-----+------+-----------+----------------+---------------+
| r_name | count | sum | avg | minimum | maximum | distinct_vals |
+-------------+-------+-----+------+-----------+----------------+---------------+
AFRICA	5	50	10	ALGERIA	MOZAMBIQUE	5
AMERICA	5	47	9.4	ARGENTINA	UNITED STATES	5
ASIA	5	68	13.6	CHINA	VIETNAM	5
EUROPE	5	77	15.4	FRANCE	UNITED KINGDOM	5
MIDDLE EAST	5	58	11.6	EGYPT	SAUDI ARABIA	5
+-------------+-------+-----+------+-----------+----------------+---------------+

Restrictions:

This function cannot be used in an analytic context. That is, the OVER() clause is not allowed at all with this function.

Examples:

The following example queries a billion-row table to illustrate the relative performance of COUNT(DISTINCT) and
NDV(). It shows how COUNT(DISTINCT) gives a precise answer, but is inefficient for large-scale data where an
approximate result is sufficient. The NDV() function gives an approximate result but is much faster.

select count(distinct col1) from sample_data;
+---------------------+
| count(distinct col1)|
+---------------------+
| 100000 |
+---------------------+
Fetched 1 row(s) in 20.13s

select cast(ndv(col1) as bigint) as col1 from sample_data;
+----------+
| col1 |
+----------+
| 139017 |
+----------+
Fetched 1 row(s) in 8.91s

The following example shows how you can code multiple NDV() calls in a single query, to easily learn which columns
have substantially more or fewer distinct values. This technique is faster than running a sequence of queries with
COUNT(DISTINCT) calls.

select cast(ndv(col1) as bigint) as col1, cast(ndv(col2) as bigint) as col2,
 cast(ndv(col3) as bigint) as col3, cast(ndv(col4) as bigint) as col4
 from sample_data;
+----------+-----------+------------+-----------+
| col1 | col2 | col3 | col4 |

Apache Impala Guide | 423

Impala SQL Language Reference

+----------+-----------+------------+-----------+
| 139017 | 282 | 46 | 145636240 |
+----------+-----------+------------+-----------+
Fetched 1 row(s) in 34.97s

select count(distinct col1) from sample_data;
+---------------------+
| count(distinct col1)|
+---------------------+
| 100000 |
+---------------------+
Fetched 1 row(s) in 20.13s

select count(distinct col2) from sample_data;
+----------------------+
| count(distinct col2) |
+----------------------+
| 278 |
+----------------------+
Fetched 1 row(s) in 20.09s

select count(distinct col3) from sample_data;
+-----------------------+
| count(distinct col3) |
+-----------------------+
| 46 |
+-----------------------+
Fetched 1 row(s) in 19.12s

select count(distinct col4) from sample_data;
+----------------------+
| count(distinct col4) |
+----------------------+
| 147135880 |
+----------------------+
Fetched 1 row(s) in 266.95s

STDDEV, STDDEV_SAMP, STDDEV_POP Functions

An aggregate function that standard deviation of a set of numbers.

Syntax:

{ STDDEV | STDDEV_SAMP | STDDEV_POP } ([DISTINCT | ALL] expression)

This function works with any numeric data type.

Return type: DOUBLE in Impala 2.0 and higher; STRING in earlier releases

This function is typically used in mathematical formulas related to probability distributions.

The STDDEV_POP() and STDDEV_SAMP() functions compute the population standard deviation and sample standard
deviation, respectively, of the input values. (STDDEV() is an alias for STDDEV_SAMP().) Both functions evaluate all
input rows matched by the query. The difference is that STDDEV_SAMP() is scaled by 1/(N-1)while STDDEV_POP()
is scaled by 1/N.

If no input rows match the query, the result of any of these functions is NULL. If a single input row matches the query,
the result of any of these functions is "0.0".

Examples:

This example demonstrates how STDDEV() and STDDEV_SAMP() return the same result, while STDDEV_POP() uses
a slightly different calculation to reflect that the input data is considered part of a larger “population”.

[localhost:21000] > select stddev(score) from test_scores;
+---------------+
| stddev(score) |
+---------------+
| 28.5 |

424 | Apache Impala Guide

Impala SQL Language Reference

http://en.wikipedia.org/wiki/Standard_deviation

+---------------+
[localhost:21000] > select stddev_samp(score) from test_scores;
+--------------------+
| stddev_samp(score) |
+--------------------+
| 28.5 |
+--------------------+
[localhost:21000] > select stddev_pop(score) from test_scores;
+-------------------+
| stddev_pop(score) |
+-------------------+
| 28.4858 |
+-------------------+

This example demonstrates that, because the return value of these aggregate functions is a STRING, youmust currently
convert the result with CAST.

[localhost:21000] > create table score_stats as select cast(stddev(score) as decimal(7,4))
 `standard_deviation`, cast(variance(score) as decimal(7,4)) `variance` from test_scores;
+-------------------+
| summary |
+-------------------+
| Inserted 1 row(s) |
+-------------------+
[localhost:21000] > desc score_stats;
+--------------------+--------------+---------+
| name | type | comment |
+--------------------+--------------+---------+
| standard_deviation | decimal(7,4) | |
| variance | decimal(7,4) | |
+--------------------+--------------+---------+

Restrictions:

This function cannot be used in an analytic context. That is, the OVER() clause is not allowed at all with this function.

Related information:

The STDDEV(), STDDEV_POP(), and STDDEV_SAMP() functions compute the standard deviation (square root of the
variance) based on the results ofVARIANCE(),VARIANCE_POP(), andVARIANCE_SAMP() respectively. See VARIANCE,
VARIANCE_SAMP, VARIANCE_POP, VAR_SAMP, VAR_POP Functions on page 429 for details about the variance property.

SUM Function

An aggregate function that returns the sum of a set of numbers. Its single argument can be numeric column, or the
numeric result of a function or expression applied to the column value. Rowswith a NULL value for the specified column
are ignored. If the table is empty, or all the values supplied to MIN are NULL, SUM returns NULL.

Syntax:

SUM([DISTINCT | ALL] expression) [OVER (analytic_clause)]

When the query contains a GROUP BY clause, returns one value for each combination of grouping values.

Return type: BIGINT for integer arguments, DOUBLE for floating-point arguments

Complex type considerations:

To access a columnwith a complex type (ARRAY, STRUCT, or MAP) in an aggregation function, you unpack the individual
elements using join notation in the query, and then apply the function to the final scalar item, field, key, or value at
the bottom of any nested type hierarchy in the column. See Complex Types (CDH 5.5 or higher only) on page 157 for
details about using complex types in Impala.

The following example demonstrates calls to several aggregation functions using values from a column containing
nested complex types (an ARRAY of STRUCT items). The array is unpacked inside the query using join notation. The
array elements are referenced using the ITEM pseudocolumn, and the structure fields inside the array elements are

Apache Impala Guide | 425

Impala SQL Language Reference

referencedusing dot notation. Numeric values such asSUM() andAVG() are computed using the numericR_NATIONKEY
field, and the general-purpose MAX() and MIN() values are computed from the string N_NAME field.

describe region;
+-------------+-------------------------+---------+
| name | type | comment |
+-------------+-------------------------+---------+
r_regionkey	smallint	
r_name	string	
r_comment	string	
r_nations	array<struct<	
	n_nationkey:smallint,	
	n_name:string,	
	n_comment:string	
	>>	
+-------------+-------------------------+---------+

select r_name, r_nations.item.n_nationkey
 from region, region.r_nations as r_nations
order by r_name, r_nations.item.n_nationkey;
+-------------+------------------+
| r_name | item.n_nationkey |
+-------------+------------------+
AFRICA	0
AFRICA	5
AFRICA	14
AFRICA	15
AFRICA	16
AMERICA	1
AMERICA	2
AMERICA	3
AMERICA	17
AMERICA	24
ASIA	8
ASIA	9
ASIA	12
ASIA	18
ASIA	21
EUROPE	6
EUROPE	7
EUROPE	19
EUROPE	22
EUROPE	23
MIDDLE EAST	4
MIDDLE EAST	10
MIDDLE EAST	11
MIDDLE EAST	13
MIDDLE EAST	20
+-------------+------------------+

select
 r_name,
 count(r_nations.item.n_nationkey) as count,
 sum(r_nations.item.n_nationkey) as sum,
 avg(r_nations.item.n_nationkey) as avg,
 min(r_nations.item.n_name) as minimum,
 max(r_nations.item.n_name) as maximum,
 ndv(r_nations.item.n_nationkey) as distinct_vals
from
 region, region.r_nations as r_nations
group by r_name
order by r_name;
+-------------+-------+-----+------+-----------+----------------+---------------+
| r_name | count | sum | avg | minimum | maximum | distinct_vals |
+-------------+-------+-----+------+-----------+----------------+---------------+
AFRICA	5	50	10	ALGERIA	MOZAMBIQUE	5
AMERICA	5	47	9.4	ARGENTINA	UNITED STATES	5
ASIA	5	68	13.6	CHINA	VIETNAM	5
EUROPE	5	77	15.4	FRANCE	UNITED KINGDOM	5
MIDDLE EAST	5	58	11.6	EGYPT	SAUDI ARABIA	5
+-------------+-------+-----+------+-----------+----------------+---------------+

Examples:

426 | Apache Impala Guide

Impala SQL Language Reference

The following example shows how to use SUM() to compute the total for all the values in the table, a subset of values,
or the sum for each combination of values in the GROUP BY clause:

-- Total all the values for this column in the table.
select sum(c1) from t1;
-- Find the total for this column from a subset of the table.
select sum(c1) from t1 where month = 'January' and year = '2013';
-- Find the total from a set of numeric function results.
select sum(length(s)) from t1;
-- Often used with functions that return predefined values to compute a score.
select sum(case when grade = 'A' then 1.0 when grade = 'B' then 0.75 else 0) as
class_honors from test_scores;
-- Can also be used in combination with DISTINCT and/or GROUP BY.
-- Return more than one result.
select month, year, sum(purchase_price) from store_stats group by month, year;
-- Filter the input to eliminate duplicates before performing the calculation.
select sum(distinct x) from t1;

The following examples show how to use SUM() in an analytic context. They use a table containing integers from 1 to
10. Notice how the SUM() is reported for each input value, as opposed to the GROUP BY clause which condenses the
result set.

select x, property, sum(x) over (partition by property) as sum from int_t where property
 in ('odd','even');
+----+----------+-----+
| x | property | sum |
+----+----------+-----+
2	even	30
4	even	30
6	even	30
8	even	30
10	even	30
1	odd	25
3	odd	25
5	odd	25
7	odd	25
9	odd	25
+----+----------+-----+

Adding an ORDER BY clause lets you experiment with results that are cumulative or apply to a moving set of rows (the
“window”). The following examples use SUM() in an analytic context (that is, with an OVER() clause) to produce a
running total of all the even values, then a running total of all the odd values. The basic ORDER BY x clause implicitly
activates a window clause of RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW, which is effectively
the same as ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW, therefore all of these examples produce
the same results:

select x, property,
 sum(x) over (partition by property order by x) as 'cumulative total'
 from int_t where property in ('odd','even');
+----+----------+------------------+
| x | property | cumulative total |
+----+----------+------------------+
2	even	2
4	even	6
6	even	12
8	even	20
10	even	30
1	odd	1
3	odd	4
5	odd	9
7	odd	16
9	odd	25
+----+----------+------------------+

select x, property,
 sum(x) over
 (
 partition by property

order by x

Apache Impala Guide | 427

Impala SQL Language Reference

range between unbounded preceding and current row
) as 'cumulative total'
from int_t where property in ('odd','even');
+----+----------+------------------+
| x | property | cumulative total |
+----+----------+------------------+
2	even	2
4	even	6
6	even	12
8	even	20
10	even	30
1	odd	1
3	odd	4
5	odd	9
7	odd	16
9	odd	25
+----+----------+------------------+

select x, property,
 sum(x) over
 (
 partition by property

order by x
rows between unbounded preceding and current row

) as 'cumulative total'
 from int_t where property in ('odd','even');
+----+----------+------------------+
| x | property | cumulative total |
+----+----------+------------------+
2	even	2
4	even	6
6	even	12
8	even	20
10	even	30
1	odd	1
3	odd	4
5	odd	9
7	odd	16
9	odd	25
+----+----------+------------------+

Changing the direction of the ORDER BY clause causes the intermediate results of the cumulative total to be calculated
in a different order:

select sum(x) over (partition by property order by x desc) as 'cumulative total'
 from int_t where property in ('odd','even');
+----+----------+------------------+
| x | property | cumulative total |
+----+----------+------------------+
10	even	10
8	even	18
6	even	24
4	even	28
2	even	30
9	odd	9
7	odd	16
5	odd	21
3	odd	24
1	odd	25
+----+----------+------------------+

The following examples show how to construct a moving window, with a running total taking into account 1 row before
and 1 row after the current row, within the same partition (all the even values or all the odd values). Because of a
restriction in the Impala RANGE syntax, this type of moving window is possible with the ROWS BETWEEN clause but not
the RANGE BETWEEN clause:

select x, property,
 sum(x) over
 (
 partition by property

428 | Apache Impala Guide

Impala SQL Language Reference

order by x
rows between 1 preceding and 1 following

) as 'moving total'
 from int_t where property in ('odd','even');
+----+----------+--------------+
| x | property | moving total |
+----+----------+--------------+
2	even	6
4	even	12
6	even	18
8	even	24
10	even	18
1	odd	4
3	odd	9
5	odd	15
7	odd	21
9	odd	16
+----+----------+--------------+

-- Doesn't work because of syntax restriction on RANGE clause.
select x, property,
 sum(x) over
 (
 partition by property

order by x
range between 1 preceding and 1 following

) as 'moving total'
from int_t where property in ('odd','even');
ERROR: AnalysisException: RANGE is only supported with both the lower and upper bounds
 UNBOUNDED or one UNBOUNDED and the other CURRENT ROW.

Restrictions:

Due to theway arithmetic onFLOAT andDOUBLE columns uses high-performance hardware instructions, and distributed
queries can perform these operations in different order for each query, results can vary slightly for aggregate function
calls such as SUM() and AVG() for FLOAT and DOUBLE columns, particularly on large data setswheremillions or billions
of values are summed or averaged. For perfect consistency and repeatability, use the DECIMAL data type for such
operations instead of FLOAT or DOUBLE.

Related information:

Impala Analytic Functions on page 430

VARIANCE, VARIANCE_SAMP, VARIANCE_POP, VAR_SAMP, VAR_POP Functions

An aggregate function that returns the variance of a set of numbers. This is a mathematical property that signifies how
far the values spread apart from themean. The return value can be zero (if the input is a single value, or a set of identical
values), or a positive number otherwise.

Syntax:

{ VARIANCE | VAR[IANCE]_SAMP | VAR[IANCE]_POP } ([DISTINCT | ALL] expression)

This function works with any numeric data type.

Return type: DOUBLE in Impala 2.0 and higher; STRING in earlier releases

This function is typically used in mathematical formulas related to probability distributions.

The VARIANCE_SAMP() and VARIANCE_POP() functions compute the sample variance and population variance,
respectively, of the input values. (VARIANCE() is an alias for VARIANCE_SAMP().) Both functions evaluate all input
rows matched by the query. The difference is that STDDEV_SAMP() is scaled by 1/(N-1) while STDDEV_POP() is
scaled by 1/N.

The functions VAR_SAMP() and VAR_POP() are the same as VARIANCE_SAMP() and VARIANCE_POP(), respectively.
These aliases are available in Impala 2.0 and later.

Apache Impala Guide | 429

Impala SQL Language Reference

http://en.wikipedia.org/wiki/Variance

If no input rows match the query, the result of any of these functions is NULL. If a single input row matches the query,
the result of any of these functions is "0.0".

Examples:

This example demonstrates howVARIANCE() andVARIANCE_SAMP() return the same result, whileVARIANCE_POP()
uses a slightly different calculation to reflect that the input data is considered part of a larger “population”.

[localhost:21000] > select variance(score) from test_scores;
+-----------------+
| variance(score) |
+-----------------+
| 812.25 |
+-----------------+
[localhost:21000] > select variance_samp(score) from test_scores;
+----------------------+
| variance_samp(score) |
+----------------------+
| 812.25 |
+----------------------+
[localhost:21000] > select variance_pop(score) from test_scores;
+---------------------+
| variance_pop(score) |
+---------------------+
| 811.438 |
+---------------------+

This example demonstrates that, because the return value of these aggregate functions is a STRING, you convert the
result with CAST if you need to do further calculations as a numeric value.

[localhost:21000] > create table score_stats as select cast(stddev(score) as decimal(7,4))
 `standard_deviation`, cast(variance(score) as decimal(7,4)) `variance` from test_scores;
+-------------------+
| summary |
+-------------------+
| Inserted 1 row(s) |
+-------------------+
[localhost:21000] > desc score_stats;
+--------------------+--------------+---------+
| name | type | comment |
+--------------------+--------------+---------+
| standard_deviation | decimal(7,4) | |
| variance | decimal(7,4) | |
+--------------------+--------------+---------+

Restrictions:

This function cannot be used in an analytic context. That is, the OVER() clause is not allowed at all with this function.

Related information:

The STDDEV(), STDDEV_POP(), and STDDEV_SAMP() functions compute the standard deviation (square root of the
variance) based on the results of VARIANCE(), VARIANCE_POP(), and VARIANCE_SAMP() respectively. See STDDEV,
STDDEV_SAMP, STDDEV_POP Functions on page 424 for details about the standard deviation property.

Impala Analytic Functions

Analytic functions (also known aswindow functions) are a special category of built-in functions. Like aggregate functions,
they examine the contents of multiple input rows to compute each output value. However, rather than being limited
to one result value per GROUP BY group, they operate on windows where the input rows are ordered and grouped
using flexible conditions expressed through an OVER() clause.

Added in: CDH 5.2.0 (Impala 2.0.0)

Some functions, such as LAG() and RANK(), can only be used in this analytic context. Some aggregate functions do
double duty: when you call the aggregation functions such as MAX(), SUM(), AVG(), and so onwith an OVER() clause,
they produce an output value for each row, based on computations across other rows in the window.

430 | Apache Impala Guide

Impala SQL Language Reference

Although analytic functions often compute the same value you would see from an aggregate function in a GROUP BY
query, the analytic functions produce a value for each row in the result set rather than a single value for each group.
This flexibility lets you include additional columns in the SELECT list, offering more opportunities for organizing and
filtering the result set.

Analytic function calls are only allowed in the SELECT list and in the outermost ORDER BY clause of the query. During
query processing, analytic functions are evaluated after other query stages such as joins, WHERE, and GROUP BY,

The rows that are part of each partition are analyzed by computations across an ordered or unordered set of rows.
For example, COUNT() and SUM()might be applied to all the rows in the partition, in which case the order of analysis
does not matter. The ORDER BY clause might be used inside the OVER() clause to defines the ordering that applies
to functions such as LAG() and FIRST_VALUE().

Analytic functions are frequently used in fields such as finance and science to provide trend, outlier, and bucketed
analysis for large data sets. You might also see the term “window functions” in database literature, referring to the
sequence of rows (the “window”) that the function call applies to, particularly when the OVER clause includes a ROWS
or RANGE keyword.

The following sections describe the analytic query clauses and the pure analytic functions provided by Impala. For
usage information about aggregate functions in an analytic context, see Impala Aggregate Functions on page 404.

OVER Clause

The OVER clause is required for calls to pure analytic functions such as LEAD(), RANK(), and FIRST_VALUE(). When
you include an OVER clause with calls to aggregate functions such as MAX(), COUNT(), or SUM(), they operate as
analytic functions.

Syntax:

function(args) OVER([partition_by_clause] [order_by_clause [window_clause]])

partition_by_clause ::= PARTITION BY expr [, expr ...]
order_by_clause ::= ORDER BY expr [ASC | DESC] [NULLS FIRST | NULLS LAST] [, expr [ASC
 | DESC] [NULLS FIRST | NULLS LAST] ...]
window_clause: See Window Clause

PARTITION BY clause:

The PARTITION BY clause acts much like the GROUP BY clause in the outermost block of a query. It divides the rows
into groups containing identical values in one ormore columns. These logical groups are known as partitions. Throughout
the discussion of analytic functions, “partitions” refers to the groups produced by the PARTITION BY clause, not to
partitioned tables. However, note the following limitation that applies specifically to analytic function calls involving
partitioned tables.

In queries involving both analytic functions and partitioned tables, partition pruning only occurs for columns named
in the PARTITION BY clause of the analytic function call. For example, if an analytic function query has a clause such
as WHERE year=2016, the way to make the query prune all other YEAR partitions is to include PARTITION BY year
in the analytic function call; for example, OVER (PARTITION BY year,other_columns
other_analytic_clauses).

The sequence of results from an analytic function “resets” for each new partition in the result set. That is, the set of
preceding or following rows considered by the analytic function always come from a single partition. Any MAX(),
SUM(), ROW_NUMBER(), and so on apply to each partition independently. Omit the PARTITION BY clause to apply
the analytic operation to all the rows in the table.

ORDER BY clause:

The ORDER BY clause works much like the ORDER BY clause in the outermost block of a query. It defines the order in
which rows are evaluated for the entire input set, or for each group produced by a PARTITION BY clause. You can
order by one or multiple expressions, and for each expression optionally choose ascending or descending order and
whether nulls come first or last in the sort order. Because this ORDER BY clause only defines the order in which rows
are evaluated, if you want the results to be output in a specific order, also include an ORDER BY clause in the outer
block of the query.

Apache Impala Guide | 431

Impala SQL Language Reference

When theORDER BY clause is omitted, the analytic function applies to all items in the group produced by thePARTITION
BY clause. When the ORDER BY clause is included, the analysis can apply to all or a subset of the items in the group,
depending on the optional window clause.

The order in which the rows are analyzed is only defined for those columns specified in ORDER BY clauses.

One difference between the analytic and outer uses of the ORDER BY clause: inside the OVER clause, ORDER BY 1 or
other integer value is interpreted as a constant sort value (effectively a no-op) rather than referring to column 1.

Window clause:

The window clause is only allowed in combination with an ORDER BY clause. If the ORDER BY clause is specified but
the window clause is not, the default window is RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW. See
Window Clause on page 433 for full details.

HBase considerations:

Because HBase tables are optimized for single-row lookups rather than full scans, analytic functions using the OVER()
clause are not recommended for HBase tables. Although such queries work, their performance is lower than on
comparable tables using HDFS data files.

Parquet considerations:

Analytic functions are very efficient for Parquet tables. The data that is examined during evaluation of the OVER()
clause comes from a specified set of columns, and the values for each column are arranged sequentially within each
data file.

Text table considerations:

Analytic functions are convenient to use with text tables for exploratory business intelligence. When the volume of
data is substantial, prefer to use Parquet tables for performance-critical analytic queries.

Added in: CDH 5.2.0 (Impala 2.0.0)

Examples:

The following example shows how to synthesize a numeric sequence corresponding to all the rows in a table. The new
table has the same columns as the old one, plus an additional column ID containing the integers 1, 2, 3, and so on,
corresponding to the order of a TIMESTAMP column in the original table.

CREATE TABLE events_with_id AS
 SELECT
 row_number() OVER (ORDER BY date_and_time) AS id,
 c1, c2, c3, c4
 FROM events;

The following example shows how to determine the number of rows containing each value for a column. Unlike a
corresponding GROUP BY query, this one can analyze a single column and still return all values (not just the distinct
ones) from the other columns.

SELECT x, y, z,
 count() OVER (PARTITION BY x) AS how_many_x
FROM t1;

Restrictions:

You cannot directly combine the DISTINCT operator with analytic function calls. You can put the analytic function call
in a WITH clause or an inline view, and apply the DISTINCT operator to its result set.

WITH t1 AS (SELECT x, sum(x) OVER (PARTITION BY x) AS total FROM t1)
 SELECT DISTINCT x, total FROM t1;

432 | Apache Impala Guide

Impala SQL Language Reference

Window Clause

Certain analytic functions accept an optionalwindow clause, which makes the function analyze only certain rows
“around” the current row rather than all rows in the partition. For example, you can get a moving average by specifying
some number of preceding and following rows, or a running count or running total by specifying all rows up to the
current position. This clause can result in different analytic results for rows within the same partition.

The window clause is supported with the AVG(), COUNT(), FIRST_VALUE(), LAST_VALUE(), and SUM() functions.
For MAX() and MIN(), the window clause only allowed if the start bound is UNBOUNDED PRECEDING

Syntax:

ROWS BETWEEN [{ m | UNBOUNDED } PRECEDING | CURRENT ROW] [AND [CURRENT ROW | { UNBOUNDED
 | n } FOLLOWING]]
RANGE BETWEEN [{m | UNBOUNDED } PRECEDING | CURRENT ROW] [AND [CURRENT ROW | { UNBOUNDED
 | n } FOLLOWING]]

ROWS BETWEEN defines the size of the window in terms of the indexes of the rows in the result set. The size of the
window is predictable based on the clauses the position within the result set.

RANGE BETWEEN does not currently support numeric arguments to define a variable-size sliding window.

Currently, Impala supports only some combinations of arguments to the RANGE clause:

• RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW (the default when ORDER BY is specified and
the window clause is omitted)

• RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING

• RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING

When RANGE is used, CURRENT ROW includes not just the current row but all rows that are tied with the current row
based on the ORDER BY expressions.

Added in: CDH 5.2.0 (Impala 2.0.0)

Examples:

The following examples show financial data for a fictional stock symbol JDR. The closing price moves up and down
each day.

create table stock_ticker (stock_symbol string, closing_price decimal(8,2), closing_date
 timestamp);
...load some data...
select * from stock_ticker order by stock_symbol, closing_date
+--------------+---------------+---------------------+
| stock_symbol | closing_price | closing_date |
+--------------+---------------+---------------------+
JDR	12.86	2014-10-02 00:00:00
JDR	12.89	2014-10-03 00:00:00
JDR	12.94	2014-10-04 00:00:00
JDR	12.55	2014-10-05 00:00:00
JDR	14.03	2014-10-06 00:00:00
JDR	14.75	2014-10-07 00:00:00
JDR	13.98	2014-10-08 00:00:00
+--------------+---------------+---------------------+

The queries use analytic functions with window clauses to compute moving averages of the closing price. For example,
ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING produces an average of the value from a 3-day span, producing
a different value for each row. The first row, which has no preceding row, only gets averaged with the row following
it. If the table contained more than one stock symbol, the PARTITION BY clause would limit the window for the
moving average to only consider the prices for a single stock.

select stock_symbol, closing_date, closing_price,
 avg(closing_price) over (partition by stock_symbol order by closing_date
 rows between 1 preceding and 1 following) as moving_average
 from stock_ticker;
+--------------+---------------------+---------------+----------------+

Apache Impala Guide | 433

Impala SQL Language Reference

| stock_symbol | closing_date | closing_price | moving_average |
+--------------+---------------------+---------------+----------------+
JDR	2014-10-02 00:00:00	12.86	12.87
JDR	2014-10-03 00:00:00	12.89	12.89
JDR	2014-10-04 00:00:00	12.94	12.79
JDR	2014-10-05 00:00:00	12.55	13.17
JDR	2014-10-06 00:00:00	14.03	13.77
JDR	2014-10-07 00:00:00	14.75	14.25
JDR	2014-10-08 00:00:00	13.98	14.36
+--------------+---------------------+---------------+----------------+

The clause ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW produces a cumulative moving average,
from the earliest data up to the value for each day.

select stock_symbol, closing_date, closing_price,
 avg(closing_price) over (partition by stock_symbol order by closing_date
 rows between unbounded preceding and current row) as moving_average
 from stock_ticker;
+--------------+---------------------+---------------+----------------+
| stock_symbol | closing_date | closing_price | moving_average |
+--------------+---------------------+---------------+----------------+
JDR	2014-10-02 00:00:00	12.86	12.86
JDR	2014-10-03 00:00:00	12.89	12.87
JDR	2014-10-04 00:00:00	12.94	12.89
JDR	2014-10-05 00:00:00	12.55	12.81
JDR	2014-10-06 00:00:00	14.03	13.05
JDR	2014-10-07 00:00:00	14.75	13.33
JDR	2014-10-08 00:00:00	13.98	13.42
+--------------+---------------------+---------------+----------------+

AVG Function - Analytic Context

You can include an OVER clause with a call to this function to use it as an analytic function. See AVG Function on page
406 for details and examples.

COUNT Function - Analytic Context

You can include an OVER clause with a call to this function to use it as an analytic function. See COUNT Function on
page 409 for details and examples.

CUME_DIST Function (CDH 5.5 or higher only)

Returns the cumulative distribution of a value. The value for each row in the result set is greater than 0 and less than
or equal to 1.

Syntax:

CUME_DIST (expr)
 OVER ([partition_by_clause] order_by_clause)

The ORDER BY clause is required. The PARTITION BY clause is optional. The window clause is not allowed.

Usage notes:

Within each partition of the result set, the CUME_DIST() value represents an ascending sequence that ends at 1. Each
value represents the proportion of rows in the partition whose values are less than or equal to the value in the current
row.

If the sequence of input values contains ties, the CUME_DIST() results are identical for the tied values.

Impala only supports the CUME_DIST() function in an analytic context, not as a regular aggregate function.

Examples:

This example uses a table with 9 rows. The CUME_DIST() function evaluates the entire table because there is no
PARTITION BY clause, with the rows ordered by the weight of the animal. the sequence of values shows that 1/9 of
the values are less than or equal to the lightest animal (mouse), 2/9 of the values are less than or equal to the

434 | Apache Impala Guide

Impala SQL Language Reference

second-lightest animal, and so on up to the heaviest animal (elephant), where 9/9 of the rows are less than or equal
to its weight.

create table animals (name string, kind string, kilos decimal(9,3));
insert into animals values
 ('Elephant', 'Mammal', 4000), ('Giraffe', 'Mammal', 1200), ('Mouse', 'Mammal', 0.020),

 ('Condor', 'Bird', 15), ('Horse', 'Mammal', 500), ('Owl', 'Bird', 2.5),
 ('Ostrich', 'Bird', 145), ('Polar bear', 'Mammal', 700), ('Housecat', 'Mammal', 5);

select name, cume_dist() over (order by kilos) from animals;
+------------+-----------------------+
| name | cume_dist() OVER(...) |
+------------+-----------------------+
Elephant	1
Giraffe	0.8888888888888888
Polar bear	0.7777777777777778
Horse	0.6666666666666666
Ostrich	0.5555555555555556
Condor	0.4444444444444444
Housecat	0.3333333333333333
Owl	0.2222222222222222
Mouse	0.1111111111111111
+------------+-----------------------+

Using a PARTITION BY clause produces a separate sequence for each partition group, in this case one for mammals
and one for birds. Because there are 3 birds and 6 mammals, the sequence illustrates how 1/3 of the “Bird” rows have
a kilos value that is less than or equal to the lightest bird, 1/6 of the “Mammal” rows have a kilos value that is less
than or equal to the lightestmammal, and so on until both the heaviest bird and heaviestmammal have a CUME_DIST()
value of 1.

select name, kind, cume_dist() over (partition by kind order by kilos) from animals
+------------+--------+-----------------------+
| name | kind | cume_dist() OVER(...) |
+------------+--------+-----------------------+
Ostrich	Bird	1
Condor	Bird	0.6666666666666666
Owl	Bird	0.3333333333333333
Elephant	Mammal	1
Giraffe	Mammal	0.8333333333333334
Polar bear	Mammal	0.6666666666666666
Horse	Mammal	0.5
Housecat	Mammal	0.3333333333333333
Mouse	Mammal	0.1666666666666667
+------------+--------+-----------------------+

We can reverse the ordering within each partition group by using an ORDER BY ... DESC clause within the OVER()
clause. Now the lightest (smallest value of kilos) animal of each kind has a CUME_DIST() value of 1.

select name, kind, cume_dist() over (partition by kind order by kilos desc) from animals
+------------+--------+-----------------------+
| name | kind | cume_dist() OVER(...) |
+------------+--------+-----------------------+
Owl	Bird	1
Condor	Bird	0.6666666666666666
Ostrich	Bird	0.3333333333333333
Mouse	Mammal	1
Housecat	Mammal	0.8333333333333334
Horse	Mammal	0.6666666666666666
Polar bear	Mammal	0.5
Giraffe	Mammal	0.3333333333333333
Elephant	Mammal	0.1666666666666667
+------------+--------+-----------------------+

The following example manufactures some rows with identical values in the kilos column, to demonstrate how the
results look in case of tie values. For simplicity, it only shows the CUME_DIST() sequence for the “Bird” rows. Now

Apache Impala Guide | 435

Impala SQL Language Reference

with 3 rows all with a value of 15, all of those rows have the same CUME_DIST() value. 4/5 of the rows have a value
for kilos that is less than or equal to 15.

insert into animals values ('California Condor', 'Bird', 15), ('Andean Condor', 'Bird',
 15)

select name, kind, cume_dist() over (order by kilos) from animals where kind = 'Bird';
+-------------------+------+-----------------------+
| name | kind | cume_dist() OVER(...) |
+-------------------+------+-----------------------+
Ostrich	Bird	1
Condor	Bird	0.8
California Condor	Bird	0.8
Andean Condor	Bird	0.8
Owl	Bird	0.2
+-------------------+------+-----------------------+

The following example shows how to use an ORDER BY clause in the outer block to order the result set in case of ties.
Here, all the “Bird” rows are together, then in descending order by the result of the CUME_DIST() function, and all
tied CUME_DIST() values are ordered by the animal name.

select name, kind, cume_dist() over (partition by kind order by kilos) as ordering
 from animals
where
 kind = 'Bird'
order by kind, ordering desc, name;
+-------------------+------+----------+
| name | kind | ordering |
+-------------------+------+----------+
Ostrich	Bird	1
Andean Condor	Bird	0.8
California Condor	Bird	0.8
Condor	Bird	0.8
Owl	Bird	0.2
+-------------------+------+----------+

DENSE_RANK Function

Returns an ascending sequence of integers, starting with 1. The output sequence produces duplicate integers for
duplicate values of the ORDER BY expressions. After generating duplicate output values for the “tied” input values,
the function continues the sequence with the next higher integer. Therefore, the sequence contains duplicates but no
gaps when the input contains duplicates. Starts the sequence over for each group produced by the PARTITIONED BY
clause.

Syntax:

DENSE_RANK() OVER([partition_by_clause] order_by_clause)

The PARTITION BY clause is optional. The ORDER BY clause is required. The window clause is not allowed.

Usage notes:

Often used for top-N and bottom-N queries. For example, it could produce a “top 10” report including all the items
with the 10 highest values, even if several items tied for 1st place.

Similar to ROW_NUMBER and RANK. These functions differ in how they treat duplicate combinations of values.

Added in: CDH 5.2.0 (Impala 2.0.0)

Examples:

The following example demonstrates how the DENSE_RANK() function identifies where each value “places” in the
result set, producing the same result for duplicate values, but with a strict sequence from 1 to the number of groups.

436 | Apache Impala Guide

Impala SQL Language Reference

For example, when results are ordered by the X column, both 1 values are tied for first; both 2 values are tied for
second; and so on.

select x, dense_rank() over(order by x) as rank, property from int_t;
+----+------+----------+
| x | rank | property |
+----+------+----------+
1	1	square
1	1	odd
2	2	even
2	2	prime
3	3	prime
3	3	odd
4	4	even
4	4	square
5	5	odd
5	5	prime
6	6	even
6	6	perfect
7	7	lucky
7	7	lucky
7	7	lucky
7	7	odd
7	7	prime
8	8	even
9	9	square
9	9	odd
10	10	round
10	10	even
+----+------+----------+

The following examples show how the DENSE_RANK() function is affected by the PARTITION property within the
ORDER BY clause.

Partitioning by the PROPERTY column groups all the even, odd, and so on values together, and DENSE_RANK() returns
the place of each value within the group, producing several ascending sequences.

select x, dense_rank() over(partition by property order by x) as rank, property from
int_t;
+----+------+----------+
| x | rank | property |
+----+------+----------+
2	1	even
4	2	even
6	3	even
8	4	even
10	5	even
7	1	lucky
7	1	lucky
7	1	lucky
1	1	odd
3	2	odd
5	3	odd
7	4	odd
9	5	odd
6	1	perfect
2	1	prime
3	2	prime
5	3	prime
7	4	prime
10	1	round
1	1	square
4	2	square
9	3	square
+----+------+----------+

Apache Impala Guide | 437

Impala SQL Language Reference

Partitioning by the X column groups all the duplicate numbers together and returns the place each value within the
group; because each value occurs only 1 or 2 times, DENSE_RANK() designates each X value as either first or second
within its group.

select x, dense_rank() over(partition by x order by property) as rank, property from
int_t;
+----+------+----------+
| x | rank | property |
+----+------+----------+
1	1	odd
1	2	square
2	1	even
2	2	prime
3	1	odd
3	2	prime
4	1	even
4	2	square
5	1	odd
5	2	prime
6	1	even
6	2	perfect
7	1	lucky
7	1	lucky
7	1	lucky
7	2	odd
7	3	prime
8	1	even
9	1	odd
9	2	square
10	1	even
10	2	round
+----+------+----------+

The following example shows how DENSE_RANK() produces a continuous sequence while still allowing for ties. In this
case, Croesus and Midas both have the second largest fortune, while Crassus has the third largest. (In RANK Function
on page 444, you see a similar query with the RANK() function that shows that while Crassus has the third largest
fortune, he is the fourth richest person.)

select dense_rank() over (order by net_worth desc) as placement, name, net_worth from
wealth order by placement, name;
+-----------+---------+---------------+
| placement | name | net_worth |
+-----------+---------+---------------+
1	Solomon	2000000000.00
2	Croesus	1000000000.00
2	Midas	1000000000.00
3	Crassus	500000000.00
4	Scrooge	80000000.00
+-----------+---------+---------------+

Related information:

RANK Function on page 444, ROW_NUMBER Function on page 446

FIRST_VALUE Function

Returns the expression value from the first row in the window. The return value is NULL if the input expression is NULL.

Syntax:

FIRST_VALUE(expr) OVER([partition_by_clause] order_by_clause [window_clause])

The PARTITION BY clause is optional. The ORDER BY clause is required. The window clause is optional.

Usage notes:

If any duplicate values occur in the tuples evaluated by the ORDER BY clause, the result of this function is not
deterministic. Consider adding additional ORDER BY columns to ensure consistent ordering.

438 | Apache Impala Guide

Impala SQL Language Reference

Added in: CDH 5.2.0 (Impala 2.0.0)

Examples:

The following example shows a table with a wide variety of country-appropriate greetings. For consistency, we want
to standardize on a single greeting for each country. The FIRST_VALUE() function helps to produce a mail merge
report where every person from the same country is addressed with the same greeting.

select name, country, greeting from mail_merge
+---------+---------+--------------+
| name | country | greeting |
+---------+---------+--------------+
Pete	USA	Hello
John	USA	Hi
Boris	Germany	Guten tag
Michael	Germany	Guten morgen
Bjorn	Sweden	Hej
Mats	Sweden	Tja
+---------+---------+--------------+

select country, name,
 first_value(greeting)
 over (partition by country order by name, greeting) as greeting
 from mail_merge;
+---------+---------+-----------+
| country | name | greeting |
+---------+---------+-----------+
Germany	Boris	Guten tag
Germany	Michael	Guten tag
Sweden	Bjorn	Hej
Sweden	Mats	Hej
USA	John	Hi
USA	Pete	Hi
+---------+---------+-----------+

Changing the order in which the names are evaluated changes which greeting is applied to each group.

select country, name,
 first_value(greeting)
 over (partition by country order by name desc, greeting) as greeting
 from mail_merge;
+---------+---------+--------------+
| country | name | greeting |
+---------+---------+--------------+
Germany	Michael	Guten morgen
Germany	Boris	Guten morgen
Sweden	Mats	Tja
Sweden	Bjorn	Tja
USA	Pete	Hello
USA	John	Hello
+---------+---------+--------------+

Related information:

LAST_VALUE Function on page 440

LAG Function

This function returns the value of an expression using column values from a preceding row. You specify an integer
offset, which designates a row position some number of rows previous to the current row. Any column references in
the expression argument refer to column values from that prior row. Typically, the table contains a time sequence or
numeric sequence column that clearly distinguishes the ordering of the rows.

Syntax:

LAG (expr [, offset] [, default])
 OVER ([partition_by_clause] order_by_clause)

The ORDER BY clause is required. The PARTITION BY clause is optional. The window clause is not allowed.

Apache Impala Guide | 439

Impala SQL Language Reference

Usage notes:

Sometimes used an an alternative to doing a self-join.

Added in: CDH 5.2.0 (Impala 2.0.0)

Examples:

The following example uses the same stock data created inWindow Clause on page 433. For each day, the query prints
the closing price alongside the previous day's closing price. The first row for each stock symbol has no previous row,
so that LAG() value is NULL.

select stock_symbol, closing_date, closing_price,
 lag(closing_price,1) over (partition by stock_symbol order by closing_date) as
"yesterday closing"
 from stock_ticker
 order by closing_date;
+--------------+---------------------+---------------+-------------------+
| stock_symbol | closing_date | closing_price | yesterday closing |
+--------------+---------------------+---------------+-------------------+
JDR	2014-09-13 00:00:00	12.86	NULL
JDR	2014-09-14 00:00:00	12.89	12.86
JDR	2014-09-15 00:00:00	12.94	12.89
JDR	2014-09-16 00:00:00	12.55	12.94
JDR	2014-09-17 00:00:00	14.03	12.55
JDR	2014-09-18 00:00:00	14.75	14.03
JDR	2014-09-19 00:00:00	13.98	14.75
+--------------+---------------------+---------------+-------------------+

The following example does an arithmetic operation between the current row and a value from the previous row, to
produce a delta value for each day. This example also demonstrates how ORDER BY works independently in the
different parts of the query. The ORDER BY closing_date in the OVER clause makes the query analyze the rows in
chronological order. Then the outer query block uses ORDER BY closing_date DESC to present the results with
the most recent date first.

select stock_symbol, closing_date, closing_price,
 cast(
 closing_price - lag(closing_price,1) over
 (partition by stock_symbol order by closing_date)
 as decimal(8,2)
)
 as "change from yesterday"
 from stock_ticker
 order by closing_date desc;
+--------------+---------------------+---------------+-----------------------+
| stock_symbol | closing_date | closing_price | change from yesterday |
+--------------+---------------------+---------------+-----------------------+
JDR	2014-09-19 00:00:00	13.98	-0.76
JDR	2014-09-18 00:00:00	14.75	0.72
JDR	2014-09-17 00:00:00	14.03	1.47
JDR	2014-09-16 00:00:00	12.55	-0.38
JDR	2014-09-15 00:00:00	12.94	0.04
JDR	2014-09-14 00:00:00	12.89	0.03
JDR	2014-09-13 00:00:00	12.86	NULL
+--------------+---------------------+---------------+-----------------------+

Related information:

This function is the converse of LEAD Function on page 441.

LAST_VALUE Function

Returns the expression value from the last row in the window. This same value is repeated for all result rows for the
group. The return value is NULL if the input expression is NULL.

Syntax:

LAST_VALUE(expr) OVER([partition_by_clause] order_by_clause [window_clause])

440 | Apache Impala Guide

Impala SQL Language Reference

The PARTITION BY clause is optional. The ORDER BY clause is required. The window clause is optional.

Usage notes:

If any duplicate values occur in the tuples evaluated by the ORDER BY clause, the result of this function is not
deterministic. Consider adding additional ORDER BY columns to ensure consistent ordering.

Added in: CDH 5.2.0 (Impala 2.0.0)

Examples:

The following example uses the same MAIL_MERGE table as in the example for FIRST_VALUE Function on page 438.
Because the default window when ORDER BY is used is BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW, the
query requires the UNBOUNDED FOLLOWING to look ahead to subsequent rows and find the last value for each country.

select country, name,
 last_value(greeting) over (
 partition by country order by name, greeting
 rows between unbounded preceding and unbounded following
) as greeting
 from mail_merge
+---------+---------+--------------+
| country | name | greeting |
+---------+---------+--------------+
Germany	Boris	Guten morgen
Germany	Michael	Guten morgen
Sweden	Bjorn	Tja
Sweden	Mats	Tja
USA	John	Hello
USA	Pete	Hello
+---------+---------+--------------+

Related information:

FIRST_VALUE Function on page 438

LEAD Function

This function returns the value of an expression using column values from a following row. You specify an integer
offset, which designates a row position some number of rows after to the current row. Any column references in the
expression argument refer to column values from that later row. Typically, the table contains a time sequence or
numeric sequence column that clearly distinguishes the ordering of the rows.

Syntax:

LEAD (expr [, offset] [, default])
 OVER ([partition_by_clause] order_by_clause)

The ORDER BY clause is required. The PARTITION BY clause is optional. The window clause is not allowed.

Usage notes:

Sometimes used an an alternative to doing a self-join.

Added in: CDH 5.2.0 (Impala 2.0.0)

Examples:

The following example uses the same stock data created inWindow Clause on page 433. The query analyzes the closing
price for a stock symbol, and for each day evaluates if the closing price for the following day is higher or lower.

select stock_symbol, closing_date, closing_price,
 case
 (lead(closing_price,1)
 over (partition by stock_symbol order by closing_date)
 - closing_price) > 0
 when true then "higher"
 when false then "flat or lower"

Apache Impala Guide | 441

Impala SQL Language Reference

 end as "trending"
from stock_ticker
 order by closing_date;
+--------------+---------------------+---------------+---------------+
| stock_symbol | closing_date | closing_price | trending |
+--------------+---------------------+---------------+---------------+
JDR	2014-09-13 00:00:00	12.86	higher
JDR	2014-09-14 00:00:00	12.89	higher
JDR	2014-09-15 00:00:00	12.94	flat or lower
JDR	2014-09-16 00:00:00	12.55	higher
JDR	2014-09-17 00:00:00	14.03	higher
JDR	2014-09-18 00:00:00	14.75	flat or lower
JDR	2014-09-19 00:00:00	13.98	NULL
+--------------+---------------------+---------------+---------------+

Related information:

This function is the converse of LAG Function on page 439.

MAX Function - Analytic Context

You can include an OVER clause with a call to this function to use it as an analytic function. See MAX Function on page
415 for details and examples.

MIN Function - Analytic Context

You can include an OVER clause with a call to this function to use it as an analytic function. See MIN Function on page
418 for details and examples.

NTILE Function (CDH 5.5 or higher only)

Returns the “bucket number” associated with each row, between 1 and the value of an expression. For example,
creating 100 buckets puts the lowest 1% of values in the first bucket, while creating 10 buckets puts the lowest 10%
of values in the first bucket. Each partition can have a different number of buckets.

Syntax:

NTILE (expr [, offset ...]
 OVER ([partition_by_clause] order_by_clause)

The ORDER BY clause is required. The PARTITION BY clause is optional. The window clause is not allowed.

Usage notes:

The “ntile” name is derived from the practice of dividing result sets into fourths (quartile), tenths (decile), and so on.
The NTILE() function divides the result set based on an arbitrary percentile value.

The number of buckets must be a positive integer.

The number of items in each bucket is identical or almost so, varying by at most 1. If the number of items does not
divide evenly between the buckets, the remaining N items are divided evenly among the first N buckets.

If the number of buckets N is greater than the number of input rows in the partition, then the first N buckets each
contain one item, and the remaining buckets are empty.

Examples:

The following example shows divides groups of animals into 4 buckets based on their weight. The ORDER BY ...
DESC clause in the OVER() clause means that the heaviest 25% are in the first group, and the lightest 25% are in the
fourth group. (The ORDER BY in the outermost part of the query shows how you can order the final result set
independently from the order in which the rows are evaluated by the OVER() clause.) Because there are 9 rows in the
group, divided into 4 buckets, the first bucket receives the extra item.

create table animals (name string, kind string, kilos decimal(9,3));

insert into animals values

442 | Apache Impala Guide

Impala SQL Language Reference

 ('Elephant', 'Mammal', 4000), ('Giraffe', 'Mammal', 1200), ('Mouse', 'Mammal', 0.020),

 ('Condor', 'Bird', 15), ('Horse', 'Mammal', 500), ('Owl', 'Bird', 2.5),
 ('Ostrich', 'Bird', 145), ('Polar bear', 'Mammal', 700), ('Housecat', 'Mammal', 5);

select name, ntile(4) over (order by kilos desc) as quarter
 from animals
order by quarter desc;
+------------+---------+
| name | quarter |
+------------+---------+
Owl	4
Mouse	4
Condor	3
Housecat	3
Horse	2
Ostrich	2
Elephant	1
Giraffe	1
Polar bear	1
+------------+---------+

The following examples show how the PARTITION clause works for the NTILE() function. Here, we divide each kind
of animal (mammal or bird) into 2 buckets, the heavier half and the lighter half.

select name, kind, ntile(2) over (partition by kind order by kilos desc) as half
 from animals
order by kind;
+------------+--------+------+
| name | kind | half |
+------------+--------+------+
Ostrich	Bird	1
Condor	Bird	1
Owl	Bird	2
Elephant	Mammal	1
Giraffe	Mammal	1
Polar bear	Mammal	1
Horse	Mammal	2
Housecat	Mammal	2
Mouse	Mammal	2
+------------+--------+------+

Again, the result set can be ordered independently from the analytic evaluation. This next example lists all the animals
heaviest to lightest, showing that elephant and giraffe are in the “top half” of mammals by weight, while housecat and
mouse are in the “bottom half”.

select name, kind, ntile(2) over (partition by kind order by kilos desc) as half
 from animals
order by kilos desc;
+------------+--------+------+
| name | kind | half |
+------------+--------+------+
Elephant	Mammal	1
Giraffe	Mammal	1
Polar bear	Mammal	1
Horse	Mammal	2
Ostrich	Bird	1
Condor	Bird	1
Housecat	Mammal	2
Owl	Bird	2
Mouse	Mammal	2
+------------+--------+------+

PERCENT_RANK Function (CDH 5.5 or higher only)

Syntax:

PERCENT_RANK (expr)
 OVER ([partition_by_clause] order_by_clause)

Apache Impala Guide | 443

Impala SQL Language Reference

Calculates the rank, expressed as a percentage, of each row within a group of rows. If rank is the value for that same
row from the RANK() function (from 1 to the total number of rows in the partition group), then the PERCENT_RANK()
value is calculated as (rank - 1) / (rows_in_group - 1) . If there is only a single item in the partition group,
its PERCENT_RANK() value is 0.

The ORDER BY clause is required. The PARTITION BY clause is optional. The window clause is not allowed.

Usage notes:

This function is similar to the RANK and CUME_DIST() functions: it returns an ascending sequence representing the
position of each rowwithin the rows of the same partition group. The actual numeric sequence is calculated differently,
and the handling of duplicate (tied) values is different.

The return values range from 0 to 1 inclusive. The first row in each partition group always has the value 0. A NULL value
is considered the lowest possible value. In the case of duplicate input values, all the corresponding rows in the result
set have an identical value: the lowest PERCENT_RANK() value of those tied rows. (In contrast to CUME_DIST(),
where all tied rows have the highest CUME_DIST() value.)

Examples:

The following example uses the same ANIMALS table as the examples for CUME_DIST() and NTILE(), with a few
additional rows to illustrate the results where some values are NULL or there is only a single row in a partition group.

insert into animals values ('Komodo dragon', 'Reptile', 70);
insert into animals values ('Unicorn', 'Mythical', NULL);
insert into animals values ('Fire-breathing dragon', 'Mythical', NULL);

AswithCUME_DIST(), there is an ascending sequence for each kind of animal. For example, the “Birds” and “Mammals”
rows each have a PERCENT_RANK() sequence that ranges from 0 to 1. The “Reptile” row has a PERCENT_RANK() of
0 because that partition group contains only a single item. Both “Mythical” animals have a PERCENT_RANK() of 0
because a NULL is considered the lowest value within its partition group.

select name, kind, percent_rank() over (partition by kind order by kilos) from animals;
+-----------------------+----------+--------------------------+
| name | kind | percent_rank() OVER(...) |
+-----------------------+----------+--------------------------+
Mouse	Mammal	0
Housecat	Mammal	0.2
Horse	Mammal	0.4
Polar bear	Mammal	0.6
Giraffe	Mammal	0.8
Elephant	Mammal	1
Komodo dragon	Reptile	0
Owl	Bird	0
California Condor	Bird	0.25
Andean Condor	Bird	0.25
Condor	Bird	0.25
Ostrich	Bird	1
Fire-breathing dragon	Mythical	0
Unicorn	Mythical	0
+-----------------------+----------+--------------------------+

RANK Function

Returns an ascending sequence of integers, starting with 1. The output sequence produces duplicate integers for
duplicate values of the ORDER BY expressions. After generating duplicate output values for the “tied” input values,
the function increments the sequence by the number of tied values. Therefore, the sequence contains both duplicates
and gaps when the input contains duplicates. Starts the sequence over for each group produced by the PARTITIONED
BY clause.

Syntax:

RANK() OVER([partition_by_clause] order_by_clause)

The PARTITION BY clause is optional. The ORDER BY clause is required. The window clause is not allowed.

444 | Apache Impala Guide

Impala SQL Language Reference

Usage notes:

Often used for top-N and bottom-N queries. For example, it could produce a “top 10” report including several items
that were tied for 10th place.

Similar to ROW_NUMBER and DENSE_RANK. These functions differ in how they treat duplicate combinations of values.

Added in: CDH 5.2.0 (Impala 2.0.0)

Examples:

The following example demonstrates how the RANK() function identifies where each value “places” in the result set,
producing the same result for duplicate values, and skipping values in the sequence to account for the number of
duplicates. For example, when results are ordered by the X column, both 1 values are tied for first; both 2 values are
tied for third; and so on.

select x, rank() over(order by x) as rank, property from int_t;
+----+------+----------+
| x | rank | property |
+----+------+----------+
1	1	square
1	1	odd
2	3	even
2	3	prime
3	5	prime
3	5	odd
4	7	even
4	7	square
5	9	odd
5	9	prime
6	11	even
6	11	perfect
7	13	lucky
7	13	lucky
7	13	lucky
7	13	odd
7	13	prime
8	18	even
9	19	square
9	19	odd
10	21	round
10	21	even
+----+------+----------+

The following examples show how the RANK() function is affected by the PARTITION property within the ORDER BY
clause.

Partitioning by the PROPERTY column groups all the even, odd, and so on values together, and RANK() returns the
place of each value within the group, producing several ascending sequences.

select x, rank() over(partition by property order by x) as rank, property from int_t;
+----+------+----------+
| x | rank | property |
+----+------+----------+
2	1	even
4	2	even
6	3	even
8	4	even
10	5	even
7	1	lucky
7	1	lucky
7	1	lucky
1	1	odd
3	2	odd
5	3	odd
7	4	odd
9	5	odd
6	1	perfect
2	1	prime
3	2	prime

Apache Impala Guide | 445

Impala SQL Language Reference

5	3	prime
7	4	prime
10	1	round
1	1	square
4	2	square
9	3	square
+----+------+----------+

Partitioning by the X column groups all the duplicate numbers together and returns the place each value within the
group; because each value occurs only 1 or 2 times, RANK() designates each X value as either first or second within
its group.

select x, rank() over(partition by x order by property) as rank, property from int_t;
+----+------+----------+
| x | rank | property |
+----+------+----------+
1	1	odd
1	2	square
2	1	even
2	2	prime
3	1	odd
3	2	prime
4	1	even
4	2	square
5	1	odd
5	2	prime
6	1	even
6	2	perfect
7	1	lucky
7	1	lucky
7	1	lucky
7	4	odd
7	5	prime
8	1	even
9	1	odd
9	2	square
10	1	even
10	2	round
+----+------+----------+

The following example shows how a magazine might prepare a list of history's wealthiest people. Croesus and Midas
are tied for second, then Crassus is fourth.

select rank() over (order by net_worth desc) as rank, name, net_worth from wealth order
 by rank, name;
+------+---------+---------------+
| rank | name | net_worth |
+------+---------+---------------+
1	Solomon	2000000000.00
2	Croesus	1000000000.00
2	Midas	1000000000.00
4	Crassus	500000000.00
5	Scrooge	80000000.00
+------+---------+---------------+

Related information:

DENSE_RANK Function on page 436, ROW_NUMBER Function on page 446

ROW_NUMBER Function

Returns an ascending sequence of integers, starting with 1. Starts the sequence over for each group produced by the
PARTITIONED BY clause. The output sequence includes different values for duplicate input values. Therefore, the
sequence never contains any duplicates or gaps, regardless of duplicate input values.

Syntax:

ROW_NUMBER() OVER([partition_by_clause] order_by_clause)

446 | Apache Impala Guide

Impala SQL Language Reference

The ORDER BY clause is required. The PARTITION BY clause is optional. The window clause is not allowed.

Usage notes:

Often used for top-N and bottom-N queries where the input values are known to be unique, or precisely N rows are
needed regardless of duplicate values.

Because its result value is different for each row in the result set (when used without a PARTITION BY clause),
ROW_NUMBER() can be used to synthesize unique numeric ID values, for example for result sets involving unique values
or tuples.

Similar to RANK and DENSE_RANK. These functions differ in how they treat duplicate combinations of values.

Added in: CDH 5.2.0 (Impala 2.0.0)

Examples:

The following example demonstrates how ROW_NUMBER() produces a continuous numeric sequence, even though
some values of X are repeated.

select x, row_number() over(order by x, property) as row_number, property from int_t;
+----+------------+----------+
| x | row_number | property |
+----+------------+----------+
1	1	odd
1	2	square
2	3	even
2	4	prime
3	5	odd
3	6	prime
4	7	even
4	8	square
5	9	odd
5	10	prime
6	11	even
6	12	perfect
7	13	lucky
7	14	lucky
7	15	lucky
7	16	odd
7	17	prime
8	18	even
9	19	odd
9	20	square
10	21	even
10	22	round
+----+------------+----------+

The following example shows how a financial institution might assign customer IDs to some of history's wealthiest
figures. Although two of the people have identical net worth figures, unique IDs are required for this purpose.
ROW_NUMBER() produces a sequence of five different values for the five input rows.

select row_number() over (order by net_worth desc) as account_id, name, net_worth
 from wealth order by account_id, name;
+------------+---------+---------------+
| account_id | name | net_worth |
+------------+---------+---------------+
1	Solomon	2000000000.00
2	Croesus	1000000000.00
3	Midas	1000000000.00
4	Crassus	500000000.00
5	Scrooge	80000000.00
+------------+---------+---------------+

Related information:

RANK Function on page 444, DENSE_RANK Function on page 436

Apache Impala Guide | 447

Impala SQL Language Reference

SUM Function - Analytic Context

You can include an OVER clause with a call to this function to use it as an analytic function. See SUM Function on page
425 for details and examples.

Impala User-Defined Functions (UDFs)

User-defined functions (frequently abbreviated as UDFs) let you code your own application logic for processing column
values during an Impala query. For example, a UDF could perform calculations using an external math library, combine
several column values into one, do geospatial calculations, or other kinds of tests and transformations that are outside
the scope of the built-in SQL operators and functions.

You can use UDFs to simplify query logic when producing reports, or to transform data in flexible ways when copying
from one table to another with the INSERT ... SELECT syntax.

You might be familiar with this feature from other database products, under names such as stored functions or stored
routines.

Impala support for UDFs is available in Impala 1.2 and higher:

• In Impala 1.1, using UDFs in a query required using the Hive shell. (Because Impala and Hive share the same
metastore database, you could switch to Hive to run just those queries requiring UDFs, then switch back to Impala.)

• Starting in Impala 1.2, Impala can run both high-performance native code UDFs written in C++, and Java-based
Hive UDFs that you might already have written.

• Impala can run scalar UDFs that return a single value for each row of the result set, and user-defined aggregate
functions (UDAFs) that return a value based on a set of rows. Currently, Impala does not support user-defined
table functions (UDTFs) or window functions.

UDF Concepts

Depending on your use case, you might write all-new functions, reuse Java UDFs that you have already written for
Hive, or port Hive Java UDF code to higher-performance native Impala UDFs in C++. You can code either scalar functions
for producing results one row at a time, or more complex aggregate functions for doing analysis across. The following
sections discuss these different aspects of working with UDFs.

UDFs and UDAFs

Depending on your use case, the user-defined functions (UDFs) you write might accept or produce different numbers
of input and output values:

• The most general kind of user-defined function (the one typically referred to by the abbreviation UDF) takes a
single input value and produces a single output value. When used in a query, it is called once for each row in the
result set. For example:

select customer_name, is_frequent_customer(customer_id) from customers;
select obfuscate(sensitive_column) from sensitive_data;

• A user-defined aggregate function (UDAF) accepts a group of values and returns a single value. You use UDAFs to
summarize and condense sets of rows, in the same style as the built-inCOUNT, MAX(), SUM(), and AVG() functions.
When called in a query that uses the GROUP BY clause, the function is called once for each combination of GROUP
BY values. For example:

-- Evaluates multiple rows but returns a single value.
select closest_restaurant(latitude, longitude) from places;

-- Evaluates batches of rows and returns a separate value for each batch.
select most_profitable_location(store_id, sales, expenses, tax_rate, depreciation) from
 franchise_data group by year;

• Currently, Impala does not support other categories of user-defined functions, such as user-defined table functions
(UDTFs) or window functions.

448 | Apache Impala Guide

Impala SQL Language Reference

Native Impala UDFs

Impala supports UDFswritten in C++, in addition to supporting existing Hive UDFswritten in Java. Cloudera recommends
using C++ UDFs because the compiled native code can yield higher performance, with UDF execution time often 10x
faster for a C++ UDF than the equivalent Java UDF.

Using Hive UDFs with Impala

Impala can run Java-based user-defined functions (UDFs), originally written for Hive, with no changes, subject to the
following conditions:

• The parameters and return value must all use scalar data types supported by Impala. For example, complex or
nested types are not supported.

• Currently, Hive UDFs that accept or return the TIMESTAMP type are not supported.
• The return type must be a “Writable” type such as Text or IntWritable, rather than a Java primitive type such

as String or int. Otherwise, the UDF will return NULL.
• Hive UDAFs and UDTFs are not supported.
• Typically, a Java UDF will execute several times slower in Impala than the equivalent native UDF written in C++.

To take full advantage of the Impala architecture and performance features, you can also write Impala-specific UDFs
in C++.

For background about Java-based Hive UDFs, see the Hive documentation for UDFs. For examples or tutorials for writing
such UDFs, search the web for related blog posts.

The ideal way to understand how to reuse Java-based UDFs (originally written for Hive) with Impala is to take some of
the Hive built-in functions (implemented as Java UDFs) and take the applicable JAR files through the UDF deployment
process for Impala, creating new UDFs with different names:

1. Take a copy of the Hive JAR file containing the Hive built-in functions. For example, the path might be like
/usr/lib/hive/lib/hive-exec-0.10.0-cdh4.2.0.jar, with different version numbers corresponding to
your specific level of CDH.

2. Use jar tf jar_file to see a list of the classes inside the JAR. You will see names like
org/apache/hadoop/hive/ql/udf/UDFLower.class and
org/apache/hadoop/hive/ql/udf/UDFOPNegative.class. Make a note of the names of the functions you
want to experimentwith.When you specify the entry points for the ImpalaCREATE FUNCTION statement, change
the slash characters to dots and strip off the .class suffix, for example
org.apache.hadoop.hive.ql.udf.UDFLower andorg.apache.hadoop.hive.ql.udf.UDFOPNegative.

3. Copy that file to an HDFS location that Impala can read. (In the examples here, we renamed the file to
hive-builtins.jar in HDFS for simplicity.)

4. For each Java-based UDF that you want to call through Impala, issue a CREATE FUNCTION statement, with a
LOCATION clause containing the full HDFS path of the JAR file, and a SYMBOL clause with the fully qualified name
of the class, using dots as separators and without the .class extension. Remember that user-defined functions
are associated with a particular database, so issue a USE statement for the appropriate database first, or specify
the SQL function name as db_name.function_name. Use completely new names for the SQL functions, because
Impala UDFs cannot have the same name as Impala built-in functions.

5. Call the function from your queries, passing arguments of the correct type to match the function signature. These
arguments could be references to columns, arithmetic or other kinds of expressions, the results of CAST functions
to ensure correct data types, and so on.

Java UDF Example: Reusing lower() Function

For example, the following impala-shell session creates an Impala UDF my_lower() that reuses the Java code for
the Hive lower(): built-in function. We cannot call it lower() because Impala does not allow UDFs to have the same
name as built-in functions. From SQL, we call the function in a basic way (in a query with no WHERE clause), directly on
a column, and on the results of a string expression:

[localhost:21000] > create database udfs;
[localhost:21000] > use udfs;
localhost:21000] > create function lower(string) returns string location

Apache Impala Guide | 449

Impala SQL Language Reference

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+UDF

'/user/hive/udfs/hive.jar' symbol='org.apache.hadoop.hive.ql.udf.UDFLower';
ERROR: AnalysisException: Function cannot have the same name as a builtin: lower
[localhost:21000] > create function my_lower(string) returns string location
'/user/hive/udfs/hive.jar' symbol='org.apache.hadoop.hive.ql.udf.UDFLower';
[localhost:21000] > select my_lower('Some String NOT ALREADY LOWERCASE');
+--+
| udfs.my_lower('some string not already lowercase') |
+--+
| some string not already lowercase |
+--+
Returned 1 row(s) in 0.11s
[localhost:21000] > create table t2 (s string);
[localhost:21000] > insert into t2 values ('lower'),('UPPER'),('Init cap'),('CamelCase');
Inserted 4 rows in 2.28s
[localhost:21000] > select * from t2;
+-----------+
| s |
+-----------+
| lower |
| UPPER |
| Init cap |
| CamelCase |
+-----------+
Returned 4 row(s) in 0.47s
[localhost:21000] > select my_lower(s) from t2;
+------------------+
| udfs.my_lower(s) |
+------------------+
| lower |
| upper |
| init cap |
| camelcase |
+------------------+
Returned 4 row(s) in 0.54s
[localhost:21000] > select my_lower(concat('ABC ',s,' XYZ')) from t2;
+--+
| udfs.my_lower(concat('abc ', s, ' xyz')) |
+--+
| abc lower xyz |
| abc upper xyz |
| abc init cap xyz |
| abc camelcase xyz |
+--+
Returned 4 row(s) in 0.22s

Java UDF Example: Reusing negative() Function

Here is an example that reuses the Hive Java code for the negative() built-in function. This example demonstrates
how the data types of the arguments must match precisely with the function signature. At first, we create an Impala
SQL function that can only accept an integer argument. Impala cannot find amatching function when the query passes
a floating-point argument, although we can call the integer version of the function by casting the argument. Then we
overload the same function name to also accept a floating-point argument.

[localhost:21000] > create table t (x int);
[localhost:21000] > insert into t values (1), (2), (4), (100);
Inserted 4 rows in 1.43s
[localhost:21000] > create function my_neg(bigint) returns bigint location
'/user/hive/udfs/hive.jar' symbol='org.apache.hadoop.hive.ql.udf.UDFOPNegative';
[localhost:21000] > select my_neg(4);
+----------------+
| udfs.my_neg(4) |
+----------------+
| -4 |
+----------------+
[localhost:21000] > select my_neg(x) from t;
+----------------+
| udfs.my_neg(x) |
+----------------+
| -2 |
| -4 |
| -100 |

450 | Apache Impala Guide

Impala SQL Language Reference

+----------------+
Returned 3 row(s) in 0.60s
[localhost:21000] > select my_neg(4.0);
ERROR: AnalysisException: No matching function with signature: udfs.my_neg(FLOAT).
[localhost:21000] > select my_neg(cast(4.0 as int));
+-------------------------------+
| udfs.my_neg(cast(4.0 as int)) |
+-------------------------------+
| -4 |
+-------------------------------+
Returned 1 row(s) in 0.11s
[localhost:21000] > create function my_neg(double) returns double location
'/user/hive/udfs/hive.jar' symbol='org.apache.hadoop.hive.ql.udf.UDFOPNegative';
[localhost:21000] > select my_neg(4.0);
+------------------+
| udfs.my_neg(4.0) |
+------------------+
| -4 |
+------------------+
Returned 1 row(s) in 0.11s

You can find the sample files mentioned here in the Impala github repo.

Runtime Environment for UDFs

By default, Impala copies UDFs into /tmp, and you can configure this location through the --local_library_dir
startup flag for the impalad daemon.

Installing the UDF Development Package

To develop UDFs for Impala, download and install the impala-udf-devel package (RHEL-based distributions) or
impala-udf-dev (Ubuntu and Debian). This package contains header files, sample source, and build configuration
files.

1. Start at https://archive.cloudera.com/cdh5/ for the CDH 5 package, or https://archive.cloudera.com/impala/ for
the CDH 4 package.

2. Locate the appropriate .repo or list file for your operating system version, such as the .repo file for CDH 4 on
RHEL 6.

3. Use the familiar yum, zypper, or apt-get commands depending on your operating system. For the package
name, specify impala-udf-devel (RHEL-based distributions) or impala-udf-dev (Ubuntu and Debian).

Note: The UDF development code does not rely on Impala being installed on the same machine. You
can write and compile UDFs on a minimal development system, then deploy them on a different one
for use with Impala. If you develop UDFs on a server managed by Cloudera Manager through the
parcel mechanism, you still install the UDF development kit through the package mechanism; this
small standalone package does not interfere with the parcels containing the main Impala code.

When you are ready to start writing your own UDFs, download the sample code and build scripts from the Cloudera
sample UDF github. Then seeWriting User-Defined Functions (UDFs) on page 451 for how to code UDFs, and Examples
of Creating and Using UDFs on page 457 for how to build and run UDFs.

Writing User-Defined Functions (UDFs)

Before starting UDF development, make sure to install the development package and download the UDF code samples,
as described in Installing the UDF Development Package on page 451.

When writing UDFs:

• Keep in mind the data type differences as you transfer values from the high-level SQL to your lower-level UDF
code. For example, in the UDF code youmight be muchmore aware of howmany bytes different kinds of integers
require.

• Use best practices for function-oriented programming: choose arguments carefully, avoid side effects, make each
function do a single thing, and so on.

Apache Impala Guide | 451

Impala SQL Language Reference

https://github.com/cloudera/impala/tree/master/be/src/udf_samples
https://archive.cloudera.com/cdh5/
https://archive.cloudera.com/impala/
https://archive.cloudera.com/impala/redhat/6/x86_64/impala/cloudera-impala.repo
https://archive.cloudera.com/impala/redhat/6/x86_64/impala/cloudera-impala.repo
https://github.com/cloudera/impala-udf-samples
https://github.com/cloudera/impala-udf-samples

Getting Started with UDF Coding

To understand the layout and member variables and functions of the predefined UDF data types, examine the header
file /usr/include/impala_udf/udf.h:

// This is the only Impala header required to develop UDFs and UDAs. This header
// contains the types that need to be used and the FunctionContext object. The context
// object serves as the interface object between the UDF/UDA and the impala process.

For the basic declarations needed to write a scalar UDF, see the header file udf-sample.h within the sample build
environment, which defines a simple function named AddUdf():

#ifndef IMPALA_UDF_SAMPLE_UDF_H
#define IMPALA_UDF_SAMPLE_UDF_H

#include <impala_udf/udf.h>

using namespace impala_udf;

IntVal AddUdf(FunctionContext* context, const IntVal& arg1, const IntVal& arg2);

#endif

For sample C++ code for a simple function named AddUdf(), see the source file udf-sample.cc within the sample
build environment:

#include "udf-sample.h"

// In this sample we are declaring a UDF that adds two ints and returns an int.
IntVal AddUdf(FunctionContext* context, const IntVal& arg1, const IntVal& arg2) {
 if (arg1.is_null || arg2.is_null) return IntVal::null();
 return IntVal(arg1.val + arg2.val);
}

// Multiple UDFs can be defined in the same file

Data Types for Function Arguments and Return Values

Each value that a user-defined function can accept as an argument or return as a result value must map to a SQL data
type that you could specify for a table column.

Currently, Impala UDFs cannot accept arguments or return values of the Impala complex types (STRUCT, ARRAY, or
MAP).

Each data type has a corresponding structure defined in the C++ and Java header files, with two member fields and
some predefined comparison operators and constructors:

• is_null indicates whether the value is NULL or not. val holds the actual argument or return value when it is
non-NULL.

• Each struct also defines a null()member function that constructs an instance of the struct with the is_null
flag set.

• The built-in SQL comparison operators and clauses such as <, >=, BETWEEN, and ORDER BY all work automatically
based on the SQL return type of each UDF. For example, Impala knows how to evaluate BETWEEN 1 AND
udf_returning_int(col1) or ORDER BY udf_returning_string(col2) without you declaring any
comparison operators within the UDF itself.

For conveniencewithin your UDF code, each struct defines == and != operators for comparisonswith other structs
of the same type. These are for typical C++ comparisons within your own code, not necessarily reproducing SQL
semantics. For example, if the is_null flag is set in both structs, they compare as equal. That behavior of null
comparisons is different from SQL (where NULL == NULL is NULL rather than true), but more in line with typical
C++ behavior.

452 | Apache Impala Guide

Impala SQL Language Reference

https://github.com/cloudera/impala-udf-samples/blob/master/udf-sample.h

• Each kind of struct has one or more constructors that define a filled-in instance of the struct, optionally with
default values.

• Impala cannot process UDFs that accept the composite or nested types as arguments or return them as result
values. This limitation applies both to Impala UDFs written in C++ and Java-based Hive UDFs.

• You can overload functions by creating multiple functions with the same SQL name but different argument types.
For overloaded functions, you must use different C++ or Java entry point names in the underlying functions.

The data types defined on the C++ side (in /usr/include/impala_udf/udf.h) are:

• IntVal represents an INT column.

• BigIntVal represents a BIGINT column. Even if you do not need the full range of a BIGINT value, it can be
useful to code your function arguments as BigIntVal to make it convenient to call the function with different
kinds of integer columns and expressions as arguments. Impala automatically casts smaller integer types to larger
ones when appropriate, but does not implicitly cast large integer types to smaller ones.

• SmallIntVal represents a SMALLINT column.

• TinyIntVal represents a TINYINT column.

• StringVal represents a STRING column. It has a len field representing the length of the string, and a ptr field
pointing to the string data. It has constructors that create a new StringVal struct based on a null-terminated
C-style string, or a pointer plus a length; these new structs still refer to the original string data rather than allocating
a new buffer for the data. It also has a constructor that takes a pointer to a FunctionContext struct and a length,
that does allocate space for a new copy of the string data, for use in UDFs that return string values.

• BooleanVal represents a BOOLEAN column.

• FloatVal represents a FLOAT column.

• DoubleVal represents a DOUBLE column.

• TimestampVal represents a TIMESTAMP column. It has a date field, a 32-bit integer representing the Gregorian
date, that is, the days past the epoch date. It also has a time_of_day field, a 64-bit integer representing the
current time of day in nanoseconds.

Variable-Length Argument Lists

UDFs typically take a fixed number of arguments, with each one named explicitly in the signature of your C++ function.
Your function can also accept additional optional arguments, all of the same type. For example, you can concatenate
two strings, three strings, four strings, and so on. Or you can compare two numbers, three numbers, four numbers,
and so on.

To accept a variable-length argument list, code the signature of your function like this:

StringVal Concat(FunctionContext* context, const StringVal& separator,
 int num_var_args, const StringVal* args);

In the CREATE FUNCTION statement, after the type of the first optional argument, include ... to indicate it could be
followed by more arguments of the same type. For example, the following function accepts a STRING argument,
followed by one or more additional STRING arguments:

[localhost:21000] > create function my_concat(string, string ...) returns string location
 '/user/test_user/udfs/sample.so' symbol='Concat';

The call from the SQL query must pass at least one argument to the variable-length portion of the argument list.

When Impala calls the function, it fills in the initial set of required arguments, then passes the number of extra arguments
and a pointer to the first of those optional arguments.

Apache Impala Guide | 453

Impala SQL Language Reference

Handling NULL Values

For correctness, performance, and reliability, it is important for each UDF to handle all situations where any NULL
values are passed to your function. For example, when passed a NULL, UDFs typically also return NULL. In an aggregate
function, which could be passed a combination of real and NULL values, you might make the final value into a NULL
(as in CONCAT()), ignore the NULL value (as in AVG()), or treat it the same as a numeric zero or empty string.

Each parameter type, such as IntVal or StringVal, has an is_null Boolean member. Test this flag immediately
for each argument to your function, and if it is set, do not refer to the val field of the argument structure. The val
field is undefined when the argument is NULL, so your function could go into an infinite loop or produce incorrect
results if you skip the special handling for NULL.

If your function returns NULL when passed a NULL value, or in other cases such as when a search string is not found,
you can construct a null instance of the return type by using its null()member function.

Memory Allocation for UDFs

By default, memory allocated within a UDF is deallocated when the function exits, which could be before the query is
finished. The input arguments remain allocated for the lifetime of the function, so you can refer to them in the
expressions for your return values. If you use temporary variables to construct all-new string values, use the
StringVal() constructor that takes an initial FunctionContext* argument followed by a length, and copy the data
into the newly allocated memory buffer.

Thread-Safe Work Area for UDFs

Oneway to improve performance of UDFs is to specify the optionalPREPARE_FN andCLOSE_FN clauses on theCREATE
FUNCTION statement. The “prepare” function sets up a thread-safe data structure in memory that you can use as a
work area. The “close” function deallocates that memory. Each subsequent call to the UDF within the same thread can
access that same memory area. There might be several such memory areas allocated on the same host, as UDFs are
parallelized using multiple threads.

Within this work area, you can set up predefined lookup tables, or record the results of complex operations on data
types such asSTRING orTIMESTAMP. Saving the results of previous computations rather than repeating the computation
each time is an optimization known as http://en.wikipedia.org/wiki/Memoization. For example, if your UDF performs
a regular expression match or date manipulation on a column that repeats the same value over and over, you could
store the last-computed value or a hash table of already-computed values, and do a fast lookup to find the result for
subsequent iterations of the UDF.

Each such function must have the signature:

void function_name(impala_udf::FunctionContext*,
impala_udf::FunctionContext::FunctionScope)

Currently, only THREAD_SCOPE is implemented, not FRAGMENT_SCOPE. See udf.h for details about the scope values.

Error Handling for UDFs

To handle errors in UDFs, you call functions that are members of the initial FunctionContext* argument passed to
your function.

A UDF can record one or more warnings, for conditions that indicate minor, recoverable problems that do not cause
the query to stop. The signature for this function is:

bool AddWarning(const char* warning_msg);

For a serious problem that requires cancelling the query, a UDF can set an error flag that prevents the query from
returning any results. The signature for this function is:

void SetError(const char* error_msg);

454 | Apache Impala Guide

Impala SQL Language Reference

http://en.wikipedia.org/wiki/Memoization

Writing User-Defined Aggregate Functions (UDAFs)

User-defined aggregate functions (UDAFs or UDAs) are a powerful and flexible category of user-defined functions. If
a query processes N rows, calling a UDAF during the query condenses the result set, anywhere from a single value
(such as with the SUM or MAX functions), or some number less than or equal to N (as in queries using the GROUP BY or
HAVING clause).

The Underlying Functions for a UDA

A UDAF must maintain a state value across subsequent calls, so that it can accumulate a result across a set of calls,
rather than derive it purely from one set of arguments. For that reason, a UDAF is represented by multiple underlying
functions:

• An initialization function that sets any counters to zero, creates empty buffers, and does any other one-time setup
for a query.

• An update function that processes the arguments for each row in the query result set and accumulates an
intermediate result for each node. For example, this functionmight increment a counter, append to a string buffer,
or set flags.

• A merge function that combines the intermediate results from two different nodes.
• A serialize function that flattens any intermediate values containing pointers, and frees any memory allocated

during the init, update, and merge phases.
• A finalize function that either passes through the combined result unchanged, or does one final transformation.

In the SQL syntax, you create a UDAF by using the statement CREATE AGGREGATE FUNCTION. You specify the entry
points of the underlying C++ functions using the clauses INIT_FN, UPDATE_FN, MERGE_FN, SERIALIZE_FN, and
FINALIZE_FN.

For convenience, you can use a naming convention for the underlying functions and Impala automatically recognizes
those entry points. Specify the UPDATE_FN clause, using an entry point name containing the string update or Update.
When you omit the other _FN clauses from the SQL statement, Impala looks for entry points with names formed by
substituting the update or Update portion of the specified name.

uda-sample.h:

See this file online at: https://github.com/cloudera/impala-udf-samples/blob/master/uda-sample.cc

uda-sample.cc:

See this file online at: https://github.com/cloudera/impala-udf-samples/blob/master/uda-sample.h

Intermediate Results for UDAs

A user-defined aggregate functionmight produce and combine intermediate results during some phases of processing,
using a different data type than the final return value. For example, if you implement a function similar to the built-in
AVG() function, it must keep track of two values, the number of values counted and the sum of those values. Or, you
might accumulate a string value over the course of a UDA, then in the end return a numeric or Boolean result.

In such a case, specify the data type of the intermediate results using the optional INTERMEDIATE type_name clause
of the CREATE AGGREGATE FUNCTION statement. If the intermediate data is a typeless byte array (for example, to
represent a C++ struct or array), specify the type name as CHAR(n), with n representing the number of bytes in the
intermediate result buffer.

For an example of this technique, see the trunc_sum() aggregate function, which accumulates intermediate results
of type DOUBLE and returns BIGINT at the end. View the CREATE FUNCTION statement and the implementation of
the underlying TruncSum*() functions on Github.

Building and Deploying UDFs

This section explains the steps to compile Impala UDFs from C++ source code, and deploy the resulting libraries for
use in Impala queries.

Impala ships with a sample build environment for UDFs, that you can study, experiment with, and adapt for your own
use. This sample build environment startswith thecmake configuration command,which reads the fileCMakeLists.txt

Apache Impala Guide | 455

Impala SQL Language Reference

https://github.com/cloudera/impala-udf-samples/blob/master/uda-sample.cc
https://github.com/cloudera/impala-udf-samples/blob/master/uda-sample.h
https://github.com/cloudera/Impala/blob/cdh5-trunk/tests/query_test/test_udfs.py
http://github.com/Cloudera/Impala/blob/cdh5-trunk/be/src/testutil/test-udas.cc
http://github.com/Cloudera/Impala/blob/cdh5-trunk/be/src/testutil/test-udas.cc

and generates a Makefile customized for your particular directory paths. Then the make command runs the actual
build steps based on the rules in the Makefile.

Impala loads the shared library from an HDFS location. After building a shared library containing one or more UDFs,
use hdfs dfs or hadoop fs commands to copy the binary file to an HDFS location readable by Impala.

The final step in deployment is to issue a CREATE FUNCTION statement in the impala-shell interpreter to make
Impala aware of the new function. See CREATE FUNCTION Statement on page 233 for syntax details. Because each
function is associated with a particular database, always issue a USE statement to the appropriate database before
creating a function, or specify a fully qualified name, that is, CREATE FUNCTION db_name.function_name.

As you update the UDF code and redeploy updated versions of a shared library, use DROP FUNCTION and CREATE
FUNCTION to let Impala pick up the latest version of the code.

Note:

Currently, Impala UDFs and UDAs are not persisted in the metastore database. Information about
these functions is held in the memory of the catalogd daemon. You must reload them by running
the CREATE FUNCTION statements again each time you restart the catalogd daemon.

Prerequisites for the build environment are:

Use the appropriate package installation command for your Linux distribution.
sudo yum install gcc-c++ cmake boost-devel
sudo yum install impala-udf-devel
The package name on Ubuntu and Debian is impala-udf-dev.

Then, unpack the sample code in udf_samples.tar.gz and use that as a template to set up your build environment.

To build the original samples:

Process CMakeLists.txt and set up appropriate Makefiles.
cmake .
Generate shared libraries from UDF and UDAF sample code,
udf_samples/libudfsample.so and udf_samples/libudasample.so
make

The sample code to examine, experiment with, and adapt is in these files:

• udf-sample.h: Header file that declares the signature for a scalar UDF (AddUDF).
• udf-sample.cc: Sample source for a simple UDF that adds two integers. Because Impala can reference multiple

function entry points from the same shared library, you could add other UDF functions in this file and add their
signatures to the corresponding header file.

• udf-sample-test.cc: Basic unit tests for the sample UDF.
• uda-sample.h: Header file that declares the signature for sample aggregate functions. The SQL functions will

be called COUNT, AVG, and STRINGCONCAT. Because aggregate functions requiremore elaborate coding to handle
the processing for multiple phases, there are several underlying C++ functions such as CountInit, AvgUpdate,
and StringConcatFinalize.

• uda-sample.cc: Sample source for simple UDAFs that demonstrate how to manage the state transitions as the
underlying functions are called during the different phases of query processing.

– The UDAF that imitates the COUNT function keeps track of a single incrementing number; themerge functions
combine the intermediate count values from each Impala node, and the combined number is returned
verbatim by the finalize function.

– The UDAF that imitates the AVG function keeps track of two numbers, a count of rows processed and the
sumof values for a column. These numbers are updated andmerged aswith COUNT, then the finalize function
divides them to produce and return the final average value.

– The UDAF that concatenates string values into a comma-separated list demonstrates how to manage storage
for a string that increases in length as the function is called for multiple rows.

456 | Apache Impala Guide

Impala SQL Language Reference

• uda-sample-test.cc: basic unit tests for the sample UDAFs.

Performance Considerations for UDFs

Because a UDF typically processes each row of a table, potentially being called billions of times, the performance of
each UDF is a critical factor in the speed of the overall ETL or ELT pipeline. Tiny optimizations you can make within the
function body can pay off in a big way when the function is called over and over when processing a huge result set.

Examples of Creating and Using UDFs

This section demonstrates how to create and use all kinds of user-defined functions (UDFs).

For downloadable examples that you can experiment with, adapt, and use as templates for your own functions, see
the Cloudera sample UDF github. Youmust have already installed the appropriate header files, as explained in Installing
the UDF Development Package on page 451.

Sample C++ UDFs: HasVowels, CountVowels, StripVowels

This example shows 3 separate UDFs that operate on strings and return different data types. In the C++ code, the
functions are HasVowels() (checks if a string contains any vowels), CountVowels() (returns the number of vowels
in a string), and StripVowels() (returns a new string with vowels removed).

First, we add the signatures for these functions to udf-sample.h in the demo build environment:

BooleanVal HasVowels(FunctionContext* context, const StringVal& input);
IntVal CountVowels(FunctionContext* context, const StringVal& arg1);
StringVal StripVowels(FunctionContext* context, const StringVal& arg1);

Then, we add the bodies of these functions to udf-sample.cc:

BooleanVal HasVowels(FunctionContext* context, const StringVal& input)
{
 if (input.is_null) return BooleanVal::null();

 int index;
 uint8_t *ptr;

 for (ptr = input.ptr, index = 0; index <= input.len; index++, ptr++)
 {
 uint8_t c = tolower(*ptr);
 if (c == 'a' || c == 'e' || c == 'i' || c == 'o' || c == 'u')
 {
 return BooleanVal(true);
 }
 }
 return BooleanVal(false);
}

IntVal CountVowels(FunctionContext* context, const StringVal& arg1)
{
 if (arg1.is_null) return IntVal::null();

 int count;
 int index;
 uint8_t *ptr;

 for (ptr = arg1.ptr, count = 0, index = 0; index <= arg1.len; index++, ptr++)
 {
 uint8_t c = tolower(*ptr);
 if (c == 'a' || c == 'e' || c == 'i' || c == 'o' || c == 'u')
 {
 count++;
 }
 }
 return IntVal(count);
}

StringVal StripVowels(FunctionContext* context, const StringVal& arg1)
{

Apache Impala Guide | 457

Impala SQL Language Reference

https://github.com/cloudera/impala-udf-samples

 if (arg1.is_null) return StringVal::null();

 int index;
 std::string original((const char *)arg1.ptr,arg1.len);
 std::string shorter("");

 for (index = 0; index < original.length(); index++)
 {
 uint8_t c = original[index];
 uint8_t l = tolower(c);

 if (l == 'a' || l == 'e' || l == 'i' || l == 'o' || l == 'u')
 {
 ;
 }
 else
 {
 shorter.append(1, (char)c);
 }
 }
// The modified string is stored in 'shorter', which is destroyed when this function
ends. We need to make a string val
// and copy the contents.
 StringVal result(context, shorter.size()); // Only the version of the ctor that
 takes a context object allocates new memory
 memcpy(result.ptr, shorter.c_str(), shorter.size());
 return result;
}

We build a shared library, libudfsample.so, and put the library file into HDFS where Impala can read it:

$ make
[0%] Generating udf_samples/uda-sample.ll
[16%] Built target uda-sample-ir
[33%] Built target udasample
[50%] Built target uda-sample-test
[50%] Generating udf_samples/udf-sample.ll
[66%] Built target udf-sample-ir
Scanning dependencies of target udfsample
[83%] Building CXX object CMakeFiles/udfsample.dir/udf-sample.o
Linking CXX shared library udf_samples/libudfsample.so
[83%] Built target udfsample
Linking CXX executable udf_samples/udf-sample-test
[100%] Built target udf-sample-test
$ hdfs dfs -put ./udf_samples/libudfsample.so /user/hive/udfs/libudfsample.so

Finally, we go into the impala-shell interpreter where we set up some sample data, issue CREATE FUNCTION
statements to set up the SQL function names, and call the functions in some queries:

[localhost:21000] > create database udf_testing;
[localhost:21000] > use udf_testing;

[localhost:21000] > create function has_vowels (string) returns boolean location
'/user/hive/udfs/libudfsample.so' symbol='HasVowels';
[localhost:21000] > select has_vowels('abc');
+------------------------+
| udfs.has_vowels('abc') |
+------------------------+
| true |
+------------------------+
Returned 1 row(s) in 0.13s
[localhost:21000] > select has_vowels('zxcvbnm');
+----------------------------+
| udfs.has_vowels('zxcvbnm') |
+----------------------------+
| false |
+----------------------------+
Returned 1 row(s) in 0.12s
[localhost:21000] > select has_vowels(null);
+-----------------------+
| udfs.has_vowels(null) |

458 | Apache Impala Guide

Impala SQL Language Reference

+-----------------------+
| NULL |
+-----------------------+
Returned 1 row(s) in 0.11s
[localhost:21000] > select s, has_vowels(s) from t2;
+-----------+--------------------+
| s | udfs.has_vowels(s) |
+-----------+--------------------+
lower	true
UPPER	true
Init cap	true
CamelCase	true
+-----------+--------------------+
Returned 4 row(s) in 0.24s

[localhost:21000] > create function count_vowels (string) returns int location
'/user/hive/udfs/libudfsample.so' symbol='CountVowels';
[localhost:21000] > select count_vowels('cat in the hat');
+-------------------------------------+
| udfs.count_vowels('cat in the hat') |
+-------------------------------------+
| 4 |
+-------------------------------------+
Returned 1 row(s) in 0.12s
[localhost:21000] > select s, count_vowels(s) from t2;
+-----------+----------------------+
| s | udfs.count_vowels(s) |
+-----------+----------------------+
lower	2
UPPER	2
Init cap	3
CamelCase	4
+-----------+----------------------+	
Returned 4 row(s) in 0.23s	
[localhost:21000] > select count_vowels(null);	
+-------------------------+	
udfs.count_vowels(null)	
+-------------------------+	
NULL	
+-------------------------+
Returned 1 row(s) in 0.12s

[localhost:21000] > create function strip_vowels (string) returns string location
'/user/hive/udfs/libudfsample.so' symbol='StripVowels';
[localhost:21000] > select strip_vowels('abcdefg');
+------------------------------+
| udfs.strip_vowels('abcdefg') |
+------------------------------+
| bcdfg |
+------------------------------+
Returned 1 row(s) in 0.11s
[localhost:21000] > select strip_vowels('ABCDEFG');
+------------------------------+
| udfs.strip_vowels('abcdefg') |
+------------------------------+
| BCDFG |
+------------------------------+
Returned 1 row(s) in 0.12s
[localhost:21000] > select strip_vowels(null);
+-------------------------+
| udfs.strip_vowels(null) |
+-------------------------+
| NULL |
+-------------------------+
Returned 1 row(s) in 0.16s
[localhost:21000] > select s, strip_vowels(s) from t2;
+-----------+----------------------+
| s | udfs.strip_vowels(s) |
+-----------+----------------------+
lower	lwr
UPPER	PPR
Init cap	nt cp
CamelCase	CmlCs

Apache Impala Guide | 459

Impala SQL Language Reference

+-----------+----------------------+
Returned 4 row(s) in 0.24s

Sample C++ UDA: SumOfSquares

This example demonstrates a user-defined aggregate function (UDA) that produces the sum of the squares of its input
values.

The coding for a UDA is a little more involved than a scalar UDF, because the processing is split into several phases,
each implemented by a different function. Each phase is relatively straightforward: the “update” and “merge” phases,
where most of the work is done, read an input value and combine it with some accumulated intermediate value.

As in our sample UDF from the previous example, we add function signatures to a header file (in this case,
uda-sample.h). Because this is a math-oriented UDA, we make two versions of each function, one accepting an
integer value and the other accepting a floating-point value.

void SumOfSquaresInit(FunctionContext* context, BigIntVal* val);
void SumOfSquaresInit(FunctionContext* context, DoubleVal* val);

void SumOfSquaresUpdate(FunctionContext* context, const BigIntVal& input, BigIntVal*
val);
void SumOfSquaresUpdate(FunctionContext* context, const DoubleVal& input, DoubleVal*
val);

void SumOfSquaresMerge(FunctionContext* context, const BigIntVal& src, BigIntVal* dst);
void SumOfSquaresMerge(FunctionContext* context, const DoubleVal& src, DoubleVal* dst);

BigIntVal SumOfSquaresFinalize(FunctionContext* context, const BigIntVal& val);
DoubleVal SumOfSquaresFinalize(FunctionContext* context, const DoubleVal& val);

We add the function bodies to a C++ source file (in this case, uda-sample.cc):

void SumOfSquaresInit(FunctionContext* context, BigIntVal* val) {
 val->is_null = false;
 val->val = 0;
}
void SumOfSquaresInit(FunctionContext* context, DoubleVal* val) {
 val->is_null = false;
 val->val = 0.0;
}

void SumOfSquaresUpdate(FunctionContext* context, const BigIntVal& input, BigIntVal*
val) {
 if (input.is_null) return;
 val->val += input.val * input.val;
}
void SumOfSquaresUpdate(FunctionContext* context, const DoubleVal& input, DoubleVal*
val) {
 if (input.is_null) return;
 val->val += input.val * input.val;
}

void SumOfSquaresMerge(FunctionContext* context, const BigIntVal& src, BigIntVal* dst)
 {
 dst->val += src.val;
}
void SumOfSquaresMerge(FunctionContext* context, const DoubleVal& src, DoubleVal* dst)
 {
 dst->val += src.val;
}

BigIntVal SumOfSquaresFinalize(FunctionContext* context, const BigIntVal& val) {
 return val;
}
DoubleVal SumOfSquaresFinalize(FunctionContext* context, const DoubleVal& val) {
 return val;
}

460 | Apache Impala Guide

Impala SQL Language Reference

As with the sample UDF, we build a shared library and put it into HDFS:

$ make
[0%] Generating udf_samples/uda-sample.ll
[16%] Built target uda-sample-ir
Scanning dependencies of target udasample
[33%] Building CXX object CMakeFiles/udasample.dir/uda-sample.o
Linking CXX shared library udf_samples/libudasample.so
[33%] Built target udasample
Scanning dependencies of target uda-sample-test
[50%] Building CXX object CMakeFiles/uda-sample-test.dir/uda-sample-test.o
Linking CXX executable udf_samples/uda-sample-test
[50%] Built target uda-sample-test
[50%] Generating udf_samples/udf-sample.ll
[66%] Built target udf-sample-ir
[83%] Built target udfsample
[100%] Built target udf-sample-test
$ hdfs dfs -put ./udf_samples/libudasample.so /user/hive/udfs/libudasample.so

To create the SQL function, we issue a CREATE AGGREGATE FUNCTION statement and specify the underlying C++
function names for the different phases:

[localhost:21000] > use udf_testing;

[localhost:21000] > create table sos (x bigint, y double);
[localhost:21000] > insert into sos values (1, 1.1), (2, 2.2), (3, 3.3), (4, 4.4);
Inserted 4 rows in 1.10s

[localhost:21000] > create aggregate function sum_of_squares(bigint) returns bigint
 > location '/user/hive/udfs/libudasample.so'
 > init_fn='SumOfSquaresInit'
 > update_fn='SumOfSquaresUpdate'
 > merge_fn='SumOfSquaresMerge'
 > finalize_fn='SumOfSquaresFinalize';

[localhost:21000] > -- Compute the same value using literals or the UDA;
[localhost:21000] > select 1*1 + 2*2 + 3*3 + 4*4;
+-------------------------------+
| 1 * 1 + 2 * 2 + 3 * 3 + 4 * 4 |
+-------------------------------+
| 30 |
+-------------------------------+
Returned 1 row(s) in 0.12s
[localhost:21000] > select sum_of_squares(x) from sos;
+------------------------+
| udfs.sum_of_squares(x) |
+------------------------+
| 30 |
+------------------------+
Returned 1 row(s) in 0.35s

Until we create the overloaded version of the UDA, it can only handle a single data type. To allow it to handle DOUBLE
as well as BIGINT, we issue another CREATE AGGREGATE FUNCTION statement:

[localhost:21000] > select sum_of_squares(y) from sos;
ERROR: AnalysisException: No matching function with signature:
udfs.sum_of_squares(DOUBLE).

[localhost:21000] > create aggregate function sum_of_squares(double) returns double
 > location '/user/hive/udfs/libudasample.so'
 > init_fn='SumOfSquaresInit'
 > update_fn='SumOfSquaresUpdate'
 > merge_fn='SumOfSquaresMerge'
 > finalize_fn='SumOfSquaresFinalize';

[localhost:21000] > -- Compute the same value using literals or the UDA;
[localhost:21000] > select 1.1*1.1 + 2.2*2.2 + 3.3*3.3 + 4.4*4.4;
+---+
| 1.1 * 1.1 + 2.2 * 2.2 + 3.3 * 3.3 + 4.4 * 4.4 |
+---+

Apache Impala Guide | 461

Impala SQL Language Reference

| 36.3 |
+---+
Returned 1 row(s) in 0.12s
[localhost:21000] > select sum_of_squares(y) from sos;
+------------------------+
| udfs.sum_of_squares(y) |
+------------------------+
| 36.3 |
+------------------------+
Returned 1 row(s) in 0.35s

Typically, you use a UDA in queries with GROUP BY clauses, to produce a result set with a separate aggregate value
for each combination of values from the GROUP BY clause. Let's change our sample table to use 0 to indicate rows
containing even values, and 1 to flag rows containing odd values. Then the GROUP BY query can return two values,
the sum of the squares for the even values, and the sum of the squares for the odd values:

[localhost:21000] > insert overwrite sos values (1, 1), (2, 0), (3, 1), (4, 0);
Inserted 4 rows in 1.24s

[localhost:21000] > -- Compute 1 squared + 3 squared, and 2 squared + 4 squared;
[localhost:21000] > select y, sum_of_squares(x) from sos group by y;
+---+------------------------+
| y | udfs.sum_of_squares(x) |
+---+------------------------+
| 1 | 10 |
| 0 | 20 |
+---+------------------------+
Returned 2 row(s) in 0.43s

Security Considerations for User-Defined Functions

When the Impala authorization feature is enabled:

• To call a UDF in a query, you must have the required read privilege for any databases and tables used in the query.
• Because incorrectly coded UDFs could cause performance or capacity problems, for example by going into infinite

loops or allocating excessive amounts of memory, only an administrative user can create UDFs. That is, to execute
the CREATE FUNCTION statement requires the ALL privilege on the server.

See Enabling Sentry Authorization for Impala on page 96 for details about authorization in Impala.

Limitations and Restrictions for Impala UDFs

The following limitations and restrictions apply to Impala UDFs in the current release:

• Impala does not support Hive UDFs that accept or return composite or nested types, or other types not available
in Impala tables.

• The Hive current_user() function cannot be called from a Java UDF through Impala.

• All ImpalaUDFsmust be deterministic, that is, produce the sameoutput each timewhen passed the same argument
values. For example, an Impala UDF must not call functions such as rand() to produce different values for each
invocation. It must not retrieve data from external sources, such as from disk or over the network.

• An Impala UDF must not spawn other threads or processes.
• When the catalogd process is restarted, all UDFs become undefined and must be reloaded.
• Impala currently does not support user-defined table functions (UDTFs).
• The CHAR and VARCHAR types cannot be used as input arguments or return values for UDFs.

SQL Differences Between Impala and Hive
Impala's SQL syntax follows the SQL-92 standard, and includes many industry extensions in areas such as built-in
functions. See Porting SQL from Other Database Systems to Impala on page 465 for a general discussion of adapting
SQL code from a variety of database systems to Impala.

462 | Apache Impala Guide

Impala SQL Language Reference

Because Impala and Hive share the same metastore database and their tables are often used interchangeably, the
following section covers differences between Impala and Hive in detail.

HiveQL Features not Available in Impala

The current release of Impala does not support the following SQL features that youmight be familiar with fromHiveQL:

• Extensibility mechanisms such as TRANSFORM, custom file formats, or custom SerDes.
• The DATE data type.
• XML and JSON functions.
• Certain aggregate functions fromHiveQL:covar_pop,covar_samp,corr,percentile,percentile_approx,

histogram_numeric, collect_set; Impala supports the set of aggregate functions listed in Impala Aggregate
Functions on page 404 and analytic functions listed in Impala Analytic Functions on page 430.

• Sampling.
• Lateral views. In CDH 5.5 / Impala 2.3 and higher, Impala supports queries on complex types (STRUCT, ARRAY, or

MAP), using join notation rather than the EXPLODE() keyword. See Complex Types (CDH 5.5 or higher only) on
page 157 for details about Impala support for complex types.

• Multiple DISTINCT clauses per query, although Impala includes some workarounds for this limitation.

Note:

By default, Impala only allows a single COUNT(DISTINCT columns) expression in each query.

If you do not need precise accuracy, you can produce an estimate of the distinct values for a
column by specifying NDV(column); a query can contain multiple instances of NDV(column).
To make Impala automatically rewrite COUNT(DISTINCT) expressions to NDV(), enable the
APPX_COUNT_DISTINCT query option.

To produce the same result asmultipleCOUNT(DISTINCT) expressions, you can use the following
technique for queries involving a single table:

select v1.c1 result1, v2.c1 result2 from
 (select count(distinct col1) as c1 from t1) v1
 cross join
 (select count(distinct col2) as c1 from t1) v2;

Because CROSS JOIN is an expensive operation, prefer to use the NDV() technique wherever
practical.

User-defined functions (UDFs) are supported starting in Impala 1.2. See Impala User-Defined Functions (UDFs) on page
448 for full details on Impala UDFs.

• Impala supports high-performance UDFs written in C++, as well as reusing some Java-based Hive UDFs.

• Impala supports scalar UDFs and user-defined aggregate functions (UDAFs). Impala does not currently support
user-defined table generating functions (UDTFs).

• Only Impala-supported column types are supported in Java-based UDFs.

Impala does not currently support these HiveQL statements:

• ANALYZE TABLE (the Impala equivalent is COMPUTE STATS)
• DESCRIBE COLUMN

• DESCRIBE DATABASE

• EXPORT TABLE

• IMPORT TABLE

• SHOW TABLE EXTENDED

• SHOW TBLPROPERTIES

• SHOW INDEXES

Apache Impala Guide | 463

Impala SQL Language Reference

• SHOW COLUMNS

• INSERT OVERWRITE DIRECTORY; use INSERT OVERWRITE table_name or CREATE TABLE AS SELECT to
materialize query results into the HDFS directory associated with an Impala table.

Impala respects the serialization.null.format table property only for TEXT tables and ignores the property for
Parquet and other formats. Hive respects the serialization.null.format property for Parquet and other formats
and converts matching values to NULL during the scan. See for using the table property in Impala.

Semantic Differences Between Impala and HiveQL Features

This section covers instances where Impala and Hive have similar functionality, sometimes including the same syntax,
but there are differences in the runtime semantics of those features.

Security:

Impala utilizes the Apache Sentry (incubating) authorization framework, which provides fine-grained role-based access
control to protect data against unauthorized access or tampering.

The Hive component included in CDH 5.1 and higher now includes Sentry-enabled GRANT, REVOKE, and CREATE/DROP
ROLE statements. Earlier Hive releases had a privilege system with GRANT and REVOKE statements that were primarily
intended to prevent accidental deletion of data, rather than a security mechanism to protect against malicious users.

Impala can make use of privileges set up through Hive GRANT and REVOKE statements. Impala has its own GRANT and
REVOKE statements in Impala 2.0 and higher. See Enabling Sentry Authorization for Impala on page 96 for the details
of authorization in Impala, including how to switch from the original policy file-based privilege model to the Sentry
service using privileges stored in the metastore database.

SQL statements and clauses:

The semantics of Impala SQL statements varies from HiveQL in some cases where they use similar SQL statement and
clause names:

• Impala uses different syntax and names for query hints, [SHUFFLE] and [NOSHUFFLE] rather than MapJoin or
StreamJoin. See Joins in Impala SELECT Statements on page 283 for the Impala details.

• Impala does not expose MapReduce specific features of SORT BY, DISTRIBUTE BY, or CLUSTER BY.
• Impala does not require queries to include a FROM clause.

Data types:

• Impala supports a limited set of implicit casts. This can help avoid undesired results from unexpected casting
behavior.

– Impala does not implicitly cast between string and numeric or Boolean types. Always use CAST() for these
conversions.

– Impala does perform implicit casts among the numeric types, when going from a smaller or less precise type
to a larger ormore precise one. For example, Impalawill implicitly convert aSMALLINT to aBIGINT orFLOAT,
but to convert from DOUBLE to FLOAT or INT to TINYINT requires a call to CAST() in the query.

– Impala does perform implicit casts from string to timestamp. Impala has a restricted set of literal formats for
the TIMESTAMP data type and the from_unixtime() format string; see TIMESTAMP Data Type on page 149
for details.

See Data Types on page 117 for full details on implicit and explicit casting for all types, and Impala Type Conversion
Functions on page 361 for details about the CAST() function.

• Impala does not store or interpret timestamps using the local timezone, to avoid undesired results fromunexpected
time zone issues. Timestamps are stored and interpreted relative to UTC. This difference can produce different
results for some calls to similarly named date/time functions between Impala and Hive. See Impala Date and Time
Functions onpage 364 for details about the Impala functions. See TIMESTAMPData Typeonpage 149 for a discussion
of how Impala handles time zones, and configuration options you can use tomake Impalamatch the Hive behavior
more closely when dealing with Parquet-encoded TIMESTAMP data or when converting between the local time
zone and UTC.

464 | Apache Impala Guide

Impala SQL Language Reference

http://sentry.incubator.apache.org/

• The Impala TIMESTAMP type can represent dates ranging from 1400-01-01 to 9999-12-31. This is different from
the Hive date range, which is 0000-01-01 to 9999-12-31.

• Impala does not return column overflows as NULL, so that customers can distinguish between NULL data and
overflow conditions similar to how they do so with traditional database systems. Impala returns the largest or
smallest value in the range for the type. For example, valid values for a tinyint range from -128 to 127. In Impala,
a tinyint with a value of -200 returns -128 rather than NULL. A tinyint with a value of 200 returns 127.

Miscellaneous features:

• Impala does not provide virtual columns.
• Impala does not expose locking.
• Impala does not expose some configuration properties.

Porting SQL from Other Database Systems to Impala
Although Impala uses standard SQL for queries, you might need to modify SQL source when bringing applications to
Impala, due to variations in data types, built-in functions, vendor language extensions, and Hadoop-specific syntax.
Even when SQL is working correctly, you might make further minor modifications for best performance.

Porting DDL and DML Statements

When adapting SQL code from a traditional database system to Impala, expect to find a number of differences in the
DDL statements that you use to set up the schema. Clauses related to physical layout of files, tablespaces, and indexes
have no equivalent in Impala. You might restructure your schema considerably to account for the Impala partitioning
scheme and Hadoop file formats.

Expect SQL queries to have amuch higher degree of compatibility.Withmodest rewriting to address vendor extensions
and features not yet supported in Impala, you might be able to run identical or almost-identical query text on both
systems.

Therefore, consider separating out the DDL into a separate Impala-specific setup script. Focus your reuse and ongoing
tuning efforts on the code for SQL queries.

Porting Data Types from Other Database Systems

• Change any VARCHAR, VARCHAR2, and CHAR columns to STRING. Remove any length constraints from the column
declarations; for example, change VARCHAR(32) or CHAR(1) to STRING. Impala is very flexible about the length
of string values; it does not impose any length constraints or do any special processing (such as blank-padding)
for STRING columns. (In Impala 2.0 and higher, there are data types VARCHAR and CHAR, with length constraints
for both types and blank-padding for CHAR. However, for performance reasons, it is still preferable to use STRING
columns where practical.)

• For national language character types such as NCHAR, NVARCHAR, or NCLOB, be aware that while Impala can store
and query UTF-8 character data, currently some string manipulation operations only work correctly with ASCII
data. See STRING Data Type on page 142 for details.

• Change any DATE, DATETIME, or TIME columns to TIMESTAMP. Remove any precision constraints. Remove any
timezone clauses, and make sure your application logic or ETL process accounts for the fact that Impala expects
all TIMESTAMP values to be in Coordinated Universal Time (UTC). See TIMESTAMP Data Type on page 149 for
information about the TIMESTAMP data type, and Impala Date and Time Functions on page 364 for conversion
functions for different date and time formats.

You might also need to adapt date- and time-related literal values and format strings to use the supported Impala
date and time formats. If you have date and time literals with different separators or different numbers of YY,
MM, and so on placeholders than Impala expects, consider using calls to regexp_replace() to transform those
values to the Impala-compatible format. See TIMESTAMPData Type onpage 149 for information about the allowed
formats for date and time literals, and Impala String Functions on page 395 for string conversion functions such
as regexp_replace().

Apache Impala Guide | 465

Impala SQL Language Reference

http://en.wikipedia.org/wiki/Coordinated_Universal_Time

Instead of SYSDATE, call the function NOW().

Instead of adding or subtracting directly from a date value to produce a value N days in the past or future, use an
INTERVAL expression, for example NOW() + INTERVAL 30 DAYS.

• Although Impala supports INTERVAL expressions for datetime arithmetic, as shown in TIMESTAMP Data Type on
page 149, INTERVAL is not available as a column data type in Impala. For any INTERVAL values stored in tables,
convert them to numeric values that you can add or subtract using the functions in Impala Date and Time Functions
on page 364. For example, if you had a table DEADLINESwith an INT column TIME_PERIOD, you could construct
dates N days in the future like so:

SELECT NOW() + INTERVAL time_period DAYS from deadlines;

• For YEAR columns, change to the smallest Impala integer type that has sufficient range. See Data Types on page
117 for details about ranges, casting, and so on for the various numeric data types.

• Change any DECIMAL and NUMBER types. If fixed-point precision is not required, you can use FLOAT or DOUBLE
on the Impala side depending on the range of values. For applications that require precise decimal values, such
as financial data, you might need to make more extensive changes to table structure and application logic, such
as using separate integer columns for dollars and cents, or encoding numbers as string values and writing UDFs
tomanipulate them. SeeData Types on page 117 for details about ranges, casting, and so on for the various numeric
data types.

• FLOAT, DOUBLE, and REAL types are supported in Impala. Remove any precision and scale specifications. (In
Impala, REAL is just an alias for DOUBLE; columns declared as REAL are turned into DOUBLE behind the scenes.)
See Data Types on page 117 for details about ranges, casting, and so on for the various numeric data types.

• Most integer types fromother systems have equivalents in Impala, perhaps under different names such as BIGINT
instead of INT8. For any that are unavailable, for example MEDIUMINT, switch to the smallest Impala integer type
that has sufficient range. Remove any precision specifications. See Data Types on page 117 for details about ranges,
casting, and so on for the various numeric data types.

• Remove any UNSIGNED constraints. All Impala numeric types are signed. See Data Types on page 117 for details
about ranges, casting, and so on for the various numeric data types.

• For any types holding bitwise values, use an integer type with enough range to hold all the relevant bits within a
positive integer. See Data Types on page 117 for details about ranges, casting, and so on for the various numeric
data types.

For example, TINYINT has a maximum positive value of 127, not 256, so to manipulate 8-bit bitfields as positive
numbers switch to the next largest type SMALLINT.

[localhost:21000] > select cast(127*2 as tinyint);
+--------------------------+
| cast(127 * 2 as tinyint) |
+--------------------------+
| -2 |
+--------------------------+
[localhost:21000] > select cast(128 as tinyint);
+----------------------+
| cast(128 as tinyint) |
+----------------------+
| -128 |
+----------------------+
[localhost:21000] > select cast(127*2 as smallint);
+---------------------------+
| cast(127 * 2 as smallint) |
+---------------------------+
| 254 |
+---------------------------+

Impala does not support notation such as b'0101' for bit literals.

466 | Apache Impala Guide

Impala SQL Language Reference

• For BLOB values, use STRING to represent CLOB or TEXT types (character based large objects) up to 32 KB in size.
Binary large objects such as BLOB, RAW BINARY, and VARBINARY do not currently have an equivalent in Impala.

• For Boolean-like types such as BOOL, use the Impala BOOLEAN type.

• Because Impala currently does not support composite or nested types, any spatial data types in other database
systems do not have direct equivalents in Impala. You could represent spatial values in string format and write
UDFs to process them. See Impala User-Defined Functions (UDFs) on page 448 for details.Where practical, separate
spatial types into separate tables so that Impala can still work with the non-spatial data.

• Take out any DEFAULT clauses. Impala can use data files produced frommany different sources, such as Pig, Hive,
or MapReduce jobs. The fast import mechanisms of LOAD DATA and external tables mean that Impala is flexible
about the format of data files, and Impala does not necessarily validate or cleanse data before querying it. When
copying data through Impala INSERT statements, you can use conditional functions such as CASE or NVL to
substitute some other value for NULL fields; see Impala Conditional Functions on page 392 for details.

• Take out any constraints from your CREATE TABLE and ALTER TABLE statements, for example PRIMARY KEY,
FOREIGN KEY, UNIQUE, NOT NULL, UNSIGNED, or CHECK constraints. Impala can use data files produced from
many different sources, such as Pig, Hive, or MapReduce jobs. Therefore, Impala expects initial data validation to
happen earlier during the ETL or ELT cycle. After data is loaded into Impala tables, you can perform queries to test
for NULL values. When copying data through Impala INSERT statements, you can use conditional functions such
as CASE or NVL to substitute some other value for NULL fields; see Impala Conditional Functions on page 392 for
details.

Do as much verification as practical before loading data into Impala. After data is loaded into Impala, you can do
further verification using SQL queries to check if values have expected ranges, if values are NULL or not, and so
on. If there is a problem with the data, you will need to re-run earlier stages of the ETL process, or do an INSERT
... SELECT statement in Impala to copy the faulty data to a new table and transform or filter out the bad values.

• Take out any CREATE INDEX, DROP INDEX, and ALTER INDEX statements, and equivalent ALTER TABLE
statements. RemoveanyINDEX,KEY, orPRIMARY KEY clauses fromCREATE TABLE andALTER TABLE statements.
Impala is optimized for bulk read operations for data warehouse-style queries, and therefore does not support
indexes for its tables.

• Calls to built-in functions with out-of-range or otherwise incorrect arguments, return NULL in Impala as opposed
to raising exceptions. (This rule applies even when the ABORT_ON_ERROR=true query option is in effect.) Run
small-scale queries using representative data to doublecheck that calls to built-in functions are returning expected
values rather than NULL. For example, unsupported CAST operations do not raise an error in Impala:

select cast('foo' as int);
+--------------------+
| cast('foo' as int) |
+--------------------+
| NULL |
+--------------------+

• For any other type not supported in Impala, you could represent their values in string format and write UDFs to
process them. See Impala User-Defined Functions (UDFs) on page 448 for details.

• To detect the presence of unsupported or unconvertable data types in data files, do initial testing with the
ABORT_ON_ERROR=true query option in effect. This option causes queries to fail immediately if they encounter
disallowed type conversions. See ABORT_ON_ERROR Query Option on page 307 for details. For example:

set abort_on_error=true;
select count(*) from (select * from t1);
-- The above query will fail if the data files for T1 contain any
-- values that can't be converted to the expected Impala data types.
-- For example, if T1.C1 is defined as INT but the column contains
-- floating-point values like 1.1, the query will return an error.

Apache Impala Guide | 467

Impala SQL Language Reference

SQL Statements to Remove or Adapt

Some SQL statements or clauses that you might be familiar with are not currently supported in Impala:

• Impala has no DELETE statement. Impala is intended for data warehouse-style operations where you do bulk
moves and transforms of large quantities of data. Instead of using DELETE, use INSERT OVERWRITE to entirely
replace the contents of a table or partition, or use INSERT ... SELECT to copy a subset of data (everything but
the rows you intended to delete) from one table to another. See DML Statements on page 216 for an overview of
Impala DML statements.

• Impala has no UPDATE statement. Impala is intended for data warehouse-style operations where you do bulk
moves and transforms of large quantities of data. Instead of using UPDATE, do all necessary transformations early
in the ETL process, such as in the job that generates the original data, or when copying from one table to another
to convert to a particular file format or partitioning scheme. See DML Statements on page 216 for an overview of
Impala DML statements.

• Impala has no transactional statements, such as COMMIT or ROLLBACK. Impala effectively works like the
AUTOCOMMITmode in some database systems, where changes take effect as soon as they are made.

• If your database, table, column, or other names conflict with Impala reservedwords, use different names or quote
the names with backticks. See Impala Reserved Words on page 586 for the current list of Impala reserved words.

Conversely, if you use a keyword that Impala does not recognize, it might be interpreted as a table or column
alias. For example, in SELECT * FROM t1 NATURAL JOIN t2, Impala does not recognize the NATURAL keyword
and interprets it as an alias for the table t1. If you experience any unexpected behavior with queries, check the
list of reserved words to make sure all keywords in join and WHERE clauses are recognized.

• Impala supports subqueries only in the FROM clause of a query, not within the WHERE clauses. Therefore, you
cannot use clauses such asWHERE column IN (subquery). Also, Impala does not allowEXISTS orNOT EXISTS
clauses (although EXISTS is a reserved keyword).

• Impala supports UNION and UNION ALL set operators, but not INTERSECT. Prefer UNION ALL over UNIONwhen
you know the data sets are disjoint or duplicate values are not a problem; UNION ALL is more efficient because
it avoids materializing and sorting the entire result set to eliminate duplicate values.

• Within queries, Impala requires query aliases for any subqueries:

-- Without the alias 'contents_of_t1' at the end, query gives syntax error.
select count(*) from (select * from t1) contents_of_t1;

• When an alias is declared for an expression in a query, that alias cannot be referenced again within the same
query block:

-- Can't reference AVERAGE twice in the SELECT list where it's defined.
select avg(x) as average, average+1 from t1 group by x;
ERROR: AnalysisException: couldn't resolve column reference: 'average'

-- Although it can be referenced again later in the same query.
select avg(x) as average from t1 group by x having average > 3;

For Impala, either repeat the expression again, or abstract the expression into a WITH clause, creating named
columns that can be referenced multiple times anywhere in the base query:

-- The following 2 query forms are equivalent.
select avg(x) as average, avg(x)+1 from t1 group by x;
with avg_t as (select avg(x) average from t1 group by x) select average, average+1 from
 avg_t;

• Impala does not support certain rarely used join types that are less appropriate for high-volume tables used for
data warehousing. In some cases, Impala supports join types but requires explicit syntax to ensure you do not do
inefficient joins of huge tables by accident. For example, Impala does not support natural joins or anti-joins, and

468 | Apache Impala Guide

Impala SQL Language Reference

requires the CROSS JOIN operator for Cartesian products. See Joins in Impala SELECT Statements on page 283
for details on the syntax for Impala join clauses.

• Impala has a limited choice of partitioning types. Partitions are defined based on each distinct combination of
values for one ormore partition key columns. Impala does not redistribute or check data to create evenly distributed
partitions; you must choose partition key columns based on your knowledge of the data volume and distribution.
Adapt any tables that use range, list, hash, or key partitioning to use the Impala partition syntax for CREATE
TABLE and ALTER TABLE statements. Impala partitioning is similar to range partitioning where every range has
exactly one value, or key partitioning where the hash function produces a separate bucket for every combination
of key values. See Partitioning for Impala Tables on page 523 for usage details, and CREATE TABLE Statement on
page 236 and ALTER TABLE Statement on page 216 for syntax.

Note: Because the number of separate partitions is potentially higher than in other database
systems, keep a close eye on the number of partitions and the volume of data in each one; scale
back the number of partition key columns if you end up with too many partitions with a small
volume of data in each one. Remember, to distribute work for a query across a cluster, you need
at least one HDFS block per node. HDFS blocks are typically multiple megabytes, especially for
Parquet files. Therefore, if each partition holds only a few megabytes of data, you are unlikely to
see much parallelism in the query because such a small amount of data is typically processed by
a single node.

• For “top-N” queries, Impala uses theLIMIT clause rather than comparing against a pseudocolumnnamedROWNUM
or ROW_NUM. See LIMIT Clause on page 294 for details.

SQL Constructs to Doublecheck

Some SQL constructs that are supported have behavior or defaults more oriented towards convenience than optimal
performance. Also, sometimes machine-generated SQL, perhaps issued through JDBC or ODBC applications, might
have inefficiencies or exceed internal Impala limits. As you port SQL code, be alert and change these things where
appropriate:

• A CREATE TABLE statement with no STORED AS clause creates data files in plain text format, which is convenient
for data interchange but not a good choice for high-volume data with high-performance queries. See How Impala
Works with Hadoop File Formats on page 528 for why and how to use specific file formats for compact data and
high-performance queries. Especially see Using the Parquet File Formatwith Impala Tables on page 536, for details
about the file format most heavily optimized for large-scale data warehouse queries.

• A CREATE TABLE statementwith no PARTITIONED BY clause stores all the data files in the samephysical location,
which can lead to scalability problems when the data volume becomes large.

On the other hand, adapting tables that were already partitioned in a different database system could produce
an Impala table with a high number of partitions and not enough data in each one, leading to underutilization of
Impala's parallel query features.

See Partitioning for Impala Tables on page 523 for details about setting up partitioning and tuning the performance
of queries on partitioned tables.

• The INSERT ... VALUES syntax is suitable for setting up toy tables with a few rows for functional testing, but
because each such statement creates a separate tiny file in HDFS, it is not a scalable technique for loadingmegabytes
or gigabytes (let alone petabytes) of data. Consider revising your data load process to produce raw data files
outside of Impala, then setting up Impala external tables or using the LOAD DATA statement to use those data
files instantly in Impala tables, with no conversion or indexing stage. See External Tables on page 210 and LOAD
DATA Statement on page 275 for details about the Impala techniques for working with data files produced outside
of Impala; see Data Loading and Querying Examples on page 56 for examples of ETL workflow for Impala.

• If your ETL process is not optimized for Hadoop, you might end up with highly fragmented small data files, or a
single giant data file that cannot take advantage of distributed parallel queries or partitioning. In this case, use an

Apache Impala Guide | 469

Impala SQL Language Reference

INSERT ... SELECT statement to copy the data into a new table and reorganize into a more efficient layout in
the same operation. See INSERT Statement on page 264 for details about the INSERT statement.

You can do INSERT ... SELECT into a table with a more efficient file format (see How Impala Works with
Hadoop File Formats on page 528) or from an unpartitioned table into a partitioned one (see Partitioning for Impala
Tables on page 523).

• The number of expressions allowed in an Impala query might be smaller than for some other database systems,
causing failures for very complicated queries (typically produced by automated SQL generators). Where practical,
keep the number of expressions in the WHERE clauses to approximately 2000 or fewer. As a workaround, set the
query option DISABLE_CODEGEN=true if queries fail for this reason. See DISABLE_CODEGEN Query Option on
page 309 for details.

• If practical, rewrite UNION queries to use the UNION ALL operator instead. Prefer UNION ALL over UNION when
you know the data sets are disjoint or duplicate values are not a problem; UNION ALL is more efficient because
it avoids materializing and sorting the entire result set to eliminate duplicate values.

Next Porting Steps after Verifying Syntax and Semantics

Throughout this section, some of the decisions you make during the porting process also have a substantial impact on
performance. After your SQL code is ported and working correctly, doublecheck the performance-related aspects of
your schema design, physical layout, and queries to make sure that the ported application is taking full advantage of
Impala's parallelism, performance-related SQL features, and integration with Hadoop components.

• Have you run the COMPUTE STATS statement on each table involved in join queries? Have you also run COMPUTE
STATS for each table used as the source table in an INSERT ... SELECT or CREATE TABLE AS SELECT
statement?

• Are you using the most efficient file format for your data volumes, table structure, and query characteristics?
• Are you using partitioning effectively? That is, have you partitioned on columns that are often used for filtering

in WHERE clauses? Have you partitioned at the right granularity so that there is enough data in each partition to
parallelize the work for each query?

• Does your ETL process produce a relatively small number of multi-megabyte data files (good) rather than a huge
number of small files (bad)?

See Tuning Impala for Performance on page 480 for details about the whole performance tuning process.

470 | Apache Impala Guide

Impala SQL Language Reference

Using the Impala Shell (impala-shell Command)

You can use the Impala shell tool (impala-shell) to set up databases and tables, insert data, and issue queries. For
ad hoc queries and exploration, you can submit SQL statements in an interactive session. To automate your work, you
can specify command-line options to process a single statement or a script file. The impala-shell interpreter accepts
all the same SQL statements listed in Impala SQL Statements on page 215, plus some shell-only commands that you
can use for tuning performance and diagnosing problems.

The impala-shell command fits into the familiar Unix toolchain:

• The -q option lets you issue a single query from the command line, without starting the interactive interpreter.
You could use this option to run impala-shell from inside a shell script or with the command invocation syntax
from a Python, Perl, or other kind of script.

• The -o option lets you save query output to a file.
• The -B option turns off pretty-printing, so that you can produce comma-separated, tab-separated, or other

delimited text files as output. (Use the --output_delimiter option to choose the delimiter character; the
default is the tab character.)

• In non-interactivemode, query output is printed to stdout or to the file specified by the -o option, while incidental
output is printed to stderr, so that you can process just the query output as part of a Unix pipeline.

• In interactive mode, impala-shell uses the readline facility to recall and edit previous commands.

For information on installing the Impala shell, see Installing Impala on page 27. In Cloudera Manager 4.1 and higher,
ClouderaManager installs impala-shell automatically. Youmight install impala-shellmanually on other systems
not managed by Cloudera Manager, so that you can issue queries from client systems that are not also running the
Impala daemon or other Apache Hadoop components.

For information about establishing a connection to a DataNode running the impalad daemon through the
impala-shell command, see Connecting to impalad through impala-shell on page 475.

For a list of theimpala-shell command-line options, see impala-shell ConfigurationOptions onpage 471. For reference
information about the impala-shell interactive commands, see impala-shell Command Reference on page 477.

impala-shell Configuration Options
You can specify the following options when starting the impala-shell command to change how shell commands
are executed. The table shows the format to use when specifying each option on the command line, or through the
$HOME/.impalarc configuration file.

Note:

These options are different than the configuration options for the impalad daemon itself. For the
impalad options, see Modifying Impala Startup Options on page 43.

Summary of impala-shell Configuration Options

The following table shows the names and allowed arguments for the impala-shell configuration options. You can
specify options on the command line, or in a configuration file as described in impala-shell Configuration File on page
474.

ExplanationConfiguration File SettingCommand-Line Option

Causes all query results to be printed in plain format as a
delimited text file. Useful for producing data files to be

write_delimited=true-B or --delimited

used with other Hadoop components. Also useful for
avoiding the performance overhead of pretty-printing all

Apache Impala Guide | 471

Using the Impala Shell (impala-shell Command)

ExplanationConfiguration File SettingCommand-Line Option

output, especially when running benchmark tests using
queries returning large result sets. Specify the delimiter
character with the --output_delimiter option. Store
all query results in a file rather than printing to the screen
with the -B option. Added in Impala 1.0.1.

print_header=true--print_header

Stores all query results in the specified file. Typically used
to store the results of a single query issued from the

output_file=filename-o filename or --output_file
filename

command line with the -q option. Also works for
interactive sessions; you see themessages such as number
of rows fetched, but not the actual result set. To suppress
these incidental messageswhen combining the -q and -o
options, redirect stderr to /dev/null. Added in Impala
1.0.1.

Specifies the character to use as a delimiter between fields
when query results are printed in plain format by the -B

output_delimiter=character--output_delimiter=character

option. Defaults to tab ('\t'). If an output value contains
the delimiter character, that field is quoted, escaped by
doubling quotationmarks, or both. Added in Impala 1.0.1.

Displays the query execution plan (same output as the
EXPLAIN statement) and a more detailed low-level

show_profiles=true-p or --show_profiles

breakdown of execution steps, for every query executed
by the shell.

Displays help information.N/A-h or --help

Connects to the impalad daemon on the specified host.
The default port of 21000 is assumed unless you provide

impalad=hostname[:portnum]-i hostname or
--impalad=hostname[:portnum]

another value. You can connect to any host in your cluster
that is running impalad. If you connect to an instance of
impalad thatwas startedwith an alternate port specified
by the --fe_port flag, provide that alternative port.

Passes a query or other impala-shell command from
the command line. The impala-shell interpreter

query=query-q query or --query=query

immediately exits after processing the statement. It is
limited to a single statement, which could be a SELECT,
CREATE TABLE, SHOW TABLES, or any other statement
recognized in impala-shell. Because you cannot pass
a USE statement and another query, fully qualify the
names for any tables outside the default database. (Or
use the -f option to pass a file with a USE statement
followed by other queries.)

Passes a SQL query from a file. Multiple statements must
be semicolon (;) delimited. In CDH 5.5 / Impala 2.3 and

query_file=path_to_query_file-f query_file or
--query_file=query_file

higher, you can specify a filename of - to represent
standard input. This feature makes it convenient to use
impala-shell as part of a Unix pipeline where SQL
statements are generated dynamically by other tools.

472 | Apache Impala Guide

Using the Impala Shell (impala-shell Command)

ExplanationConfiguration File SettingCommand-Line Option

Kerberos authentication is used when the shell connects
to impalad. If Kerberos is not enabled on the instance of

use_kerberos=true-k or --kerberos

impalad to which you are connecting, errors are
displayed.

See for the steps to set up and use Kerberos
authentication in Impala.

Instructs impala-shell to authenticate to a particular
impalad service principal. If a kerberos_service_name is

kerberos_service_name=name-s kerberos_service_nameor
--kerberos_service_name=name

not specified, impala is used by default. If this option is
used in conjunction with a connection in which Kerberos
is not supported, errors are returned.

Enables verbose output.verbose=true-V or --verbose

Disables verbose output.verbose=false--quiet

Displays version information.version=true-v or --version

Continues on query failure.ignore_query_failure=true-c

Updates Impala metadata upon connection. Same as
running the INVALIDATE METADATA statement after

refresh_after_connect=true-r or --refresh_after_connect

connecting. (This option was originally named when the
REFRESH statement did the extensive metadata updates
now performed by INVALIDATE METADATA.)

Specifies the database to be used on startup. Same as
running the USE statement after connecting. If not
specified, a database named DEFAULT is used.

default_db=default_db-d default_db or
--database=default_db

Enables TLS/SSL for impala-shell.ssl=true--ssl

The local pathname pointing to the third-party CA
certificate, or to a copy of the server certificate for

ca_cert=path_to_certificate--ca_cert=path_to_certificate

self-signed server certificates. If --ca_cert is not set,
impala-shell enables TLS/SSL, but does not validate
the server certificate. This is useful for connecting to a
known-good Impala that is only running over TLS/SSL,
when a copy of the certificate is not available (such as
when debugging customer installations).

Enables LDAP authentication.use_ldap=true-l

Supplies the user name, when LDAP authentication is
enabled by the -l option. (Specify the short user name,

user=user_name-u

not the full LDAP distinguished name.) The shell then
prompts interactively for the password.

Specifies the path of the file containing impala-shell
configuration settings. The default is $HOME/.impalarc.
This setting can only be specified on the command line.

N/A--config_file=path_to_config_file

Prints a progress bar showing roughly the percentage
complete for each query. The information is updated

N/A--live_progress

interactively as the query progresses. See LIVE_PROGRESS
Query Option (CDH 5.5 or higher only) on page 315.

Apache Impala Guide | 473

Using the Impala Shell (impala-shell Command)

ExplanationConfiguration File SettingCommand-Line Option

Prints a detailed report, similar to the SUMMARY command,
showing progress details for each phase of query

N/A--live_summary

execution. The information is updated interactively as the
query progresses. See LIVE_SUMMARYQueryOption (CDH
5.5 or higher only) on page 316.

impala-shell Configuration File

You can define a set of default options for your impala-shell environment, stored in the file $HOME/.impalarc.
This file consists of key-value pairs, one option per line. Everything after a # character on a line is treated as a comment
and ignored.

The configuration filemust contain a header label [impala], followed by the options specific to impala-shell. (This
standard convention for configuration files lets you use a single file to hold configuration options for multiple
applications.)

To specify a different filename or path for the configuration file, specify the argument
--config_file=path_to_config_file on the impala-shell command line.

The names of the options in the configuration file are similar (although not necessarily identical) to the long-form
command-line arguments to the impala-shell command. For the names to use, see Summary of impala-shell
Configuration Options on page 471.

Any options you specify on the impala-shell command line override any corresponding options within the
configuration file.

The following example shows a configuration file that you might use during benchmarking tests. It sets verbose mode,
so that the output from each SQL query is followed by timing information. impala-shell starts inside the database
containing the tables with the benchmark data, avoiding the need to issue a USE statement or use fully qualified table
names.

In this example, the query output is formatted as delimited text rather than enclosed in ASCII art boxes, and is stored
in a file rather than printed to the screen. Those options are appropriate for benchmark situations, so that the overhead
of impala-shell formatting and printing the result set does not factor into the timingmeasurements. It also enables
the show_profiles option. That option prints detailed performance information after each query, which might be
valuable in understanding the performance of benchmark queries.

[impala]
verbose=true
default_db=tpc_benchmarking
write_delimited=true
output_delimiter=,
output_file=/home/tester1/benchmark_results.csv
show_profiles=true

The following example shows a configuration file that connects to a specific remote Impala node, runs a single query
within a particular database, then exits. You would typically use this kind of single-purpose configuration setting with
the impala-shell command-line option --config_file=path_to_config_file, to easily select betweenmany
predefined queries that could be run against different databases, hosts, or even different clusters. To run a sequence
of statements instead of a single query, specify the configuration option query_file=path_to_query_file instead.

[impala]
impalad=impala-test-node1.example.com
default_db=site_stats
Issue a predefined query and immediately exit.
query=select count(*) from web_traffic where event_date = trunc(now(),'dd')

474 | Apache Impala Guide

Using the Impala Shell (impala-shell Command)

Connecting to impalad through impala-shell
Within an impala-shell session, you can only issue queries while connected to an instance of the impalad daemon.
You can specify the connection information:

• Through command-line options when you run the impala-shell command.
• Through a configuration file that is read when you run the impala-shell command.
• During an impala-shell session, by issuing a CONNECT command.

See impala-shell Configuration Options on page 471 for the command-line and configuration file options you can use.

You can connect to any DataNode where an instance of impalad is running, and that host coordinates the execution
of all queries sent to it.

For simplicity during development, you might always connect to the same host, perhaps running impala-shell on
the same host as impalad and specifying the hostname as localhost.

In a production environment, youmight enable load balancing, in which you connect to specific host/port combination
but queries are forwarded to arbitrary hosts. This technique spreads the overhead of acting as the coordinator node
among all the DataNodes in the cluster. See Using Impala through a Proxy for High Availability on page 85 for details.

To connect the Impala shell during shell startup:

1. Locate the hostname of a DataNode within the cluster that is running an instance of the impalad daemon. If that
DataNode uses a non-default port (something other than port 21000) for impala-shell connections, find out
the port number also.

2. Use the -i option to the impala-shell interpreter to specify the connection information for that instance of
impalad:

When you are logged into the same machine running impalad.
The prompt will reflect the current hostname.
$ impala-shell

When you are logged into the same machine running impalad.
The host will reflect the hostname 'localhost'.
$ impala-shell -i localhost

When you are logged onto a different host, perhaps a client machine
outside the Hadoop cluster.
$ impala-shell -i some.other.hostname

When you are logged onto a different host, and impalad is listening
on a non-default port. Perhaps a load balancer is forwarding requests
to a different host/port combination behind the scenes.
$ impala-shell -i some.other.hostname:port_number

To connect the Impala shell after shell startup:

1. Start the Impala shell with no connection:

$ impala-shell

You should see a prompt like the following:

Welcome to the Impala shell. Press TAB twice to see a list of available commands.

Copyright (c) year Cloudera, Inc. All rights reserved.

(Shell
 build version: Impala Shell v2.4.x (hash) built on

date)
[Not connected] >

Apache Impala Guide | 475

Using the Impala Shell (impala-shell Command)

2. Locate the hostname of a DataNode within the cluster that is running an instance of the impalad daemon. If that
DataNode uses a non-default port (something other than port 21000) for impala-shell connections, find out
the port number also.

3. Use the connect command to connect to an Impala instance. Enter a command of the form:

[Not connected] > connect impalad-host
[impalad-host:21000] >

Note: Replace impalad-host with the hostname you have configured for any DataNode running
Impala in your environment. The changed prompt indicates a successful connection.

To start impala-shell in a specific database:

You can use all the same connection options as in previous examples. For simplicity, these examples assume that you
are logged into one of the DataNodes that is running the impalad daemon.

1. Find the name of the database containing the relevant tables, views, and so on that you want to operate on.
2. Use the -d option to the impala-shell interpreter to connect and immediately switch to the specified database,

without the need for a USE statement or fully qualified names:

Subsequent queries with unqualified names operate on
tables, views, and so on inside the database named 'staging'.
$ impala-shell -i localhost -d staging

It is common during development, ETL, benchmarking, and so on
to have different databases containing the same table names
but with different contents or layouts.
$ impala-shell -i localhost -d parquet_snappy_compression
$ impala-shell -i localhost -d parquet_gzip_compression

To run one or several statements in non-interactive mode:

You can use all the same connection options as in previous examples. For simplicity, these examples assume that you
are logged into one of the DataNodes that is running the impalad daemon.

1. Construct a statement, or a file containing a sequence of statements, that you want to run in an automated way,
without typing or copying and pasting each time.

2. Invoke impala-shell with the -q option to run a single statement, or the -f option to run a sequence of
statements from a file. The impala-shell command returns immediately, without going into the interactive
interpreter.

A utility command that you might run while developing shell scripts
to manipulate HDFS files.
$ impala-shell -i localhost -d database_of_interest -q 'show tables'

A sequence of CREATE TABLE, CREATE VIEW, and similar DDL statements
can go into a file to make the setup process repeatable.
$ impala-shell -i localhost -d database_of_interest -f recreate_tables.sql

Running Commands and SQL Statements in impala-shell
For information on available commands, see impala-shell Command Reference on page 477. You can see the full set of
available commands by pressing TAB twice, for example:

[impalad-host:21000] >
connect describe explain help history insert quit refresh select
 set shell show use version
[impalad-host:21000] >

476 | Apache Impala Guide

Using the Impala Shell (impala-shell Command)

Note: Commands must be terminated by a semi-colon. A command can span multiple lines.

For example:

[localhost:21000] > select *
 > from t1
 > limit 5;
+---------+-----------+
| s1 | s2 |
+---------+-----------+
| hello | world |
| goodbye | cleveland |
+---------+-----------+

A comment is considered part of the statement it precedes, so when you enter a -- or /* */ comment, you get a
continuation prompt until you finish entering a statement ending with a semicolon:

[localhost:21000] > -- This is a test comment
 > show tables like 't*';
+--------+
| name |
+--------+
| t1 |
| t2 |
| tab1 |
| tab2 |
| tab3 |
| text_t |
+--------+

Use the up-arrow and down-arrow keys to cycle through and edit previous commands. impala-shell uses the
readline library and so supports a standard set of keyboard shortcuts for editing and cursor movement, such as
Ctrl-A for beginning of line and Ctrl-E for end of line.

impala-shell Command Reference
Use the following commandswithinimpala-shell to pass requests to theimpaladdaemon that the shell is connected
to. You can enter a command interactively at the prompt, or pass it as the argument to the -q option of impala-shell.
Most of these commands are passed to the Impala daemon as SQL statements; refer to the corresponding SQL language
reference sections for full syntax details.

ExplanationCommand

Changes the underlying structure or settings of an Impala table, or a table shared between
Impala andHive. See ALTER TABLE Statement on page 216 andALTERVIEWStatement on page
225 for details.

alter

Gathers important performance-related information for a table, used by Impala to optimize
queries. See COMPUTE STATS Statement on page 227 for details.

compute stats

Connects to the specified instance of impalad. The default port of 21000 is assumed unless
you provide another value. You can connect to any host in your cluster that is runningimpalad.

connect

If you connect to an instance of impalad that was started with an alternate port specified
by the --fe_port flag, you must provide that alternate port. See Connecting to impalad
through impala-shell on page 475 for examples.

The SET statement has no effect until the impala-shell interpreter is connected to an
Impala server. Once you are connected, any query options you set remain in effect as you
issue a subsequent CONNECT command to connect to a different Impala host.

Apache Impala Guide | 477

Using the Impala Shell (impala-shell Command)

ExplanationCommand

Shows the columns, column data types, and any column comments for a specified table.
DESCRIBE FORMATTED shows additional information such as the HDFS data directory,

describe

partitions, and internal properties for the table. See DESCRIBE Statement on page 246 for
details about the basic DESCRIBE output and the DESCRIBE FORMATTED variant. You can
use DESC as shorthand for the DESCRIBE command.

Removes a schema object, and in some cases its associated data files. See DROP TABLE
Statement on page 259, DROP VIEW Statement on page 260, DROP DATABASE Statement on
page 253, and DROP FUNCTION Statement on page 255 for details.

drop

Provides the execution plan for a query. EXPLAIN represents a query as a series of steps. For
example, these steps might be map/reduce stages, metastore operations, or file system

explain

operations such asmoveor rename. See EXPLAINStatement onpage261andUsing the EXPLAIN
Plan for Performance Tuning on page 508 for details.

Help provides a list of all available commands and options.help

Maintains an enumerated cross-session command history. This history is stored in the ~/
.impalahistory file.

history

Writes the results of a query to a specified table. This either overwrites table data or appends
data to the existing table content. See INSERT Statement on page 264 for details.

insert

Updatesimpaladmetadata for table existence and structure. Use this commandafter creating,
dropping, or altering databases, tables, or partitions in Hive. See INVALIDATE METADATA
Statement on page 272 for details.

invalidate

metadata

Displays low-level information about the most recent query. Used for performance diagnosis
and tuning. The report starts with the same information as produced by the EXPLAIN

profile

statement and the SUMMARY command. See Using the Query Profile for Performance Tuning
on page 510 for details.

Exits the shell. Remember to include the final semicolon so that the shell recognizes the end
of the command.

quit

Refreshes impaladmetadata for the locations of HDFS blocks corresponding to Impala data
files. Use this command after loading new data files into an Impala table through Hive or
through HDFS commands. See REFRESH Statement on page 278 for details.

refresh

Specifies the data set on which to complete some action. All information returned from
select can be sent to some output such as the console or a file or can be used to complete
some other element of query. See SELECT Statement on page 281 for details.

select

Manages query options for an impala-shell session. The available options are the ones
listed in Query Options for the SET Statement on page 306. These options are used for query

set

tuning and troubleshooting. Issue SET with no arguments to see the current query options,
either based on the impalad defaults, as specified by you at impalad startup, or based on
earlier SET statements in the same session. To modify option values, issue commands with
the syntax set option=value. To restore an option to its default, use the unset command.
Some options take Boolean values of true and false. Others take numeric arguments, or
quoted string values.

The SET statement has no effect until the impala-shell interpreter is connected to an
Impala server. Once you are connected, any query options you set remain in effect as you
issue a subsequent CONNECT command to connect to a different Impala host.

478 | Apache Impala Guide

Using the Impala Shell (impala-shell Command)

ExplanationCommand

In Impala 2.0 and later, SET is available as a SQL statement for any kind of application, not
only through impala-shell. See SET Statement on page 305 for details.

Executes the specified command in the operating system shell without exitingimpala-shell.
You can use the ! character as shorthand for the shell command.

shell

Note: Quote any instances of the -- or /* tokens to avoid them being
interpreted as the start of a comment. To embed comments within source
or ! commands, use the shell comment character # before the comment
portion of the line.

Displays metastore data for schema objects created and accessed through Impala, Hive, or
both. show can be used to gather information about objects such as databases, tables, and
functions. See SHOW Statement on page 323 for details.

show

Summarizes the work performed in various stages of a query. It provides a higher-level view
of the information displayed by the EXPLAIN command. Added in Impala 1.4.0. See Using

summary

the SUMMARYReport for Performance Tuning on page 509 for details about the report format
and how to interpret it.

The time, memory usage, and so on reported by SUMMARY only include the portions of the
statement that read data, not when data is written. Therefore, the PROFILE command is
better for checking the performance and scalability of INSERT statements.

In CDH 5.5 / Impala 2.3 and higher, you can see a continuously updated report of the summary
informationwhile a query is in progress. See LIVE_SUMMARYQuery Option (CDH 5.5 or higher
only) on page 316 for details.

Removes any user-specified value for a query option and returns the option to its default
value. See Query Options for the SET Statement on page 306 for the available query options.

unset

Indicates the database against which to execute subsequent commands. Lets you avoid using
fully qualified names when referring to tables in databases other than default. See USE

use

Statement on page 338 for details. Not effective with the -q option, because that option only
allows a single statement in the argument.

Returns Impala version information.version

Apache Impala Guide | 479

Using the Impala Shell (impala-shell Command)

Tuning Impala for Performance

The following sections explain the factors affecting the performance of Impala features, and procedures for tuning,
monitoring, and benchmarking Impala queries and other SQL operations.

This section also describes techniques for maximizing Impala scalability. Scalability is tied to performance: it means
that performance remains high as the system workload increases. For example, reducing the disk I/O performed by a
query can speed up an individual query, and at the same time improve scalability by making it practical to run more
queries simultaneously. Sometimes, an optimization technique improves scalability more than performance. For
example, reducing memory usage for a query might not change the query performance much, but might improve
scalability by allowing more Impala queries or other kinds of jobs to run at the same time without running out of
memory.

Note:

Before starting any performance tuning or benchmarking, make sure your system is configured with
all the recommended minimum hardware requirements from Hardware Requirements on page 24
and software settings from Post-Installation Configuration for Impala on page 30.

• Partitioning for Impala Tables on page 523. This technique physically divides the data based on the different values
in frequently queried columns, allowing queries to skip reading a large percentage of the data in a table.

• Performance Considerations for Join Queries on page 483. Joins are the main class of queries that you can tune at
the SQL level, as opposed to changing physical factors such as the file format or the hardware configuration. The
related topics Overview of Column Statistics on page 491 and Overview of Table Statistics on page 490 are also
important primarily for join performance.

• Overviewof Table Statistics on page 490 andOverviewof Column Statistics on page 491. Gathering table and column
statistics, using the COMPUTE STATS statement, helps Impala automatically optimize the performance for join
queries, without requiring changes to SQL query statements. (This process is greatly simplified in Impala 1.2.2 and
higher, because the COMPUTE STATS statement gathers both kinds of statistics in one operation, and does not
require any setup and configuration as was previously necessary for the ANALYZE TABLE statement in Hive.)

• Testing Impala Performance on page 507. Do some post-setup testing to ensure Impala is using optimal settings
for performance, before conducting any benchmark tests.

• Benchmarking Impala Queries on page 501. The configuration and sample data that you use for initial experiments
with Impala is often not appropriate for doing performance tests.

• Controlling Impala ResourceUsage on page 501. Themorememory Impala can utilize, the better query performance
you can expect. In a cluster running other kinds of workloads as well, you must make tradeoffs to make sure all
Hadoop components have enough memory to perform well, so you might cap the memory that Impala can use.

• Using Impala to Query the Amazon S3 Filesystem on page 567. Queries against data stored in the Amazon Simple
Storage Service (S3) have different performance characteristics than when the data is stored in HDFS.

A good source of tips related to scalability and performance tuning is the Impala Cookbook presentation. These slides
are updated periodically as new features come out and new benchmarks are performed.

Impala Performance Guidelines and Best Practices
Here are performance guidelines and best practices that you can use during planning, experimentation, and performance
tuning for an Impala-enabled CDH cluster. All of this information is also available inmore detail elsewhere in the Impala
documentation; it is gathered together here to serve as a cookbook and emphasize which performance techniques
typically provide the highest return on investment

480 | Apache Impala Guide

Tuning Impala for Performance

http://www.slideshare.net/cloudera/the-impala-cookbook-42530186

Choose the appropriate file format for the data

Typically, for large volumes of data (multiple gigabytes per table or partition), the Parquet file format performs best
because of its combination of columnar storage layout, large I/O request size, and compression and encoding. See
How ImpalaWorks with Hadoop File Formats on page 528 for comparisons of all file formats supported by Impala, and
Using the Parquet File Format with Impala Tables on page 536 for details about the Parquet file format.

Note: For smaller volumes of data, a few gigabytes or less for each table or partition, you might not
see significant performance differences between file formats. At small data volumes, reduced I/O
from an efficient compressed file format can be counterbalanced by reduced opportunity for parallel
execution.When planning for a production deployment or conducting benchmarks, always use realistic
data volumes to get a true picture of performance and scalability.

Avoid data ingestion processes that produce many small files

When producing data files outside of Impala, prefer either text format or Avro, where you can build up the files row
by row. Once the data is in Impala, you can convert it to the more efficient Parquet format and split into multiple data
files using a single INSERT ... SELECT statement. Or, if you have the infrastructure to produce multi-megabyte
Parquet files as part of your data preparation process, do that and skip the conversion step inside Impala.

Always use INSERT ... SELECT to copy significant volumes of data from table to table within Impala. Avoid INSERT
... VALUES for any substantial volume of data or performance-critical tables, because each such statement produces
a separate tiny data file. See INSERT Statement on page 264 for examples of the INSERT ... SELECT syntax.

For example, if you have thousands of partitions in a Parquet table, each with less than 256 MB of data, consider
partitioning in a less granularway, such as by year /month rather than year /month / day. If an inefficient data ingestion
process produces thousands of data files in the same table or partition, consider compacting the data by performing
an INSERT ... SELECT to copy all the data to a different table; the data will be reorganized into a smaller number
of larger files by this process.

Choose partitioning granularity based on actual data volume

Partitioning is a technique that physically divides the data based on values of one or more columns, such as by year,
month, day, region, city, section of a web site, and so on. When you issue queries that request a specific value or range
of values for the partition key columns, Impala can avoid reading the irrelevant data, potentially yielding a huge savings
in disk I/O.

When deciding which column(s) to use for partitioning, choose the right level of granularity. For example, should you
partition by year, month, and day, or only by year and month? Choose a partitioning strategy that puts at least 256
MB of data in each partition, to take advantage of HDFS bulk I/O and Impala distributed queries.

Over-partitioning can also cause query planning to take longer than necessary, as Impala prunes the unnecessary
partitions. Ideally, keep the number of partitions in the table under 30 thousand.

When preparing data files to go in a partition directory, create several large files rather than many small ones. If you
receive data in the form of many small files and have no control over the input format, consider using the INSERT
... SELECT syntax to copy data from one table or partition to another, which compacts the files into a relatively
small number (based on the number of nodes in the cluster).

If you need to reduce the overall number of partitions and increase the amount of data in each partition, first look for
partition key columns that are rarely referenced or are referenced in non-critical queries (not subject to an SLA). For
example, your web site log data might be partitioned by year, month, day, and hour, but if most queries roll up the
results by day, perhaps you only need to partition by year, month, and day.

If you need to reduce the granularity even more, consider creating “buckets”, computed values corresponding to
different sets of partition key values. For example, you can use the TRUNC() function with a TIMESTAMP column to
group date and time values based on intervals such as week or quarter. See Impala Date and Time Functions on page
364 for details.

See Partitioning for Impala Tables on page 523 for full details and performance considerations for partitioning.

Apache Impala Guide | 481

Tuning Impala for Performance

Use smallest appropriate integer types for partition key columns

Although it is tempting to use strings for partition key columns, since those values are turned into HDFS directory
names anyway, you can minimize memory usage by using numeric values for common partition key fields such as
YEAR, MONTH, and DAY. Use the smallest integer type that holds the appropriate range of values, typically TINYINT
for MONTH and DAY, and SMALLINT for YEAR. Use the EXTRACT() function to pull out individual date and time fields
from a TIMESTAMP value, and CAST() the return value to the appropriate integer type.

Choose an appropriate Parquet block size

By default, the Impala INSERT ... SELECT statement creates Parquet files with a 256 MB block size. (This default
was changed in Impala 2.0. Formerly, the limit was 1 GB, but Impala made conservative estimates about compression,
resulting in files that were smaller than 1 GB.)

Each Parquet file written by Impala is a single block, allowing the whole file to be processed as a unit by a single host.
As you copy Parquet files into HDFS or between HDFS filesystems, use hdfs dfs -pb to preserve the original block
size.

If there is only one or a few data block in your Parquet table, or in a partition that is the only one accessed by a query,
then you might experience a slowdown for a different reason: not enough data to take advantage of Impala's parallel
distributed queries. Each data block is processed by a single core on one of the DataNodes. In a 100-node cluster of
16-core machines, you could potentially process thousands of data files simultaneously. You want to find a sweet spot
between “many tiny files” and “single giant file” that balances bulk I/O and parallel processing. You can set the
PARQUET_FILE_SIZE query option before doing an INSERT ... SELECT statement to reduce the size of each
generated Parquet file. (Specify the file size as an absolute number of bytes, or in Impala 2.0 and later, in units ending
with m for megabytes or g for gigabytes.) Run benchmarks with different file sizes to find the right balance point for
your particular data volume.

Gather statistics for all tables used in performance-critical or high-volume join queries

Gather the statistics with the COMPUTE STATS statement. See Performance Considerations for Join Queries on page
483 for details.

Minimize the overhead of transmitting results back to the client

Use techniques such as:

• Aggregation. If you need to know how many rows match a condition, the total values of matching values from
some column, the lowest or highest matching value, and so on, call aggregate functions such as COUNT(), SUM(),
and MAX() in the query rather than sending the result set to an application and doing those computations there.
Remember that the size of an unaggregated result set could be huge, requiring substantial time to transmit across
the network.

• Filtering. Use all applicable tests in the WHERE clause of a query to eliminate rows that are not relevant, rather
than producing a big result set and filtering it using application logic.

• LIMIT clause. If you only need to see a few sample values from a result set, or the top or bottom values from a
query using ORDER BY, include the LIMIT clause to reduce the size of the result set rather than asking for the
full result set and then throwing most of the rows away.

• Avoid overhead from pretty-printing the result set and displaying it on the screen. When you retrieve the results
through impala-shell, use impala-shell options such as -B and --output_delimiter to produce results
without special formatting, and redirect output to a file rather than printing to the screen. Consider using INSERT
... SELECT to write the results directly to new files in HDFS. See impala-shell Configuration Options on page
471 for details about the impala-shell command-line options.

Verify that your queries are planned in an efficient logical manner

Examine the EXPLAIN plan for a query before actually running it. See EXPLAIN Statement on page 261 and Using the
EXPLAIN Plan for Performance Tuning on page 508 for details.

482 | Apache Impala Guide

Tuning Impala for Performance

Verify performance characteristics of queries

Verify that the low-level aspects of I/O, memory usage, network bandwidth, CPU utilization, and so on are within
expected ranges by examining the query profile for a query after running it. See Using theQuery Profile for Performance
Tuning on page 510 for details.

Use appropriate operating system settings

See Optimizing Performance in CDH for recommendations about operating system settings that you can change to
influence Impala performance. In particular, you might find that changing the vm.swappiness Linux kernel setting
to a non-zero value improves overall performance.

Hotspot analysis

In the context of Impala, a hotspot is defined as “an Impala daemon that for a single query or a workload is spending
a far greater amount of time processing data relative to its neighbours”.

Before discussing the options to tackle this issue some background is first required to understand how this problem
can occur.

By default, the scheduling of scan based plan fragments is deterministic. This means that for multiple queries needing
to read the same block of data, the same node will be picked to host the scan. The default scheduling logic does not
take into account node workload from prior queries. The complexity of materializing a tuple depends on a few factors,
namely: decoding and decompression. If the tuples are densely packed into data pages due to good
encoding/compression ratios, therewill bemorework requiredwhen reconstructing the data. Each compression codec
offers different performance tradeoffs and should be considered before writing the data. Due to the deterministic
nature of the scheduler, single nodes can become bottlenecks for highly concurrent queries that use the same tables.

If, for example, a Parquet based dataset is tiny, e.g. a small dimension table, such that it fits into a single HDFS block
(Impala by default will create 256 MB blocks when Parquet is used, each containing a single row group) then there are
a number of options that can be considered to resolve the potential scheduling hotspots when querying this data:

• In and higher, the scheduler’s deterministic behaviour can be changed using the following query options:
REPLICA_PREFERENCE andRANDOM_REPLICA. For a detaileddescriptionof eachof thesemodes see IMPALA-2696.

• HDFS caching can be used to cache block replicas. This will cause the Impala scheduler to randomly pick (from
and higher) a node that is hosting a cached block replica for the scan. Note, although HDFS caching has benefits,
it serves only to help with the reading of raw block data and not cached tuple data, but with the right number of
cached replicas (by default, HDFS only caches one replica), even load distribution can be achieved for smaller
datasets.

• Do not compress the table data. The uncompressed table data spans more nodes and eliminates skew caused by
compression.

• Reduce the Parquet file size via the PARQUET_FILE_SIZE query option when writing the table data. Using this
approach the data will span more nodes. However it’s not recommended to drop the size below 32 MB.

Performance Considerations for Join Queries
Queries involving join operations often require more tuning than queries that refer to only one table. The maximum
size of the result set from a join query is the product of the number of rows in all the joined tables.When joining several
tables withmillions or billions of rows, anymissed opportunity to filter the result set, or other inefficiency in the query,
could lead to an operation that does not finish in a practical time and has to be cancelled.

The simplest technique for tuning an Impala join query is to collect statistics on each table involved in the join using
the COMPUTE STATS statement, and then let Impala automatically optimize the query based on the size of each table,
number of distinct values of each column, and so on. The COMPUTE STATS statement and the join optimization are
new features introduced in Impala 1.2.2. For accurate statistics about each table, issue the COMPUTE STATS statement
after loading the data into that table, and again if the amount of data changes substantially due to an INSERT, LOAD
DATA, adding a partition, and so on.

Apache Impala Guide | 483

Tuning Impala for Performance

http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_admin_performance.html

If statistics are not available for all the tables in the join query, or if Impala chooses a join order that is not the most
efficient, you can override the automatic join order optimization by specifying theSTRAIGHT_JOIN keyword immediately
after the SELECT and any DISTINCT or ALL keywords. In this case, Impala uses the order the tables appear in the
query to guide how the joins are processed.

When you use the STRAIGHT_JOIN technique, you must order the tables in the join query manually instead of relying
on the Impala optimizer. The optimizer uses sophisticated techniques to estimate the size of the result set at each
stage of the join. For manual ordering, use this heuristic approach to start with, and then experiment to fine-tune the
order:

• Specify the largest table first. This table is read from disk by each Impala node and so its size is not significant in
terms of memory usage during the query.

• Next, specify the smallest table. The contents of the second, third, and so on tables are all transmitted across the
network. You want to minimize the size of the result set from each subsequent stage of the join query. The most
likely approach involves joining a small table first, so that the result set remains small even as subsequent larger
tables are processed.

• Join the next smallest table, then the next smallest, and so on.

For example, if you had tables BIG, MEDIUM, SMALL, and TINY, the logical join order to try would be BIG, TINY, SMALL,
MEDIUM.

The terms “largest” and “smallest” refers to the size of the intermediate result set based on the number of rows and
columns from each table that are part of the result set. For example, if you join one table sales with another table
customers, a querymight find results from 100 different customers whomade a total of 5000 purchases. In that case,
you would specify SELECT ... FROM sales JOIN customers ..., putting customers on the right side because
it is smaller in the context of this query.

The Impala query planner chooses between different techniques for performing join queries, depending on the absolute
and relative sizes of the tables. Broadcast joins are the default, where the right-hand table is considered to be smaller
than the left-hand table, and its contents are sent to all the other nodes involved in the query. The alternative technique
is known as a partitioned join (not related to a partitioned table), which is more suitable for large tables of roughly
equal size. With this technique, portions of each table are sent to appropriate other nodes where those subsets of
rows can be processed in parallel. The choice of broadcast or partitioned join also depends on statistics being available
for all tables in the join, gathered by the COMPUTE STATS statement.

To see which join strategy is used for a particular query, issue an EXPLAIN statement for the query. If you find that a
query uses a broadcast join when you know through benchmarking that a partitioned join would be more efficient, or
vice versa, add a hint to the query to specify the precise join mechanism to use. See Query Hints in Impala SELECT
Statements on page 302 for details.

How Joins Are Processed when Statistics Are Unavailable

If table or column statistics are not available for some tables in a join, Impala still reorders the tables using the
information that is available. Tables with statistics are placed on the left side of the join order, in descending order of
cost based on overall size and cardinality. Tables without statistics are treated as zero-size, that is, they are always
placed on the right side of the join order.

Overriding Join Reordering with STRAIGHT_JOIN

If an Impala join query is inefficient because of outdated statistics or unexpected data distribution, you can keep Impala
from reordering the joined tables by using the STRAIGHT_JOIN keyword immediately after the SELECT and any
DISTINCT or ALL keywords. The STRAIGHT_JOIN keyword turns off the reordering of join clauses that Impala does
internally, and produces a plan that relies on the join clauses being ordered optimally in the query text.

484 | Apache Impala Guide

Tuning Impala for Performance

Note:

The STRAIGHT_JOIN hint affects the join order of table references in the query block containing the
hint. It does not affect the join order of nested queries, such as views, inline views, or WHERE-clause
subqueries. To use this hint for performance tuning of complex queries, apply the hint to all query
blocks that need a fixed join order.

In this example, the subselect from the BIG table produces a very small result set, but the table might still be treated
as if it were the biggest and placed first in the join order. Using STRAIGHT_JOIN for the last join clause prevents the
final table from being reordered, keeping it as the rightmost table in the join order.

select straight_join x from medium join small join (select * from big where c1 < 10) as
 big
 where medium.id = small.id and small.id = big.id;

-- If the query contains [DISTINCT | ALL], the hint goes after those keywords.
select distinct straight_join x from medium join small join (select * from big where c1
 < 10) as big
 where medium.id = small.id and small.id = big.id;

Examples of Join Order Optimization

Here are examples showing joins between tables with 1 billion, 200 million, and 1 million rows. (In this case, the tables
are unpartitioned and using Parquet format.) The smaller tables contain subsets of data from the largest one, for
convenience of joining on the unique ID column. The smallest table only contains a subset of columns from the others.

[localhost:21000] > create table big stored as parquet as select * from raw_data;
+----------------------------+
| summary |
+----------------------------+
| Inserted 1000000000 row(s) |
+----------------------------+
Returned 1 row(s) in 671.56s
[localhost:21000] > desc big;
+-----------+---------+---------+
| name | type | comment |
+-----------+---------+---------+
id	int	
val	int	
zfill	string	
name	string	
assertion	boolean	
+-----------+---------+---------+		
Returned 5 row(s) in 0.01s		
[localhost:21000] > create table medium stored as parquet as select * from big limit		
200 * floor(1e6);		
+---------------------------+		
summary		
+---------------------------+		
Inserted 200000000 row(s)		
+---------------------------+		
Returned 1 row(s) in 138.31s		
[localhost:21000] > create table small stored as parquet as select id,val,name from big		
where assertion = true limit 1 * floor(1e6);		
+-------------------------+		
summary		
+-------------------------+		
Inserted 1000000 row(s)		
+-------------------------+
Returned 1 row(s) in 6.32s

For any kind of performance experimentation, use the EXPLAIN statement to see how any expensive query will be
performed without actually running it, and enable verbose EXPLAIN plans containing more performance-oriented
detail: The most interesting plan lines are highlighted in bold, showing that without statistics for the joined tables,

Apache Impala Guide | 485

Tuning Impala for Performance

Impala cannot make a good estimate of the number of rows involved at each stage of processing, and is likely to stick
with the BROADCAST join mechanism that sends a complete copy of one of the tables to each node.

[localhost:21000] > set explain_level=verbose;
EXPLAIN_LEVEL set to verbose
[localhost:21000] > explain select count(*) from big join medium where big.id = medium.id;
+--+
| Explain String |
+--+
| Estimated Per-Host Requirements: Memory=2.10GB VCores=2 |
| |
| PLAN FRAGMENT 0 |
| PARTITION: UNPARTITIONED |
| |
| 6:AGGREGATE (merge finalize) |
	output: SUM(COUNT(*))
	cardinality: 1
	per-host memory: unavailable
	tuple ids: 2
5:EXCHANGE	
cardinality: 1	
per-host memory: unavailable	
tuple ids: 2	
PLAN FRAGMENT 1	
PARTITION: RANDOM	
STREAM DATA SINK	
EXCHANGE ID: 5	
UNPARTITIONED	
3:AGGREGATE	
	output: COUNT(*)
	cardinality: 1
	per-host memory: 10.00MB
	tuple ids: 2
2:HASH JOIN	
	join op: INNER JOIN (BROADCAST)
	hash predicates:
	big.id = medium.id
	cardinality: unavailable
	per-host memory: 2.00GB
	tuple ids: 0 1
	----4:EXCHANGE
	cardinality: unavailable
	per-host memory: 0B
	tuple ids: 1
0:SCAN HDFS	
table=join_order.big #partitions=1/1 size=23.12GB	
table stats: unavailable	
column stats: unavailable	
cardinality: unavailable	
per-host memory: 88.00MB	
tuple ids: 0	
PLAN FRAGMENT 2	
PARTITION: RANDOM	
STREAM DATA SINK	
EXCHANGE ID: 4	
UNPARTITIONED	
1:SCAN HDFS	
table=join_order.medium #partitions=1/1 size=4.62GB	
table stats: unavailable	
column stats: unavailable	
cardinality: unavailable	
per-host memory: 88.00MB	
tuple ids: 1	

486 | Apache Impala Guide

Tuning Impala for Performance

+--+
Returned 64 row(s) in 0.04s

Gathering statistics for all the tables is straightforward, one COMPUTE STATS statement per table:

[localhost:21000] > compute stats small;
+---+
| summary |
+---+
| Updated 1 partition(s) and 3 column(s). |
+---+
Returned 1 row(s) in 4.26s
[localhost:21000] > compute stats medium;
+---+
| summary |
+---+
| Updated 1 partition(s) and 5 column(s). |
+---+
Returned 1 row(s) in 42.11s
[localhost:21000] > compute stats big;
+---+
| summary |
+---+
| Updated 1 partition(s) and 5 column(s). |
+---+
Returned 1 row(s) in 165.44s

With statistics in place, Impala can choose a more effective join order rather than following the left-to-right sequence
of tables in the query, and can choose BROADCAST or PARTITIONED join strategies based on the overall sizes and
number of rows in the table:

[localhost:21000] > explain select count(*) from medium join big where big.id = medium.id;
Query: explain select count(*) from medium join big where big.id = medium.id
+---+
| Explain String |
+---+
| Estimated Per-Host Requirements: Memory=937.23MB VCores=2 |
| |
| PLAN FRAGMENT 0 |
| PARTITION: UNPARTITIONED |
| |
| 6:AGGREGATE (merge finalize) |
	output: SUM(COUNT(*))
	cardinality: 1
	per-host memory: unavailable
	tuple ids: 2
5:EXCHANGE	
cardinality: 1	
per-host memory: unavailable	
tuple ids: 2	
PLAN FRAGMENT 1	
PARTITION: RANDOM	
STREAM DATA SINK	
EXCHANGE ID: 5	
UNPARTITIONED	
3:AGGREGATE	
	output: COUNT(*)
	cardinality: 1
	per-host memory: 10.00MB
	tuple ids: 2
2:HASH JOIN	
	join op: INNER JOIN (BROADCAST)
	hash predicates:
	big.id = medium.id
	cardinality: 1443004441
	per-host memory: 839.23MB

Apache Impala Guide | 487

Tuning Impala for Performance

	tuple ids: 1 0
	----4:EXCHANGE
	cardinality: 200000000
	per-host memory: 0B
	tuple ids: 0
1:SCAN HDFS	
table=join_order.big #partitions=1/1 size=23.12GB	
table stats: 1000000000 rows total	
column stats: all	
cardinality: 1000000000	
per-host memory: 88.00MB	
tuple ids: 1	
PLAN FRAGMENT 2	
PARTITION: RANDOM	
STREAM DATA SINK	
EXCHANGE ID: 4	
UNPARTITIONED	
0:SCAN HDFS	
table=join_order.medium #partitions=1/1 size=4.62GB	
table stats: 200000000 rows total	
column stats: all	
cardinality: 200000000	
per-host memory: 88.00MB	
tuple ids: 0	
+---+
Returned 64 row(s) in 0.04s

[localhost:21000] > explain select count(*) from small join big where big.id = small.id;
Query: explain select count(*) from small join big where big.id = small.id
+---+
| Explain String |
+---+
| Estimated Per-Host Requirements: Memory=101.15MB VCores=2 |
| |
| PLAN FRAGMENT 0 |
| PARTITION: UNPARTITIONED |
| |
| 6:AGGREGATE (merge finalize) |
	output: SUM(COUNT(*))
	cardinality: 1
	per-host memory: unavailable
	tuple ids: 2
5:EXCHANGE	
cardinality: 1	
per-host memory: unavailable	
tuple ids: 2	
PLAN FRAGMENT 1	
PARTITION: RANDOM	
STREAM DATA SINK	
EXCHANGE ID: 5	
UNPARTITIONED	
3:AGGREGATE	
	output: COUNT(*)
	cardinality: 1
	per-host memory: 10.00MB
	tuple ids: 2
2:HASH JOIN	
	join op: INNER JOIN (BROADCAST)
	hash predicates:
	big.id = small.id
	cardinality: 1000000000
	per-host memory: 3.15MB
	tuple ids: 1 0

488 | Apache Impala Guide

Tuning Impala for Performance

	----4:EXCHANGE
	cardinality: 1000000
	per-host memory: 0B
	tuple ids: 0
1:SCAN HDFS	
table=join_order.big #partitions=1/1 size=23.12GB	
table stats: 1000000000 rows total	
column stats: all	
cardinality: 1000000000	
per-host memory: 88.00MB	
tuple ids: 1	
PLAN FRAGMENT 2	
PARTITION: RANDOM	
STREAM DATA SINK	
EXCHANGE ID: 4	
UNPARTITIONED	
0:SCAN HDFS	
table=join_order.small #partitions=1/1 size=17.93MB	
table stats: 1000000 rows total	
column stats: all	
cardinality: 1000000	
per-host memory: 32.00MB	
tuple ids: 0	
+---+
Returned 64 row(s) in 0.03s

When queries like these are actually run, the execution times are relatively consistent regardless of the table order in
the query text. Here are examples using both the unique ID column and the VAL column containing duplicate values:

[localhost:21000] > select count(*) from big join small on (big.id = small.id);
Query: select count(*) from big join small on (big.id = small.id)
+----------+
| count(*) |
+----------+
| 1000000 |
+----------+
Returned 1 row(s) in 21.68s
[localhost:21000] > select count(*) from small join big on (big.id = small.id);
Query: select count(*) from small join big on (big.id = small.id)
+----------+
| count(*) |
+----------+
| 1000000 |
+----------+
Returned 1 row(s) in 20.45s

[localhost:21000] > select count(*) from big join small on (big.val = small.val);
+------------+
| count(*) |
+------------+
| 2000948962 |
+------------+
Returned 1 row(s) in 108.85s
[localhost:21000] > select count(*) from small join big on (big.val = small.val);
+------------+
| count(*) |
+------------+
| 2000948962 |
+------------+
Returned 1 row(s) in 100.76s

Apache Impala Guide | 489

Tuning Impala for Performance

Note: When examining the performance of join queries and the effectiveness of the join order
optimization, make sure the query involves enough data and cluster resources to see a difference
depending on the query plan. For example, a single data file of just a few megabytes will reside in a
single HDFS block and be processed on a single node. Likewise, if you use a single-node or two-node
cluster, theremight not bemuch difference in efficiency for the broadcast or partitioned join strategies.

Table and Column Statistics
Impala can do better optimization for complex or multi-table queries when it has access to statistics about the volume
of data and how the values are distributed. Impala uses this information to help parallelize and distribute the work for
a query. For example, optimizing join queries requires a way of determining if one table is “bigger” than another, which
is a function of the number of rows and the average row size for each table. The following sections describe the
categories of statistics Impala can work with, and how to produce them and keep them up to date.

Note:

Originally, Impala relied on the Hive mechanism for collecting statistics, through the Hive ANALYZE
TABLE statement which initiates a MapReduce job. For better user-friendliness and reliability, Impala
implements its own COMPUTE STATS statement in Impala 1.2.2 and higher, along with the DROP
STATS, SHOW TABLE STATS, and SHOW COLUMN STATS statements.

Overview of Table Statistics

The Impala query planner can make use of statistics about entire tables and partitions. This information includes
physical characteristics such as the number of rows, number of data files, the total size of the data files, and the file
format. For partitioned tables, the numbers are calculated per partition, and as totals for thewhole table. Thismetadata
is stored in the metastore database, and can be updated by either Impala or Hive. If a number is not available, the
value -1 is used as a placeholder. Some numbers, such as number and total sizes of data files, are always kept up to
date because they can be calculated cheaply, as part of gathering HDFS block metadata.

The following example shows table stats for an unpartitioned Parquet table. The values for the number and sizes of
files are always available. Initially, the number of rows is not known, because it requires a potentially expensive scan
through the entire table, and so that value is displayed as -1. The COMPUTE STATS statement fills in any unknown
table stats values.

show table stats parquet_snappy;
+-------+--------+---------+--------------+-------------------+---------+-------------------+...
| #Rows | #Files | Size | Bytes Cached | Cache Replication | Format | Incremental
stats |...
+-------+--------+---------+--------------+-------------------+---------+-------------------+...
| -1 | 96 | 23.35GB | NOT CACHED | NOT CACHED | PARQUET | false
 |...
+-------+--------+---------+--------------+-------------------+---------+-------------------+...

compute stats parquet_snappy;
+---+
| summary |
+---+
| Updated 1 partition(s) and 6 column(s). |
+---+

show table stats parquet_snappy;
+------------+--------+---------+--------------+-------------------+---------+-------------------+...
| #Rows | #Files | Size | Bytes Cached | Cache Replication | Format | Incremental
 stats |...
+------------+--------+---------+--------------+-------------------+---------+-------------------+...
| 1000000000 | 96 | 23.35GB | NOT CACHED | NOT CACHED | PARQUET | false

490 | Apache Impala Guide

Tuning Impala for Performance

 |...
+------------+--------+---------+--------------+-------------------+---------+-------------------+...

Impala performs some optimizations using this metadata on its own, and other optimizations by using a combination
of table and column statistics.

To check that table statistics are available for a table, and see the details of those statistics, use the statement SHOW
TABLE STATS table_name. See SHOW Statement on page 323 for details.

If you use the Hive-based methods of gathering statistics, see the Hive wiki for information about the required
configuration on the Hive side. Cloudera recommends using the Impala COMPUTE STATS statement to avoid potential
configuration and scalability issues with the statistics-gathering process.

If you run the Hive statement ANALYZE TABLE COMPUTE STATISTICS FOR COLUMNS, Impala can only use the
resulting column statistics if the table is unpartitioned. Impala cannot use Hive-generated column statistics for a
partitioned table.

Overview of Column Statistics

The Impala query planner can make use of statistics about individual columns when that metadata is available in the
metastore database. This technique is most valuable for columns compared across tables in join queries, to help
estimate how many rows the query will retrieve from each table. These statistics are also important for correlated
subqueries using the EXISTS() or IN() operators, which are processed internally the same way as join queries.

The following example shows column stats for an unpartitionedParquet table. The values for themaximumand average
sizes of some types are always available, because those figures are constant for numeric and other fixed-size types.
Initially, the number of distinct values is not known, because it requires a potentially expensive scan through the entire
table, and so that value is displayed as -1. The same applies to maximum and average sizes of variable-sized types,
such as STRING. The COMPUTE STATS statement fills in most unknown column stats values. (It does not record the
number of NULL values, because currently Impala does not use that figure for query optimization.)

show column stats parquet_snappy;
+-------------+----------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+-------------+----------+------------------+--------+----------+----------+
id	BIGINT	-1	-1	8	8
val	INT	-1	-1	4	4
zerofill	STRING	-1	-1	-1	-1
name	STRING	-1	-1	-1	-1
assertion	BOOLEAN	-1	-1	1	1
location_id	SMALLINT	-1	-1	2	2
+-------------+----------+------------------+--------+----------+----------+

compute stats parquet_snappy;
+---+
| summary |
+---+
| Updated 1 partition(s) and 6 column(s). |
+---+

show column stats parquet_snappy;
+-------------+----------+------------------+--------+----------+-------------------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+-------------+----------+------------------+--------+----------+-------------------+
id	BIGINT	183861280	-1	8	8
val	INT	139017	-1	4	4
zerofill	STRING	101761	-1	6	6
name	STRING	145636240	-1	22	13.00020027160645
assertion	BOOLEAN	2	-1	1	1
location_id	SMALLINT	339	-1	2	2
+-------------+----------+------------------+--------+----------+-------------------+

Apache Impala Guide | 491

Tuning Impala for Performance

https://cwiki.apache.org/confluence/display/Hive/StatsDev

Note:

For column statistics to be effective in Impala, you also need to have table statistics for the applicable
tables, as described in Overview of Table Statistics on page 490. When you use the Impala COMPUTE
STATS statement, both table and column statistics are automatically gathered at the same time, for
all columns in the table.

Currently, the COMPUTE STATS statement under CDH 4 does not store any statistics for DECIMAL
columns. When Impala runs under CDH 5, which has better support for DECIMAL in the metastore
database, COMPUTE STATS does collect statistics for DECIMAL columns and Impala uses the statistics
to optimize query performance.

Note: Prior to Impala 1.4.0, COMPUTE STATS counted the number of NULL values in each column
and recorded that figure in the metastore database. Because Impala does not currently make use of
the NULL count during query planning, Impala 1.4.0 and higher speeds up the COMPUTE STATS
statement by skipping this NULL counting.

To check whether column statistics are available for a particular set of columns, use the SHOW COLUMN STATS
table_name statement, or check the extended EXPLAIN output for a query against that table that refers to those
columns. See SHOW Statement on page 323 and EXPLAIN Statement on page 261 for details.

If you run the Hive statement ANALYZE TABLE COMPUTE STATISTICS FOR COLUMNS, Impala can only use the
resulting column statistics if the table is unpartitioned. Impala cannot use Hive-generated column statistics for a
partitioned table.

How Table and Column Statistics Work for Partitioned Tables

When you use Impala for “big data”, you are highly likely to use partitioning for your biggest tables, the ones representing
data that can be logically divided based on dates, geographic regions, or similar criteria. The table and column statistics
are especially useful for optimizing queries on such tables. For example, a query involving one year might involve
substantially more or less data than a query involving a different year, or a range of several years. Each query might
be optimized differently as a result.

The following examples show how table and column stats work with a partitioned table. The table for this example is
partitioned by year, month, and day. For simplicity, the sample data consists of 5 partitions, all from the same year
and month. Table stats are collected independently for each partition. (In fact, the SHOW PARTITIONS statement
displays exactly the same information as SHOW TABLE STATS for a partitioned table.) Column stats apply to the entire
table, not to individual partitions. Because the partition key column values are represented as HDFS directories, their
characteristics are typically known in advance, even when the values for non-key columns are shown as -1.

show partitions year_month_day;
+-------+-------+-----+-------+--------+---------+--------------+-------------------+---------+...
| year | month | day | #Rows | #Files | Size | Bytes Cached | Cache Replication |
Format |...
+-------+-------+-----+-------+--------+---------+--------------+-------------------+---------+...
| 2013 | 12 | 1 | -1 | 1 | 2.51MB | NOT CACHED | NOT CACHED |
PARQUET |...
| 2013 | 12 | 2 | -1 | 1 | 2.53MB | NOT CACHED | NOT CACHED |
PARQUET |...
| 2013 | 12 | 3 | -1 | 1 | 2.52MB | NOT CACHED | NOT CACHED |
PARQUET |...
| 2013 | 12 | 4 | -1 | 1 | 2.51MB | NOT CACHED | NOT CACHED |
PARQUET |...
| 2013 | 12 | 5 | -1 | 1 | 2.52MB | NOT CACHED | NOT CACHED |
PARQUET |...
| Total | | | -1 | 5 | 12.58MB | 0B | |
 |...
+-------+-------+-----+-------+--------+---------+--------------+-------------------+---------+...

show table stats year_month_day;

492 | Apache Impala Guide

Tuning Impala for Performance

+-------+-------+-----+-------+--------+---------+--------------+-------------------+---------+...
| year | month | day | #Rows | #Files | Size | Bytes Cached | Cache Replication |
Format |...
+-------+-------+-----+-------+--------+---------+--------------+-------------------+---------+...
| 2013 | 12 | 1 | -1 | 1 | 2.51MB | NOT CACHED | NOT CACHED |
PARQUET |...
| 2013 | 12 | 2 | -1 | 1 | 2.53MB | NOT CACHED | NOT CACHED |
PARQUET |...
| 2013 | 12 | 3 | -1 | 1 | 2.52MB | NOT CACHED | NOT CACHED |
PARQUET |...
| 2013 | 12 | 4 | -1 | 1 | 2.51MB | NOT CACHED | NOT CACHED |
PARQUET |...
| 2013 | 12 | 5 | -1 | 1 | 2.52MB | NOT CACHED | NOT CACHED |
PARQUET |...
| Total | | | -1 | 5 | 12.58MB | 0B | |
 |...
+-------+-------+-----+-------+--------+---------+--------------+-------------------+---------+...

show column stats year_month_day;
+-----------+---------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+-----------+---------+------------------+--------+----------+----------+
id	INT	-1	-1	4	4
val	INT	-1	-1	4	4
zfill	STRING	-1	-1	-1	-1
name	STRING	-1	-1	-1	-1
assertion	BOOLEAN	-1	-1	1	1
year	INT	1	0	4	4
month	INT	1	0	4	4
day	INT	5	0	4	4
+-----------+---------+------------------+--------+----------+----------+

compute stats year_month_day;
+---+
| summary |
+---+
| Updated 5 partition(s) and 5 column(s). |
+---+

show table stats year_month_day;
+-------+-------+-----+--------+--------+---------+--------------+-------------------+---------+...
| year | month | day | #Rows | #Files | Size | Bytes Cached | Cache Replication |
 Format |...
+-------+-------+-----+--------+--------+---------+--------------+-------------------+---------+...
| 2013 | 12 | 1 | 93606 | 1 | 2.51MB | NOT CACHED | NOT CACHED |
 PARQUET |...
| 2013 | 12 | 2 | 94158 | 1 | 2.53MB | NOT CACHED | NOT CACHED |
 PARQUET |...
| 2013 | 12 | 3 | 94122 | 1 | 2.52MB | NOT CACHED | NOT CACHED |
 PARQUET |...
| 2013 | 12 | 4 | 93559 | 1 | 2.51MB | NOT CACHED | NOT CACHED |
 PARQUET |...
| 2013 | 12 | 5 | 93845 | 1 | 2.52MB | NOT CACHED | NOT CACHED |
 PARQUET |...
| Total | | | 469290 | 5 | 12.58MB | 0B | |
 |...
+-------+-------+-----+--------+--------+---------+--------------+-------------------+---------+...

show column stats year_month_day;
+-----------+---------+------------------+--------+----------+-------------------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+-----------+---------+------------------+--------+----------+-------------------+
id	INT	511129	-1	4	4
val	INT	364853	-1	4	4
zfill	STRING	311430	-1	6	6
name	STRING	471975	-1	22	13.00160026550293
assertion	BOOLEAN	2	-1	1	1
year	INT	1	0	4	4
month	INT	1	0	4	4
day	INT	5	0	4	4
+-----------+---------+------------------+--------+----------+-------------------+

Apache Impala Guide | 493

Tuning Impala for Performance

Note: Partitioned tables can grow so large that scanning the entire table, as the COMPUTE STATS
statement does, is impractical just to update the statistics for a new partition. The standard COMPUTE
STATS statement might take hours, or even days. That situation is where you switch to using
incremental statistics, a feature available in CDH 5.3 / Impala 2.1 and higher. See Overview of
Incremental Statistics on page 494 for details about this feature and the COMPUTE INCREMENTAL
STATS syntax.

If you run the Hive statement ANALYZE TABLE COMPUTE STATISTICS FOR COLUMNS, Impala can only use the
resulting column statistics if the table is unpartitioned. Impala cannot use Hive-generated column statistics for a
partitioned table.

Overview of Incremental Statistics

In Impala 2.1.0 and higher, you can use the syntax COMPUTE INCREMENTAL STATS and DROP INCREMENTAL STATS.
The INCREMENTAL clauses work with incremental statistics, a specialized feature for partitioned tables that are large
or frequently updated with new partitions.

When you compute incremental statistics for a partitioned table, by default Impala only processes those partitions
that do not yet have incremental statistics. By processing only newly added partitions, you can keep statistics up to
date for large partitioned tables, without incurring the overhead of reprocessing the entire table each time.

You can also compute or drop statistics for a single partition by including a PARTITION clause in the COMPUTE
INCREMENTAL STATS or DROP INCREMENTAL STATS statement.

The metadata for incremental statistics is handled differently from the original style of statistics:

• If you have an existing partitioned table for which you have already computed statistics, issuing COMPUTE
INCREMENTAL STATS without a partition clause causes Impala to rescan the entire table. Once the incremental
statistics are computed, any future COMPUTE INCREMENTAL STATS statements only scan any new partitions
and any partitions where you performed DROP INCREMENTAL STATS.

• TheSHOW TABLE STATS andSHOW PARTITIONS statements now include an additional column showingwhether
incremental statistics are available for each column. A partition could already be covered by the original type of
statistics based on a prior COMPUTE STATS statement, as indicated by a value other than -1 under the #Rows
column. Impala query planning uses either kind of statistics when available.

• COMPUTE INCREMENTAL STATS takes more time than COMPUTE STATS for the same volume of data. Therefore
it ismost suitable for tableswith large data volumewhere newpartitions are added frequently,making it impractical
to run a full COMPUTE STATS operation for each new partition. For unpartitioned tables, or partitioned tables
that are loaded once and not updated with new partitions, use the original COMPUTE STATS syntax.

• COMPUTE INCREMENTAL STATS uses some memory in the catalogd process, proportional to the number of
partitions and number of columns in the applicable table. The memory overhead is approximately 400 bytes for
each column in each partition. This memory is reserved in the catalogd daemon, the statestored daemon,
and in each instance of the impalad daemon.

• In cases where new files are added to an existing partition, issue a REFRESH statement for the table, followed by
a DROP INCREMENTAL STATS and COMPUTE INCREMENTAL STATS sequence for the changed partition.

• The DROP INCREMENTAL STATS statement operates only on a single partition at a time. To remove statistics
(whether incremental or not) from all partitions of a table, issue a DROP STATS statement with no INCREMENTAL
or PARTITION clauses.

The following considerations apply to incremental statistics when the structure of an existing table is changed (known
as schema evolution):

• If you use an ALTER TABLE statement to drop a column, the existing statistics remain valid and COMPUTE
INCREMENTAL STATS does not rescan any partitions.

494 | Apache Impala Guide

Tuning Impala for Performance

• If you use an ALTER TABLE statement to add a column, Impala rescans all partitions and fills in the appropriate
column-level values the next time you run COMPUTE INCREMENTAL STATS.

• If you use an ALTER TABLE statement to change the data type of a column, Impala rescans all partitions and fills
in the appropriate column-level values the next time you run COMPUTE INCREMENTAL STATS.

• If you use an ALTER TABLE statement to change the file format of a table, the existing statistics remain valid and
a subsequent COMPUTE INCREMENTAL STATS does not rescan any partitions.

See COMPUTE STATS Statement on page 227 and DROP STATS Statement on page 256 for syntax details.

Generating Table and Column Statistics (COMPUTE STATS Statement)

To gather table statistics after loading data into a table or partition, you typically use the COMPUTE STATS statement.
This statement is available in Impala 1.2.2 and higher. It gathers both table statistics and column statistics for all columns
in a single operation. For large partitioned tables, where you frequently need to update statistics and it is impractical
to scan the entire table each time, use the syntax COMPUTE INCREMENTAL STATS, which is available in CDH 5.3 /
Impala 2.1 and higher.

If you use Hive as part of your ETL workflow, you can also use Hive to generate table and column statistics. You might
need to do extra configuration within Hive itself, the metastore, or even set up a separate database to hold
Hive-generated statistics. Youmight need to runmultiple statements to generate all the necessary statistics. Therefore,
prefer the Impala COMPUTE STATS statement where that technique is practical. For details about collecting statistics
through Hive, see the Hive wiki.

If you run the Hive statement ANALYZE TABLE COMPUTE STATISTICS FOR COLUMNS, Impala can only use the
resulting column statistics if the table is unpartitioned. Impala cannot use Hive-generated column statistics for a
partitioned table.

For your very largest tables, you might find that COMPUTE STATS or even COMPUTE INCREMENTAL STATS take so
long to scan the data that it is impractical to use them regularly. In such a case, after adding a partition or inserting
new data, you can update just the number of rows property through an ALTER TABLE statement. See Setting the
NUMROWS Value Manually through ALTER TABLE on page 497 for details. Because the column statistics might be left
in a stale state, do not use this technique as a replacement for COMPUTE STATS. Only use this technique if all other
means of collecting statistics are impractical, or as a low-overhead operation that you run in between periodic COMPUTE
STATS or COMPUTE INCREMENTAL STATS operations.

Detecting Missing Statistics

You can check whether a specific table has statistics using the SHOW TABLE STATS statement (for any table) or the
SHOW PARTITIONS statement (for a partitioned table). Both statements display the same information. If a table or a
partition does not have any statistics, the #Rows field contains -1. Once you compute statistics for the table or partition,
the #Rows field changes to an accurate value.

The following example shows a table that initially does not have any statistics. The SHOW TABLE STATS statement
displays different values for #Rows before and after the COMPUTE STATS operation.

[localhost:21000] > create table no_stats (x int);
[localhost:21000] > show table stats no_stats;
+-------+--------+------+--------------+--------+-------------------+
| #Rows | #Files | Size | Bytes Cached | Format | Incremental stats |
+-------+--------+------+--------------+--------+-------------------+
| -1 | 0 | 0B | NOT CACHED | TEXT | false |
+-------+--------+------+--------------+--------+-------------------+
[localhost:21000] > compute stats no_stats;
+---+
| summary |
+---+
| Updated 1 partition(s) and 1 column(s). |
+---+
[localhost:21000] > show table stats no_stats;
+-------+--------+------+--------------+--------+-------------------+
| #Rows | #Files | Size | Bytes Cached | Format | Incremental stats |

Apache Impala Guide | 495

Tuning Impala for Performance

https://cwiki.apache.org/confluence/display/Hive/StatsDev

+-------+--------+------+--------------+--------+-------------------+
| 0 | 0 | 0B | NOT CACHED | TEXT | false |
+-------+--------+------+--------------+--------+-------------------+

The following example shows a similar progression with a partitioned table. Initially, #Rows is -1. After a COMPUTE
STATS operation, #Rows changes to an accurate value. Any newly added partition starts with no statistics, meaning
that you must collect statistics after adding a new partition.

[localhost:21000] > create table no_stats_partitioned (x int) partitioned by (year
smallint);
[localhost:21000] > show table stats no_stats_partitioned;
+-------+-------+--------+------+--------------+--------+-------------------+
| year | #Rows | #Files | Size | Bytes Cached | Format | Incremental stats |
+-------+-------+--------+------+--------------+--------+-------------------+
| Total | -1 | 0 | 0B | 0B | | |
+-------+-------+--------+------+--------------+--------+-------------------+
[localhost:21000] > show partitions no_stats_partitioned;
+-------+-------+--------+------+--------------+--------+-------------------+
| year | #Rows | #Files | Size | Bytes Cached | Format | Incremental stats |
+-------+-------+--------+------+--------------+--------+-------------------+
| Total | -1 | 0 | 0B | 0B | | |
+-------+-------+--------+------+--------------+--------+-------------------+
[localhost:21000] > alter table no_stats_partitioned add partition (year=2013);
[localhost:21000] > compute stats no_stats_partitioned;
+---+
| summary |
+---+
| Updated 1 partition(s) and 1 column(s). |
+---+
[localhost:21000] > alter table no_stats_partitioned add partition (year=2014);
[localhost:21000] > show partitions no_stats_partitioned;
+-------+-------+--------+------+--------------+--------+-------------------+
| year | #Rows | #Files | Size | Bytes Cached | Format | Incremental stats |
+-------+-------+--------+------+--------------+--------+-------------------+
2013	0	0	0B	NOT CACHED	TEXT	false
2014	-1	0	0B	NOT CACHED	TEXT	false
Total	0	0	0B	0B		
+-------+-------+--------+------+--------------+--------+-------------------+

Note: Because the default COMPUTE STATS statement creates and updates statistics for all partitions
in a table, if you expect to frequently add new partitions, use the COMPUTE INCREMENTAL STATS
syntax instead,which lets you compute stats for a single specified partition, or only for those partitions
that do not already have incremental stats.

If checking each individual table is impractical, due to a large number of tables or views that hide the underlying base
tables, you can also check for missing statistics for a particular query. Use the EXPLAIN statement to preview query
efficiency before actually running the query. Use the query profile output available through the PROFILE command
in impala-shell or the web UI to verify query execution and timing after running the query. Both the EXPLAIN plan
and the PROFILE output display a warning if any tables or partitions involved in the query do not have statistics.

[localhost:21000] > create table no_stats (x int);
[localhost:21000] > explain select count(*) from no_stats;
+--+
| Explain String |
+--+
| Estimated Per-Host Requirements: Memory=10.00MB VCores=1 |
| WARNING: The following tables are missing relevant table and/or column statistics. |
| incremental_stats.no_stats |
| |
| 03:AGGREGATE [FINALIZE] |
| | output: count:merge(*) |
| | |
| 02:EXCHANGE [UNPARTITIONED] |
| | |
| 01:AGGREGATE |
| | output: count(*) |

496 | Apache Impala Guide

Tuning Impala for Performance

| | |
| 00:SCAN HDFS [incremental_stats.no_stats] |
| partitions=1/1 files=0 size=0B |
+--+

Because Impala uses the partition pruning technique when possible to only evaluate certain partitions, if you have a
partitioned table with statistics for some partitions and not others, whether or not the EXPLAIN statement shows the
warning depends on the actual partitions used by the query. For example, you might see warnings or not for different
queries against the same table:

-- No warning because all the partitions for the year 2012 have stats.
EXPLAIN SELECT ... FROM t1 WHERE year = 2012;

-- Missing stats warning because one or more partitions in this range
-- do not have stats.
EXPLAIN SELECT ... FROM t1 WHERE year BETWEEN 2006 AND 2009;

To confirm if any partitions at all in the table are missing statistics, you might explain a query that scans the entire
table, such as SELECT COUNT(*) FROM table_name.

Keeping Statistics Up to Date

When the contents of a table or partition change significantly, recompute the stats for the relevant table or partition.
The degree of change that qualifies as “significant” varies, depending on the absolute and relative sizes of the tables.
Typically, if you add more than 30% more data to a table, it is worthwhile to recompute stats, because the differences
in number of rows and number of distinct values might cause Impala to choose a different join order when that table
is used in join queries. This guideline is most important for the largest tables. For example, adding 30% new data to a
table containing 1 TB has a greater effect on join order than adding 30% to a table containing only a few megabytes,
and the larger table has a greater effect on query performance if Impala chooses a suboptimal join order as a result
of outdated statistics.

If you reload a complete new set of data for a table, but the number of rows and number of distinct values for each
column is relatively unchanged from before, you do not need to recompute stats for the table.

If the statistics for a table are out of date, and the table's large size makes it impractical to recompute new stats
immediately, you can use the DROP STATS statement to remove the obsolete statistics, making it easier to identify
tables that need a new COMPUTE STATS operation.

For a large partitioned table, consider using the incremental stats feature available in Impala 2.1.0 and higher, as
explained in Overview of Incremental Statistics on page 494. If you add a new partition to a table, it is worthwhile to
recompute incremental stats, because the operation only scans the data for that one new partition.

Setting the NUMROWS Value Manually through ALTER TABLE

Themost crucial piece of data in all the statistics is the number of rows in the table (for an unpartitioned or partitioned
table) and for each partition (for a partitioned table). The COMPUTE STATS statement always gathers statistics about
all columns, aswell as overall table statistics. If it is not practical to do a full COMPUTE STATS or COMPUTE INCREMENTAL
STATS operation after adding a partition or inserting data, or if you can see that Impala would produce amore efficient
plan if the number of rowswas different, you canmanually set the number of rows through an ALTER TABLE statement:

-- Set total number of rows. Applies to both unpartitioned and partitioned tables.
alter table table_name set tblproperties('numRows'='new_value',
'STATS_GENERATED_VIA_STATS_TASK'='true');

-- Set total number of rows for a specific partition. Applies to partitioned tables
only.
-- You must specify all the partition key columns in the PARTITION clause.
alter table table_name partition (keycol1=val1,keycol2=val2...) set
tblproperties('numRows'='new_value', 'STATS_GENERATED_VIA_STATS_TASK'='true');

Apache Impala Guide | 497

Tuning Impala for Performance

This statement avoids re-scanning any data files. (The requirement to include theSTATS_GENERATED_VIA_STATS_TASK
property is relatively new, as a result of the issue HIVE-8648 for the Hive metastore.)

create table analysis_data stored as parquet as select * from raw_data;
Inserted 1000000000 rows in 181.98s
compute stats analysis_data;
insert into analysis_data select * from smaller_table_we_forgot_before;
Inserted 1000000 rows in 15.32s
-- Now there are 1001000000 rows. We can update this single data point in the stats.
alter table analysis_data set tblproperties('numRows'='1001000000',
'STATS_GENERATED_VIA_STATS_TASK'='true');

For a partitioned table, update both the per-partition number of rows and the number of rows for the whole table:

-- If the table originally contained 1 million rows, and we add another partition with
 30 thousand rows,
-- change the numRows property for the partition and the overall table.
alter table partitioned_data partition(year=2009, month=4) set tblproperties
('numRows'='30000', 'STATS_GENERATED_VIA_STATS_TASK'='true');
alter table partitioned_data set tblproperties ('numRows'='1030000',
'STATS_GENERATED_VIA_STATS_TASK'='true');

In practice, the COMPUTE STATS statement, or COMPUTE INCREMENTAL STATS for a partitioned table, should be
fast and convenient enough that this technique is only useful for the very largest partitioned tables. Because the column
statistics might be left in a stale state, do not use this technique as a replacement for COMPUTE STATS. Only use this
technique if all other means of collecting statistics are impractical, or as a low-overhead operation that you run in
between periodic COMPUTE STATS or COMPUTE INCREMENTAL STATS operations.

Examples of Using Table and Column Statistics with Impala

The following examples walk through a sequence of SHOW TABLE STATS, SHOW COLUMN STATS, ALTER TABLE, and
SELECT and INSERT statements to illustrate various aspects of how Impala uses statistics to help optimize queries.

This example shows table and column statistics for the STORE column used in the TPC-DS benchmarks for decision
support systems. It is a tiny table holding data for 12 stores. Initially, before any statistics are gathered by a COMPUTE
STATS statement, most of the numeric fields show placeholder values of -1, indicating that the figures are unknown.
The figures that are filled in are values that are easily countable or deducible at the physical level, such as the number
of files, total data size of the files, and the maximum and average sizes for data types that have a constant size such
as INT, FLOAT, and TIMESTAMP.

[localhost:21000] > show table stats store;
+-------+--------+--------+--------+
| #Rows | #Files | Size | Format |
+-------+--------+--------+--------+
| -1 | 1 | 3.08KB | TEXT |
+-------+--------+--------+--------+
Returned 1 row(s) in 0.03s
[localhost:21000] > show column stats store;
+--------------------+-----------+------------------+--------+----------+----------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
+--------------------+-----------+------------------+--------+----------+----------+
s_store_sk	INT	-1	-1	4	4
s_store_id	STRING	-1	-1	-1	-1
s_rec_start_date	TIMESTAMP	-1	-1	16	16
s_rec_end_date	TIMESTAMP	-1	-1	16	16
s_closed_date_sk	INT	-1	-1	4	4
s_store_name	STRING	-1	-1	-1	-1
s_number_employees	INT	-1	-1	4	4
s_floor_space	INT	-1	-1	4	4
s_hours	STRING	-1	-1	-1	-1
s_manager	STRING	-1	-1	-1	-1
s_market_id	INT	-1	-1	4	4
s_geography_class	STRING	-1	-1	-1	-1
s_market_desc	STRING	-1	-1	-1	-1
s_market_manager	STRING	-1	-1	-1	-1
s_division_id	INT	-1	-1	4	4
s_division_name	STRING	-1	-1	-1	-1

498 | Apache Impala Guide

Tuning Impala for Performance

https://issues.apache.org/jira/browse/HIVE-8648
http://www.tpc.org/tpcds/
http://www.tpc.org/tpcds/

s_company_id	INT	-1	-1	4	4
s_company_name	STRING	-1	-1	-1	-1
s_street_number	STRING	-1	-1	-1	-1
s_street_name	STRING	-1	-1	-1	-1
s_street_type	STRING	-1	-1	-1	-1
s_suite_number	STRING	-1	-1	-1	-1
s_city	STRING	-1	-1	-1	-1
s_county	STRING	-1	-1	-1	-1
s_state	STRING	-1	-1	-1	-1
s_zip	STRING	-1	-1	-1	-1
s_country	STRING	-1	-1	-1	-1
s_gmt_offset	FLOAT	-1	-1	4	4
s_tax_percentage	FLOAT	-1	-1	4	4
+--------------------+-----------+------------------+--------+----------+----------+
Returned 29 row(s) in 0.04s

With the Hive ANALYZE TABLE statement for column statistics, you had to specify each column for which to gather
statistics. The Impala COMPUTE STATS statement automatically gathers statistics for all columns, because it reads
through the entire table relatively quickly and can efficiently compute the values for all the columns. This example
shows how after running the COMPUTE STATS statement, statistics are filled in for both the table and all its columns:

[localhost:21000] > compute stats store;
+--+
| summary |
+--+
| Updated 1 partition(s) and 29 column(s). |
+--+
Returned 1 row(s) in 1.88s
[localhost:21000] > show table stats store;
+-------+--------+--------+--------+
| #Rows | #Files | Size | Format |
+-------+--------+--------+--------+
| 12 | 1 | 3.08KB | TEXT |
+-------+--------+--------+--------+
Returned 1 row(s) in 0.02s
[localhost:21000] > show column stats store;
+--------------------+-----------+------------------+--------+----------+-------------------+
| Column | Type | #Distinct Values | #Nulls | Max Size | Avg Size
 |
+--------------------+-----------+------------------+--------+----------+-------------------+
| s_store_sk | INT | 12 | -1 | 4 | 4
 |
| s_store_id | STRING | 6 | -1 | 16 | 16
 |
| s_rec_start_date | TIMESTAMP | 4 | -1 | 16 | 16
 |
| s_rec_end_date | TIMESTAMP | 3 | -1 | 16 | 16
 |
| s_closed_date_sk | INT | 3 | -1 | 4 | 4
 |
| s_store_name | STRING | 8 | -1 | 5 | 4.25
 |
| s_number_employees | INT | 9 | -1 | 4 | 4
 |
| s_floor_space | INT | 10 | -1 | 4 | 4
 |
| s_hours | STRING | 2 | -1 | 8 |
7.083300113677979 |
| s_manager | STRING | 7 | -1 | 15 | 12
 |
| s_market_id | INT | 7 | -1 | 4 | 4
 |
| s_geography_class | STRING | 1 | -1 | 7 | 7
 |
| s_market_desc | STRING | 10 | -1 | 94 | 55.5
 |
| s_market_manager | STRING | 7 | -1 | 16 | 14
 |
| s_division_id | INT | 1 | -1 | 4 | 4
 |
| s_division_name | STRING | 1 | -1 | 7 | 7

Apache Impala Guide | 499

Tuning Impala for Performance

 |
| s_company_id | INT | 1 | -1 | 4 | 4
 |
| s_company_name | STRING | 1 | -1 | 7 | 7
 |
| s_street_number | STRING | 9 | -1 | 3 |
2.833300113677979 |
| s_street_name | STRING | 12 | -1 | 11 |
6.583300113677979 |
| s_street_type | STRING | 8 | -1 | 9 |
4.833300113677979 |
| s_suite_number | STRING | 11 | -1 | 9 | 8.25
 |
| s_city | STRING | 2 | -1 | 8 | 6.5
 |
| s_county | STRING | 1 | -1 | 17 | 17
 |
| s_state | STRING | 1 | -1 | 2 | 2
 |
| s_zip | STRING | 2 | -1 | 5 | 5
 |
| s_country | STRING | 1 | -1 | 13 | 13
 |
| s_gmt_offset | FLOAT | 1 | -1 | 4 | 4
 |
| s_tax_percentage | FLOAT | 5 | -1 | 4 | 4
 |
+--------------------+-----------+------------------+--------+----------+-------------------+
Returned 29 row(s) in 0.04s

The following example shows how statistics are represented for a partitioned table. In this case, we have set up a table
to hold the world's most trivial census data, a single STRING field, partitioned by a YEAR column. The table statistics
include a separate entry for each partition, plus final totals for the numeric fields. The column statistics include some
easily deducible facts for the partitioning column, such as the number of distinct values (the number of partition
subdirectories).

localhost:21000] > describe census;
+------+----------+---------+
| name | type | comment |
+------+----------+---------+
| name | string | |
| year | smallint | |
+------+----------+---------+
Returned 2 row(s) in 0.02s
[localhost:21000] > show table stats census;
+-------+-------+--------+------+---------+
| year | #Rows | #Files | Size | Format |
+-------+-------+--------+------+---------+
2000	-1	0	0B	TEXT
2004	-1	0	0B	TEXT
2008	-1	0	0B	TEXT
2010	-1	0	0B	TEXT
2011	0	1	22B	TEXT
2012	-1	1	22B	TEXT
2013	-1	1	231B	PARQUET
Total	0	3	275B	
+-------+-------+--------+------+---------+				
Returned 8 row(s) in 0.02s				
[localhost:21000] > show column stats census;				
+--------+----------+------------------+--------+----------+----------+				
Column	Type	#Distinct Values	#Nulls	Max Size
+--------+----------+------------------+--------+----------+----------+				
name	STRING	-1	-1	-1
year	SMALLINT	7	-1	2
+--------+----------+------------------+--------+----------+----------+
Returned 2 row(s) in 0.02s

500 | Apache Impala Guide

Tuning Impala for Performance

The following example shows how the statistics are filled in by a COMPUTE STATS statement in Impala.

[localhost:21000] > compute stats census;
+---+
| summary |
+---+
| Updated 3 partition(s) and 1 column(s). |
+---+
Returned 1 row(s) in 2.16s
[localhost:21000] > show table stats census;
+-------+-------+--------+------+---------+
| year | #Rows | #Files | Size | Format |
+-------+-------+--------+------+---------+
2000	-1	0	0B	TEXT
2004	-1	0	0B	TEXT
2008	-1	0	0B	TEXT
2010	-1	0	0B	TEXT
2011	4	1	22B	TEXT
2012	4	1	22B	TEXT
2013	1	1	231B	PARQUET
Total	9	3	275B	
+-------+-------+--------+------+---------+				
Returned 8 row(s) in 0.02s				
[localhost:21000] > show column stats census;				
+--------+----------+------------------+--------+----------+----------+				
Column	Type	#Distinct Values	#Nulls	Max Size
+--------+----------+------------------+--------+----------+----------+				
name	STRING	4	-1	5
year	SMALLINT	7	-1	2
+--------+----------+------------------+--------+----------+----------+
Returned 2 row(s) in 0.02s

For examples showing how some queries work differently when statistics are available, see Examples of Join Order
Optimization on page 485. You can see how Impala executes a query differently in each case by observing the EXPLAIN
output before and after collecting statistics. Measure the before and after query times, and examine the throughput
numbers in before and afterSUMMARYorPROFILEoutput, to verify howmuch the improvedplan speeds upperformance.

Benchmarking Impala Queries
Because Impala, like other Hadoop components, is designed to handle large data volumes in a distributed environment,
conduct any performance tests using realistic data and cluster configurations. Use a multi-node cluster rather than a
single node; run queries against tables containing terabytes of data rather than tens of gigabytes. The parallel processing
techniques used by Impala are most appropriate for workloads that are beyond the capacity of a single server.

When you run queries returning large numbers of rows, the CPU time to pretty-print the output can be substantial,
giving an inaccurate measurement of the actual query time. Consider using the -B option on the impala-shell
command to turn off the pretty-printing, and optionally the -o option to store query results in a file rather than printing
to the screen. See impala-shell Configuration Options on page 471 for details.

Controlling Impala Resource Usage
Sometimes, balancing raw query performance against scalability requires limiting the amount of resources, such as
memory or CPU, used by a single query or group of queries. Impala can use several mechanisms that help to smooth
out the load during heavy concurrent usage, resulting in faster overall query times and sharing of resources across
Impala queries, MapReduce jobs, and other kinds of workloads across a CDH cluster:

• The Impala admission control feature uses a fast, distributed mechanism to hold back queries that exceed limits
on the number of concurrent queries or the amount of memory used. The queries are queued, and executed as
other queries finish and resources become available. You can control the concurrency limits, and specify different
limits for different groups of users to divide cluster resources according to the priorities of different classes of
users. This feature is new in Impala 1.3, and works with both CDH 4 and CDH 5. See Admission Control and Query
Queuing on page 75 for details.

Apache Impala Guide | 501

Tuning Impala for Performance

• You can restrict the amount of memory Impala reserves during query execution by specifying the -mem_limit
option for the impalad daemon. See Modifying Impala Startup Options on page 43 for details. This limit applies
only to the memory that is directly consumed by queries; Impala reserves additional memory at startup, for
example to hold cached metadata.

• For production deployment, Cloudera recommends that you implement resource isolation usingmechanisms such
as cgroups, which you can configure using Cloudera Manager. For details, see the Static Resource Pools in the
Cloudera Manager documentation.

Using HDFS Caching with Impala (CDH 5.1 or higher only)
HDFS caching provides performance and scalability benefits in production environments where Impala queries and
other Hadoop jobs operate on quantities of data much larger than the physical RAM on the DataNodes, making it
impractical to rely on the Linux OS cache, which only keeps the most recently used data in memory. Data read from
the HDFS cache avoids the overhead of checksumming and memory-to-memory copying involved when using data
from the Linux OS cache.

For background information about how to set up and manage HDFS caching for a CDH cluster, see the CDH
documentation.

Overview of HDFS Caching for Impala

On CDH 5.1 and higher, Impala can use the HDFS caching feature to make more effective use of RAM, so that repeated
queries can take advantage of data “pinned” in memory regardless of how much data is processed overall. The HDFS
caching feature lets you designate a subset of frequently accessed data to be pinned permanently inmemory, remaining
in the cache across multiple queries and never being evicted. This technique is suitable for tables or partitions that are
frequently accessed and are small enough to fit entirely within the HDFS memory cache. For example, you might
designate several dimension tables to be pinned in the cache, to speed up many different join queries that reference
them. Or in a partitioned table, you might pin a partition holding data from the most recent time period because that
data will be queried intensively; then when the next set of data arrives, you could unpin the previous partition and pin
the partition holding the new data.

Because this Impala performance feature relies on HDFS infrastructure, it only applies to Impala tables that use HDFS
data files. HDFS caching for Impala does not apply to HBase tables, S3 tables, or Isilon tables.

Setting Up HDFS Caching for Impala

To use HDFS caching with Impala, first set up that feature for your CDH cluster:

• Decide howmuchmemory to devote to the HDFS cache on each host. Remember that the total memory available
for cached data is the sum of the cache sizes on all the hosts. By default, any data block is only cached on one
host, although you can cache a block across multiple hosts by increasing the replication factor.

• Issue hdfs cacheadmin commands to set up one or more cache pools, owned by the same user as the impalad
daemon (typically impala). For example:

hdfs cacheadmin -addPool four_gig_pool -owner impala -limit 4000000000

For details about the hdfs cacheadmin command, see the CDH documentation.

Once HDFS caching is enabled and one or more pools are available, see Enabling HDFS Caching for Impala Tables and
Partitions on page 503 for how to choosewhich Impala data to load into the HDFS cache. On the Impala side, you specify
the cache pool name defined by the hdfs cacheadmin command in the Impala DDL statements that enable HDFS
caching for a table or partition, such as CREATE TABLE ... CACHED IN pool or ALTER TABLE ... SET CACHED
IN pool.

502 | Apache Impala Guide

Tuning Impala for Performance

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_service_pools.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_hdfs_caching.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_hdfs_caching.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_hdfs_caching.html

Enabling HDFS Caching for Impala Tables and Partitions

Begin by choosing which tables or partitions to cache. For example, these might be lookup tables that are accessed by
many different join queries, or partitions corresponding to the most recent time period that are analyzed by different
reports or ad hoc queries.

In your SQL statements, you specify logical divisions such as tables and partitions to be cached. Impala translates these
requests into HDFS-level directives that apply to particular directories and files. For example, given a partitioned table
CENSUS with a partition key column YEAR, you could choose to cache all or part of the data as follows:

In Impala 2.2 / CDH 5.4 and higher, the optional WITH REPLICATION clause for CREATE TABLE and ALTER TABLE
lets you specify a replication factor, the number of hosts on which to cache the same data blocks. When Impala
processes a cached data block, where the cache replication factor is greater than 1, Impala randomly selects a host
that has a cached copy of that data block. This optimization avoids excessive CPU usage on a single host when the
same cached data block is processed multiple times. Cloudera recommends specifying a value greater than or equal
to the HDFS block replication factor.

-- Cache the entire table (all partitions).
alter table census set cached in 'pool_name';

-- Remove the entire table from the cache.
alter table census set uncached;

-- Cache a portion of the table (a single partition).
-- If the table is partitioned by multiple columns (such as year, month, day),
-- the ALTER TABLE command must specify values for all those columns.
alter table census partition (year=1960) set cached in 'pool_name';

-- Cache the data from one partition on up to 4 hosts, to minimize CPU load on any
-- single host when the same data block is processed multiple times.
alter table census partition (year=1970)
 set cached in 'pool_name' with replication = 4;

-- At each stage, check the volume of cached data.
-- For large tables or partitions, the background loading might take some time,
-- so you might have to wait and reissue the statement until all the data
-- has finished being loaded into the cache.
show table stats census;
+-------+-------+--------+------+--------------+--------+
| year | #Rows | #Files | Size | Bytes Cached | Format |
+-------+-------+--------+------+--------------+--------+
1900	-1	1	11B	NOT CACHED	TEXT
1940	-1	1	11B	NOT CACHED	TEXT
1960	-1	1	11B	11B	TEXT
1970	-1	1	11B	NOT CACHED	TEXT
Total	-1	4	44B	11B	
+-------+-------+--------+------+--------------+--------+

CREATE TABLE considerations:

The HDFS caching feature affects the Impala CREATE TABLE statement as follows:

• You can put a CACHED IN 'pool_name' clause and optionally a WITH REPLICATION = number_of_hosts
clause at the end of a CREATE TABLE statement to automatically cache the entire contents of the table, including
any partitions added later. The pool_name is a pool that you previously set up with the hdfs cacheadmin
command.

• Once a table is designated for HDFS caching through the CREATE TABLE statement, if new partitions are added
later through ALTER TABLE ... ADD PARTITION statements, the data in those new partitions is automatically
cached in the same pool.

• If you want to perform repetitive queries on a subset of data from a large table, and it is not practical to designate
the entire table or specific partitions for HDFS caching, you can create a new cached table with just a subset of
the data by using CREATE TABLE ... CACHED IN 'pool_name' AS SELECT ... WHERE When you
are finished with generating reports from this subset of data, drop the table and both the data files and the data
cached in RAM are automatically deleted.

Apache Impala Guide | 503

Tuning Impala for Performance

See CREATE TABLE Statement on page 236 for the full syntax.

Other memory considerations:

Certain DDL operations, such asALTER TABLE ... SET LOCATION, are blockedwhile the underlyingHDFS directories
contain cached files. You must uncache the files first, before changing the location, dropping the table, and so on.

When data is requested to be pinned in memory, that process happens in the background without blocking access to
the data while the caching is in progress. Loading the data from disk could take some time. Impala reads each HDFS
data block from memory if it has been pinned already, or from disk if it has not been pinned yet.

The amount of data that you can pin on each node through the HDFS caching mechanism is subject to a quota that is
enforced by the underlying HDFS service. Before requesting to pin an Impala table or partition in memory, check that
its size does not exceed this quota.

Note: Because the HDFS cache consists of combined memory from all the DataNodes in the cluster,
cached tables or partitions can be bigger than the amount of HDFS cache memory on any single host.

Loading and Removing Data with HDFS Caching Enabled

When HDFS caching is enabled, extra processing happens in the background when you add or remove data through
statements such as INSERT and DROP TABLE.

Inserting or loading data:

• When Impala performs an INSERT or LOAD DATA statement for a table or partition that is cached, the new data
files are automatically cached and Impala recognizes that fact automatically.

• If you perform an INSERT or LOAD DATA through Hive, as always, Impala only recognizes the new data files after
a REFRESH table_name statement in Impala.

• If the cache pool is entirely full, or becomes full before all the requested data can be cached, the Impala DDL
statement returns an error. This is to avoid situations where only some of the requested data could be cached.

• When HDFS caching is enabled for a table or partition, new data files are cached automatically when they are
added to the appropriate directory in HDFS, without the need for a REFRESH statement in Impala. Impala
automatically performs a REFRESH once the new data is loaded into the HDFS cache.

Dropping tables, partitions, or cache pools:

TheHDFS caching feature interactswith the ImpalaDROP TABLE andALTER TABLE ... DROP PARTITION statements
as follows:

• When you issue a DROP TABLE for a table that is entirely cached, or has some partitions cached, the DROP TABLE
succeeds and all the cache directives Impala submitted for that table are removed from the HDFS cache system.

• The same applies to ALTER TABLE ... DROP PARTITION. The operation succeeds and any cache directives
are removed.

• As always, the underlying data files are removed if the dropped table is an internal table, or the dropped partition
is in its default location underneath an internal table. The data files are left alone if the dropped table is an external
table, or if the dropped partition is in a non-default location.

• If you designated the data files as cached through the hdfs cacheadmin command, and the data files are left
behind as described in the previous item, the data files remain cached. Impala only removes the cache directives
submitted by Impala through the CREATE TABLE or ALTER TABLE statements. It is OK to havemultiple redundant
cache directives pertaining to the same files; the directives all have unique IDs and owners so that the system can
tell them apart.

• If you drop an HDFS cache pool through the hdfs cacheadmin command, all the Impala data files are preserved,
just no longer cached. After a subsequentREFRESH,SHOW TABLE STATS reports 0 bytes cached for each associated
Impala table or partition.

Relocating a table or partition:

The HDFS caching feature interacts with the Impala ALTER TABLE ... SET LOCATION statement as follows:

504 | Apache Impala Guide

Tuning Impala for Performance

• If you have designated a table or partition as cached through the CREATE TABLE or ALTER TABLE statements,
subsequent attempts to relocate the table or partition through an ALTER TABLE ... SET LOCATION statement
will fail. Youmust issue anALTER TABLE ... SET UNCACHED statement for the table or partition first. Otherwise,
Impala would lose track of some cached data files and have no way to uncache them later.

Administration for HDFS Caching with Impala

Here are the guidelines and steps to check or change the status of HDFS caching for Impala data:

hdfs cacheadmin command:

• If you drop a cache pool with the hdfs cacheadmin command, Impala queries against the associated data files
will still work, by falling back to reading the files from disk. After performing a REFRESH on the table, Impala
reports the number of bytes cached as 0 for all associated tables and partitions.

• You might use hdfs cacheadmin to get a list of existing cache pools, or detailed information about the pools,
as follows:

hdfs cacheadmin -listDirectives # Basic info
Found 122 entries
 ID POOL REPL EXPIRY PATH
 123 testPool 1 never /user/hive/warehouse/tpcds.store_sales
 124 testPool 1 never /user/hive/warehouse/tpcds.store_sales/ss_date=1998-01-15
 125 testPool 1 never /user/hive/warehouse/tpcds.store_sales/ss_date=1998-02-01
...

hdfs cacheadmin -listDirectives -stats # More details
Found 122 entries
 ID POOL REPL EXPIRY PATH BYTES_NEEDED BYTES_CACHED FILES_NEEDED
 FILES_CACHED
 123 testPool 1 never /user/hive/warehouse/tpcds.store_sales 0 0 0
 0
 124 testPool 1 never /user/hive/warehouse/tpcds.store_sales/ss_date=1998-01-15 143169 143169 1
 1
 125 testPool 1 never /user/hive/warehouse/tpcds.store_sales/ss_date=1998-02-01 112447 112447 1
 1
...

Impala SHOW statement:

• For each table or partition, the SHOW TABLE STATS or SHOW PARTITIONS statement displays the number of
bytes currently cached by the HDFS caching feature. If there are no cache directives in place for that table or
partition, the result set displays NOT CACHED. A value of 0, or a smaller number than the overall size of the table
or partition, indicates that the cache request has been submitted but the data has not been entirely loaded into
memory yet. See SHOW Statement on page 323 for details.

Cloudera Manager:

• You can enable or disable HDFS caching through Cloudera Manager, using the configuration settingMaximum
Memory Used for Caching for the HDFS service. This control sets the HDFS configuration parameter
dfs_datanode_max_locked_memory, which specifies the upper limit of HDFS cache size on each node.

• All the othermanipulation of theHDFS caching settings, such aswhat files are cached, is done through the command
line, either Impala DDL statements or the Linux hdfs cacheadmin command.

Impala memory limits:

The Impala HDFS caching feature interacts with the Impala memory limits as follows:

• The maximum size of each HDFS cache pool is specified externally to Impala, through the hdfs cacheadmin
command.

• All the memory used for HDFS caching is separate from the impalad daemon address space and does not count
towards the limits of the --mem_limit startup option, MEM_LIMIT query option, or further limits imposed
through YARN resource management or the Linux cgroupsmechanism.

• Because accessing HDFS cached data avoids a memory-to-memory copy operation, queries involving cached data
require less memory on the Impala side than the equivalent queries on uncached data. In addition to any
performance benefits in a single-user environment, the reduced memory helps to improve scalability under
high-concurrency workloads.

Apache Impala Guide | 505

Tuning Impala for Performance

Performance Considerations for HDFS Caching with Impala

In Impala 1.4.0 and higher, Impala supports efficient reads from data that is pinned in memory through HDFS caching.
Impala takes advantage of the HDFS API and reads the data frommemory rather than from disk whether the data files
are pinned using Impala DDL statements, or using the command-line mechanism where you specify HDFS paths.

When you examine the output of theimpala-shellSUMMARY command, or look in themetrics report for theimpalad
daemon, you see how many bytes are read from the HDFS cache. For example, this excerpt from a query profile
illustrates that all the data read during a particular phase of the query came from the HDFS cache, because the
BytesRead and BytesReadDataNodeCache values are identical.

HDFS_SCAN_NODE (id=0):(Total: 11s114ms, non-child: 11s114ms, % non-child: 100.00%)
 - AverageHdfsReadThreadConcurrency: 0.00
 - AverageScannerThreadConcurrency: 32.75
 - BytesRead: 10.47 GB (11240756479)
 - BytesReadDataNodeCache: 10.47 GB (11240756479)
 - BytesReadLocal: 10.47 GB (11240756479)
 - BytesReadShortCircuit: 10.47 GB (11240756479)
 - DecompressionTime: 27s572ms

For queries involving smaller amounts of data, or in single-user workloads, youmight not notice a significant difference
in query response time with or without HDFS caching. Even with HDFS caching turned off, the data for the query might
still be in the Linux OS buffer cache. The benefits become clearer as data volume increases, and especially as the system
processes more concurrent queries. HDFS caching improves the scalability of the overall system. That is, it prevents
query performance from declining when the workload outstrips the capacity of the Linux OS cache.

Due to a limitation of HDFS, zero-copy reads are not supported with encryption. Cloudera recommends not using HDFS
caching for Impala data files in encryption zones. The queries fall back to the normal read path during query execution,
which might cause some performance overhead.

SELECT considerations:

The Impala HDFS caching feature interacts with the SELECT statement and query performance as follows:

• Impala automatically reads from memory any data that has been designated as cached and actually loaded into
the HDFS cache. (It could take some time after the initial request to fully populate the cache for a table with large
size or many partitions.) The speedup comes from two aspects: reading from RAM instead of disk, and accessing
the data straight from the cache area instead of copying from one RAM area to another. This second aspect yields
further performance improvement over the standard OS caching mechanism, which still results in
memory-to-memory copying of cached data.

• For small amounts of data, the query speedupmight not be noticeable in terms ofwall clock time. The performance
might be roughly the same with HDFS caching turned on or off, due to recently used data being held in the Linux
OS cache. The difference is more pronounced with:

– Data volumes (for all queries running concurrently) that exceed the size of the Linux OS cache.
– A busy cluster running many concurrent queries, where the reduction in memory-to-memory copying and

overall memory usage during queries results in greater scalability and throughput.
– Thus, to really exercise and benchmark this feature in a development environment, youmight need to simulate

realistic workloads and concurrent queries that match your production environment.
– One way to simulate a heavy workload on a lightly loaded system is to flush the OS buffer cache (on each

DataNode) between iterations of queries against the same tables or partitions:

$ sync
$ echo 1 > /proc/sys/vm/drop_caches

• Impala queries take advantage of HDFS cached data regardless of whether the cache directive was issued by
Impala or externally through the hdfs cacheadmin command, for example for an external table where the
cached data files might be accessed by several different Hadoop components.

• If your query returns a large result set, the time reported for the query could be dominated by the time needed
to print the results on the screen. To measure the time for the underlying query processing, query the COUNT()
of the big result set, which does all the same processing but only prints a single line to the screen.

506 | Apache Impala Guide

Tuning Impala for Performance

Testing Impala Performance
Test to ensure that Impala is configured for optimal performance. If you have installed Impala without Cloudera
Manager, complete the processes described in this topic to help ensure a proper configuration. Even if you installed
Impala with Cloudera Manager, which automatically applies appropriate configurations, these procedures can be used
to verify that Impala is set up correctly.

Checking Impala Configuration Values

You can inspect Impala configuration values by connecting to your Impala server using a browser.

To check Impala configuration values:

1. Use a browser to connect to one of the hosts running impalad in your environment. Connect using an address
of the form http://hostname:port/varz.

Note: In the preceding example, replace hostname and port with the name and port of your
Impala server. The default port is 25000.

2. Review the configured values.

For example, to check that your system is configured to use block locality tracking information, you would check
that the value for dfs.datanode.hdfs-blocks-metadata.enabled is true.

To check data locality:

1. Execute a query on a dataset that is available across multiple nodes. For example, for a table named MyTable
that has a reasonable chance of being spread across multiple DataNodes:

[impalad-host:21000] > SELECT COUNT (*) FROM MyTable

2. After the query completes, review the contents of the Impala logs. You should find a recent message similar to
the following:

Total remote scan volume = 0

The presence of remote scans may indicate impalad is not running on the correct nodes. This can be because some
DataNodes do not have impalad running or it can be because the impalad instance that is starting the query is unable
to contact one or more of the impalad instances.

To understand the causes of this issue:

1. Connect to the debugging web server. By default, this server runs on port 25000. This page lists all impalad
instances running in your cluster. If there are fewer instances than you expect, this often indicates someDataNodes
are not running impalad. Ensure impalad is started on all DataNodes.

2. If you are usingmulti-homed hosts, ensure that the Impala daemon's hostname resolves to the interface onwhich
impalad is running. The hostname Impala is using is displayedwhenimpalad starts. To explicitly set the hostname,
use the --hostname flag.

3. Check that statestored is running as expected. Review the contents of the state store log to ensure all instances
of impalad are listed as having connected to the state store.

Reviewing Impala Logs

You can review the contents of the Impala logs for signs that short-circuit reads or block location tracking are not
functioning. Before checking logs, execute a simple query against a small HDFS dataset. Completing a query task
generates log messages using current settings. Information on starting Impala and executing queries can be found in

Apache Impala Guide | 507

Tuning Impala for Performance

Starting Impala on page 42 and Using the Impala Shell (impala-shell Command) on page 471. Information on logging
can be found in Using Impala Logging on page 575. Log messages and their interpretations are as follows:

InterpretationLog Message

Tracking block locality is not
enabled.

Unknown disk id. This will negatively affect performance. Check
your hdfs settings to enable block location metadata

Native checksumming is not
enabled.

Unable to load native-hadoop library for your platform... using
builtin-java classes where applicable

Understanding Impala Query Performance - EXPLAIN Plans and Query Profiles
To understand the high-level performance considerations for Impala queries, read the output of the EXPLAIN statement
for the query. You can get the EXPLAIN plan without actually running the query itself.

For an overviewof the physical performance characteristics for a query, issue the SUMMARY statement in impala-shell
immediately after executing a query. This condensed information shows which phases of execution took the most
time, and how the estimates for memory usage and number of rows at each phase compare to the actual values.

To understand the detailed performance characteristics for a query, issue the PROFILE statement in impala-shell
immediately after executing a query. This low-level information includes physical details about memory, CPU, I/O, and
network usage, and thus is only available after the query is actually run.

Also, see Performance Considerations for the Impala-HBase Integration on page 559 and Understanding and Tuning
Impala Query Performance for S3 Data on page 571 for examples of interpreting EXPLAIN plans for queries against
HBase tables and data stored in the Amazon Simple Storage System (S3).

Using the EXPLAIN Plan for Performance Tuning

The EXPLAIN statement gives you an outline of the logical steps that a query will perform, such as how the work will
be distributed among the nodes and how intermediate results will be combined to produce the final result set. You
can see these details before actually running the query. You can use this information to check that the query will not
operate in some very unexpected or inefficient way.

[impalad-host:21000] > explain select count(*) from customer_address;
+--+
| Explain String |
+--+
| Estimated Per-Host Requirements: Memory=42.00MB VCores=1 |
| |
| 03:AGGREGATE [MERGE FINALIZE] |
| | output: sum(count(*)) |
| | |
| 02:EXCHANGE [PARTITION=UNPARTITIONED] |
| | |
| 01:AGGREGATE |
| | output: count(*) |
| | |
| 00:SCAN HDFS [default.customer_address] |
| partitions=1/1 size=5.25MB |
+--+

Read the EXPLAIN plan from bottom to top:

• The last part of the plan shows the low-level details such as the expected amount of data that will be read, where
you can judge the effectiveness of your partitioning strategy and estimate how long it will take to scan a table
based on total data size and the size of the cluster.

• As you work your way up, next you see the operations that will be parallelized and performed on each Impala
node.

• At the higher levels, you see how data flows when intermediate result sets are combined and transmitted from
one node to another.

508 | Apache Impala Guide

Tuning Impala for Performance

• See EXPLAIN_LEVELQueryOption on page 310 for details about the EXPLAIN_LEVEL query option, which lets you
customize how much detail to show in the EXPLAIN plan depending on whether you are doing high-level or
low-level tuning, dealing with logical or physical aspects of the query.

The EXPLAIN plan is also printed at the beginning of the query profile report described in Using the Query Profile for
Performance Tuning on page 510, for convenience in examining both the logical and physical aspects of the query
side-by-side.

The amount of detail displayed in the EXPLAIN output is controlled by the EXPLAIN_LEVEL query option. You typically
increase this setting from standard to extended (or from 1 to 2) when doublechecking the presence of table and
column statistics during performance tuning, or when estimating query resource usage in conjunctionwith the resource
management features in CDH 5.

Using the SUMMARY Report for Performance Tuning

The SUMMARY command within the impala-shell interpreter gives you an easy-to-digest overview of the timings
for the different phases of execution for a query. Like the EXPLAIN plan, it is easy to see potential performance
bottlenecks. Like the PROFILE output, it is available after the query is run and so displays actual timing numbers.

The SUMMARY report is also printed at the beginning of the query profile report described in Using the Query Profile
for Performance Tuning on page 510, for convenience in examining high-level and low-level aspects of the query
side-by-side.

For example, here is a query involving an aggregate function, on a single-node VM. The different stages of the query
and their timings are shown (rolled up for all nodes), alongwith estimated and actual values used in planning the query.
In this case, the AVG() function is computed for a subset of data on each node (stage 01) and then the aggregated
results from all nodes are combined at the end (stage 03). You can see which stages took the most time, and whether
any estimates were substantially different than the actual data distribution. (When examining the time values, be sure
to consider the suffixes such as us for microseconds and ms for milliseconds, rather than just looking for the largest
numbers.)

[localhost:21000] > select avg(ss_sales_price) from store_sales where ss_coupon_amt =
0;
+---------------------+
| avg(ss_sales_price) |
+---------------------+
| 37.80770926328327 |
+---------------------+
[localhost:21000] > summary;
+--------------+--------+----------+----------+-------+------------+----------+---------------+-----------------+
| Operator | #Hosts | Avg Time | Max Time | #Rows | Est. #Rows | Peak Mem | Est.
Peak Mem | Detail |
+--------------+--------+----------+----------+-------+------------+----------+---------------+-----------------+
| 03:AGGREGATE | 1 | 1.03ms | 1.03ms | 1 | 1 | 48.00 KB | -1 B
 | MERGE FINALIZE |
| 02:EXCHANGE | 1 | 0ns | 0ns | 1 | 1 | 0 B | -1 B
 | UNPARTITIONED |
| 01:AGGREGATE | 1 | 30.79ms | 30.79ms | 1 | 1 | 80.00 KB | 10.00
MB | |
| 00:SCAN HDFS | 1 | 5.45s | 5.45s | 2.21M | -1 | 64.05 MB | 432.00
 MB | tpc.store_sales |
+--------------+--------+----------+----------+-------+------------+----------+---------------+-----------------+

Notice how the longest initial phase of the query is measured in seconds (s), while later phases working on smaller
intermediate results are measured in milliseconds (ms) or even nanoseconds (ns).

Here is an example from a more complicated query, as it would appear in the PROFILE output:

Operator #Hosts Avg Time Max Time #Rows Est. #Rows Peak Mem Est.
 Peak Mem Detail
--
09:MERGING-EXCHANGE 1 79.738us 79.738us 5 5 0
 -1.00 B UNPARTITIONED
05:TOP-N 3 84.693us 88.810us 5 5 12.00 KB
 120.00 B

Apache Impala Guide | 509

Tuning Impala for Performance

04:AGGREGATE 3 5.263ms 6.432ms 5 5 44.00 KB
 10.00 MB MERGE FINALIZE
08:AGGREGATE 3 16.659ms 27.444ms 52.52K 600.12K 3.20 MB
 15.11 MB MERGE
07:EXCHANGE 3 2.644ms 5.1ms 52.52K 600.12K 0
 0 HASH(o_orderpriority)
03:AGGREGATE 3 342.913ms 966.291ms 52.52K 600.12K 10.80 MB
 15.11 MB
02:HASH JOIN 3 2s165ms 2s171ms 144.87K 600.12K 13.63 MB
 941.01 KB INNER JOIN, BROADCAST
|--06:EXCHANGE 3 8.296ms 8.692ms 57.22K 15.00K 0
 0 BROADCAST
| 01:SCAN HDFS 2 1s412ms 1s978ms 57.22K 15.00K 24.21 MB
 176.00 MB tpch.orders o
00:SCAN HDFS 3 8s032ms 8s558ms 3.79M 600.12K 32.29 MB
 264.00 MB tpch.lineitem l

Using the Query Profile for Performance Tuning

The PROFILE statement, available in the impala-shell interpreter, produces a detailed low-level report showing
how themost recent querywas executed. Unlike theEXPLAIN plan described inUsing the EXPLAIN Plan for Performance
Tuning on page 508, this information is only available after the query has finished. It shows physical details such as the
number of bytes read, maximum memory usage, and so on for each node. You can use this information to determine
if the query is I/O-bound or CPU-bound,whether somenetwork condition is imposing a bottleneck,whether a slowdown
is affecting some nodes but not others, and to check that recommended configuration settings such as short-circuit
local reads are in effect.

By default, time values in the profile output reflect the wall-clock time taken by an operation. For values denoting
system time or user time, the measurement unit is reflected in the metric name, such as ScannerThreadsSysTime
or ScannerThreadsUserTime. For example, a multi-threaded I/O operation might show a small figure for wall-clock
time, while the corresponding system time is larger, representing the sum of the CPU time taken by each thread. Or
a wall-clock time figure might be larger because it counts time spent waiting, while the corresponding system and user
time figures only measure the time while the operation is actively using CPU cycles.

The EXPLAIN plan is also printed at the beginning of the query profile report, for convenience in examining both the
logical and physical aspects of the query side-by-side. The EXPLAIN_LEVEL query option also controls the verbosity of
the EXPLAIN output printed by the PROFILE command.

Here is an example of a query profile, from a relatively straightforward query on a single-node pseudo-distributed
cluster to keep the output relatively brief.

[localhost:21000] > profile;
Query Runtime Profile:
Query (id=6540a03d4bee0691:4963d6269b210ebd):
 Summary:
 Session ID: ea4a197f1c7bf858:c74e66f72e3a33ba
 Session Type: BEESWAX
 Start Time: 2013-12-02 17:10:30.263067000
 End Time: 2013-12-02 17:10:50.932044000
 Query Type: QUERY
 Query State: FINISHED
 Query Status: OK
 Impala Version: impalad version 1.2.1 RELEASE (build
edb5af1bcad63d410bc5d47cc203df3a880e9324)
 User: cloudera
 Network Address: 127.0.0.1:49161
 Default Db: stats_testing
 Sql Statement: select t1.s, t2.s from t1 join t2 on (t1.id = t2.parent)
 Plan:

Estimated Per-Host Requirements: Memory=2.09GB VCores=2

PLAN FRAGMENT 0
 PARTITION: UNPARTITIONED

 4:EXCHANGE
 cardinality: unavailable

510 | Apache Impala Guide

Tuning Impala for Performance

 per-host memory: unavailable
 tuple ids: 0 1

PLAN FRAGMENT 1
 PARTITION: RANDOM

 STREAM DATA SINK
 EXCHANGE ID: 4
 UNPARTITIONED

 2:HASH JOIN
 | join op: INNER JOIN (BROADCAST)
 | hash predicates:
 | t1.id = t2.parent
 | cardinality: unavailable
 | per-host memory: 2.00GB
 | tuple ids: 0 1
 |
 |----3:EXCHANGE
 | cardinality: unavailable
 | per-host memory: 0B
 | tuple ids: 1
 |
 0:SCAN HDFS
 table=stats_testing.t1 #partitions=1/1 size=33B
 table stats: unavailable
 column stats: unavailable
 cardinality: unavailable
 per-host memory: 32.00MB
 tuple ids: 0

PLAN FRAGMENT 2
 PARTITION: RANDOM

 STREAM DATA SINK
 EXCHANGE ID: 3
 UNPARTITIONED

 1:SCAN HDFS
 table=stats_testing.t2 #partitions=1/1 size=960.00KB
 table stats: unavailable
 column stats: unavailable
 cardinality: unavailable
 per-host memory: 96.00MB
 tuple ids: 1

 Query Timeline: 20s670ms
 - Start execution: 2.559ms (2.559ms)
 - Planning finished: 23.587ms (21.27ms)
 - Rows available: 666.199ms (642.612ms)
 - First row fetched: 668.919ms (2.719ms)
 - Unregister query: 20s668ms (20s000ms)
 ImpalaServer:
 - ClientFetchWaitTimer: 19s637ms
 - RowMaterializationTimer: 167.121ms
 Execution Profile 6540a03d4bee0691:4963d6269b210ebd:(Active: 837.815ms, % non-child:
 0.00%)
 Per Node Peak Memory Usage: impala-1.example.com:22000(7.42 MB)
 - FinalizationTimer: 0ns
 Coordinator Fragment:(Active: 195.198ms, % non-child: 0.00%)
 MemoryUsage(500.0ms): 16.00 KB, 7.42 MB, 7.33 MB, 7.10 MB, 6.94 MB, 6.71 MB, 6.56
 MB, 6.40 MB, 6.17 MB, 6.02 MB, 5.79 MB, 5.63 MB, 5.48 MB, 5.25 MB, 5.09 MB, 4.86 MB,
4.71 MB, 4.47 MB, 4.32 MB, 4.09 MB, 3.93 MB, 3.78 MB, 3.55 MB, 3.39 MB, 3.16 MB, 3.01
MB, 2.78 MB, 2.62 MB, 2.39 MB, 2.24 MB, 2.08 MB, 1.85 MB, 1.70 MB, 1.54 MB, 1.31 MB,
1.16 MB, 948.00 KB, 790.00 KB, 553.00 KB, 395.00 KB, 237.00 KB
 ThreadUsage(500.0ms): 1
 - AverageThreadTokens: 1.00
 - PeakMemoryUsage: 7.42 MB
 - PrepareTime: 36.144us
 - RowsProduced: 98.30K (98304)
 - TotalCpuTime: 20s449ms
 - TotalNetworkWaitTime: 191.630ms
 - TotalStorageWaitTime: 0ns

Apache Impala Guide | 511

Tuning Impala for Performance

 CodeGen:(Active: 150.679ms, % non-child: 77.19%)
 - CodegenTime: 0ns
 - CompileTime: 139.503ms
 - LoadTime: 10.7ms
 - ModuleFileSize: 95.27 KB
 EXCHANGE_NODE (id=4):(Active: 194.858ms, % non-child: 99.83%)
 - BytesReceived: 2.33 MB
 - ConvertRowBatchTime: 2.732ms
 - DataArrivalWaitTime: 191.118ms
 - DeserializeRowBatchTimer: 14.943ms
 - FirstBatchArrivalWaitTime: 191.117ms
 - PeakMemoryUsage: 7.41 MB
 - RowsReturned: 98.30K (98304)
 - RowsReturnedRate: 504.49 K/sec
 - SendersBlockedTimer: 0ns
 - SendersBlockedTotalTimer(*): 0ns
 Averaged Fragment 1:(Active: 442.360ms, % non-child: 0.00%)
 split sizes: min: 33.00 B, max: 33.00 B, avg: 33.00 B, stddev: 0.00
 completion times: min:443.720ms max:443.720ms mean: 443.720ms stddev:0ns
 execution rates: min:74.00 B/sec max:74.00 B/sec mean:74.00 B/sec stddev:0.00
 /sec
 num instances: 1
 - AverageThreadTokens: 1.00
 - PeakMemoryUsage: 6.06 MB
 - PrepareTime: 7.291ms
 - RowsProduced: 98.30K (98304)
 - TotalCpuTime: 784.259ms
 - TotalNetworkWaitTime: 388.818ms
 - TotalStorageWaitTime: 3.934ms
 CodeGen:(Active: 312.862ms, % non-child: 70.73%)
 - CodegenTime: 2.669ms
 - CompileTime: 302.467ms
 - LoadTime: 9.231ms
 - ModuleFileSize: 95.27 KB
 DataStreamSender (dst_id=4):(Active: 80.63ms, % non-child: 18.10%)
 - BytesSent: 2.33 MB
 - NetworkThroughput(*): 35.89 MB/sec
 - OverallThroughput: 29.06 MB/sec
 - PeakMemoryUsage: 5.33 KB
 - SerializeBatchTime: 26.487ms
 - ThriftTransmitTime(*): 64.814ms
 - UncompressedRowBatchSize: 6.66 MB
 HASH_JOIN_NODE (id=2):(Active: 362.25ms, % non-child: 3.92%)
 - BuildBuckets: 1.02K (1024)
 - BuildRows: 98.30K (98304)
 - BuildTime: 12.622ms
 - LoadFactor: 0.00
 - PeakMemoryUsage: 6.02 MB
 - ProbeRows: 3
 - ProbeTime: 3.579ms
 - RowsReturned: 98.30K (98304)
 - RowsReturnedRate: 271.54 K/sec
 EXCHANGE_NODE (id=3):(Active: 344.680ms, % non-child: 77.92%)
 - BytesReceived: 1.15 MB
 - ConvertRowBatchTime: 2.792ms
 - DataArrivalWaitTime: 339.936ms
 - DeserializeRowBatchTimer: 9.910ms
 - FirstBatchArrivalWaitTime: 199.474ms
 - PeakMemoryUsage: 156.00 KB
 - RowsReturned: 98.30K (98304)
 - RowsReturnedRate: 285.20 K/sec
 - SendersBlockedTimer: 0ns
 - SendersBlockedTotalTimer(*): 0ns
 HDFS_SCAN_NODE (id=0):(Active: 13.616us, % non-child: 0.00%)
 - AverageHdfsReadThreadConcurrency: 0.00
 - AverageScannerThreadConcurrency: 0.00
 - BytesRead: 33.00 B
 - BytesReadLocal: 33.00 B
 - BytesReadShortCircuit: 33.00 B
 - NumDisksAccessed: 1
 - NumScannerThreadsStarted: 1
 - PeakMemoryUsage: 46.00 KB
 - PerReadThreadRawHdfsThroughput: 287.52 KB/sec

512 | Apache Impala Guide

Tuning Impala for Performance

 - RowsRead: 3
 - RowsReturned: 3
 - RowsReturnedRate: 220.33 K/sec
 - ScanRangesComplete: 1
 - ScannerThreadsInvoluntaryContextSwitches: 26
 - ScannerThreadsTotalWallClockTime: 55.199ms
 - DelimiterParseTime: 2.463us
 - MaterializeTupleTime(*): 1.226us
 - ScannerThreadsSysTime: 0ns
 - ScannerThreadsUserTime: 42.993ms
 - ScannerThreadsVoluntaryContextSwitches: 1
 - TotalRawHdfsReadTime(*): 112.86us
 - TotalReadThroughput: 0.00 /sec
 Averaged Fragment 2:(Active: 190.120ms, % non-child: 0.00%)
 split sizes: min: 960.00 KB, max: 960.00 KB, avg: 960.00 KB, stddev: 0.00
 completion times: min:191.736ms max:191.736ms mean: 191.736ms stddev:0ns
 execution rates: min:4.89 MB/sec max:4.89 MB/sec mean:4.89 MB/sec stddev:0.00
 /sec
 num instances: 1
 - AverageThreadTokens: 0.00
 - PeakMemoryUsage: 906.33 KB
 - PrepareTime: 3.67ms
 - RowsProduced: 98.30K (98304)
 - TotalCpuTime: 403.351ms
 - TotalNetworkWaitTime: 34.999ms
 - TotalStorageWaitTime: 108.675ms
 CodeGen:(Active: 162.57ms, % non-child: 85.24%)
 - CodegenTime: 3.133ms
 - CompileTime: 148.316ms
 - LoadTime: 12.317ms
 - ModuleFileSize: 95.27 KB
 DataStreamSender (dst_id=3):(Active: 70.620ms, % non-child: 37.14%)
 - BytesSent: 1.15 MB
 - NetworkThroughput(*): 23.30 MB/sec
 - OverallThroughput: 16.23 MB/sec
 - PeakMemoryUsage: 5.33 KB
 - SerializeBatchTime: 22.69ms
 - ThriftTransmitTime(*): 49.178ms
 - UncompressedRowBatchSize: 3.28 MB
 HDFS_SCAN_NODE (id=1):(Active: 118.839ms, % non-child: 62.51%)
 - AverageHdfsReadThreadConcurrency: 0.00
 - AverageScannerThreadConcurrency: 0.00
 - BytesRead: 960.00 KB
 - BytesReadLocal: 960.00 KB
 - BytesReadShortCircuit: 960.00 KB
 - NumDisksAccessed: 1
 - NumScannerThreadsStarted: 1
 - PeakMemoryUsage: 869.00 KB
 - PerReadThreadRawHdfsThroughput: 130.21 MB/sec
 - RowsRead: 98.30K (98304)
 - RowsReturned: 98.30K (98304)
 - RowsReturnedRate: 827.20 K/sec
 - ScanRangesComplete: 15
 - ScannerThreadsInvoluntaryContextSwitches: 34
 - ScannerThreadsTotalWallClockTime: 189.774ms
 - DelimiterParseTime: 15.703ms
 - MaterializeTupleTime(*): 3.419ms
 - ScannerThreadsSysTime: 1.999ms
 - ScannerThreadsUserTime: 44.993ms
 - ScannerThreadsVoluntaryContextSwitches: 118
 - TotalRawHdfsReadTime(*): 7.199ms
 - TotalReadThroughput: 0.00 /sec
 Fragment 1:
 Instance 6540a03d4bee0691:4963d6269b210ebf
(host=impala-1.example.com:22000):(Active: 442.360ms, % non-child: 0.00%)
 Hdfs split stats (<volume id>:<# splits>/<split lengths>): 0:1/33.00 B
 MemoryUsage(500.0ms): 69.33 KB
 ThreadUsage(500.0ms): 1
 - AverageThreadTokens: 1.00
 - PeakMemoryUsage: 6.06 MB
 - PrepareTime: 7.291ms
 - RowsProduced: 98.30K (98304)
 - TotalCpuTime: 784.259ms

Apache Impala Guide | 513

Tuning Impala for Performance

 - TotalNetworkWaitTime: 388.818ms
 - TotalStorageWaitTime: 3.934ms
 CodeGen:(Active: 312.862ms, % non-child: 70.73%)
 - CodegenTime: 2.669ms
 - CompileTime: 302.467ms
 - LoadTime: 9.231ms
 - ModuleFileSize: 95.27 KB
 DataStreamSender (dst_id=4):(Active: 80.63ms, % non-child: 18.10%)
 - BytesSent: 2.33 MB
 - NetworkThroughput(*): 35.89 MB/sec
 - OverallThroughput: 29.06 MB/sec
 - PeakMemoryUsage: 5.33 KB
 - SerializeBatchTime: 26.487ms
 - ThriftTransmitTime(*): 64.814ms
 - UncompressedRowBatchSize: 6.66 MB
 HASH_JOIN_NODE (id=2):(Active: 362.25ms, % non-child: 3.92%)
 ExecOption: Build Side Codegen Enabled, Probe Side Codegen Enabled, Hash Table
 Built Asynchronously
 - BuildBuckets: 1.02K (1024)
 - BuildRows: 98.30K (98304)
 - BuildTime: 12.622ms
 - LoadFactor: 0.00
 - PeakMemoryUsage: 6.02 MB
 - ProbeRows: 3
 - ProbeTime: 3.579ms
 - RowsReturned: 98.30K (98304)
 - RowsReturnedRate: 271.54 K/sec
 EXCHANGE_NODE (id=3):(Active: 344.680ms, % non-child: 77.92%)
 - BytesReceived: 1.15 MB
 - ConvertRowBatchTime: 2.792ms
 - DataArrivalWaitTime: 339.936ms
 - DeserializeRowBatchTimer: 9.910ms
 - FirstBatchArrivalWaitTime: 199.474ms
 - PeakMemoryUsage: 156.00 KB
 - RowsReturned: 98.30K (98304)
 - RowsReturnedRate: 285.20 K/sec
 - SendersBlockedTimer: 0ns
 - SendersBlockedTotalTimer(*): 0ns
 HDFS_SCAN_NODE (id=0):(Active: 13.616us, % non-child: 0.00%)
 Hdfs split stats (<volume id>:<# splits>/<split lengths>): 0:1/33.00 B
 Hdfs Read Thread Concurrency Bucket: 0:0% 1:0%
 File Formats: TEXT/NONE:1
 ExecOption: Codegen enabled: 1 out of 1
 - AverageHdfsReadThreadConcurrency: 0.00
 - AverageScannerThreadConcurrency: 0.00
 - BytesRead: 33.00 B
 - BytesReadLocal: 33.00 B
 - BytesReadShortCircuit: 33.00 B
 - NumDisksAccessed: 1
 - NumScannerThreadsStarted: 1
 - PeakMemoryUsage: 46.00 KB
 - PerReadThreadRawHdfsThroughput: 287.52 KB/sec
 - RowsRead: 3
 - RowsReturned: 3
 - RowsReturnedRate: 220.33 K/sec
 - ScanRangesComplete: 1
 - ScannerThreadsInvoluntaryContextSwitches: 26
 - ScannerThreadsTotalWallClockTime: 55.199ms
 - DelimiterParseTime: 2.463us
 - MaterializeTupleTime(*): 1.226us
 - ScannerThreadsSysTime: 0ns
 - ScannerThreadsUserTime: 42.993ms
 - ScannerThreadsVoluntaryContextSwitches: 1
 - TotalRawHdfsReadTime(*): 112.86us
 - TotalReadThroughput: 0.00 /sec
 Fragment 2:
 Instance 6540a03d4bee0691:4963d6269b210ec0
(host=impala-1.example.com:22000):(Active: 190.120ms, % non-child: 0.00%)
 Hdfs split stats (<volume id>:<# splits>/<split lengths>): 0:15/960.00 KB
 - AverageThreadTokens: 0.00
 - PeakMemoryUsage: 906.33 KB
 - PrepareTime: 3.67ms
 - RowsProduced: 98.30K (98304)

514 | Apache Impala Guide

Tuning Impala for Performance

 - TotalCpuTime: 403.351ms
 - TotalNetworkWaitTime: 34.999ms
 - TotalStorageWaitTime: 108.675ms
 CodeGen:(Active: 162.57ms, % non-child: 85.24%)
 - CodegenTime: 3.133ms
 - CompileTime: 148.316ms
 - LoadTime: 12.317ms
 - ModuleFileSize: 95.27 KB
 DataStreamSender (dst_id=3):(Active: 70.620ms, % non-child: 37.14%)
 - BytesSent: 1.15 MB
 - NetworkThroughput(*): 23.30 MB/sec
 - OverallThroughput: 16.23 MB/sec
 - PeakMemoryUsage: 5.33 KB
 - SerializeBatchTime: 22.69ms
 - ThriftTransmitTime(*): 49.178ms
 - UncompressedRowBatchSize: 3.28 MB
 HDFS_SCAN_NODE (id=1):(Active: 118.839ms, % non-child: 62.51%)
 Hdfs split stats (<volume id>:<# splits>/<split lengths>): 0:15/960.00 KB
 Hdfs Read Thread Concurrency Bucket: 0:0% 1:0%
 File Formats: TEXT/NONE:15
 ExecOption: Codegen enabled: 15 out of 15
 - AverageHdfsReadThreadConcurrency: 0.00
 - AverageScannerThreadConcurrency: 0.00
 - BytesRead: 960.00 KB
 - BytesReadLocal: 960.00 KB
 - BytesReadShortCircuit: 960.00 KB
 - NumDisksAccessed: 1
 - NumScannerThreadsStarted: 1
 - PeakMemoryUsage: 869.00 KB
 - PerReadThreadRawHdfsThroughput: 130.21 MB/sec
 - RowsRead: 98.30K (98304)
 - RowsReturned: 98.30K (98304)
 - RowsReturnedRate: 827.20 K/sec
 - ScanRangesComplete: 15
 - ScannerThreadsInvoluntaryContextSwitches: 34
 - ScannerThreadsTotalWallClockTime: 189.774ms
 - DelimiterParseTime: 15.703ms
 - MaterializeTupleTime(*): 3.419ms
 - ScannerThreadsSysTime: 1.999ms
 - ScannerThreadsUserTime: 44.993ms
 - ScannerThreadsVoluntaryContextSwitches: 118
 - TotalRawHdfsReadTime(*): 7.199ms
 - TotalReadThroughput: 0.00 /sec

Detecting and Correcting HDFS Block Skew Conditions
For best performance of Impala parallel queries, the work is divided equally across hosts in the cluster, and all hosts
take approximately equal time to finish their work. If one host takes substantially longer than others, the extra time
needed for the slow host can become the dominant factor in query performance. Therefore, one of the first steps in
performance tuning for Impala is to detect and correct such conditions.

The main cause of uneven performance that you can correct within Impala is skew in the number of HDFS data blocks
processed by each host, where some hosts process substantially more data blocks than others. This condition can
occur because of uneven distribution of the data values themselves, for example causing certain data files or partitions
to be large while others are very small. (Although it is possible to have unevenly distributed data without any problems
with the distribution of HDFS blocks.) Block skew could also be due to the underlying block allocation policies within
HDFS, the replication factor of the data files, and the way that Impala chooses the host to process each data block.

The most convenient way to detect block skew, or slow-host issues in general, is to examine the “executive summary”
information from the query profile after running a query:

• In impala-shell, issue the SUMMARY command immediately after the query is complete, to see just the summary
information. If you detect issues involving skew, youmight switch to issuing the PROFILE command,which displays
the summary information followed by a detailed performance analysis.

• In the Cloudera Manager interface or the Impala debug web UI, click on the Profile link associated with the query
after it is complete. The executive summary information is displayed early in the profile output.

Apache Impala Guide | 515

Tuning Impala for Performance

For each phase of the query, you see an Avg Time and aMax Time value, along with #Hosts indicating howmany hosts
are involved in that query phase. For all the phases with #Hosts greater than one, look for cases where the maximum
time is substantially greater than the average time. Focus on the phases that took the longest, for example, those
taking multiple seconds rather than milliseconds or microseconds.

If you detect that some hosts take longer than others, first rule out non-Impala causes. One reason that some hosts
could be slower than others is if those hosts have less capacity than the others, or if they are substantially busier due
to unevenly distributed non-Impala workloads:

• For clusters running Impala, keep the relative capacities of all hosts roughly equal. Any cost savings from including
some underpowered hosts in the cluster will likely be outweighed by poor or uneven performance, and the time
spent diagnosing performance issues.

• If non-Impala workloads cause slowdowns on some hosts but not others, use the appropriate load-balancing
techniques for the non-Impala components to smooth out the load across the cluster.

If the hosts on your cluster are evenly powered and evenly loaded, examine the detailed profile output to determine
which host is taking longer than others for the query phase in question. Examine howmany bytes are processed during
that phase on that host, how much memory is used, and how many bytes are transmitted across the network.

Themost common symptom is a higher number of bytes read on one host than others, due to one host being requested
to process a higher number of HDFS data blocks. This condition is more likely to occur when the number of blocks
accessed by the query is relatively small. For example, if you have a 10-node cluster and the query processes 10 HDFS
blocks, each node might not process exactly one block. If one node sits idle while another node processes two blocks,
the query could take twice as long as if the data was perfectly distributed.

Possible solutions in this case include:

• If the query is artificially small, perhaps for benchmarking purposes, scale it up to process a larger data set. For
example, if somenodes read 10HDFS data blockswhile others read 11, the overall effect of the uneven distribution
is much lower than when some nodes did twice as much work as others. As a guideline, aim for a “sweet spot”
where each node reads 2 GB or more from HDFS per query. Queries that process lower volumes than that could
experience inconsistent performance that smooths out as queries become more data-intensive.

• If the query processes only a few large blocks, so that many nodes sit idle and cannot help to parallelize the query,
consider reducing the overall block size. For example, you might adjust the PARQUET_FILE_SIZE query option
before copying or converting data into a Parquet table. Or you might adjust the granularity of data files produced
earlier in the ETL pipeline by non-Impala components. In Impala 2.0 and later, the default Parquet block size is
256 MB, reduced from 1 GB, to improve parallelism for common cluster sizes and data volumes.

• Reduce the amount of compression applied to the data. For text data files, the highest degree of compression
(gzip) produces unsplittable files that aremore difficult for Impala to process in parallel, and require extramemory
during processing to hold the compressed and uncompressed data simultaneously. For binary formats such as
Parquet and Avro, compression can result in fewer data blocks overall, but remember that when queries process
relatively few blocks, there is less opportunity for parallel execution and many nodes in the cluster might sit idle.
Note that when Impala writes Parquet data with the query option COMPRESSION_CODEC=NONE enabled, the data
is still typically compact due to the encoding schemes used by Parquet, independent of the final compression
step.

516 | Apache Impala Guide

Tuning Impala for Performance

Scalability Considerations for Impala

This section explains how the size of your cluster and the volume of data influences SQL performance and schema
design for Impala tables. Typically, adding more cluster capacity reduces problems due to memory limits or disk
throughput. On the other hand, larger clusters are more likely to have other kinds of scalability issues, such as a single
slow node that causes performance problems for queries.

A good source of tips related to scalability and performance tuning is the Impala Cookbook presentation. These slides
are updated periodically as new features come out and new benchmarks are performed.

Scalability Considerations for the Impala Statestore
Before CDH 5.3, the statestore sent only one kind of message to its subscribers. This message contained all updates
for any topics that a subscriber had subscribed to. It also served to let subscribers know that the statestore had not
failed, and conversely the statestore used the success of sending a heartbeat to a subscriber to decide whether or not
the subscriber had failed.

Combining topic updates and failure detection in a single message led to bottlenecks in clusters with large numbers
of tables, partitions, and HDFS data blocks. When the statestore was overloaded with metadata updates to transmit,
heartbeat messages were sent less frequently, sometimes causing subscribers to time out their connection with the
statestore. Increasing the subscriber timeout and decreasing the frequency of statestore heartbeats worked around
the problem, but reduced responsiveness when the statestore failed or restarted.

As of CDH 5.3, the statestore now sends topic updates and heartbeats in separate messages. This allows the statestore
to send and receive a steady stream of lightweight heartbeats, and removes the requirement to send topic updates
according to a fixed schedule, reducing statestore network overhead.

The statestore now has the following relevant configuration flags for the statestored daemon:

-statestore_num_update_threads

The number of threads inside the statestore dedicated to sending topic updates. You should not typically need to
change this value.

Default: 10

-statestore_update_frequency_ms

The frequency, in milliseconds, with which the statestore tries to send topic updates to each subscriber. This is a
best-effort value; if the statestore is unable to meet this frequency, it sends topic updates as fast as it can. You
should not typically need to change this value.

Default: 2000

-statestore_num_heartbeat_threads

The number of threads inside the statestore dedicated to sending heartbeats. You should not typically need to
change this value.

Default: 10

-statestore_heartbeat_frequency_ms

The frequency, in milliseconds, with which the statestore tries to send heartbeats to each subscriber. This value
should be good for large catalogs and clusters up to approximately 150 nodes. Beyond that, you might need to
increase this value to make the interval longer between heartbeat messages.

Default: 1000 (one heartbeat message every second)

As of CDH 5.3, not all of these flags are present in the Cloudera Manager user interface. Some must be set using the
Advanced Configuration Snippet fields for the statestore component.

Apache Impala Guide | 517

Scalability Considerations for Impala

http://www.slideshare.net/cloudera/the-impala-cookbook-42530186

If it takes a very long time for a cluster to start up, and impala-shell consistently displays This Impala daemon
is not ready to accept user requests, the statestore might be taking too long to send the entire catalog
topic to the cluster. In this case, consider adding --load_catalog_in_background=false to your catalog service
configuration. This setting stops the statestore from loading the entire catalog into memory at cluster startup. Instead,
metadata for each table is loaded when the table is accessed for the first time.

SQL Operations that Spill to Disk
Certain memory-intensive operations write temporary data to disk (known as spilling to disk) when Impala is close to
exceeding its memory limit on a particular host.

The result is a query that completes successfully, rather than failing with an out-of-memory error. The tradeoff is
decreased performance due to the extra disk I/O to write the temporary data and read it back in. The slowdown could
be potentially be significant. Thus, while this feature improves reliability, you should optimize your queries, system
parameters, and hardware configuration to make this spilling a rare occurrence.

What kinds of queries might spill to disk:

Several SQL clauses and constructs require memory allocations that could activat the spilling mechanism:

• when a query uses a GROUP BY clause for columnswithmillions or billions of distinct values, Impala keeps a similar
number of temporary results in memory, to accumulate the aggregate results for each value in the group.

• When large tables are joined together, Impala keeps the values of the join columns from one table in memory,
to compare them to incoming values from the other table.

• When a large result set is sorted by the ORDER BY clause, each node sorts its portion of the result set in memory.

• The DISTINCT and UNION operators build in-memory data structures to represent all values found so far, to
eliminate duplicates as the query progresses.

How Impala handles scratch disk space for spilling:

By default, intermediate files used during large sort, join, aggregation, or analytic function operations are stored in
the directory /tmp/impala-scratch . These files are removed when the operation finishes. (Multiple concurrent
queries can perform operations that use the “spill to disk” technique, without any name conflicts for these temporary
files.) You can specify a different location by starting the impalad daemon with the
--scratch_dirs="path_to_directory" configurationoptionor the equivalent configurationoption in theCloudera
Manager user interface. You can specify a single directory, or a comma-separated list of directories. The scratch
directories must be on the local filesystem, not in HDFS. You might specify different directory paths for different hosts,
depending on the capacity and speed of the available storage devices. In CDH 5.5 / Impala 2.3 or higher, Impala
successfully starts (with a warning written to the log) if it cannot create or read and write files in one of the scratch
directories. If there is less than 1 GB free on the filesystem where that directory resides, Impala still runs, but writes a
warning message to its log. If Impala encounters an error reading or writing files in a scratch directory during a query,
Impala logs the error and the query fails.

Memory usage for SQL operators:

The infrastructure of the spilling feature affects the way the affected SQL operators, such as GROUP BY, DISTINCT,
and joins, usememory. On each host that participates in the query, each such operator in a query accumulatesmemory
while building the data structure to process the aggregation or join operation. The amount of memory used depends
on the portion of the data being handled by that host, and thus might be different from one host to another. When
the amount of memory being used for the operator on a particular host reaches a threshold amount, Impala reserves
an additional memory buffer to use as a work area in case that operator causes the query to exceed the memory limit
for that host. After allocating the memory buffer, the memory used by that operator remains essentially stable or
grows only slowly, until the point where the memory limit is reached and the query begins writing temporary data to
disk.

Prior to Impala 2.2 (CDH 5.4), the extra memory buffer for an operator that might spill to disk was allocated when the
data structure used by the applicable SQL operator reaches 16 MB in size, and the memory buffer itself was 512 MB.

518 | Apache Impala Guide

Scalability Considerations for Impala

In Impala 2.2, these values are halved: the threshold value is 8 MB and the memory buffer is 256 MB. In Impala 2.3 /
CDH 5.5 and higher, the memory for the buffer is allocated in pieces, only as needed, to avoid sudden large jumps in
memory usage. A query that uses multiple such operators might allocate multiple such memory buffers, as the size of
the data structure for each operator crosses the threshold on a particular host.

Therefore, a query that processes a relatively small amount of data on each host would likely never reach the threshold
for any operator, and would never allocate any extra memory buffers. A query that did process millions of groups,
distinct values, join keys, and so on might cross the threshold, causing its memory requirement to rise suddenly and
then flatten out. The larger the cluster, less data is processed on any particular host, thus reducing the chance of
requiring the extra memory allocation.

Added in: This feature was added to the ORDER BY clause in Impala 1.4 for CDH 4, and in CDH 5.1. This feature was
extended to cover join queries, aggregation functions, and analytic functions in Impala 2.0 for CDH 4, and in CDH 5.2.
The size of the memory work area required by each operator that spills was reduced from 512 megabytes to 256
megabytes in Impala 2.2 (CDH 5.4).

Avoiding queries that spill to disk:

Because the extra I/O can impose significant performance overhead on these types of queries, try to avoid this situation
by using the following steps:

1. Detect how often queries spill to disk, and how much temporary data is written. Refer to the following sources:

• The output of the PROFILE command in the impala-shell interpreter. This data shows the memory usage
for each host and in total across the cluster. The BlockMgr.BytesWritten counter reports howmuch data
was written to disk during the query.

• The Impala Queries dialog in Cloudera Manager. You can see the peak memory usage for a query, combined
across all nodes in the cluster.

• The Queries tab in the Impala debug web user interface. Select the query to examine and click the
corresponding Profile link. This data breaks down the memory usage for a single host within the cluster, the
host whose web interface you are connected to.

2. Use one or more techniques to reduce the possibility of the queries spilling to disk:

• Increase the Impala memory limit if practical, for example, if you can increase the available memory by more
than the amount of temporary data written to disk on a particular node. Remember that in Impala 2.0 and
later, you can issue SET MEM_LIMIT as a SQL statement, which lets you fine-tune the memory usage for
queries from JDBC and ODBC applications.

• Increase the number of nodes in the cluster, to increase the aggregatememory available to Impala and reduce
the amount of memory required on each node.

• Increase the overall memory capacity of each DataNode at the hardware level.
• On a clusterwith resources shared between Impala and other Hadoop components, use resourcemanagement

features to allocate more memory for Impala. See Integrated Resource Management with YARN on page 83
for details.

• If thememory pressure is due to runningmany concurrent queries rather than a fewmemory-intensive ones,
consider using the Impala admission control feature to lower the limit on the number of concurrent queries.
By spacing out the most resource-intensive queries, you can avoid spikes in memory usage and improve
overall response times. See Admission Control and Query Queuing on page 75 for details.

• Tune the queries with the highest memory requirements, using one or more of the following techniques:

– Run the COMPUTE STATS statement for all tables involved in large-scale joins and aggregation queries.
– Minimize your use of STRING columns in join columns. Prefer numeric values instead.
– Examine the EXPLAIN plan to understand the execution strategy being used for the most

resource-intensive queries. See Using the EXPLAIN Plan for Performance Tuning on page 508 for details.
– If Impala still chooses a suboptimal execution strategy even with statistics available, or if it is impractical

to keep the statistics up to date for huge or rapidly changing tables, add hints to the most
resource-intensive queries to select the right execution strategy. See Query Hints in Impala SELECT
Statements on page 302 for details.

Apache Impala Guide | 519

Scalability Considerations for Impala

• If your queries experience substantial performance overhead due to spilling, enable the
DISABLE_UNSAFE_SPILLS query option. This option prevents queries whose memory usage is likely to be
exorbitant from spilling to disk. See DISABLE_UNSAFE_SPILLS Query Option (CDH 5.2 or higher only) on page
309 for details. As you tune problematic queries using the preceding steps, fewer and fewer will be cancelled
by this option setting.

Testing performance implications of spilling to disk:

To artificially provoke spilling, to test this feature and understand the performance implications, use a test environment
with a memory limit of at least 2 GB. Issue the SET command with no arguments to check the current setting for the
MEM_LIMIT query option. Set the query option DISABLE_UNSAFE_SPILLS=true. This option limits the spill-to-disk
feature to prevent runaway disk usage fromqueries that are known in advance to be suboptimal.Withinimpala-shell,
run a query that you expect to be memory-intensive, based on the criteria explained earlier. A self-join of a large table
is a good candidate:

select count(*) from big_table a join big_table b using (column_with_many_values);

Issue the PROFILE command to get a detailed breakdown of the memory usage on each node during the query. The
crucial part of the profile output concerning memory is the BlockMgr portion. For example, this profile shows that
the query did not quite exceed the memory limit.

BlockMgr:
 - BlockWritesIssued: 1
 - BlockWritesOutstanding: 0
 - BlocksCreated: 24
 - BlocksRecycled: 1
 - BufferedPins: 0
 - MaxBlockSize: 8.00 MB (8388608)

- MemoryLimit: 200.00 MB (209715200)
- PeakMemoryUsage: 192.22 MB (201555968)

 - TotalBufferWaitTime: 0ns
 - TotalEncryptionTime: 0ns
 - TotalIntegrityCheckTime: 0ns
 - TotalReadBlockTime: 0ns

In this case, because the memory limit was already below any recommended value, I increased the volume of data for
the query rather than reducing the memory limit any further.

Set the MEM_LIMIT query option to a value that is smaller than the peakmemory usage reported in the profile output.
Do not specify a memory limit lower than about 300 MB, because with such a low limit, queries could fail to start for
other reasons. Now try the memory-intensive query again.

Check if the query fails with a message like the following:

WARNINGS: Spilling has been disabled for plans that do not have stats and are not hinted
to prevent potentially bad plans from using too many cluster resources. Compute stats
on
these tables, hint the plan or disable this behavior via query options to enable spilling.

If so, the query could have consumed substantial temporary disk space, slowing down so much that it would not
complete in any reasonable time. Rather than rely on the spill-to-disk feature in this case, issue the COMPUTE STATS
statement for the table or tables in your sample query. Then run the query again, check the peak memory usage again
in the PROFILE output, and adjust the memory limit again if necessary to be lower than the peak memory usage.

At this point, you have a query that is memory-intensive, but Impala can optimize it efficiently so that the memory
usage is not exorbitant. You have set an artificial constraint through the MEM_LIMIT option so that the query would
normally fail with an out-of-memory error. But the automatic spill-to-disk featuremeans that the query should actually
succeed, at the expense of some extra disk I/O to read and write temporary work data.

520 | Apache Impala Guide

Scalability Considerations for Impala

Try the query again, and confirm that it succeeds. Examine the PROFILE output again. This time, look for lines of this
form:

- SpilledPartitions: N

If you see any such lines with N greater than 0, that indicates the query would have failed in Impala releases prior to
2.0, but now it succeeded because of the spill-to-disk feature. Examine the total time taken by theAGGREGATION_NODE
or other query fragments containing non-zero SpilledPartitions values. Compare the times to similar fragments
that did not spill, for example in the PROFILE output when the same query is run with a higher memory limit. This
gives you an idea of the performance penalty of the spill operation for a particular query with a particular memory
limit. If you make the memory limit just a little lower than the peak memory usage, the query only needs to write a
small amount of temporary data to disk. The lower you set the memory limit, the more temporary data is written and
the slower the query becomes.

Now repeat this procedure for actual queries used in your environment. Use the DISABLE_UNSAFE_SPILLS setting
to identify cases where queries used more memory than necessary due to lack of statistics on the relevant tables and
columns, and issue COMPUTE STATS where necessary.

When to use DISABLE_UNSAFE_SPILLS:

You might wonder, why not leave DISABLE_UNSAFE_SPILLS turned on all the time. Whether and how frequently to
use this option depends on your system environment and workload.

DISABLE_UNSAFE_SPILLS is suitable for an environment with ad hoc queries whose performance characteristics
and memory usage are not known in advance. It prevents “worst-case scenario” queries that use large amounts of
memory unnecessarily. Thus, you might turn this option on within a session while developing new SQL code, even
though it is turned off for existing applications.

Organizations where table and column statistics are generally up-to-date might leave this option turned on all the
time, again to avoid worst-case scenarios for untested queries or if a problem in the ETL pipeline results in a table with
no statistics. Turning on DISABLE_UNSAFE_SPILLS lets you “fail fast” in this case and immediately gather statistics
or tune the problematic queries.

Some organizations might leave this option turned off. For example, you might have tables large enough that the
COMPUTE STATS takes substantial time to run, making it impractical to re-run after loading new data. If you have
examined the EXPLAIN plans of your queries and know that they are operating efficiently, you might leave
DISABLE_UNSAFE_SPILLS turned off. In that case, you know that any queries that spill will not go overboard with
their memory consumption.

Turning off the spill-to-disk feature:

You might turn off the spill-to-disk feature if you are in an environment with constraints on disk space, or if you prefer
for queries that exceed the memory capacity in your cluster to “fail fast” so that you can tune and retry them.

To turn off this feature, set the following configuration options for each impalad daemon, either through the impalad
advanced configuration snippet in Cloudera Manager, or during impalad startup on each DataNode on systems not
managed by Cloudera Manager:

-enable_partitioned_aggregation=false
-enable_partitioned_hash_join=false

Limits on Query Size and Complexity
There are hardcoded limits on the maximum size and complexity of queries. Currently, the maximum number of
expressions in a query is 2000. You might exceed the limits with large or deeply nested queries produced by business
intelligence tools or other query generators.

Apache Impala Guide | 521

Scalability Considerations for Impala

If you have the ability to customize such queries or the query generation logic that produces them, replace sequences
of repetitive expressions with single operators such as IN or BETWEEN that can represent multiple values or ranges.
For example, instead of a large number of OR clauses:

WHERE val = 1 OR val = 2 OR val = 6 OR val = 100 ...

use a single IN clause:

WHERE val IN (1,2,6,100,...)

Scalability Considerations for Impala I/O
Impala parallelizes its I/O operations aggressively, therefore the more disks you can attach to each host, the better.
Impala retrieves data from disk so quickly using bulk read operations on large blocks, that most queries are CPU-bound
rather than I/O-bound.

Because the kind of sequential scanning typically done by Impala queries does not benefitmuch from the random-access
capabilities of SSDs, spinning disks typically provide the most cost-effective kind of storage for Impala data, with little
or no performance penalty as compared to SSDs.

Resourcemanagement features such as YARN, Llama, and admission control typically constrain the amount ofmemory,
CPU, or overall number of queries in a high-concurrency environment. Currently, there is no throttling mechanism for
Impala I/O.

Scalability Considerations for Table Layout
Due to the overhead of retrieving and updating table metadata in the metastore database, try to limit the number of
columns in a table to a maximum of approximately 2000. Although Impala can handle wider tables than this, the
metastore overhead can become significant, leading to query performance that is slower than expected based on the
actual data volume.

Tominimize overhead related to themetastore database and Impala query planning, try to limit the number of partitions
for any partitioned table to a few tens of thousands.

522 | Apache Impala Guide

Scalability Considerations for Impala

Partitioning for Impala Tables

By default, all the data files for a table are located in a single directory. Partitioning is a technique for physically dividing
the data during loading, based on values from one or more columns, to speed up queries that test those columns. For
example, with a school_records table partitioned on a year column, there is a separate data directory for each
different year value, and all the data for that year is stored in a data file in that directory. A query that includes a WHERE
condition such as YEAR=1966, YEAR IN (1989,1999), or YEAR BETWEEN 1984 AND 1989 can examine only the
data files from the appropriate directory or directories, greatly reducing the amount of data to read and test.

See Attaching an External Partitioned Table to an HDFS Directory Structure on page 58 for an example that illustrates
the syntax for creating partitioned tables, the underlying directory structure in HDFS, and how to attach a partitioned
Impala external table to data files stored elsewhere in HDFS.

Parquet is a popular format for partitioned Impala tables because it is well suited to handle huge data volumes. See
Query Performance for Impala Parquet Tables on page 539 for performance considerations for partitioned Parquet
tables.

See NULL on page 188 for details about how NULL values are represented in partitioned tables.

See Using Impala to Query the Amazon S3 Filesystem on page 567 for details about setting up tables where some or
all partitions reside on the Amazon Simple Storage Service (S3).

When to Use Partitioned Tables
Partitioning is typically appropriate for:

• Tables that are very large, where reading the entire data set takes an impractical amount of time.
• Tables that are always or almost always queried with conditions on the partitioning columns. In our example of

a table partitioned by year, SELECT COUNT(*) FROM school_records WHERE year = 1985 is efficient,
only examining a small fraction of the data; but SELECT COUNT(*) FROM school_records has to process a
separate data file for each year, resulting in more overall work than in an unpartitioned table. You would probably
not partition this way if you frequently queried the table based on last name, student ID, and so onwithout testing
the year.

• Columns that have reasonable cardinality (number of different values). If a column only has a small number of
values, for example Male or Female, you do not gain much efficiency by eliminating only about 50% of the data
to read for each query. If a column has only a few rows matching each value, the number of directories to process
can become a limiting factor, and the data file in each directory could be too small to take advantage of the Hadoop
mechanism for transmitting data in multi-megabyte blocks. For example, you might partition census data by year,
store sales data by year and month, and web traffic data by year, month, and day. (Some users with high volumes
of incoming data might even partition down to the individual hour and minute.)

• Data that already passes through an extract, transform, and load (ETL) pipeline. The values of the partitioning
columns are stripped from the original data files and represented by directory names, so loading data into a
partitioned table involves some sort of transformation or preprocessing.

SQL Statements for Partitioned Tables
In terms of Impala SQL syntax, partitioning affects these statements:

• CREATE TABLE: you specify a PARTITIONED BY clause when creating the table to identify names and data types
of the partitioning columns. These columns are not included in the main list of columns for the table.

• ALTER TABLE: you can add or drop partitions, toworkwith different portions of a huge data set. You can designate
the HDFS directory that holds the data files for a specific partition.With data partitioned by date values, youmight
“age out” data that is no longer relevant.

Apache Impala Guide | 523

Partitioning for Impala Tables

Note: If you are creating a partition for the first time and specifying its location, for maximum
efficiency, use a single ALTER TABLE statement including both the ADD PARTITION and
LOCATION clauses, rather than separate statements with ADD PARTITION and SET LOCATION
clauses.

• INSERT: When you insert data into a partitioned table, you identify the partitioning columns. One or more values
from each inserted row are not stored in data files, but instead determine the directory where that row value is
stored. You can also specify which partition to load a set of data into, with INSERT OVERWRITE statements; you
can replace the contents of a specific partition but you cannot append data to a specific partition.

By default, if an INSERT statement creates any new subdirectories underneath a partitioned table, those
subdirectories are assigned default HDFS permissions for the impala user. To make each subdirectory have the
same permissions as its parent directory in HDFS, specify the --insert_inherit_permissions startup option
for the impalad daemon.

• Although the syntax of the SELECT statement is the samewhether or not the table is partitioned, the way queries
interact with partitioned tables can have a dramatic impact on performance and scalability. The mechanism that
lets queries skip certain partitions during a query is known as partition pruning; see Partition Pruning for Queries
on page 525 for details.

• In Impala 1.4 and later, there is a SHOW PARTITIONS statement that displays information about each partition
in a table. See SHOW Statement on page 323 for details.

Static and Dynamic Partitioning Clauses
Specifying all the partition columns in a SQL statement is called static partitioning, because the statement affects a
single predictable partition. For example, you use static partitioning with an ALTER TABLE statement that affects only
one partition, or with an INSERT statement that inserts all values into the same partition:

insert into t1 partition(x=10, y='a') select c1 from some_other_table;

When you specify some partition key columns in an INSERT statement, but leave out the values, Impala determines
which partition to insert. This technique is called dynamic partitioning:

insert into t1 partition(x, y='b') select c1, c2 from some_other_table;
-- Create new partition if necessary based on variable year, month, and day; insert a
single value.
insert into weather partition (year, month, day) select 'cloudy',2014,4,21;
-- Create new partition if necessary for specified year and month but variable day;
insert a single value.
insert into weather partition (year=2014, month=04, day) select 'sunny',22;

The more key columns you specify in the PARTITION clause, the fewer columns you need in the SELECT list. The
trailing columns in the SELECT list are substituted in order for the partition key columns with no specified value.

Permissions for Partition Subdirectories
By default, if an INSERT statement creates any new subdirectories underneath a partitioned table, those subdirectories
are assigned default HDFS permissions for the impala user. To make each subdirectory have the same permissions
as its parent directory in HDFS, specify the --insert_inherit_permissions startup option for the impalad
daemon.

524 | Apache Impala Guide

Partitioning for Impala Tables

Partition Pruning for Queries
Partition pruning refers to the mechanism where a query can skip reading the data files corresponding to one or more
partitions. If you can arrange for queries to prune large numbers of unnecessary partitions from the query execution
plan, the queries use fewer resources and are thus proportionally faster and more scalable.

For example, if a table is partitioned by columns YEAR, MONTH, and DAY, then WHERE clauses such as WHERE year =
2013, WHERE year < 2010, or WHERE year BETWEEN 1995 AND 1998 allow Impala to skip the data files in all
partitions outside the specified range. Likewise, WHERE year = 2013 AND month BETWEEN 1 AND 3 could prune
even more partitions, reading the data files for only a portion of one year.

Checking if Partition Pruning Happens for a Query

To check the effectiveness of partition pruning for a query, check the EXPLAIN output for the query before running
it. For example, this example shows a table with 3 partitions, where the query only reads 1 of them. The notation
#partitions=1/3 in the EXPLAIN plan confirms that Impala can do the appropriate partition pruning.

[localhost:21000] > insert into census partition (year=2010) values ('Smith'),('Jones');
[localhost:21000] > insert into census partition (year=2011) values
('Smith'),('Jones'),('Doe');
[localhost:21000] > insert into census partition (year=2012) values ('Smith'),('Doe');
[localhost:21000] > select name from census where year=2010;
+-------+
| name |
+-------+
| Smith |
| Jones |
+-------+
[localhost:21000] > explain select name from census where year=2010;
+--+
| Explain String |
+--+
| PLAN FRAGMENT 0 |
| PARTITION: UNPARTITIONED |
| |
| 1:EXCHANGE |
| |
| PLAN FRAGMENT 1 |
| PARTITION: RANDOM |
| |
| STREAM DATA SINK |
| EXCHANGE ID: 1 |
| UNPARTITIONED |
| |
| 0:SCAN HDFS |
| table=predicate_propagation.census #partitions=1/3 size=12B |
+--+

For a report of the volume of data that was actually read and processed at each stage of the query, check the output
of the SUMMARY command immediately after running the query. For a more detailed analysis, look at the output of
the PROFILE command; it includes this same summary report near the start of the profile output.

What SQL Constructs Work with Partition Pruning

Impala can even do partition pruning in cases where the partition key column is not directly compared to a constant,
by applying the transitive property to other parts of the WHERE clause. This technique is known as predicate propagation,
and is available in Impala 1.2.2 and later. In this example, the census table includes another column indicating when
the data was collected, which happens in 10-year intervals. Even though the query does not compare the partition key
column (YEAR) to a constant value, Impala can deduce that only the partition YEAR=2010 is required, and again only
reads 1 out of 3 partitions.

[localhost:21000] > drop table census;
[localhost:21000] > create table census (name string, census_year int) partitioned by
(year int);

Apache Impala Guide | 525

Partitioning for Impala Tables

[localhost:21000] > insert into census partition (year=2010) values
('Smith',2010),('Jones',2010);
[localhost:21000] > insert into census partition (year=2011) values
('Smith',2020),('Jones',2020),('Doe',2020);
[localhost:21000] > insert into census partition (year=2012) values
('Smith',2020),('Doe',2020);
[localhost:21000] > select name from census where year = census_year and census_year=2010;
+-------+
| name |
+-------+
| Smith |
| Jones |
+-------+
[localhost:21000] > explain select name from census where year = census_year and
census_year=2010;
+--+
| Explain String |
+--+
| PLAN FRAGMENT 0 |
| PARTITION: UNPARTITIONED |
| |
| 1:EXCHANGE |
| |
| PLAN FRAGMENT 1 |
| PARTITION: RANDOM |
| |
| STREAM DATA SINK |
| EXCHANGE ID: 1 |
| UNPARTITIONED |
| |
| 0:SCAN HDFS |
| table=predicate_propagation.census #partitions=1/3 size=22B |
| predicates: census_year = 2010, year = census_year |
+--+

If a view applies to a partitioned table, any partition pruning considers the clauses on both the original query and any
additional WHERE predicates in the query that refers to the view. Prior to Impala 1.4, only the WHERE clauses on the
original query from the CREATE VIEW statement were used for partition pruning.

In queries involving both analytic functions and partitioned tables, partition pruning only occurs for columns named
in the PARTITION BY clause of the analytic function call. For example, if an analytic function query has a clause such
as WHERE year=2016, the way to make the query prune all other YEAR partitions is to include PARTITION BY year
in the analytic function call; for example, OVER (PARTITION BY year,other_columns
other_analytic_clauses).

Partition Key Columns
The columns you choose as the partition keys should be ones that are frequently used to filter query results in important,
large-scale queries. Popular examples are some combination of year, month, and day when the data has associated
time values, and geographic region when the data is associated with some place.

• For time-based data, split out the separate parts into their own columns, because Impala cannot partition based
on a TIMESTAMP column.

• The data type of the partition columns does not have a significant effect on the storage required, because the
values from those columns are not stored in the data files, rather they are represented as strings inside HDFS
directory names.

• Partitioned tables can contain complex type columns. All the partition key columns must be scalar types.

• Remember that when Impala queries data stored in HDFS, it is most efficient to use multi-megabyte files to take
advantage of the HDFS block size. For Parquet tables, the block size (and ideal size of the data files) is 256 MB in
Impala 2.0 and later. Therefore, avoid specifying too many partition key columns, which could result in individual
partitions containing only small amounts of data. For example, if you receive 1 GB of data per day, you might
partition by year, month, and day; while if you receive 5 GB of data perminute, youmight partition by year, month,

526 | Apache Impala Guide

Partitioning for Impala Tables

day, hour, and minute. If you have data with a geographic component, you might partition based on postal code
if you have many megabytes of data for each postal code, but if not, you might partition by some larger region
such as city, state, or country. state

Setting Different File Formats for Partitions
Partitioned tables have the flexibility to use different file formats for different partitions. (For background information
about the different file formats Impala supports, see How Impala Works with Hadoop File Formats on page 528.) For
example, if you originally received data in text format, then received new data in RCFile format, and eventually began
receiving data in Parquet format, all that data could reside in the same table for queries. You just need to ensure that
the table is structured so that the data files that use different file formats reside in separate partitions.

For example, here is how you might switch from text to Parquet data as you receive data for different years:

[localhost:21000] > create table census (name string) partitioned by (year smallint);
[localhost:21000] > alter table census add partition (year=2012); -- Text format;

[localhost:21000] > alter table census add partition (year=2013); -- Text format switches
 to Parquet before data loaded;
[localhost:21000] > alter table census partition (year=2013) set fileformat parquet;

[localhost:21000] > insert into census partition (year=2012) values
('Smith'),('Jones'),('Lee'),('Singh');
[localhost:21000] > insert into census partition (year=2013) values
('Flores'),('Bogomolov'),('Cooper'),('Appiah');

At this point, theHDFS directory foryear=2012 contains a text-format data file, while theHDFS directory foryear=2013
contains a Parquet data file. As always, when loading non-trivial data, you would use INSERT ... SELECT or LOAD
DATA to import data in large batches, rather than INSERT ... VALUESwhich produces small files that are inefficient
for real-world queries.

For other file types that Impala cannot create natively, you can switch into Hive and issue the ALTER TABLE ...
SET FILEFORMAT statements and INSERT or LOAD DATA statements there. After switching back to Impala, issue a
REFRESH table_name statement so that Impala recognizes any partitions or new data added through Hive.

Managing Partitions
You can add, drop, set the expected file format, or set the HDFS location of the data files for individual partitions within
an Impala table. See ALTER TABLE Statement on page 216 for syntax details, and Setting Different File Formats for
Partitions on page 527 for tips on managing tables containing partitions with different file formats.

Note: If you are creating a partition for the first time and specifying its location, formaximumefficiency,
use a single ALTER TABLE statement including both the ADD PARTITION and LOCATION clauses,
rather than separate statements with ADD PARTITION and SET LOCATION clauses.

What happens to the data files when a partition is dropped depends on whether the partitioned table is designated
as internal or external. For an internal (managed) table, the data files are deleted. For example, if data in the partitioned
table is a copy of raw data files stored elsewhere, you might save disk space by dropping older partitions that are no
longer required for reporting, knowing that the original data is still available if needed later. For an external table, the
data files are left alone. For example, dropping a partition without deleting the associated files lets Impala consider a
smaller set of partitions, improving query efficiency and reducing overhead for DDL operations on the table; if the data
is needed again later, you can add the partition again. See Overview of Impala Tables on page 209 for details and
examples.

Apache Impala Guide | 527

Partitioning for Impala Tables

How Impala Works with Hadoop File Formats

Impala supports several familiar file formats used in Apache Hadoop. Impala can load and query data files produced
by other Hadoop components such as Pig or MapReduce, and data files produced by Impala can be used by other
components also. The following sections discuss the procedures, limitations, and performance considerations for using
each file format with Impala.

The file format used for an Impala table has significant performance consequences. Some file formats include
compression support that affects the size of data on the disk and, consequently, the amount of I/O and CPU resources
required to deserialize data. The amounts of I/O andCPU resources required can be a limiting factor in query performance
since querying often begins with moving and decompressing data. To reduce the potential impact of this part of the
process, data is often compressed. By compressing data, a smaller total number of bytes are transferred from disk to
memory. This reduces the amount of time taken to transfer the data, but a tradeoff occurswhen the CPUdecompresses
the content.

Impala can query files encoded with most of the popular file formats and compression codecs used in Hadoop. Impala
can create and insert data into tables that use some file formats but not others; for file formats that Impala cannot
write to, create the table in Hive, issue the INVALIDATE METADATA table_name statement in impala-shell, and
query the table through Impala. File formats can be structured, in which case they may include metadata and built-in
compression. Supported formats include:

Table 3: File Format Support in Impala

Impala Can INSERT?Impala Can CREATE?Compression CodecsFormatFile Type

Yes: CREATE TABLE, INSERT,
LOAD DATA, and query.

Yes.Snappy, gzip; currently
Snappy by default

StructuredParquet

Yes: CREATE TABLE, INSERT,
LOAD DATA, and query. If LZO

Yes. For CREATE TABLE with no
STORED AS clause, the default file

LZO, gzip, bzip2,
Snappy

UnstructuredText

compression is used, you mustformat is uncompressed text, with
create the table and load data invalues separated by ASCII 0x01
Hive. If other kinds of compressioncharacters (typically represented

as Ctrl-A). are used, you must load data
through LOAD DATA, Hive, or
manually in HDFS.

No. Import data by using LOAD
DATA on data files already in the

Yes, in Impala 1.4.0 and higher.
Before that, create the table using
Hive.

Snappy, gzip, deflate,
bzip2

StructuredAvro

right format, or use INSERT in
Hive followed by REFRESH
table_name in Impala.

No. Import data by using LOAD
DATA on data files already in the

Yes.Snappy, gzip, deflate,
bzip2

StructuredRCFile

right format, or use INSERT in
Hive followed by REFRESH
table_name in Impala.

No. Import data by using LOAD
DATA on data files already in the

Yes.Snappy, gzip, deflate,
bzip2

StructuredSequenceFile

right format, or use INSERT in
Hive followed by REFRESH
table_name in Impala.

Impala can only query the file formats listed in the preceding table. In particular, Impala does not support the ORC file
format.

528 | Apache Impala Guide

How Impala Works with Hadoop File Formats

Impala supports the following compression codecs:

• Snappy. Recommended for its effective balance between compression ratio and decompression speed. Snappy
compression is very fast, but gzip provides greater space savings. Supported for text files in Impala 2.0 and higher.

• Gzip. Recommended when achieving the highest level of compression (and therefore greatest disk-space savings)
is desired. Supported for text files in Impala 2.0 and higher.

• Deflate. Not supported for text files.
• Bzip2. Supported for text files in Impala 2.0 and higher.
• LZO, for text files only. Impala can query LZO-compressed Text tables, but currently cannot create them or insert

data into them; perform these operations in Hive.

Choosing the File Format for a Table
Different file formats and compression codecs work better for different data sets. While Impala typically provides
performance gains regardless of file format, choosing the proper format for your data can yield further performance
improvements. Use the following considerations to decide which combination of file format and compression to use
for a particular table:

• If you areworkingwith existing files that are already in a supported file format, use the same format for the Impala
table where practical. If the original format does not yield acceptable query performance or resource usage,
consider creating a new Impala tablewith different file format or compression characteristics, and doing a one-time
conversion by copying the data to the new table using the INSERT statement. Depending on the file format, you
might run the INSERT statement in impala-shell or in Hive.

• Text files are convenient to produce throughmany different tools, and are human-readable for ease of verification
and debugging. Those characteristics are why text is the default format for an Impala CREATE TABLE statement.
When performance and resource usage are the primary considerations, use one of the other file formats and
consider using compression. A typical workflow might involve bringing data into an Impala table by copying CSV
or TSV files into the appropriate data directory, and then using the INSERT ... SELECT syntax to copy the data
into a table using a different, more compact file format.

• If your architecture involves storing data to be queried in memory, do not compress the data. There is no I/O
savings since the data does not need to be moved from disk, but there is a CPU cost to decompress the data.

Using Text Data Files with Impala Tables
Impala supports using text files as the storage format for input and output. Text files are a convenient format to use
for interchange with other applications or scripts that produce or read delimited text files, such as CSV or TSV with
commas or tabs for delimiters.

Text files are also very flexible in their column definitions. For example, a text file could have more fields than the
Impala table, and those extra fields are ignored during queries; or it could have fewer fields than the Impala table, and
those missing fields are treated as NULL values in queries. You could have fields that were treated as numbers or
timestamps in a table, then use ALTER TABLE ... REPLACE COLUMNS to switch them to strings, or the reverse.

Table 4: Text Format Support in Impala

Impala Can INSERT?Impala Can CREATE?Compression CodecsFormatFile Type

Yes: CREATE TABLE, INSERT,
LOAD DATA, and query. If LZO

Yes. For CREATE TABLE with no
STORED AS clause, the default file

LZO, gzip, bzip2,
Snappy

UnstructuredText

compression is used, you mustformat is uncompressed text, with
create the table and load data invalues separated by ASCII 0x01
Hive. If other kinds of compressioncharacters (typically represented

as Ctrl-A). are used, you must load data
through LOAD DATA, Hive, or
manually in HDFS.

Apache Impala Guide | 529

How Impala Works with Hadoop File Formats

Query Performance for Impala Text Tables

Data stored in text format is relatively bulky, and not as efficient to query as binary formats such as Parquet. You
typically use text tables with Impala if that is the format you receive the data and you do not have control over that
process, or if you are a relatively new Hadoop user and not familiar with techniques to generate files in other formats.
(Because the default format for CREATE TABLE is text, you might create your first Impala tables as text without giving
performance much thought.) Either way, look for opportunities to use more efficient file formats for the tables used
in your most performance-critical queries.

For frequently queried data, you might load the original text data files into one Impala table, then use an INSERT
statement to transfer the data to another table that uses the Parquet file format; the data is converted automatically
as it is stored in the destination table.

For more compact data, consider using LZO compression for the text files. LZO is the only compression codec that
Impala supports for text data, because the “splittable” nature of LZO data files lets different nodes work on different
parts of the same file in parallel. See Using LZO-Compressed Text Files on page 532 for details.

In Impala 2.0 and later, you can also use text data compressed in the gzip, bzip2, or Snappy formats. Because these
compressed formats are not “splittable” in theway that LZO is, there is less opportunity for Impala to parallelize queries
on them. Therefore, use these types of compressed data only for convenience if that is the format in which you receive
the data. Prefer to use LZO compression for text data if you have the choice, or convert the data to Parquet using an
INSERT ... SELECT statement to copy the original data into a Parquet table.

Note:

Impala supports bzip files created by the bzip2 command, but not bzip files with multiple streams
created by the pbzip2 command. Impala decodes only the data from the first part of such files,
leading to incomplete results.

The maximum size that Impala can accommodate for an individual bzip file is 1 GB (after
uncompression).

Creating Text Tables

To create a table using text data files:

If the exact format of the text data files (such as the delimiter character) is not significant, use the CREATE TABLE
statement with no extra clauses at the end to create a text-format table. For example:

create table my_table(id int, s string, n int, t timestamp, b boolean);

The data files created by any INSERT statements will use the Ctrl-A character (hex 01) as a separator between each
column value.

A common use case is to import existing text files into an Impala table. The syntax is more verbose; the significant part
is theFIELDS TERMINATED BY clause,whichmust beprecededby theROW FORMAT DELIMITED clause. The statement
can end with a STORED AS TEXTFILE clause, but that clause is optional because text format tables are the default.
For example:

create table csv(id int, s string, n int, t timestamp, b boolean)
 row format delimited
fields terminated by ',';

create table tsv(id int, s string, n int, t timestamp, b boolean)
 row format delimited
fields terminated by '\t';

create table pipe_separated(id int, s string, n int, t timestamp, b boolean)
 row format delimited
fields terminated by '|'

 stored as textfile;

530 | Apache Impala Guide

How Impala Works with Hadoop File Formats

You can create tables with specific separator characters to import text files in familiar formats such as CSV, TSV, or
pipe-separated. You can also use these tables to produce output data files, by copying data into them through the
INSERT ... SELECT syntax and then extracting the data files from the Impala data directory.

In Impala 1.3.1 and higher, you can specify a delimiter character '\0' to use the ASCII 0 (nul) character for text tables:

create table nul_separated(id int, s string, n int, t timestamp, b boolean)
 row format delimited
 fields terminated by '\0'
 stored as textfile;

Note:

Do not surround string values with quotation marks in text data files that you construct. If you need
to include the separator character inside a field value, for example to put a string value with a comma
inside a CSV-format data file, specify an escape character on the CREATE TABLE statement with the
ESCAPED BY clause, and insert that character immediately before any separator characters that need
escaping.

Issue a DESCRIBE FORMATTED table_name statement to see the details of how each table is represented internally
in Impala.

Complex type considerations: Although you can create tables in this file format using the complex types (ARRAY,
STRUCT, and MAP) available in CDH 5.5 / Impala 2.3 and higher, currently, Impala can query these types only in Parquet
tables.

Data Files for Text Tables

When Impala queries a table with data in text format, it consults all the data files in the data directory for that table,
with some exceptions:

• Impala ignores any hidden files, that is, files whose names start with a dot or an underscore.

• Impala queries ignore files with extensions commonly used for temporary work files by Hadoop tools. Any files
with extensions .tmp or .copying are not considered part of the Impala table. The suffix matching is
case-insensitive, so for example Impala ignores both .copying and .COPYING suffixes.

• Impala uses suffixes to recognizewhen text data files are compressed text. For Impala to recognize the compressed
text files, they must have the appropriate file extension corresponding to the compression codec, either .gz,
.bz2, or .snappy. The extensions can be in uppercase or lowercase.

• Otherwise, the file names are not significant. When you put files into an HDFS directory through ETL jobs, or point
Impala to an existing HDFS directory with the CREATE EXTERNAL TABLE statement, or move data files under
external control with the LOAD DATA statement, Impala preserves the original filenames.

Filenames for data produced through Impala INSERT statements are given unique names to avoid filename conflicts.

An INSERT ... SELECT statement produces one data file from each node that processes the SELECT part of the
statement. An INSERT ... VALUES statement produces a separate data file for each statement; because Impala is
more efficient querying a small number of huge files than a large number of tiny files, the INSERT ... VALUES syntax
is not recommended for loading a substantial volume of data. If you find yourself with a table that is inefficient due to
too many small data files, reorganize the data into a few large files by doing INSERT ... SELECT to transfer the data
to a new table.

Special values within text data files:

• Impala recognizes the literal strings inf for infinity and nan for “Not a Number”, for FLOAT and DOUBLE columns.

• Impala recognizes the literal string \N to represent NULL. When using Sqoop, specify the options
--null-non-string and --null-string to ensure all NULL values are represented correctly in the Sqoop
output files. By default, Sqoop writes NULL values using the string null, which causes a conversion error when

Apache Impala Guide | 531

How Impala Works with Hadoop File Formats

such rows are evaluated by Impala. (Aworkaround for existing tables and data files is to change the table properties
through ALTER TABLE name SET TBLPROPERTIES("serialization.null.format"="null").)

Loading Data into Impala Text Tables

To load an existing text file into an Impala text table, use the LOAD DATA statement and specify the path of the file in
HDFS. That file is moved into the appropriate Impala data directory.

To load multiple existing text files into an Impala text table, use the LOAD DATA statement and specify the HDFS path
of the directory containing the files. All non-hidden files are moved into the appropriate Impala data directory.

To convert data to text from any other file format supported by Impala, use a SQL statement such as:

-- Text table with default delimiter, the hex 01 character.
CREATE TABLE text_table AS SELECT * FROM other_file_format_table;

-- Text table with user-specified delimiter. Currently, you cannot specify
-- the delimiter as part of CREATE TABLE LIKE or CREATE TABLE AS SELECT.
-- But you can change an existing text table to have a different delimiter.
CREATE TABLE csv LIKE other_file_format_table;
ALTER TABLE csv SET SERDEPROPERTIES ('serialization.format'=',', 'field.delim'=',');
INSERT INTO csv SELECT * FROM other_file_format_table;

This can be a useful technique to see how Impala represents special values within a text-format data file. Use the
DESCRIBE FORMATTED statement to see the HDFS directory where the data files are stored, then use Linux commands
such as hdfs dfs -ls hdfs_directory and hdfs dfs -cat hdfs_file to display the contents of an
Impala-created text file.

To create a few rows in a text table for test purposes, you can use the INSERT ... VALUES syntax:

INSERT INTO text_table VALUES ('string_literal',100,hex('hello world'));

Note: Because Impala and the HDFS infrastructure are optimized for multi-megabyte files, avoid the
INSERT ... VALUES notation when you are inserting many rows. Each INSERT ... VALUES
statement produces a new tiny file, leading to fragmentation and reduced performance.When creating
any substantial volume of new data, use one of the bulk loading techniques such as LOAD DATA or
INSERT ... SELECT. Or, use an HBase table for single-row INSERT operations, because HBase
tables are not subject to the same fragmentation issues as tables stored on HDFS.

When you create a text file for use with an Impala text table, specify \N to represent a NULL value. For the differences
between NULL and empty strings, see NULL on page 188.

If a text file has fewer fields than the columns in the corresponding Impala table, all the corresponding columns are
set to NULL when the data in that file is read by an Impala query.

If a text file has more fields than the columns in the corresponding Impala table, the extra fields are ignored when the
data in that file is read by an Impala query.

You can also use manual HDFS operations such as hdfs dfs -put or hdfs dfs -cp to put data files in the data
directory for an Impala table. When you copy or move new data files into the HDFS directory for the Impala table, issue
aREFRESH table_name statement inimpala-shellbefore issuing the next query against that table, tomake Impala
recognize the newly added files.

Using LZO-Compressed Text Files

Impala supports using text data files that employ LZO compression. Cloudera recommends compressing text data files
when practical. Impala queries are usually I/O-bound; reducing the amount of data read from disk typically speeds up
a query, despite the extra CPU work to uncompress the data in memory.

532 | Apache Impala Guide

How Impala Works with Hadoop File Formats

Impala can work with LZO-compressed text files. LZO-compressed files are preferable to text files compressed by other
codecs, because LZO-compressed files are “splittable”, meaning that different portions of a file can be uncompressed
and processed independently by different nodes.

Impala does not currently support writing LZO-compressed text files.

Because Impala can query LZO-compressed files but currently cannot write them, you use Hive to do the initial CREATE
TABLE and load the data, then switch back to Impala to run queries. For instructions on setting up LZO compression
for Hive CREATE TABLE and INSERT statements, see the LZO page on the Hive wiki. Once you have created an LZO
text table, you can also manually add LZO-compressed text files to it, produced by the lzop command or similar
method.

Preparing to Use LZO-Compressed Text Files

Before using LZO-compressed tables in Impala, do the following one-time setup for each machine in the cluster. Install
the necessary packages using either the Cloudera public repository, a private repository you establish, or by using
packages. Youmust do these steps manually, whether or not the cluster is managed by the ClouderaManager product.

1. Prepare your systems to work with LZO using Cloudera repositories:

On systems managed by Cloudera Manager using parcels:

See the setup instructions for the LZO parcel in the Cloudera Manager documentation for Cloudera Manager 5.

On systems managed by Cloudera Manager using packages, or not managed by Cloudera Manager:

Download and install the appropriate file to each machine on which you intend to use LZO with Impala. These
files all come from the Cloudera GPL extras download site. Install the:

• Red Hat 5 repo file to /etc/yum.repos.d/.
• Red Hat 6 repo file to /etc/yum.repos.d/.
• SUSE repo file to /etc/zypp/repos.d/.
• Ubuntu 10.04 list file to /etc/apt/sources.list.d/.
• Ubuntu 12.04 list file to /etc/apt/sources.list.d/.
• Debian list file to /etc/apt/sources.list.d/.

2. Configure Impala to use LZO:

Use one of the following sets of commands to refresh your packagemanagement system's repository information,
install the base LZO support for Hadoop, and install the LZO support for Impala.

For RHEL/CentOS systems:

$ sudo yum update
$ sudo yum install hadoop-lzo
$ sudo yum install impala-lzo

For SUSE systems:

$ sudo apt-get update
$ sudo zypper install hadoop-lzo
$ sudo zypper install impala-lzo

For Debian/Ubuntu systems:

$ sudo zypper update
$ sudo apt-get install hadoop-lzo
$ sudo apt-get install impala-lzo

Apache Impala Guide | 533

How Impala Works with Hadoop File Formats

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+LZO
http://www.lzop.org/
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_ig_install_gpl_extras.html
https://archive.cloudera.com/gplextras/redhat/5/x86_64/gplextras/
https://archive.cloudera.com/gplextras/redhat/5/x86_64/gplextras/cloudera-gplextras4.repo
https://archive.cloudera.com/gplextras/redhat/6/x86_64/gplextras/cloudera-gplextras4.repo
https://archive.cloudera.com/gplextras/sles/11/x86_64/gplextras/cloudera-gplextras4.repo
https://archive.cloudera.com/gplextras/ubuntu/lucid/amd64/gplextras/cloudera.list
https://archive.cloudera.com/gplextras/ubuntu/precise/amd64/gplextras/cloudera.list
https://archive.cloudera.com/gplextras/debian/squeeze/amd64/gplextras/cloudera.list

Note:

The level of the impala-lzo package is closely tied to the version of Impala you use. Any time
you upgrade Impala, re-do the installation command for impala-lzo on each applicablemachine
to make sure you have the appropriate version of that package.

3. For core-site.xml on the client and server (that is, in the configuration directories for both Impala andHadoop),
append com.hadoop.compression.lzo.LzopCodec to the comma-separated list of codecs. For example:

<property>
 <name>io.compression.codecs</name>

<value>org.apache.hadoop.io.compress.DefaultCodec,org.apache.hadoop.io.compress.GzipCodec,

org.apache.hadoop.io.compress.BZip2Codec,org.apache.hadoop.io.compress.DeflateCodec,

org.apache.hadoop.io.compress.SnappyCodec,com.hadoop.compression.lzo.LzopCodec</value>
</property>

Note:

If this is the first time you have edited the Hadoop core-site.xml file, note that the
/etc/hadoop/conf directory is typically a symbolic link, so the canonical core-site.xml
might reside in a different directory:

$ ls -l /etc/hadoop
total 8
lrwxrwxrwx. 1 root root 29 Feb 26 2013 conf ->
/etc/alternatives/hadoop-conf
lrwxrwxrwx. 1 root root 10 Feb 26 2013 conf.dist -> conf.empty
drwxr-xr-x. 2 root root 4096 Feb 26 2013 conf.empty
drwxr-xr-x. 2 root root 4096 Oct 28 15:46 conf.pseudo

If the io.compression.codecs property is missing from core-site.xml, only add
com.hadoop.compression.lzo.LzopCodec to the new property value, not all the names
from the preceding example.

4. Restart the MapReduce and Impala services.

Creating LZO Compressed Text Tables

A table containing LZO-compressed text files must be created in Hive with the following storage clause:

STORED AS
 INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
 OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'

Also, certain Hive settings need to be in effect. For example:

hive> SET mapreduce.output.fileoutputformat.compress=true;
hive> SET hive.exec.compress.output=true;
hive> SET
mapreduce.output.fileoutputformat.compress.codec=com.hadoop.compression.lzo.LzopCodec;
hive> CREATE TABLE lzo_t (s string) STORED AS
 > INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
 > OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat';
hive> INSERT INTO TABLE lzo_t SELECT col1, col2 FROM uncompressed_text_table;

Once you have created LZO-compressed text tables, you can convert data stored in other tables (regardless of file
format) by using the INSERT ... SELECT statement in Hive.

534 | Apache Impala Guide

How Impala Works with Hadoop File Formats

Files in an LZO-compressed tablemust use the .lzo extension. Examine the files in the HDFS data directory after doing
the INSERT in Hive, to make sure the files have the right extension. If the required settings are not in place, you end
up with regular uncompressed files, and Impala cannot access the table because it finds data files with the wrong
(uncompressed) format.

After loading data into an LZO-compressed text table, index the files so that they can be split. You index the files by
running a Java class, com.hadoop.compression.lzo.DistributedLzoIndexer, through the Linux command
line. This Java class is included in the hadoop-lzo package.

Run the indexer using a command like the following:

$ hadoop jar /usr/lib/hadoop/lib/hadoop-lzo-version-gplextras.jar
 com.hadoop.compression.lzo.DistributedLzoIndexer /hdfs_location_of_table/

Note: If the path of the JAR file in the preceding example is not recognized, do a find command to
locate hadoop-lzo-*-gplextras.jar and use that path.

Indexed files have the same name as the file they index, with the .index extension. If the data files are not indexed,
Impala queries still work, but the queries read the data from remote DataNodes, which is very inefficient.

Once the LZO-compressed tables are created, and data is loaded and indexed, you can query them through Impala.
As always, the first time you start impala-shell after creating a table in Hive, issue an INVALIDATE METADATA
statement so that Impala recognizes the new table. (In Impala 1.2 and higher, you only have to run INVALIDATE
METADATA on one node, rather than on all the Impala nodes.)

Using gzip, bzip2, or Snappy-Compressed Text Files

In Impala 2.0 and later, Impala supports using text data files that employ gzip, bzip2, or Snappy compression. These
compression types are primarily for convenience within an existing ETL pipeline rather than maximum performance.
Although it requires less I/O to read compressed text than the equivalent uncompressed text, files compressed by
these codecs are not “splittable” and therefore cannot take full advantage of the Impala parallel query capability.

As each bzip2- or Snappy-compressed text file is processed, the node doing the work reads the entire file into memory
and then decompresses it. Therefore, the node must have enough memory to hold both the compressed and
uncompressed data from the text file. The memory required to hold the uncompressed data is difficult to estimate in
advance, potentially causing problems on systems with low memory limits or with resource management enabled. In
Impala 2.1 and higher, thismemory overhead is reduced for gzip-compressed text files. The gzipped data is decompressed
as it is read, rather than all at once.

To create a table to hold gzip, bzip2, or Snappy-compressed text, create a text table with no special compression
options. Specify the delimiter and escape character if required, using the ROW FORMAT clause.

Because Impala can query compressed text files but currently cannot write them, produce the compressed text files
outside Impala and use the LOAD DATA statement, manual HDFS commands to move them to the appropriate Impala
data directory. (Or, you can use CREATE EXTERNAL TABLE and point the LOCATION attribute at a directory containing
existing compressed text files.)

For Impala to recognize the compressed text files, they must have the appropriate file extension corresponding to the
compression codec, either .gz, .bz2, or .snappy. The extensions can be in uppercase or lowercase.

The following example shows how you can create a regular text table, put different kinds of compressed and
uncompressed files into it, and Impala automatically recognizes and decompresses each one based on their file
extensions:

create table csv_compressed (a string, b string, c string)
 row format delimited fields terminated by ",";

insert into csv_compressed values
 ('one - uncompressed', 'two - uncompressed', 'three - uncompressed'),
 ('abc - uncompressed', 'xyz - uncompressed', '123 - uncompressed');
...make equivalent .gz, .bz2, and .snappy files and load them into same table directory...

Apache Impala Guide | 535

How Impala Works with Hadoop File Formats

select * from csv_compressed;
+--------------------+--------------------+----------------------+
| a | b | c |
+--------------------+--------------------+----------------------+
one - snappy	two - snappy	three - snappy
one - uncompressed	two - uncompressed	three - uncompressed
abc - uncompressed	xyz - uncompressed	123 - uncompressed
one - bz2	two - bz2	three - bz2
abc - bz2	xyz - bz2	123 - bz2
one - gzip	two - gzip	three - gzip
abc - gzip	xyz - gzip	123 - gzip
+--------------------+--------------------+----------------------+

$ hdfs dfs -ls
'hdfs://127.0.0.1:8020/user/hive/warehouse/file_formats.db/csv_compressed/';
...truncated for readability...
75
hdfs://127.0.0.1:8020/user/hive/warehouse/file_formats.db/csv_compressed/csv_compressed.snappy
79
hdfs://127.0.0.1:8020/user/hive/warehouse/file_formats.db/csv_compressed/csv_compressed_bz2.csv.bz2
80
hdfs://127.0.0.1:8020/user/hive/warehouse/file_formats.db/csv_compressed/csv_compressed_gzip.csv.gz
116
hdfs://127.0.0.1:8020/user/hive/warehouse/file_formats.db/csv_compressed/dd414df64d67d49b_data.0.

Using the Parquet File Format with Impala Tables
Impala helps you to create,manage, and query Parquet tables. Parquet is a column-oriented binary file format intended
to be highly efficient for the types of large-scale queries that Impala is best at. Parquet is especially good for queries
scanning particular columns within a table, for example to query “wide” tables with many columns, or to perform
aggregation operations such as SUM() and AVG() that need to process most or all of the values from a column. Each
data file contains the values for a set of rows (the “row group”). Within a data file, the values from each column are
organized so that they are all adjacent, enabling good compression for the values from that column. Queries against
a Parquet table can retrieve and analyze these values from any column quickly and with minimal I/O.

Table 5: Parquet Format Support in Impala

Impala Can INSERT?Impala Can CREATE?Compression CodecsFormatFile Type

Yes: CREATE TABLE, INSERT,
LOAD DATA, and query.

Yes.Snappy, gzip; currently
Snappy by default

StructuredParquet

Creating Parquet Tables in Impala

To create a table named PARQUET_TABLE that uses the Parquet format, you would use a command like the following,
substituting your own table name, column names, and data types:

[impala-host:21000] > create table parquet_table_name (x INT, y STRING) STORED AS PARQUET;

Or, to clone the column names and data types of an existing table:

[impala-host:21000] > create table parquet_table_name LIKE other_table_name STORED AS
PARQUET;

In Impala 1.4.0 and higher, you can derive column definitions from a raw Parquet data file, even without an existing
Impala table. For example, you can create an external table pointing to an HDFS directory, and base the column
definitions on one of the files in that directory:

CREATE EXTERNAL TABLE ingest_existing_files LIKE PARQUET
'/user/etl/destination/datafile1.dat'

536 | Apache Impala Guide

How Impala Works with Hadoop File Formats

 STORED AS PARQUET
 LOCATION '/user/etl/destination';

Or, you can refer to an existing data file and create a new empty table with suitable column definitions. Then you can
use INSERT to create new data files or LOAD DATA to transfer existing data files into the new table.

CREATE TABLE columns_from_data_file LIKE PARQUET '/user/etl/destination/datafile1.dat'
 STORED AS PARQUET;

The default properties of the newly created table are the same as for any other CREATE TABLE statement. For example,
the default file format is text; if youwant the new table to use the Parquet file format, include the STORED AS PARQUET
file also.

In this example, the new table is partitioned by year, month, and day. These partition key columns are not part of the
data file, so you specify them in the CREATE TABLE statement:

CREATE TABLE columns_from_data_file LIKE PARQUET '/user/etl/destination/datafile1.dat'
 PARTITION (year INT, month TINYINT, day TINYINT)
 STORED AS PARQUET;

See CREATE TABLE Statement on page 236 for more details about the CREATE TABLE LIKE PARQUET syntax.

Once you have created a table, to insert data into that table, use a command similar to the following, again with your
own table names:

[impala-host:21000] > insert overwrite table parquet_table_name select * from
other_table_name;

If the Parquet table has a different number of columns or different column names than the other table, specify the
names of columns from the other table rather than * in the SELECT statement.

Loading Data into Parquet Tables

Choose from the following techniques for loading data into Parquet tables, depending on whether the original data is
already in an Impala table, or exists as raw data files outside Impala.

If you already have data in an Impala or Hive table, perhaps in a different file format or partitioning scheme, you can
transfer the data to a Parquet table using the Impala INSERT...SELECT syntax. You can convert, filter, repartition,
and do other things to the data as part of this same INSERT statement. See Snappy and GZip Compression for Parquet
Data Files on page 540 for some examples showing how to insert data into Parquet tables.

When inserting into partitioned tables, especially using the Parquet file format, you can include a hint in the INSERT
statement to fine-tune the overall performance of the operation and its resource usage:

• These hints are available in Impala 1.2.2 and higher.
• You would only use these hints if an INSERT into a partitioned Parquet table was failing due to capacity limits, or

if such an INSERT was succeeding but with less-than-optimal performance.
• To use these hints, put the hint keyword [SHUFFLE] or [NOSHUFFLE] (including the square brackets) after the

PARTITION clause, immediately before the SELECT keyword.
• [SHUFFLE] selects an execution plan that minimizes the number of files being written simultaneously to HDFS,

and the number of memory buffers holding data for individual partitions. Thus it reduces overall resource usage
for the INSERT operation, allowing some INSERT operations to succeed that otherwise would fail. It does involve
some data transfer between the nodes so that the data files for a particular partition are all constructed on the
same node.

• [NOSHUFFLE] selects an execution plan that might be faster overall, but might also produce a larger number of
small data files or exceed capacity limits, causing the INSERT operation to fail. Use [SHUFFLE] in cases where
an INSERT statement fails or runs inefficiently due to all nodes attempting to construct data for all partitions.

• Impala automatically uses the [SHUFFLE]method if any partition key column in the source table, mentioned in
the INSERT ... SELECT query, does not have column statistics. In this case, only the [NOSHUFFLE] hint would
have any effect.

Apache Impala Guide | 537

How Impala Works with Hadoop File Formats

• If column statistics are available for all partition key columns in the source table mentioned in the INSERT ...
SELECT query, Impala chooseswhether to use the[SHUFFLE] or[NOSHUFFLE] technique based on the estimated
number of distinct values in those columns and the number of nodes involved in the INSERT operation. In this
case, youmight need the [SHUFFLE] or the [NOSHUFFLE] hint to override the execution plan selected by Impala.

Any INSERT statement for a Parquet table requires enough free space in the HDFS filesystem to write one block.
Because Parquet data files use a block size of 1 GB by default, an INSERTmight fail (even for a very small amount of
data) if your HDFS is running low on space.

Avoid the INSERT...VALUES syntax for Parquet tables, because INSERT...VALUES produces a separate tiny data
file for each INSERT...VALUES statement, and the strength of Parquet is in its handling of data (compressing,
parallelizing, and so on) in large chunks.

If you have one or more Parquet data files produced outside of Impala, you can quickly make the data queryable
through Impala by one of the following methods:

• The LOAD DATA statement moves a single data file or a directory full of data files into the data directory for an
Impala table. It does no validation or conversion of the data. The original data files must be somewhere in HDFS,
not the local filesystem.

• The CREATE TABLE statement with the LOCATION clause creates a table where the data continues to reside
outside the Impala data directory. The original data files must be somewhere in HDFS, not the local filesystem.
For extra safety, if the data is intended to be long-lived and reused by other applications, you can use the CREATE
EXTERNAL TABLE syntax so that the data files are not deleted by an Impala DROP TABLE statement.

• If the Parquet table already exists, you can copy Parquet data files directly into it, then use the REFRESH statement
to make Impala recognize the newly added data. Remember to preserve the block size of the Parquet data files
by using the hadoop distcp -pb command rather than a -put or -cp operation on the Parquet files. See
Example of Copying Parquet Data Files on page 541 for an example of this kind of operation.

Note:

Currently, Impala always decodes the column data in Parquet files based on the ordinal position of
the columns, not by looking up the position of each column based on its name. Parquet files produced
outside of Impalamust write column data in the same order as the columns are declared in the Impala
table. Any optional columns that are omitted from the data files must be the rightmost columns in
the Impala table definition.

If you created compressed Parquet files through some tool other than Impala, make sure that any
compression codecs are supported in Parquet by Impala. For example, Impala does not currently
support LZO compression in Parquet files. Also doublecheck that you used any recommended
compatibility settings in the other tool, such as spark.sql.parquet.binaryAsString when
writing Parquet files through Spark.

Recent versions of Sqoop can produce Parquet output files using the --as-parquetfile option.

If you use Sqoop to convert RDBMS data to Parquet, be careful with interpreting any resulting values from DATE,
DATETIME, or TIMESTAMP columns. The underlying values are represented as the Parquet INT64 type, which is
represented as BIGINT in the Impala table. The Parquet values represent the time in milliseconds, while Impala
interprets BIGINT as the time in seconds. Therefore, if you have a BIGINT column in a Parquet table that was imported
this way from Sqoop, divide the values by 1000 when interpreting as the TIMESTAMP type.

If the data exists outside Impala and is in some other format, combine both of the preceding techniques. First, use a
LOAD DATA or CREATE EXTERNAL TABLE ... LOCATION statement to bring the data into an Impala table that
uses the appropriate file format. Then, use an INSERT...SELECT statement to copy the data to the Parquet table,
converting to Parquet format as part of the process.

Loading data into Parquet tables is amemory-intensive operation, because the incoming data is buffered until it reaches
one data block in size, then that chunk of data is organized and compressed in memory before being written out. The
memory consumption can be larger when inserting data into partitioned Parquet tables, because a separate data file

538 | Apache Impala Guide

How Impala Works with Hadoop File Formats

is written for each combination of partition key column values, potentially requiring several large chunks to be
manipulated in memory at once.

When inserting into a partitioned Parquet table, Impala redistributes the data among the nodes to reduce memory
consumption. Youmight still need to temporarily increase thememory dedicated to Impala during the insert operation,
or break up the load operation into several INSERT statements, or both.

Note: All the preceding techniques assume that the data you are loading matches the structure of
the destination table, including column order, column names, and partition layout. To transform or
reorganize the data, start by loading the data into a Parquet table thatmatches the underlying structure
of the data, then use one of the table-copying techniques such as CREATE TABLE AS SELECT or
INSERT ... SELECT to reorder or rename columns, divide the data among multiple partitions, and
so on. For example to take a single comprehensive Parquet data file and load it into a partitioned
table, you would use an INSERT ... SELECT statement with dynamic partitioning to let Impala
create separate data files with the appropriate partition values; for an example, see INSERT Statement
on page 264.

Query Performance for Impala Parquet Tables

Query performance for Parquet tables depends on the number of columns needed to process the SELECT list and
WHERE clauses of the query, the way data is divided into large data files with block size equal to file size, the reduction
in I/O by reading the data for each column in compressed format, which data files can be skipped (for partitioned
tables), and the CPU overhead of decompressing the data for each column.

For example, the following is an efficient query for a Parquet table:

select avg(income) from census_data where state = 'CA';

The query processes only 2 columns out of a large number of total columns. If the table is partitioned by the STATE
column, it is even more efficient because the query only has to read and decode 1 column from each data file, and it
can read only the data files in the partition directory for the state 'CA', skipping the data files for all the other states,
which will be physically located in other directories.

The following is a relatively inefficient query for a Parquet table:

select * from census_data;

Impala would have to read the entire contents of each large data file, and decompress the contents of each column
for each row group, negating the I/O optimizations of the column-oriented format. This query might still be faster for
a Parquet table than a table with some other file format, but it does not take advantage of the unique strengths of
Parquet data files.

Impala can optimize queries on Parquet tables, especially join queries, better when statistics are available for all the
tables. Issue the COMPUTE STATS statement for each table after substantial amounts of data are loaded into or
appended to it. See COMPUTE STATS Statement on page 227 for details.

Partitioning for Parquet Tables

As explained in Partitioning for Impala Tables on page 523, partitioning is an important performance technique for
Impala generally. This section explains some of the performance considerations for partitioned Parquet tables.

The Parquet file format is ideal for tables containing many columns, where most queries only refer to a small subset
of the columns. As explained in How Parquet Data Files Are Organized on page 545, the physical layout of Parquet data
files lets Impala read only a small fraction of the data for many queries. The performance benefits of this approach are
amplified when you use Parquet tables in combination with partitioning. Impala can skip the data files for certain
partitions entirely, based on the comparisons in the WHERE clause that refer to the partition key columns. For example,
queries on partitioned tables often analyze data for time intervals based on columns such as YEAR, MONTH, and/or
DAY, or for geographic regions. Remember that Parquet data files use a large block size, so when deciding how finely

Apache Impala Guide | 539

How Impala Works with Hadoop File Formats

to partition the data, try to find a granularity where each partition contains 256 MB or more of data, rather than
creating a large number of smaller files split among many partitions.

Inserting into a partitioned Parquet table can be a resource-intensive operation, because each Impala node could
potentially bewriting a separate data file to HDFS for each combination of different values for the partition key columns.
The large number of simultaneous open files could exceed the HDFS “transceivers” limit. To avoid exceeding this limit,
consider the following techniques:

• Load different subsets of data using separate INSERT statements with specific values for the PARTITION clause,
such as PARTITION (year=2010).

• Increase the “transceivers” value for HDFS, sometimes spelled “xcievers” (sic). The property value in the
hdfs-site.xml configuration file isdfs.datanode.max.transfer.threads. For example, if youwere loading
12 years of data partitioned by year, month, and day, even a value of 4096 might not be high enough. This blog
post explores the considerations for setting this value higher or lower, using HBase examples for illustration.

• Use the COMPUTE STATS statement to collect column statistics on the source table from which data is being
copied, so that the Impala query can estimate the number of different values in the partition key columns and
distribute the work accordingly.

Snappy and GZip Compression for Parquet Data Files

When Impala writes Parquet data files using the INSERT statement, the underlying compression is controlled by the
COMPRESSION_CODECquery option. (Prior to Impala 2.0, the query option namewasPARQUET_COMPRESSION_CODEC.)
The allowed values for this query option aresnappy (the default),gzip, andnone. The option value is not case-sensitive.
If the option is set to an unrecognized value, all kinds of queries will fail due to the invalid option setting, not just
queries involving Parquet tables.

Example of Parquet Table with Snappy Compression

By default, the underlying data files for a Parquet table are compressedwith Snappy. The combination of fast compression
and decompression makes it a good choice for many data sets. To ensure Snappy compression is used, for example
after experimenting with other compression codecs, set the COMPRESSION_CODEC query option to snappy before
inserting the data:

[localhost:21000] > create database parquet_compression;
[localhost:21000] > use parquet_compression;
[localhost:21000] > create table parquet_snappy like raw_text_data;
[localhost:21000] > set COMPRESSION_CODEC=snappy;
[localhost:21000] > insert into parquet_snappy select * from raw_text_data;
Inserted 1000000000 rows in 181.98s

Example of Parquet Table with GZip Compression

If you need more intensive compression (at the expense of more CPU cycles for uncompressing during queries), set
the COMPRESSION_CODEC query option to gzip before inserting the data:

[localhost:21000] > create table parquet_gzip like raw_text_data;
[localhost:21000] > set COMPRESSION_CODEC=gzip;
[localhost:21000] > insert into parquet_gzip select * from raw_text_data;
Inserted 1000000000 rows in 1418.24s

Example of Uncompressed Parquet Table

If your data compresses very poorly, or you want to avoid the CPU overhead of compression and decompression
entirely, set the COMPRESSION_CODEC query option to none before inserting the data:

[localhost:21000] > create table parquet_none like raw_text_data;
[localhost:21000] > set COMPRESSION_CODEC=none;
[localhost:21000] > insert into parquet_none select * from raw_text_data;
Inserted 1000000000 rows in 146.90s

540 | Apache Impala Guide

How Impala Works with Hadoop File Formats

http://blog.cloudera.com/blog/2012/03/hbase-hadoop-xceivers/
http://blog.cloudera.com/blog/2012/03/hbase-hadoop-xceivers/

Examples of Sizes and Speeds for Compressed Parquet Tables

Here are some examples showing differences in data sizes and query speeds for 1 billion rows of synthetic data,
compressed with each kind of codec. As always, run similar tests with realistic data sets of your own. The actual
compression ratios, and relative insert and query speeds, will vary depending on the characteristics of the actual data.

In this case, switching from Snappy to GZip compression shrinks the data by an additional 40% or so, while switching
from Snappy compression to no compression expands the data also by about 40%:

$ hdfs dfs -du -h /user/hive/warehouse/parquet_compression.db
23.1 G /user/hive/warehouse/parquet_compression.db/parquet_snappy
13.5 G /user/hive/warehouse/parquet_compression.db/parquet_gzip
32.8 G /user/hive/warehouse/parquet_compression.db/parquet_none

Because Parquet data files are typically large, each directory will have a different number of data files and the row
groups will be arranged differently.

At the same time, the less aggressive the compression, the faster the data can be decompressed. In this case using a
table with a billion rows, a query that evaluates all the values for a particular column runs faster with no compression
than with Snappy compression, and faster with Snappy compression than with Gzip compression. Query performance
depends on several other factors, so as always, run your own benchmarks with your own data to determine the ideal
tradeoff between data size, CPU efficiency, and speed of insert and query operations.

[localhost:21000] > desc parquet_snappy;
Query finished, fetching results ...
+-----------+---------+---------+
| name | type | comment |
+-----------+---------+---------+
id	int	
val	int	
zfill	string	
name	string	
assertion	boolean	
+-----------+---------+---------+		
Returned 5 row(s) in 0.14s		
[localhost:21000] > select avg(val) from parquet_snappy;		
Query finished, fetching results ...		
+-----------------+		
_c0		
+-----------------+		
250000.93577915		
+-----------------+		
Returned 1 row(s) in 4.29s		
[localhost:21000] > select avg(val) from parquet_gzip;		
Query finished, fetching results ...		
+-----------------+		
_c0		
+-----------------+		
250000.93577915		
+-----------------+		
Returned 1 row(s) in 6.97s		
[localhost:21000] > select avg(val) from parquet_none;		
Query finished, fetching results ...		
+-----------------+		
_c0		
+-----------------+		
250000.93577915		
+-----------------+
Returned 1 row(s) in 3.67s

Example of Copying Parquet Data Files

Here is a final example, to illustrate how the data files using the various compression codecs are all compatible with
each other for read operations. The metadata about the compression format is written into each data file, and can be
decoded during queries regardless of the COMPRESSION_CODEC setting in effect at the time. In this example, we copy
data files from the PARQUET_SNAPPY, PARQUET_GZIP, and PARQUET_NONE tables used in the previous examples,
each containing 1 billion rows, all to the data directory of a new table PARQUET_EVERYTHING. A couple of sample

Apache Impala Guide | 541

How Impala Works with Hadoop File Formats

queries demonstrate that the new table now contains 3 billion rows featuring a variety of compression codecs for the
data files.

First, we create the table in Impala so that there is a destination directory in HDFS to put the data files:

[localhost:21000] > create table parquet_everything like parquet_snappy;
Query: create table parquet_everything like parquet_snappy

Then in the shell, we copy the relevant data files into the data directory for this new table. Rather than using hdfs
dfs -cp as with typical files, we use hadoop distcp -pb to ensure that the special block size of the Parquet data
files is preserved.

$ hadoop distcp -pb /user/hive/warehouse/parquet_compression.db/parquet_snappy \
 /user/hive/warehouse/parquet_compression.db/parquet_everything
...MapReduce output...
$ hadoop distcp -pb /user/hive/warehouse/parquet_compression.db/parquet_gzip \
 /user/hive/warehouse/parquet_compression.db/parquet_everything
...MapReduce output...
$ hadoop distcp -pb /user/hive/warehouse/parquet_compression.db/parquet_none \
 /user/hive/warehouse/parquet_compression.db/parquet_everything
...MapReduce output...

Back in the impala-shell interpreter, we use the REFRESH statement to alert the Impala server to the new data
files for this table, then we can run queries demonstrating that the data files represent 3 billion rows, and the values
for one of the numeric columns match what was in the original smaller tables:

[localhost:21000] > refresh parquet_everything;
Query finished, fetching results ...

Returned 0 row(s) in 0.32s
[localhost:21000] > select count(*) from parquet_everything;
Query finished, fetching results ...
+------------+
| _c0 |
+------------+
| 3000000000 |
+------------+
Returned 1 row(s) in 8.18s
[localhost:21000] > select avg(val) from parquet_everything;
Query finished, fetching results ...
+-----------------+
| _c0 |
+-----------------+
| 250000.93577915 |
+-----------------+
Returned 1 row(s) in 13.35s

Parquet Tables for Impala Complex Types

In CDH 5.5 / Impala 2.3 and higher, Impala supports the complex types ARRAY, STRUCT, and MAP See Complex Types
(CDH 5.5 or higher only) on page 157 for details. Because these data types are currently supported only for the Parquet
file format, if you plan to use them, become familiar with the performance and storage aspects of Parquet first.

Exchanging Parquet Data Files with Other Hadoop Components

Starting in CDH4.5, you can read andwrite Parquet data files fromHive, Pig, andMapReduce. See the CDH4 Installation
Guide for details.

Previously, it was not possible to create Parquet data through Impala and reuse that tablewithin Hive. Now that Parquet
support is available for Hive in CDH 4.5, reusing existing Impala Parquet data files in Hive requires updating the table
metadata. Use the following command if you are already running Impala 1.1.1 or higher:

ALTER TABLE table_name SET FILEFORMAT PARQUET;

542 | Apache Impala Guide

How Impala Works with Hadoop File Formats

http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/latest/CDH4-Installation-Guide/cdh4ig_parquet.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH4/latest/CDH4-Installation-Guide/cdh4ig_parquet.html

If you are running a level of Impala that is older than 1.1.1, do the metadata update through Hive:

ALTER TABLE table_name SET SERDE 'parquet.hive.serde.ParquetHiveSerDe';
ALTER TABLE table_name SET FILEFORMAT
 INPUTFORMAT "parquet.hive.DeprecatedParquetInputFormat"
 OUTPUTFORMAT "parquet.hive.DeprecatedParquetOutputFormat";

Impala 1.1.1 and higher can reuse Parquet data files created by Hive, without any action required.

Impala supports the scalar data types that you can encode in a Parquet data file, but not composite or nested types
such as maps or arrays. In Impala 2.2.0 / CDH 5.4.0 and higher, Impala can query Parquet data files that include
composite or nested types, as long as the query only refers to columns with scalar types.

If you copy Parquet data files between nodes, or even between different directories on the same node, make sure to
preserve the block size by using the command hadoop distcp -pb. To verify that the block size was preserved, issue
the command hdfs fsck -blocks HDFS_path_of_impala_table_dir and check that the average block size is
at or near 256MB (orwhatever other size is defined by thePARQUET_FILE_SIZE query option).. (Thehadoop distcp
operation typically leaves some directories behind, with names matching _distcp_logs_*, that you can delete from
the destination directory afterward.) Issue the command hadoop distcp for details about distcp command syntax.

Impala can query Parquet files that use the PLAIN, PLAIN_DICTIONARY, BIT_PACKED, and RLE encodings. Currently,
Impala does not support RLE_DICTIONARY encoding. When creating files outside of Impala for use by Impala, make
sure to use one of the supported encodings. In particular, for MapReduce jobs, parquet.writer.versionmust not
be defined (especially as PARQUET_2_0) for writing the configurations of Parquet MR jobs. Use the default version (or
format). The default format, 1.0, includes some enhancements that are compatible with older versions. Data using the
2.0 format might not be consumable by Impala, due to use of the RLE_DICTIONARY encoding.

To examine the internal structure and data of Parquet files, you can use the parquet-tools command that comes
with CDH.Make sure this command is in your $PATH. (Typically, it is symlinked from /usr/bin; sometimes, depending
on your installation setup, you might need to locate it under a CDH-specific bin directory.) The arguments to this
command let you perform operations such as:

• cat: Print a file's contents to standard out. Use the -j option to output JSON.
• head: Print the first few records of a file to standard output.
• schema: Print the Parquet schema for the file.
• meta: Print the file footer metadata, including key-value properties (like Avro schema), compression ratios,

encodings, compression used, and row group information.
• dump: Print all data and metadata.

Use parquet-tools -h to see usage information for all the arguments. (The -j option for displaying the data in
JSON format is only available in CDH 5.5 and higher.) Here are some examples showing parquet-tools usage:

$ # Be careful doing this for a big file! Use parquet-tools head to be safe.
$ parquet-tools cat sample.parq
year = 1992
month = 1
day = 2
dayofweek = 4
dep_time = 748
crs_dep_time = 750
arr_time = 851
crs_arr_time = 846
carrier = US
flight_num = 53
actual_elapsed_time = 63
crs_elapsed_time = 56
arrdelay = 5
depdelay = -2
origin = CMH
dest = IND
distance = 182
cancelled = 0
diverted = 0

Apache Impala Guide | 543

How Impala Works with Hadoop File Formats

year = 1992
month = 1
day = 3
...

$ parquet-tools head -n 2 sample.parq
year = 1992
month = 1
day = 2
dayofweek = 4
dep_time = 748
crs_dep_time = 750
arr_time = 851
crs_arr_time = 846
carrier = US
flight_num = 53
actual_elapsed_time = 63
crs_elapsed_time = 56
arrdelay = 5
depdelay = -2
origin = CMH
dest = IND
distance = 182
cancelled = 0
diverted = 0

year = 1992
month = 1
day = 3
...

$ parquet-tools schema sample.parq
message schema {
 optional int32 year;
 optional int32 month;
 optional int32 day;
 optional int32 dayofweek;
 optional int32 dep_time;
 optional int32 crs_dep_time;
 optional int32 arr_time;
 optional int32 crs_arr_time;
 optional binary carrier;
 optional int32 flight_num;
...

$ parquet-tools meta sample.parq
creator: impala version 2.2.0-cdh5.4.3 (build
517bb0f71cd604a00369254ac6d88394df83e0f6)

file schema: schema

year: OPTIONAL INT32 R:0 D:1
month: OPTIONAL INT32 R:0 D:1
day: OPTIONAL INT32 R:0 D:1
dayofweek: OPTIONAL INT32 R:0 D:1
dep_time: OPTIONAL INT32 R:0 D:1
crs_dep_time: OPTIONAL INT32 R:0 D:1
arr_time: OPTIONAL INT32 R:0 D:1
crs_arr_time: OPTIONAL INT32 R:0 D:1
carrier: OPTIONAL BINARY R:0 D:1
flight_num: OPTIONAL INT32 R:0 D:1
...

row group 1: RC:20636601 TS:265103674

544 | Apache Impala Guide

How Impala Works with Hadoop File Formats

year: INT32 SNAPPY DO:4 FPO:35 SZ:10103/49723/4.92 VC:20636601
ENC:PLAIN_DICTIONARY,RLE,PLAIN
month: INT32 SNAPPY DO:10147 FPO:10210 SZ:11380/35732/3.14 VC:20636601
ENC:PLAIN_DICTIONARY,RLE,PLAIN
day: INT32 SNAPPY DO:21572 FPO:21714 SZ:3071658/9868452/3.21 VC:20636601
 ENC:PLAIN_DICTIONARY,RLE,PLAIN
dayofweek: INT32 SNAPPY DO:3093276 FPO:3093319 SZ:2274375/5941876/2.61
VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
dep_time: INT32 SNAPPY DO:5367705 FPO:5373967 SZ:28281281/28573175/1.01
VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
crs_dep_time: INT32 SNAPPY DO:33649039 FPO:33654262 SZ:10220839/11574964/1.13
VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
arr_time: INT32 SNAPPY DO:43869935 FPO:43876489 SZ:28562410/28797767/1.01
VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
crs_arr_time: INT32 SNAPPY DO:72432398 FPO:72438151 SZ:10908972/12164626/1.12
VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
carrier: BINARY SNAPPY DO:83341427 FPO:83341558 SZ:114916/128611/1.12
VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
flight_num: INT32 SNAPPY DO:83456393 FPO:83488603 SZ:10216514/11474301/1.12
VC:20636601 ENC:PLAIN_DICTIONARY,RLE,PLAIN
...

How Parquet Data Files Are Organized

Although Parquet is a column-oriented file format, do not expect to find one data file for each column. Parquet keeps
all the data for a row within the same data file, to ensure that the columns for a row are always available on the same
node for processing. What Parquet does is to set a large HDFS block size and a matching maximum data file size, to
ensure that I/O and network transfer requests apply to large batches of data.

Within that data file, the data for a set of rows is rearranged so that all the values from the first column are organized
in one contiguous block, then all the values from the second column, and so on. Putting the values from the same
column next to each other lets Impala use effective compression techniques on the values in that column.

Note:

Impala INSERT statements write Parquet data files using an HDFS block size that matches the data
file size, to ensure that each data file is represented by a single HDFS block, and the entire file can be
processed on a single node without requiring any remote reads.

If you create Parquet data files outside of Impala, such as through a MapReduce or Pig job, ensure
that the HDFS block size is greater than or equal to the file size, so that the “one file per block”
relationship is maintained. Set the dfs.block.size or the dfs.blocksize property large enough
that each file fits within a single HDFS block, even if that size is larger than the normal HDFS block size.

If the block size is reset to a lower value during a file copy, you will see lower performance for queries
involving those files, and the PROFILE statementwill reveal that some I/O is being done suboptimally,
through remote reads. See Example of Copying Parquet Data Files on page 541 for an example showing
how to preserve the block size when copying Parquet data files.

When Impala retrieves or tests the data for a particular column, it opens all the data files, but only reads the portion
of each file containing the values for that column. The column values are stored consecutively, minimizing the I/O
required to process the values within a single column. If other columns are named in the SELECT list or WHERE clauses,
the data for all columns in the same row is available within that same data file.

If an INSERT statement brings in less than one Parquet block's worth of data, the resulting data file is smaller than
ideal. Thus, if you do split up an ETL job to use multiple INSERT statements, try to keep the volume of data for each
INSERT statement to approximately 256 MB, or a multiple of 256 MB.

Apache Impala Guide | 545

How Impala Works with Hadoop File Formats

RLE and Dictionary Encoding for Parquet Data Files

Parquet uses some automatic compression techniques, such as run-length encoding (RLE) and dictionary encoding,
based on analysis of the actual data values. Once the data values are encoded in a compact form, the encoded data
can optionally be further compressed using a compression algorithm. Parquet data files created by Impala can use
Snappy, GZip, or no compression; the Parquet spec also allows LZO compression, but currently Impala does not support
LZO-compressed Parquet files.

RLE and dictionary encoding are compression techniques that Impala applies automatically to groups of Parquet data
values, in addition to any Snappy or GZip compression applied to the entire data files. These automatic optimizations
can save you time and planning that are normally needed for a traditional data warehouse. For example, dictionary
encoding reduces the need to create numeric IDs as abbreviations for longer string values.

Run-length encoding condenses sequences of repeated data values. For example, if many consecutive rows all contain
the same value for a country code, those repeating values can be represented by the value followed by a count of how
many times it appears consecutively.

Dictionary encoding takes the different values present in a column, and represents each one in compact 2-byte form
rather than the original value, which could be several bytes. (Additional compression is applied to the compacted
values, for extra space savings.) This type of encoding applies when the number of different values for a column is less
than 2**16 (16,384). It does not apply to columns of data type BOOLEAN, which are already very short. TIMESTAMP
columns sometimes have a unique value for each row, in which case they can quickly exceed the 2**16 limit on distinct
values. The 2**16 limit on different values within a column is reset for each data file, so if several different data files
each contained 10,000 different city names, the city name column in each data file could still be condensed using
dictionary encoding.

Compacting Data Files for Parquet Tables

If you reuse existing table structures or ETL processes for Parquet tables, you might encounter a “many small files”
situation, which is suboptimal for query efficiency. For example, statements like these might produce inefficiently
organized data files:

-- In an N-node cluster, each node produces a data file
-- for the INSERT operation. If you have less than
-- N GB of data to copy, some files are likely to be
-- much smaller than the default Parquet block size.
insert into parquet_table select * from text_table;

-- Even if this operation involves an overall large amount of data,
-- when split up by year/month/day, each partition might only
-- receive a small amount of data. Then the data files for
-- the partition might be divided between the N nodes in the cluster.
-- A multi-gigabyte copy operation might produce files of only
-- a few MB each.
insert into partitioned_parquet_table partition (year, month, day)
 select year, month, day, url, referer, user_agent, http_code, response_time
 from web_stats;

Here are techniques to help you produce large data files in Parquet INSERT operations, and to compact existing
too-small data files:

• When inserting into a partitioned Parquet table, use statically partitioned INSERT statements where the partition
key values are specified as constant values. Ideally, use a separate INSERT statement for each partition.

• You might set the NUM_NODES option to 1 briefly, during INSERT or CREATE TABLE AS SELECT statements.
Normally, those statements produce one or more data files per data node. If the write operation involves small
amounts of data, a Parquet table, and/or a partitioned table, the default behavior could produce many small files
when intuitively you might expect only a single output file. SET NUM_NODES=1 turns off the “distributed” aspect
of the write operation, making it more likely to produce only one or a few data files.

• Be prepared to reduce the number of partition key columns from what you are used to with traditional analytic
database systems.

546 | Apache Impala Guide

How Impala Works with Hadoop File Formats

• Do not expect Impala-written Parquet files to fill up the entire Parquet block size. Impala estimates on the
conservative side when figuring out how much data to write to each Parquet file. Typically, the of uncompressed
data in memory is substantially reduced on disk by the compression and encoding techniques in the Parquet file
format. The final data file size varies depending on the compressibility of the data. Therefore, it is not an indication
of a problem if 256 MB of text data is turned into 2 Parquet data files, each less than 256 MB.

• If you accidentally end up with a table with many small data files, consider using one or more of the preceding
techniques and copying all the data into a new Parquet table, either through CREATE TABLE AS SELECT or
INSERT ... SELECT statements.

To avoid rewriting queries to change table names, you can adopt a convention of always running important queries
against a view. Changing the viewdefinition immediately switches any subsequent queries to use the newunderlying
tables:

create view production_table as select * from table_with_many_small_files;
-- CTAS or INSERT...SELECT all the data into a more efficient layout...
alter view production_table as select * from table_with_few_big_files;
select * from production_table where c1 = 100 and c2 < 50 and ...;

Schema Evolution for Parquet Tables

Schema evolution refers to using the statement ALTER TABLE ... REPLACE COLUMNS to change the names, data
type, or number of columns in a table. You can perform schema evolution for Parquet tables as follows:

• The Impala ALTER TABLE statement never changes any data files in the tables. From the Impala side, schema
evolution involves interpreting the same data files in terms of a new table definition. Some types of schema
changes make sense and are represented correctly. Other types of changes cannot be represented in a sensible
way, and produce special result values or conversion errors during queries.

• The INSERT statement always creates data using the latest table definition. You might end up with data files with
different numbers of columns or internal data representations if you do a sequence of INSERT and ALTER TABLE
... REPLACE COLUMNS statements.

• If you use ALTER TABLE ... REPLACE COLUMNS to define additional columns at the end, when the original
data files are used in a query, these final columns are considered to be all NULL values.

• If you use ALTER TABLE ... REPLACE COLUMNS to define fewer columns than before, when the original data
files are used in a query, the unused columns still present in the data file are ignored.

• Parquet represents the TINYINT, SMALLINT, and INT types the same internally, all stored in 32-bit integers.

– That means it is easy to promote a TINYINT column to SMALLINT or INT, or a SMALLINT column to INT.
The numbers are represented exactly the same in the data file, and the columns being promoted would not
contain any out-of-range values.

– If you change any of these column types to a smaller type, any values that are out-of-range for the new type
are returned incorrectly, typically as negative numbers.

– You cannot change a TINYINT, SMALLINT, or INT column to BIGINT, or the other way around. Although
the ALTER TABLE succeeds, any attempt to query those columns results in conversion errors.

– Any other type conversion for columns produces a conversion error during queries. For example, INT to
STRING, FLOAT to DOUBLE, TIMESTAMP to STRING, DECIMAL(9,0) to DECIMAL(5,2), and so on.

Data Type Considerations for Parquet Tables

The Parquet format defines a set of data types whose names differ from the names of the corresponding Impala data
types. If you are preparing Parquet files using other Hadoop components such as Pig or MapReduce, you might need
toworkwith the type names defined by Parquet. The following figure lists the Parquet-defined types and the equivalent
types in Impala.

Apache Impala Guide | 547

How Impala Works with Hadoop File Formats

Primitive types:

BINARY -> STRING
BOOLEAN -> BOOLEAN
DOUBLE -> DOUBLE
FLOAT -> FLOAT
INT32 -> INT
INT64 -> BIGINT
INT96 -> TIMESTAMP

Logical types:

BINARY + OriginalType UTF8 -> STRING
BINARY + OriginalType DECIMAL -> DECIMAL

Complex types:

For the complex types (ARRAY, MAP, and STRUCT) available in CDH 5.5 / Impala 2.3 and higher, Impala only supports
queries against those types in Parquet tables.

Using the Avro File Format with Impala Tables
Impala supports using tables whose data files use the Avro file format. Impala can query Avro tables, and in Impala
1.4.0 and higher can create them, but currently cannot insert data into them. For insert operations, use Hive, then
switch back to Impala to run queries.

Table 6: Avro Format Support in Impala

Impala Can INSERT?Impala Can CREATE?Compression CodecsFormatFile Type

No. Import data by using LOAD
DATA on data files already in the

Yes, in Impala 1.4.0 and higher.
Before that, create the table using
Hive.

Snappy, gzip, deflate,
bzip2

StructuredAvro

right format, or use INSERT in
Hive followed by REFRESH
table_name in Impala.

Creating Avro Tables

To create a new table using the Avro file format, issue the CREATE TABLE statement through Impala with the STORED
AS AVRO clause, or through Hive. If you create the table through Impala, you must include column definitions that
match the fields specified in the Avro schema. With Hive, you can omit the columns and just specify the Avro schema.

In CDH 5.5 / Impala 2.3 and higher, the CREATE TABLE for Avro tables can include SQL-style column definitions rather
than specifying Avro notation through the TBLPROPERTIES clause. Impala issues warning messages if there are any
mismatches between the types specified in the SQL column definitions and the underlying types; for example, any
TINYINT or SMALLINT columns are treated as INT in the underlying Avro files, and therefore are displayed as INT in
any DESCRIBE or SHOW CREATE TABLE output.

Note:

Currently, Avro tables cannot contain TIMESTAMP columns. If you need to store date and time values
in Avro tables, as a workaround you can use a STRING representation of the values, convert the values
to BIGINTwith the UNIX_TIMESTAMP() function, or create separate numeric columns for individual
date and time fields using the EXTRACT() function.

548 | Apache Impala Guide

How Impala Works with Hadoop File Formats

The following examples demonstrate creating an Avro table in Impala, using either an inline column specification or
one taken from a JSON file stored in HDFS:

[localhost:21000] > CREATE TABLE avro_only_sql_columns
 > (
 > id INT,
 > bool_col BOOLEAN,
 > tinyint_col TINYINT, /* Gets promoted to INT */
 > smallint_col SMALLINT, /* Gets promoted to INT */
 > int_col INT,
 > bigint_col BIGINT,
 > float_col FLOAT,
 > double_col DOUBLE,
 > date_string_col STRING,
 > string_col STRING
 >)
 > STORED AS AVRO;

[localhost:21000] > CREATE TABLE impala_avro_table
 > (bool_col BOOLEAN, int_col INT, long_col BIGINT, float_col FLOAT,
double_col DOUBLE, string_col STRING, nullable_int INT)
 > STORED AS AVRO
 > TBLPROPERTIES ('avro.schema.literal'='{
 > "name": "my_record",
 > "type": "record",
 > "fields": [
 > {"name":"bool_col", "type":"boolean"},
 > {"name":"int_col", "type":"int"},
 > {"name":"long_col", "type":"long"},
 > {"name":"float_col", "type":"float"},
 > {"name":"double_col", "type":"double"},
 > {"name":"string_col", "type":"string"},
 > {"name": "nullable_int", "type": ["null", "int"]}]}');

[localhost:21000] > CREATE TABLE avro_examples_of_all_types (
 > id INT,
 > bool_col BOOLEAN,
 > tinyint_col TINYINT,
 > smallint_col SMALLINT,
 > int_col INT,
 > bigint_col BIGINT,
 > float_col FLOAT,
 > double_col DOUBLE,
 > date_string_col STRING,
 > string_col STRING
 >)
 > STORED AS AVRO
 > TBLPROPERTIES
('avro.schema.url'='hdfs://localhost:8020/avro_schemas/alltypes.json');

The following example demonstrates creating an Avro table in Hive:

hive> CREATE TABLE hive_avro_table
 > ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
 > STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'

 > OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
 > TBLPROPERTIES ('avro.schema.literal'='{
 > "name": "my_record",
 > "type": "record",
 > "fields": [
 > {"name":"bool_col", "type":"boolean"},
 > {"name":"int_col", "type":"int"},
 > {"name":"long_col", "type":"long"},
 > {"name":"float_col", "type":"float"},
 > {"name":"double_col", "type":"double"},
 > {"name":"string_col", "type":"string"},
 > {"name": "nullable_int", "type": ["null", "int"]}]}');

Apache Impala Guide | 549

How Impala Works with Hadoop File Formats

Each field of the record becomes a column of the table. Note that any other information, such as the record name, is
ignored.

Note: For nullable Avro columns, make sure to put the "null" entry before the actual type name.
In Impala, all columns are nullable; Impala currently does not have aNOT NULL clause. Any non-nullable
property is only enforced on the Avro side.

Most column types map directly from Avro to Impala under the same names. These are the exceptions and special
cases to consider:

• The DECIMAL type is defined in Avro as a BYTE type with the logicalType property set to "decimal" and a
specified precision and scale. Use DECIMAL in Avro tables only under CDH 5. The infrastructure and components
under CDH 4 do not have reliable DECIMAL support.

• The Avro long type maps to BIGINT in Impala.

If you create the table throughHive, switch back toimpala-shell and issue anINVALIDATE METADATA table_name
statement. Then you can run queries for that table through impala-shell.

In rare instances, a mismatch could occur between the Avro schema and the column definitions in the metastore
database. In CDH5.5 / Impala 2.3 and higher, Impala checks for such inconsistencies during aCREATE TABLE statement
and each time it loads themetadata for a table (for example, after INVALIDATE METADATA). Impala uses the following
rules to determine how to treat mismatching columns, a process known as schema reconciliation:

• If there is a mismatch in the number of columns, Impala uses the column definitions from the Avro schema.
• If there is a mismatch in column name or type, Impala uses the column definition from the Avro schema. Because

a CHAR or VARCHAR column in Impala maps to an Avro STRING, this case is not considered a mismatch and the
column is preserved as CHAR or VARCHAR in the reconciled schema.

• An Impala TIMESTAMP column definition maps to an Avro STRING and is presented as a STRING in the reconciled
schema, because Avro has no binary TIMESTAMP representation. As a result, no Avro table can have a TIMESTAMP
column; this restriction is the same as in earlier CDH and Impala releases.

Complex type considerations: Although you can create tables in this file format using the complex types (ARRAY,
STRUCT, and MAP) available in CDH 5.5 / Impala 2.3 and higher, currently, Impala can query these types only in Parquet
tables.

Using a Hive-Created Avro Table in Impala

If you have an Avro table created through Hive, you can use it in Impala as long as it contains only Impala-compatible
data types. It cannot contain:

• Complex types: array, map, record, struct, union other than [supported_type,null] or
[null,supported_type]

• The Avro-specific types enum, bytes, and fixed
• Any scalar type other than those listed in Data Types on page 117

Because Impala and Hive share the samemetastore database, Impala can directly access the table definitions and data
for tables that were created in Hive.

If you create an Avro table in Hive, issue an INVALIDATE METADATA the next time you connect to Impala through
impala-shell. This is a one-time operation to make Impala aware of the new table. You can issue the statement
while connected to any Impala node, and the catalog service broadcasts the change to all other Impala nodes.

If you load new data into an Avro table through Hive, either through a Hive LOAD DATA or INSERT statement, or by
manually copying or moving files into the data directory for the table, issue a REFRESH table_name statement the
next time you connect to Impala through impala-shell. You can issue the statement while connected to any Impala
node, and the catalog service broadcasts the change to all other Impala nodes. If you issue the LOAD DATA statement
through Impala, you do not need a REFRESH afterward.

Impala only supports fields of type boolean, int, long, float, double, and string, or unions of these types with
null; for example, ["string", "null"]. Unions with null essentially create a nullable type.

550 | Apache Impala Guide

How Impala Works with Hadoop File Formats

Specifying the Avro Schema through JSON

While you can embed a schema directly in your CREATE TABLE statement, as shown above, columnwidth restrictions
in the Hive metastore limit the length of schema you can specify. If you encounter problems with long schema literals,
try storing your schema as a JSON file in HDFS instead. Specify your schema in HDFS using table properties similar to
the following:

tblproperties ('avro.schema.url'='hdfs//your-name-node:port/path/to/schema.json');

Loading Data into an Avro Table

Currently, Impala cannot write Avro data files. Therefore, an Avro table cannot be used as the destination of an Impala
INSERT statement or CREATE TABLE AS SELECT.

To copy data from another table, issue any INSERT statements through Hive. For information about loading data into
Avro tables through Hive, see Avro page on the Hive wiki.

If you already have data files in Avro format, you can also issue LOAD DATA in either Impala or Hive. Impala can move
existing Avro data files into an Avro table, it just cannot create new Avro data files.

Enabling Compression for Avro Tables

To enable compression for Avro tables, specify settings in the Hive shell to enable compression and to specify a codec,
then issue a CREATE TABLE statement as in the preceding examples. Impala supports the snappy and deflate
codecs for Avro tables.

For example:

hive> set hive.exec.compress.output=true;
hive> set avro.output.codec=snappy;

How Impala Handles Avro Schema Evolution

Starting in Impala 1.1, Impala can deal with Avro data files that employ schema evolution, where different data files
within the same table use slightly different type definitions. (You would perform the schema evolution operation by
issuing an ALTER TABLE statement in the Hive shell.) The old and new types for any changed columns must be
compatible, for example a column might start as an int and later change to a bigint or float.

As with any other tables where the definitions are changed or data is added outside of the current impalad node,
ensure that Impala loads the latestmetadata for the table if the Avro schema ismodified throughHive. Issue a REFRESH
table_name or INVALIDATE METADATA table_name statement. REFRESH reloads the metadata immediately,
INVALIDATE METADATA reloads the metadata the next time the table is accessed.

When Avro data files or columns are not consulted during a query, Impala does not check for consistency. Thus, if you
issue SELECT c1, c2 FROM t1, Impala does not return any error if the column c3 changed in an incompatible way.
If a query retrieves data from some partitions but not others, Impala does not check the data files for the unused
partitions.

In the Hive DDL statements, you can specify an avro.schema.literal table property (if the schema definition is
short) or an avro.schema.url property (if the schema definition is long, or to allow convenient editing for the
definition).

For example, running the following SQL code in the Hive shell creates a table using the Avro file format and puts some
sample data into it:

CREATE TABLE avro_table (a string, b string)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
TBLPROPERTIES (
 'avro.schema.literal'='{
 "type": "record",

Apache Impala Guide | 551

How Impala Works with Hadoop File Formats

https://cwiki.apache.org/confluence/display/Hive/AvroSerDe

 "name": "my_record",
 "fields": [
 {"name": "a", "type": "int"},
 {"name": "b", "type": "string"}
]}');

INSERT OVERWRITE TABLE avro_table SELECT 1, "avro" FROM functional.alltypes LIMIT 1;

Once the Avro table is created and contains data, you can query it through the impala-shell command:

[localhost:21000] > select * from avro_table;
+---+------+
| a | b |
+---+------+
| 1 | avro |
+---+------+

Now in the Hive shell, you change the type of a column and add a new column with a default value:

-- Promote column "a" from INT to FLOAT (no need to update Avro schema)
ALTER TABLE avro_table CHANGE A A FLOAT;

-- Add column "c" with default
ALTER TABLE avro_table ADD COLUMNS (c int);
ALTER TABLE avro_table SET TBLPROPERTIES (
 'avro.schema.literal'='{
 "type": "record",
 "name": "my_record",
 "fields": [
 {"name": "a", "type": "int"},
 {"name": "b", "type": "string"},
 {"name": "c", "type": "int", "default": 10}
]}');

Once again in impala-shell, you can query the Avro table based on its latest schema definition. Because the table
metadata was changed outside of Impala, you issue a REFRESH statement first so that Impala has up-to-datemetadata
for the table.

[localhost:21000] > refresh avro_table;
[localhost:21000] > select * from avro_table;
+---+------+----+
| a | b | c |
+---+------+----+
| 1 | avro | 10 |
+---+------+----+

Data Type Considerations for Avro Tables

The Avro format defines a set of data types whose names differ from the names of the corresponding Impala data
types. If you are preparing Avro files using other Hadoop components such as Pig or MapReduce, you might need to
work with the type names defined by Avro. The following figure lists the Avro-defined types and the equivalent types
in Impala.

Primitive Types

STRING -> STRING
INT -> INT
BOOLEAN -> BOOLEAN
LONG -> BIGINT
FLOAT -> FLOAT
DOUBLE -> DOUBLE

Logical Types

BYTES + logicalType = "decimal" -> DECIMAL

Avro Types with No Impala Equivalent

552 | Apache Impala Guide

How Impala Works with Hadoop File Formats

RECORD, MAP, ARRAY, UNION, ENUM, FIXED, NULL

Impala Types with No Avro Equivalent

TIMESTAMP

The Avro specification allows string values up to 2**64 bytes in length. Impala queries for Avro tables use 32-bit integers
to hold string lengths. In CDH 5.7 / Impala 2.5 and higher, Impala truncates CHAR and VARCHAR values in Avro tables
to (2**31)-1 bytes. If a query encounters a STRING value longer than (2**31)-1 bytes in an Avro table, the query fails.
In earlier releases, encountering such long values in an Avro table could cause a crash.

Using the RCFile File Format with Impala Tables
Impala supports using RCFile data files.

Table 7: RCFile Format Support in Impala

Impala Can INSERT?Impala Can CREATE?Compression CodecsFormatFile Type

No. Import data by using LOAD
DATA on data files already in the

Yes.Snappy, gzip, deflate,
bzip2

StructuredRCFile

right format, or use INSERT in
Hive followed by REFRESH
table_name in Impala.

Creating RCFile Tables and Loading Data

If you do not have an existing data file to use, begin by creating one in the appropriate format.

To create an RCFile table:

In the impala-shell interpreter, issue a command similar to:

create table rcfile_table (column_specs) stored as rcfile;

Because Impala can query some kinds of tables that it cannot currently write to, after creating tables of certain file
formats, you might use the Hive shell to load the data. See How Impala Works with Hadoop File Formats on page 528
for details. After loading data into a table through Hive or other mechanism outside of Impala, issue a REFRESH
table_name statement the next time you connect to the Impala node, before querying the table, to make Impala
recognize the new data.

Important: See Known Issues and Workarounds in Impala on page 636 for potential compatibility
issues with RCFile tables created in Hive 0.12, due to a change in the default RCFile SerDe for Hive.

For example, here is how youmight create some RCFile tables in Impala (by specifying the columns explicitly, or cloning
the structure of another table), load data through Hive, and query them through Impala:

$ impala-shell -i localhost
[localhost:21000] > create table rcfile_table (x int) stored as rcfile;
[localhost:21000] > create table rcfile_clone like some_other_table stored as rcfile;
[localhost:21000] > quit;

$ hive
hive> insert into table rcfile_table select x from some_other_table;
3 Rows loaded to rcfile_table
Time taken: 19.015 seconds
hive> quit;

Apache Impala Guide | 553

How Impala Works with Hadoop File Formats

$ impala-shell -i localhost
[localhost:21000] > select * from rcfile_table;
Returned 0 row(s) in 0.23s
[localhost:21000] > -- Make Impala recognize the data loaded through Hive;
[localhost:21000] > refresh rcfile_table;
[localhost:21000] > select * from rcfile_table;
+---+
| x |
+---+
| 1 |
| 2 |
| 3 |
+---+
Returned 3 row(s) in 0.23s

Complex type considerations: Although you can create tables in this file format using the complex types (ARRAY,
STRUCT, and MAP) available in CDH 5.5 / Impala 2.3 and higher, currently, Impala can query these types only in Parquet
tables.

Enabling Compression for RCFile Tables

You may want to enable compression on existing tables. Enabling compression provides performance gains in most
cases and is supported for RCFile tables. For example, to enable Snappy compression, you would specify the following
additional settings when loading data through the Hive shell:

hive> SET hive.exec.compress.output=true;
hive> SET mapred.max.split.size=256000000;
hive> SET mapred.output.compression.type=BLOCK;
hive> SET mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
hive> INSERT OVERWRITE TABLE new_table SELECT * FROM old_table;

If you are converting partitioned tables, you must complete additional steps. In such a case, specify additional settings
similar to the following:

hive> CREATE TABLE new_table (your_cols) PARTITIONED BY (partition_cols) STORED AS
new_format;
hive> SET hive.exec.dynamic.partition.mode=nonstrict;
hive> SET hive.exec.dynamic.partition=true;
hive> INSERT OVERWRITE TABLE new_table PARTITION(comma_separated_partition_cols) SELECT
 * FROM old_table;

Remember that Hive does not require that you specify a source format for it. Consider the case of converting a table
with two partition columns calledyear and month to a Snappy compressed RCFile. Combining the components outlined
previously to complete this table conversion, you would specify settings similar to the following:

hive> CREATE TABLE tbl_rc (int_col INT, string_col STRING) STORED AS RCFILE;
hive> SET hive.exec.compress.output=true;
hive> SET mapred.max.split.size=256000000;
hive> SET mapred.output.compression.type=BLOCK;
hive> SET mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
hive> SET hive.exec.dynamic.partition.mode=nonstrict;
hive> SET hive.exec.dynamic.partition=true;
hive> INSERT OVERWRITE TABLE tbl_rc SELECT * FROM tbl;

To complete a similar process for a table that includes partitions, you would specify settings similar to the following:

hive> CREATE TABLE tbl_rc (int_col INT, string_col STRING) PARTITIONED BY (year INT)
STORED AS RCFILE;
hive> SET hive.exec.compress.output=true;
hive> SET mapred.max.split.size=256000000;
hive> SET mapred.output.compression.type=BLOCK;
hive> SET mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
hive> SET hive.exec.dynamic.partition.mode=nonstrict;
hive> SET hive.exec.dynamic.partition=true;
hive> INSERT OVERWRITE TABLE tbl_rc PARTITION(year) SELECT * FROM tbl;

554 | Apache Impala Guide

How Impala Works with Hadoop File Formats

Note:

The compression type is specified in the following command:

SET
mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;

You could elect to specify alternative codecs such as GzipCodec here.

Using the SequenceFile File Format with Impala Tables
Impala supports using SequenceFile data files.

Table 8: SequenceFile Format Support in Impala

Impala Can INSERT?Impala Can CREATE?Compression CodecsFormatFile Type

No. Import data by using LOAD
DATA on data files already in the

Yes.Snappy, gzip, deflate,
bzip2

StructuredSequenceFile

right format, or use INSERT in
Hive followed by REFRESH
table_name in Impala.

Creating SequenceFile Tables and Loading Data

If you do not have an existing data file to use, begin by creating one in the appropriate format.

To create a SequenceFile table:

In the impala-shell interpreter, issue a command similar to:

create table sequencefile_table (column_specs) stored as sequencefile;

Because Impala can query some kinds of tables that it cannot currently write to, after creating tables of certain file
formats, you might use the Hive shell to load the data. See How Impala Works with Hadoop File Formats on page 528
for details. After loading data into a table through Hive or other mechanism outside of Impala, issue a REFRESH
table_name statement the next time you connect to the Impala node, before querying the table, to make Impala
recognize the new data.

For example, here is how you might create some SequenceFile tables in Impala (by specifying the columns explicitly,
or cloning the structure of another table), load data through Hive, and query them through Impala:

$ impala-shell -i localhost
[localhost:21000] > create table seqfile_table (x int) stored as sequencefile;
[localhost:21000] > create table seqfile_clone like some_other_table stored as
sequencefile;
[localhost:21000] > quit;

$ hive
hive> insert into table seqfile_table select x from some_other_table;
3 Rows loaded to seqfile_table
Time taken: 19.047 seconds
hive> quit;

$ impala-shell -i localhost
[localhost:21000] > select * from seqfile_table;
Returned 0 row(s) in 0.23s
[localhost:21000] > -- Make Impala recognize the data loaded through Hive;
[localhost:21000] > refresh seqfile_table;
[localhost:21000] > select * from seqfile_table;
+---+

Apache Impala Guide | 555

How Impala Works with Hadoop File Formats

| x |
+---+
| 1 |
| 2 |
| 3 |
+---+
Returned 3 row(s) in 0.23s

Complex type considerations: Although you can create tables in this file format using the complex types (ARRAY,
STRUCT, and MAP) available in CDH 5.5 / Impala 2.3 and higher, currently, Impala can query these types only in Parquet
tables.

Enabling Compression for SequenceFile Tables

You may want to enable compression on existing tables. Enabling compression provides performance gains in most
cases and is supported for SequenceFile tables. For example, to enable Snappy compression, you would specify the
following additional settings when loading data through the Hive shell:

hive> SET hive.exec.compress.output=true;
hive> SET mapred.max.split.size=256000000;
hive> SET mapred.output.compression.type=BLOCK;
hive> SET mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
hive> insert overwrite table new_table select * from old_table;

If you are converting partitioned tables, you must complete additional steps. In such a case, specify additional settings
similar to the following:

hive> create table new_table (your_cols) partitioned by (partition_cols) stored as
new_format;
hive> SET hive.exec.dynamic.partition.mode=nonstrict;
hive> SET hive.exec.dynamic.partition=true;
hive> insert overwrite table new_table partition(comma_separated_partition_cols) select
 * from old_table;

Remember that Hive does not require that you specify a source format for it. Consider the case of converting a table
with two partition columns called year and month to a Snappy compressed SequenceFile. Combining the components
outlined previously to complete this table conversion, you would specify settings similar to the following:

hive> create table TBL_SEQ (int_col int, string_col string) STORED AS SEQUENCEFILE;
hive> SET hive.exec.compress.output=true;
hive> SET mapred.max.split.size=256000000;
hive> SET mapred.output.compression.type=BLOCK;
hive> SET mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
hive> SET hive.exec.dynamic.partition.mode=nonstrict;
hive> SET hive.exec.dynamic.partition=true;
hive> INSERT OVERWRITE TABLE tbl_seq SELECT * FROM tbl;

To complete a similar process for a table that includes partitions, you would specify settings similar to the following:

hive> CREATE TABLE tbl_seq (int_col INT, string_col STRING) PARTITIONED BY (year INT)
STORED AS SEQUENCEFILE;
hive> SET hive.exec.compress.output=true;
hive> SET mapred.max.split.size=256000000;
hive> SET mapred.output.compression.type=BLOCK;
hive> SET mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
hive> SET hive.exec.dynamic.partition.mode=nonstrict;
hive> SET hive.exec.dynamic.partition=true;
hive> INSERT OVERWRITE TABLE tbl_seq PARTITION(year) SELECT * FROM tbl;

556 | Apache Impala Guide

How Impala Works with Hadoop File Formats

Note:

The compression type is specified in the following command:

SET
mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;

You could elect to specify alternative codecs such as GzipCodec here.

Apache Impala Guide | 557

How Impala Works with Hadoop File Formats

Using Impala to Query HBase Tables

You can use Impala to query HBase tables. This capability allows convenient access to a storage system that is tuned
for different kinds of workloads than the default with Impala. The default Impala tables use data files stored on HDFS,
which are ideal for bulk loads and queries using full-table scans. In contrast, HBase can do efficient queries for data
organized for OLTP-style workloads, with lookups of individual rows or ranges of values.

From the perspective of an Impala user, coming from an RDBMS background, HBase is a kind of key-value store where
the value consists of multiple fields. The key is mapped to one column in the Impala table, and the various fields of
the value are mapped to the other columns in the Impala table.

For background information on HBase, see the snapshot of the Apache HBase site (including documentation) for the
level of HBase that comes with CDH 5. To install HBase on a CDH cluster, see the installation instructions for CDH 5.

Overview of Using HBase with Impala
When you use Impala with HBase:

• You create the tables on the Impala side using the Hive shell, because the Impala CREATE TABLE statement
currently does not support custom SerDes and some other syntax needed for these tables:

– You designate it as an HBase table using the STORED BY
'org.apache.hadoop.hive.hbase.HBaseStorageHandler' clause on the Hive CREATE TABLE
statement.

– You map these specially created tables to corresponding tables that exist in HBase, with the clause
TBLPROPERTIES("hbase.table.name" = "table_name_in_hbase") on the Hive CREATE TABLE
statement.

– See Examples of Querying HBase Tables from Impala on page 564 for a full example.

• You define the column corresponding to the HBase row key as a string with the #string keyword, or map it to
a STRING column.

• Because Impala and Hive share the same metastore database, once you create the table in Hive, you can query
or insert into it through Impala. (After creating a new table through Hive, issue the INVALIDATE METADATA
statement in impala-shell to make Impala aware of the new table.)

• You issue queries against the Impala tables. For efficient queries, use WHERE clauses to find a single key value or
a range of key values wherever practical, by testing the Impala column corresponding to the HBase row key. Avoid
queries that do full-table scans, which are efficient for regular Impala tables but inefficient in HBase.

To work with an HBase table from Impala, ensure that the impala user has read/write privileges for the HBase table,
using the GRANT command in the HBase shell. For details about HBase security, see the Security chapter in the HBase
Reference Guide.

Configuring HBase for Use with Impala
HBase works out of the box with Impala. There is no mandatory configuration needed to use these two components
together.

To avoid delays if HBase is unavailable during Impala startup or after an INVALIDATE METADATA statement, Cloudera
recommends setting timeout values as follows in /etc/impala/conf/hbase-site.xml (for environments not
managed by Cloudera Manager):

<property>
 <name>hbase.client.retries.number</name>
 <value>3</value>
</property>

558 | Apache Impala Guide

Using Impala to Query HBase Tables

https://archive.cloudera.com/cdh5/cdh/5/hbase/
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_hbase_installation.html
http://hbase.apache.org/book/ch08s04.html
http://hbase.apache.org/book/ch08s04.html

<property>
 <name>hbase.rpc.timeout</name>
 <value>3000</value>
</property>

Currently, Cloudera Manager does not have an Impala-only override for HBase settings, so any HBase configuration
change you make through Cloudera Manager would take affect for all HBase applications. Therefore, this change is
not recommended on systems managed by Cloudera Manager.

Supported Data Types for HBase Columns
To understand how Impala column data types are mapped to fields in HBase, you should have some background
knowledge about HBase first. You set up the mapping by running the CREATE TABLE statement in the Hive shell. See
the Hive wiki for a starting point, and Examples of Querying HBase Tables from Impala on page 564 for examples.

HBase works as a kind of “bit bucket”, in the sense that HBase does not enforce any typing for the key or value fields.
All the type enforcement is done on the Impala side.

For best performance of Impala queries against HBase tables, most queries will perform comparisons in the WHERE
against the column that corresponds to the HBase row key. When creating the table through the Hive shell, use the
STRING data type for the column that corresponds to the HBase row key. Impala can translate conditional tests (through
operators such as =, <, BETWEEN, and IN) against this column into fast lookups in HBase, but this optimization (“predicate
pushdown”) only works when that column is defined as STRING.

Starting in Impala 1.1, Impala also supports reading andwriting to columns that are defined in the Hive CREATE TABLE
statement using binary data types, represented in the Hive table definition using the #binary keyword, often
abbreviated as #b. Defining numeric columns as binary can reduce the overall data volume in the HBase tables. You
should still define the column that corresponds to the HBase row key as a STRING, to allow fast lookups using those
columns.

Performance Considerations for the Impala-HBase Integration
To understand the performance characteristics of SQL queries against data stored in HBase, you should have some
background knowledge about how HBase interacts with SQL-oriented systems first. See the Hive wiki for a starting
point; because Impala shares the same metastore database as Hive, the information about mapping columns from
Hive tables to HBase tables is generally applicable to Impala too.

Impala uses the HBase client API via Java Native Interface (JNI) to query data stored in HBase. This querying does not
read HFiles directly. The extra communication overhead makes it important to choose what data to store in HBase or
in HDFS, and construct efficient queries that can retrieve the HBase data efficiently:

• Use HBase table for queries that return a single row or a range of rows, not queries that scan the entire table. (If
a query has no WHERE clause, that is a strong indicator that it is an inefficient query for an HBase table.)

• If you have join queries that do aggregation operations on large fact tables and join the results against small
dimension tables, consider using Impala for the fact tables and HBase for the dimension tables. (Because Impala
does a full scan on the HBase table in this case, rather than doing single-row HBase lookups based on the join
column, only use this technique where the HBase table is small enough that doing a full table scan does not cause
a performance bottleneck for the query.)

Query predicates are applied to row keys as start and stop keys, thereby limiting the scope of a particular lookup. If
row keys are not mapped to string columns, then ordering is typically incorrect and comparison operations do not
work. For example, if row keys are not mapped to string columns, evaluating for greater than (>) or less than (<) cannot
be completed.

Predicates on non-key columns can be sent to HBase to scan as SingleColumnValueFilters, providing some
performance gains. In such a case, HBase returns fewer rows than if those same predicates were applied using Impala.
While there is some improvement, it is not as great when start and stop rows are used. This is because the number of
rows that HBasemust examine is not limited as it is when start and stop rows are used. As long as the row key predicate

Apache Impala Guide | 559

Using Impala to Query HBase Tables

https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration

only applies to a single row, HBase will locate and return that row. Conversely, if a non-key predicate is used, even if
it only applies to a single row, HBase must still scan the entire table to find the correct result.

Interpreting EXPLAIN Output for HBase Queries

For example, here are some queries against the following Impala table, which is mapped to an HBase table. The
examples show excerpts from the output of the EXPLAIN statement, demonstrating what things to look for to indicate
an efficient or inefficient query against an HBase table.

The first column (cust_id) was specified as the key column in the CREATE EXTERNAL TABLE statement; for
performance, it is important to declare this column as STRING. Other columns, such as BIRTH_YEAR and
NEVER_LOGGED_ON, are also declared asSTRING, rather than their “natural” types ofINT orBOOLEAN, because Impala
can optimize those types more effectively in HBase tables. For comparison, we leave one column, YEAR_REGISTERED,
as INT to show that filtering on this column is inefficient.

describe hbase_table;
Query: describe hbase_table
+-----------------------+--------+---------+
| name | type | comment |
+-----------------------+--------+---------+
cust_id	string	
birth_year	string	
never_logged_on	string	
private_email_address	string	
year_registered	int	
+-----------------------+--------+---------+

The best case for performance involves a single row lookup using an equality comparison on the column defined as
the row key:

explain select count(*) from hbase_table where cust_id = 'some_user@example.com';
+--+
| Explain String |
+--+
| Estimated Per-Host Requirements: Memory=1.01GB VCores=1 |
| WARNING: The following tables are missing relevant table and/or column statistics. |
| hbase.hbase_table |
| |
| 03:AGGREGATE [MERGE FINALIZE] |
| | output: sum(count(*)) |
| | |
| 02:EXCHANGE [PARTITION=UNPARTITIONED] |
| | |
| 01:AGGREGATE |
| | output: count(*) |
| | |
| 00:SCAN HBASE [hbase.hbase_table] |
| start key: some_user@example.com |
| stop key: some_user@example.com\0 |
+--+

Another type of efficient query involves a range lookup on the row key column, using SQL operators such as greater
than (or equal), less than (or equal), or BETWEEN. This example also includes an equality test on a non-key column;
because that column is a STRING, Impala can let HBase perform that test, indicated by the hbase filters: line in
the EXPLAIN output. Doing the filtering within HBase is more efficient than transmitting all the data to Impala and
doing the filtering on the Impala side.

explain select count(*) from hbase_table where cust_id between 'a' and 'b'
 and never_logged_on = 'true';
+--+
| Explain String |
+--+
...

| 01:AGGREGATE |
| | output: count(*) |
| | |

560 | Apache Impala Guide

Using Impala to Query HBase Tables

| 00:SCAN HBASE [hbase.hbase_table] |
| start key: a |
| stop key: b\0 |
| hbase filters: cols:never_logged_on EQUAL 'true' |
+--+

The query is less efficient if Impala has to evaluate any of the predicates, because Impala must scan the entire HBase
table. Impala can only push down predicates to HBase for columns declared as STRING. This example tests a column
declared as INT, and the predicates: line in the EXPLAIN output indicates that the test is performed after the data
is transmitted to Impala.

explain select count(*) from hbase_table where year_registered = 2010;
+--+
| Explain String |
+--+
...

| 01:AGGREGATE |
| | output: count(*) |
| | |
| 00:SCAN HBASE [hbase.hbase_table] |
| predicates: year_registered = 2010 |
+--+

The same inefficiency applies if the key column is compared to any non-constant value. Here, even though the key
column is a STRING, and is tested using an equality operator, Impala must scan the entire HBase table because the
key column is compared to another column value rather than a constant.

explain select count(*) from hbase_table where cust_id = private_email_address;
+--+
| Explain String |
+--+
...

| 01:AGGREGATE |
| | output: count(*) |
| | |
| 00:SCAN HBASE [hbase.hbase_table] |
| predicates: cust_id = private_email_address |
+--+

Currently, tests on the row key using OR or IN clauses are not optimized into direct lookups either. Such limitations
might be lifted in the future, so always check the EXPLAIN output to be sure whether a particular SQL construct results
in an efficient query or not for HBase tables.

explain select count(*) from hbase_table where
 cust_id = 'some_user@example.com' or cust_id = 'other_user@example.com';
+--+
| Explain String
 |
+--+
...

| 01:AGGREGATE
 |
| | output: count(*)
 |
| |
 |
| 00:SCAN HBASE [hbase.hbase_table]
 |
| predicates: cust_id = 'some_user@example.com' OR cust_id = 'other_user@example.com'
 |
+--+

explain select count(*) from hbase_table where
 cust_id in ('some_user@example.com', 'other_user@example.com');
+--+

Apache Impala Guide | 561

Using Impala to Query HBase Tables

| Explain String |
+--+
...

| 01:AGGREGATE |
| | output: count(*) |
| | |
| 00:SCAN HBASE [hbase.hbase_table] |
| predicates: cust_id IN ('some_user@example.com', 'other_user@example.com') |
+--+

Either rewrite into separate queries for each value and combine the results in the application, or combine the single-row
queries using UNION ALL:

select count(*) from hbase_table where cust_id = 'some_user@example.com';
select count(*) from hbase_table where cust_id = 'other_user@example.com';

explain
 select count(*) from hbase_table where cust_id = 'some_user@example.com'
 union all
 select count(*) from hbase_table where cust_id = 'other_user@example.com';
+--+
| Explain String |
+--+
...

	04:AGGREGATE	
		output: count(*)
	03:SCAN HBASE [hbase.hbase_table]	
	start key: other_user@example.com	
	stop key: other_user@example.com\0	
10:MERGE		
...

| 02:AGGREGATE |
| | output: count(*) |
| | |
| 01:SCAN HBASE [hbase.hbase_table] |
| start key: some_user@example.com |
| stop key: some_user@example.com\0 |
+--+

Configuration Options for Java HBase Applications

If you have an HBase Java application that calls the setCacheBlocks or setCachingmethods of the class
org.apache.hadoop.hbase.client.Scan, you can set these same caching behaviors through Impala query options, to
control the memory pressure on the HBase RegionServer. For example, when doing queries in HBase that result in
full-table scans (which by default are inefficient for HBase), you can reduce memory usage and speed up the queries
by turning off the HBASE_CACHE_BLOCKS setting and specifying a large number for the HBASE_CACHING setting.

To set these options, issue commands like the following in impala-shell:

-- Same as calling setCacheBlocks(true) or setCacheBlocks(false).
set hbase_cache_blocks=true;
set hbase_cache_blocks=false;

-- Same as calling setCaching(rows).
set hbase_caching=1000;

Or update the impalad defaults file /etc/default/impala and include settings for HBASE_CACHE_BLOCKS and/or
HBASE_CACHING in the-default_query_options setting forIMPALA_SERVER_ARGS. SeeModifying Impala Startup
Options on page 43 for details.

562 | Apache Impala Guide

Using Impala to Query HBase Tables

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html

Note: In Impala 2.0 and later, these options are settable through the JDBC or ODBC interfaces using
the SET statement.

Use Cases for Querying HBase through Impala
The following are popular use cases for using Impala to query HBase tables:

• Keeping large fact tables in Impala, and smaller dimension tables in HBase. The fact tables use Parquet or other
binary file format optimized for scan operations. Join queries scan through the large Impala fact tables, and
cross-reference the dimension tables using efficient single-row lookups in HBase.

• Using HBase to store rapidly incrementing counters, such as how many times a web page has been viewed, or on
a social network, how many connections a user has or how many votes a post received. HBase is efficient for
capturing such changeable data: the append-only storage mechanism is efficient for writing each change to disk,
and a query always returns the latest value. An application could query specific totals like these from HBase, and
combine the results with a broader set of data queried from Impala.

• Storing very wide tables in HBase. Wide tables have many columns, possibly thousands, typically recording many
attributes for an important subject such as a user of an online service. These tables are also often sparse, that is,
most of the columns values are NULL, 0, false, empty string, or other blank or placeholder value. (For example,
any particular web site user might have never used some site feature, filled in a certain field in their profile, visited
a particular part of the site, and so on.) A typical query against this kind of table is to look up a single row to retrieve
all the information about a specific subject, rather than summing, averaging, or filtering millions of rows as in
typical Impala-managed tables.

Or the HBase table could be joined with a larger Impala-managed table. For example, analyze the large Impala
table representing web traffic for a site and pick out 50 users who view the most pages. Join that result with the
wide user table in HBase to look up attributes of those users. The HBase side of the join would result in 50 efficient
single-row lookups in HBase, rather than scanning the entire user table.

Loading Data into an HBase Table
The Impala INSERT statement works for HBase tables. The INSERT ... VALUES syntax is ideally suited to HBase
tables, because inserting a single row is an efficient operation for an HBase table. (For regular Impala tables, with data
files in HDFS, the tiny data files produced by INSERT ... VALUES are extremely inefficient, so you would not use
that technique with tables containing any significant data volume.)

When you use the INSERT ... SELECT syntax, the result in the HBase table could be fewer rows than you expect.
HBase only stores the most recent version of each unique row key, so if an INSERT ... SELECT statement copies
over multiple rows containing the same value for the key column, subsequent queries will only return one row with
each key column value:

Although Impala does not have an UPDATE statement, you can achieve the same effect by doing successive INSERT
statements using the same value for the key column each time:

Limitations and Restrictions of the Impala and HBase Integration
The Impala integration with HBase has the following limitations and restrictions, some inherited from the integration
between HBase and Hive, and some unique to Impala:

• If you issue a DROP TABLE for an internal (Impala-managed) table that ismapped to anHBase table, the underlying
table is not removed in HBase. The Hive DROP TABLE statement also removes the HBase table in this case.

• The INSERT OVERWRITE statement is not available for HBase tables. You can insert new data, or modify an
existing row by inserting a new row with the same key value, but not replace the entire contents of the table. You
can do an INSERT OVERWRITE in Hive if you need this capability.

Apache Impala Guide | 563

Using Impala to Query HBase Tables

• If you issue a CREATE TABLE LIKE statement for a table mapped to an HBase table, the new table is also an
HBase table, but inherits the same underlying HBase table name as the original. The new table is effectively an
alias for the old one, not a new table with identical column structure. Avoid using CREATE TABLE LIKE for HBase
tables, to avoid any confusion.

• Copying data into an HBase table using the Impala INSERT ... SELECT syntax might produce fewer new rows
than are in the query result set. If the result set contains multiple rows with the same value for the key column,
each row supercedes any previous rows with the same key value. Because the order of the inserted rows is
unpredictable, you cannot rely on this technique to preserve the “latest” version of a particular key value.

• Because the complex data types (ARRAY, STRUCT, and MAP) available in CDH 5.5 / Impala 2.3 and higher are
currently only supported in Parquet tables, you cannot use these types in HBase tables that are queried through
Impala.

• The LOAD DATA statement cannot be used with HBase tables.

Examples of Querying HBase Tables from Impala
The following examples create an HBase table with four column families, create a corresponding table through Hive,
then insert and query the table through Impala.

Note that in HBase shell, the table name is quoted in CREATE and DROP statements. Tables created in HBase begin in
“enabled” state; before dropping them through theHBase shell, youmust issue a disable 'table_name' statement.

$ hbase shell
15/02/10 16:07:45
HBase Shell; enter 'help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
Version 0.94.2-cdh4.2.0, rUnknown, Fri Feb 15 11:51:18 PST 2013

hbase(main):001:0> create 'hbasealltypessmall', 'boolsCF', 'intsCF', 'floatsCF',
'stringsCF'
0 row(s) in 4.6520 seconds

=> Hbase::Table - hbasealltypessmall
hbase(main):006:0> quit

Issue the following CREATE TABLE statement in the Hive shell. (The Impala CREATE TABLE statement currently does
not support the STORED BY clause, so you switch into Hive to create the table, then back to Impala and the
impala-shell interpreter to issue the queries.)

This example creates an external table mapped to the HBase table, usable by both Impala and Hive. It is defined as an
external table so that when dropped by Impala or Hive, the original HBase table is not touched at all.

The WITH SERDEPROPERTIES clause specifies that the first column (ID) represents the row key, and maps the
remaining columns of the SQL table to HBase column families. The mapping relies on the ordinal order of the columns
in the table, not the column names in the CREATE TABLE statement. The first column is defined to be the lookup key;
the STRING data type produces the fastest key-based lookups for HBase tables.

Note: For Impala with HBase tables, the most important aspect to ensure good performance is to
use a STRING column as the row key, as shown in this example.

$ hive
Logging initialized using configuration in file:/etc/hive/conf.dist/hive-log4j.properties
Hive history file=/tmp/cloudera/hive_job_log_cloudera_201502101610_1980712808.txt
hive> use hbase;
OK
Time taken: 4.095 seconds
hive> CREATE EXTERNAL TABLE hbasestringids (
 > id string,
 > bool_col boolean,

564 | Apache Impala Guide

Using Impala to Query HBase Tables

 > tinyint_col tinyint,
 > smallint_col smallint,
 > int_col int,
 > bigint_col bigint,
 > float_col float,
 > double_col double,
 > date_string_col string,
 > string_col string,
 > timestamp_col timestamp)
 > STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
 > WITH SERDEPROPERTIES (
 > "hbase.columns.mapping" =
 >
":key,boolsCF:bool_col,intsCF:tinyint_col,intsCF:smallint_col,intsCF:int_col,intsCF:\
 > bigint_col,floatsCF:float_col,floatsCF:double_col,stringsCF:date_string_col,\
 > stringsCF:string_col,stringsCF:timestamp_col"
 >)
 > TBLPROPERTIES("hbase.table.name" = "hbasealltypessmall");
OK
Time taken: 2.879 seconds
hive> quit;

Once you have established the mapping to an HBase table, you can issue DML statements and queries from Impala.
The following example shows a series of INSERT statements followed by a query. The ideal kind of query from a
performance standpoint retrieves a row from the table based on a row key mapped to a string column. An initial
INVALIDATE METADATA table_name statement makes the table created through Hive visible to Impala.

$ impala-shell -i localhost -d hbase
Starting Impala Shell without Kerberos authentication
Connected to localhost:21000
Server version: impalad version 2.1.0-cdh4 RELEASE (build
d520a9cdea2fc97e8d5da9fbb0244e60ee416bfa)
Welcome to the Impala shell. Press TAB twice to see a list of available commands.

Copyright (c) 2012 Cloudera, Inc. All rights reserved.

(Shell build version: Impala Shell v2.1.0-cdh4 (d520a9c) built on Mon Dec 8 21:41:17
PST 2014)
Query: use `hbase`
[localhost:21000] > invalidate metadata hbasestringids;
Fetched 0 row(s) in 0.09s
[localhost:21000] > desc hbasestringids;
+-----------------+-----------+---------+
| name | type | comment |
+-----------------+-----------+---------+
id	string	
bool_col	boolean	
double_col	double	
float_col	float	
bigint_col	bigint	
int_col	int	
smallint_col	smallint	
tinyint_col	tinyint	
date_string_col	string	
string_col	string	
timestamp_col	timestamp	
+-----------------+-----------+---------+		
Fetched 11 row(s) in 0.02s		
[localhost:21000] > insert into hbasestringids values		
('0001',true,3.141,9.94,1234567,32768,4000,76,'2014-12-31','Hello world',now());		
Inserted 1 row(s) in 0.26s		
[localhost:21000] > insert into hbasestringids values		
('0002',false,2.004,6.196,1500,8000,129,127,'2014-01-01','Foo bar',now());		
Inserted 1 row(s) in 0.12s		
[localhost:21000] > select * from hbasestringids where id = '0001';		
+------+----------+------------+-------------------+------------+---------+--------------+-------------+-----------------+-------------+-------------------------------+		
id	bool_col	double_col
tinyint_col	date_string_col	string_col
+------+----------+------------+-------------------+------------+---------+--------------+-------------+-----------------+-------------+-------------------------------+		
0001	true	3.141
76	2014-12-31	Hello world

Apache Impala Guide | 565

Using Impala to Query HBase Tables

+------+----------+------------+-------------------+------------+---------+--------------+-------------+-----------------+-------------+-------------------------------+
Fetched 1 row(s) in 0.54s

Note: After you create a table in Hive, such as the HBase mapping table in this example, issue an
INVALIDATE METADATA table_name statement the next time you connect to Impala, make Impala
aware of the new table. (Prior to Impala 1.2.4, you could not specify the table name if Impala was not
aware of the table yet; in Impala 1.2.4 and higher, specifying the table name avoids reloading the
metadata for other tables that are not changed.)

566 | Apache Impala Guide

Using Impala to Query HBase Tables

Using Impala to Query the Amazon S3 Filesystem

Important:

Impala query functionality for Amazon S3 is included beginning in CDH 5.4. From CDH 5.4 through
CDH 5.7, the S3 functionality for Impala is not supported or recommended for production use. In CDH
5.8 and higher, this functionality is supported and production-ready. For themost current information,
see the latest documentation for using Impala with S3.

You can use Impala to query data residing on the Amazon S3 filesystem. This capability allows convenient access to a
storage system that is remotelymanaged, accessible from anywhere, and integratedwith various cloud-based services.
Impala can query files in any supported file format from S3. The S3 storage location can be for an entire table or
individual partitions in a partitioned table.

The default Impala tables use data files stored on HDFS, which are ideal for bulk loads and queries using full-table
scans. In contrast, queries against S3 data are less performant, making S3 suitable for holding “cold” data that is only
queried occasionally, while more frequently accessed “hot” data resides in HDFS. In a partitioned table, you can set
the LOCATION attribute for individual partitions to put some partitions on HDFS and others on S3, typically depending
on the age of the data.

Specifying Impala Credentials to Access Data in S3
To allow Impala to access data in S3, specify values for the following configuration settings in your hdfs-site.xml
file:

<property>
<name>fs.s3a.access.key</name>
<value>your_access_key</value>
</property>
<property>
<name>fs.s3a.secret.key</name>
<value>your_secret_key</value>
</property>

As of CDH 5.4.0, these settings do not have corresponding controls in the Cloudera Manager user interface. Specify
them in the HDFS Client Advanced Configuration Snippet (Safety Valve) for hdfs-site.xml field. After specifying the
credentials, restart both the Impala and Hive services. (Restarting Hive is required because Impala queries, CREATE
TABLE statements, and so on go through the Hive metastore.)

Important: Although you can specify the access key ID and secret key as part of the s3a:// URL in
the LOCATION attribute, doing so makes this sensitive information visible in many places, such as
DESCRIBE FORMATTED output and Impala log files. Therefore, specify this information centrally in
the hdfs-site.xml file, and restrict read access to that file to only trusted users.

Loading Data into S3 for Impala Queries
Use the Amazon-provided methods to bring data files into S3 for querying through Impala. See the Amazon S3 web
site for details. For example, you might use one or more of the following techniques:

• The Amazon AWS / S3 web interface to upload from a web browser.
• The Amazon AWS CLI to manipulate files from the command line.
• Other S3-enabled software, such as the S3Tools client software.

Apache Impala Guide | 567

Using Impala to Query the Amazon S3 Filesystem

https://www.cloudera.com/documentation/enterprise/latest/topics/impala_s3.html
http://aws.amazon.com/s3/
http://aws.amazon.com/s3/
https://console.aws.amazon.com/s3/home
http://aws.amazon.com/cli/
http://s3tools.org/s3cmd

After you upload data files to a location already mapped to an Impala table or partition, or if you delete files in S3 from
such a location, issue the REFRESH table_name statement to make Impala aware of the new set of data files.

Creating Impala Databases, Tables, and Partitions for Data Stored on S3
Impala reads data for a table or partition from S3 based on the LOCATION attribute for the table or partition. Specify
the S3 details in theLOCATION clause of aCREATE TABLE orALTER TABLE statement. The notation for theLOCATION
clause is s3a://bucket_name/path/to/file. The filesystem prefix is always s3a://; Impala does not support the
s3:// or s3n:// prefixes.

For a partitioned table, either specify a separate LOCATION clause for each new partition, or specify a base LOCATION
for the table and set up a directory structure in S3 to mirror the way Impala partitioned tables are structured in HDFS.
Although, strictly speaking, S3 filenames do not have directory paths, Impala treats S3 filenames with / characters the
same as HDFS pathnames that include directories.

To point a nonpartitioned table or an individual partition at S3 involves specifying a single directory path in S3, which
could be any arbitrary directory. To replicate the structure of an entire Impala partitioned table or database in S3
requires more care, with directories and subdirectories nested and named to match the equivalent directory tree in
HDFS. Consider setting up an empty staging area if necessary in HDFS, and recording the complete directory structure
so that you can replicate it in S3.

For convenience when working with multiple tables with data files stored in S3, you can create a database with a
LOCATION attribute pointing to an S3 path. Specify a URL of the form s3a://bucket/root/path/for/database

for the LOCATION attribute of the database. Any tables created inside that database automatically create directories
underneath the one specified by the database LOCATION attribute.

For example, the following session creates a partitioned tablewhere only a single partition resides on S3. The partitions
for years 2013 and 2014 are located on HDFS. The partition for year 2015 includes a LOCATION attribute with an
s3a:// URL, and so refers to data residing on S3, under a specific path underneath the bucket impala-demo.

[localhost:21000] > create database db_on_hdfs;
[localhost:21000] > use db_on_hdfs;
[localhost:21000] > create table mostly_on_hdfs (x int) partitioned by (year int);
[localhost:21000] > alter table mostly_on_hdfs add partition (year=2013);
[localhost:21000] > alter table mostly_on_hdfs add partition (year=2014);
[localhost:21000] > alter table mostly_on_hdfs add partition (year=2015) location
's3a://impala-demo/dir1/dir2/dir3/t1';

The following session creates a database and two partitioned tables residing entirely on S3, one partitioned by a single
column and the other partitioned bymultiple columns. Because a LOCATION attribute with an s3a://URL is specified
for the database, the tables inside that database are automatically created on S3 underneath the database directory.
To see the names of the associated subdirectories, including the partition key values, we use an S3 client tool to examine
how the directory structure is organized on S3. For example, Impala partition directories such as month=1 do not
include leading zeroes such sometimes appear in partitioned tables created through Hive.

[localhost:21000] > create database db_on_s3 location 's3a://impala-demo/dir1/dir2/dir3';
[localhost:21000] > use db_on_s3;

[localhost:21000] > create table partitioned_on_s3 (x int) partitioned by (year int);
[localhost:21000] > alter table partitioned_on_s3 add partition (year=2013);
[localhost:21000] > alter table partitioned_on_s3 add partition (year=2014);
[localhost:21000] > alter table partitioned_on_s3 add partition (year=2015);

[localhost:21000] > !aws s3 ls s3://impala-demo/dir1/dir2/dir3 --recursive;
2015-03-17 13:56:34 0 dir1/dir2/dir3/
2015-03-17 16:43:28 0 dir1/dir2/dir3/partitioned_on_s3/
2015-03-17 16:43:49 0 dir1/dir2/dir3/partitioned_on_s3/year=2013/
2015-03-17 16:43:53 0 dir1/dir2/dir3/partitioned_on_s3/year=2014/
2015-03-17 16:43:58 0 dir1/dir2/dir3/partitioned_on_s3/year=2015/

[localhost:21000] > create table partitioned_multiple_keys (x int) partitioned by (year
 smallint, month tinyint, day tinyint);
[localhost:21000] > alter table partitioned_multiple_keys add partition

568 | Apache Impala Guide

Using Impala to Query the Amazon S3 Filesystem

(year=2015,month=1,day=1);
[localhost:21000] > alter table partitioned_multiple_keys add partition
(year=2015,month=1,day=31);
[localhost:21000] > alter table partitioned_multiple_keys add partition
(year=2015,month=2,day=28);

[localhost:21000] > !aws s3 ls s3://impala-demo/dir1/dir2/dir3 --recursive;
2015-03-17 13:56:34 0 dir1/dir2/dir3/
2015-03-17 16:47:13 0 dir1/dir2/dir3/partitioned_multiple_keys/
2015-03-17 16:47:44 0
dir1/dir2/dir3/partitioned_multiple_keys/year=2015/month=1/day=1/
2015-03-17 16:47:50 0
dir1/dir2/dir3/partitioned_multiple_keys/year=2015/month=1/day=31/
2015-03-17 16:47:57 0
dir1/dir2/dir3/partitioned_multiple_keys/year=2015/month=2/day=28/
2015-03-17 16:43:28 0 dir1/dir2/dir3/partitioned_on_s3/
2015-03-17 16:43:49 0 dir1/dir2/dir3/partitioned_on_s3/year=2013/
2015-03-17 16:43:53 0 dir1/dir2/dir3/partitioned_on_s3/year=2014/
2015-03-17 16:43:58 0 dir1/dir2/dir3/partitioned_on_s3/year=2015/

The CREATE DATABASE and CREATE TABLE statements create the associated directory paths if they do not already
exist. You can specify multiple levels of directories, and the CREATE statement creates all appropriate levels, similar
to using mkdir -p.

Use the standard S3 file upload methods to actually put the data files into the right locations. You can also put the
directory paths and data files in place before creating the associated Impala databases or tables, and Impala automatically
uses the data from the appropriate location after the associated databases and tables are created.

You can switch whether an existing table or partition points to data in HDFS or S3. For example, if you have an Impala
table or partition pointing to data files in HDFS or S3, and you later transfer those data files to the other filesystem,
use an ALTER TABLE statement to adjust the LOCATION attribute of the corresponding table or partition to reflect
that change. Because Impala does not have an ALTER DATABASE statement, this location-switching technique is not
practical for entire databases that have a custom LOCATION attribute.

Internal and External Tables Located on S3
Just as with tables located on HDFS storage, you can designate S3-based tables as either internal (managed by Impala)
or external, by using the syntax CREATE TABLE or CREATE EXTERNAL TABLE respectively.When you drop an internal
table, the files associated with the table are removed, even if they are on S3 storage. When you drop an external table,
the files associated with the table are left alone, and are still available for access by other tools or components. See
Overview of Impala Tables on page 209 for details.

If the data on S3 is intended to be long-lived and accessed by other tools in addition to Impala, create any associated
S3 tables with the CREATE EXTERNAL TABLE syntax, so that the files are not deleted from S3 when the table is
dropped.

If the data on S3 is only needed for querying by Impala and can be safely discarded once the Impala workflow is
complete, create the associated S3 tables using the CREATE TABLE syntax, so that dropping the table also deletes the
corresponding data files on S3.

For example, this session creates a table in S3 with the same column layout as a table in HDFS, then examines the S3
table and queries some data from it. The table in S3 works the same as a table in HDFS as far as the expected file format
of the data, table and column statistics, and other table properties. The only indication that it is not an HDFS table is
the s3a://URL in the LOCATION property. Many data files can reside in the S3 directory, and their combined contents
form the table data. Because the data in this example is uploaded after the table is created, a REFRESH statement
prompts Impala to update its cached information about the data files.

[localhost:21000] > create table usa_cities_s3 like usa_cities location
's3a://impala-demo/usa_cities';
[localhost:21000] > desc usa_cities_s3;
+-------+----------+---------+
| name | type | comment |
+-------+----------+---------+

Apache Impala Guide | 569

Using Impala to Query the Amazon S3 Filesystem

id	smallint	
city	string	
state	string	
+-------+----------+---------+

-- Now from a web browser, upload the same data file(s) to S3 as in the HDFS table,
under the relevant bucket and path.
-- If you already have the data in S3, you would point the table LOCATION at an existing
 path.

[localhost:21000] > refresh usa_cities_s3;
[localhost:21000] > select count(*) from usa_cities_s3;
+----------+
| count(*) |
+----------+
| 289 |
+----------+
[localhost:21000] > select distinct state from sample_data_s3 limit 5;
+----------------------+
| state |
+----------------------+
| Louisiana |
| Minnesota |
| Georgia |
| Alaska |
| Ohio |
+----------------------+
[localhost:21000] > desc formatted usa_cities_s3;
+------------------------------+------------------------------+---------+
| name | type | comment |
+------------------------------+------------------------------+---------+
# col_name	data_type	comment
	NULL	NULL
id	smallint	NULL
city	string	NULL
state	string	NULL
	NULL	NULL
# Detailed Table Information	NULL	NULL
Database:	s3_testing	NULL
Owner:	jrussell	NULL
CreateTime:	Mon Mar 16 11:36:25 PDT 2015	NULL
LastAccessTime:	UNKNOWN	NULL
Protect Mode:	None	NULL
Retention:	0	NULL
Location:	s3a://impala-demo/usa_cities	NULL
Table Type:	MANAGED_TABLE	NULL
...
+------------------------------+------------------------------+---------+

In this case, we have already uploaded a Parquet file with a million rows of data to the sample_data directory
underneath the impala-demo bucket on S3. This session creates a table with matching column settings pointing to
the corresponding location in S3, then queries the table. Because the data is already in place on S3 when the table is
created, no REFRESH statement is required.

[localhost:21000] > create table sample_data_s3 (id int, id bigint, val int, zerofill
string,
 > name string, assertion boolean, city string, state string)
 > stored as parquet location 's3a://impala-demo/sample_data';
[localhost:21000] > select count(*) from sample_data_s3;;
+----------+
| count(*) |
+----------+
| 1000000 |
+----------+
[localhost:21000] > select count(*) howmany, assertion from sample_data_s3 group by
assertion;
+---------+-----------+
| howmany | assertion |
+---------+-----------+
| 667149 | true |

570 | Apache Impala Guide

Using Impala to Query the Amazon S3 Filesystem

| 332851 | false |
+---------+-----------+

Running and Tuning Impala Queries for Data Stored on S3
Once the appropriate LOCATION attributes are set up at the table or partition level, you query data stored in S3 exactly
the same as data stored on HDFS or in HBase:

• Queries against S3 data support all the same file formats as for HDFS data.
• Tables can be unpartitioned or partitioned. For partitioned tables, either manually construct paths in S3

corresponding to the HDFS directories representing partition key values, or use ALTER TABLE ... ADD
PARTITION to set up the appropriate paths in S3.

• HDFS and HBase tables can be joined to S3 tables, or S3 tables can be joined with each other.
• Authorization using the Sentry framework to control access to databases, tables, or columns works the same

whether the data is in HDFS or in S3.
• Thecatalogd daemon cachesmetadata for bothHDFS and S3 tables. UseREFRESH andINVALIDATE METADATA

for S3 tables in the same situations where you would issue those statements for HDFS tables.
• Queries against S3 tables are subject to the same kinds of admission control and resource management as HDFS

tables.
• Metadata about S3 tables is stored in the same metastore database as for HDFS tables.
• You can set up views referring to S3 tables, the same as for HDFS tables.
• The COMPUTE STATS, SHOW TABLE STATS, and SHOW COLUMN STATS statements work for S3 tables also.

Understanding and Tuning Impala Query Performance for S3 Data

Although Impala queries for data stored in S3might be less performant than queries against the equivalent data stored
in HDFS, you can still do some tuning. Here are techniques you can use to interpret explain plans and profiles for queries
against S3 data, and tips to achieve the best performance possible for such queries.

All else being equal, performance is expected to be lower for queries running against data on S3 rather than HDFS.
The actual mechanics of the SELECT statement are somewhat different when the data is in S3. Although the work is
still distributed across the datanodes of the cluster, Impalamight parallelize the work for a distributed query differently
for data on HDFS and S3. S3 does not have the same block notion as HDFS, so Impala uses heuristics to determine how
to split up large S3 files for processing in parallel. Because all hosts can access any S3 data file with equal efficiency,
the distribution of work might be different than for HDFS data, where the data blocks are physically read using
short-circuit local reads by hosts that contain the appropriate block replicas. Although the I/O to read the S3 datamight
be spread evenly across the hosts of the cluster, the fact that all data is initially retrieved across the network means
that the overall query performance is likely to be lower for S3 data than for HDFS data.

When optimizing aspects of for complex queries such as the join order, Impala treats tables on HDFS and S3 the same
way. Therefore, follow all the same tuning recommendations for S3 tables as for HDFS ones, such as using the COMPUTE
STATS statement to help Impala construct accurate estimates of row counts and cardinality. See Tuning Impala for
Performance on page 480 for details.

In queryprofile reports, thenumbers forBytesReadLocal,BytesReadShortCircuit,BytesReadDataNodeCached,
and BytesReadRemoteUnexpected are blank because those metrics come from HDFS.

Restrictions on Impala Support for S3
Impala requires that the default filesystem for the cluster be HDFS. You cannot use S3 as the only filesystem in the
cluster.

Currently, Impala cannot perform DML operations (INSERT, LOAD DATA, or CREATE TABLE AS SELECT) where the
destination is a table or partition located on an S3 filesystem. This restriction is because S3 does not support file
renaming, which Impala uses during DML operations.

Apache Impala Guide | 571

Using Impala to Query the Amazon S3 Filesystem

Impala does not support the old s3:// block-based and s3n:// filesystem schemes, only s3a://.

Although S3 is often used to store JSON-formatted data, the current Impala support for S3 does not include directly
querying JSONdata. For Impala queries, use data files in one of the file formats listed in How ImpalaWorkswithHadoop
File Formats on page 528. If you have data in JSON format, you can prepare a flattened version of that data for querying
by Impala as part of your ETL cycle.

You cannot use the ALTER TABLE ... SET CACHED statement for tables or partitions that are located in S3.

572 | Apache Impala Guide

Using Impala to Query the Amazon S3 Filesystem

Using Impala with Isilon Storage

You can use Impala to query data files that reside on EMC Isilon storage devices, rather than in HDFS. This capability
allows convenient query access to a storage system where you might already be managing large volumes of data. The
combination of the Impala query engine and Isilon storage is certified on CDH 5.4.4 through CDH 5.15.

Because the EMC Isilon storage devices use a global value for the block size rather than a configurable value for each
file, the PARQUET_FILE_SIZE query option has no effect when Impala inserts data into a table or partition residing
on Isilon storage. Use the isi command to set the default block size globally on the Isilon device. For example, to set
the Isilon default block size to 256 MB, the recommended size for Parquet data files for Impala, issue the following
command:

isi hdfs settings modify --default-block-size=256MB

The typical use case for Impala and Isilon together is to use Isilon for the default filesystem, replacing HDFS entirely.
In this configuration, when you create a database, table, or partition, the data always resides on Isilon storage and you
do not need to specify any special LOCATION attribute. If you do specify a LOCATION attribute, its value refers to a
path within the Isilon filesystem. For example:

-- If the default filesystem is Isilon, all Impala data resides there
-- and all Impala databases and tables are located there.
CREATE TABLE t1 (x INT, s STRING);

-- You can specify LOCATION for database, table, or partition,
-- using values from the Isilon filesystem.
CREATE DATABASE d1 LOCATION '/some/path/on/isilon/server/d1.db';
CREATE TABLE d1.t2 (a TINYINT, b BOOLEAN);

Impala can write to, delete, and rename data files and database, table, and partition directories on Isilon storage.
Therefore, Impala statements such as CREATE TABLE, DROP TABLE, CREATE DATABASE, DROP DATABASE, ALTER
TABLE, and INSERT work the same with Isilon storage as with HDFS.

When the Impala spill-to-disk feature is activated by a query that approaches the memory limit, Impala writes all the
temporary data to a local (not Isilon) storage device. Because the I/O bandwidth for the temporary data depends on
the number of local disks, and clusters using Isilon storage might not have as many local disks attached, pay special
attention on Isilon-enabled clusters to any queries that use the spill-to-disk feature. Where practical, tune the queries
or allocate extramemory for Impala to avoid spilling. Although you can specify an Isilon storage device as the destination
for the temporary data for the spill-to-disk feature, that configuration is not recommended due to the need to transfer
the data both ways using remote I/O.

When tuning Impala queries on HDFS, you typically try to avoid any remote reads. When the data resides on Isilon
storage, all the I/O consists of remote reads. Do not be alarmed when you see non-zero numbers for remote read
measurements in query profile output. The benefit of the Impala and Isilon integration is primarily convenience of not
having to move or copy large volumes of data to HDFS, rather than raw query performance. You can increase the
performance of Impala I/O for Isilon systems by increasing the value for the num_remote_hdfs_io_threads
configuration parameter, in the Cloudera Manager user interface for clusters using Cloudera Manager, or through the
--num_remote_hdfs_io_threads startup option for theimpalad daemonon clusters not using ClouderaManager.

For information about managing Isilon storage devices through Cloudera Manager, see
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_isilon_service.html.

Required Configurations
Specify the following configurations in Cloudera Manager on the Clusters > Isilon Service > Configuration tab:

Apache Impala Guide | 573

Using Impala with Isilon Storage

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_isilon_service.html

• In HDFS Client Advanced Configuration Snippet (Safety Valve) for hdfs-site.xml hdfs-site.xml and the
Cluster-wide Advanced Configuration Snippet (Safety Valve) for core-site.xml properties for the Isilon service,
set the value of the dfs.client.file-block-storage-locations.timeout.millis property to 10000.

• In the Isilon Cluster-wide Advanced Configuration Snippet (Safety Valve) for core-site.xml property for the Isilon
service, set the value of the hadoop.security.token.service.use_ip property to FALSE.

• If you see errors that reference the .Trash directory, make sure that the Use Trash property is selected.

574 | Apache Impala Guide

Using Impala with Isilon Storage

Using Impala Logging

The Impala logs record information about:

• Any errors Impala encountered. If Impala experienced a serious error during startup, you must diagnose and
troubleshoot that problem before you can do anything further with Impala.

• How Impala is configured.
• Jobs Impala has completed.

Note:

Formerly, the logs contained the query profile for each query, showing low-level details of how the
work is distributed among nodes and how intermediate and final results are transmitted across the
network. To save space, those query profiles are now stored in zlib-compressed files in
/var/log/impala/profiles. You can access them through the Impala web user interface. For
example, at http://impalad-node-hostname:25000/queries, each query is followed by a
Profile link leading to a page showing extensive analytical data for the query execution.

The auditing feature introduced in Impala 1.1.1 produces a separate set of audit log files when enabled.
See Auditing Impala Operations on page 113 for details.

The lineage feature introduced in Impala 2.2.0 produces a separate lineage log file when enabled. See
Viewing Lineage Information for Impala Data on page 115 for details.

Locations and Names of Impala Log Files
• By default, the log files are under the directory /var/log/impala. To change log file locations, modify the

defaults file described in Starting Impala on page 42.
• The significant files for the impalad process are impalad.INFO, impalad.WARNING, and impalad.ERROR. You

might also see a file impalad.FATAL, although this is only present in rare conditions.
• The significant files for the statestored process are statestored.INFO, statestored.WARNING, and

statestored.ERROR. You might also see a file statestored.FATAL, although this is only present in rare
conditions.

• The significant files for thecatalogd process arecatalogd.INFO,catalogd.WARNING, andcatalogd.ERROR.
You might also see a file catalogd.FATAL, although this is only present in rare conditions.

• Examine the .INFO files to see configuration settings for the processes.
• Examine the .WARNING files to see all kinds of problem information, including such things as suboptimal settings

and also serious runtime errors.
• Examine the .ERROR and/or .FATAL files to see only the most serious errors, if the processes crash, or queries

fail to complete. These messages are also in the .WARNING file.
• A new set of log files is produced each time the associated daemon is restarted. These log files have long names

including a timestamp. The .INFO, .WARNING, and .ERROR files are physically represented as symbolic links to
the latest applicable log files.

• The init script for the impala-server service also produces a consolidated log file
/var/log/impalad/impala-server.log,with all the same informationas the corresponding.INFO,.WARNING,
and .ERROR files.

• The init script for the impala-state-store service also produces a consolidated log file
/var/log/impalad/impala-state-store.log, with all the same information as the corresponding.INFO,
.WARNING, and .ERROR files.

Impala stores information using the glog_v logging system. You will see some messages referring to C++ file names.
Logging is affected by:

Apache Impala Guide | 575

Using Impala Logging

• The GLOG_v environment variable specifies which types of messages are logged. See Setting Logging Levels on
page 577 for details.

• The -logbuflevel startup flag for the impalad daemon specifies how often the log information is written to
disk. The default is 0, meaning that the log is immediately flushed to disk when Impala outputs an important
messages such as a warning or an error, but less important messages such as informational ones are buffered in
memory rather than being flushed to disk immediately.

• Cloudera Manager has an Impala configuration setting that sets the -logbuflevel startup option.

Managing Impala Logs through Cloudera Manager or Manually
Cloudera recommends installing Impala through the Cloudera Manager administration interface. To assist with
troubleshooting, Cloudera Manager collects front-end and back-end logs together into a single view, and let you do a
search across log data for all themanaged nodes rather than examining the logs on each node separately. If you installed
Impala using Cloudera Manager, refer to the topics on Monitoring Services (CDH 5) or Logs (CDH 5).

If you are using Impala in an environment not managed by Cloudera Manager, review Impala log files on each host,
when you have traced an issue back to a specific system.

Rotating Impala Logs
Impala periodically switches the physical files representing the current log files, after which it is safe to remove the
old files if they are no longer needed.

Impala can automatically remove older unneeded log files, a feature known as log rotation.

In Impala 2.2 and higher, the -max_log_files configuration option specifies how many log files to keep at each
severity level. You can specify an appropriate setting for each Impala-related daemon (impalad, statestored, and
catalogd). The default value is 10, meaning that Impala preserves the latest 10 log files for each severity level (INFO,
WARNING, ERROR, and FATAL). Impala checks to see if any old logs need to be removed based on the interval specified
in the logbufsecs setting, every 5 seconds by default.

A value of 0 preserves all log files, in which case you would set up set up manual log rotation using your Linux tool or
technique of choice. A value of 1 preserves only the very latest log file.

To set up log rotation on a system managed by Cloudera Manager 5.4.0 and higher, search for the max_log_files
option name and set the appropriate value for the Maximum Log Files field for each Impala configuration category
(Impala, Catalog Server, and StateStore). Then restart the Impala service. In earlier ClouderaManager releases, specify
the -max_log_files=maximum option in the Command Line Argument Advanced Configuration Snippet (Safety
Valve) field for each Impala configuration category.

Reviewing Impala Logs
By default, the Impala log is stored at /var/log/impalad/. The most comprehensive log, showing informational,
warning, and error messages, is in the file name impalad.INFO. View log file contents by using the web interface or
by examining the contents of the log file. (When you examine the logs through the file system, you can troubleshoot
problems by reading the impalad.WARNING and/or impalad.ERROR files, which contain the subsets of messages
indicating potential problems.)

On a machine named impala.example.com with default settings, you could view the Impala logs on that machine
by using a browser to access http://impala.example.com:25000/logs.

Note:

The web interface limits the amount of logging information displayed. To view every log entry, access
the log files directly through the file system.

576 | Apache Impala Guide

Using Impala Logging

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_dg_service_monitoring.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_dg_logs.html

You can view the contents of the impalad.INFO log file in the file system. With the default configuration settings,
the start of the log file appears as follows:

[user@example impalad]$ pwd
/var/log/impalad
[user@example impalad]$ more impalad.INFO
Log file created at: 2013/01/07 08:42:12
Running on machine: impala.example.com
Log line format: [IWEF]mmdd hh:mm:ss.uuuuuu threadid file:line] msg
I0107 08:42:12.292155 14876 daemon.cc:34] impalad version 0.4 RELEASE (build
9d7fadca0461ab40b9e9df8cdb47107ec6b27cff)
Built on Fri, 21 Dec 2012 12:55:19 PST
I0107 08:42:12.292484 14876 daemon.cc:35] Using hostname: impala.example.com
I0107 08:42:12.292706 14876 logging.cc:76] Flags (see also /varz are on debug webserver):
--dump_ir=false
--module_output=
--be_port=22000
--classpath=
--hostname=impala.example.com

Note: The preceding example shows only a small part of the log file. Impala log files are often several
megabytes in size.

Understanding Impala Log Contents
The logs store information about Impala startup options. This information appears once for each time Impala is started
and may include:

• Machine name.
• Impala version number.
• Flags used to start Impala.
• CPU information.
• The number of available disks.

There is information about each job Impala has run. Because each Impala job creates an additional set of data about
queries, the amount of job specific data may be very large. Logs may contained detailed information on jobs. These
detailed log entries may include:

• The composition of the query.
• The degree of data locality.
• Statistics on data throughput and response times.

Setting Logging Levels
Impala uses the GLOG system, which supports three logging levels. You can adjust the logging levels using the Cloudera
Manager Admin Console. You can adjust logging levels without going through the Cloudera Manager Admin Console
by exporting variable settings. To change logging settings manually, use a command similar to the following on each
node before starting impalad:

export GLOG_v=1

Note: For performance reasons, Cloudera highly recommends not enabling themost verbose logging
level of 3.

For more information on how to configure GLOG, including how to set variable logging levels for different system
components, see documentation for the glog project on github.

Apache Impala Guide | 577

Using Impala Logging

https://github.com/google/glog

Understanding What is Logged at Different Logging Levels

As logging levels increase, the categories of information logged are cumulative. For example, GLOG_v=2 records
everything GLOG_v=1 records, as well as additional information.

Increasing logging levels imposes performance overhead and increases log size. Cloudera recommends using GLOG_v=1
for most cases: this level has minimal performance impact but still captures useful troubleshooting information.

Additional information logged at each level is as follows:

• GLOG_v=1 - The default level. Logs information about each connection and query that is initiated to an impalad
instance, including runtime profiles.

• GLOG_v=2 - Everything from the previous level plus information for each RPC initiated. This level also records
query execution progress information, including details on each file that is read.

• GLOG_v=3 - Everything from the previous level plus logging of every row that is read. This level is only applicable
for themost serious troubleshooting and tuning scenarios, because it can produce exceptionally large and detailed
log files, potentially leading to its own set of performance and capacity problems.

Redacting Sensitive Information from Impala Log Files
Log redaction is a security feature that prevents sensitive information from being displayed in locations used by
administrators for monitoring and troubleshooting, such as log files, the Cloudera Manager user interface, and the
Impala debugweb user interface. You configure regular expressions thatmatch sensitive types of information processed
by your system, such as credit card numbers or tax IDs, and literals matching these patterns are obfuscated wherever
they would normally be recorded in log files or displayed in administration or debugging user interfaces.

In a security context, the log redaction feature is complementary to the Sentry authorization framework. Sentry prevents
unauthorized users frombeing able to directly access table data. Redaction prevents administrators or support personnel
from seeing the smaller amounts of sensitive or personally identifying information (PII) that might appear in queries
issued by those authorized users.

See http://www.cloudera.com/documentation/enterprise/latest/topics/sg_redaction.html for details about how to
enable this feature and set up the regular expressions to detect and redact sensitive information within SQL statement
text.

578 | Apache Impala Guide

Using Impala Logging

http://www.cloudera.com/documentation/enterprise/latest/topics/sg_redaction.html

Troubleshooting Impala

Troubleshooting for Impala requires being able to diagnose anddebug problemswith performance, network connectivity,
out-of-memory conditions, disk space usage, and crash or hang conditions in any of the Impala-related daemons.

Troubleshooting Impala SQL Syntax Issues
In general, if queries issued against Impala fail, you can try running these same queries against Hive.

• If a query fails against both Impala and Hive, it is likely that there is a problem with your query or other elements
of your CDH environment:

– Review the Language Reference to ensure your query is valid.
– Check Impala Reserved Words on page 586 to see if any database, table, column, or other object names in

your query conflict with Impala reserved words. Quote those names with backticks (``) if so.
– Check Impala Built-In Functions on page 339 to confirm whether Impala supports all the built-in functions

being used by your query, and whether argument and return types are the same as you expect.
– Review the contents of the Impala logs for any information that may be useful in identifying the source of

the problem.

• If a query fails against Impala but not Hive, it is likely that there is a problem with your Impala installation.

Troubleshooting I/O Capacity Problems
Impala queries are typically I/O-intensive. If there is an I/O problem with storage devices, or with HDFS itself, Impala
queries could show slow response times with no obvious cause on the Impala side. Slow I/O on even a single Impala
daemon could result in an overall slowdown, because queries involving clauses such as ORDER BY, GROUP BY, or JOIN
do not start returning results until all executor Impala daemons have finished their work.

To test whether the Linux I/O system itself is performing as expected, run Linux commands like the following on each
host Impala daemon is running:

$ sudo sysctl -w vm.drop_caches=3 vm.drop_caches=0
vm.drop_caches = 3
vm.drop_caches = 0
$ sudo dd if=/dev/sda bs=1M of=/dev/null count=1k
1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB) copied, 5.60373 s, 192 MB/s
$ sudo dd if=/dev/sdb bs=1M of=/dev/null count=1k
1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB) copied, 5.51145 s, 195 MB/s
$ sudo dd if=/dev/sdc bs=1M of=/dev/null count=1k
1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB) copied, 5.58096 s, 192 MB/s
$ sudo dd if=/dev/sdd bs=1M of=/dev/null count=1k
1024+0 records in
1024+0 records out
1073741824 bytes (1.1 GB) copied, 5.43924 s, 197 MB/s

Onmodern hardware, a throughput rate of less than 100MB/s typically indicates a performance issue with the storage
device. Correct the hardware problem before continuing with Impala tuning or benchmarking.

Apache Impala Guide | 579

Troubleshooting Impala

Impala Troubleshooting Quick Reference
The following table lists common problems and potential solutions.

RecommendationExplanationSymptom

Adjust timeout and synchronicity settings.Impala instances with large numbers of tables,
partitions, or data files take longer to start

Impala takes a
long time to
start. because the metadata for these objects is

broadcast to all impalad nodes and cached.

Start by gathering statistics with the COMPUTE
STATS statement for each table involved in the

There may be insufficient memory. During a join,
data from the second, third, and so on sets to be

Joins fail to
complete.

join. Consider specifying the [SHUFFLE] hint sojoined is loaded into memory. If Impala chooses
that data from the joined tables is split upan inefficient join order or join mechanism, the

query could exceed the total memory available. between nodes rather than broadcast to each
node. If tuning at the SQL level is not sufficient,
add more memory to your system or join smaller
data sets.

Where possible, use the appropriate Impala
statement (INSERT,LOAD DATA,CREATE TABLE,

Impala metadata may be outdated after changes
are performed in Hive.

Queries return
incorrect
results. ALTER TABLE, COMPUTE STATS, and so on)

rather than switching back and forth between
Impala andHive. Impala automatically broadcasts
the results of DDL and DML operations to all
Impala nodes in the cluster, but does not
automatically recognize when such changes are
made through Hive. After inserting data, adding
a partition, or other operation in Hive, refresh the
metadata for the table as described in REFRESH
Statement on page 278.

Ensure Impala is installed on all DataNodes. Start
any impalad instances that are not running.

Some impalad instances may not have started.
Using a browser, connect to the host running the
Impala state store. Connect using an address of
the form http://hostname:port/metrics.

Queries are
slow to return
results.

Note: Replace hostname and port
with the hostname and port of your
Impala state store host machine
and web server port. The default
port is 25010.

The number of impalad instances listed should
match theexpectednumberofimpalad instances
installed in the cluster. There should also be one
impalad instance installed on each DataNode.

Ensure Impala is configured to use native
checksumming as described in Post-Installation
Configuration for Impala on page 30.

Impala may not be configured to use native
checksumming. Native checksumming uses
machine-specific instructions to compute
checksums over HDFS data very quickly. Review

Queries are
slow to return
results.

Impala logs. If you find instances of "INFO
util.NativeCodeLoader: Loaded the

580 | Apache Impala Guide

Troubleshooting Impala

RecommendationExplanationSymptom

native-hadoop" messages, native
checksumming is not enabled.

Test Impala for data locality tracking and make
configuration changes as necessary. Information

Impala may not be configured to use data locality
tracking.

Queries are
slow to return
results. on this process can be found in Post-Installation

Configuration for Impala on page 30.

In general, ensure the Impala user has sufficient
permissions. In the preceding example, ensure

This can be the result of permissions issues. For
example, you could use the Hive shell as the hive

Attempts to
complete

the Impala user has sufficient permissions to the
table that the Hive user created.

user to create a table. After creating this table,
you could attempt to complete some action, such
as an INSERT-SELECT on the table. Because the

Impala tasks
such as
executing

table was created using one user and theINSERT-SELECT
INSERT-SELECT is attempted by another, this
action may fail due to permissions issues.

actions fail. The
Impala logs
include notes
that files could
not be opened
due to
permission
denied.

Configure the statestore timeout value and
possibly other settings related to the frequency

A large number of databases, tables, partitions,
and so on can require metadata synchronization,

Impala fails to
start up, with

of statestore updates and metadata loading. Seeparticularly on startup, that takes longer than the
default timeout for the statestore service.

the impalad
logs referring
to errors

Increasing the Statestore Timeout on page 84 and
Scalability Considerations for the Impala
Statestore on page 517.connecting to

the statestore
service and
attempts to
re-register.

Impala Web User Interface for Debugging
Each of the Impala daemons (impalad, statestored, and catalogd) includes a built-in web server that displays
diagnostic and status information:

• TheimpaladwebUI (default port: 25000) includes information about configuration settings, running and completed
queries, and associated performance and resource usage for queries. In particular, the Details link for each query
displays alternative views of the query including a graphical representation of the plan, and the output of the
EXPLAIN, SUMMARY, and PROFILE statements from impala-shell. Each host that runs the impalad daemon
has its own instance of the web UI, with details about those queries for which that host served as the coordinator.
To get a consolidated view for all queries, it is usually more convenient to use the charts, graphs, and other
monitoring features in Cloudera Manager. The impaladweb UI is mainly for diagnosing query problems that can
be traced to a particular node.

• The statestoredwebUI (default port: 25010) includes information aboutmemory usage, configuration settings,
and ongoing health checks performed by this daemon. Because there is only a single instance of this daemon
within any cluster, you view the web UI only on the particular host that serves as the Impala Statestore.

• The catalogd web UI (default port: 25020) includes information about the databases, tables, and other objects
managed by Impala, in addition to the resource usage and configuration settings of the daemon itself. The catalog
information is represented as the underlying Thrift data structures. Because there is only a single instance of this

Apache Impala Guide | 581

Troubleshooting Impala

daemon within any cluster, you view the web UI only on the particular host that serves as the Impala Catalog
Server.

Note:

The web user interface is primarily for problem diagnosis and troubleshooting. The items listed and
their formats are subject to change. To monitor Impala health, particularly across the entire cluster
at once, use the Cloudera Manager interface.

Debug Web UI for impalad

To debug and troubleshoot the impalad daemon using a web-based interface, open the URL
http://impala-server-hostname:25000/ in a browser. (For secure clusters, use the prefix https:// instead
of http://.) Because each Impala node produces its own set of debug information, choose a specific node that you
are curious about or suspect is having problems.

Note: To get a convenient picture of the health of all Impala nodes in a cluster, use the Cloudera
Manager interface, which collects the low-level operational information from all Impala nodes, and
presents a unified view of the entire cluster.

Main Page

By default, themain page of the debugwebUI is athttp://impala-server-hostname:25000/ (non-secure cluster)
or https://impala-server-hostname:25000/ (secure cluster).

This page lists the version of the impalad daemon, plus basic hardware and software information about the
corresponding host, such as information about the CPU, memory, disks, and operating system version.

Backends Page

By default, the backends page of the debug web UI is at http://impala-server-hostname:25000/backends
(non-secure cluster) or https://impala-server-hostname:25000/backends (secure cluster).

This page lists the host and port info for each of the impalad nodes in the cluster. Because each impalad daemon
knows about every other impalad daemon through the statestore, this information should be the same regardless
of which node you select. Links take you to the corresponding debug web pages for any of the other nodes in the
cluster.

Catalog Page

By default, the catalog page of the debug web UI is at http://impala-server-hostname:25000/catalog
(non-secure cluster) or https://impala-server-hostname:25000/catalog (secure cluster).

This page displays a list of databases and associated tables recognized by this instance of impalad. You can use this
page to locate which database a table is in, check the exact spelling of a database or table name, look for identical
table names in multiple databases, and so on.

Logs Page

By default, the logs page of the debug web UI is at http://impala-server-hostname:25000/logs (non-secure
cluster) or https://impala-server-hostname:25000/logs (secure cluster).

This page shows the last portion of the impalad.INFO log file, the most detailed of the info, warning, and error logs
for the impalad daemon. You can refer here to see the details of the most recent operations, whether the operations
succeeded or encountered errors. This central page can be more convenient than looking around the filesystem for
the log files, which could be in different locations on clusters that use Cloudera Manager or not.

582 | Apache Impala Guide

Troubleshooting Impala

Memz Page

By default, thememz page of the debugwebUI is at http://impala-server-hostname:25000/memz (non-secure
cluster) or https://impala-server-hostname:25000/memz (secure cluster).

This page displays summary and detailed information about memory usage by the impalad daemon. You can see the
memory limit in effect for the node, and how much of that memory Impala is currently using.

Metrics Page

By default, themetrics page of the debug web UI is at http://impala-server-hostname:25000/metrics
(non-secure cluster) or https://impala-server-hostname:25000/metrics (secure cluster).

This page displays the current set of metrics: counters and flags representing various aspects of impalad internal
operation. For the meanings of these metrics, see Impala Metrics in the Cloudera Manager documentation.

Queries Page

By default, the queries page of the debug web UI is at http://impala-server-hostname:25000/queries
(non-secure cluster) or https://impala-server-hostname:25000/queries (secure cluster).

This page lists all currently running queries, plus any completed queries whose details still reside in memory. The
queries are listed in reverse chronological order, with the most recent at the top. (You can control the amount of
memory devoted to completed queries by specifying the --query_log_size startup option for impalad.)

On this page, you can see at a glance how many SQL statements are failing (State value of EXCEPTION), how large
the result sets are (# rows fetched), and how long each statement took (Start Time and End Time).

Each query has an associated link that displays the detailed query profile, which you can examine to understand the
performance characteristics of that query. See Using the Query Profile for Performance Tuning on page 510 for details.

Sessions Page

By default, the sessions page of the debug web UI is at http://impala-server-hostname:25000/sessions
(non-secure cluster) or https://impala-server-hostname:25000/sessions (secure cluster).

This page displays information about the sessions currently connected to this impalad instance. For example, sessions
could include connections from the impala-shell command, JDBC or ODBC applications, or the Impala Query UI in
the Hue web interface.

Threadz Page

By default, the threadz page of the debug web UI is at http://impala-server-hostname:25000/threadz
(non-secure cluster) or https://impala-server-hostname:25000/threadz (secure cluster).

This page displays information about the threads used by this instance of impalad, and shows which categories they
are grouped into. Making use of this information requires substantial knowledge about Impala internals.

Varz Page

By default, the varz page of the debug web UI is at http://impala-server-hostname:25000/varz (non-secure
cluster) or https://impala-server-hostname:25000/varz (secure cluster).

This page shows the configuration settings in effect when this instance of impalad communicates with other Hadoop
components such as HDFS and YARN. These settings are collected from a set of configuration files; Impala might not
actually make use of all settings.

The bottom of this page also lists all the command-line settings in effect for this instance of impalad. See Modifying
Impala Startup Options on page 43 for information about modifying these values.

Apache Impala Guide | 583

Troubleshooting Impala

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_metrics_impala.html

Ports Used by Impala

Impala uses the TCP ports listed in the following table. Before deploying Impala, ensure these ports are open on each
system.

CommentAccess
Requirement

PortServiceComponent

Used to transmit commands
and receive results by

External21000Impala Daemon Frontend PortImpala Daemon

impala-shell and version
1.2 of the Cloudera ODBC
driver.

Used to transmit commands
and receive results by

External21050Impala Daemon Frontend PortImpala Daemon

applications, such as Business
Intelligence tools, using JDBC,
the Beeswax query editor in
Hue, and version 2.0 or higher
of the Cloudera ODBC driver.

Internal use only. Impala
daemons use this port to
communicate with each other.

Internal22000Impala Daemon Backend PortImpala Daemon

Internal use only. Impala
daemons listen on this port for

Internal23000StateStoreSubscriber Service
Port

Impala Daemon

updates from the statestore
daemon.

Internal use only. The catalog
daemon listens on this port for

Internal23020StateStoreSubscriber Service
Port

Catalog Daemon

updates from the statestore
daemon.

Impala web interface for
administrators to monitor and
troubleshoot.

External25000Impala Daemon HTTP Server
Port

Impala Daemon

StateStore web interface for
administrators to monitor and
troubleshoot.

External25010StateStore HTTP Server PortImpala StateStore
Daemon

Catalog service web interface
for administrators to monitor

External25020Catalog HTTP Server PortImpala Catalog
Daemon

and troubleshoot. New in
Impala 1.2 and higher.

Internal use only. The
statestore daemon listens on

Internal24000StateStore Service PortImpala StateStore
Daemon

this port for
registration/unregistration
requests.

584 | Apache Impala Guide

Ports Used by Impala

CommentAccess
Requirement

PortServiceComponent

Internal use only. The catalog
service uses this port to

Internal26000Catalog Service PortImpala Catalog
Daemon

communicate with the Impala
daemons. New in Impala 1.2
and higher.

Internal use only. Impala
daemons use to communicate

Internal28000Llama Callback PortImpala Daemon

with Llama. New in CDH 5.0.0
and higher.

Internal use only. New in CDH
5.0.0 and higher.

Internal15002Llama Thrift Admin PortImpala Llama
ApplicationMaster

Internal use only. New in CDH
5.0.0 and higher.

Internal15000Llama Thrift PortImpala Llama
ApplicationMaster

Llama serviceweb interface for
administrators to monitor and

External15001Llama HTTP PortImpala Llama
ApplicationMaster

troubleshoot.New inCDH5.0.0
and higher.

Apache Impala Guide | 585

Ports Used by Impala

Impala Reserved Words

The following are the reserved words for the current release of Impala. A reserved word is one that cannot be used
directly as an identifier; you must quote it with backticks. For example, a statement CREATE TABLE select (x
INT) fails, while CREATE TABLE `select` (x INT) succeeds. Impala does not reserve the names of aggregate or
scalar built-in functions. (Formerly, Impala did reserve the names of some aggregate functions.)

Because different database systems have different sets of reservedwords, and the reservedwords change from release
to release, carefully consider database, table, and column names to ensure maximum compatibility between products
and versions.

Because you might switch between Impala and Hive when doing analytics and ETL, also consider whether your object
names are the same as any Hive keywords, and rename or quote any that conflict. Consult the list of Hive keywords.

List of Current Reserved Words

add
aggregate
all
alter
analytic
and
anti
api_version
as
asc
avro
between
bigint
binary
boolean
by
cached
cascade
case
cast
change
char
class
close_fn
column
columns
comment
compute
create
cross
current
data
database
databases
date
datetime
decimal
delimited
desc
describe
distinct
div
double
drop
else
end
escaped
exists
explain

586 | Apache Impala Guide

Impala Reserved Words

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-Keywords,Non-reservedKeywordsandReservedKeywords

external
false
fields
fileformat
finalize_fn
first
float
following
for
format
formatted
from
full
function
functions
grant
group
having
if
in
incremental
init_fn
inner
inpath
insert
int
integer
intermediate
interval
into
invalidate
is
join
last
left
like
limit
lines
load
location
merge_fn
metadata
not
null
nulls
offset
on
or
order
outer
over
overwrite
parquet
parquetfile
partition
partitioned
partitions
preceding
prepare_fn
produced
purge
range
rcfile
real
refresh
regexp
rename
replace
restrict
returns
revoke
right
rlike

Apache Impala Guide | 587

Impala Reserved Words

role
roles
row
rows
schema
schemas
select
semi
sequencefile
serdeproperties
serialize_fn
set
show
smallint
stats
stored
straight_join
string
symbol
table
tables
tblproperties
terminated
textfile
then
timestamp
tinyint
to
true
truncate
unbounded
uncached
union
update_fn
use
using
values
varchar
view
when
where
with

Planning for Future Reserved Words
The previous list of reserved words includes all the keywords used in the current level of Impala SQL syntax. To
future-proof your code, you should avoid additional words in case they become reserved words if Impala adds features
in later releases. This kind of planning can also help to avoid name conflicts in case you port SQL from other systems
that have different sets of reserved words.

The following list contains additional words that Cloudera recommends avoiding for table, column, or other object
names, even though they are not currently reserved by Impala.

any
authorization
backup
begin
break
browse
bulk
cascade
check
checkpoint
close
clustered
coalesce
collate
commit

588 | Apache Impala Guide

Impala Reserved Words

constraint
contains
continue
convert
current
current_date
current_time
current_timestamp
current_user
cursor
dbcc
deallocate
declare
default
delete
deny
disk
distributed
dump
errlvl
escape
except
exec
execute
exit
fetch
file
fillfactor
for
foreign
freetext
goto
holdlock
identity
index
intersect
key
kill
lineno
merge
national
nocheck
nonclustered
nullif
of
off
offsets
open
option
percent
pivot
plan
precision
primary
print
proc
procedure
public
raiserror
read
readtext
reconfigure
references
replication
restore
restrict
return
revert
rollback
rowcount
rule
save
securityaudit

Apache Impala Guide | 589

Impala Reserved Words

session_user
setuser
shutdown
some
statistics
system_user
tablesample
textsize
then
top
tran
transaction
trigger
try_convert
unique
unpivot
update
updatetext
user
varying
waitfor
while
within
writetext

590 | Apache Impala Guide

Impala Reserved Words

Impala Frequently Asked Questions

Here are the categories of frequently asked questions for Apache Impala, the interactive SQL engine included with
CDH.

Transition to Apache Governance

Does "Apache Impala (incubating)" mean Impala is not production-ready?

No. The “(incubating)” label was only applied to the Apache Impala project while it was transitioning to governance
by the Apache Software Foundation. Impala graduated to a top-level Apache project on November 15, 2017.

Impala has always been Apache-licensed. The software itself is the same production-ready and battle-tested analytic
database that has been supported by Cloudera since Impala 1.0 in 2013.

Trying Impala

How do I try Impala out?

To look at the core features and functionality on Impala, the easiest way to try out Impala is to download the Cloudera
QuickStart VM and start the Impala service through ClouderaManager, then use impala-shell in a terminal window
or the Impala Query UI in the Hue web interface.

To do performance testing and try out the management features for Impala on a cluster, you need to move beyond
the QuickStart VM with its virtualized single-node environment. Ideally, download the Cloudera Manager software to
set up the cluster, then install the Impala software through Cloudera Manager.

Does Cloudera offer a VM for demonstrating Impala?

Cloudera offers a demonstration VM called the QuickStart VM, available in VMWare, VirtualBox, and KVM formats.
For more information, see the Cloudera QuickStart VM. After booting the QuickStart VM, many services are turned
off by default; in the Cloudera Manager UI that appears automatically, turn on Impala and any other components that
you want to try out.

Where can I find Impala documentation?

Starting with Impala 1.3.0, Impala documentation is integrated with the CDH 5 documentation, in addition to the
standalone Impala documentation for use with CDH 4. For CDH 5, the core Impala developer and administrator
information remains in the associated Impala documentation portion. Information about Impala release notes,
installation, configuration, startup, and security is embedded in the corresponding CDH 5 guides.

• New features
• Known and fixed issues
• Incompatible changes
• Installing Impala
• Upgrading Impala
• Configuring Impala
• Starting Impala
• Security for Impala
• CDH Version and Packaging Information

Information about the latest CDH 4-compatible Impala release remains at the Impala for CDH 4 Documentation page.

Apache Impala Guide | 591

Impala Frequently Asked Questions

http://www.cloudera.com/content/support/en/downloads/quickstart_vms.html
http://www.cloudera.com/documentation/enterprise/latest/topics/impala.html
http://www.cloudera.com/documentation/enterprise/latest/topics/rg_vd.html
http://www.cloudera.com/content/cloudera/en/documentation/impala/latest.html

Where can I get more information about Impala?

More product information is available here:

• O'Reilly introductory e-book: Cloudera Impala: Bringing the SQL and Hadoop Worlds Together
• O'Reilly getting started guide for developers: Getting Started with Impala: Interactive SQL for Apache Hadoop
• Blog: Cloudera Impala: Real-Time Queries in Apache Hadoop, For Real
• Webinar: Introduction to Impala
• Product website page: Cloudera Enterprise RTQ

To see the latest release announcements for Impala, see the Cloudera Announcements forum.

How can I ask questions and provide feedback about Impala?

• Join the Impala discussion forum and the Impala mailing list to ask questions and provide feedback.
• Use the Impala Jira project to log bug reports and requests for features.

Where can I get sample data to try?

You can get scripts that produce data files and set up an environment for TPC-DS style benchmark tests from this Github
repository. In addition to being useful for experimenting with performance, the tables are suited to experimenting
with many aspects of SQL on Impala: they contain a good mixture of data types, data distributions, partitioning, and
relational data suitable for join queries.

Impala System Requirements

What are the software and hardware requirements for running Impala?

For information on Impala requirements, see Impala Requirements on page 23. Note that there is often a minimum
required level of Cloudera Manager for any given Impala version.

How much memory is required?

Although Impala is not an in-memory database, when dealing with large tables and large result sets, you should expect
to dedicate a substantial portion of physical memory for the impalad daemon. Recommended physical memory for
an Impala node is 128 GB or higher. If practical, devote approximately 80% of physical memory to Impala.

The amount of memory required for an Impala operation depends on several factors:

• The file format of the table. Different file formats represent the same data in more or fewer data files. The
compression and encoding for each file format might require a different amount of temporary memory to
decompress the data for analysis.

• Whether the operation is a SELECT or an INSERT. For example, Parquet tables require relatively little memory
to query, because Impala reads and decompresses data in 8 MB chunks. Inserting into a Parquet table is a more
memory-intensive operation because the data for each data file (potentially hundreds of megabytes, depending
on the value of the PARQUET_FILE_SIZE query option) is stored in memory until encoded, compressed, and
written to disk.

• Whether the table is partitioned or not, and whether a query against a partitioned table can take advantage of
partition pruning.

• Whether the final result set is sorted by the ORDER BY clause. Each Impala node scans and filters a portion of the
total data, and applies the LIMIT to its own portion of the result set. In Impala 1.4.0 and higher, if the sort operation
requiresmorememory than is available on any particular host, Impala uses a temporary disk work area to perform
the sort. The intermediate result sets are all sent back to the coordinator node, which does the final sorting and
then applies the LIMIT clause to the final result set.

592 | Apache Impala Guide

Impala Frequently Asked Questions

http://radar.oreilly.com/2013/10/cloudera-impala-bringing-the-sql-and-hadoop-worlds-together.html
http://shop.oreilly.com/product/0636920033936.do
http://blog.cloudera.com/blog/2012/10/cloudera-impala-real-time-queries-in-apache-hadoop-for-real
http://www.cloudera.com/content/cloudera/en/resources/library/recordedwebinar/impala-real-time-queries-in-hadoop-webinar-slides.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://community.cloudera.com/t5/Release-Announcements/bd-p/RelAnnounce
http://community.cloudera.com/t5/Interactive-Short-cycle-SQL/bd-p/Impala
https://groups.google.com/a/cloudera.org/forum/?fromgroups#!forum/impala-user
https://issues.cloudera.org/browse/IMPALA
https://github.com/cloudera/impala-tpcds-kit
https://github.com/cloudera/impala-tpcds-kit

For example, if you execute the query:

select * from giant_table order by some_column limit 1000;

and your cluster has 50 nodes, then each of those 50 nodes will transmit a maximum of 1000 rows back to the
coordinator node. The coordinator node needs enough memory to sort (LIMIT * cluster_size) rows, although in
the end the final result set is at most LIMIT rows, 1000 in this case.

Likewise, if you execute the query:

select * from giant_table where test_val > 100 order by some_column;

then each node filters out a set of rows matching the WHERE conditions, sorts the results (with no size limit), and
sends the sorted intermediate rows back to the coordinator node. The coordinator node might need substantial
memory to sort the final result set, and so might use a temporary disk work area for that final phase of the query.

• Whether the query contains any join clauses,GROUP BY clauses, analytic functions, orDISTINCToperators. These
operations all require some in-memory work areas that vary depending on the volume and distribution of data.
In Impala 2.0 and later, these kinds of operations utilize temporary disk work areas if memory usage grows too
large to handle. See SQL Operations that Spill to Disk on page 518 for details.

• The size of the result set. When intermediate results are being passed around between nodes, the amount of data
depends on the number of columns returned by the query. For example, it is more memory-efficient to query
only the columns that are actually needed in the result set rather than always issuing SELECT *.

• The mechanism by which work is divided for a join query. You use the COMPUTE STATS statement, and query
hints in the most difficult cases, to help Impala pick the most efficient execution plan. See Performance
Considerations for Join Queries on page 483 for details.

See Hardware Requirements on page 24 for more details and recommendations about Impala hardware prerequisites.

What processor type and speed does Cloudera recommend?

Impala makes use of SSE 4.1 instructions.

What EC2 instances are recommended for Impala?

For large storage capacity and large I/O bandwidth, consider the hs1.8xlarge and cc2.8xlarge instance types.
Impala I/O patterns typically do not benefit enough from SSD storage to make up for the lower overall size. For
performance and security considerations for deploying CDH and its components on AWS, see Cloudera Enterprise
Reference Architecture for AWS Deployments.

Supported and Unsupported Functionality In Impala

What are the main features of Impala?

• A large set of SQL statements, including SELECT and INSERT, with joins, Subqueries in Impala SELECT Statements
on page 298, and Impala Analytic Functions on page 430. Highly compatible with HiveQL, and also including some
vendor extensions. For more information, see Impala SQL Language Reference on page 117.

• Distributed, high-performance queries. See Tuning Impala for Performance on page 480 for information about
Impala performance optimizations and tuning techniques for queries.

• Using Cloudera Manager, you can deploy and manage your Impala services. Cloudera Manager is the best way to
get started with Impala on your cluster.

• Using Hue for queries.
• Appending and inserting data into tables through the INSERT statement. See How Impala Works with Hadoop File

Formats on page 528 for the details about which operations are supported for which file formats.

Apache Impala Guide | 593

Impala Frequently Asked Questions

http://www.cloudera.com/content/dam/cloudera/Resources/PDF/whitepaper/AWS_Reference_Architecture_Whitepaper.pdf
http://www.cloudera.com/content/dam/cloudera/Resources/PDF/whitepaper/AWS_Reference_Architecture_Whitepaper.pdf

• ODBC: Impala is certified to run against MicroStrategy and Tableau, with restrictions. For more information, see
Configuring Impala to Work with ODBC on page 31.

• Querying data stored in HDFS and HBase in a single query. See Using Impala to Query HBase Tables on page 558
for details.

• In Impala 2.2.0 and higher, querying data stored in the Amazon Simple Storage Service (S3). See Using Impala to
Query the Amazon S3 Filesystem on page 567 for details.

• Concurrent client requests. Each Impala daemon can handle multiple concurrent client requests. The effects on
performance depend on your particular hardware and workload.

• Kerberos authentication. For more information, see Impala Security on page 91.
• Partitions. With Impala SQL, you can create partitioned tables with the CREATE TABLE statement, and add and

drop partitions with the ALTER TABLE statement. Impala also takes advantage of the partitioning present in Hive
tables. See Partitioning for Impala Tables on page 523 for details.

What features from relational databases or Hive are not available in Impala?

• Querying streaming data.
• Deleting individual rows. You delete data in bulk by overwriting an entire table or partition, or by dropping a table.
• Indexing (not currently). LZO-compressed text files can be indexed outside of Impala, as described in Using

LZO-Compressed Text Files on page 532.
• Full text search on text fields. The Cloudera Search product is appropriate for this use case.
• Custom Hive Serializer/Deserializer classes (SerDes). Impala supports a set of common native file formats that

have built-in SerDes in CDH. See How Impala Works with Hadoop File Formats on page 528 for details.
• Checkpointing within a query. That is, Impala does not save intermediate results to disk during long-running

queries. Currently, Impala cancels a running query if any host on which that query is executing fails. When one or
more hosts are down, Impala reroutes future queries to only use the available hosts, and Impala detects when
the hosts come back up and begins using them again. Because a query can be submitted through any Impala node,
there is no single point of failure. In the future, we will consider adding additional work allocation features to
Impala, so that a running query would complete even in the presence of host failures.

• Hive indexes.
• Non-Hadoop data stores, such as relational databases.

For the detailed list of features that are different between Impala and HiveQL, see SQL Differences Between Impala
and Hive on page 462.

Does Impala support generic JDBC?

Impala supports the HiveServer2 JDBC driver.

Is Avro supported?

Yes, Avro is supported. Impala has always been able to query Avro tables. You can use the Impala LOAD DATA statement
to load existing Avro data files into a table. Starting with Impala 1.4, you can create Avro tables with Impala. Currently,
you still use the INSERT statement in Hive to copy data from another table into an Avro table. See Using the Avro File
Format with Impala Tables on page 548 for details.

How do I?

How do I prevent users from seeing the text of SQL queries?

For instructions on making the Impala log files unreadable by unprivileged users, see Securing Impala Data and Log
Files on page 92.

For instructions on password-protecting theweb interface to the Impala log files and other internal server information,
see Securing the Impala Web User Interface on page 93.

594 | Apache Impala Guide

Impala Frequently Asked Questions

In Impala 2.2 / CDH 5.4 and higher, you can use the log redaction feature to obfuscate sensitive information in Impala
log files. See http://www.cloudera.com/documentation/enterprise/latest/topics/sg_redaction.html for details.

How do I know how many Impala nodes are in my cluster?

The Impala statestore keeps track of how many impalad nodes are currently available. You can see this information
through the statestore web interface. For example, at the URL http://statestore_host:25010/metrics you
might see lines like the following:

statestore.live-backends:3
statestore.live-backends.list:[host1:22000, host1:26000, host2:22000]

The number of impalad nodes is the number of list items referring to port 22000, in this case two. (Typically, this
number is one less than the number reported by thestatestore.live-backends line.) If animpaladnodebecame
unavailable or came back after an outage, the information reported on this page would change appropriately.

Impala Performance

Are results returned as they become available, or all at once when a query completes?

Impala streams results whenever they are available, when possible. Certain SQL operations (aggregation or ORDER
BY) require all of the input to be ready before Impala can return results.

Why does my query run slowly?

There aremany possible reasons why a given query could be slow. Use the following checklist to diagnose performance
issues with existing queries, and to avoid such issues when writing new queries, setting up new nodes, creating new
tables, or loading data.

• Immediately after the query finishes, issue a SUMMARY command in impala-shell. You can check which phases
of execution took the longest, and compare estimated values for memory usage and number of rows with the
actual values.

• Immediately after thequery finishes, issue aPROFILE command inimpala-shell. Thenumbers in theBytesRead,
BytesReadLocal, and BytesReadShortCircuit should be identical for a specific node. For example:

- BytesRead: 180.33 MB
- BytesReadLocal: 180.33 MB
- BytesReadShortCircuit: 180.33 MB

If BytesReadLocal is lower than BytesRead, something in your cluster is misconfigured, such as the impalad
daemon not running on all the data nodes. If BytesReadShortCircuit is lower than BytesRead, short-circuit
reads are not enabled properly on that node; see Post-Installation Configuration for Impala on page 30 for
instructions.

• If the table was just created, or this is the first query that accessed the table after an INVALIDATE METADATA
statement or after the impalad daemon was restarted, there might be a one-time delay while the metadata for
the table is loaded and cached. Checkwhether the slowdown disappears when the query is run again.When doing
performance comparisons, consider issuing a DESCRIBE table_name statement for each table first, to make
sure any timings only measure the actual query time and not the one-time wait to load the table metadata.

• Is the table data in uncompressed text format? Check by issuing aDESCRIBE FORMATTED table_name statement.
A text table is indicated by the line:

InputFormat: org.apache.hadoop.mapred.TextInputFormat

Although uncompressed text is the default format for a CREATE TABLE statement with no STORED AS clauses,
it is also the bulkiest format for disk storage and consequently usually the slowest format for queries. For data
where query performance is crucial, particularly for tables that are frequently queried, consider starting with or

Apache Impala Guide | 595

Impala Frequently Asked Questions

http://www.cloudera.com/documentation/enterprise/latest/topics/sg_redaction.html

converting to a compact binary file format such as Parquet, Avro, RCFile, or SequenceFile. For details, see How
Impala Works with Hadoop File Formats on page 528.

• If your table hasmany columns, but the query refers to only a few columns, consider using the Parquet file format.
Its data files are organized with a column-oriented layout that lets queries minimize the amount of I/O needed
to retrieve, filter, and aggregate the values for specific columns. See Using the Parquet File Format with Impala
Tables on page 536 for details.

• If your query involves any joins, are the tables in the query ordered so that the tables or subqueries are ordered
with the one returning the largest number of rows on the left, followed by the smallest (most selective), the second
smallest, and so on? That ordering allows Impala to optimize the way work is distributed among the nodes and
how intermediate results are routed from one node to another. For example, all other things being equal, the
following join order results in an efficient query:

select some_col from
 huge_table join big_table join small_table join medium_table
 where
 huge_table.id = big_table.id
 and big_table.id = medium_table.id
 and medium_table.id = small_table.id;

See Performance Considerations for Join Queries on page 483 for performance tips for join queries.
• Also for join queries, do you have table statistics for the table, and column statistics for the columns used in the

join clauses? Column statistics let Impala better choose how to distribute the work for the various pieces of a join
query. See Table and Column Statistics on page 490 for details about gathering statistics.

• Does your table consist ofmany small data files? Impalaworksmost efficiently with data files in themulti-megabyte
range; Parquet, a format optimized for data warehouse-style queries, uses large files (originally 1 GB, now 256
MB in Impala 2.0 and higher) with a block sizematching the file size. Use the DESCRIBE FORMATTED table_name
statement in impala-shell to see where the data for a table is located, and use the hadoop fs -ls or hdfs
dfs -ls Unix commands to see the files and their sizes. If you have thousands of small data files, that is a signal
that you should consolidate into a smaller number of large files. Use an INSERT ... SELECT statement to copy
the data to a new table, reorganizing into new data files as part of the process. Prefer to construct large data files
and import them in bulk through the LOAD DATA or CREATE EXTERNAL TABLE statements, rather than issuing
many INSERT ... VALUES statements; each INSERT ... VALUES statement creates a separate tiny data file.
If you have thousands of files all in the samedirectory, but each one ismegabytes in size, consider using a partitioned
table so that each partition contains a smaller number of files. See the following point for more on partitioning.

• If your data is easy to group according to time or geographic region, have you partitioned your table based on the
corresponding columns such as YEAR, MONTH, and/or DAY? Partitioning a table based on certain columns allows
queries that filter based on those same columns to avoid reading the data files for irrelevant years, postal codes,
and so on. (Do not partition down to too fine a level; try to structure the partitions so that there is still sufficient
data in each one to take advantage of the multi-megabyte HDFS block size.) See Partitioning for Impala Tables on
page 523 for details.

Why does my SELECT statement fail?

When a SELECT statement fails, the cause usually falls into one of the following categories:

• A timeout because of a performance, capacity, or network issue affecting one particular node.
• Excessive memory use for a join query, resulting in automatic cancellation of the query.
• A low-level issue affecting how native code is generated on each node to handle particular WHERE clauses in the

query. For example, a machine instruction could be generated that is not supported by the processor of a certain
node. If the error message in the log suggests the cause was an illegal instruction, consider turning off native code
generation temporarily, and trying the query again.

• Malformed input data, such as a text data file with an enormously long line, or with a delimiter that does not
match the character specified in the FIELDS TERMINATED BY clause of the CREATE TABLE statement.

596 | Apache Impala Guide

Impala Frequently Asked Questions

Why does my INSERT statement fail?

When an INSERT statement fails, it is usually the result of exceeding some limit within a Hadoop component, typically
HDFS.

• An INSERT into a partitioned table can be a strenuous operation due to the possibility of opening many files and
associated threads simultaneously in HDFS. Impala 1.1.1 includes some improvements to distribute theworkmore
efficiently, so that the values for each partition are written by a single node, rather than as a separate data file
from each node.

• Certain expressions in the SELECT part of the INSERT statement can complicate the execution planning and result
in an inefficient INSERT operation. Try to make the column data types of the source and destination tables match
up, for example by doing ALTER TABLE ... REPLACE COLUMNS on the source table if necessary. Try to avoid
CASE expressions in the SELECT portion, because they make the result values harder to predict than transferring
a column unchanged or passing the column through a built-in function.

• Be prepared to raise some limits in the HDFS configuration settings, either temporarily during the INSERT or
permanently if you frequently run such INSERT statements as part of your ETL pipeline.

• The resource usage of an INSERT statement can vary depending on the file format of the destination table.
Inserting into a Parquet table is memory-intensive, because the data for each partition is buffered in memory
until it reaches 1 gigabyte, at which point the data file is written to disk. Impala can distribute the work for an
INSERTmore efficiently when statistics are available for the source table that is queried during the INSERT
statement. See Table and Column Statistics on page 490 for details about gathering statistics.

Does Impala performance improve as it is deployed to more hosts in a cluster in much the same way that Hadoop
performance does?

Yes. Impala scales with the number of hosts. It is important to install Impala on all the DataNodes in the cluster, because
otherwise some of the nodes must do remote reads to retrieve data not available for local reads. Data locality is an
important architectural aspect for Impala performance. See this Impala performance blog post for background. Note
that this blog post refers to benchmarks with Impala 1.1.1; Impala has added even more performance features in the
1.2.x series.

Is the HDFS block size reduced to achieve faster query results?

No. Impala does not make any changes to the HDFS or HBase data sets.

The default Parquet block size is relatively large (256 MB in Impala 2.0 and later; 1 GB in earlier releases). You can
control the block size when creating Parquet files using the PARQUET_FILE_SIZE query option.

Does Impala use caching?

Impala does not cache table data. It does cache some table and file metadata. Although queries might run faster on
subsequent iterations because the data set was cached in the OS buffer cache, Impala does not explicitly control this.

Impala takes advantage of the HDFS caching feature in CDH 5. You can designate which tables or partitions are cached
through the CACHED and UNCACHED clauses of the CREATE TABLE and ALTER TABLE statements. Impala can also
take advantage of data that is pinned in the HDFS cache through the hdfscacheadmin command. See Using HDFS
Caching with Impala (CDH 5.1 or higher only) on page 502 for details.

Impala Use Cases

What are good use cases for Impala as opposed to Hive or MapReduce?

Impala is well-suited to executing SQL queries for interactive exploratory analytics on large data sets. Hive and
MapReduce are appropriate for very long running, batch-oriented tasks such as ETL.

Is MapReduce required for Impala? Will Impala continue to work as expected if MapReduce is stopped?

Impala does not use MapReduce at all.

Apache Impala Guide | 597

Impala Frequently Asked Questions

http://blog.cloudera.com/blog/2014/01/impala-performance-dbms-class-speed/

Can Impala be used for complex event processing?

For example, in an industrial environment, many agents may generate large amounts of data. Can Impala be used to
analyze this data, checking for notable changes in the environment?

Complex Event Processing (CEP) is usually performed by dedicated stream-processing systems. Impala is not a
stream-processing system, as it most closely resembles a relational database.

Is Impala intended to handle real time queries in low-latency applications or is it for ad hoc queries for the purpose of
data exploration?

Ad-hoc queries are the primary use case for Impala. We anticipate it being used in many other situations where
low-latency is required. Whether Impala is appropriate for any particular use-case depends on the workload, data size
and query volume. See Impala Benefits on page 16 for the primary benefits you can expect when using Impala.

Questions about Impala And Hive

How does Impala compare to Hive and Pig?

Impala is different from Hive and Pig because it uses its own daemons that are spread across the cluster for queries.
Because Impala does not rely on MapReduce, it avoids the startup overhead of MapReduce jobs, allowing Impala to
return results in real time.

Can I do transforms or add new functionality?

Impala adds support for UDFs in Impala 1.2. You can write your own functions in C++, or reuse existing Java-based Hive
UDFs. The UDF support includes scalar functions and user-defined aggregate functions (UDAs). User-defined table
functions (UDTFs) are not currently supported.

Impala does not currently support an extensible serialization-deserialization framework (SerDes), and so adding extra
functionality to Impala is not as straightforward as for Hive or Pig.

Can any Impala query also be executed in Hive?

Yes. There are some minor differences in how some queries are handled, but Impala queries can also be completed
in Hive. Impala SQL is a subset of HiveQL, with some functional limitations such as transforms. For details of the Impala
SQL dialect, see Impala SQL Statements on page 215. For the Impala built-in functions, see Impala Built-In Functions on
page 339. For the detailed list of differences between Impala and HiveQL, see SQL Differences Between Impala and
Hive on page 462.

Can I use Impala to query data already loaded into Hive and HBase?

There are no additional steps to allow Impala to query tables managed by Hive, whether they are stored in HDFS or
HBase. Make sure that Impala is configured to access the Hive metastore correctly and you should be ready to go.
Keep in mind that impalad, by default, runs as the impala user, so you might need to adjust some file permissions
depending on how strict your permissions are currently.

See Using Impala to Query HBase Tables on page 558 for details about querying data in HBase.

Is Hive an Impala requirement?

The Hive metastore service is a requirement. Impala shares the samemetastore database as Hive, allowing Impala and
Hive to access the same tables transparently.

Hive itself is optional, and does not need to be installed on the same nodes as Impala. Currently, Impala supports a
wider variety of read (query) operations than write (insert) operations; you use Hive to insert data into tables that use
certain file formats. See How Impala Works with Hadoop File Formats on page 528 for details.

598 | Apache Impala Guide

Impala Frequently Asked Questions

Impala Availability

Is Impala production ready?

Impala has finished its beta release cycle, and the 1.0, 1.1, and 1.2 GA releases are production ready. The 1.1.x series
includes additional security features for authorization, an important requirement for production use in many
organizations. The 1.2.x series includes important performance features, particularly for large join queries. Some
Cloudera customers are already using Impala for large workloads.

The Impala 1.3.0 and higher releases are bundled with corresponding levels of CDH 5. The number of new features
grows with each release. See New Features in Apache Impala on page 605 for a full list.

How do I configure Hadoop high availability (HA) for Impala?

You can set up a proxy server to relay requests back and forth to the Impala servers, for load balancing and high
availability. See Using Impala through a Proxy for High Availability on page 85 for details.

You can enable HDFS HA for the Hive metastore. See the CDH5 High Availability Guide for details.

What happens if there is an error in Impala?

There is not a single point of failure in Impala. All Impala daemons are fully able to handle incoming queries. If amachine
fails however, all queries with fragments running on that machine will fail. Because queries are expected to return
quickly, you can just rerun the query if there is a failure. See Impala Concepts and Architecture on page 18 for details
about the Impala architecture.

The longer answer: Impala must be able to connect to the Hive metastore. Impala aggressively caches metadata so
the metastore host should have minimal load. Impala relies on the HDFS NameNode, and, in CDH4, you can configure
HA for HDFS. Impala also has centralized services, known as the statestore and catalog services, that run on one host
only. Impala continues to execute queries if the statestore host is down, but it will not get state updates. For example,
if a host is added to the cluster while the statestore host is down, the existing instances of impalad running on the
other hosts will not find out about this new host. Once the statestore process is restarted, all the information it serves
is automatically reconstructed from all running Impala daemons.

What is the maximum number of rows in a table?

There is no defined maximum. Some customers have used Impala to query a table with over a trillion rows.

Can Impala and MapReduce jobs run on the same cluster without resource contention?

Yes. See Controlling Impala Resource Usage on page 501 for how to control Impala resource usage using the Linux
cgroupmechanism, and Integrated ResourceManagement with YARN on page 83 for how to use Impala with the YARN
resource management framework. Impala is designed to run on the DataNode hosts. Any contention depends mostly
on the cluster setup and workload.

For a detailed example of configuring a cluster to share resources between Impala queries and MapReduce jobs, see
Setting up a Multi-tenant Cluster for Impala and MapReduce

Impala Internals

On which hosts does Impala run?

Cloudera strongly recommends running the impalad daemon on each DataNode for good performance. Although this
topology is not a hard requirement, if there are data blocks with no Impala daemons running on any of the hosts
containing replicas of those blocks, queries involving that data could be very inefficient. In that case, the data must be
transmitted from one host to another for processing by “remote reads”, a condition Impala normally tries to avoid.

Apache Impala Guide | 599

Impala Frequently Asked Questions

http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_hag_cdh_other_ha.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM4Ent/latest/Cloudera-Manager-Installation-Guide/cmig_impala_res_mgmt.html

See Impala Concepts and Architecture on page 18 for details about the Impala architecture. Impala schedules query
fragments on all hosts holding data relevant to the query, if possible.

How are joins performed in Impala?

By default, Impala automatically determines themost efficient order in which to join tables using a cost-basedmethod,
based on their overall size and number of rows. (This is a new feature in Impala 1.2.2 and higher.) The COMPUTE STATS
statement gathers information about each table that is crucial for efficient join performance. Impala chooses between
two techniques for join queries, known as “broadcast joins” and “partitioned joins”. See Joins in Impala SELECT
Statements on page 283 for syntax details and Performance Considerations for JoinQueries on page 483 for performance
considerations.

How does Impala process join queries for large tables?

Impala utilizes multiple strategies to allow joins between tables and result sets of various sizes. When joining a large
table with a small one, the data from the small table is transmitted to each node for intermediate processing. When
joining two large tables, the data from one of the tables is divided into pieces, and each node processes only selected
pieces. See Joins in Impala SELECT Statements on page 283 for details about join processing, Performance Considerations
for Join Queries on page 483 for performance considerations, and Query Hints in Impala SELECT Statements on page
302 for how to fine-tune the join strategy.

What is Impala's aggregation strategy?

Impala currently only supports in-memory hash aggregation. In Impala 2.0 and higher, if the memory requirements
for a join or aggregation operation exceed the memory limit for a particular host, Impala uses a temporary work area
on disk to help the query complete successfully.

How is Impala metadata managed?

Impala uses two pieces of metadata: the catalog information from the Hive metastore and the file metadata from the
NameNode. Currently, this metadata is lazily populated and cached when an impalad needs it to plan a query.

The REFRESH statement updates themetadata for a particular table after loading newdata throughHive. The INVALIDATE
METADATA Statement on page 272 statement refreshes all metadata, so that Impala recognizes new tables or other
DDL and DML changes performed through Hive.

In Impala 1.2 and higher, a dedicated catalogd daemon broadcasts metadata changes due to Impala DDL or DML
statements to all nodes, reducing or eliminating the need to use theREFRESH and INVALIDATE METADATA statements.

What load do concurrent queries produce on the NameNode?

The load Impala generates is very similar to MapReduce. Impala contacts the NameNode during the planning phase
to get the file metadata (this is only run on the host the query was sent to). Every impalad will read files as part of
normal processing of the query.

How does Impala achieve its performance improvements?

These are the main factors in the performance of Impala versus that of other Hadoop components and related
technologies.

Impala avoids MapReduce. While MapReduce is a great general parallel processing model with many benefits, it is not
designed to execute SQL. Impala avoids the inefficiencies of MapReduce in these ways:

• Impala does not materialize intermediate results to disk. SQL queries often map to multiple MapReduce jobs with
all intermediate data sets written to disk.

• Impala avoids MapReduce start-up time. For interactive queries, the MapReduce start-up time becomes very
noticeable. Impala runs as a service and essentially has no start-up time.

• Impala can more naturally disperse query plans instead of having to fit them into a pipeline of map and reduce
jobs. This enables Impala to parallelize multiple stages of a query and avoid overheads such as sort and shuffle
when unnecessary.

600 | Apache Impala Guide

Impala Frequently Asked Questions

Impala uses a more efficient execution engine by taking advantage of modern hardware and technologies:

• Impala generates runtime code. Impala uses LLVM to generate assembly code for the query that is being run.
Individual queries do not have to pay the overhead of running on a system that needs to be able to execute
arbitrary queries.

• Impala uses available hardware instructionswhen possible. Impala uses the supplemental SSE3 (SSSE3) instructions
which can offer tremendous speedups in some cases. (Impala 2.0 and 2.1 required the SSE4.1 instruction set;
Impala 2.2 and higher relax the restriction again so only SSSE3 is required.)

• Impala uses better I/O scheduling. Impala is aware of the disk location of blocks and is able to schedule the order
to process blocks to keep all disks busy.

• Impala is designed for performance. A lot of time has been spent in designing Impala with sound
performance-oriented fundamentals, such as tight inner loops, inlined function calls, minimal branching, better
use of cache, and minimal memory usage.

What happens when the data set exceeds available memory?

Currently, if the memory required to process intermediate results on a node exceeds the amount available to Impala
on that node, the query is cancelled. You can adjust thememory available to Impala on each node, and you can fine-tune
the join strategy to reduce the memory required for the biggest queries. We do plan on supporting external joins and
sorting in the future.

Keep in mind though that the memory usage is not directly based on the input data set size. For aggregations, the
memory usage is the number of rows after grouping. For joins, the memory usage is the combined size of the tables
excluding the biggest table, and Impala can use join strategies that divide up large joined tables among the various
nodes rather than transmitting the entire table to each node.

What are the most memory-intensive operations?

If a query fails with an error indicating “memory limit exceeded”, youmight suspect amemory leak. The problem could
actually be a query that is structured in a way that causes Impala to allocate more memory than you expect, exceeded
the memory allocated for Impala on a particular node. Some examples of query or table structures that are especially
memory-intensive are:

• INSERT statements using dynamic partitioning, into a table with many different partitions. (Particularly for tables
using Parquet format, where the data for each partition is held in memory until it reaches the full block size in
size before it is written to disk.) Consider breaking up such operations into several different INSERT statements,
for example to load data one year at a time rather than for all years at once.

• GROUP BY on a unique or high-cardinality column. Impala allocates some handler structures for each different
value in a GROUP BY query. Having millions of different GROUP BY values could exceed the memory limit.

• Queries involving very wide tables, with thousands of columns, particularly with many STRING columns. Because
Impala allows a STRING value to be up to 32 KB, the intermediate results during such queries could require
substantial memory allocation.

When does Impala hold on to or return memory?

Impala allocates memory using tcmalloc, a memory allocator that is optimized for high concurrency. Once Impala
allocates memory, it keeps that memory reserved to use for future queries. Thus, it is normal for Impala to show high
memory usage when idle. If Impala detects that it is about to exceed its memory limit (defined by the -mem_limit
startup option or the MEM_LIMIT query option), it deallocates memory not needed by the current queries.

When issuing queries through the JDBC or ODBC interfaces,make sure to call the appropriate closemethod afterwards.
Otherwise, some memory associated with the query is not freed.

Apache Impala Guide | 601

Impala Frequently Asked Questions

http://goog-perftools.sourceforge.net/doc/tcmalloc.html

SQL

Is there an UPDATE statement?

Impala does not currently have an UPDATE statement, which would typically be used to change a single row, a small
group of rows, or a specific column. TheHDFS-based files used by typical Impala queries are optimized for bulk operations
across many megabytes of data at a time, making traditional UPDATE operations inefficient or impractical.

You can use the following techniques to achieve the same goals as the familiar UPDATE statement, in a way that
preserves efficient file layouts for subsequent queries:

• Replace the entire contents of a table or partition with updated data that you have already staged in a different
location, either using INSERT OVERWRITE, LOAD DATA, or manual HDFS file operations followed by a REFRESH
statement for the table. Optionally, you can use built-in functions and expressions in the INSERT statement to
transform the copied data in the same way you would normally do in an UPDATE statement, for example to turn
a mixed-case string into all uppercase or all lowercase.

• To update a single row, use an HBase table, and issue an INSERT ... VALUES statement using the same key as
the original row. Because HBase handles duplicate keys by only returning the latest row with a particular key
value, the newly inserted row effectively hides the previous one.

Can Impala do user-defined functions (UDFs)?

Impala 1.2 and higher does support UDFs and UDAs. You can either write native Impala UDFs and UDAs in C++, or reuse
UDFs (but not UDAs) originally written in Java for use with Hive. See Impala User-Defined Functions (UDFs) on page
448 for details.

Why do I have to use REFRESH and INVALIDATE METADATA, what do they do?

In Impala 1.2 and higher, there is much less need to use the REFRESH and INVALIDATE METADATA statements:

• The new impala-catalog service, represented by the catalogd daemon, broadcasts the results of Impala DDL
statements to all Impala nodes. Thus, if you do a CREATE TABLE statement in Impala while connected to one
node, you do not need to do INVALIDATE METADATA before issuing queries through a different node.

• The catalog service only recognizes changes made through Impala, so you must still issue a REFRESH statement
if you load data through Hive or by manipulating files in HDFS, and you must issue an INVALIDATE METADATA
statement if you create a table, alter a table, add or drop partitions, or do other DDL statements in Hive.

• Because the catalog service broadcasts the results of REFRESH and INVALIDATE METADATA statements to all
nodes, in the cases where you do still need to issue those statements, you can do that on a single node rather
than on every node, and the changeswill be automatically recognized across the cluster,making itmore convenient
to load balance by issuing queries through arbitrary Impala nodes rather than always using the same coordinator
node.

Why is space not freed up when I issue DROP TABLE?

Impala deletes data files when you issue a DROP TABLE on an internal table, but not an external one. By default, the
CREATE TABLE statement creates internal tables, where the files are managed by Impala. An external table is created
with a CREATE EXTERNAL TABLE statement, where the files reside in a location outside the control of Impala. Issue
a DESCRIBE FORMATTED statement to check whether a table is internal or external. The keyword MANAGED_TABLE
indicates an internal table, from which Impala can delete the data files. The keyword EXTERNAL_TABLE indicates an
external table, where Impala will leave the data files untouched when you drop the table.

Even when you drop an internal table and the files are removed from their original location, you might not get the
hard drive space back immediately. By default, files that are deleted in HDFS go into a special trashcan directory, from
which they are purged after a period of time (by default, 6 hours). For background information on the trashcan
mechanism, see https://archive.cloudera.com/cdh4/cdh/4/hadoop/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html.
For information on purging files from the trashcan, see
https://archive.cloudera.com/cdh4/cdh/4/hadoop/hadoop-project-dist/hadoop-common/FileSystemShell.html.

602 | Apache Impala Guide

Impala Frequently Asked Questions

https://archive.cloudera.com/cdh4/cdh/4/hadoop/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
https://archive.cloudera.com/cdh4/cdh/4/hadoop/hadoop-project-dist/hadoop-common/FileSystemShell.html

When Impala deletes files and they are moved to the HDFS trashcan, they go into an HDFS directory owned by the
impala user. If the impala user does not have an HDFS home directory where a trashcan can be created, the files
are not deleted or moved, as a safety measure. If you issue a DROP TABLE statement and find that the table data files
are left in their original location, create an HDFS directory /user/impala, owned and writeable by the impala user.
For example, you might find that /user/impala is owned by the hdfs user, in which case you would switch to the
hdfs user and issue a command such as:

hdfs dfs -chown -R impala /user/impala

Is there a DUAL table?

You might be used to running queries against a single-row table named DUAL to try out expressions, built-in functions,
and UDFs. Impala does not have a DUAL table. To achieve the same result, you can issue a SELECT statement without
any table name:

select 2+2;
select substr('hello',2,1);
select pow(10,6);

Partitioned Tables

How do I load a big CSV file into a partitioned table?

To load a data file into a partitioned table, when the data file includes fields like year, month, and so on that correspond
to the partition key columns, use a two-stage process. First, use the LOAD DATA or CREATE EXTERNAL TABLE
statement to bring the data into an unpartitioned text table. Then use an INSERT ... SELECT statement to copy
the data from the unpartitioned table to a partitioned one. Include a PARTITION clause in the INSERT statement to
specify the partition key columns. The INSERT operation splits up the data into separate data files for each partition.
For examples, see Partitioning for Impala Tables on page 523. For details about loading data into partitioned Parquet
tables, a popular choice for high-volume data, see Loading Data into Parquet Tables on page 537.

Can I do INSERT ... SELECT * into a partitioned table?

When you use the INSERT ... SELECT * syntax to copy data into a partitioned table, the columns corresponding
to the partition key columns must appear last in the columns returned by the SELECT *. You can create the table with
the partition key columns defined last. Or, you can use the CREATE VIEW statement to create a view that reorders
the columns: put the partition key columns last, then do the INSERT ... SELECT * from the view.

HBase

What kinds of Impala queries or data are best suited for HBase?

HBase tables are ideal for queries where normally you would use a key-value store. That is, where you retrieve a single
row or a few rows, by testing a special unique key column using the = or IN operators.

HBase tables are not suitable for queries that produce large result sets with thousands of rows. HBase tables are also
not suitable for queries that perform full table scans because the WHERE clause does not request specific values from
the unique key column.

Use HBase tables for data that is inserted one row or a few rows at a time, such as by the INSERT ... VALUES syntax.
Loading data piecemeal like this into an HDFS-backed table produces many tiny files, which is a very inefficient layout
for HDFS data files.

Apache Impala Guide | 603

Impala Frequently Asked Questions

If the lack of an UPDATE statement in Impala is a problem for you, you can simulate single-row updates by doing an
INSERT ... VALUES statement using an existing value for the key column. The old row value is hidden; only the new
row value is seen by queries.

HBase tables are often wide (containing many columns) and sparse (with most column values NULL). For example, you
might record hundreds of different data points for each user of an online service, such aswhether the user had registered
for an online game or enabled particular account features.With Impala andHBase, you could look up all the information
for a specific customer efficiently in a single query. For any given customer, most of these columns might be NULL,
because a typical customer might not make use of most features of an online service.

604 | Apache Impala Guide

Impala Frequently Asked Questions

Impala Release Notes

These release notes provide information on the new features and known issues and limitations for Impala versions up
to Impala 2.4.x / CDH 5.6.x. For users upgrading from earlier Impala releases, or using Impala in combination with
specific versions of other Cloudera software, Incompatible Changes and Limitations in Apache Impala on page 626 lists
any changes to file formats, SQL syntax, or software dependencies to take into account.

Once you are finished reviewing these release notes, for more information about using Impala, see
http://www.cloudera.com/documentation/enterprise/latest/topics/impala.html.

Impala Release Notes
These release notes provide information on the new features and known issues and limitations for Impala versions up
to Impala 2.4.x / CDH 5.6.x. For users upgrading from earlier Impala releases, or using Impala in combination with
specific versions of other Cloudera software, Incompatible Changes and Limitations in Apache Impala on page 626 lists
any changes to file formats, SQL syntax, or software dependencies to take into account.

Once you are finished reviewing these release notes, for more information about using Impala, see
http://www.cloudera.com/documentation/enterprise/latest/topics/impala.html.

New Features in Apache Impala
This release of Impala contains the following changes and enhancements from previous releases.

Further Information Available in Standalone CDH Release Notes

Note: Starting in April 2016, future release note updates are being consolidated in a single location
to avoid duplication of stale or incomplete information. You can view online the Impala New Features,
Incompatible Changes, Known Issues, and Fixed Issues. You can viewor print all of these by downloading
the latest Impala PDF.

New Features in Impala Version 2.4.x / CDH 5.6.x

Note: Impala 2.4.0 is available as part of CDH 5.6.0 and is not available for CDH 4. Cloudera does not
intend to release future versions of Impala for CDH 4 outside patch and maintenance releases if
required. Given the end-of-maintenance status for CDH 4, Cloudera recommends all customers to
migrate to a recent CDH 5 release.

New Features in Impala Version 2.3.x / CDH 5.5.x

Note: Impala 2.3.0 is available as part of CDH 5.5.0 and is not available for CDH 4. Cloudera does not
intend to release future versions of Impala for CDH 4 outside patch and maintenance releases if
required. Given the end-of-maintenance status for CDH 4, Cloudera recommends all customers to
migrate to a recent CDH 5 release.

The following are the major new features in Impala 2.3.x. This major release, available as part of CDH 5.5.x, contains
improvements to SQL syntax (particularly new support for complex types), performance, manageability, security.

• Complex data types: STRUCT, ARRAY, and MAP. These types can encode multiple named fields, positional items,
or key-value pairs within a single column. You can combine these types to produce nested types with arbitrarily

Apache Impala Guide | 605

Impala Release Notes

http://www.cloudera.com/documentation/enterprise/latest/topics/impala.html
http://www.cloudera.com/documentation/enterprise/latest/topics/impala.html
http://www.cloudera.com/documentation/enterprise/release-notes/topics/impala_new_features.html
http://www.cloudera.com/documentation/enterprise/release-notes/topics/impala_incompatible_changes.html
http://www.cloudera.com/documentation/enterprise/release-notes/topics/impala_known_issues.html
http://www.cloudera.com/documentation/enterprise/release-notes/topics/impala_fixed_issues.html
http://www.cloudera.com/documentation/enterprise/latest/topics/impala.html

deep nesting, such as an ARRAY of STRUCT values, a MAP where each key-value pair is an ARRAY of other MAP
values, and so on. Currently, complex data types are only supported for the Parquet file format.

• Column-level authorization lets you define access to particular columnswithin a table, rather than the entire table.
This feature lets you reduce the reliance on creating views to set up authorization schemes for subsets of
information.

• The TRUNCATE TABLE statement removes all the data from a table without removing the table itself.

• Nested loop join queries. Some join queries that formerly required equality comparisons can now use operators
such as < or >=. This same joinmechanism is used internally to optimize queries that retrieve values from complex
type columns.

• Reduced memory usage and improved performance and robustness for spill-to-disk feature.

• Performance improvements for querying Parquet data files containing multiple row groups and multiple data
blocks:

– For files written by Hive, SparkSQL, and other Parquet MRwriters and spanning multiple HDFS blocks. Impala
now scans the extra data blocks locally when possible, rather than using remote reads.

– Impala queries benefit from the improved alignment of row groups with HDFS blocks for Parquet files written
by Hive, MapReduce, and other components in CDH 5.5 and higher. (Impala itself never writes multiblock
Parquet files, so the alignment change does not apply to Parquet files produced by Impala.) These Parquet
writers now add padding to Parquet files that they write to align row groups with HDFS blocks. The
parquet.writer.max-padding setting specifies the maximum number of bytes, by default 8 megabytes,
that can be added to the file between row groups to fill the gap at the end of one block so that the next row
group starts at the beginning of the next block. If the gap is larger than this size, the writer attempts to fit
another entire row group in the remaining space. Include this setting in the hive-site configuration file to
influence Parquet files written by Hive, or the hdfs-site configuration file to influence Parquet files written
by all non-Impala components.

–

• Many new built-in scalar functions, for convenience and enhanced portability of SQL that uses common industry
extensions.

Math functions:

– ATAN2

– COSH

– COT

– DCEIL

– DEXP

– DFLOOR

– DLOG10

– DPOW

– DROUND

– DSQRT

– DTRUNC

– FACTORIAL, and corresponding ! operator
– FPOW

– RADIANS

– RANDOM

– SINH

– TANH

String functions:

– BTRIM

606 | Apache Impala Guide

Impala Release Notes

– CHR

– REGEXP_LIKE

– SPLIT_PART

Date and time functions:

– INT_MONTHS_BETWEEN

– MONTHS_BETWEEN

– TIMEOFDAY

– TIMESTAMP_CMP

Bit manipulation functions:

– BITAND

– BITNOT

– BITOR

– BITXOR

– COUNTSET

– GETBIT

– ROTATELEFT

– ROTATERIGHT

– SETBIT

– SHIFTLEFT

– SHIFTRIGHT

Type conversion functions:

– TYPEOF

The effective_user() function.

• New built-in analytic functions: PERCENT_RANK, NTILE, CUME_DIST.

• The DROP DATABASE statement now works for a non-empty database. When you specify the optional CASCADE
clause, any tables in the database are dropped before the database itself is removed.

• The DROP TABLE and ALTER TABLE DROP PARTITION statements have a new optional keyword, PURGE. This
keyword causes Impala to immediately remove the relevant HDFS data files rather than sending them to the HDFS
trashcan. This feature can help to avoid out-of-space errors on storage devices, and to avoid files being left behind
in case of a problem with the HDFS trashcan, such as the trashcan not being configured or being in a different
HDFS encryption zone than the data files.

• The impala-shell command has a new feature for live progress reporting. This feature is enabled through the
--live_progress and--live_summary command-line options, or during a session through theLIVE_SUMMARY
and LIVE_PROGRESS query options.

• The impala-shell command also now displays a random “tip of the day” when it starts.

• The impala-shell option -f now recognizes a special filename - to accept input from stdin.

• Format strings for the unix_timestamp() function can now include numeric timezone offsets.

• Impala can now run a specified command to obtain the password to decrypt a private-key PEM file, rather than
having the private-key file be unencrypted on disk.

• Impala components now can use SSL for more of their internal communication. SSL is used for communication
between all three Impala-related daemonswhen the configuration optionssl_server_certificate is enabled.
SSL is used for communication with client applications when the configuration option
ssl_client_ca_certificate is enabled.

Currently, you can only use one of server-to-server TLS/SSL encryption or Kerberos authentication. This limitation
is tracked by the issue IMPALA-2598.

Apache Impala Guide | 607

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-2598

• Improved flexibility for intermediate data types in user-defined aggregate functions (UDAFs).

In CDH 5.5.2 / Impala 2.3.2, the bug fix for IMPALA-2598 removes the restriction on using both Kerberos and SSL for
internal communication between Impala components.

New Features in Impala Version 2.2.9 / CDH 5.4.9

No new features. This point release is exclusively a bug fix release.

Note: The Impala 2.2.x maintenance releases now use the CDH 5.4.x numbering system rather than
increasing the Impala version numbers. Impala 2.2 and higher are not available under CDH 4.

New Features in Impala Version 2.2.8 / CDH 5.4.8

No new features. This point release is exclusively a bug fix release.

Note: The Impala 2.2.x maintenance releases now use the CDH 5.4.x numbering system rather than
increasing the Impala version numbers. Impala 2.2 and higher are not available under CDH 4.

New Features in Impala Version 2.2.7 / CDH 5.4.7

No new features. This point release is exclusively a bug fix release.

Note: The Impala 2.2.x maintenance releases now use the CDH 5.4.x numbering system rather than
increasing the Impala version numbers. Impala 2.2 and higher are not available under CDH 4.

New Features in Impala Version 2.2.x for CDH 5.4.5

No new features. This point release is exclusively a bug fix release.

Note: The Impala 2.2.x maintenance releases now use the CDH 5.4.x numbering system rather than
increasing the Impala version numbers. Impala 2.2 and higher are not available under CDH 4.

New Features in Impala 2.2.x for CDH 5.4.3 and 5.4.4

No new features added to the Impala code. The certification of Impala with EMC Isilon under CDH 5.4.4 means that
now you can query data stored on Isilon storage devices through Impala. See
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_isilon_service.html for details. The same
level of Impala is included with both CDH 5.4.3 and 5.4.4.

Note: The Impala 2.2.x maintenance releases now use the CDH 5.4.x numbering system rather than
increasing the Impala version numbers. Impala 2.2 and higher are not available under CDH 4.

New Features in Impala for CDH 5.4.x

See New Features in Impala Version 2.2.0 / CDH 5.4.0 on page 609 for the most recent set of new Impala features. CDH
maintenance releases such as 5.4.1, 5.4.2, and so on are exclusively bug fix releases, therefore there are no new features
for the 5.4.x series after 5.4.0.

Note: The Impala 2.2.x maintenance releases now use the CDH 5.4.x numbering system rather than
increasing the Impala version numbers. Impala 2.2 and higher are not available under CDH 4.

608 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-2598
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_isilon_service.html

New Features in Impala Version 2.2.0 / CDH 5.4.0

Note: Impala 2.2.0 is available as part of CDH 5.4.0 and is not available for CDH 4. Cloudera does not
intend to release future versions of Impala for CDH 4 outside patch and maintenance releases if
required. Given the end-of-maintenance status for CDH 4, Cloudera recommends all customers to
migrate to a recent CDH 5 release.

The following are the major new features in Impala 2.2.0. This major release, available as part of CDH 5.4.0, contains
improvements to performance, manageability, security, and SQL syntax.

• Several improvements to date and time features enable higher interoperability with Hive and other database
systems, provide more flexibility for handling time zones, and future-proof the handling of TIMESTAMP values:

– The WITH REPLICATION clause for the CREATE TABLE and ALTER TABLE statements lets you control the
replication factor for HDFS caching for a specific table or partition. By default, each cached block is only
present on a single host, which can lead to CPU contention if the same host processes each cached block.
Increasing the replication factor lets Impala choose different hosts to process different cached blocks, to
better distribute the CPU load.

– Startup flags for the impalad daemon enable a higher level of compatibility with TIMESTAMP values written
by Hive, and more flexibility for working with date and time data using the local time zone instead of UTC.
To enable these features, set the impalad startup flags
-use_local_tz_for_unix_timestamp_conversions=true and
-convert_legacy_hive_parquet_utc_timestamps=true.

The-use_local_tz_for_unix_timestamp_conversions setting controls how theunix_timestamp(),
from_unixtime(), and now() functions handle time zones. By default (when this setting is turned off),
Impala considers all TIMESTAMP values to be in the UTC time zone when converting to or from Unix time
values. When this setting is enabled, Impala treats TIMESTAMP values passed to or returned from these
functions to be in the local time zone. When this setting is enabled, take particular care that all hosts in the
cluster have the same timezone settings, to avoid inconsistent results depending on which host reads or
writes TIMESTAMP data.

The -convert_legacy_hive_parquet_utc_timestamps setting causes Impala to convert TIMESTAMP
values to the local time zone when it reads them from Parquet files written by Hive. This setting only applies
to data using the Parquet file format, where Impala can use metadata in the files to reliably determine that
the files were written by Hive. If in the future Hive changes the way it writes TIMESTAMP data in Parquet,
Impala will automatically handle that new TIMESTAMP encoding.

See TIMESTAMP Data Type on page 149 for details about time zone handling and the configuration options
for Impala / Hive compatibility with Parquet format.

– In Impala 2.2.0 and higher, built-in functions that accept or return integers representing TIMESTAMP values
use the BIGINT type for parameters and return values, rather than INT. This change lets the date and time
functions avoid an overflow error that would otherwise occur on January 19th, 2038 (known as the “Year
2038 problem” or “Y2K38 problem”). This change affects the from_unixtime() and unix_timestamp()
functions. You might need to change application code that interacts with these functions, change the types
of columns that store the return values, or add CAST() calls to SQL statements that call these functions.

See Impala Date and Time Functions on page 364 for the current function signatures.

• The SHOW FILES statement lets you view the names and sizes of the files thatmake up an entire table or a specific
partition. See SHOW FILES Statement on page 323 for details.

• Impala can now run queries against Parquet data containing columns with complex or nested types, as long as
the query only refers to columns with scalar types.

• Performance improvements for queries that include IN() operators and involve partitioned tables.

Apache Impala Guide | 609

Impala Release Notes

http://en.wikipedia.org/wiki/Year_2038_problem
http://en.wikipedia.org/wiki/Year_2038_problem

• The new -max_log_files configuration option specifies how many log files to keep at each severity level. The
default value is 10, meaning that Impala preserves the latest 10 log files for each severity level (INFO, WARNING,
and ERROR) for each Impala-related daemon (impalad, statestored, and catalogd). Impala checks to see if
any old logs need to be removed based on the interval specified in the logbufsecs setting, every 5 seconds by
default. See Rotating Impala Logs on page 576 for details.

• Redaction of sensitive data from Impala log files. This feature protects details such as credit card numbers or tax
IDs from administrators who see the text of SQL statements in the course of monitoring and troubleshooting a
Hadoop cluster. See Redacting Sensitive Information from Impala Log Files on page 578 for background information
for Impala users, and http://www.cloudera.com/documentation/enterprise/latest/topics/sg_redaction.html for
usage details.

• Lineage information is available for data created or queried by Impala. This feature lets you trackwho has accessed
data through Impala SQL statements, down to the level of specific columns, and how data has been propagated
between tables. See Viewing Lineage Information for Impala Data on page 115 for background information for
Impala users,
http://www.cloudera.com/documentation/enterprise/latest/topics/datamgmt_impala_lineage_log.html for usage
details, and http://www.cloudera.com/documentation/enterprise/latest/topics/cn_iu_lineage.html. for how to
interpret the lineage information.

• Impala tables and partitions can now be located on the Amazon Simple Storage Service (S3) filesystem, for
convenience in cases where data is already located in S3 and you prefer to query it in-place. Queries might have
lower performance thanwhen the data files reside onHDFS, because Impala uses someHDFS-specific optimizations.
Impala can query data in S3, but cannot write to S3. Therefore, statements such as INSERT and LOAD DATA are
not available when the destination table or partition is in S3. See Using Impala to Query the Amazon S3 Filesystem
on page 567 for details.

Important:

Impala query functionality for Amazon S3 is included beginning in CDH 5.4. FromCDH 5.4 through
CDH 5.7, the S3 functionality for Impala is not supported or recommended for production use.
In CDH 5.8 and higher, this functionality is supported and production-ready. For the most current
information, see the latest documentation for using Impala with S3.

• Improved support for HDFS encryption. The LOAD DATA statement now works when the source directory and
destination table are in different encryption zones.

• Additional arithmetic function mod(). See Impala Mathematical Functions on page 340 for details.

• Flexibility to interpret TIMESTAMP values using the UTC time zone (the traditional Impala behavior) or using the
local time zone (for compatibility with TIMESTAMP values produced by Hive).

• Enhanced support for ETL using tools such as Flume. Impala ignores temporary files typically produced by these
tools (filenames with suffixes .copying and .tmp).

• The CPU requirement for Impala, which had become more restrictive in Impala 2.0.x and 2.1.x, has now been
relaxed.

The prerequisite for CPU architecture has been relaxed in Impala 2.2.0 and higher. From this release onward,
Impala works on CPUs that have the SSSE3 instruction set. The SSE4 instruction set is no longer required. This
relaxed requirement simplifies the upgrade planning from Impala 1.x releases, which alsoworked on SSSE3-enabled
processors.

• Enhanced support for CHAR and VARCHAR types in the COMPUTE STATS statement.

• The amount of memory required during setup for “spill to disk” operations is greatly reduced. This enhancement
reduces the chance of a memory-intensive join or aggregation query failing with an out-of-memory error.

610 | Apache Impala Guide

Impala Release Notes

http://www.cloudera.com/documentation/enterprise/latest/topics/sg_redaction.html
http://www.cloudera.com/documentation/enterprise/latest/topics/datamgmt_impala_lineage_log.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cn_iu_lineage.html
https://www.cloudera.com/documentation/enterprise/latest/topics/impala_s3.html

• Several new conditional functions provide enhanced compatibilitywhen porting code that uses industry extensions.
The new functions are: isfalse(), isnotfalse(), isnottrue(), istrue(), nonnullvalue(), and
nullvalue(). See Impala Conditional Functions on page 392 for details.

• The Impala debug web UI now can display a visual representation of the query plan. On the /queries tab, select
Details for a particular query. The Details page includes a Plan tab with a plan diagram that you can zoom in or
out (using scroll gestures through mouse wheel or trackpad).

New Features in Impala Version 2.1.7 / CDH 5.3.9

This point release is exclusively a bug fix release.

Note: This Impala maintenance release is only available as part of CDH 5, not under CDH 4.

New Features in Impala Version 2.1.6 / CDH 5.3.8

This point release is exclusively a bug fix release.

Note: This Impala maintenance release is only available as part of CDH 5, not under CDH 4.

New Features in Impala Version 2.1.5 / CDH 5.3.6

This point release is exclusively a bug fix release.

Note: This Impala maintenance release is only available as part of CDH 5, not under CDH 4.

New Features in Impala Version 2.1.4 / CDH 5.3.4

No new features. This point release is exclusively a bug fix release. Because CDH 5.3.5 does not include any code
changes for Impala, Impala 2.1.4 is included with both CDH 5.3.4 and 5.3.5.

Note: This Impala maintenance release is only available as part of CDH 5, not under CDH 4.

New Features in Impala Version 2.1.3 / CDH 5.3.3

No new features. This point release is exclusively a bug fix release.

Note: Impala 2.1.3 is available as part of CDH 5.3.3, not under CDH 4.

New Features in Impala Version 2.1.2 / CDH 5.3.2

No new features. This point release is exclusively a bug fix release.

Note: Impala 2.1.2 is available as part of CDH 5.3.2, not under CDH 4.

Apache Impala Guide | 611

Impala Release Notes

New Features in Impala Version 2.1.1 / CDH 5.3.1

No new features. This point release is exclusively a bug fix release.

New Features in Impala Version 2.1.0 / CDH 5.3.0

This release contains the following enhancements to query performance and system scalability:

• Impala can now collect statistics for individual partitions in a partitioned table, rather than processing the entire
table for each COMPUTE STATS statement. This feature is known as incremental statistics, and is controlled by
the COMPUTE INCREMENTAL STATS syntax. (You can still use the original COMPUTE STATS statement for
nonpartitioned tables or partitioned tables that are unchanging or whose contents are entirely replaced all at
once.) See COMPUTE STATS Statement on page 227 and Table and Column Statistics on page 490 for details.

• Optimization for small queries lets Impala process queries that process very few rows without the unnecessary
overhead of parallelizing and generating native code. Reducing this overhead lets Impala clear small queries
quickly, keeping YARN resources and admission control slots available for data-intensive queries. The number of
rows considered to be a “small” query is controlled by the EXEC_SINGLE_NODE_ROWS_THRESHOLD query option.
See EXEC_SINGLE_NODE_ROWS_THRESHOLD Query Option (CDH 5.3 or higher only) on page 309 for details.

• An enhancement to the statestore component lets it transmit heartbeat information independently of broadcasting
metadata updates. This optimization improves reliability of health checking on large clusters with many tables
and partitions.

• The memory requirement for querying gzip-compressed text is reduced. Now Impala decompresses the data as
it is read, rather than reading the entire gzipped file and decompressing it in memory.

New Features in Impala Version 2.0.5 / CDH 5.2.6

No new features. This point release is exclusively a bug fix release.

Note: Impala 2.0.5 is available as part of CDH 5.2.6, not under CDH 4.

New Features in Impala Version 2.0.4 / CDH 5.2.5

No new features. This point release is exclusively a bug fix release.

Note: Impala 2.0.4 is available as part of CDH 5.2.5, not under CDH 4.

New Features in Impala Version 2.0.3 / CDH 5.2.4

No new features. This point release is exclusively a bug fix release.

Note: Impala 2.0.3 is available as part of CDH 5.2.4, not under CDH 4.

New Features in Impala Version 2.0.2 / CDH 5.2.3

No new features. This point release is exclusively a bug fix release.

Note: Impala 2.0.2 is available as part of CDH 5.2.3, not under CDH 4.

612 | Apache Impala Guide

Impala Release Notes

New Features in Impala Version 2.0.1 / CDH 5.2.1

No new features. This point release is exclusively a bug fix release.

New Features in Impala Version 2.0.0 / CDH 5.2.0

The following are the major new features in Impala 2.0. This major release, available both with CDH 5.2 and for CDH
4, contains improvements to performance, scalability, security, and SQL syntax.

• Queries with joins or aggregation functions involving high volumes of data can now use temporary work areas on
disk, reducing the chance of failure due to out-of-memory errors.When the requiredmemory for the intermediate
result set exceeds the amount available on a particular node, the query automatically uses a temporary work area
on disk. This “spill to disk” mechanism is similar to the ORDER BY improvement from Impala 1.4. For details, see
SQL Operations that Spill to Disk on page 518.

• Subquery enhancements:

• Subqueries are now allowed in the WHERE clause, for example with the IN operator.
• The EXISTS and NOT EXISTS operators are available. They are always used in conjunction with subqueries.
• The IN and NOT IN queries can now operate on the result set from a subquery, not just a hardcoded list of

values.
• Uncorrelated subqueries let you compare against oneormore values for equality,IN, andEXISTS comparisons.

For example, youmight useWHERE clauses such asWHERE column = (SELECT MAX(some_other_column
FROM table)orWHERE column IN (SELECT some_other_column FROM table WHERE conditions).

• Correlated subqueries let you cross-reference values from the outer query block and the subquery.
• Scalar subqueries let you substitute the result of single-value aggregate functions such as MAX(), MIN(),

COUNT(), or AVG(), where you would normally use a numeric value in a WHERE clause.

For details about subqueries, see Subqueries in Impala SELECT Statements on page 298 For information about new
and improved operators, see EXISTS Operator on page 194 and IN Operator on page 197.

• Analytic functions such as RANK(), LAG(), LEAD(), and FIRST_VALUE() let you analyze sequences of rows with
flexible ordering and grouping. Existing aggregate functions such as MAX(), SUM(), and COUNT() can also be used
in an analytic context. See Impala Analytic Functions on page 430 for details. See Impala Aggregate Functions on
page 404 for enhancements to existing aggregate functions.

• New data types provide greater compatibility with source code from traditional database systems:

– VARCHAR is like the STRING data type, but with a maximum length. See VARCHAR Data Type (CDH 5.2 or
higher only) on page 155 for details.

– CHAR is like the STRING data type, but with a precise length. Short values are padded with spaces on the
right. See CHAR Data Type (CDH 5.2 or higher only) on page 123 for details.

• Security enhancements:

• Formerly, Impala was restricted to using either Kerberos or LDAP / Active Directory authentication within a
cluster. Now, Impala can freely accept either kind of authentication request, allowing you to set up some
hostswith Kerberos authentication and otherswith LDAPor ActiveDirectory. SeeUsingMultiple Authentication
Methods with Impala on page 112 for details.

• GRANT statement. See GRANT Statement (CDH 5.2 or higher only) on page 264 for details.
• REVOKE statement. See REVOKE Statement (CDH 5.2 or higher only) on page 280 for details.
• CREATE ROLE statement. See CREATE ROLE Statement (CDH 5.2 or higher only) on page 236 for details.
• DROP ROLE statement. See DROP ROLE Statement (CDH 5.2 or higher only) on page 255 for details.
• SHOW ROLES and SHOW ROLE GRANT statements. See SHOW Statement on page 323 for details.
• To complement theHDFSencryption feature, a new Impala configurationoption,--disk_spill_encryption

secures sensitive data from being observed or tampered with when temporarily stored on disk.

The new security-related SQL statementswork alongwith the Sentry authorization framework. See Enabling Sentry
Authorization for Impala on page 96 for details.

Apache Impala Guide | 613

Impala Release Notes

• Impala can now read compressed text files compressed by gzip, bzip, or Snappy. These files do not require any
special table settings to work in an Impala text table. Impala recognizes the compression type automatically based
on file extensions of .gz, .bz2, and .snappy respectively. These types of compressed text files are intended for
convenience with existing ETL pipelines. Their non-splittable nature means they are not optimal for
high-performance parallel queries. See Using gzip, bzip2, or Snappy-Compressed Text Files on page 535 for details.

• Query hints can now use comment notation, /* +hint_name */ or -- +hint_name, at the same places in the
query where the hints enclosed by [] are recognized. This enhancement makes it easier to reuse Impala queries
on other database systems. See Query Hints in Impala SELECT Statements on page 302 for details.

• A new query option, QUERY_TIMEOUT_S, lets you specify a timeout period in seconds for individual queries.

The working of the --idle_query_timeout configuration option is extended. If no QUERY_OPTION_S query
option is in effect, --idle_query_timeout works the same as before, setting the timeout interval. When the
QUERY_OPTION_S query option is specified, its maximum value is capped by the value of the
--idle_query_timeout option.

That is, the system administrator sets the default and maximum timeout through the --idle_query_timeout
startup option, and then individual users or applications can set a lower timeout value if desired through the
QUERY_TIMEOUT_S query option. See Setting Timeout Periods for Daemons, Queries, and Sessions on page 84
and QUERY_TIMEOUT_S Query Option (CDH 5.2 or higher only) on page 321 for details.

• New functionsVAR_SAMP() andVAR_POP() are aliases for the existingVARIANCE_SAMP() andVARIANCE_POP()
functions.

• A new date and time function, DATE_PART(), provides similar functionality to EXTRACT(). You can also call the
EXTRACT() function using the SQL-99 syntax,EXTRACT(unit FROM timestamp). These enhancements simplify
the porting process for date-related code from other systems. See Impala Date and Time Functions on page 364
for details.

• New approximation features provide a fast way to get results when absolute precision is not required:

– TheAPPX_COUNT_DISTINCT query option lets Impala rewriteCOUNT(DISTINCT) calls to useNDV() instead,
which speeds up the operation and allows multiple COUNT(DISTINCT) operations in a single query. See
APPX_COUNT_DISTINCT Query Option (CDH 5.2 or higher only) on page 307 for details.

TheAPPX_MEDIAN() aggregate function produces an estimate for themedian value of a columnby using sampling.
See APPX_MEDIAN Function on page 404 for details.

• Impala now supports a DECODE() function. This function works as a shorthand for a CASE() expression, and
improves compatibility with SQL code containing vendor extensions. See Impala Conditional Functions on page
392 for details.

• The STDDEV(), STDDEV_POP(), STDDEV_SAMP(), VARIANCE(), VARIANCE_POP(), VARIANCE_SAMP(), and
NDV() aggregate functions now all return DOUBLE results rather than STRING. Formerly, you were required to
CAST() the result to a numeric type before using it in arithmetic operations.

• The default settings for Parquet block size, and the associated PARQUET_FILE_SIZE query option, are changed.
Now, Impala writes Parquet files with a size of 256 MB and an HDFS block size of 256 MB. Previously, Impala
attempted to write Parquet files with a size of 1 GB and an HDFS block size of 1 GB. In practice, Impala used a
conservative estimate of the disk space needed for each Parquet block, leading to files that were typically 512MB
anyway. Thus, this changewill make the file sizemore accurate if you specify a value for the PARQUET_FILE_SIZE
query option. It also reduces the amount of memory reserved during INSERT into Parquet tables, potentially
avoiding out-of-memory errors and improving scalability when inserting data into Parquet tables.

• Anti-joins are now supported, expressed using the LEFT ANTI JOIN and RIGHT ANTI JOIN clauses. These
clauses returns results from one table that have no match in the other table. You might use this type of join in
the same sorts of use cases as the NOT EXISTS and NOT IN operators. See Joins in Impala SELECT Statements
on page 283 for details.

614 | Apache Impala Guide

Impala Release Notes

• The SET command in impala-shell has been promoted to a real SQL statement. You can now set query options
such as PARQUET_FILE_SIZE, MEM_LIMIT, and SYNC_DDL within JDBC, ODBC, or any other kind of application
that submits SQLwithout going through the impala-shell interpreter. See SET Statement on page 305 for details.

• The impala-shell interpreter now reads settings froman optional configuration file, named $HOME/.impalarc
by default. See impala-shell Configuration File on page 474 for details.

• The library used for regular expression parsing has changed fromBoost to Google RE2. This implementation change
adds support for non-greedymatches using the.*? notation. This and other changes in theway regular expressions
are interpreted means you might need to re-test queries that use functions such as regexp_extract() or
regexp_replace(), or operators such as REGEXP or RLIKE. See Incompatible Changes and Limitations in Apache
Impala on page 626 for those details.

New Features in Impala Version 1.4.4 / CDH 5.1.5

No new features. This point release is exclusively a bug fix release.

Note: Impala 1.4.4 is available as part of CDH 5.1.5, not under CDH 4.

New Features in Impala Version 1.4.3 / CDH 5.1.4

No new features. This point release is exclusively a bug fix release for an SSL security issue.

Note: Impala 1.4.3 is available as part of CDH 5.1.4, and under CDH 4.

New Features in Impala Version 1.4.2 / CDH 5.1.3

Impala 1.4.2 is purely a bug-fix release. It does not include any new features.

Note: Impala 1.4.2 is only available as part of CDH 5.1.3, not under CDH 4.

New Features in Impala Version 1.4.1 / CDH 5.1.2

Impala 1.4.1 is purely a bug-fix release. It does not include any new features.

New Features in Impala Version 1.4.0 / CDH 5.1.0

The following are the major new features in Impala 1.4.

• The DECIMAL data type lets you store fixed-precision values, for working with currency or other fractional values
where it is important to represent values exactly and avoid rounding errors. This feature includes enhancements
to built-in functions, numeric literals, and arithmetic expressions.

• On CDH 5, Impala can take advantage of the HDFS caching feature to “pin” entire tables or individual partitions
inmemory, to speed up queries on frequently accessed data and reduce the CPU overhead ofmemory-to-memory
copying. When HDFS files are cached in memory, Impala can read the cached data without any disk reads, and
without making an additional copy of the data in memory. Other Hadoop components that read the same data
files also experience a performance benefit.

• Impala can now use Sentry-based authorization based either on the original policy file, or on rules defined by
GRANT and REVOKE statements issued through Hive.

Apache Impala Guide | 615

Impala Release Notes

• For interoperability with Parquet files created through other Hadoop components, such as Pig or MapReduce
jobs, you can create an Impala table that automatically sets up the column definitions based on the layout of an
existing Parquet data file.

• ORDER BY queries no longer require a LIMIT clause. If the size of the result set to be sorted exceeds the memory
available to Impala, Impala uses a temporary work space on disk to perform the sort operation.

• LDAP connections can be secured through either SSL or TLS.

• The following new built-in scalar and aggregate functions are available:

– A new built-in function, EXTRACT(), returns one date or time field from a TIMESTAMP value.

– A new built-in function, TRUNC(), truncates date/time values to a particular granularity, such as year, month,
day, hour, and so on.

– ADD_MONTHS() built-in function, an alias for the existing MONTHS_ADD() function.

– A new built-in function, ROUND(), rounds DECIMAL values to a specified number of fractional digits.

– Several built-in aggregate functions for computing properties for statistical distributions: STDDEV(),
STDDEV_SAMP(), STDDEV_POP(), VARIANCE(), VARIANCE_SAMP(), and VARIANCE_POP().

– Several new built-in functions, such as MAX_INT(), MIN_SMALLINT(), and so on, let you conveniently check
whether data values are in an expected range. You might be able to switch a column to a smaller type, saving
memory during processing.

– New built-in functions, IS_INF() and IS_NAN(), check for the special values infinity and “not a number”.
These values could be specified as inf or nan in text data files, or be produced by certain arithmetic
expressions.

• The SHOW PARTITIONS statement displays information about the structure of a partitioned table.

• New configuration options for the impalad daemon let you specify initial memory usage for all queries. The initial
resource requests handledby Llamaand YARNcanbe expanded later if needed, avoiding unnecessary over-allocation
and reducing the chance of out-of-memory conditions.

• Impala can take advantage of the Llama high availability feature in CDH 5.1, for improved reliability of resource
management through YARN.

• The Impala CREATE TABLE statement now has a STORED AS AVRO clause, allowing you to create Avro tables
through Impala.

• New impalad configuration options let you fine-tune the calculations Impala makes to estimate resource
requirements for each query. These options can help avoid problems due to overconsumption due to too-low
estimates, or underutilization due to too-high estimates.

• A newSUMMARY command in theimpala-shell interpreter provides a high-level summary of thework performed
at each stage of the explain plan. The summary is also included in output from the PROFILE command.

• Performance improvements for the COMPUTE STATS statement:

– The NDV function is speeded up through native code generation.
– Because theNULL count is not currently used by the Impala query planner, in Impala 1.4.0 and higher,COMPUTE

STATS does not count the NULL values for each column. (The #Nulls field of the stats table is left as -1,
signifying that the value is unknown.)

• Performance improvements for partition pruning. This feature reduces the time spent in query planning, for
partitioned tableswith thousands of partitions. Previously, Impala typically queried tableswith up to approximately
3000 partitions. With the performance improvement in partition pruning, now Impala can comfortably handle
tables with tens of thousands of partitions.

• The documentation provides additional guidance for planning tasks.

616 | Apache Impala Guide

Impala Release Notes

• The impala-shell interpreter now supports UTF-8 characters for input and output. You can control whether
impala-shell ignores invalid Unicode code points through the --strict_unicode option. (Although this
option is removed in Impala 2.0.)

New Features in Impala Version 1.3.3 / CDH 5.0.5

No new features. This point release is exclusively a bug fix release for an SSL security issue.

Note: Impala 1.3.3 is only available as part of CDH 5.0.5, not under CDH 4.

New Features in Impala Version 1.3.2 / CDH 5.0.4

No new features. This point release is exclusively a bug fix release for the IMPALA-1019 issue related to HDFS caching.

Note: Impala 1.3.2 is only available as part of CDH 5.0.4, not under CDH 4.

New Features in Impala Version 1.3.1 / CDH 5.0.3

This point release is primarily a vehicle to deliver bug fixes. Any new features are minor changes resulting from fixes
for performance, reliability, or usability issues.

Because 1.3.1 is the first 1.3.x release for CDH 4, if you are on CDH 4, also consult New Features in Impala Version 1.3.0
/ CDH 5.0.0 on page 618 for more features that are new to you.

Note:

• The Impala 1.3.1 release is available for both CDH 4 and CDH 5. This is the first release in the 1.3.x
series for CDH 4.

• A newimpalad startup option,--insert_inherit_permissions, causes ImpalaINSERT statements to create
each new partition with the same HDFS permissions as its parent directory. By default, INSERT statements create
directories for new partitions using default HDFS permissions. See INSERT Statement on page 264 for examples of
INSERT statements for partitioned tables.

• The SHOW FUNCTIONS statement now displays the return type of each function, in addition to the types of its
arguments. See SHOW Statement on page 323 for examples.

• You can now specify the clause FIELDS TERMINATED BY '\0' with a CREATE TABLE statement to use text
data files that use ASCII 0 (nul) characters as a delimiter. See Using Text Data Files with Impala Tables on page
529 for details.

• In Impala 1.3.1 and higher, the REGEXP and RLIKE operators now match a regular expression string that occurs
anywhere inside the target string, the same as if the regular expression was enclosed on each side by .*. See
REGEXPOperator on page 203 for examples. Previously, these operators only succeededwhen the regular expression
matched the entire target string. This change improves compatibility with the regular expression support for
popular database systems. There is no change to the behavior of theregexp_extract() andregexp_replace()
built-in functions.

Apache Impala Guide | 617

Impala Release Notes

New Features in Impala Version 1.3.0 / CDH 5.0.0

Note:

• The Impala 1.3.1 release is available for both CDH 4 and CDH 5. This is the first release in the 1.3.x
series for CDH 4.

• The admission control feature lets you control and prioritize the volume and resource consumption of concurrent
queries. Thismechanism reduces spikes in resource usage, helping Impala to run alongside other kinds ofworkloads
on a busy cluster. It also provides more user-friendly conflict resolution when multiple memory-intensive queries
are submitted concurrently, avoiding resource contention that formerly resulted in out-of-memory errors. See
Admission Control and Query Queuing on page 75 for details.

• Enhanced EXPLAIN plans provide more detail in an easier-to-read format. Now there are four levels of verbosity:
the EXPLAIN_LEVEL option can be set from 0 (most concise) to 3 (most verbose). See EXPLAIN Statement on
page 261 for syntax andUnderstanding ImpalaQuery Performance - EXPLAIN Plans andQuery Profiles on page 508
for usage information.

• The TIMESTAMP data type accepts more kinds of input string formats through the UNIX_TIMESTAMP function,
and produces more varieties of string formats through the FROM_UNIXTIME function. The documentation now
also lists more functions for date arithmetic, used for adding and subtracting INTERVAL expressions from
TIMESTAMP values. See Impala Date and Time Functions on page 364 for details.

• New conditional functions, NULLIF(), NULLIFZERO(), and ZEROIFNULL(), simplify porting SQL containing
vendor extensions to Impala. See Impala Conditional Functions on page 392 for details.

• New utility function, CURRENT_DATABASE(). See Impala Miscellaneous Functions on page 403 for details.

• Integration with the YARN resource management framework. Only available in combination with CDH 5. This
feature makes use of the underlying YARN service, plus an additional service (Llama) that coordinates requests
to YARN for Impala resources, so that the Impala query only proceeds when all requested resources are available.
See Integrated Resource Management with YARN on page 83 for full details.

On the Impala side, this feature involves some new startup options for the impalad daemon:

– -enable_rm

– -llama_host

– -llama_port

– -llama_callback_port

– -cgroup_hierarchy_path

For details of these startup options, see Modifying Impala Startup Options on page 43.

This feature also involves several new or changed query options that you can set through the impala-shell
interpreter and apply within a specific session:

– MEM_LIMIT: the function of this existing option changes when Impala resource management is enabled.
– REQUEST_POOL: a new option. (Renamed to RESOURCE_POOL in Impala 1.3.0.)
– V_CPU_CORES: a new option.
– RESERVATION_REQUEST_TIMEOUT: a new option.

For details of these query options, see impala-shell Query Options for Resource Management on page 84.

New Features in Impala Version 1.2.4

Note: Impala 1.2.4 works with CDH 4. It is primarily a bug fix release for Impala 1.2.3, plus some
performance enhancements for the catalog server to minimize startup and DDL wait times for Impala
deployments with large numbers of databases, tables, and partitions.

618 | Apache Impala Guide

Impala Release Notes

• On Impala startup, the metadata loading and synchronization mechanism has been improved and optimized, to
givemore responsivenesswhen starting Impala on a systemwith a large number of databases, tables, or partitions.
The initial metadata loading happens in the background, allowing queries to be run before the entire process is
finished. When a query refers to a table whose metadata is not yet loaded, the query waits until the metadata
for that table is loaded, and the load operation for that table is prioritized to happen first.

• Formerly, if you created a new table in Hive, you had to issue the INVALIDATE METADATA statement (with no
table name) which was an expensive operation that reloaded metadata for all tables. Impala did not recognize
the nameof theHive-created table, so you could not do INVALIDATE METADATA new_table to get themetadata
for just that one table. Now, when you issue INVALIDATE METADATA table_name, Impala checks to see if that
name represents a table created in Hive, and if so recognizes the new table and loads the metadata for it.
Additionally, if the new table is in a database that was newly created in Hive, Impala also recognizes the new
database.

• If you issue INVALIDATE METADATA table_name and the table has been dropped through Hive, Impala will
recognize that the table no longer exists.

• New startup options let you control the parallelism of the metadata loading during startup for the catalogd
daemon:

– --load_catalog_in_backgroundmakes Impala load and cachemetadata using background threads after
startup. It is true by default. Previously, a system with a large number of databases, tables, or partitions
could be unresponsive or even time out during startup.

– --num_metadata_loading_threadsdetermines howmuchparallelism Impala devotes to loadingmetadata
in the background. The default is 16. Youmight increase this value for systemswith huge numbers of databases,
tables, or partitions. You might lower this value for busy systems that are CPU-constrained due to jobs from
components other than Impala.

New Features in Impala Version 1.2.3

Note: Impala 1.2.3 works with CDH 4 and with CDH 5 beta 2. The resource management feature
requires CDH 5 beta.

Impala 1.2.3 contains exactly the same feature set as Impala 1.2.2. Its only difference is one additional fix for compatibility
with Parquet files generated outside of Impala by components such as Hive, Pig, or MapReduce. If you are upgrading
from Impala 1.2.1 or earlier, see New Features in Impala Version 1.2.2 on page 619 for the latest added features.

New Features in Impala Version 1.2.2

Note: Impala 1.2.2 works with CDH 4. Its feature set is a superset of features in the Impala 1.2.0 beta,
with the exception of resource management, which relies on CDH 5.

Impala 1.2.2 includes new features for performance, security, and flexibility. The major enhancements over 1.2.1 are
performance related, primarily for join queries.

New user-visible features include:

• Join order optimizations. This highly valuable feature automatically distributes and parallelizes the work for a join
query to minimize disk I/O and network traffic. The automatic optimization reduces the need to use query hints
or to rewrite join queries with the tables in a specific order based on size or cardinality. The new COMPUTE STATS

statement gathers statistical information about each table that is crucial for enabling the join optimizations. See
Performance Considerations for Join Queries on page 483 for details.

• COMPUTE STATS statement to collect both table statistics and column statistics with a single statement. Intended
to bemore comprehensive, efficient, and reliable than the corresponding Hive ANALYZE TABLE statement, which
collects statistics in multiple phases through MapReduce jobs. These statistics are important for query planning

Apache Impala Guide | 619

Impala Release Notes

for join queries, queries on partitioned tables, and other types of data-intensive operations. For optimal planning
of join queries, you need to collect statistics for each table involved in the join. See COMPUTE STATS Statement
on page 227 for details.

• Reordering of tables in a join query can be overridden by the STRAIGHT_JOIN operator, allowing you to fine-tune
the planning of the join query if necessary, by using the original technique of ordering the joined tables in descending
order of size. See Overriding Join Reordering with STRAIGHT_JOIN on page 484 for details.

• The CROSS JOIN clause in the SELECT statement to allow Cartesian products in queries, that is, joins without an
equality comparison between columns in both tables. Because such queries must be carefully checked to avoid
accidental overconsumption of memory, you must use the CROSS JOIN operator to explicitly select this kind of
join. See Cross Joins and Cartesian Products with the CROSS JOIN Operator on page 61 for examples.

• The ALTER TABLE statement has new clauses that let you fine-tune table statistics. You can use this technique
as a less-expensive way to update specific statistics, in case the statistics become stale, or to experiment with the
effects of different data distributions on query planning.

• LDAP username/password authentication in JDBC/ODBC. See Enabling LDAP Authentication for Impala on page
110 for details.

• GROUP_CONCAT() aggregate function to concatenate column values across all rows of a result set.

• TheINSERT statement nowaccepts hints,[SHUFFLE] and[NOSHUFFLE], to influence thewaywork is redistributed
during INSERT...SELECT operations. The hints are primarily useful for inserting into partitioned Parquet tables,
where using the [SHUFFLE] hint can avoid problems due to memory consumption and simultaneous open files
in HDFS, by collecting all the new data for each partition on a specific node.

• Several built-in functions and operators are nowoverloaded formore numeric data types, to reduce the requirement
to use CAST() for type coercion in INSERT statements. For example, the expression 2+2 in an INSERT statement
formerly produced a BIGINT result, requiring a CAST() to be stored in an INT variable. Now, addition, subtraction,
andmultiplication only produce a result that is one step “bigger” than their arguments, and numeric and conditional
functions can return SMALLINT, FLOAT, and other smaller types rather than always BIGINT or DOUBLE.

• New fnv_hash() built-in function for constructing hashed values. See Impala Mathematical Functions on page
340 for details.

• The clause STORED AS PARQUET is accepted as an equivalent for STORED AS PARQUETFILE. This more concise
form is recommended for new code.

Because Impala 1.2.2 builds on a number of features introduced in 1.2.1, if you are upgrading from an older 1.1.x
release straight to 1.2.2, also reviewNew Features in Impala Version 1.2.1 on page 620 to see features such as the SHOW
TABLE STATS and SHOW COLUMN STATS statements, and user-defined functions (UDFs).

New Features in Impala Version 1.2.1

Note: Impala 1.2.1 works with CDH 4. Its feature set is a superset of features in the Impala 1.2.0 beta,
with the exception of resource management, which relies on CDH 5.

Impala 1.2.1 includes new features for security, performance, and flexibility.

New user-visible features include:

• SHOW TABLE STATS table_name and SHOW COLUMN STATS table_name statements, to verify that statistics
are available and to see the values used during query planning.

• CREATE TABLE AS SELECT syntax, to create a new table and transfer data into it in a single operation.

• OFFSET clause, for use with the ORDER BY and LIMIT clauses to produce “paged” result sets such as items 1-10,
then 11-20, and so on.

• NULLS FIRST and NULLS LAST clauses to ensure consistent placement of NULL values in ORDER BY queries.

620 | Apache Impala Guide

Impala Release Notes

• New built-in functions: least(), greatest(), initcap().

• New aggregate function: ndv(), a fast alternative to COUNT(DISTINCT col) returning an approximate result.

• The LIMIT clause can now accept a numeric expression as an argument, rather than only a literal constant.

• The SHOW CREATE TABLE statement displays the end result of all the CREATE TABLE and ALTER TABLE
statements for a particular table. You can use the output to produce a simplified setup script for a schema.

• The --idle_query_timeout and --idle_session_timeout options for impalad control the time intervals
after which idle queries are cancelled, and idle sessions expire. See Setting Timeout Periods for Daemons, Queries,
and Sessions on page 84 for details.

• User-defined functions (UDFs). This feature lets you transform data in very flexible ways, which is important when
using Impala as part of an ETL or ELT pipeline. Prior to Impala 1.2, using UDFs required switching into Hive. Impala
1.2 can run scalar UDFs and user-defined aggregate functions (UDAs). Impala can run high-performance functions
written in C++, or you can reuse existing Hive functions written in Java.

You create UDFs through the CREATE FUNCTION statement and drop them through the DROP FUNCTION
statement. See Impala User-Defined Functions (UDFs) on page 448 for instructions about coding, building, and
deploying UDFs, and CREATE FUNCTION Statement on page 233 and DROP FUNCTION Statement on page 255 for
related SQL syntax.

• A new service automatically propagates changes to table data and metadata made by one Impala node, sending
the newor updatedmetadata to all the other Impala nodes. The automatic synchronizationmechanismeliminates
the need to use the INVALIDATE METADATA and REFRESH statements after issuing Impala statements such as
CREATE TABLE, ALTER TABLE, DROP TABLE, INSERT, and LOAD DATA.

For evenmore precise synchronization, you can enable the SYNC_DDL query option before issuing a DDL, INSERT,
or LOAD DATA statement. This option causes the statement to wait, returning only after the catalog service has
broadcast the applicable changes to all Impala nodes in the cluster.

Note:

Because the catalog service only monitors operations performed through Impala, INVALIDATE
METADATA and REFRESH are still needed on the Impala side after creating new tables or loading
data through the Hive shell or by manipulating data files directly in HDFS. Because the catalog
service broadcasts the result of the REFRESH and INVALIDATE METADATA statements to all
Impala nodes, when you do need to use those statements, you can do so a single time rather
than on every Impala node.

This service is implemented by the catalogd daemon. See The Impala Catalog Service on page 19 for details.

• CREATE TABLE ... AS SELECT syntax, to create a table and copy data into it in a single operation. See CREATE
TABLE Statement on page 236 for details.

• The CREATE TABLE and ALTER TABLE statements have new clauses TBLPROPERTIES and WITH
SERDEPROPERTIES. The TBLPROPERTIES clause lets you associate arbitrary items of metadata with a particular
table as key-value pairs. The WITH SERDEPROPERTIES clause lets you specify the serializer/deserializer (SerDes)
classes that read and write data for a table; although Impala does not make use of these properties, sometimes
particular values are needed for Hive compatibility. See CREATE TABLE Statement on page 236 and ALTER TABLE
Statement on page 216 for details.

• Delegation support lets you authorize certain OS users associated with applications (for example, hue), to submit
requests using the credentials of other users. Only available in combination with CDH 5. See Configuring Impala
Delegation for Hue and BI Tools on page 112 for details.

• Enhancements to EXPLAIN output. In particular, when you enable the new EXPLAIN_LEVEL query option, the
EXPLAIN and PROFILE statements produce more verbose output showing estimated resource requirements and

Apache Impala Guide | 621

Impala Release Notes

whether table and column statistics are available for the applicable tables and columns. See EXPLAIN Statement
on page 261 for details.

• SHOW CREATE TABLE summarizes the effects of the original CREATE TABLE statement and any subsequent
ALTER TABLE statements, giving you a CREATE TABLE statement that will re-create the current structure and
layout for a table.

• The LIMIT clause for queries now accepts an arithmetic expression, in addition to numeric literals.

New Features in Impala Version 1.2.0 (Beta)

Note: The Impala 1.2.0 beta release only works in combination with the beta version of CDH 5. The
Impala 1.2.0 software is bundled together with the CDH 5 beta 1 download.

The Impala 1.2.0 beta includes new features for security, performance, and flexibility.

New user-visible features include:

• User-defined functions (UDFs). This feature lets you transform data in very flexible ways, which is important when
using Impala as part of an ETL or ELT pipeline. Prior to Impala 1.2, using UDFs required switching into Hive. Impala
1.2 can run scalar UDFs and user-defined aggregate functions (UDAs). Impala can run high-performance functions
written in C++, or you can reuse existing Hive functions written in Java.

You create UDFs through the CREATE FUNCTION statement and drop them through the DROP FUNCTION
statement. See Impala User-Defined Functions (UDFs) on page 448 for instructions about coding, building, and
deploying UDFs, and CREATE FUNCTION Statement on page 233 and DROP FUNCTION Statement on page 255 for
related SQL syntax.

• A new service automatically propagates changes to table data and metadata made by one Impala node, sending
the newor updatedmetadata to all the other Impala nodes. The automatic synchronizationmechanismeliminates
the need to use the INVALIDATE METADATA and REFRESH statements after issuing Impala statements such as
CREATE TABLE, ALTER TABLE, DROP TABLE, INSERT, and LOAD DATA.

Note:

Because this service onlymonitors operations performed through Impala,INVALIDATE METADATA
andREFRESH are still needed on the Impala side after creating new tables or loading data through
theHive shell or bymanipulating data files directly in HDFS. Because the catalog service broadcasts
the result of the REFRESH and INVALIDATE METADATA statements to all Impala nodes, when
you do need to use those statements, you can do so a single time rather than on every Impala
node.

This service is implemented by the catalogd daemon. See The Impala Catalog Service on page 19 for details.

• Integration with the YARN resource management framework. Only available in combination with CDH 5. This
feature makes use of the underlying YARN service, plus an additional service (Llama) that coordinates requests
to YARN for Impala resources, so that the Impala query only proceeds when all requested resources are available.
See Integrated Resource Management with YARN on page 83 for full details.

On the Impala side, this feature involves some new startup options for the impalad daemon:

– -enable_rm

– -llama_host

– -llama_port

– -llama_callback_port

– -cgroup_hierarchy_path

For details of these startup options, see Modifying Impala Startup Options on page 43.

622 | Apache Impala Guide

Impala Release Notes

This feature also involves several new or changed query options that you can set through the impala-shell
interpreter and apply within a specific session:

– MEM_LIMIT: the function of this existing option changes when Impala resource management is enabled.
– YARN_POOL: a new option. (Renamed to RESOURCE_POOL in Impala 1.3.0.)
– V_CPU_CORES: a new option.
– RESERVATION_REQUEST_TIMEOUT: a new option.

For details of these query options, see impala-shell Query Options for Resource Management on page 84.

• CREATE TABLE ... AS SELECT syntax, to create a table and copy data into it in a single operation. See CREATE
TABLE Statement on page 236 for details.

• The CREATE TABLE and ALTER TABLE statements have a new TBLPROPERTIES clause that lets you associate
arbitrary items of metadata with a particular table as key-value pairs. See CREATE TABLE Statement on page 236
and ALTER TABLE Statement on page 216 for details.

• Delegation support lets you authorize certain OS users associated with applications (for example, hue), to submit
requests using the credentials of other users. Only available in combination with CDH 5. See Configuring Impala
Delegation for Hue and BI Tools on page 112 for details.

• Enhancements to EXPLAIN output. In particular, when you enable the new EXPLAIN_LEVEL query option, the
EXPLAIN and PROFILE statements produce more verbose output showing estimated resource requirements and
whether table and column statistics are available for the applicable tables and columns. See EXPLAIN Statement
on page 261 for details.

New Features in Impala Version 1.1.1

Impala 1.1.1 includes new features for security and stability.

New user-visible features include:

• Additional security feature: auditing. New startup options for impalad let you capture information about Impala
queries that succeed or are blocked due to insufficient privileges. To take full advantage of this feature with
Cloudera Manager, upgrade to Cloudera Manager 4.7 or higher. For details, see Impala Security on page 91.

• Parquet data files generated by Impala 1.1.1 are now compatiblewith the Parquet support in Hive. See Incompatible
Changes and Limitations in Apache Impala on page 626 for the procedure to update older Impala-created Parquet
files to be compatible with the Hive Parquet support.

• Additional improvements to stability and resource utilization for Impala queries.
• Additional enhancements for compatibility with existing file formats.

New Features in Impala Version 1.1

Impala 1.1 includes new features for security, performance, and usability.

New user-visible features include:

• Extensive new security features, built on top of the Sentry open source project. Impala now supports fine-grained
authorization based on roles. A policy file determineswhich privileges onwhich schemaobjects (servers, databases,
tables, and HDFS paths) are available to users based on their membership in groups. By assigning privileges for
views, you can control access to table data at the column level. For details, see Impala Security on page 91.

• Impala 1.1 works with Cloudera Manager 4.6 or higher. To use Cloudera Manager to manage authorization for
the Impala web UI (the web pages served from port 25000 by default), use Cloudera Manager 4.6.2 or higher.

• Impala can now create, alter, drop, and query views. Views provide a flexible way to set up simple aliases for
complex queries; hide query details from applications and users; and simplify maintenance as you rename or
reorganize databases, tables, and columns. See the overview section Overview of Impala Views on page 211 and
the statements CREATE VIEW Statement on page 244, ALTER VIEW Statement on page 225, and DROP VIEW
Statement on page 260.

Apache Impala Guide | 623

Impala Release Notes

• Performance is improved through a number of automatic optimizations. Resource consumption is also reduced
for Impala queries. These improvements apply broadly across all kinds of workloads and file formats. The major
areas of performance enhancement include:

– Improved disk and thread scheduling, which applies to all queries.
– Improved hash join and aggregation performance, which applies to queries with large build tables or a large

number of groups.
– Dictionary encoding with Parquet, which applies to Parquet tables with short string columns.
– Improved performance on systems with SSDs, which applies to all queries and file formats.

• Some new built-in functions are implemented: translate() to substitute characters within strings, user() to check
the login ID of the connected user.

• The new WITH clause for SELECT statements lets you simplify complicated queries in a way similar to creating a
view. The effects of the WITH clause only last for the duration of one query, unlike views, which are persistent
schema objects that can be used by multiple sessions or applications. See WITH Clause on page 301.

• An enhancement to DESCRIBE statement, DESCRIBE FORMATTED table_name, displays more detailed
information about the table. This information includes the file format, location, delimiter, ownership, external or
internal, creation and access times, and partitions. The information is returned as a result set that can be interpreted
and used by a management or monitoring application. See DESCRIBE Statement on page 246.

• You can now insert a subset of columns for a table, with other columns being left as all NULL values. Or you can
specify the columns in any order in the destination table, rather than having tomatch the order of the corresponding
columns in the source. VALUES clause. This feature is known as “column permutation”. See INSERT Statement on
page 264.

• The new LOAD DATA statement lets you load data into a table directly from an HDFS data file. This technique lets
you minimize the number of steps in your ETL process, and provides more flexibility. For example, you can bring
data into an Impala table in one step. Formerly, you might have created an external table where the data files are
not entirely under your control, or copied the data files to Impala data directories manually, or loaded the original
data into one table and then used the INSERT statement to copy it to a new table with a different file format,
partitioning scheme, and so on. See LOAD DATA Statement on page 275.

• Improvements to Impala-HBase integration:

– New query options for HBase performance: HBASE_CACHE_BLOCKS and HBASE_CACHING.
– Support for binary data types in HBase tables. See Supported Data Types for HBase Columns on page 559 for

details.

• You can issue REFRESH as a SQL statement through any of the programming interfaces that Impala supports.
REFRESH formerly had to be issued as a command through the impala-shell interpreter, and was not available
through a JDBC or ODBC API call. As part of this change, the functionality of the REFRESH statement is divided
between two statements. In Impala 1.1, REFRESH requires a table name argument and immediately reloads the
metadata; the new INVALIDATE METADATA statement works the same as the Impala 1.0 REFRESH did: the table
name argument is optional, and the metadata for one or all tables is marked as stale, but not actually reloaded
until the table is queried. When you create a new table in the Hive shell or through a different Impala node, you
must enterINVALIDATE METADATAwith no table parameter before you can see thenew table inimpala-shell.
See REFRESH Statement on page 278 and INVALIDATE METADATA Statement on page 272.

New Features in Impala Version 1.0.1

The primary enhancements in Impala 1.0.1 are internal, for compatibility with the new Cloudera Manager 4.6 release.
Try out the new Impala Query Monitoring feature in Cloudera Manager 4.6, which requires Impala 1.0.1.

New user-visible features include:

• The VALUES clause lets you INSERT one or more rows using literals, function return values, or other expressions.
For performance and scalability, you should still use INSERT ... SELECT for bringing large quantities of data
into an Impala table. The VALUES clause is a convenient way to set up small tables, particularly for initial testing
of SQL features that do not require large amounts of data. See VALUES Clause on page 269 for details.

• The -B and -o options of the impala-shell command can turn query results into delimited text files and store
them in an output file. The plain text results are useful for using with other Hadoop components or Unix tools. In

624 | Apache Impala Guide

Impala Release Notes

benchmark tests, it is also faster to produce plain rather than pretty-printed results, and write to a file rather than
to the screen, giving a more accurate picture of the actual query time.

• Several bug fixes. See Issues Fixed in the 1.0.1 Release on page 680 for details.

New Features in Impala Version 1.0

This version has multiple performance improvements and adds the following functionality:

• Several bug fixes. See Issues Fixed in the 1.0 GA Release on page 682.
• ALTER TABLE statement.
• Hints to allow specifying a particular join strategy.
• REFRESH for a single table.
• Dynamic resource management, allowing high concurrency for Impala queries.

New Features in Version 0.7 of the Impala Beta Release

This version has multiple performance improvements and adds the following functionality:

• Several bug fixes. See Issues Fixed in Version 0.7 of the Beta Release on page 685.
• Support for the Parquet file format. For more information on file formats, see How Impala Works with Hadoop

File Formats on page 528.
• Added support for Avro.
• Support for the memory limits. For more information, see the example on modifying memory limits in Modifying

Impala Startup Options on page 43.
• Bigger and faster joins through the addition of partitioned joins to the already supported broadcast joins.
• Fully distributed aggregations.
• Fully distributed top-n computation.
• Support for creating and altering tables.
• Support for GROUP BY with floats and doubles.

In this version, both CDH4.1 and 4.2 are supported, but due to performance improvements added,wehighly recommend
you use CDH 4.2 or higher to see the full benefit. If you are using Cloudera Manager, version 4.5 is required.

New Features in Version 0.6 of the Impala Beta Release

• Several bug fixes. See Issues Fixed in Version 0.6 of the Beta Release on page 686.
• Added support for Impala on SUSE and Debian/Ubuntu. Impala is now supported on:

– RHEL5.7/6.2 and Centos5.7/6.2
– SUSE 11 with Service Pack 1 or higher
– Ubuntu 10.04/12.04 and Debian 6.03

• Cloudera Manager 4.5 and CDH 4.2 support Impala 0.6.
• Support for the RCFile file format. For more information on file formats, see Understanding File Formats.

New Features in Version 0.5 of the Impala Beta Release

• Several bug fixes. See Issues Fixed in Version 0.5 of the Beta Release on page 687.
• Added support for a JDBC driver that allows you to access Impala from a Java client. To use this feature, follow

the instructions in Configuring Impala to Work with JDBC on page 34 to install the JDBC driver JARs on the client
machine and modify the CLASSPATH on the client to include the JARs.

New Features in Version 0.4 of the Impala Beta Release

• Several bug fixes. See Issues Fixed in Version 0.4 of the Beta Release on page 688.
• Added support for Impala on RHEL5.7/Centos5.7. Impala is now supported on RHEL5.7/6.2 and Centos5.7/6.2.
• Cloudera Manager 4.1.3 supports Impala 0.4.

Apache Impala Guide | 625

Impala Release Notes

• The Impala debug webserver now has the ability to serve static files from ${IMPALA_HOME}/www. This can be
disabled by setting --enable_webserver_doc_root=false on the command line. As a result, Impala now
uses the Twitter Bootstrap library to style its debug webpages, and the /queries page now tracks the last 25
queries run by each Impala daemon.

• Additional metrics available on the Impala Debug Webpage.

New Features in Version 0.3 of the Impala Beta Release

• Several bug fixes. See Issues Fixed in Version 0.3 of the Beta Release on page 688.
• The state-store-service binary has been renamed statestored.
• The location of the Impala configuration files has changed from the /usr/lib/impala/conf directory to the

/etc/impala/conf directory.

New Features in Version 0.2 of the Impala Beta Release

• Several bug fixes. See Issues Fixed in Version 0.2 of the Beta Release on page 689.
• Added Default Query Options Default query options override all default QueryOption values when starting

impalad. The format is:

-default_query_options='key=value;key=value'

Incompatible Changes and Limitations in Apache Impala
The Impala version covered by this documentation library contains the following incompatible changes. These are
things such as file format changes, removed features, or changes to implementation, default configuration, dependencies,
or prerequisites that could cause issues during or after an Impala upgrade.

Even added SQL statements or clauses can produce incompatibilities, if you have databases, tables, or columns whose
names conflict with the new keywords.

Further Information Available in Standalone CDH Release Notes

Note: Starting in April 2016, future release note updates are being consolidated in a single location
to avoid duplication of stale or incomplete information. You can view online the Impala New Features,
Incompatible Changes, Known Issues, and Fixed Issues. You can viewor print all of these by downloading
the latest Impala PDF.

Incompatible Changes Introduced in Impala for CDH 5.6.x / Impala 2.4.x

Other than support for DSSD storage, the Impala feature set for CDH 5.6 is the same as for CDH 5.5. Therefore, there
are no incompatible changes for Impala introduced in CDH 5.6.

Incompatible Changes Introduced in Impala for CDH 5.5.x / Impala 2.3.x

Note: Though Impala can be used together with YARN via simple configuration of Static Service Pools
in Cloudera Manager, the use of the general-purpose component Llama for integrated resource
management within YARN is no longer supported with CDH 5.5 / Impala 2.3 and higher.

• If Impala encounters a Parquet file that is invalid because of an incorrect magic number, the query skips the file.
This change is caused by the fix for issue IMPALA-2130. Previously, Impala would attempt to read the file despite
the possibility that the file was corrupted.

• Previously, calls to overloaded built-in functions could treat parameters as DOUBLE or FLOAT when no overload
had a signature that matched the exact argument types. Now Impala prefers the function signature with DECIMAL

626 | Apache Impala Guide

Impala Release Notes

http://www.cloudera.com/documentation/enterprise/release-notes/topics/impala_new_features.html
http://www.cloudera.com/documentation/enterprise/release-notes/topics/impala_incompatible_changes.html
http://www.cloudera.com/documentation/enterprise/release-notes/topics/impala_known_issues.html
http://www.cloudera.com/documentation/enterprise/release-notes/topics/impala_fixed_issues.html
http://www.cloudera.com/documentation/enterprise/latest/topics/impala.html
https://issues.cloudera.org/browse/IMPALA-2130

parameters in this case. This change avoids a possible loss of precision in function calls such as greatest(0,
99999.8888); now both parameters are treated as DECIMAL rather than DOUBLE, avoiding any loss of precision
in the fractional value. This could cause slightly different results than in previous Impala releases for certain
function calls.

• Formerly, adding or subtracting a large interval value to a TIMESTAMP could produce a nonsensical result. Now
when the result goes outside the range of TIMESTAMP values, Impala returns NULL.

• Formerly, it was possible to accidentally create a tablewith identical row and column delimiters. This could happen
unintentionally, when specifying one of the delimiters and using the default value for the other. Now an attempt
to use identical delimiters still succeeds, but displays a warning message.

• Formerly, Impala could include snippets of table data in log files by default, for examplewhen reporting conversion
errors for data values. Now any such log messages are only produced at higher logging levels that you would
enable only during debugging.

Incompatible Changes Introduced in Impala for CDH 5.4.x (CDH 5.4.1 through CDH 5.4.9)

No incompatible changes. CDH maintenance releases such as 5.4.1, 5.4.2, and so on are exclusively bug fix releases.
See Incompatible Changes Introduced in Impala 2.2.0 / CDH 5.4.0 on page 627 for the most Impala feature release,
which are the releases that typically include incompatible changes.

Note: The Impala 2.2.x maintenance releases now use the CDH 5.4.x numbering system rather than
increasing the Impala version numbers. Impala 2.2 and higher are not available under CDH 4.

Incompatible Changes Introduced in Impala 2.2.0 / CDH 5.4.0

Note: Impala 2.2.0 is available as part of CDH 5.4.0 and is not available for CDH 4. Cloudera does not
intend to release future versions of Impala for CDH 4 outside patch and maintenance releases if
required. Given the end-of-maintenance status for CDH 4, Cloudera recommends all customers to
migrate to a recent CDH 5 release.

Changes to File Handling

Impala queries ignore files with extensions commonly used for temporary work files by Hadoop tools. Any files with
extensions .tmp or .copying are not considered part of the Impala table. The suffix matching is case-insensitive, so
for example Impala ignores both .copying and .COPYING suffixes.

The log rotation feature in Impala 2.2.0 and higher means that older log files are now removed by default. The default
is to preserve the latest 10 log files for each severity level, for each Impala-related daemon. If you have set up your
own log rotation processes that expect older files to be present, either adjust your procedures or change the Impala
-max_log_files setting.

Changes to Prerequisites

The prerequisite for CPU architecture has been relaxed in Impala 2.2.0 and higher. From this release onward, Impala
works on CPUs that have the SSSE3 instruction set. The SSE4 instruction set is no longer required. This relaxed
requirement simplifies the upgrade planning from Impala 1.x releases, which alsoworked on SSSE3-enabled processors.

Incompatible Changes Introduced in Cloudera Impala 2.1.7 / CDH 5.3.9

No incompatible changes.

Note: This Impala maintenance release is only available as part of CDH 5, not under CDH 4.

Apache Impala Guide | 627

Impala Release Notes

Incompatible Changes Introduced in Impala 2.1.6 / CDH 5.3.8

No incompatible changes.

Note: This Impala maintenance release is only available as part of CDH 5, not under CDH 4.

Incompatible Changes Introduced in Impala 2.1.5 / CDH 5.3.6

No incompatible changes.

Note: This Impala maintenance release is only available as part of CDH 5, not under CDH 4.

Incompatible Changes Introduced in Impala 2.1.4 / CDH 5.3.4

No incompatible changes. Because CDH 5.3.5 does not include any code changes for Impala, Impala 2.1.4 is included
with both CDH 5.3.4 and 5.3.5.

Note: This Impala maintenance release is only available as part of CDH 5, not under CDH 4.

Incompatible Changes Introduced in Impala 2.1.3 / CDH 5.3.3

No incompatible changes.

Note: Impala 2.1.3 is available as part of CDH 5.3.3, not under CDH 4.

Incompatible Changes Introduced in Impala 2.1.2 / CDH 5.3.2

No incompatible changes.

Note: Impala 2.1.2 is available as part of CDH 5.3.2, not under CDH 4.

Incompatible Changes Introduced in Impala 2.1.1 / CDH 5.3.1

No incompatible changes.

Incompatible Changes Introduced in Impala 2.1.0 / CDH 5.3.0

Changes to Prerequisites

Currently, Impala 2.1.x does not function on CPUs without the SSE4.1 instruction set. This minimum CPU requirement
is higher than in previous versions, which relied on the older SSSE3 instruction set. Check the CPU level of the hosts in
your cluster before upgrading to Impala 2.1.x or CDH 5.3.x.

Changes to Output Format

The “small query” optimization feature introduces some new information in the EXPLAIN plan, which you might need
to account for if you parse the text of the plan output.

628 | Apache Impala Guide

Impala Release Notes

New Reserved Words

New SQL syntax introduces additional reserved words: FOR, GRANT, REVOKE, ROLE, ROLES, INCREMENTAL.

Incompatible Changes Introduced in Impala 2.0.5 / CDH 5.2.6

No incompatible changes.

Note: Impala 2.0.5 is available as part of CDH 5.2.6, not under CDH 4.

Incompatible Changes Introduced in Impala 2.0.4 / CDH 5.2.5

No incompatible changes.

Note: Impala 2.0.4 is available as part of CDH 5.2.5, not under CDH 4.

Incompatible Changes Introduced in Impala 2.0.3 / CDH 5.2.4

Note: Impala 2.0.3 is available as part of CDH 5.2.4, not under CDH 4.

Incompatible Changes Introduced in Impala 2.0.2 / CDH 5.2.3

No incompatible changes.

Note: Impala 2.0.2 is available as part of CDH 5.2.3, not under CDH 4.

Incompatible Changes Introduced in Impala 2.0.1 / CDH 5.2.1

• The INSERT statement has always left behind a hidden work directory inside the data directory of the table.
Formerly, this hidden work directory was named .impala_insert_staging . In Impala 2.0.1 and later, this
directory name is changed to _impala_insert_staging . (While HDFS tools are expected to treat names
beginning either with underscore and dot as hidden, in practice names beginning with an underscore are more
widely supported.) If you have any scripts, cleanup jobs, and so on that rely on the name of this work directory,
adjust them to use the new name.

• The abs() function now takes a broader range of numeric types as arguments, and the return type is the same
as the argument type.

• Shorthand notation for character classes in regular expressions, such as \d for digit, are now available again in
regular expression operators and functions such as regexp_extract() and regexp_replace(). Some other
differences in regular expression behavior remain between Impala 1.x and Impala 2.x releases. See Incompatible
Changes Introduced in Impala 2.0.0 / CDH 5.2.0 on page 629 for details.

Incompatible Changes Introduced in Impala 2.0.0 / CDH 5.2.0

Changes to Prerequisites

Currently, Impala 2.0.x does not function on CPUs without the SSE4.1 instruction set. This minimum CPU requirement
is higher than in previous versions, which relied on the older SSSE3 instruction set. Check the CPU level of the hosts in
your cluster before upgrading to Impala 2.0.x or CDH 5.2.x.

Apache Impala Guide | 629

Impala Release Notes

Changes to Query Syntax

The new syntax where query hints are allowed in comments causes some changes in the way comments are parsed
in the impala-shell interpreter. Previously, you could end a -- comment line with a semicolon and impala-shell
would treat that as a no-op statement. Now, a comment line ending with a semicolon is passed as an empty statement
to the Impala daemon, where it is flagged as an error.

Impala 2.0 and later uses a different support library for regular expression parsing than in earlier Impala versions. Now,
Impala uses the Google RE2 library rather than Boost for evaluating regular expressions. This implementation change
causes somedifferences in the allowed regular expression syntax, and in theway certain regex operators are interpreted.
The following are some of the major differences (not necessarily a complete list):

• .*? notation for non-greedy matches is now supported, where it was not in earlier Impala releases.

• By default, ^ and $ nowmatch only begin/end of buffer, not begin/end of each line. This behavior can be overridden
in the regex itself using the m flag.

• By default, . does not match newline. This behavior can be overridden in the regex itself using the s flag.

• \Z is not supported.

• < and > for start of word and end of word are not supported.

• Lookahead and lookbehind are not supported.

• Shorthand notation for character classes, such as \d for digit, is not recognized. (This restriction is lifted in Impala
2.0.1, which restores the shorthand notation.)

Changes to Output Format

In Impala 2.0 and later, user() returns the full Kerberos principal string, such as user@example.com, in a Kerberized
environment.

The changed format for the user name in secure environments is also reflected where the user name is displayed in
the output of the PROFILE command.

In the output fromSHOW FUNCTIONS,SHOW AGGREGATE FUNCTIONS, andSHOW ANALYTIC FUNCTIONS, arguments
and return types of arbitrary DECIMAL scale and precision are represented as DECIMAL(*,*). Formerly, these items
were displayed as DECIMAL(-1,-1).

Changes to Query Options

The PARQUET_COMPRESSION_CODEC query option has been replaced by the COMPRESSION_CODEC query option.

Changes to Configuration Options

The meaning of the --idle_query_timeout configuration option is changed, to accommodate the new
QUERY_TIMEOUT_S query option. Rather than setting an absolute timeout period that applies to all queries, it now
sets a maximum timeout period, which can be adjusted downward for individual queries by specifying a value for the
QUERY_TIMEOUT_S query option. In sessions where no QUERY_TIMEOUT_S query option is specified, the
--idle_query_timeout timeout period applies the same as in earlier versions.

The --strict_unicode option of impala-shell was removed. To avoid problems with Unicode values in
impala-shell, define the following locale setting before running impala-shell:

export LC_CTYPE=en_US.UTF-8

New Reserved Words

Some new SQL syntax requires the addition of new reservedwords: ANTI, ANALYTIC, OVER, PRECEDING, UNBOUNDED,
FOLLOWING, CURRENT, ROWS, RANGE, CHAR, VARCHAR.

630 | Apache Impala Guide

Impala Release Notes

https://code.google.com/p/re2/

Changes to Data Files

The default Parquet block size for Impala is changed from 1 GB to 256 MB. This change could have implications for the
sizes of Parquet files produced by INSERT and CREATE TABLE AS SELECT statements.

Although older Impala releases typically produced files that were smaller than the old default size of 1 GB, now the
file size matches more closely whatever value is specified for the PARQUET_FILE_SIZE query option. Thus, if you use
a non-default value for this setting, the output files could be larger than before. They still might be somewhat smaller
than the specified value, because Impala makes conservative estimates about the space needed to represent each
column as it encodes the data.

When you do not specify an explicit value for the PARQUET_FILE_SIZE query option, Impala tries to keep the file size
within the 256 MB default size, but Impala might adjust the file size to be somewhat larger if needed to accommodate
the layout for wide tables, that is, tables with hundreds or thousands of columns.

This change is unlikely to affect memory usage while writing Parquet files, because Impala does not pre-allocate the
memory needed to hold the entire Parquet block.

Incompatible Changes Introduced in Impala 1.4.4 / CDH 5.1.5

No incompatible changes.

Note: Impala 1.4.4 is available as part of CDH 5.1.5, not under CDH 4.

Incompatible Changes Introduced in Impala 1.4.3 / CDH 5.1.4

No incompatible changes. The TLS/SSL security fix does not require any change in the way you interact with Impala.

Note: Impala 1.4.3 is available as part of CDH 5.1.4, and under CDH 4.

Incompatible Changes Introduced in Impala 1.4.2 / CDH 5.1.3

None. Impala 1.4.2 is purely a bug-fix release. It does not include any incompatible changes.

Note: Impala 1.4.2 is only available as part of CDH 5.1.3, not under CDH 4.

Incompatible Changes Introduced in Impala 1.4.1 / CDH 5.1.2

None. Impala 1.4.1 is purely a bug-fix release. It does not include any incompatible changes.

Incompatible Changes Introduced in Impala 1.4.0 / CDH 5.1.0

• There is a slight change to required security privileges in the Sentry framework. To create a new object, now you
need the ALL privilege on the parent object. For example, to create a new table, view, or function requires having
the ALL privilege on the database containing the new object.

• With the ability of ORDER BY queries to process unlimited amounts of data with no LIMIT clause, the query
optionsDEFAULT_ORDER_BY_LIMIT andABORT_ON_DEFAULT_LIMIT_EXCEEDED are nowdeprecated and have
no effect.

• There are some changes to the list of reserved words. The following keywords are new:

– API_VERSION

– BINARY

Apache Impala Guide | 631

Impala Release Notes

– CACHED

– CLASS

– PARTITIONS

– PRODUCED

– UNCACHED

The following were formerly reserved keywords, but are no longer reserved:

– COUNT

– GROUP_CONCAT

– NDV

– SUM

• The fix for issue IMPALA-973 changes the behavior of theINVALIDATE METADATA statement regarding nonexistent
tables. In Impala 1.4.0 and higher, the statement returns an error if the specified table is not in the metastore
database at all. It completes successfully if the specified table is in the metastore database but not yet recognized
by Impala, for example if the table was created through Hive. Formerly, you could issue this statement for a
completely nonexistent table, with no error.

Incompatible Changes Introduced in Impala 1.3.3 / CDH 5.0.5

No incompatible changes. The TLS/SSL security fix does not require any change in the way you interact with Impala.

Note: Impala 1.3.3 is only available as part of CDH 5.0.5, not under CDH 4.

Incompatible Changes Introduced in Impala 1.3.2 / CDH 5.0.4

With the fix for IMPALA-1019, you can use HDFS caching for files that are accessed by Impala.

Note: Impala 1.3.2 is only available as part of CDH 5.0.4, not under CDH 4.

Incompatible Changes Introduced in Impala 1.3.1 / CDH 5.0.3

• In Impala 1.3.1 and higher, the REGEXP and RLIKE operators now match a regular expression string that occurs
anywhere inside the target string, the same as if the regular expression was enclosed on each side by .*. See
REGEXPOperator on page 203 for examples. Previously, these operators only succeededwhen the regular expression
matched the entire target string. This change improves compatibility with the regular expression support for
popular database systems. There is no change to the behavior of theregexp_extract() andregexp_replace()
built-in functions.

• The result set for the SHOW FUNCTIONS statement includes a new first column, with the data type of the return
value.

Incompatible Changes Introduced in Impala 1.3.0 / CDH 5.0.0

• TheEXPLAIN_LEVEL query option nowaccepts numeric options from0 (most concise) to 3 (most verbose), rather
than only 0 or 1. If you formerly used SET EXPLAIN_LEVEL=1 to get detailed explain plans, switch to SET
EXPLAIN_LEVEL=3. If you used the mnemonic keyword (SET EXPLAIN_LEVEL=verbose), you do not need to
change your code because now level 3 corresponds to verbose.

• The keyword DECIMAL is now a reservedword. If you have any databases, tables, columns, or other objects already
named DECIMAL, quote any references to them using backticks (``) to avoid name conflicts with the keyword.

632 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-973

Note: Although the DECIMAL keyword is a reserved word, currently Impala does not support
DECIMAL as a data type for columns.

• The query option named YARN_POOL during the CDH 5 beta period is now named REQUEST_POOL to reflect its
broader use with the Impala admission control feature.

• There are some changes to the list of reserved words.

– The names of aggregate functions are no longer reserved words, so you can have databases, tables, columns,
or other objects named AVG, MIN, and so on without any name conflicts.

– The internal function names DISTINCTPC and DISTINCTPCSA are no longer reserved words, although
DISTINCT is still a reserved word.

– The keywords CLOSE_FN and PREPARE_FN are now reserved words.

• The HDFS property dfs.client.file-block-storage-locations.timeout was renamed to
dfs.client.file-block-storage-locations.timeout.millis, to emphasize that the unit of measure
is milliseconds, not seconds. Impala requires a timeout of at least 10 seconds, making the minimum value for this
setting 10000. On systems not managed by Cloudera Manager, you might need to edit the hdfs-site.xml file
in the Impala configuration directory for the new name and minimum value.

Incompatible Changes Introduced in Impala 1.2.4

There are no incompatible changes introduced in Impala 1.2.4.

Previously, after creating a table in Hive, you had to issue the INVALIDATE METADATA statement with no table name,
a potentially expensive operation on clusters with many databases, tables, and partitions. Starting in Impala 1.2.4, you
can issue the statement INVALIDATE METADATA table_name for a table newly created through Hive. Loading the
metadata for only this one table is faster and involves less network overhead. Therefore, you might revisit your setup
DDL scripts to add the table name to INVALIDATE METADATA statements, in cases where you create and populate
the tables through Hive before querying them through Impala.

Incompatible Changes Introduced in Impala 1.2.3

Because the feature set of Impala 1.2.3 is identical to Impala 1.2.2, there are no new incompatible changes. See
Incompatible Changes Introduced in Impala 1.2.2 on page 633 if you are upgrading from Impala 1.2.1 or 1.1.x.

Incompatible Changes Introduced in Impala 1.2.2

The following changes to SQL syntax and semantics in Impala 1.2.2 could require updates to your SQL code, or schema
objects such as tables or views:

• With the addition of the CROSS JOIN keyword, youmight need to rewrite any queries that refer to a table named
CROSS or use the name CROSS as a table alias:

-- Formerly, 'cross' in this query was an alias for t1
-- and it was a normal join query.
-- In 1.2.2 and higher, CROSS JOIN is a keyword, so 'cross'
-- is not interpreted as a table alias, and the query
-- uses the special CROSS JOIN processing rather than a
-- regular join.
select * from t1 cross join t2...

-- Now if CROSS is used in other context such as a table or column name,
-- use backticks to escape it.
create table `cross` (x int);
select * from `cross`;

Apache Impala Guide | 633

Impala Release Notes

• Formerly, a DROP DATABASE statement in Impalawould not remove the top-level HDFS directory for that database.
The DROP DATABASE has been enhanced to remove that directory. (You still need to drop all the tables inside
the database first; this change only applies to the top-level directory for the entire database.)

• The keyword PARQUET is introduced as a synonym for PARQUETFILE in the CREATE TABLE and ALTER TABLE
statements, because that is the common name for the file format. (As opposed to SequenceFile and RCFile where
the “File” suffix is part of the name.) Documentation examples have been changed to prefer the new shorter
keyword. The PARQUETFILE keyword is still available for backward compatibility with older Impala versions.

• New overloads are available for several operators and built-in functions, allowing you to insert their result values
into smaller numeric columns such as INT, SMALLINT, TINYINT, and FLOAT without using a CAST() call. If you
remove the CAST() calls from INSERT statements, those statements might not work with earlier versions of
Impala.

Because many users are likely to upgrade straight from Impala 1.x to Impala 1.2.2, also read Incompatible Changes
Introduced in Impala 1.2.1 on page 634 for things to note about upgrading to Impala 1.2.x in general.

In a Cloudera Manager environment, the catalog service is not recognized or managed by Cloudera Manager versions
prior to 4.8. Cloudera Manager 4.8 and higher require the catalog service to be present for Impala. Therefore, if you
upgrade to Cloudera Manager 4.8 or higher, you must also upgrade Impala to 1.2.1 or higher. Likewise, if you upgrade
Impala to 1.2.1 or higher, you must also upgrade Cloudera Manager to 4.8 or higher.

Incompatible Changes Introduced in Impala 1.2.1

The following changes to SQL syntax and semantics in Impala 1.2.1 could require updates to your SQL code, or schema
objects such as tables or views:

• In Impala 1.2.1 and higher, all NULL values come at the end of the result set for ORDER BY ... ASC queries, and
at the beginning of the result set for ORDER BY ... DESC queries. In effect, NULL is considered greater than all
other values for sorting purposes. The original Impala behavior always put NULL values at the end, even for ORDER
BY ... DESC queries. The new behavior in Impala 1.2.1 makes Impala more compatible with other popular
database systems. In Impala 1.2.1 and higher, you can override or specify the sorting behavior for NULL by adding
the clause NULLS FIRST or NULLS LAST at the end of the ORDER BY clause.

Impala 1.2.1 goes along with CDH 4.5 and Cloudera Manager 4.8. If you used the beta version Impala 1.2.0 that came
with the beta of CDH 5, Impala 1.2.1 includes all the features of Impala 1.2.0 except for resource management, which
relies on the YARN framework from CDH 5.

The new catalogd servicemight require changes to any user-written scripts that stop, start, or restart Impala services,
install or upgrade Impala packages, or issue REFRESH or INVALIDATE METADATA statements:

• See Installing Impala on page 27, Upgrading Impala on page 38 and Starting Impala on page 42, for usage
information for the catalogd daemon.

• The REFRESH and INVALIDATE METADATA statements are no longer neededwhen the CREATE TABLE, INSERT,
or other table-changing or data-changing operation is performed through Impala. These statements are still needed
if such operations are done through Hive or by manipulating data files directly in HDFS, but in those cases the
statements only need to be issued on one Impala node rather than on all nodes. See REFRESH Statement on page
278 and INVALIDATE METADATA Statement on page 272 for the latest usage information for those statements.

• See The Impala Catalog Service on page 19 for background information on the catalogd service.

In a Cloudera Manager environment, the catalog service is not recognized or managed by Cloudera Manager versions
prior to 4.8. Cloudera Manager 4.8 and higher require the catalog service to be present for Impala. Therefore, if you
upgrade to Cloudera Manager 4.8 or higher, you must also upgrade Impala to 1.2.1 or higher. Likewise, if you upgrade
Impala to 1.2.1 or higher, you must also upgrade Cloudera Manager to 4.8 or higher.

Incompatible Changes Introduced in Impala 1.2.0 (Beta)

There are no incompatible changes to SQL syntax in Impala 1.2.0 (beta).

634 | Apache Impala Guide

Impala Release Notes

Because Impala 1.2.0 is bundled with the CDH 5 beta download and depends on specific levels of Apache Hadoop
components supplied with CDH 5, you can only install it in combination with the CDH 5 beta.

The new catalogd servicemight require changes to any user-written scripts that stop, start, or restart Impala services,
install or upgrade Impala packages, or issue REFRESH or INVALIDATE METADATA statements:

• See Installing Impala on page 27, Upgrading Impala on page 38 and Starting Impala on page 42, for usage
information for the catalogd daemon.

• The REFRESH and INVALIDATE METADATA statements are no longer neededwhen the CREATE TABLE, INSERT,
or other table-changing or data-changing operation is performed through Impala. These statements are still needed
if such operations are done through Hive or by manipulating data files directly in HDFS, but in those cases the
statements only need to be issued on one Impala node rather than on all nodes. See REFRESH Statement on page
278 and INVALIDATE METADATA Statement on page 272 for the latest usage information for those statements.

• See The Impala Catalog Service on page 19 for background information on the catalogd service.

The new resource management feature interacts with both YARN and Llama services, which are available in CDH 5.
These services are set up for you automatically in a ClouderaManager (CM) environment. For information about setting
up the YARN and Llama services, see the instructions for YARN and Llama in the CDH 5 Documentation.

Incompatible Changes Introduced in Impala 1.1.1

There are no incompatible changes in Impala 1.1.1.

Previously, it was not possible to create Parquet data through Impala and reuse that tablewithin Hive. Now that Parquet
support is available for Hive 10, reusing existing Impala Parquet data files in Hive requires updating the tablemetadata.
Use the following command if you are already running Impala 1.1.1:

ALTER TABLE table_name SET FILEFORMAT PARQUETFILE;

If you are running a level of Impala that is older than 1.1.1, do the metadata update through Hive:

ALTER TABLE table_name SET SERDE 'parquet.hive.serde.ParquetHiveSerDe';
ALTER TABLE table_name SET FILEFORMAT
 INPUTFORMAT "parquet.hive.DeprecatedParquetInputFormat"
 OUTPUTFORMAT "parquet.hive.DeprecatedParquetOutputFormat";

Impala 1.1.1 and higher can reuse Parquet data files created by Hive, without any action required.

As usual, make sure to upgrade the Impala LZO support package to the latest level at the same time as you upgrade
the Impala server.

Incompatible Change Introduced in Impala 1.1

• The REFRESH statement now requires a table name; in Impala 1.0, the table namewas optional. This syntax change
is part of the internal rework to make REFRESH a true Impala SQL statement so that it can be called through the
JDBC and ODBC APIs. REFRESH now reloads themetadata immediately, rather thanmarking it for update the next
time any affected table is accessed. The previous behavior, where omitting the table name caused a refresh of
the entire Impalametadata catalog, is available through the newINVALIDATE METADATA statement.INVALIDATE
METADATA can be specified with a table name to affect a single table, or without a table name to affect the entire
metadata catalog; the relevant metadata is reloaded the next time it is requested during the processing for a SQL
statement. See REFRESH Statement on page 278 and INVALIDATEMETADATA Statement on page 272 for the latest
details about these statements.

Incompatible Changes Introduced in Impala 1.0

• If you use LZO-compressed text files, when you upgrade Impala to version 1.0, also update the impala-lzo-cdh4
to the latest level. See Using LZO-Compressed Text Files on page 532 for details.

Apache Impala Guide | 635

Impala Release Notes

http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_yarn_cluster_deploy.html
http://www.cloudera.com/documentation/enterprise/latest/topics/admin_llama.html

• Cloudera Manager 4.5.2 and higher only supports Impala 1.0 and higher, and vice versa. If you upgrade to Impala
1.0 or higher managed by ClouderaManager, youmust also upgrade ClouderaManager to version 4.5.2 or higher.
If you upgrade from an earlier version of ClouderaManager, andwere using Impala, youmust also upgrade Impala
to version 1.0 or higher. The beta versions of Impala are no longer supported as of the release of Impala 1.0.

Incompatible Change Introduced in Version 0.7 of the Cloudera Impala Beta Release

• The defaults for the -nn and -nn_port flags have changed and are now read from core-site.xml. Impala
prints the values of -nn and -nn_port to the log when it starts. The ability to set -nn and -nn_port on the
command line is deprecated in 0.7 and may be removed in Impala 0.8.

Incompatible Change Introduced in Version 0.6 of the Cloudera Impala Beta Release

• Cloudera Manager 4.5 supports only version 0.6 of the Cloudera Impala Beta Release. It does not support the
earlier beta versions. If you upgrade your Cloudera Manager installation, you must also upgrade Impala to beta
version 0.6. If you upgrade Impala to beta version 0.6, you must upgrade Cloudera Manager to 4.5.

Incompatible Change Introduced in Version 0.4 of the Cloudera Impala Beta Release

• Cloudera Manager 4.1.3 supports only version 0.4 of the Cloudera Impala Beta Release. It does not support the
earlier beta versions. If you upgrade your Cloudera Manager installation, you must also upgrade Impala to beta
version 0.4. If you upgrade Impala to beta version 0.4, you must upgrade Cloudera Manager to 4.1.3.

Incompatible Change Introduced in Version 0.3 of the Cloudera Impala Beta Release

• Cloudera Manager 4.1.2 supports only version 0.3 of the Cloudera Impala Beta Release. It does not support the
earlier beta versions. If you upgrade your Cloudera Manager installation, you must also upgrade Impala to beta
version 0.3. If you upgrade Impala to beta version 0.3, you must upgrade Cloudera Manager to 4.1.2.

Known Issues and Workarounds in Impala
The following sections describe known issues and workarounds in Impala, as of the current production release (Impala
2.4.x / CDH 5.6.x). This page summarizes the most serious or frequently encountered issues in the current release, to
help you make planning decisions about installing and upgrading. Any workarounds are listed here. The bug links take
you to the Impala issues site, where you can see the diagnosis and whether a fix is in the pipeline.

Note: The online issue tracking system for Impala contains comprehensive information and is updated
in real time. To verify whether an issue you are experiencing has already been reported, or which
release an issue is fixed in, search on the issues.cloudera.org JIRA tracker.

For issues fixed in various Impala releases, see Fixed Issues in Apache Impala on page 644.

Further Information Available in Standalone CDH Release Notes

Note: Starting in April 2016, future release note updates are being consolidated in a single location
to avoid duplication of stale or incomplete information. You can view online the Impala New Features,
Incompatible Changes, Known Issues, and Fixed Issues. You can viewor print all of these by downloading
the latest Impala PDF.

Impala Known Issues: Crashes and Hangs

These issues can cause Impala to quit or become unresponsive.

636 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/
http://www.cloudera.com/documentation/enterprise/release-notes/topics/impala_new_features.html
http://www.cloudera.com/documentation/enterprise/release-notes/topics/impala_incompatible_changes.html
http://www.cloudera.com/documentation/enterprise/release-notes/topics/impala_known_issues.html
http://www.cloudera.com/documentation/enterprise/release-notes/topics/impala_fixed_issues.html
http://www.cloudera.com/documentation/enterprise/latest/topics/impala.html

Impalad is crashing if udf jar is not available in hdfs location for first time

If the JAR file corresponding to a Java UDF is removed from HDFS after the Impala CREATE FUNCTION statement is
issued, the impalad daemon crashes.

Bug: IMPALA-2365

Severity: High

Impala Known Issues: Performance

These issues involve the performance of operations such as queries or DDL statements.

Slow DDL statements for tables with large number of partitions

DDL statements for tables with a large number of partitions might be slow.

Bug: https://issues.cloudera.org/browse/IMPALA-1480IMPALA-1480

Severity: High

Workaround: Run the DDL statement in Hive if the slowness is an issue.

Impala Known Issues: Usability

These issues affect the convenience of interacting directly with Impala, typically through the Impala shell or Hue.

Less than 100% progress on completed simple SELECT queries

Simple SELECT queries show less than 100% progress even though they are already completed.

Bug: IMPALA-1776

Severity: Low

Impala Known Issues: JDBC and ODBC Drivers

These issues affect applications that use the JDBC or ODBC APIs, such as business intelligence tools or custom-written
applications in languages such as Java or C++.

ImpalaODBC: Can not get the value in the SQLGetData(m-x th column) after the SQLBindCol(m th column)

If the ODBC SQLGetData is called on a series of columns, the function calls must follow the same order as the columns.
For example, if data is fetched from column 2 then column 1, the SQLGetData call for column 1 returns NULL.

Bug: IMPALA-1792

Severity: High

Workaround: Fetch columns in the same order they are defined in the table.

Impala Known Issues: Security

These issues relate to security features, such as Kerberos authentication, Sentry authorization, encryption, auditing,
and redaction.

impala-shell requires Python with ssl module

On CentOS 5.10 andOracle Linux 5.11 using the built-in Python 2.4, invoking the impala-shellwith the --ssl option
might fail with the following error:

Unable to import the python 'ssl' module. It is required for an SSL-secured connection.

Severity: Low, workaround available

Apache Impala Guide | 637

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-2365
https://issues.cloudera.org/browse/IMPALA-1480
https://issues.cloudera.org/browse/IMPALA-1776
https://issues.cloudera.org/browse/IMPALA-1792

Resolution: Customers are less likely to experience this issue over time, because sslmodule is included in newer
Python releases packaged with recent Linux releases.

Workaround: To use SSL with impala-shell on these platform versions, install the ssh Python module:

yum install python-ssl

Then impala-shell can run when using SSL. For example:

impala-shell -s impala --ssl --ca_cert /path_to_truststore/truststore.pem

Kerberos tickets must be renewable

In a Kerberos environment, the impalad daemon might not start if Kerberos tickets are not renewable.

Workaround: Configure your KDC to allow tickets to be renewed, and configure krb5.conf to request renewable
tickets.

Server-to-server SSL and Kerberos do not work together

If SSL is enabled between internal Impala components (with ssl_client_ca_certificate), and Kerberos
authentication is used between servers, the cluster fails to start.

Bug: IMPALA-2598

Severity:Medium; the ssl_client_ca_certificate setting is a new feature, so the issue does not affect existing
cluster configurations

Workaround: Do not use the new ssl_client_ca_certificate setting on Kerberos-enabled clusters until this
issue is resolved.

Impala Known Issues: Supportability

These issues affect the ability to debug and troubleshoot Impala, such as incorrect output in query profiles or the query
state shown in monitoring applications.

Impala Known Issues: Resources

These issues involvememory or disk usage, including out-of-memory conditions, the spill-to-disk feature, and resource
management features.

Process mem limit does not account for the JVM's memory usage

Somememory allocated by the JVMused internally by Impala is not counted against thememory limit for the impalad
daemon.

Bug: IMPALA-691

Severity: High

Workaround: To monitor overall memory usage, use the top command, or add the memory figures in the Impala web
UI /memz tab to JVM memory usage shown on the /metrics tab.

Fix issues with the legacy join and agg nodes using --enable_partitioned_hash_join=false and
--enable_partitioned_aggregation=false

Bug: IMPALA-2375

Severity: High

Workaround: Transition away from the “old-style” join and aggregation mechanism if practical.

638 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-2598
https://issues.cloudera.org/browse/IMPALA-691
https://issues.cloudera.org/browse/IMPALA-2375

Impala Known Issues: Correctness

These issues can cause incorrect or unexpected results from queries. They typically only arise in very specific
circumstances.

parse_url() returns incorrect result if @ character in URL

If a URL contains an @ character, the parse_url() function could return an incorrect value for the hostname field.

Bug: https://issues.cloudera.org/browse/IMPALA-1170IMPALA-1170

Severity: High

% escaping does not work correctly when occurs at the end in a LIKE clause

If the final character in the RHS argument of a LIKE operator is an escaped \% character, it does not match a % final
character of the LHS argument.

Bug: IMPALA-2422

Severity: High

ORDER BY rand() does not work.

Because the value for rand() is computed early in a query, using an ORDER BY expression involving a call to rand()
does not actually randomize the results.

Bug: IMPALA-397

Severity: High

Duplicated column in inline view causes dropping null slots during scan

If the same column is queried twice within a view, NULL values for that column are omitted. For example, the result
of COUNT(*) on the view could be less than expected.

Bug: IMPALA-2643

Severity: High

Workaround: Avoid selecting the same column twice within an inline view.

Incorrect assignment of predicates through an outer join in an inline view.

A query involving an OUTER JOIN clause where one of the table references is an inline view might apply predicates
from the ON clause incorrectly.

Bug: IMPALA-1459

Severity: High

Crash: impala::Coordinator::ValidateCollectionSlots

A query could encounter a serious error if includesmultiple nested levels of INNER JOIN clauses involving subqueries.

Bug: IMPALA-2603

Severity: High

Incorrect assignment of On-clause predicate inside inline view with an outer join.

A query might return incorrect results due to wrong predicate assignment in the following scenario:

1. There is an inline view that contains an outer join
2. That inline view is joined with another table in the enclosing query block
3. That join has an On-clause containing a predicate that only references columns originating from the outer-joined

tables inside the inline view

Apache Impala Guide | 639

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-1170
https://issues.cloudera.org/browse/IMPALA-2422
https://issues.cloudera.org/browse/IMPALA-397
https://issues.cloudera.org/browse/IMPALA-2643
https://issues.cloudera.org/browse/IMPALA-1459
https://issues.cloudera.org/browse/IMPALA-2603

Bug: IMPALA-2665

Severity: High

Wrong assignment of having clause predicate across outer join

In an OUTER JOIN querywith a HAVING clause, the comparison from the HAVING clausemight be applied at thewrong
stage of query processing, leading to incorrect results.

Bug: IMPALA-2144

Severity: High

Wrong plan of NOT IN aggregate subquery when a constant is used in subquery predicate

A NOT IN operator with a subquery that calls an aggregate function, such as NOT IN (SELECT SUM(...)), could
return incorrect results.

Bug: IMPALA-2093

Severity: High

Impala Known Issues: Metadata

These issues affect how Impala interacts withmetadata. They cover areas such as themetastore database, the COMPUTE
STATS statement, and the Impala catalogd daemon.

CatalogServer should not require HBase to be up to reload its metadata

If HBase is unavailable during Impala startup or after an INVALIDATE METADATA statement, the catalogd daemon
could go into an error loop, making Impala unresponsive.

Bug: IMPALA-788

Severity: High

Workaround: For systems not managed by Cloudera Manager, add the following settings to
/etc/impala/conf/hbase-site.xml:

<property>
 <name>hbase.client.retries.number</name>
 <value>3</value>
</property>
<property>
 <name>hbase.rpc.timeout</name>
 <value>3000</value>
</property>

Currently, Cloudera Manager does not have an Impala-only override for HBase settings, so any HBase configuration
change you make through Cloudera Manager would take affect for all HBase applications. Therefore, this change is
not recommended on systems managed by Cloudera Manager.

Can't update stats manually via alter table after upgrading to CDH 5.2

Bug: IMPALA-1420

Severity: High

Workaround: On CDH 5.2, when adjusting table statistics manually by setting the numRows, you must also enable the
Boolean property STATS_GENERATED_VIA_STATS_TASK. For example, use a statement like the following to set both
properties with a single ALTER TABLE statement:

ALTER TABLE table_name SET TBLPROPERTIES('numRows'='new_value',
'STATS_GENERATED_VIA_STATS_TASK' = 'true');

640 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-2665
https://issues.cloudera.org/browse/IMPALA-2144
https://issues.cloudera.org/browse/IMPALA-2093
https://issues.cloudera.org/browse/IMPALA-788
https://issues.cloudera.org/browse/IMPALA-1420

Resolution: The underlying cause is the issue HIVE-8648 that affects the metastore in Hive 0.13. The workaround is
only needed until the fix for this issue is incorporated into a CDH release.

Impala Known Issues: Interoperability

These issues affect the ability to interchange data between Impala and other database systems. They cover areas such
as data types and file formats.

If Hue and Impala are installed on the same host, and if you configure Hue Beeswax in CDH 4.1 to execute Impala
queries, Beeswax cannot list Hive tables and shows an error on Beeswax startup.

Hue requires Beeswaxd to be running in order to list the Hive tables. Because of a port conflict bug in Hue in CDH4.1,
whenHue and Impala are installed on the same host, an error page is displayedwhen you start the Beeswax application,
and when you open the Tables page in Beeswax.

Severity: High

Anticipated Resolution: Fixed in an upcoming CDH4 release

Workarounds: Choose one of the following workarounds (but only one):

• Install Hue and Impala on different hosts. OR
• Upgrade to CDH4.1.2 and add the following property in the beeswax section of the /etc/hue/hue.ini

configuration file:

beeswax_meta_server_only=9004

OR

• If you are using CDH4.1.1 and you want to install Hue and Impala on the same host, change the code in this file:

/usr/share/hue/apps/beeswax/src/beeswax/management/commands/beeswax_server.py

Replace line 66:

str(beeswax.conf.BEESWAX_SERVER_PORT.get()),

With this line:

'8004',

Beeswaxd will then use port 8004.

Note:

If you used Cloudera Manager to install Impala, refer to the Cloudera Manager release notes for
information about using an equivalent workaround by specifying the
beeswax_meta_server_only=9004 configuration value in the options field for Hue. In Cloudera
Manager 4, these fields are labelled Safety Valve; in ClouderaManager 5, they are calledAdvanced
Configuration Snippet.

Deviation from Hive behavior: Impala does not do implicit casts between string and numeric and boolean types.

Severity: Low

Anticipated Resolution: None

Workaround: Use explicit casts.

Apache Impala Guide | 641

Impala Release Notes

https://issues.apache.org/jira/browse/HIVE-8648

Deviation from Hive behavior: Out of range values float/double values are returned as maximum allowed value of type
(Hive returns NULL)

Impala behavior differs from Hive with respect to out of range float/double values. Out of range values are returned
as maximum allowed value of type (Hive returns NULL).

Severity: Low

Workaround: None

Configuration needed for Flume to be compatible with Impala

For compatibility with Impala, the value for the Flume HDFS Sink hdfs.writeFormatmust be set to Text, rather
than its default value of Writable. The hdfs.writeFormat setting must be changed to Text before creating data
files with Flume; otherwise, those files cannot be read by either Impala or Hive.

Severity: High

Resolution: This information has been requested to be added to the upstream Flume documentation.

Avro Scanner fails to parse some schemas

The default value in Avro schema must match the first union type. For example, if the default value is null, then the
first type in the UNIONmust be "null".

Bug: IMPALA-635

Workaround: Swap the order of the fields in the schema specification. For example, use ["null", "string"] instead
of ["string", "null"]. Note that the files written with the problematic schema must be rewritten with the new
schema because Avro files have embedded schemas.

Impala BE cannot parse Avro schema that contains a trailing semi-colon

If an Avro table has a schema definitionwith a trailing semicolon, Impala encounters an error when the table is queried.

Bug: IMPALA-1024

Severity: High

Severity: Remove trailing semicolon from the Avro schema.

Fix decompressor to allow parsing gzips with multiple streams

Currently, Impala can only read gzipped files containing a single stream. If a gzipped file containsmultiple concatenated
streams, the Impala query only processes the data from the first stream.

Bug: IMPALA-2154

Severity: High

Workaround: Use a different gzip tool to compress file to a single stream file.

Impala incorrectly handles text data when the new line character \n\r is split between different HDFS block

If a carriage return / newline pair of characters in a text table is split between HDFS data blocks, Impala incorrectly
processes the row following the \n\r pair twice.

Bug: IMPALA-1578

Severity: High

Workaround: Use the Parquet format for large volumes of data where practical.

Invalid bool value not reported as a scanner error

In some cases, an invalid BOOLEAN value read from a table does not produce a warning message about the bad value.
The result is still NULL as expected. Therefore, this is not a query correctness issue, but it could lead to overlooking
the presence of invalid data.

642 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-1024
https://issues.cloudera.org/browse/IMPALA-2154
https://issues.cloudera.org/browse/IMPALA-1578

Bug: IMPALA-1862

Severity: High

Incorrect results with basic predicate on CHAR typed column.

When comparing a CHAR column value to a string literal, the literal value is not blank-padded and so the comparison
might fail when it should match.

Bug: IMPALA-1652

Severity: High

Workaround: Use the RPAD() function to blank-pad literals compared with CHAR columns to the expected length.

Impala Known Issues: Limitations

These issues are current limitations of Impala that require evaluation as you plan how to integrate Impala into your
data management workflow.

Impala does not support running on clusters with federated namespaces

Impala does not support running on clusters with federated namespaces. The impalad process will not start on a
node running such a filesystem based on the org.apache.hadoop.fs.viewfs.ViewFs class.

Bug: IMPALA-77

Anticipated Resolution: Limitation

Workaround: Use standard HDFS on all Impala nodes.

Impala Known Issues: Miscellaneous / Older Issues

These issues do not fall into one of the above categories or have not been categorized yet.

A failed CTAS does not drop the table if the insert fails.

If a CREATE TABLE AS SELECT operation successfully creates the target table but an error occurs while querying
the source table or copying the data, the new table is left behind rather than being dropped.

Bug: IMPALA-2005

Severity: High

Workaround: Drop the new table manually after a failed CREATE TABLE AS SELECT.

Casting scenarios with invalid/inconsistent results

Using a CAST() function to convert large literal values to smaller types, or to convert special values such as NaN or
Inf, produces values not consistent with other database systems. This could lead to unexpected results from queries.

Bug: IMPALA-1821

Severity: High

Queries may hang on server-to-server exchange errors

The DataStreamSender::Channel::CloseInternal() does not close the channel on an error. This causes the
node on the other side of the channel to wait indefinitely, causing a hang.

Bug: IMPALA-2592

Severity: Low. This issue does not occur frequently.

Workaround: None.

Apache Impala Guide | 643

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-1862
https://issues.cloudera.org/browse/IMPALA-1652
https://issues.cloudera.org/browse/IMPALA-77
https://issues.cloudera.org/browse/IMPALA-2005
https://issues.cloudera.org/browse/IMPALA-1821
https://issues.cloudera.org/browse/IMPALA-2592

Catalogd may crash when loading metadata for tables with many partitions, many columns and with incremental stats

Incremental stats use up about 400 bytes per partition for each column. For example, for a table with 20K partitions
and 100 columns, thememory overhead from incremental statistics is about 800MB.When serialized for transmission
across the network, this metadata exceeds the 2 GB Java array size limit and leads to a catalogd crash.

Bugs: IMPALA-2647, IMPALA-2648, IMPALA-2649

Severity: Low. This does not occur frequently.

Workaround: If feasible, compute full stats periodically and avoid computing incremental stats for that table. The
scalability of incremental stats computation is a continuing work item.

Support individual memory allocations larger than 1 GB

The largest single block of memory that Impala can allocate during a query is 1 GiB. Therefore, a query could fail or
Impala could crash if a compressed text file resulted in more than 1 GiB of data in uncompressed form, or if a string
function such as group_concat() returned a value greater than 1 GiB.

Bug: IMPALA-1619

Severity: High

Impala Parser issue when using fully qualified table names that start with a number.

A fully qualified table name starting with a number could cause a parsing error. In a name such as db.571_market,
the decimal point followed by digits is interpreted as a floating-point number.

Bug: IMPALA-941

Severity: Low

Workaround: Surround each part of the fully qualified name with backticks (``).

Impala should tolerate bad locale settings

If the LC_* environment variables specify an unsupported locale, Impala does not start.

Bug: IMPALA-532

Severity: Low

Workaround: Add LC_ALL="C" to the environment settings for both the Impala daemon and the Statestore daemon.
See Modifying Impala Startup Options on page 43 for details about modifying these environment settings.

Resolution: Fixing this issue would require an upgrade to Boost 1.47 in the Impala distribution.

Log Level 3 Not Recommended for Impala

The extensive logging produced by log level 3 can cause serious performance overhead and capacity issues.

Severity: Low

Workaround: Reduce the log level to its default value of 1, that is, GLOG_v=1. See Setting Logging Levels on page 577
for details about the effects of setting different logging levels.

Fixed Issues in Apache Impala
The following sections describe the major issues fixed in each Impala release.

For known issues that are currently unresolved, see Known Issues and Workarounds in Impala on page 636.

644 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-2647
https://issues.cloudera.org/browse/IMPALA-2648
https://issues.cloudera.org/browse/IMPALA-2649
https://issues.cloudera.org/browse/IMPALA-1619
https://issues.cloudera.org/browse/IMPALA-941
https://issues.cloudera.org/browse/IMPALA-532

Further Information Available in Standalone CDH Release Notes

Note: Starting in April 2016, future release note updates are being consolidated in a single location
to avoid duplication of stale or incomplete information. You can view online the Impala New Features,
Incompatible Changes, Known Issues, and Fixed Issues. You can viewor print all of these by downloading
the latest Impala PDF.

Issues Fixed in Impala for CDH 5.6.0

The set of fixes for Impala in CDH 5.6.0 is the same as in CDH 5.5.2. See Issues Fixed in Impala for CDH 5.5.2 on page
645 for details.

Issues Fixed in Impala for CDH 5.5.2

This section lists the most serious or frequently encountered customer issues fixed in CDH 5.5.2 / Impala 2.3.2. For the
full list of fixed Impala issues, see the CDH 5.5.x release notes.

SEGV in AnalyticEvalNode touching NULL input_stream_

A query involving an analytic function could encounter a serious error. This issue was encountered infrequently,
depending upon specific combinations of queries and data.

Bug: IMPALA-2829

Severity: High

Free local allocations per row batch in non-partitioned AGG and HJ

An outer join query could fail unexpectedly with an out-of-memory error when the “spill to disk” mechanism was
turned off.

Bug: IMPALA-2722

Severity: High

Free local allocations once for every row batch when building hash tables

A join query could encounter a serious error due to an internal failure to allocate memory, which resulted in
dereferencing a NULL pointer.

Bug: IMPALA-2612

Severity: High

Prevent migrating incorrectly inferred identity predicates into inline views

Referring to the same column twice in a viewdefinition could cause the view to omit rowswhere that column contained
a NULL value. This could cause incorrect results due to an inaccurate COUNT(*) value or rows missing from the result
set.

Bug: IMPALA-2643

Severity: High

Fix GRANTs on URIs with uppercase letters

A GRANT statement for a URI could be ineffective if the URI contained uppercase letters, for example in an uppercase
directory name. Subsequent statements, such as CREATE EXTERNAL TABLE with a LOCATION clause, could fail with
an authorization exception.

Bug: IMPALA-2695

Severity: High

Apache Impala Guide | 645

Impala Release Notes

http://www.cloudera.com/documentation/enterprise/release-notes/topics/impala_new_features.html
http://www.cloudera.com/documentation/enterprise/release-notes/topics/impala_incompatible_changes.html
http://www.cloudera.com/documentation/enterprise/release-notes/topics/impala_known_issues.html
http://www.cloudera.com/documentation/enterprise/release-notes/topics/impala_fixed_issues.html
http://www.cloudera.com/documentation/enterprise/latest/topics/impala.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_rn_fixed_in_552.html
https://issues.cloudera.org/browse/IMPALA-2829
https://issues.cloudera.org/browse/IMPALA-2722
https://issues.cloudera.org/browse/IMPALA-2612
https://issues.cloudera.org/browse/IMPALA-2643
https://issues.cloudera.org/browse/IMPALA-2695

Avoid sending large partition stats objects over thrift

The catalogd daemon could encounter a serious error when loading the incremental statistics metadata for tables
with large numbers of partitions and columns. The problem occurred when the internal representation of metadata
for the table exceeded 2 GB, for example in a table with 20K partitions and 77 columns. The fix causes a COMPUTE
INCREMENTAL STATS operation to fail if it would produce metadata that exceeded the maximum size.

Bug: IMPALA-2664, IMPALA-2648

Severity: High

Throw AnalysisError if table properties are too large (for the Hive metastore)

CREATE TABLE or ALTER TABLE statements could fail with metastore database errors due to length limits on the
SERDEPROPERTIES and TBLPROPERTIES clauses. (The limit on key size is 256, while the limit on value size is 4000.)
The fix makes Impala handle these error conditions more cleanly, by detecting too-long values rather than passing
them to the metastore database.

Bug: IMPALA-2226

Severity: High

Make MAX_PAGE_HEADER_SIZE configurable

Impala could fail to access Parquet data files with page headers larger than 8 MB, which could occur, for example, if
the minimum or maximum values for a column were long strings. The fix adds a configuration setting
--max_page_header_size, which you can use to increase the Impala size limit to a value higher than 8 MB.

Bug: IMPALA-2273

Severity: High

reduce scanner memory usage

Queries on Parquet tables could consume excessive memory (potentially multiple gigabytes) due to producing large
intermediate data values while evaluating groups of rows. The workaround was to reduce the size of the
NUM_SCANNER_THREADS query option, the BATCH_SIZE query option, or both.

Bug: IMPALA-2473

Severity: High

Handle error when distinct and aggregates are used with a having clause

A query that included a DISTINCT operator and a HAVING clause, but no aggregate functions or GROUP BY, would
fail with an uninformative error message.

Bug: IMPALA-2113

Severity: High

Handle error when star based select item and aggregate are incorrectly used

A query that included * in the SELECT list, in addition to an aggregate function call, would fail with an uninformative
message if the query had no GROUP BY clause.

Bug: IMPALA-2225

Severity: High

Refactor MemPool usage in HBase scan node

Queries involving HBase tables used substantially more memory than in earlier Impala versions. The problem occurred
starting in Impala 2.2.8, as a result of the changes for IMPALA-2284. The fix for this issue involves removing a separate
memory work area for HBase queries and reusing other memory that was already allocated.

Bug: IMPALA-2731

646 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-2664
https://issues.cloudera.org/browse/IMPALA-2648
https://issues.cloudera.org/browse/IMPALA-2226
https://issues.cloudera.org/browse/IMPALA-2273
https://issues.cloudera.org/browse/IMPALA-2473
https://issues.cloudera.org/browse/IMPALA-2113
https://issues.cloudera.org/browse/IMPALA-2225
https://issues.cloudera.org/browse/IMPALA-2731

Severity: High

Fix migration/assignment of On-clause predicates inside inline views

Some combinations of ON clauses in join queries could result in comparisons being applied at the wrong stage of query
processing, leading to incorrect results. Wrong predicate assignment could happen under the following conditions:

• The query includes an inline view that contains an outer join.
• That inline view is joined with another table in the enclosing query block.
• That join has an ON clause containing a predicate that only references columns originating from the outer-joined

tables inside the inline view.

Bug: IMPALA-1459

Severity: High

DCHECK in parquet scanner after block read error

A debug build of Impala could encounter a serious error after encountering some kinds of I/O errors for Parquet files.
This issue only occurred in debug builds, not release builds.

Bug: IMPALA-2558

Severity: High

PAGG hits mem_limit when switching to I/O buffers

A join query could fail with an out-of-memory error despite the apparent presence of sufficient memory. The cause
was the internal ordering of operations that could cause a later phase of the query to allocate memory required by an
earlier phase of the query. The workaround was to either increase or decrease the MEM_LIMIT query option, because
the issue would only occur for a specific combination of memory limit and data volume.

Bug: IMPALA-2535

Severity: High

Fix check failed: sorter_runs_.back()->is_pinned_

A query could fail with an internal errorwhile calculating thememory limit. This was an infrequent condition uncovered
during stress testing.

Bug: IMPALA-2559

Severity: High

Don't ignore Status returned by DataStreamRecvr::CreateMerger()

A query could fail with an internal errorwhile calculating thememory limit. This was an infrequent condition uncovered
during stress testing.

Bug: IMPALA-2614, IMPALA-2559

Severity: High

DataStreamSender::Send() does not return an error status if SendBatch() failed

Bug: IMPALA-2591

Severity: High

Re-enable SSL and Kerberos on server-server

These fixes lift the restriction on using SSL encryption and Kerberos authentication together for internal communication
between Impala components.

Bug: IMPALA-2598, IMPALA-2747

Apache Impala Guide | 647

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-1459
https://issues.cloudera.org/browse/IMPALA-2558
https://issues.cloudera.org/browse/IMPALA-2535
https://issues.cloudera.org/browse/IMPALA-2559
https://issues.cloudera.org/browse/IMPALA-2614
https://issues.cloudera.org/browse/IMPALA-2559
https://issues.cloudera.org/browse/IMPALA-2591
https://issues.cloudera.org/browse/IMPALA-2598
https://issues.cloudera.org/browse/IMPALA-2747

Severity: High

Issues Fixed in Impala for CDH 5.5.1

The version of Impala that is included with CDH 5.5.1 is identical to the Impala for CDH 5.5.0. There are no new bug
fixes, new features, or incompatible changes.

Issues Fixed in Impala for CDH 5.5.0

This section lists the most serious or frequently encountered customer issues fixed in CDH 5.5.0 / Impala 2.3.0. Any
issues already fixed in CDH 5.4 maintenance releases (up through CDH 5.4.8) are also included. Those issues are listed
under the respective CDH 5.4 sections and are not repeated here. For the full list of fixed Impala issues, see the CDH
5.5.x release notes.

Fixes for Serious Errors

A number of issues were resolved that could result in serious errors when encountered. Themost critical or commonly
encountered are listed here.

Bugs: IMPALA-2168, IMPALA-2378, IMPALA-2369, IMPALA-2357, IMPALA-2319, IMPALA-2314, IMPALA-2016

Severity: High

Fixes for Correctness Errors

A number of issues were resolved that could result in wrong results when encountered. The most critical or commonly
encountered are listed here.

Bugs: IMPALA-2192, IMPALA-2440, IMPALA-2090, IMPALA-2086, IMPALA-1947, IMPALA-1917

Severity: High

Issues Fixed in Impala for CDH 5.4.9

This section lists the most frequently encountered customer issues fixed in Impala for CDH 5.4.9.

Note: The Impala 2.2.x maintenance releases now use the CDH 5.4.x numbering system rather than
increasing the Impala version numbers. Impala 2.2 and higher are not available under CDH 4.

For the full list of fixed issues, see the CDH 5.4.x release notes.

Query return empty result if it contains NullLiteral in inlineview

If an inline view in a FROM clause contained a NULL literal, the result set was empty.

Bug: IMPALA-1917

Severity: High

HBase scan node uses 2-4x memory after upgrade to Impala 2.2.8

Queries involving HBase tables used substantially more memory than in earlier Impala versions. The problem occurred
starting in Impala 2.2.8, as a result of the changes for IMPALA-2284. The fix for this issue involves removing a separate
memory work area for HBase queries and reusing other memory that was already allocated.

Bug: IMPALA-2731

Severity: High

Fix migration/assignment of On-clause predicates inside inline views.

Some combinations of ON clauses in join queries could result in comparisons being applied at the wrong stage of query
processing, leading to incorrect results. Wrong predicate assignment could happen under the following conditions:

648 | Apache Impala Guide

Impala Release Notes

http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_rn_fixed_in_550.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_rn_fixed_in_550.html
https://issues.cloudera.org/browse/IMPALA-2168
https://issues.cloudera.org/browse/IMPALA-2378
https://issues.cloudera.org/browse/IMPALA-2369
https://issues.cloudera.org/browse/IMPALA-2357
https://issues.cloudera.org/browse/IMPALA-2319
https://issues.cloudera.org/browse/IMPALA-2314
https://issues.cloudera.org/browse/IMPALA-2016
https://issues.cloudera.org/browse/IMPALA-2192
https://issues.cloudera.org/browse/IMPALA-2440
https://issues.cloudera.org/browse/IMPALA-2090
https://issues.cloudera.org/browse/IMPALA-2086
https://issues.cloudera.org/browse/IMPALA-1947
https://issues.cloudera.org/browse/IMPALA-1917
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_rn_fixed_in_549.html
https://issues.cloudera.org/browse/IMPALA-1917
https://issues.cloudera.org/browse/IMPALA-2731

• The query includes an inline view that contains an outer join.
• That inline view is joined with another table in the enclosing query block.
• That join has an ON clause containing a predicate that only references columns originating from the outer-joined

tables inside the inline view.

Bug: IMPALA-1459

Severity: High

Fix wrong predicate assignment in outer joins

The join predicate for an OUTER JOIN clause could be applied at the wrong stage of query processing, leading to
incorrect results.

Bug: IMPALA-2446

Severity: High

Avoid sending large partition stats objects over thrift

The catalogd daemon could encounter a serious error when loading the incremental statistics metadata for tables
with large numbers of partitions and columns. The problem occurred when the internal representation of metadata
for the table exceeded 2 GB, for example in a table with 20K partitions and 77 columns. The fix causes a COMPUTE
INCREMENTAL STATS operation to fail if it would produce metadata that exceeded the maximum size.

Bug: IMPALA-2648, IMPALA-2664

Severity: High

Avoid overflow when adding large intervals to TIMESTAMPs

Adding or subtracting a large INTERVAL value to a TIMESTAMP value could produce an incorrect result, with the value
wrapping instead of returning an out-of-range error.

Bug: IMPALA-1675

Severity: High

Analysis exception when a binary operator contains an IN operator with values

An IN operator with literal values could cause a statement to fail if used as the argument to a binary operator, such
as an equality test for a BOOLEAN value.

Bug: IMPALA-1949

Severity: High

Make MAX_PAGE_HEADER_SIZE configurable

Impala could fail to access Parquet data files with page headers larger than 8 MB, which could occur, for example, if
the minimum or maximum values for a column were long strings. The fix adds a configuration setting
--max_page_header_size, which you can use to increase the Impala size limit to a value higher than 8 MB.

Bug: IMPALA-2273

Severity: High

Fix spilling sorts with var-len slots that are NULL or empty.

A query that activated the spill-to-disk mechanism could fail if it contained a sort expression involving certain
combinations of fixed-length or variable-length types.

Bug: IMPALA-2357

Severity: High

Apache Impala Guide | 649

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-1459
https://issues.cloudera.org/browse/IMPALA-2446
https://issues.cloudera.org/browse/IMPALA-2648
https://issues.cloudera.org/browse/IMPALA-2664
https://issues.cloudera.org/browse/IMPALA-1675
https://issues.cloudera.org/browse/IMPALA-1949
https://issues.cloudera.org/browse/IMPALA-2273
https://issues.cloudera.org/browse/IMPALA-2357

Work-around IMPALA-2344: Fail query with OOM in case block->Pin() fails

Some queries that activated the spill-to-diskmechanism could produce a serious error if therewas insufficientmemory
to set up internal work areas. Now those queries produce normal out-of-memory errors instead.

Bug: IMPALA-2344

Severity: High

Crash (likely race) tearing down BufferedBlockMgr on query failure

A serious error could occur under rare circumstances, due to a race condition while freeing memory during heavily
concurrent workloads.

Bug: IMPALA-2252

Severity: High

QueryExecState doesn't check for query cancellation or errors

A call to SetError() in a user-defined function (UDF) would not cause the query to fail as expected.

Bug: IMPALA-1746

Severity: High

Impala throws IllegalStateException when inserting data into a partition while select subquery group by partition
columns

An INSERT ... SELECT operation into a partitioned table could fail if the SELECT query included a GROUP BY clause
referring to the partition key columns.

Bug: IMPALA-2533

Severity: High

Issues Fixed in Impala for CDH 5.4.8

This section lists the most frequently encountered customer issues fixed in Impala for CDH 5.4.8.

Note: The Impala 2.2.x maintenance releases now use the CDH 5.4.x numbering system rather than
increasing the Impala version numbers. Impala 2.2 and higher are not available under CDH 4.

For the full list of fixed issues, see the CDH 5.4.x release notes.

Impala is unable to read hive tables created with the "STORED AS AVRO" clause

Impala could not read Avro tables created in Hive with the STORED AS AVRO clause.

Bug: IMPALA-1136, IMPALA-2161

Severity: High

make Parquet scanner fail query if the file size metadata is stale

If a Parquet file in HDFSwas overwritten by a smaller file, Impala could encounter a serious error. Issuing a INVALIDATE
METADATA statement before a subsequent query would avoid the error. The fix allows Impala to handle such
inconsistencies in Parquet file length cleanly regardless of whether the table metadata is up-to-date.

Bug: IMPALA-2213

Severity: High

650 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-2344
https://issues.cloudera.org/browse/IMPALA-2252
https://issues.cloudera.org/browse/IMPALA-1746
https://issues.cloudera.org/browse/IMPALA-2533
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_rn_fixed_in_548.html
https://issues.cloudera.org/browse/IMPALA-1136
https://issues.cloudera.org/browse/IMPALA-2161
https://issues.cloudera.org/browse/IMPALA-2213

Avoid allocating StringBuffer > 1GB in ScannerContext::Stream::GetBytesInternal()

Impala could encounter a serious error when reading compressed text files larger than 1 GB. The fix causes Impala to
issue an error message instead in this case.

Bug: IMPALA-2249

Severity: High

Disallow long (1<<30) strings in group_concat()

A query using the group_concat() function could encounter a serious error if the returned string value was larger
than 1 GB. Now the query fails with an error message in this case.

Bug: IMPALA-2284

Severity: High

avoid FnvHash64to32 with empty inputs

An edge case in the algorithm used to distribute data among nodes could result in uneven distribution of work for
some queries, with all data sent to the same node.

Bug: IMPALA-2270

Severity: High

The catalog does not close the connection to HMS during table invalidation

A communication error could occur between Impala and the Hive metastore database, causing Impala operations that
update table metadata to fail.

Bug: IMPALA-2348

Severity: High

Wrong DCHECK in PHJ::ProcessProbeBatch

Certain queries could encounter a serious error if the spill-to-disk mechanism was activated.

Bug: IMPALA-2364

Severity: High

Avoid cardinality 0 in scan nodes of small tables and low selectivity

Impala could generate a suboptimal query plan for some queries involving small tables.

Bug: IMPALA-2165

Severity: High

Issues Fixed in Impala for CDH 5.4.7

This section lists the most frequently encountered customer issues fixed in Impala for CDH 5.4.7.

Note: The Impala 2.2.x maintenance releases now use the CDH 5.4.x numbering system rather than
increasing the Impala version numbers. Impala 2.2 and higher are not available under CDH 4.

For the full list of fixed issues, see the CDH 5.4.x release notes.

Warn if table stats are potentially corrupt.

Impala warns if it detects a discrepancy in table statistics: a table considered to have zero rows even though there are
data files present. In this case, Impala also skips query optimizations that are normally applied to very small tables.

Bug: IMPALA-1983:

Apache Impala Guide | 651

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-2249
https://issues.cloudera.org/browse/IMPALA-2284
https://issues.cloudera.org/browse/IMPALA-2270
https://issues.cloudera.org/browse/IMPALA-2348
https://issues.cloudera.org/browse/IMPALA-2364
https://issues.cloudera.org/browse/IMPALA-2165
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_rn_fixed_in_547.html
https://issues.cloudera.org/browse/IMPALA-1983

Severity: High

Pass correct child node in 2nd phase merge aggregation.

A query could encounter a serious error if it included a particular combination of aggregate functions and inline views.

Bug: IMPALA-2266

Severity: High

Set the output smap of an EmptySetNode produced from an empty inline view.

A query could encounter a serious error if it included an inline view whose subquery had no FROM clause.

Bug: IMPALA-2216

Severity: High

Set an InsertStmt's result exprs from the source statement's result exprs.

A CREATE TABLE AS SELECT or INSERT ... SELECT statement could produce different results than a SELECT
statement, for queries including a FULL JOIN clause and including literal values in the select list.

Bug: IMPALA-2203

Severity: High

Fix planning of empty union operands with analytics.

A query could return incorrect results if it contained a UNION clause, calls to analytic functions, and a constant expression
that evaluated to FALSE.

Bug: IMPALA-2088

Severity: High

Retain eq predicates bound by grouping slots with complex grouping exprs.

A query containing an INNER JOIN clause could return undesired rows. Some predicate specified in the ON clause
could be omitted from the filtering operation.

Bug: IMPALA-2089

Severity: High

Row count not set for empty partition when spec is used with compute incremental stats

A COMPUTE INCREMENTAL STATS statement could leave the row count for an emptyp partition as -1, rather than
initializing the row count to 0. The missing statistic value could result in reduced query performance.

Bug: IMPALA-2199

Severity: High

Explicit aliases + ordinals analysis bug

A query could encounter a serious error if it included column aliases with the same names as table columns, and used
ordinal numbers in an ORDER BY or GROUP BY clause.

Bug: IMPALA-1898

Severity: High

Fix TupleIsNullPredicate to return false if no tuples are nullable.

A query could return incorrect results if it included an outer join clause, inline views, and calls to functions such as
coalesce() that can generate NULL values.

Bug: IMPALA-1987

652 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-2266
https://issues.cloudera.org/browse/IMPALA-2216
https://issues.cloudera.org/browse/IMPALA-2203
https://issues.cloudera.org/browse/IMPALA-2088
https://issues.cloudera.org/browse/IMPALA-2089
https://issues.cloudera.org/browse/IMPALA-2199
https://issues.cloudera.org/browse/IMPALA-1898
https://issues.cloudera.org/browse/IMPALA-1987

Severity: High

fix Expr::ComputeResultsLayout() logic

A query could return incorrect results if the table contained multiple CHAR columns with length of 2 or less, and the
query included a GROUP BY clause that referred to multiple such columns.

Bug: IMPALA-2178

Severity: High

Substitute an InsertStmt's partition key exprs with the root node's smap.

An INSERT statement could encounter a serious error if the SELECT portion called an analytic function.

Bug: IMPALA-1737

Severity: High

Issues Fixed in Impala for CDH 5.4.5

This section lists the most frequently encountered customer issues fixed in Impala for CDH 5.4.5.

Note: The Impala 2.2.x maintenance releases now use the CDH 5.4.x numbering system rather than
increasing the Impala version numbers. Impala 2.2 and higher are not available under CDH 4.

For the full list of fixed issues, see the CDH 5.4.x release notes.

Impala DML/DDL operations corrupt table metadata leading to Hive query failures

When the Impala COMPUTE STATS statement was run on a partitioned Parquet table that was created in Hive, the
table subsequently became inaccessible in Hive. The table was still accessible to Impala. Regaining access in Hive
required a workaround of creating a new table. The error displayed in Hive was:

Error: Error while compiling statement: FAILED: SemanticException Class not found:
com.cloudera.impala.hive.serde.ParquetInputFormat (state=42000,code=40000)

Bug: IMPALA-2048

Severity: High

Avoiding a DCHECK of NULL hash table in spilled right joins

A query could encounter a serious error if it contained a RIGHT OUTER, RIGHT ANTI, or FULL OUTER join clause and
approached the memory limit on a host so that the “spill to disk” mechanism was activated.

Bug: IMPALA-1929

Severity: High

Bug in PrintTColumnValue caused wrong stats for TINYINT partition cols

Declaring a partition key column as a TINYINT caused problems with the COMPUTE STATS statement. The associated
partitions would always have zero estimated rows, leading to potential inefficient query plans.

Bug: IMPALA-2136

Severity: High

Where clause does not propagate to joins inside nested views

A query that referred to a view whose query referred to another view containing a join, could return incorrect results.
WHERE clauses for the outermost query were not always applied, causing the result set to include additional rows that
should have been filtered out.

Apache Impala Guide | 653

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-2178
https://issues.cloudera.org/browse/IMPALA-1737
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_rn_fixed_in_545.html
https://issues.cloudera.org/browse/IMPALA-2048
https://issues.cloudera.org/browse/IMPALA-1929
https://issues.cloudera.org/browse/IMPALA-2136

Bug: IMPALA-2018

Severity: High

Add effective_user() builtin

The user() function returned the name of the logged-in user, which might not be the same as the user name being
checked for authorization if, for example, delegation was enabled.

Bug: IMPALA-2064

Severity: High

Resolution: Rather than change the behavior of the user() function, the fix introduces an additional function
effective_user() that returns the user name that is checked during authorization.

Make UTC to local TimestampValue conversion faster.

Query performance was improved substantially for Parquet files containing TIMESTAMP data written by Hive, when
the -convert_legacy_hive_parquet_utc_timestamps=true setting is in effect.

Bug: IMPALA-2125

Severity: High

Workaround IMPALA-1619 in BufferedBlockMgr::ConsumeMemory()

A join query could encounter a serious error if the query approached the memory limit on a host so that the “spill to
disk”mechanismwas activated, and data volume in the joinwas large enough that an internalmemory buffer exceeded
1 GB in size on a particular host. (Exceeding this limit would only happen for huge join queries, because Impala could
split this intermediate data into 16 parts during the join query, and the buffer only contains compact bookkeeping
data rather than the actual join column data.)

Bug: IMPALA-2065

Severity: High

Issues Fixed in Impala for CDH 5.4.3

This section lists the most frequently encountered customer issues fixed in Impala for CDH 5.4.3.

Note: The Impala 2.2.x maintenance releases now use the CDH 5.4.x numbering system rather than
increasing the Impala version numbers. Impala 2.2 and higher are not available under CDH 4.

For the full list of fixed issues, see the CDH 5.4.1 release notes.

Enable using Isilon as the underlying filesystem.

The certification of CDH and Impala with the Isilon filesystem involves a number of fixes to performance and flexibility
for dealing with I/O using remote reads. See Using Impala with Isilon Storage on page 573 for details on using Impala
and Isilon together.

Bug: IMPALA-1968, IMPALA-1730

Severity: High

Expand set of supported timezones.

The set of timezones recognized by Impala was expanded. You can always find the latest list of supported timezones
in the Impala source code, in the file timezone_db.cc.

Bug: IMPALA-1381

Severity: High

654 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-2018
https://issues.cloudera.org/browse/IMPALA-2064
https://issues.cloudera.org/browse/IMPALA-2125
https://issues.cloudera.org/browse/IMPALA-2065
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_rn_fixed_in_543.html
https://issues.cloudera.org/browse/IMPALA-1968
https://issues.cloudera.org/browse/IMPALA-1730
https://github.com/cloudera/Impala/blob/master/be/src/exprs/timezone_db.cc
https://issues.cloudera.org/browse/IMPALA-1381

Impala Timestamp ISO-8601 Support.

Impala can now process TIMESTAMP literals including a trailing z, signifying “Zulu” time, a synonym for UTC.

Bug: IMPALA-1963

Severity: High

Fix wrong warning when insert overwrite to empty table

An INSERT OVERWRITE operation would encounter an error if the SELECT portion of the statement returned zero
rows, such as with a LIMIT 0 clause.

Bug: IMPALA-2008

Severity: High

Expand parsing of decimals to include scientific notation

DECIMAL literals can now include e scientific notation. For example, now CAST(1e3 AS DECIMAL(5,3)) is a valid
expression. Formerly it returned NULL. Some scientific expressions might have worked before in DECIMAL context,
but only when the scale was 0.

Bug: https://issues.cloudera.org/browse/

Severity: High

Issues Fixed in Impala for CDH 5.4.1

This section lists the most frequently encountered customer issues fixed in Impala for CDH 5.4.1.

Note: The Impala 2.2.x maintenance releases now use the CDH 5.4.x numbering system rather than
increasing the Impala version numbers. Impala 2.2 and higher are not available under CDH 4.

For the full list of fixed issues, see the CDH 5.4.1 release notes.

Issues Fixed in the 2.2.0 Release / CDH 5.4.0

This section lists the most frequently encountered customer issues fixed in Impala 2.2.0.

For the full list of fixed issues in Impala 2.2.0, including over 40 critical issues, see this report in the JIRA system.

Note: Impala 2.2.0 is available as part of CDH 5.4.0 and is not available for CDH 4. Cloudera does not
intend to release future versions of Impala for CDH 4 outside patch and maintenance releases if
required. Given the end-of-maintenance status for CDH 4, Cloudera recommends all customers to
migrate to a recent CDH 5 release.

Altering a column's type causes column stats to stop sticking for that column

When the type of a column was changed in either Hive or Impala through ALTER TABLE CHANGE COLUMN, the
metastore database did not correctly propagate that change to the table that contains the column statistics. The
statistics (particularly the NDV) for that columnwere permanently reset and could not be changed by Impala's COMPUTE
STATS command. The underlying cause is a Hive bug (HIVE-9866).

Bug: IMPALA-1607

Severity:Major

Resolution: Resolved by incorporating the fix for HIVE-9866.

Workaround: On systems without the corresponding Hive fix, change the column back to its original type. The stats
reappear and you can recompute or drop them.

Apache Impala Guide | 655

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-1963
https://issues.cloudera.org/browse/IMPALA-2008
https://issues.cloudera.org/browse/
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_rn_fixed_in_541.html
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+2.2%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/browse/IMPALA-1607
https://issues.apache.org/jira/browse/HIVE-9866

Impala may leak or use too many file descriptors

If a file was truncated in HDFS without a corresponding REFRESH in Impala, Impala could allocate memory for file
descriptors and not free that memory.

Bug: IMPALA-1854

Severity: High

Spurious stale block locality messages

Impala could issue messages stating the block locality metadata was stale, when the metadata was actually fine. The
internal “remote bytes read” counter was not being reset properly. This issue did not cause an actual slowdown in
query execution, but the spurious error could result in unnecessary debugging work and unnecessary use of the
INVALIDATE METADATA statement.

Bug: IMPALA-1712

Severity: High

DROP TABLE fails after COMPUTE STATS and ALTER TABLE RENAME to a different database.

When a table was moved from one database to another, the column statistics were not pointed to the new database.i
This could result in lower performance for queries due to unavailable statistics, and also an inability to drop the table.

Bug: IMPALA-1711

Severity: High

IMPALA-1556 causes memory leak with secure connections

impalad daemons could experience a memory leak on clusters using Kerberos authentication, with memory usage
growing as more data is transferred across the secure channel, either to the client program or between Impala nodes.
The same issue affected LDAP-secured clusters to a lesser degree, because the LDAP security only covers data transferred
back to client programs.

Bug: IMPALA-1674

Severity: High

unix_timestamp() does not return correct time

The unix_timestamp() function could return an incorrect value (a constant value of 1).

Bug: IMPALA-1623

Severity: High

Impala incorrectly handles text data missing a newline on the last line

Some queries did not recognize the final line of a text data file if the line did not end with a newline character. This
could lead to inconsistent results, such as a different number of rows for SELECT COUNT(*) as opposed to SELECT
*.

Bug: IMPALA-1476

Severity: High

Impala's ACLs check do not consider all group ACLs, only checked first one.

If the HDFS user ID associatedwith the impalad process had read orwrite access in HDFS based on groupmembership,
Impala statements could still fail with HDFS permission errors if that group was not the first listed group for that user
ID.

Bug: IMPALA-1805

Severity: High

656 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-1854
https://issues.cloudera.org/browse/IMPALA-1712
https://issues.cloudera.org/browse/IMPALA-1711
https://issues.cloudera.org/browse/IMPALA-1674
https://issues.cloudera.org/browse/IMPALA-1623
https://issues.cloudera.org/browse/IMPALA-1476
https://issues.cloudera.org/browse/IMPALA-1805

Fix infinite loop opening or closing file with invalid metadata

Truncating a file in HDFS, after Impala had cached the file metadata, could produce a hang when Impala queried a
table containing that file.

Bug: IMPALA-1794

Severity: High

Cannot write Parquet files when values are larger than 64KB

Impala could sometimes fail to INSERT into a Parquet table if a column value such as a STRINGwas larger than 64 KB.

Bug: IMPALA-1705

Severity: High

Impala Will Not Run on Certain Intel CPUs

This fix relaxes the CPU requirement for Impala. Now only the SSSE3 instruction set is required. Formerly, SSE4.1
instructions were generated, making Impala refuse to start on some older CPUs.

Bug: IMPALA-1646

Severity: High

Issues Fixed in the 2.1.7 Release / CDH 5.3.9

This section lists the most significant Impala issues fixed in Impala 2.1.7 for CDH 5.3.9.

For the full list of Impala fixed issues in this release, see the CDH 5.3.9 release notes.

Note: This Impala maintenance release is only available as part of CDH 5, not under CDH 4.

Query return empty result if it contains NullLiteral in inlineview

If an inline view in a FROM clause contained a NULL literal, the result set was empty.

Bug: IMPALA-1917

Severity: High

Fix edge cases for decimal/integer cast

A value of type DECIMAL(3,0) could be incorrectly cast to TINYINT. The resulting out-of-range value could be
incorrect. After the fix, the smallest type that is allowed for this cast is INT, and attempting to use DECIMAL(3,0) in
a TINYINT context produces a “loss of precision” error.

Bug: IMPALA-2264

Severity: High

Constant filter expressions are not checked for errors and state cleanup on exception / DCHECK on destroying an
ExprContext

An invalid constant expression in a WHERE clause (for example, an invalid regular expression pattern) could fail to clean
up internal state after raising a query error. Therefore, certain combinations of invalid expressions in a query could
cause a crash, or cause a query to continue when it should halt with an error.

Bug: IMPALA-1756, IMPALA-2514

Severity: High

Apache Impala Guide | 657

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-1794
https://issues.cloudera.org/browse/IMPALA-1705
https://issues.cloudera.org/browse/IMPALA-1646
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_rn_fixed_in_539.html
https://issues.cloudera.org/browse/IMPALA-1917
https://issues.cloudera.org/browse/IMPALA-2264
https://issues.cloudera.org/browse/IMPALA-1756
https://issues.cloudera.org/browse/IMPALA-2514

QueryExecState does not check for query cancellation or errors

A call to SetError() in a user-defined function (UDF) would not cause the query to fail as expected.

Bug: IMPALA-1746, IMPALA-2141

Severity: High

Issues Fixed in the 2.1.6 Release / CDH 5.3.8

This section lists the most significant Impala issues fixed in Impala 2.1.6 for CDH 5.3.8.

For the full list of Impala fixed issues in this release, see the CDH 5.3.8 release notes.

Note: This Impala maintenance release is only available as part of CDH 5, not under CDH 4.

Wrong DCHECK in PHJ::ProcessProbeBatch

Certain queries could encounter a serious error if the spill-to-disk mechanism was activated.

Bug: IMPALA-2364

Severity: High

LargestSpilledPartition was not checking if partition is closed

Certain queries could encounter a serious error if the spill-to-disk mechanism was activated.

Bug: IMPALA-2314

Severity: High

Avoid cardinality 0 in scan nodes of small tables and low selectivity

Impala could generate a suboptimal query plan for some queries involving small tables.

Bug: IMPALA-2165

Severity: High

fix Expr::ComputeResultsLayout() logic

Queries using the GROUP BY operator on multiple CHAR columns with length less than or equal to 2 characters could
return incorrect results for some columns.

Bug: IMPALA-2178

Severity: High

Properly unescape string value for HBase filters

Queries against HBase tables could return incomplete results if the WHERE clause included string comparisons using
literals containing escaped quotation marks.

Bug: IMPALA-2133

Severity: High

Avoiding a DCHECK of NULL hash table in spilled right joins

A query could encounter a serious error if it contained a RIGHT OUTER, RIGHT ANTI, or FULL OUTER join clause and
approached the memory limit on a host so that the “spill to disk” mechanism was activated.

Bug: IMPALA-1929

Severity: High

658 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-1746
https://issues.cloudera.org/browse/IMPALA-2141
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_rn_fixed_in_538.html
https://issues.cloudera.org/browse/IMPALA-2364
https://issues.cloudera.org/browse/IMPALA-2314
https://issues.cloudera.org/browse/IMPALA-2165
https://issues.cloudera.org/browse/IMPALA-2178
https://issues.cloudera.org/browse/IMPALA-2133
https://issues.cloudera.org/browse/IMPALA-1929

Issues Fixed in the 2.1.5 Release / CDH 5.3.6

This section lists the most significant Impala issues fixed in Impala 2.1.5 for CDH 5.3.6.

For the full list of Impala fixed issues in this release, see the CDH 5.3.6 release notes.

Note: This Impala maintenance release is only available as part of CDH 5, not under CDH 4.

Avoid calling ProcessBatch with out_batch->AtCapacity in right joins

Queries including RIGHT OUTER JOIN, RIGHT ANTI JOIN, or FULL OUTER JOIN clauses and involving a high
volume of data could encounter a serious error.

Bug: IMPALA-1919

Severity: High

Issues Fixed in the 2.1.4 Release / CDH 5.3.4

This section lists the most significant Impala issues fixed in Impala 2.1.4 for CDH 5.3.4. Because CDH 5.3.5 does not
include any code changes for Impala, Impala 2.1.4 is included with both CDH 5.3.4 and 5.3.5.

For the full list of Impala fixed issues in Impala 2.1.4 for CDH 5.3.4, see the CDH 5.3.4 release notes.

Note: This Impala maintenance release is only available as part of CDH 5, not under CDH 4.

Crash: impala::TupleIsNullPredicate::Prepare

When expressions that tested for NULL were used in combination with analytic functions, an error could occur. (The
original crash issue was fixed by an earlier patch.)

Bug: IMPALA-1519

Severity: High

Expand parsing of decimals to include scientific notation

DECIMAL literals could include e scientific notation. For example, now CAST(1e3 AS DECIMAL(5,3)) is a valid
expression. Formerly it returned NULL. Some scientific expressions might have worked before in DECIMAL context,
but only when the scale was 0.

Bug: IMPALA-1952

Severity: High

INSERT/CTAS evaluates and applies constant predicates.

An INSERT OVERWRITE statement would write new data, even if a constant clause such as WHERE 1 = 0 should
have prevented it from writing any rows.

Bug: IMPALA-1860

Severity: High

Assign predicates below analytic functions with a compatible partition by clause

If the PARTITION BY clause in an analytic function refers to partition key columns in a partitioned table, now Impala
can perform partition pruning during the analytic query.

Bug: IMPALA-1900

Severity: High

Apache Impala Guide | 659

Impala Release Notes

http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_rn_fixed_in_536.html
https://issues.cloudera.org/browse/IMPALA-1919
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_rn_fixed_in_534.html
https://issues.cloudera.org/browse/IMPALA-1519
https://issues.cloudera.org/browse/IMPALA-1952
https://issues.cloudera.org/browse/IMPALA-1860
https://issues.cloudera.org/browse/IMPALA-1900

FIRST_VALUE may produce incorrect results with preceding windows

A query using the FIRST_VALUE analytic function and a window defined with the PRECEDING keyword could produce
wrong results.

Bug: IMPALA-1888

Severity: High

FIRST_VALUE rewrite fn type might not match slot type

A query referencing a DECIMAL column with the FIRST_VALUE analytic function could encounter an error.

Bug: IMPALA-1559

Severity: High

AnalyticEvalNode cannot handle partition/order by exprs with NaN

A query using an analytic function could encounter an error if the evaluation of an analytic ORDER BY or PARTITION
expression resulted in a NaN value, for example if the ORDER BY or PARTITION contained a division operation where
both operands were zero.

Bug: IMPALA-1808

Severity: High

AnalyticEvalNode not properly handling nullable tuples

An analytic function containing only an OVER clause could encounter an error if another part of the query (specifically
an outer join) produced all-NULL tuples.

Bug: IMPALA-1562

Severity: High

Issues Fixed in the 2.1.3 Release / CDH 5.3.3

This section lists the most significant issues fixed in Impala 2.1.3.

For the full list of fixed issues in Impala 2.1.3, see the CDH 5.3.3 release notes.

Note: Impala 2.1.3 is available as part of CDH 5.3.3, not under CDH 4.

Add compatibility flag for Hive-Parquet-Timestamps

WhenHivewrites TIMESTAMP values, it represents them in the local time zone of the server. Impala expects TIMESTAMP
values to always be in the UTC time zone, possibly leading to inconsistent results depending on which component
created the data files. This patch introduces a new startup flag,-convert_legacy_hive_parquet_utc_timestamps
for the impalad daemon. Specify -convert_legacy_hive_parquet_utc_timestamps=true to make Impala
recognize Parquet data files written by Hive and automatically adjust TIMESTAMP values read from those files into the
UTC time zone for compatibility with other Impala TIMESTAMP processing. Although this setting is currently turned
off by default, consider enabling it if practical in your environment, for maximum interoperability with Hive-created
Parquet files.

Bug: IMPALA-1658

Severity: High

Use snprintf() instead of lexical_cast() in float-to-string casts

Converting a floating-point value to a STRING could be slower than necessary.

Bug: IMPALA-1738

660 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-1888
https://issues.cloudera.org/browse/IMPALA-1559
https://issues.cloudera.org/browse/IMPALA-1808
https://issues.cloudera.org/browse/IMPALA-1562
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_rn_fixed_in_533.html
https://issues.cloudera.org/browse/IMPALA-1658
https://issues.cloudera.org/browse/IMPALA-1738

Severity: High

Fix partition spilling cleanup when new stream OOMs

Certain calls to aggregate functions with STRING arguments could encounter a serious error when the system ran low
on memory and attempted to activate the spill-to-disk mechanism. The error message referenced the function
impala::AggregateFunctions::StringValGetValue.

Bug: IMPALA-1865

Severity: High

Impala's ACLs check do not consider all group ACLs, only checked first one.

If the HDFS user ID associatedwith the impalad process had read orwrite access in HDFS based on groupmembership,
Impala statements could still fail with HDFS permission errors if that group was not the first listed group for that user
ID.

Bug: IMPALA-1805

Severity: High

Fix infinite loop opening or closing file with invalid metadata

Truncating a file in HDFS, after Impala had cached the file metadata, could produce a hang when Impala queried a
table containing that file.

Bug: IMPALA-1794

Severity: High

external-data-source-executor leaking global jni refs

Successive calls to the data source API could result in excessive memory consumption, with memory allocated but
never freed.

Bug: IMPALA-1801

Severity: High

Spurious stale block locality messages

Impala could issue messages stating the block locality metadata was stale, when the metadata was actually fine. The
internal “remote bytes read” counter was not being reset properly. This issue did not cause an actual slowdown in
query execution, but the spurious error could result in unnecessary debugging work and unnecessary use of the
INVALIDATE METADATA statement.

Bug: IMPALA-1712

Severity: High

Issues Fixed in the 2.1.2 Release / CDH 5.3.2

This section lists the most significant issues fixed in Impala 2.1.2.

For the full list of fixed issues in Impala 2.1.2, see this report in the JIRA system.

Note: Impala 2.1.2 is available as part of CDH 5.3.2, not under CDH 4.

Impala incorrectly handles double numbers with more than 19 significant decimal digits

When a floating-point valuewas read from a text file and interpreted as a FLOAT or DOUBLE value, it could be incorrectly
interpreted if it included more than 19 significant digits.

Apache Impala Guide | 661

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-1865
https://issues.cloudera.org/browse/IMPALA-1805
https://issues.cloudera.org/browse/IMPALA-1794
https://issues.cloudera.org/browse/IMPALA-1801
https://issues.cloudera.org/browse/IMPALA-1712
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+2.1.2%22+and+resolution%3D%22Fixed%22

Bug: IMPALA-1622

Severity: High

unix_timestamp() does not return correct time

The unix_timestamp() function could return an incorrect value (a constant value of 1).

Bug: IMPALA-1623

Severity: High

Row Count Mismatch: Partition pruning with NULL

A query against a partitioned table could return incorrect results if the WHERE clause compared the partition key to
NULL using operators such as = or !=.

Bug: IMPALA-1535

Severity: High

Fetch column stats in bulk using new (Hive .13) HMS APIs

The performance of the COMPUTE STATS statement and queries was improved, particularly for wide tables.

Bug: IMPALA-1120

Severity: High

Issues Fixed in the 2.1.1 Release / CDH 5.3.1

This section lists the most significant issues fixed in Impala 2.1.1.

For the full list of fixed issues in Impala 2.1.1, see this report in the JIRA system.

IMPALA-1556 causes memory leak with secure connections

impalad daemons could experience a memory leak on clusters using Kerberos authentication, with memory usage
growing as more data is transferred across the secure channel, either to the client program or between Impala nodes.
The same issue affected LDAP-secured clusters to a lesser degree, because the LDAP security only covers data transferred
back to client programs.

Bug: https://issues.cloudera.org/browse/IMPALA-1674 IMPALA-1674

Severity: High

TSaslServerTransport::Factory::getTransport() leaks transport map entries

impalad daemons in clusters secured by Kerberos or LDAP could experience a slight memory leak on each connection.
The accumulation of unreleased memory could cause problems on long-running clusters.

Bug: IMPALA-1668

Severity: High

Issues Fixed in the 2.1.0 Release / CDH 5.3.0

This section lists the most significant issues fixed in Impala 2.1.0.

For the full list of fixed issues in Impala 2.1.0, see this report in the JIRA system.

Kerberos fetches 3x slower

Transferring large result sets back to the client application on Kerberos

Bug: IMPALA-1455

Severity: High

662 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-1622
https://issues.cloudera.org/browse/IMPALA-1623
https://issues.cloudera.org/browse/IMPALA-1535
https://issues.cloudera.org/browse/IMPALA-1120
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+2.1.1%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/browse/IMPALA-1674
https://issues.cloudera.org/browse/IMPALA-1668
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+2.1%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/browse/IMPALA-1455

Compressed file needs to be hold on entirely in Memory

Queries on gzipped text files required holding the entire data file and its uncompressed representation in memory at
the same time. SELECT and COMPUTE STATS statements could fail or perform inefficiently as a result. The fix enables
streaming reads for gzipped text, so that the data is uncompressed as it is read.

Bug: IMPALA-1556

Severity: High

Cannot read hbase metadata with NullPointerException: null

Impala might not be able to access HBase tables, depending on the associated levels of Impala and HBase on the
system.

Bug: IMPALA-1611

Severity: High

Serious errors / crashes

Improved code coverage in Impala testing uncovered a number of potentially serious errors that could occur with
specific query syntax. These errors are resolved in Impala 2.1.

Bug: IMPALA-1553 , IMPALA-1528 , IMPALA-1526 , IMPALA-1524 , IMPALA-1508 , IMPALA-1493 , IMPALA-1501 ,
IMPALA-1483

Severity: High

Issues Fixed in the 2.0.5 Release / CDH 5.2.6

For the full list of fixed issues in Impala 2.0.5, see this report in the JIRA system.

Note: Impala 2.0.5 is available as part of CDH 5.2.6, not under CDH 4.

Issues Fixed in the 2.0.4 Release / CDH 5.2.5

This section lists the most significant issues fixed in Impala 2.0.4.

For the full list of fixed issues in Impala 2.0.4, see this report in the JIRA system.

Note: Impala 2.0.4 is available as part of CDH 5.2.5, not under CDH 4.

Add compatibility flag for Hive-Parquet-Timestamps

WhenHivewrites TIMESTAMP values, it represents them in the local time zone of the server. Impala expects TIMESTAMP
values to always be in the UTC time zone, possibly leading to inconsistent results depending on which component
created the data files. This patch introduces a new startup flag,-convert_legacy_hive_parquet_utc_timestamps
for the impalad daemon. Specify -convert_legacy_hive_parquet_utc_timestamps=true to make Impala
recognize Parquet data files written by Hive and automatically adjust TIMESTAMP values read from those files into the
UTC time zone for compatibility with other Impala TIMESTAMP processing. Although this setting is currently turned
off by default, consider enabling it if practical in your environment, for maximum interoperability with Hive-created
Parquet files.

Bug: IMPALA-1658

Severity: High

Apache Impala Guide | 663

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-1556
https://issues.cloudera.org/browse/IMPALA-1611
https://issues.cloudera.org/browse/IMPALA-1553
https://issues.cloudera.org/browse/IMPALA-1528
https://issues.cloudera.org/browse/IMPALA-1526
https://issues.cloudera.org/browse/IMPALA-1524
https://issues.cloudera.org/browse/IMPALA-1508
https://issues.cloudera.org/browse/IMPALA-1493
https://issues.cloudera.org/browse/IMPALA-1501
https://issues.cloudera.org/browse/IMPALA-1483
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+2.0.5%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+2.0.4%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/browse/IMPALA-1658

IoMgr infinite loop opening/closing file when shorter than cached metadata size

If a table data file was replaced by a shorter file outside of Impala, such as with INSERT OVERWRITE in Hive producing
an empty output file, subsequent Impala queries could hang.

Bug: IMPALA-1794

Severity: High

Issues Fixed in the 2.0.3 Release / CDH 5.2.4

This section lists the most significant issues fixed in Impala 2.0.3.

For the full list of fixed issues in Impala 2.0.3, see this report in the JIRA system.

Note: Impala 2.0.3 is available as part of CDH 5.2.4, not under CDH 4.

Anti join could produce incorrect results when spilling

An anti-join query (or a NOT EXISTS operation that was rewritten internally into an anti-join) could produce incorrect
results if Impala reached its memory limit, causing the query to write temporary results to disk.

Bug: IMPALA-1471

Severity: High

Row Count Mismatch: Partition pruning with NULL

A query against a partitioned table could return incorrect results if the WHERE clause compared the partition key to
NULL using operators such as = or !=.

Bug: IMPALA-1535

Severity: High

Fetch column stats in bulk using new (Hive .13) HMS APIs

The performance of the COMPUTE STATS statement and queries was improved, particularly for wide tables.

Bug: IMPALA-1120

Severity: High

Issues Fixed in the 2.0.2 Release / CDH 5.2.3

This section lists the most significant issues fixed in Impala 2.0.2.

For the full list of fixed issues in Impala 2.0.2, see this report in the JIRA system.

Note: Impala 2.0.2 is available as part of CDH 5.2.3, not under CDH 4.

GROUP BY on STRING column produces inconsistent results

Some operations in queries submitted through Hue or other HiveServer2 clients could produce inconsistent results.

Bug: IMPALA-1453

Severity: High

664 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-1794
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+2.0.3%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/browse/IMPALA-1471
https://issues.cloudera.org/browse/IMPALA-1535
https://issues.cloudera.org/browse/IMPALA-1120
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+2.0.2%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/browse/IMPALA-1453

Fix leaked file descriptor and excessive file descriptor use

Impala could encounter an error from running out of file descriptors. The fix reduces the amount of time file descriptors
are kept open, and avoids leaking file descriptors when read operations encounter errors.

Severity: High

unix_timestamp() does not return correct time

The unix_timestamp() function could return a constant value 1 instead of a representation of the time.

Bug: IMPALA-1623

Severity: High

Impala should randomly select cached replica

To avoid putting too heavy a load on any one node, Impala now randomizes which scan node processes each HDFS
data block rather than choosing the first cached block replica.

Bug: IMPALA-1586

Severity: High

Impala does not always give short name to Llama.

In clusters secured by Kerberos or LDAP, a discrepancy in internal transmission of user names could cause a
communication error with Llama.

Bug: IMPALA-1606

Severity: High

accept unmangled native UDF symbols

The CREATE FUNCTION statement could report that it could not find a function entry point within the .so file for a
UDF written in C++, even if the corresponding function was present.

Bug: IMPALA-1475

Severity: High

Issues Fixed in the 2.0.1 Release / CDH 5.2.1

This section lists the most significant issues fixed in Impala 2.0.1.

For the full list of fixed issues in Impala 2.0.1, see this report in the JIRA system.

Queries fail with metastore exception after upgrade and compute stats

After running the COMPUTE STATS statement on an Impala table, subsequent queries on that table could fail with the
exception message Failed to load metadata for table: default.stats_test.

Bug: https://issues.cloudera.org/browse/IMPALA-1416 IMPALA-1416

Severity: High

Workaround:Upgrading to CDH5.2.1, or another level of CDH that includes the fix for HIVE-8627, prevents the problem
from affecting future COMPUTE STATS statements. On affected levels of CDH, or for Impala tables that have become
inaccessible, the workaround is to disable the hive.metastore.try.direct.sql setting in the Hive metastore
hive-site.xml file and issue the INVALIDATE METADATA statement for the affected table. You do not need to
rerun the COMPUTE STATS statement for the table.

Issues Fixed in the 2.0.0 Release / CDH 5.2.0

This section lists the most significant issues fixed in Impala 2.0.0.

For the full list of fixed issues in Impala 2.0.0, see this report in the JIRA system.

Apache Impala Guide | 665

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-1623
https://issues.cloudera.org/browse/IMPALA-1586
https://issues.cloudera.org/browse/IMPALA-1606
https://issues.cloudera.org/browse/IMPALA-1475
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+2.0.1%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/browse/IMPALA-1416
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+2.0%22+and+resolution%3D%22Fixed%22

Join Hint is dropped when used inside a view

Hints specified within a view query did not take effect when the view was queried, leading to slow performance. As
part of this fix, Impala now supports hints embedded within comments.

Bug: IMPALA-995"

Severity: High

WHERE condition ignored in simple query with RIGHT JOIN

Potential wrong results for some types of queries.

Bug: IMPALA-1101"

Severity: High

Query with self joined table may produce incorrect results

Potential wrong results for some types of queries.

Bug: IMPALA-1102"

Severity: High

Incorrect plan after reordering predicates (inner join following outer join)

Potential wrong results for some types of queries.

Bug: IMPALA-1118"

Severity: High

Combining fragmentswith compatible data partitions can lead to incorrect results due to type incompatibilities (missing
casts).

Potential wrong results for some types of queries.

Bug: IMPALA-1123"

Severity: High

Predicate dropped: Inline view + DISTINCT aggregate in outer query

Potential wrong results for some types of queries.

Bug: IMPALA-1165"

Severity: High

Reuse of a column in JOIN predicate may lead to incorrect results

Potential wrong results for some types of queries.

Bug: IMPALA-1353"

Severity: High

Usage of TRUNC with string timestamp reliably crashes node

Serious error for certain combinations of function calls and data types.

Bug: IMPALA-1105"

Severity: High

Timestamp Cast Returns invalid TIMESTAMP

Serious error for certain combinations of function calls and data types.

666 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-995
https://issues.cloudera.org/browse/IMPALA-1101
https://issues.cloudera.org/browse/IMPALA-1102
https://issues.cloudera.org/browse/IMPALA-1118
https://issues.cloudera.org/browse/IMPALA-1123
https://issues.cloudera.org/browse/IMPALA-1165
https://issues.cloudera.org/browse/IMPALA-1353
https://issues.cloudera.org/browse/IMPALA-1105

Bug: IMPALA-1109"

Severity: High

IllegalStateException upon JOIN of DECIMAL columns with different precision

DECIMAL columns with different precision could not be compared in join predicates.

Bug: IMPALA-1121"

Severity: High

Allow creating Avro tables without column definitions. Allow COMPUTE STATS to always work on Impala-created Avro
tables.

Hive-created Avro tables with columns specified by a JSON file or literal could produce errors when queried in Impala,
and could not be used with the COMPUTE STATS statement. Now you can create such tables in Impala to avoid such
errors.

Bug: IMPALA-1104"

Severity: High

Ensure all webserver output is escaped

The Impala debug web UI did not properly encode all output.

Bug: IMPALA-1133"

Severity: High

Queries with union in inline view have empty resource requests

Certain queries could run without obeying the limits imposed by resource management.

Bug: IMPALA-1236"

Severity: High

Impala does not employ ACLs when checking path permissions for LOAD and INSERT

Certain INSERT and LOAD DATA statements could fail unnecessarily, if the target directories in HDFS had restrictive
HDFS permissions, but those permissions were overridden by HDFS extended ACLs.

Bug: IMPALA-1279"

Severity: High

Impala does not map principals to lowercase, affecting Sentry authorisation

In a Kerberos environment, the principal name was not mapped to lowercase, causing issues when a user logged in
with an uppercase principal name and Sentry authorization was enabled.

Bug: IMPALA-1334"

Severity: High

Issues Fixed in the 1.4.4 Release / CDH 5.1.5

For the list of fixed issues, see Issues Fixed in CDH 5.1.5 in the CDH 5 Release Notes.

Note: Impala 1.4.4 is available as part of CDH 5.1.5, not under CDH 4.

Apache Impala Guide | 667

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-1109
https://issues.cloudera.org/browse/IMPALA-1121
https://issues.cloudera.org/browse/IMPALA-1104
https://issues.cloudera.org/browse/IMPALA-1133
https://issues.cloudera.org/browse/IMPALA-1236
https://issues.cloudera.org/browse/IMPALA-1279
https://issues.cloudera.org/browse/IMPALA-1334
http://www.cloudera.com/documentation/enterprise/release-notes/topics/cdh_rn_fixed_in_51.html

Issues Fixed in the 1.4.3 Release / CDH 5.1.4

Impala 1.4.3 includes fixes to address what is known as the POODLE vulnerability in SSLv3. SSLv3 access is disabled in
the Impala debug web UI.

Note: Impala 1.4.3 is available as part of CDH 5.1.4, and under CDH 4.

Issues Fixed in the 1.4.2 Release / CDH 5.1.3

This section lists the most significant issues fixed in Impala 1.4.2.

For the full list of fixed issues in Impala 1.4.2, see this report in the JIRA system.

Note: Impala 1.4.3 is available as part of CDH 5.1.4, and under CDH 4.

Issues Fixed in the 1.4.1 Release / CDH 5.1.2

This section lists the most significant issues fixed in Impala 1.4.1.

For the full list of fixed issues in Impala 1.4.1, see this report in the JIRA system.

Note: Impala 1.4.1 is only available as part of CDH 5.1.2, not under CDH 4.

impalad terminating with Boost exception

Occasionally, a non-trivial query run through Llama could encounter a serious error. The detailed error in the log was:

boost::exception_detail::clone_impl
 <boost::exception_detail::error_info_injector<boost::lock_error> >

Severity: High

Impalad uses wrong string format when writing logs

Impala log files could contain internal error messages due to a problem formatting certain strings. The messages
consisted of a Java call stack starting with:

jni-util.cc:177] java.util.MissingFormatArgumentException: Format specifier 's'

Severity: High

Update HS2 client API.

A downlevel version of the HiveServer2 API could cause difficulty retrieving the precision and scale of a DECIMAL value.

Bug: IMPALA-1107

Severity: High

Impalad catalog updates can fail with error: "IllegalArgumentException: fromKey out of range" at
com.cloudera.impala.catalog.CatalogDeltaLog

The error in the title could occur following a DDL statement. This issue was discovered during internal testing and has
not been reported in customer environments.

Bug: IMPALA-1093

668 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+1.4.2%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+1.4.1%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/browse/IMPALA-1107
https://issues.cloudera.org/browse/IMPALA-1093

Severity: High

"Total" time counter does not capture all the network transmit time

The time for some network operations was not counted in the report of total time for a query, making it difficult to
diagnose network-related performance issues.

Bug: IMPALA-1131

Severity: High

Impala will crash when reading certain Avro files containing bytes data

Certain Avro fields for byte data could cause Impala to be unable to read an Avro data file, even if the field was not
part of the Impala table definition. With this fix, Impala can now read these Avro data files, although Impala queries
cannot refer to the “bytes” fields.

Bug: IMPALA-1149

Severity: High

Support specifying a custom AuthorizationProvider in Impala

The --authorization_policy_provider_class option for impalad was added back. This option specifies a
custom AuthorizationProvider class rather than the default HadoopGroupAuthorizationProvider. It had
been used for internal testing, then removed in Impala 1.4.0, but it was considered useful by some customers.

Bug: IMPALA-1142

Severity: High

Issues Fixed in the 1.4.0 Release / CDH 5.1.0

This section lists the most significant issues fixed in Impala 1.4.0.

For the full list of fixed issues in Impala 1.4.0, see this report in the JIRA system.

Failed DCHECK in disk-io-mgr-reader-context.cc:174

The serious error in the title could occur, with the supplemental message:

num_used_buffers_ < 0: #used=-1 during cancellation HDFS cached data

The issue was due to the use of HDFS caching with data files accessed by Impala. Support for HDFS caching in Impala
was introduced in Impala 1.4.0 for CDH 5.1.0. The fix for this issue was backported to Impala 1.3.x, and is the only
change in Impala 1.3.2 for CDH 5.0.4.

Bug: IMPALA-1019

Severity: High

Workaround: On CDH 5.0.x, upgrade to CDH 5.0.4 with Impala 1.3.2, where this issue is fixed. In Impala 1.3.0 or 1.3.1
on CDH 5.0.x, do not use HDFS caching for Impala data files in Impala internal or external tables. If some of these data
files are cached (for example because they are used by other components that take advantage of HDFS caching), set
the query option DISABLE_CACHED_READS=true. To set that option for all Impala queries across all sessions, start
impaladwith the -default_query_options option and include this setting in the option argument, or on a cluster
managed by Cloudera Manager, fill in this option setting on the Impala Daemon options page.

Resolution: This issue is fixed in Impala 1.3.2 for CDH 5.0.4. The addition of HDFS caching support in Impala 1.4 means
that this issue does not apply to any new level of Impala on CDH 5.

impala-shell only works with ASCII characters

The impala-shell interpreter could encounter errors processing SQL statements containing non-ASCII characters.

Bug: IMPALA-489

Apache Impala Guide | 669

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-1131
https://issues.cloudera.org/browse/IMPALA-1149
https://issues.cloudera.org/browse/IMPALA-1142
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+1.4%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/browse/IMPALA-1019
https://issues.cloudera.org/browse/IMPALA-489

Severity: High

The extended view definition SQL text in Views created by Impala should always have fully-qualified table names

When a view was accessed while inside a different database, references to tables were not resolved unless the names
were fully qualified when the view was created.

Bug: IMPALA-962

Severity: High

Impala forgets about partitions with non-existant locations

If an ALTER TABLE specified a non-existent HDFS location for a partition, afterwards Impala would not be able to
access the partition at all.

Bug: IMPALA-741

Severity: High

CREATE TABLE LIKE fails if source is a view

The CREATE TABLE LIKE clause was enhanced to be able to create a table with the same column definitions as a
view. The resulting table is a text table unless the STORED AS clause is specified, because a view does not have an
associated file format to inherit.

Bug: IMPALA-834

Severity: High

Improve partition pruning time

Operations on tables with many partitions could be slow due to the time to evaluate which partitions were affected.
The partition pruning code was speeded up substantially.

Bug: IMPALA-887

Severity: High

Improve compute stats performance

The performance of the COMPUTE STATS statementwas improved substantially. The efficiency of its internal operations
was improved, and some statistics are no longer gathered because they are not currently used for planning Impala
queries.

Bug: IMPALA-1003

Severity: High

When I run CREATE TABLE new_table LIKE avro_table, the schema does not get mapped properly from an avro schema
to a hive schema

After a CREATE TABLE LIKE statement using an Avro table as the source, the new table could have incorrectmetadata
and be inaccessible, depending on how the original Avro table was created.

Bug: IMPALA-185

Severity: High

Race condition in IoMgr. Blocked ranges enqueued after cancel.

Impala could encounter a serious error after a query was cancelled.

Bug: IMPALA-1046

Severity: High

670 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-962
https://issues.cloudera.org/browse/IMPALA-741
https://issues.cloudera.org/browse/IMPALA-834
https://issues.cloudera.org/browse/IMPALA-887
https://issues.cloudera.org/browse/IMPALA-1003
https://issues.cloudera.org/browse/IMPALA-185
https://issues.cloudera.org/browse/IMPALA-1046

Deadlock in scan node

A deadlock condition could make all impalad daemons hang, making the cluster unresponsive for Impala queries.

Bug: IMPALA-1083

Severity: High

Issues Fixed in the 1.3.3 Release / CDH 5.0.5

Impala 1.3.3 includes fixes to address what is known as the POODLE vulnerability in SSLv3. SSLv3 access is disabled in
the Impala debug web UI.

Note: Impala 1.3.3 is only available as part of CDH 5.0.5, not under CDH 4.

Issues Fixed in the 1.3.2 Release / CDH 5.0.4

This backported bug fix is the only change between Impala 1.3.1 and Impala 1.3.2.

Note: Impala 1.3.3 is only available as part of CDH 5.0.5, not under CDH 4.

Failed DCHECK in disk-io-mgr-reader-context.cc:174

The serious error in the title could occur, with the supplemental message:

num_used_buffers_ < 0: #used=-1 during cancellation HDFS cached data

The issue was due to the use of HDFS caching with data files accessed by Impala. Support for HDFS caching in Impala
was introduced in Impala 1.4.0 for CDH 5.1.0. The fix for this issue was backported to Impala 1.3.x, and is the only
change in Impala 1.3.2 for CDH 5.0.4.

Bug: IMPALA-1019

Severity: High

Workaround: On CDH 5.0.x, upgrade to CDH 5.0.4 with Impala 1.3.2, where this issue is fixed. In Impala 1.3.0 or 1.3.1
on CDH 5.0.x, do not use HDFS caching for Impala data files in Impala internal or external tables. If some of these data
files are cached (for example because they are used by other components that take advantage of HDFS caching), set
the query option DISABLE_CACHED_READS=true. To set that option for all Impala queries across all sessions, start
impaladwith the -default_query_options option and include this setting in the option argument, or on a cluster
managed by Cloudera Manager, fill in this option setting on the Impala Daemon options page.

Resolution: This issue is fixed in Impala 1.3.2 for CDH 5.0.4. The addition of HDFS caching support in Impala 1.4 means
that this issue does not apply to any new level of Impala on CDH 5.

Issues Fixed in the 1.3.1 Release / CDH 5.0.3

This section lists the most significant issues fixed in Impala 1.3.1.

For the full list of fixed issues in Impala 1.3.1, see this report in the JIRA system. Because 1.3.1 is the first 1.3.x release
for CDH 4, if you are on CDH 4, also consult Issues Fixed in the 1.3.0 Release / CDH 5.0.0 on page 673.

Impalad crashes when left joining inline view that has aggregate using distinct

Impala could encounter a severe error in a query combining a left outer join with an inline view containing a
COUNT(DISTINCT) operation.

Bug: IMPALA-904

Apache Impala Guide | 671

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-1083
https://issues.cloudera.org/browse/IMPALA-1019
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+1.3.1%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/browse/IMPALA-904

Severity: High

Incorrect result with group by query with null value in group by data

If the result of a GROUP BY operation is NULL, the resulting rowmight be omitted from the result set. This issue depends
on the data values and data types in the table.

Bug: IMPALA-901

Severity: High

Drop Function does not clear local library cache

When a UDF is dropped through the DROP FUNCTION statement, and then the UDF is re-created with a new .so

library or JAR file, the original version of the UDF is still used when the UDF is called from queries.

Bug: IMPALA-786

Severity: High

Workaround: Restart the impalad daemon on all nodes.

Compute stats doesn't propagate underlying error correctly

If a COMPUTE STATS statement encountered an error, the error message is “Query aborted” with no further detail.
Common reasons why a COMPUTE STATS statement might fail include network errors causing the coordinator node
to lose contact with other impalad instances, and column names that match Impala reserved words. (Currently, if a
column name is an Impala reserved word, COMPUTE STATS always returns an error.)

Bug: IMPALA-762

Severity: High

Inserts should respect changes in partition location

After an ALTER TABLE statement that changes theLOCATION property of a partition, a subsequent INSERT statement
would always use a path derived from the base data directory for the table.

Bug: IMPALA-624

Severity: High

Text data with carriage returns generates wrong results for count(*)

A COUNT(*) operation could return the wrong result for text tables using nul characters (ASCII value 0) as delimiters.

Bug: IMPALA-13

Severity: High

Workaround: Impala adds support for ASCII 0 characters as delimiters through the clause FIELDS TERMINATED BY
'\0'.

IO Mgr should take instance memory limit into account when creating io buffers

Impala could allocate more memory than necessary during certain operations.

Bug: IMPALA-488

Severity: High

Workaround: Before issuing a COMPUTE STATS statement for a Parquet table, reduce the number of threads used in
that operation by issuing SET NUM_SCANNER_THREADS=2 in impala-shell. Then issue UNSET
NUM_SCANNER_THREADS before continuing with queries.

672 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-901
https://issues.cloudera.org/browse/IMPALA-786
https://issues.cloudera.org/browse/IMPALA-762
https://issues.cloudera.org/browse/IMPALA-624
https://issues.cloudera.org/browse/IMPALA-13
https://issues.cloudera.org/browse/IMPALA-488

Impala should provide an option for new sub directories to automatically inherit the permissions of the parent directory

When new subdirectories are created underneath a partitioned table by an INSERT statement, previously the new
subdirectories always used the default HDFS permissions for theimpala user, whichmight not be suitable for directories
intended to be read and written by other components also.

Bug: IMPALA-827

Severity: High

Resolution: In Impala 1.3.1 and higher, you can specify the --insert_inherit_permissions configuration when
starting the impalad daemon.

Illegal state exception (or crash) in query with UNION in inline view

Impala could encounter a severe error in a query where the FROM list contains an inline view that includes a UNION.
The exact type of the error varies.

Bug: IMPALA-888

Severity: High

INSERT column reordering doesn't work with SELECT clause

The ability to specify a subset of columns in an INSERT statement, with order different than in the target table, was
not working as intended.

Bug: IMPALA-945

Severity: High

Issues Fixed in the 1.3.0 Release / CDH 5.0.0

This section lists the most significant issues fixed in Impala 1.3.0, primarily issues that could cause wrong results, or
cause problems running the COMPUTE STATS statement, which is very important for performance and scalability.

For the full list of fixed issues, see this report in the JIRA system.

Inner join after right join may produce wrong results

The automatic join reordering optimization could incorrectly reorder queries with an outer join or semi join followed
by an inner join, producing incorrect results.

Bug: IMPALA-860

Severity: High

Workaround: Including the STRAIGHT_JOIN keyword in the query prevented the issue from occurring.

Incorrect results with codegen on multi-column group by with NULLs.

A query with a GROUP BY clause referencing multiple columns could introduce incorrect NULL values in some columns
of the result set. The incorrect NULL values could appear in rows where a different GROUP BY column actually did
return NULL.

Bug: IMPALA-850

Severity: High

Using distinct inside aggregate function may cause incorrect result when using having clause

A query could return incorrect results if it combined an aggregate function call, a DISTINCT operator, and a HAVING
clause, without a GROUP BY clause.

Bug: IMPALA-845

Severity: High

Apache Impala Guide | 673

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-827
https://issues.cloudera.org/browse/IMPALA-888
https://issues.cloudera.org/browse/IMPALA-945
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+1.3%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/browse/IMPALA-860
https://issues.cloudera.org/browse/IMPALA-850
https://issues.cloudera.org/browse/IMPALA-845

Aggregation on union inside (inline) view not distributed properly.

An aggregation query or a query with ORDER BY and LIMIT could be executed on a single node in some cases, rather
than distributed across the cluster. This issue affected queries whose FROM clause referenced an inline view containing
a UNION.

Bug: IMPALA-831

Severity: High

Wrong expression may be used in aggregate query if there are multiple similar expressions

If a GROUP BY query referenced the same columns multiple times using different operators, result rows could contain
multiple copies of the same expression.

Bug: IMPALA-817

Severity: High

Incorrect results when changing the order of aggregates in the select list with codegen enabled

Referencing the same columns in both a COUNT() and a SUM() call in the same query, or some other combinations
of aggregate function calls, could incorrectly return a result of 0 fromone of the aggregate functions. This issue affected
references to TINYINT and SMALLINT columns, but not INT or BIGINT columns.

Bug: IMPALA-765

Severity: High

Workaround: Setting the query option DISABLE_CODEGEN=TRUE prevented the incorrect results. Switching the order
of the function calls could also prevent the issue from occurring.

Union queries give Wrong result in a UNION followed by SIGSEGV in another union

A UNION query could produce a wrong result, followed by a serious error for a subsequent UNION query.

Bug: IMPALA-723

Severity: High

String data in MR-produced parquet files may be read incorrectly

Impala could return incorrect string results when reading uncompressed Parquet data files containing multiple row
groups. This issue only affected Parquet data files produced by MapReduce jobs.

Bug: IMPALA-729

Severity: High

Compute stats need to use quotes with identifiers that are Impala keywords

Using a column or table name that conflicted with Impala keywords could prevent running the COMPUTE STATS
statement for the table.

Bug: IMPALA-777

Severity: High

COMPUTE STATS child queries do not inherit parent query options.

The COMPUTE STATS statement did not use the setting of the MEM_LIMIT query option in impala-shell, potentially
causing problems gathering statistics for wide Parquet tables.

Bug: IMPALA-903

Severity: High

674 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-831
https://issues.cloudera.org/browse/IMPALA-817
https://issues.cloudera.org/browse/IMPALA-765
https://issues.cloudera.org/browse/IMPALA-723
https://issues.cloudera.org/browse/IMPALA-729
https://issues.cloudera.org/browse/IMPALA-777
https://issues.cloudera.org/browse/IMPALA-903

COMPUTE STATS should update partitions in batches

The COMPUTE STATS statement could be slow or encounter a timeout while analyzing a table with many partitions.

Bug: IMPALA-880

Severity: High

Fail early (in analysis) when COMPUTE STATS is run against Avro table with no columns

If the columns for an Avro table were all defined in the TBLPROPERTIES or SERDEPROPERTIES clauses, the COMPUTE
STATS statementwould fail after completely analyzing the table, potentially causing a long delay. Although the COMPUTE
STATS statement still does not work for such tables, now the problem is detected and reported immediately.

Bug: IMPALA-867

Severity: High

Workaround: Re-create the Avro table with columns defined in SQL style, using the output of SHOW CREATE TABLE.
(See the JIRA page for detailed steps.)

Issues Fixed in the 1.2.4 Release

This section lists the most significant issues fixed in Impala 1.2.4. For the full list of fixed issues, see this report in the
JIRA system.

The Catalog Server exits with an OOM error after a certain number of CREATE statements

A large number of concurrent CREATE TABLE statements can cause the catalogd process to consume excessive
memory, and potentially be killed due to an out-of-memory condition.

Bug: IMPALA-818

Severity: High

Workaround: Restart the catalogd service and re-try the DDL operations that failed.

Catalog Server consumes excessive cpu cycle

A large number of tables andpartitions could result in unnecessary CPUoverheadduring Impala idle time andbackground
operations.

Bug: IMPALA-821

Severity: High

Resolution: Catalog server processing was optimized in several ways.

Query against Avro table crashes Impala with codegen enabled

A query against a TIMESTAMP column in an Avro table could encounter a serious issue.

Bug: IMPALA-828

Severity: High

Workaround: Set the query option DISABLE_CODEGEN=TRUE

Statestore seems to send concurrent heartbeats to the same subscriber leading to repeated "Subscriber 'hostname'
is registering with statestore, ignoring update" messages

Impala nodes could produce repeated errormessages after recovering from a communication error with the statestore
service.

Bug: IMPALA-809

Severity: High

Apache Impala Guide | 675

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-880
https://issues.cloudera.org/browse/IMPALA-867
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+1.2.4%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+1.2.4%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/browse/IMPALA-818
https://issues.cloudera.org/browse/IMPALA-821
https://issues.cloudera.org/browse/IMPALA-828
https://issues.cloudera.org/browse/IMPALA-809

Join predicate incorrectly ignored

A join query could produce wrong results if multiple equality comparisons between the same tables referred to the
same column.

Bug: IMPALA-805

Severity: High

Query result differing between Impala and Hive

Certain outer join queries could return wrong results. If one of the tables involved in the join was an inline view, some
tests from the WHERE clauses could be applied to the wrong phase of the query.

Severity: High

ArrayIndexOutOfBoundsException / Invalid query handle when reading large HBase cell

An HBase cell could contain a value larger than 32 KB, leading to a serious error when Impala queries that table. The
error could occur even if the applicable row is not part of the result set.

Bug: IMPALA-715

Severity: High

Workaround: Use smaller values in the HBase table, or exclude the column containing the large value from the result
set.

select with distinct and full outer join, impalad coredump

A query involving a DISTINCT operator combined with a FULL OUTER JOIN could encounter a serious error.

Bug: IMPALA-735

Severity: High

Workaround: Set the query option DISABLE_CODEGEN=TRUE

Impala cannot load tables with more than Short.MAX_VALUE number of partitions

If a table had more than 32,767 partitions, Impala would not recognize the partitions above the 32K limit and query
results could be incomplete.

Bug: IMPALA-749

Severity: High

Various issues with HBase row key specification

Queries against HBase tables could fail with an error if the row key was compared to a function return value rather
than a string constant. Also, queries against HBase tables could fail if the WHERE clause contained combinations of
comparisons that could not possibly match any row key.

Severity: High

Resolution:Queries now return appropriate results when function calls are used in the row key comparison. For queries
involving non-existent row keys, such as WHERE row_key IS NULL or where the lower bound is greater than the
upper bound, the query succeeds and returns an empty result set.

Issues Fixed in the 1.2.3 Release

This release is a fix release that supercedes Impala 1.2.2, with the same features and fixes as 1.2.2 plus one additional
fix for compatibility with Parquet files generated outside of Impala by components such as Hive, Pig, or MapReduce.

676 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-805
https://issues.cloudera.org/browse/IMPALA-715
https://issues.cloudera.org/browse/IMPALA-735
https://issues.cloudera.org/browse/IMPALA-749

Impala cannot read Parquet files with multiple row groups

The parquet-mr library included with CDH4.5 writes files that are not readable by Impala, due to the presence of
multiple row groups. Queries involving these data files might result in a crash or a failure with an error such as “Column
chunk should not contain two dictionary pages”.

This issue does not occur for Parquet files produced by Impala INSERT statements, because Impala only produces files
with a single row group.

Bug: IMPALA-720

Severity: High

Issues Fixed in the 1.2.2 Release

This section lists the most significant issues fixed in Impala 1.2.2. For the full list of fixed issues, see this report in the
JIRA system.

Order of table references in FROM clause is critical for optimal performance

Impala does not currently optimize the join order of queries; instead, it joins tables in the order in which they are listed
in the FROM clause. Queries that contain one or more large tables on the right hand side of joins (either an explicit
join expressed as a JOIN statement or a join implicit in the list of table references in the FROM clause) may run slowly
or crash Impala due to out-of-memory errors. For example:

SELECT ... FROM small_table JOIN large_table

Severity: Medium

Anticipated Resolution: Fixed in Impala 1.2.2.

Workaround: In Impala 1.2.2 and higher, use the COMPUTE STATS statement to gather statistics for each table involved
in the join query, after data is loaded. Prior to Impala 1.2.2, modify the query, if possible, to join the largest table first.
For example:

SELECT ... FROM small_table JOIN large_table

should be modified to:

SELECT ... FROM large_table JOIN small_table

Parquet in CDH4.5 writes data files that are sometimes unreadable by Impala

Some Parquet files could be generated by other components that Impala could not read.

Bug: IMPALA-694

Severity: High

Resolution: The underlying issue is being addressed by a fix in the CDH Parquet libraries. Impala 1.2.2 works around
the problem and reads the existing data files.

Deadlock in statestore when unregistering a subscriber and building a topic update

The statestore service cound experience an internal error leading to a hang.

Bug: IMPALA-699

Severity: High

IllegalStateException when doing a union involving a group by

A UNION query where one side involved a GROUP BY operation could cause a serious error.

Bug: IMPALA-687

Apache Impala Guide | 677

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-720
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+1.2.2%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+1.2.2%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/browse/IMPALA-694
https://issues.cloudera.org/browse/IMPALA-699
https://issues.cloudera.org/browse/IMPALA-687

Severity: High

Impala Parquet Writer hit DCHECK in RleEncoder

A serious error could occur when doing an INSERT into a Parquet table.

Bug: IMPALA-689

Severity: High

Hive UDF jars cannot be loaded by the FE

If the JAR file for a Java-based Hive UDF was not in the CLASSPATH, the UDF could not be called during a query.

Bug: IMPALA-695

Severity: High

Issues Fixed in the 1.2.1 Release

This section lists the most significant issues fixed in Impala 1.2.1. For the full list of fixed issues, see this report in the
JIRA system.

Scanners use too much memory when reading past scan range

While querying a table with long column values, Impala could over-allocate memory leading to an out-of-memory
error. This problem was observed most frequently with tables using uncompressed RCFile or text data files.

Bug: IMPALA-525

Severity: High

Resolution: Fixed in 1.2.1

Join node consumes memory way beyond mem-limit

A join query could allocate a temporary work area that was larger than needed, leading to an out-of-memory error.
The fix makes Impala return unused memory to the system when the memory limit is reached, avoiding unnecessary
memory errors.

Bug: IMPALA-657

Severity: High

Resolution: Fixed in 1.2.1

Excessive memory consumption when query tables with 1k columns (Parquet file)

Impala could encounter an out-of-memory condition setting up work areas for Parquet tables with many columns. The
fix reduces the size of the allocated memory when not actually needed to hold table data.

Bug: IMPALA-652

Severity: High

Resolution: Fixed in 1.2.1

Issues Fixed in the 1.2.0 Beta Release

This section lists the most significant issues fixed in Impala 1.2 (beta). For the full list of fixed issues, see this report in
the JIRA system.

Issues Fixed in the 1.1.1 Release

This section lists the most significant issues fixed in Impala 1.1.1. For the full list of fixed issues, see this report in the
JIRA system.

678 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-689
https://issues.cloudera.org/browse/IMPALA-695
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+1.2.1%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+1.2.1%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/browse/IMPALA-525
https://issues.cloudera.org/browse/IMPALA-657
https://issues.cloudera.org/browse/IMPALA-652
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+1.2%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+1.2%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+1.1.1%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+1.1.1%22+and+resolution%3D%22Fixed%22

Unexpected LLVM Crash When Querying Doubles on CentOS 5.x

Certain queries involving DOUBLE columns could fail with a serious error. The fix improves the generation of native
machine instructions for certain chipsets.

Bug: IMPALA-477

Severity: High

"block size is too big" error with Snappy-compressed RCFile containing null

Queries could fail with a “block size is too big” error, due to NULL values in RCFile tables using Snappy compression.

Bug: IMPALA-482

Severity: High

Cannot query RC file for table that has more columns than the data file

Queries could fail if an Impala RCFile table was defined with more columns than in the corresponding RCFile data files.

Bug: IMPALA-510

Severity: High

Views Sometimes Not Utilizing Partition Pruning

Certain combinations of clauses in a view definition for a partitioned table could result in inefficient performance and
incorrect results.

Bug: IMPALA-495

Severity: High

Update the serde name we write into the metastore for Parquet tables

The SerDes class string written into Parquet data files created by Impala was updated for compatibility with Parquet
support in Hive. See Incompatible Changes Introduced in Impala 1.1.1 on page 635 for the steps to update older Parquet
data files for Hive compatibility.

Bug: IMPALA-485

Severity: High

Selective queries over large tables produce unnecessary memory consumption

A query returning a small result sets from a large table could tie upmemory unnecessarily for the duration of the query.

Bug: IMPALA-534

Severity: High

Impala stopped to query AVRO tables

Queries against Avro tables could fail depending onwhether the Avro schemaURLwas specified in the TBLPROPERTIES
or SERDEPROPERTIES field. The fix causes Impala to check both fields for the schema URL.

Bug: IMPALA-538

Severity: High

Impala continues to allocate more memory even though it has exceed its mem-limit

Queries could allocate substantially more memory than specified in the impalad -mem_limit startup option. The fix
causes more frequent checking of the limit during query execution.

Bug: IMPALA-520

Severity: High

Apache Impala Guide | 679

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-477
https://issues.cloudera.org/browse/IMPALA-482
https://issues.cloudera.org/browse/IMPALA-510
https://issues.cloudera.org/browse/IMPALA-495
https://issues.cloudera.org/browse/IMPALA-485
https://issues.cloudera.org/browse/IMPALA-534
https://issues.cloudera.org/browse/IMPALA-538
https://issues.cloudera.org/browse/IMPALA-520

Issues Fixed in the 1.1.0 Release

This section lists the most significant issues fixed in Impala 1.1. For the full list of fixed issues, see this report in the
JIRA system.

10-20% perf regression for most queries across all table formats

This issue is due to a performance tradeoff between systems running many queries concurrently, and systems running
a single query. Systems running only a single query could experience lower performance than in early beta releases.
Systems running many queries simultaneously should experience higher performance than in the beta releases.

Severity: High

planner fails with "Join requires at least one equality predicate between the two tables" when "from" table order does
not match "where" join order

A query could fail if it involved 3 or more tables and the last join table was specified as a subquery.

Bug: IMPALA-85

Severity: High

Parquet writer uses excessive memory with partitions

INSERT statements against partitioned tables using the Parquet format could use excessive amounts of memory as
the number of partitions grew large.

Bug: IMPALA-257

Severity: High

Comments in impala-shell in interactive mode are not handled properly causing syntax errors or wrong results

The impala-shell interpreter did not accept comment entered at the command line, making it problematic to copy
and paste from scripts or other code examples.

Bug: IMPALA-192

Severity: Low

Cancelled queries sometimes aren't removed from the inflight query list

The Impala web UI would sometimes display a query as if it were still running, after the query was cancelled.

Bug: IMPALA-364

Severity: High

Impala's 1.0.1 Shell Broke Python 2.4 Compatibility (AttributeError: 'module' object has no attribute 'field_size_limit)

The impala-shell command in Impala 1.0.1 does not work with Python 2.4, which is the default on Red Hat 5.

For the impala-shell command in Impala 1.0, the -o option (pipe output to a file) does not work with Python 2.4.

Bug: IMPALA-396

Severity: High

Issues Fixed in the 1.0.1 Release

This section lists the most significant issues fixed in Impala 1.0.1. For the full list of fixed issues, see this report in the
JIRA system.

Impala parquet scanner cannot read all data files generated by other frameworks

Impalamight issue an erroneous errormessagewhen processing a Parquet data file produced by a non-Impala Hadoop
component.

680 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+1.1%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+1.1%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/browse/IMPALA-85
https://issues.cloudera.org/browse/IMPALA-257
https://issues.cloudera.org/browse/IMPALA-192
https://issues.cloudera.org/browse/IMPALA-364
https://issues.cloudera.org/browse/IMPALA-396
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+1.0.1%22+and+resolution%3D%22Fixed%22
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project%3Dimpala+and+fixVersion%3D%22Impala+1.0.1%22+and+resolution%3D%22Fixed%22

Bug: IMPALA-333

Severity: High

Resolution: Fixed

Impala is unable to query RCFile tables which describe fewer columns than the file's header.

If an RCFile table definition had fewer columns than the fields actually in the data files, queries would fail.

Bug: IMPALA-293

Severity: High

Resolution: Fixed

Impala does not correctly substitute _HOST with hostname in --principal

The _HOST placeholder in the --principal startup optionwas not substitutedwith the correct hostname, potentially
leading to a startup error in setups using Kerberos authentication.

Bug: IMPALA-351

Severity: High

Resolution: Fixed

HBase query missed the last region

A query for an HBase table could omit data from the last region.

Bug: IMPALA-356

Severity: High

Resolution: Fixed

Hbase region changes are not handled correctly

After a region in an HBase table was split or moved, an Impala query might return incomplete or out-of-date results.

Bug: IMPALA-300

Severity: High

Resolution: Fixed

Query state for successful create table is EXCEPTION

After a successful CREATE TABLE statement, the corresponding query state would be incorrectly reported as
EXCEPTION.

Bug: IMPALA-349

Severity: High

Resolution: Fixed

Double check release of JNI-allocated byte-strings

Operations involving calls to the Java JNI subsystem (for example, queries on HBase tables) could allocate memory but
not release it.

Bug: IMPALA-358

Severity: High

Resolution: Fixed

Apache Impala Guide | 681

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-333
https://issues.cloudera.org/browse/IMPALA-293
https://issues.cloudera.org/browse/IMPALA-351
https://issues.cloudera.org/browse/IMPALA-356
https://issues.cloudera.org/browse/IMPALA-300
https://issues.cloudera.org/browse/IMPALA-349
https://issues.cloudera.org/browse/IMPALA-358

Impala returns 0 for bad time values in UNIX_TIMESTAMP, Hive returns NULL

Impala returns 0 for bad time values in UNIX_TIMESTAMP, Hive returns NULL.

Impala:

impala> select UNIX_TIMESTAMP('10:02:01') ;
impala> 0

Hive:

hive> select UNIX_TIMESTAMP('10:02:01') FROM tmp;
hive> NULL

Bug: IMPALA-16

Severity: Low

Anticipated Resolution: Fixed

INSERT INTO TABLE SELECT <constant> does not work.

Insert INTO TABLE SELECT <constant> will not insert any data and may return an error.

Severity: Low

Anticipated Resolution: Fixed

Issues Fixed in the 1.0 GA Release

Here are the major user-visible issues fixed in Impala 1.0. For a full list of fixed issues, see this report in the public issue
tracker.

Undeterministically receive "ERROR: unknown row bach destination..." and "ERROR: Invalid query handle" from impala
shell when running union query

A query containing both UNION and LIMIT clauses could intermittently cause the impalad process to halt with a
segmentation fault.

Bug: IMPALA-183

Severity: High

Resolution: Fixed

Insert with NULL partition keys results in SIGSEGV.

An INSERT statement specifying a NULL value for one of the partitioning columns could cause the impalad process
to halt with a segmentation fault.

Bug: IMPALA-190

Severity: High

Resolution: Fixed

INSERT queries don't show completed profiles on the debug webpage

In the Impala web user interface, the profile page for an INSERT statement showed obsolete information for the
statement once it was complete.

Bug: IMPALA-217

Severity: High

Resolution: Fixed

682 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-16
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+impala+AND+resolution+%3D+Fixed+AND+fixVersion+%3D+%22Impala+1.0%22+ORDER+BY+key+ASC%2C+assignee+ASC%2C+priority+DESC
https://issues.cloudera.org/secure/IssueNavigator.jspa?reset=true&jqlQuery=project+%3D+impala+AND+resolution+%3D+Fixed+AND+fixVersion+%3D+%22Impala+1.0%22+ORDER+BY+key+ASC%2C+assignee+ASC%2C+priority+DESC
https://issues.cloudera.org/browse/IMPALA-183
https://issues.cloudera.org/browse/IMPALA-190
https://issues.cloudera.org/browse/IMPALA-217

Impala HBase scan is very slow

Queries involving an HBase table could be slower than expected, due to excessive memory usage on the Impala nodes.

Bug: IMPALA-231

Severity: High

Resolution: Fixed

Add some library version validation logic to impalad when loading impala-lzo shared library

No validation was done to check that the impala-lzo shared library was compatible with the version of Impala,
possibly leading to a crash when using LZO-compressed text files.

Bug: IMPALA-234

Severity: High

Resolution: Fixed

Workaround: Always upgrade the impala-lzo library at the same time as you upgrade Impala itself.

Problems inserting into tables with TIMESTAMP partition columns leading table metadata loading failures and failed
dchecks

INSERT statements for tables partitioned on columns involving datetime types could appear to succeed, but cause
errors for subsequent queries on those tables. The problemwas especially serious if an improperly formatted timestamp
value was specified for the partition key.

Bug: IMPALA-238

Severity: Critical

Resolution: Fixed

Ctrl-C sometimes interrupts shell in system call, rather than cancelling query

Pressing Ctrl-C in the impala-shell interpreter could sometimes display an error and return control to the shell,
making it impossible to cancel the query.

Bug: IMPALA-243

Severity: Critical

Resolution: Fixed

Empty string partition value causes metastore update failure

Specifying an empty string or NULL for a partition key in an INSERT statement would fail.

Bug: IMPALA-252

Severity: High

Resolution: Fixed. The behavior for empty partition keys was made more compatible with the corresponding Hive
behavior.

Round() does not output the right precision

The round() function did not always return the correct number of significant digits.

Bug: IMPALA-266

Severity: High

Resolution: Fixed

Apache Impala Guide | 683

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-231
https://issues.cloudera.org/browse/IMPALA-234
https://issues.cloudera.org/browse/IMPALA-238
https://issues.cloudera.org/browse/IMPALA-243
https://issues.cloudera.org/browse/IMPALA-252
https://issues.cloudera.org/browse/IMPALA-266

Cannot cast string literal to string

Casting from a string literal back to the same type would cause an “invalid type cast” error rather than leaving the
original value unchanged.

Bug: IMPALA-267

Severity: High

Resolution: Fixed

Excessive mem usage for certain queries which are very selective

Some queries that returned very few rows experienced unnecessary memory usage.

Bug: IMPALA-288

Severity: High

Resolution: Fixed

HdfsScanNode crashes in UpdateCounters

A serious error could occur for relatively small and inexpensive queries.

Bug: IMPALA-289

Severity: High

Resolution: Fixed

Parquet performance issues on large dataset

Certain aggregation queries against Parquet tables were inefficient due to lower than required thread utilization.

Bug: IMPALA-292

Severity: High

Resolution: Fixed

impala not populating hive metadata correctly for create table

The Impala CREATE TABLE command did not fill in the owner and tbl_type columns in the Hivemetastore database.

Bug: IMPALA-295

Severity: High

Resolution: Fixed. The metadata was made more Hive-compatible.

impala daemons die if statestore goes down

The impalad instances in a cluster could halt when the statestored process became unavailable.

Bug: IMPALA-312

Severity: High

Resolution: Fixed

Constant SELECT clauses do not work in subqueries

A subquery would fail if the SELECT statement inside it returned a constant value rather than querying a table.

Bug: IMPALA-67

Severity: High

Resolution: Fixed

684 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-267
https://issues.cloudera.org/browse/IMPALA-288
https://issues.cloudera.org/browse/IMPALA-289
https://issues.cloudera.org/browse/IMPALA-292
https://issues.cloudera.org/browse/IMPALA-295
https://issues.cloudera.org/browse/IMPALA-312
https://issues.cloudera.org/browse/IMPALA-67

Right outer Join includes NULLs as well and hence wrong result count

The result set from a right outer join query could include erroneous rows containing NULL values.

Bug: IMPALA-90

Severity: High

Resolution: Fixed

Parquet scanner hangs for some queries

The Parquet scanner non-deterministically hangs when executing some queries.

Bug: IMPALA-204

Severity:Medium

Resolution: Fixed

Issues Fixed in Version 0.7 of the Beta Release

Impala does not gracefully handle unsupported Hive table types (INDEX and VIEW tables)

When attempting to load metadata from an unsupported Hive table type (INDEX and VIEW tables), Impala fails with
an unclear error message.

Bug: IMPALA-167

Severity: Low

Resolution: Fixed in 0.7

DDL statements (CREATE/ALTER/DROP TABLE) are not supported in the Impala Beta Release

Severity:Medium

Resolution: Fixed in 0.7

Avro is not supported in the Impala Beta Release

Severity:Medium

Resolution: Fixed in 0.7

Workaround: None

Impala does not currently allow limiting the memory consumption of a single query

It is currently not possible to limit the memory consumption of a single query. All tables on the right hand side of JOIN
statements need to be able to fit in memory. If they do not, Impala may crash due to out of memory errors.

Severity: High

Resolution: Fixed in 0.7

Aggregate of a subquery result set returns wrong results if the subquery contains a 'limit' and data is distributed across
multiple nodes

Aggregate of a subquery result set returns wrong results if the subquery contains a 'limit' clause and data is distributed
across multiple nodes. From the query plan, it looks like we are just summing the results from each worker node.

Bug: IMPALA-20

Severity: Low

Resolution: Fixed in 0.7

Apache Impala Guide | 685

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-90
https://issues.cloudera.org/browse/IMPALA-204
https://issues.cloudera.org/browse/IMPALA-167
https://issues.cloudera.org/browse/IMPALA-20

Partition pruning for arbitrary predicates that are fully bound by a particular partition column

We currently cannot utilize a predicate like "country_code in ('DE', 'FR', 'US')" to do partitioning pruning, because that
requires an equality predicate or a binary comparison.

We should create a superclass of planner.ValueRange, ValueSet, that can be constructed with an arbitrary predicate,
and whose isInRange(analyzer, valueExpr) constructs a literal predicate by substitution of the valueExpr into the
predicate.

Bug: IMPALA-144

Severity:Medium

Resolution: Fixed in 0.7

Issues Fixed in Version 0.6 of the Beta Release

Impala reads the NameNode address and port as command line parameters

Impala reads the NameNode address and port as command line parameters rather than reading them from
core-site.xml. Updating the NameNode address in the core-site.xml file does not propagate to Impala.

Severity: Low

Resolution: Fixed in 0.6 - Impala reads the namenode location and port from the Hadoop configuration files, though
setting -nn and -nn_port overrides this. Users are advised not to set -nn or -nn_port.

Queries may fail on secure environment due to impalad Kerberos ticket expiration

Queries may fail on secure environment due to impalad Kerberos tickets expiring. This can happen if the Impala
-kerberos_reinit_interval flag is set to a value ten minutes or less. This may lead to an impalad requesting a
ticket with a lifetime that is less than the time to the next ticket renewal.

Bug: IMPALA-64

Severity:Medium

Resolution: Fixed in 0.6

Concurrent queries may fail when Impala uses Thrift to communicate with the Hive Metastore

Concurrent queries may fail when Impala is using Thrift to communicate with part of the Hive Metastore such as the
HiveMetastore Service. In such a case, the error get_fields failed: out of sequence response"may occur
because Impala shared a single HiveMetastore Client connection across threads.With Impala 0.6, a separate connection
is used for each metadata request.

Bug: IMPALA-48

Severity: Low

Resolution: Fixed in 0.6

impalad fails to start if unable to connect to the Hive Metastore

Impala fails to start if it is unable to establish a connection with the Hive Metastore. This behavior was fixed, allowing
Impala to start, even when no Metastore is available.

Bug: IMPALA-58

Severity: Low

Resolution: Fixed in 0.6

Impala treats database names as case-sensitive in some contexts

In some queries (including "USE database" statements), database names are treated as case-sensitive. This may lead
queries to fail with an IllegalStateException.

686 | Apache Impala Guide

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-144
https://issues.cloudera.org/browse/IMPALA-64
https://issues.cloudera.org/browse/IMPALA-48
https://issues.cloudera.org/browse/IMPALA-58

Bug: IMPALA-44

Severity:Medium

Resolution: Fixed in 0.6

Impala does not ignore hidden HDFS files

Impala does not ignore hidden HDFS files, meaning those files prefixed with a period '.' or underscore '_'. This diverges
from Hive/MapReduce, which skips these files.

Bug: IMPALA-18

Severity: Low

Resolution: Fixed in 0.6

Issues Fixed in Version 0.5 of the Beta Release

Impala may have reduced performance on tables that contain a large number of partitions

Impalamay have reduced performance on tables that contain a large number of partitions. This is due to extra overhead
reading/parsing the partition metadata.

Severity: High

Resolution: Fixed in 0.5

Backend client connections not getting cached causes an observable latency in secure clusters

Backend impalads do not cache connections to the coordinator. On a secure cluster, this introduces a latency proportional
to the number of backend clients involved in query execution, as the cost of establishing a secure connection is much
higher than in the non-secure case.

Bug: IMPALA-38

Severity:Medium

Resolution: Fixed in 0.5

Concurrent queries may fail with error: "Table object has not been been initialised : `PARTITIONS`"

Concurrent queriesmay fail with error: "Table object has not been been initialised : `PARTITIONS`".
This was due to a lack of locking in the Impala table/database metadata cache.

Bug: IMPALA-30

Severity:Medium

Resolution: Fixed in 0.5

UNIX_TIMESTAMP format behaviour deviates from Hive when format matches a prefix of the time value

The Impala UNIX_TIMESTAMP(val, format) operation compares the length of format and val and returns NULL if they
do not match. Hive instead effectively truncates val to the length of the format parameter.

Bug: IMPALA-15

Severity:Medium

Resolution: Fixed in 0.5

Apache Impala Guide | 687

Impala Release Notes

https://issues.cloudera.org/browse/IMPALA-44
https://issues.cloudera.org/browse/IMPALA-18
https://issues.cloudera.org/browse/IMPALA-38
https://issues.cloudera.org/browse/IMPALA-30
https://issues.cloudera.org/browse/IMPALA-15

Issues Fixed in Version 0.4 of the Beta Release

Impala fails to refresh the Hive metastore if a Hive temporary configuration file is removed

Impala is impacted by Hive bugHIVE-3596whichmay causemetastore refreshes to fail if a Hive temporary configuration
file is deleted (normally located at /tmp/hive-<user>-<tmp_number>.xml). Additionally, the impala-shell will
incorrectly report that the failed metadata refresh completed successfully.

Severity:Medium

Anticipated Resolution: To be fixed in a future release

Workaround: Restart the impalad service. Use the impalad log to check for metadata refresh errors.

lpad/rpad builtin functions is not correct.

The lpad/rpad builtin functions generate the wrong results.

Severity:Mild

Resolution: Fixed in 0.4

Files with .gz extension reported as 'not supported'

Compressed files with extensions incorrectly generate an exception.

Bug: IMPALA-14

Severity: High

Resolution: Fixed in 0.4

Queries with large limits would hang.

Some queries with large limits were hanging.

Severity: High

Resolution: Fixed in 0.4

Order by on a string column produces incorrect results if there are empty strings

Severity: Low

Resolution: Fixed in 0.4

Issues Fixed in Version 0.3 of the Beta Release

All table loading errors show as unknown table

If Impala is unable to load the metadata for a table for any reason, a subsequent query referring to that table will
return an unknown table error message, even if the table is known.

Severity:Mild

Resolution: Fixed in 0.3

A table that cannot be loaded will disappear from SHOW TABLES

After failing to load metadata for a table, Impala removes that table from the list of known tables returned in SHOW
TABLES. Subsequent attempts to query the table returns 'unknown table', even if the metadata for that table is fixed.

Severity:Mild

Resolution: Fixed in 0.3

Impala cannot read from HBase tables that are not created as external tables in the hive metastore.

Attempting to select from these tables fails.

688 | Apache Impala Guide

Impala Release Notes

https://issues.apache.org/jira/browse/HIVE-3596
https://issues.cloudera.org/browse/IMPALA-14

Severity:Medium

Resolution: Fixed in 0.3

Certain queries that contain OUTER JOINs may return incorrect results

Queries that contain OUTER JOINs may not return the correct results if there are predicates referencing any of the
joined tables in the WHERE clause.

Severity:Medium

Resolution: Fixed in 0.3.

Issues Fixed in Version 0.2 of the Beta Release

Subqueries which contain aggregates cannot be joined with other tables or Impala may crash

Subqueries that contain an aggregate cannot be joined with another table or Impala may crash. For example:

SELECT * FROM (SELECT sum(col1) FROM some_table GROUP BY col1) t1 JOIN other_table ON
(...);

Severity:Medium

Resolution: Fixed in 0.2

An insert with a limit that runs as more than one query fragment inserts more rows than the limit.

For example:

INSERT OVERWRITE TABLE test SELECT * FROM test2 LIMIT 1;

Severity:Medium

Resolution: Fixed in 0.2

Query with limit clause might fail.

For example:

SELECT * FROM test2 LIMIT 1;

Severity:Medium

Resolution: Fixed in 0.2

Files in unsupported compression formats are read as plain text.

Attempting to read such files does not generate a diagnostic.

Severity:Medium

Resolution: Fixed in 0.2

Impala server raises a null pointer exception when running an HBase query.

When querying an HBase table whose row-key is string type, the Impala server may raise a null pointer exception.

Severity:Medium

Resolution: Fixed in 0.2

Apache Impala Guide | 689

Impala Release Notes

Appendix: Apache License, Version 2.0

SPDX short identifier: Apache-2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through
9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of
fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

"Object" form shall mean any form resulting frommechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole,
an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or
additions to thatWork or DerivativeWorks thereof, that is intentionally submitted to Licensor for inclusion in theWork
by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of
discussing and improving theWork, but excluding communication that is conspicuouslymarked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whoma Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare DerivativeWorks of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license tomake, havemade,
use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims

690 | Cloudera

Appendix: Apache License, Version 2.0

licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated
within theWork constitutes direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and
2. You must cause any modified files to carry prominent notices stating that You changed the files; and
3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,

and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part
of the Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along
with the DerivativeWorks; or, within a display generated by the DerivativeWorks, if andwherever such third-party
notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify
the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be
construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as
a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an "AS IS" BASIS,WITHOUTWARRANTIES OR CONDITIONSOF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required
by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable
to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure ormalfunction, or any and all other commercial damages or losses), even
if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

Cloudera | 691

Appendix: Apache License, Version 2.0

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
"[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class name and description of
purpose be included on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

692 | Cloudera

Appendix: Apache License, Version 2.0

	Table of Contents
	Introducing Apache Impala
	Impala Benefits
	How Impala Works with CDH
	Primary Impala Features

	Impala Concepts and Architecture
	Components of the Impala Server
	The Impala Daemon
	The Impala Statestore
	The Impala Catalog Service

	Developing Impala Applications
	Overview of the Impala SQL Dialect
	Overview of Impala Programming Interfaces

	How Impala Fits Into the Hadoop Ecosystem
	How Impala Works with Hive
	Overview of Impala Metadata and the Metastore
	How Impala Uses HDFS
	How Impala Uses HBase

	Planning for Impala Deployment
	Impala Requirements
	Product Compatibility Matrix
	Supported Operating Systems
	Hive Metastore and Related Configuration
	Java Dependencies
	Networking Configuration Requirements
	Hardware Requirements
	User Account Requirements

	Guidelines for Designing Impala Schemas

	Installing Impala
	What is Included in an Impala Installation
	Installing Impala with Cloudera Manager
	Installing Impala without Cloudera Manager

	Managing Impala
	Post-Installation Configuration for Impala
	Configuring Impala to Work with ODBC
	Downloading the ODBC Driver
	Configuring the ODBC Port
	Example of Setting Up an ODBC Application for Impala
	Notes about JDBC and ODBC Interaction with Impala SQL Features

	Configuring Impala to Work with JDBC
	Configuring the JDBC Port
	Choosing the JDBC Driver
	Enabling Impala JDBC Support on Client Systems
	Establishing JDBC Connections
	Notes about JDBC and ODBC Interaction with Impala SQL Features
	Kudu Considerations for DML Statements

	Upgrading Impala
	Upgrading Impala through Cloudera Manager - Parcels
	Upgrading Impala through Cloudera Manager - Packages
	Upgrading Impala without Cloudera Manager

	Starting Impala
	Starting Impala through Cloudera Manager
	Starting Impala from the Command Line
	Modifying Impala Startup Options
	Configuring Impala Startup Options through Cloudera Manager
	Configuring Impala Startup Options through the Command Line
	Checking the Values of Impala Configuration Options
	Startup Options for impalad Daemon
	Startup Options for statestored Daemon
	Startup Options for catalogd Daemon

	Impala Tutorials
	Tutorials for Getting Started
	Explore a New Impala Instance
	Load CSV Data from Local Files
	Point an Impala Table at Existing Data Files
	Describe the Impala Table
	Query the Impala Table
	Data Loading and Querying Examples
	Loading Data
	Sample Queries

	Advanced Tutorials
	Attaching an External Partitioned Table to an HDFS Directory Structure
	Switching Back and Forth Between Impala and Hive
	Cross Joins and Cartesian Products with the CROSS JOIN Operator

	Dealing with Parquet Files with Unknown Schema

	Impala Administration
	Admission Control and Query Queuing
	Overview of Impala Admission Control
	How Impala Admission Control Relates to YARN
	How Impala Schedules and Enforces Limits on Concurrent Queries
	How Admission Control works with Impala Clients (JDBC, ODBC, HiveServer2)
	Configuring Admission Control
	Configuring Admission Control Using Cloudera Manager
	Configuring Admission Control Using the Command Line
	Examples of Admission Control Configurations

	Guidelines for Using Admission Control

	Integrated Resource Management with YARN
	The Llama Daemon
	How Resource Limits Are Enforced
	impala-shell Query Options for Resource Management
	Limitations of Resource Management for Impala

	Setting Timeout Periods for Daemons, Queries, and Sessions
	Increasing the Statestore Timeout
	Setting the Idle Query and Idle Session Timeouts for impalad
	Cancelling a Query

	Using Impala through a Proxy for High Availability
	Overview of Proxy Usage and Load Balancing for Impala
	Special Proxy Considerations for Clusters Using Kerberos
	Example of Configuring HAProxy Load Balancer for Impala

	Managing Disk Space for Impala Data

	Impala Security
	Security Guidelines for Impala
	Securing Impala Data and Log Files
	Installation Considerations for Impala Security
	Securing the Hive Metastore Database
	Securing the Impala Web User Interface
	Configuring TLS/SSL for Impala
	Using Cloudera Manager
	Using the Command Line
	Using TLS/SSL with Business Intelligence Tools

	Enabling Sentry Authorization for Impala
	The Sentry Privilege Model
	Starting the impalad Daemon with Sentry Authorization Enabled
	Using Impala with the Sentry Service (CDH 5.1 or higher only)
	Using Impala with the Sentry Policy File
	Policy File Location and Format
	Examples of Policy File Rules for Security Scenarios
	Using Multiple Policy Files for Different Databases

	Setting Up Schema Objects for a Secure Impala Deployment
	Privilege Model and Object Hierarchy
	Debugging Failed Sentry Authorization Requests
	Managing Sentry for Impala through Cloudera Manager
	The DEFAULT Database in a Secure Deployment

	Impala Authentication
	Enabling Kerberos Authentication for Impala
	Requirements for Using Impala with Kerberos
	Configuring Impala to Support Kerberos Security
	Enabling Kerberos for Impala

	Enabling Kerberos for Impala with a Proxy Server
	Enabling Impala Delegation for Kerberos Users
	Using TLS/SSL with Business Intelligence Tools

	Enabling LDAP Authentication for Impala
	Requirements for Using Impala with LDAP
	Kerberos Authentication for Connections Between Impala Components

	Server-Side LDAP Setup
	Support for Custom Bind Strings
	Secure LDAP Connections
	LDAP Authentication for impala-shell Interpreter
	Enabling LDAP for Impala in Hue
	Enabling Impala Delegation for LDAP Users
	LDAP Restrictions for Impala

	Using Multiple Authentication Methods with Impala
	Configuring Impala Delegation for Hue and BI Tools
	Enabling Delegation in Cloudera Manager

	Auditing Impala Operations
	Durability and Performance Considerations for Impala Auditing
	Format of the Audit Log Files
	Which Operations Are Audited
	Reviewing the Audit Logs

	Viewing Lineage Information for Impala Data

	Impala SQL Language Reference
	Comments
	Data Types
	ARRAY Complex Type (CDH 5.5 or higher only)
	BIGINT Data Type
	BOOLEAN Data Type
	CHAR Data Type (CDH 5.2 or higher only)
	DECIMAL Data Type (CDH 5.1 or higher only)
	DOUBLE Data Type
	FLOAT Data Type
	INT Data Type
	MAP Complex Type (CDH 5.5 or higher only)
	REAL Data Type
	SMALLINT Data Type
	STRING Data Type
	STRUCT Complex Type (CDH 5.5 or higher only)
	TIMESTAMP Data Type
	TINYINT Data Type
	VARCHAR Data Type (CDH 5.2 or higher only)
	Complex Types (CDH 5.5 or higher only)
	Benefits of Impala Complex Types
	Overview of Impala Complex Types
	Design Considerations for Complex Types
	How Complex Types Differ from Traditional Data Warehouse Schemas
	Physical Storage for Complex Types
	File Format Support for Impala Complex Types
	Choosing Between Complex Types and Normalized Tables
	Differences Between Impala and Hive Complex Types
	Limitations and Restrictions for Complex Types

	Using Complex Types from SQL
	Complex Type Syntax for DDL Statements
	SQL Statements that Support Complex Types
	DDL Statements and Complex Types
	Queries and Complex Types

	Pseudocolumns for ARRAY and MAP Types
	ITEM and POS Pseudocolumns
	KEY and VALUE Pseudocolumns

	Loading Data Containing Complex Types
	Using Complex Types as Nested Types
	Accessing Complex Type Data in Flattened Form Using Views

	Tutorials and Examples for Complex Types
	Sample Schema and Data for Experimenting with Impala Complex Types
	Constructing Parquet Files with Complex Columns Using Hive
	Flattening Normalized Tables into a Single Table with Complex Types
	Interchanging Complex Type Tables and Data Files with Hive and Other Components

	Literals
	Numeric Literals
	String Literals
	Boolean Literals
	Timestamp Literals
	NULL

	SQL Operators
	Arithmetic Operators
	BETWEEN Operator
	Comparison Operators
	EXISTS Operator
	IN Operator
	IS NULL Operator
	LIKE Operator
	Logical Operators
	REGEXP Operator
	RLIKE Operator

	Impala Schema Objects and Object Names
	Overview of Impala Aliases
	Overview of Impala Databases
	Overview of Impala Functions
	Overview of Impala Identifiers
	Overview of Impala Tables
	Internal Tables
	External Tables
	File Formats

	Overview of Impala Views

	Impala SQL Statements
	DDL Statements
	DML Statements
	ALTER TABLE Statement
	ALTER VIEW Statement
	COMPUTE STATS Statement
	CREATE DATABASE Statement
	CREATE FUNCTION Statement
	CREATE ROLE Statement (CDH 5.2 or higher only)
	CREATE TABLE Statement
	CREATE VIEW Statement
	DESCRIBE Statement
	DROP DATABASE Statement
	DROP FUNCTION Statement
	DROP ROLE Statement (CDH 5.2 or higher only)
	DROP STATS Statement
	DROP TABLE Statement
	DROP VIEW Statement
	EXPLAIN Statement
	GRANT Statement (CDH 5.2 or higher only)
	INSERT Statement
	VALUES Clause

	INVALIDATE METADATA Statement
	LOAD DATA Statement
	REFRESH Statement
	REVOKE Statement (CDH 5.2 or higher only)
	SELECT Statement
	Joins in Impala SELECT Statements
	ORDER BY Clause
	GROUP BY Clause
	HAVING Clause
	LIMIT Clause
	OFFSET Clause
	UNION Clause
	Subqueries in Impala SELECT Statements
	WITH Clause
	DISTINCT Operator
	Query Hints in Impala SELECT Statements

	SET Statement
	Query Options for the SET Statement
	ABORT_ON_DEFAULT_LIMIT_EXCEEDED Query Option
	ABORT_ON_ERROR Query Option
	ALLOW_UNSUPPORTED_FORMATS Query Option
	APPX_COUNT_DISTINCT Query Option (CDH 5.2 or higher only)
	BATCH_SIZE Query Option
	COMPRESSION_CODEC Query Option (CDH 5.2 or higher only)
	DEBUG_ACTION Query Option
	DEFAULT_ORDER_BY_LIMIT Query Option
	DISABLE_CODEGEN Query Option
	DISABLE_UNSAFE_SPILLS Query Option (CDH 5.2 or higher only)
	EXEC_SINGLE_NODE_ROWS_THRESHOLD Query Option (CDH 5.3 or higher only)
	EXPLAIN_LEVEL Query Option
	HBASE_CACHE_BLOCKS Query Option
	HBASE_CACHING Query Option
	LIVE_PROGRESS Query Option (CDH 5.5 or higher only)
	LIVE_SUMMARY Query Option (CDH 5.5 or higher only)
	MAX_ERRORS Query Option
	MAX_IO_BUFFERS Query Option
	MAX_SCAN_RANGE_LENGTH Query Option
	MEM_LIMIT Query Option
	NUM_NODES Query Option
	NUM_SCANNER_THREADS Query Option
	PARQUET_COMPRESSION_CODEC Query Option
	PARQUET_FILE_SIZE Query Option
	QUERY_TIMEOUT_S Query Option (CDH 5.2 or higher only)
	REQUEST_POOL Query Option
	RESERVATION_REQUEST_TIMEOUT Query Option (CDH 5 only)
	SUPPORT_START_OVER Query Option
	SYNC_DDL Query Option
	V_CPU_CORES Query Option (CDH 5 only)

	SHOW Statement
	SHOW FILES Statement
	SHOW ROLES Statement
	SHOW CURRENT ROLE
	SHOW ROLE GRANT Statement
	SHOW GRANT ROLE Statement
	SHOW DATABASES
	SHOW TABLES Statement
	SHOW CREATE TABLE Statement
	SHOW CREATE VIEW Statement
	SHOW TABLE STATS Statement
	SHOW COLUMN STATS Statement
	SHOW PARTITIONS Statement
	SHOW FUNCTIONS Statement

	TRUNCATE TABLE Statement (CDH 5.5 or higher only)
	USE Statement

	Impala Built-In Functions
	Impala Mathematical Functions
	Impala Bit Functions
	Impala Type Conversion Functions
	Impala Date and Time Functions
	Impala Conditional Functions
	Impala String Functions
	Impala Miscellaneous Functions
	Impala Aggregate Functions
	APPX_MEDIAN Function
	AVG Function
	COUNT Function
	GROUP_CONCAT Function
	MAX Function
	MIN Function
	NDV Function
	STDDEV, STDDEV_SAMP, STDDEV_POP Functions
	SUM Function
	VARIANCE, VARIANCE_SAMP, VARIANCE_POP, VAR_SAMP, VAR_POP Functions

	Impala Analytic Functions
	OVER Clause
	Window Clause
	AVG Function - Analytic Context
	COUNT Function - Analytic Context
	CUME_DIST Function (CDH 5.5 or higher only)
	DENSE_RANK Function
	FIRST_VALUE Function
	LAG Function
	LAST_VALUE Function
	LEAD Function
	MAX Function - Analytic Context
	MIN Function - Analytic Context
	NTILE Function (CDH 5.5 or higher only)
	PERCENT_RANK Function (CDH 5.5 or higher only)
	RANK Function
	ROW_NUMBER Function
	SUM Function - Analytic Context

	Impala User-Defined Functions (UDFs)
	UDF Concepts
	UDFs and UDAFs
	Native Impala UDFs
	Using Hive UDFs with Impala

	Runtime Environment for UDFs
	Installing the UDF Development Package
	Writing User-Defined Functions (UDFs)
	Getting Started with UDF Coding
	Data Types for Function Arguments and Return Values
	Variable-Length Argument Lists
	Handling NULL Values
	Memory Allocation for UDFs
	Thread-Safe Work Area for UDFs
	Error Handling for UDFs

	Writing User-Defined Aggregate Functions (UDAFs)
	The Underlying Functions for a UDA
	Intermediate Results for UDAs

	Building and Deploying UDFs
	Performance Considerations for UDFs
	Examples of Creating and Using UDFs
	Security Considerations for User-Defined Functions
	Limitations and Restrictions for Impala UDFs

	SQL Differences Between Impala and Hive
	HiveQL Features not Available in Impala
	Semantic Differences Between Impala and HiveQL Features

	Porting SQL from Other Database Systems to Impala
	Porting DDL and DML Statements
	Porting Data Types from Other Database Systems
	SQL Statements to Remove or Adapt
	SQL Constructs to Doublecheck
	Next Porting Steps after Verifying Syntax and Semantics

	Using the Impala Shell (impala-shell Command)
	impala-shell Configuration Options
	Summary of impala-shell Configuration Options
	impala-shell Configuration File

	Connecting to impalad through impala-shell
	Running Commands and SQL Statements in impala-shell
	impala-shell Command Reference

	Tuning Impala for Performance
	Impala Performance Guidelines and Best Practices
	Performance Considerations for Join Queries
	How Joins Are Processed when Statistics Are Unavailable
	Overriding Join Reordering with STRAIGHT_JOIN
	Examples of Join Order Optimization

	Table and Column Statistics
	Overview of Table Statistics
	Overview of Column Statistics
	How Table and Column Statistics Work for Partitioned Tables
	Overview of Incremental Statistics
	Generating Table and Column Statistics (COMPUTE STATS Statement)
	Detecting Missing Statistics
	Keeping Statistics Up to Date
	Setting the NUMROWS Value Manually through ALTER TABLE
	Examples of Using Table and Column Statistics with Impala

	Benchmarking Impala Queries
	Controlling Impala Resource Usage
	Using HDFS Caching with Impala (CDH 5.1 or higher only)
	Overview of HDFS Caching for Impala
	Setting Up HDFS Caching for Impala
	Enabling HDFS Caching for Impala Tables and Partitions
	Loading and Removing Data with HDFS Caching Enabled
	Administration for HDFS Caching with Impala
	Performance Considerations for HDFS Caching with Impala

	Testing Impala Performance
	Understanding Impala Query Performance - EXPLAIN Plans and Query Profiles
	Using the EXPLAIN Plan for Performance Tuning
	Using the SUMMARY Report for Performance Tuning
	Using the Query Profile for Performance Tuning

	Detecting and Correcting HDFS Block Skew Conditions

	Scalability Considerations for Impala
	Scalability Considerations for the Impala Statestore
	SQL Operations that Spill to Disk
	Limits on Query Size and Complexity
	Scalability Considerations for Impala I/O
	Scalability Considerations for Table Layout

	Partitioning for Impala Tables
	When to Use Partitioned Tables
	SQL Statements for Partitioned Tables
	Static and Dynamic Partitioning Clauses
	Permissions for Partition Subdirectories
	Partition Pruning for Queries
	Checking if Partition Pruning Happens for a Query
	What SQL Constructs Work with Partition Pruning

	Partition Key Columns
	Setting Different File Formats for Partitions
	Managing Partitions

	How Impala Works with Hadoop File Formats
	Choosing the File Format for a Table
	Using Text Data Files with Impala Tables
	Query Performance for Impala Text Tables
	Creating Text Tables
	Data Files for Text Tables
	Loading Data into Impala Text Tables
	Using LZO-Compressed Text Files
	Using gzip, bzip2, or Snappy-Compressed Text Files

	Using the Parquet File Format with Impala Tables
	Creating Parquet Tables in Impala
	Loading Data into Parquet Tables
	Query Performance for Impala Parquet Tables
	Partitioning for Parquet Tables

	Snappy and GZip Compression for Parquet Data Files
	Example of Parquet Table with Snappy Compression
	Example of Parquet Table with GZip Compression
	Example of Uncompressed Parquet Table
	Examples of Sizes and Speeds for Compressed Parquet Tables
	Example of Copying Parquet Data Files

	Parquet Tables for Impala Complex Types
	Exchanging Parquet Data Files with Other Hadoop Components
	How Parquet Data Files Are Organized
	RLE and Dictionary Encoding for Parquet Data Files

	Compacting Data Files for Parquet Tables
	Schema Evolution for Parquet Tables
	Data Type Considerations for Parquet Tables

	Using the Avro File Format with Impala Tables
	Creating Avro Tables
	Using a Hive-Created Avro Table in Impala
	Specifying the Avro Schema through JSON
	Loading Data into an Avro Table
	Enabling Compression for Avro Tables
	How Impala Handles Avro Schema Evolution
	Data Type Considerations for Avro Tables

	Using the RCFile File Format with Impala Tables
	Creating RCFile Tables and Loading Data
	Enabling Compression for RCFile Tables

	Using the SequenceFile File Format with Impala Tables
	Creating SequenceFile Tables and Loading Data
	Enabling Compression for SequenceFile Tables

	Using Impala to Query HBase Tables
	Overview of Using HBase with Impala
	Configuring HBase for Use with Impala
	Supported Data Types for HBase Columns
	Performance Considerations for the Impala-HBase Integration
	Use Cases for Querying HBase through Impala
	Loading Data into an HBase Table
	Limitations and Restrictions of the Impala and HBase Integration
	Examples of Querying HBase Tables from Impala

	Using Impala to Query the Amazon S3 Filesystem
	Specifying Impala Credentials to Access Data in S3
	Loading Data into S3 for Impala Queries
	Creating Impala Databases, Tables, and Partitions for Data Stored on S3
	Internal and External Tables Located on S3
	Running and Tuning Impala Queries for Data Stored on S3
	Understanding and Tuning Impala Query Performance for S3 Data

	Restrictions on Impala Support for S3

	Using Impala with Isilon Storage
	Required Configurations

	Using Impala Logging
	Locations and Names of Impala Log Files
	Managing Impala Logs through Cloudera Manager or Manually
	Rotating Impala Logs
	Reviewing Impala Logs
	Understanding Impala Log Contents
	Setting Logging Levels
	Redacting Sensitive Information from Impala Log Files

	Troubleshooting Impala
	Troubleshooting Impala SQL Syntax Issues
	Troubleshooting I/O Capacity Problems
	Impala Troubleshooting Quick Reference
	Impala Web User Interface for Debugging
	Debug Web UI for impalad
	Main Page
	Backends Page
	Catalog Page
	Logs Page
	Memz Page
	Metrics Page
	Queries Page
	Sessions Page
	Threadz Page
	Varz Page

	Ports Used by Impala
	Impala Reserved Words
	List of Current Reserved Words
	Planning for Future Reserved Words

	Impala Frequently Asked Questions
	Transition to Apache Governance
	Trying Impala
	Impala System Requirements
	Supported and Unsupported Functionality In Impala
	How do I?
	Impala Performance
	Impala Use Cases
	Questions about Impala And Hive
	Impala Availability
	Impala Internals
	SQL
	Partitioned Tables
	HBase

	Impala Release Notes
	Impala Release Notes
	New Features in Apache Impala
	Further Information Available in Standalone CDH Release Notes
	New Features in Impala Version 2.4.x / CDH 5.6.x
	New Features in Impala Version 2.3.x / CDH 5.5.x
	New Features in Impala Version 2.2.9 / CDH 5.4.9
	New Features in Impala Version 2.2.8 / CDH 5.4.8
	New Features in Impala Version 2.2.7 / CDH 5.4.7
	New Features in Impala Version 2.2.x for CDH 5.4.5
	New Features in Impala 2.2.x for CDH 5.4.3 and 5.4.4
	New Features in Impala for CDH 5.4.x
	New Features in Impala Version 2.2.0 / CDH 5.4.0
	New Features in Impala Version 2.1.7 / CDH 5.3.9
	New Features in Impala Version 2.1.6 / CDH 5.3.8
	New Features in Impala Version 2.1.5 / CDH 5.3.6
	New Features in Impala Version 2.1.4 / CDH 5.3.4
	New Features in Impala Version 2.1.3 / CDH 5.3.3
	New Features in Impala Version 2.1.2 / CDH 5.3.2
	New Features in Impala Version 2.1.1 / CDH 5.3.1
	New Features in Impala Version 2.1.0 / CDH 5.3.0
	New Features in Impala Version 2.0.5 / CDH 5.2.6
	New Features in Impala Version 2.0.4 / CDH 5.2.5
	New Features in Impala Version 2.0.3 / CDH 5.2.4
	New Features in Impala Version 2.0.2 / CDH 5.2.3
	New Features in Impala Version 2.0.1 / CDH 5.2.1
	New Features in Impala Version 2.0.0 / CDH 5.2.0
	New Features in Impala Version 1.4.4 / CDH 5.1.5
	New Features in Impala Version 1.4.3 / CDH 5.1.4
	New Features in Impala Version 1.4.2 / CDH 5.1.3
	New Features in Impala Version 1.4.1 / CDH 5.1.2
	New Features in Impala Version 1.4.0 / CDH 5.1.0
	New Features in Impala Version 1.3.3 / CDH 5.0.5
	New Features in Impala Version 1.3.2 / CDH 5.0.4
	New Features in Impala Version 1.3.1 / CDH 5.0.3
	New Features in Impala Version 1.3.0 / CDH 5.0.0
	New Features in Impala Version 1.2.4
	New Features in Impala Version 1.2.3
	New Features in Impala Version 1.2.2
	New Features in Impala Version 1.2.1
	New Features in Impala Version 1.2.0 (Beta)
	New Features in Impala Version 1.1.1
	New Features in Impala Version 1.1
	New Features in Impala Version 1.0.1
	New Features in Impala Version 1.0
	New Features in Version 0.7 of the Impala Beta Release
	New Features in Version 0.6 of the Impala Beta Release
	New Features in Version 0.5 of the Impala Beta Release
	New Features in Version 0.4 of the Impala Beta Release
	New Features in Version 0.3 of the Impala Beta Release
	New Features in Version 0.2 of the Impala Beta Release

	Incompatible Changes and Limitations in Apache Impala
	Further Information Available in Standalone CDH Release Notes
	Incompatible Changes Introduced in Impala for CDH 5.6.x / Impala 2.4.x
	Incompatible Changes Introduced in Impala for CDH 5.5.x / Impala 2.3.x
	Incompatible Changes Introduced in Impala for CDH 5.4.x (CDH 5.4.1 through CDH 5.4.9)
	Incompatible Changes Introduced in Impala 2.2.0 / CDH 5.4.0
	Incompatible Changes Introduced in Cloudera Impala 2.1.7 / CDH 5.3.9
	Incompatible Changes Introduced in Impala 2.1.6 / CDH 5.3.8
	Incompatible Changes Introduced in Impala 2.1.5 / CDH 5.3.6
	Incompatible Changes Introduced in Impala 2.1.4 / CDH 5.3.4
	Incompatible Changes Introduced in Impala 2.1.3 / CDH 5.3.3
	Incompatible Changes Introduced in Impala 2.1.2 / CDH 5.3.2
	Incompatible Changes Introduced in Impala 2.1.1 / CDH 5.3.1
	Incompatible Changes Introduced in Impala 2.1.0 / CDH 5.3.0
	Incompatible Changes Introduced in Impala 2.0.5 / CDH 5.2.6
	Incompatible Changes Introduced in Impala 2.0.4 / CDH 5.2.5
	Incompatible Changes Introduced in Impala 2.0.3 / CDH 5.2.4
	Incompatible Changes Introduced in Impala 2.0.2 / CDH 5.2.3
	Incompatible Changes Introduced in Impala 2.0.1 / CDH 5.2.1
	Incompatible Changes Introduced in Impala 2.0.0 / CDH 5.2.0
	Incompatible Changes Introduced in Impala 1.4.4 / CDH 5.1.5
	Incompatible Changes Introduced in Impala 1.4.3 / CDH 5.1.4
	Incompatible Changes Introduced in Impala 1.4.2 / CDH 5.1.3
	Incompatible Changes Introduced in Impala 1.4.1 / CDH 5.1.2
	Incompatible Changes Introduced in Impala 1.4.0 / CDH 5.1.0
	Incompatible Changes Introduced in Impala 1.3.3 / CDH 5.0.5
	Incompatible Changes Introduced in Impala 1.3.2 / CDH 5.0.4
	Incompatible Changes Introduced in Impala 1.3.1 / CDH 5.0.3
	Incompatible Changes Introduced in Impala 1.3.0 / CDH 5.0.0
	Incompatible Changes Introduced in Impala 1.2.4
	Incompatible Changes Introduced in Impala 1.2.3
	Incompatible Changes Introduced in Impala 1.2.2
	Incompatible Changes Introduced in Impala 1.2.1
	Incompatible Changes Introduced in Impala 1.2.0 (Beta)
	Incompatible Changes Introduced in Impala 1.1.1
	Incompatible Change Introduced in Impala 1.1
	Incompatible Changes Introduced in Impala 1.0
	Incompatible Change Introduced in Version 0.7 of the Cloudera Impala Beta Release
	Incompatible Change Introduced in Version 0.6 of the Cloudera Impala Beta Release
	Incompatible Change Introduced in Version 0.4 of the Cloudera Impala Beta Release
	Incompatible Change Introduced in Version 0.3 of the Cloudera Impala Beta Release

	Known Issues and Workarounds in Impala
	Further Information Available in Standalone CDH Release Notes
	Impala Known Issues: Crashes and Hangs
	Impalad is crashing if udf jar is not available in hdfs location for first time

	Impala Known Issues: Performance
	Slow DDL statements for tables with large number of partitions

	Impala Known Issues: Usability
	Less than 100% progress on completed simple SELECT queries

	Impala Known Issues: JDBC and ODBC Drivers
	ImpalaODBC: Can not get the value in the SQLGetData(m-x th column) after the SQLBindCol(m th column)

	Impala Known Issues: Security
	impala-shell requires Python with ssl module
	Kerberos tickets must be renewable
	Server-to-server SSL and Kerberos do not work together

	Impala Known Issues: Supportability
	Impala Known Issues: Resources
	Process mem limit does not account for the JVM's memory usage
	Fix issues with the legacy join and agg nodes using --enable_partitioned_hash_join=false and --enable_partitioned_aggregation=false

	Impala Known Issues: Correctness
	parse_url() returns incorrect result if @ character in URL
	% escaping does not work correctly when occurs at the end in a LIKE clause
	ORDER BY rand() does not work.
	Duplicated column in inline view causes dropping null slots during scan
	Incorrect assignment of predicates through an outer join in an inline view.
	Crash: impala::Coordinator::ValidateCollectionSlots
	Incorrect assignment of On-clause predicate inside inline view with an outer join.
	Wrong assignment of having clause predicate across outer join
	Wrong plan of NOT IN aggregate subquery when a constant is used in subquery predicate

	Impala Known Issues: Metadata
	CatalogServer should not require HBase to be up to reload its metadata
	Can't update stats manually via alter table after upgrading to CDH 5.2

	Impala Known Issues: Interoperability
	If Hue and Impala are installed on the same host, and if you configure Hue Beeswax in CDH 4.1 to execute Impala queries, Beeswax cannot list Hive tables and shows an error on Beeswax startup.
	Deviation from Hive behavior: Impala does not do implicit casts between string and numeric and boolean types.
	Deviation from Hive behavior: Out of range values float/double values are returned as maximum allowed value of type (Hive returns NULL)
	Configuration needed for Flume to be compatible with Impala
	Avro Scanner fails to parse some schemas
	Impala BE cannot parse Avro schema that contains a trailing semi-colon
	Fix decompressor to allow parsing gzips with multiple streams
	Impala incorrectly handles text data when the new line character \n\r is split between different HDFS block
	Invalid bool value not reported as a scanner error
	Incorrect results with basic predicate on CHAR typed column.

	Impala Known Issues: Limitations
	Impala does not support running on clusters with federated namespaces

	Impala Known Issues: Miscellaneous / Older Issues
	A failed CTAS does not drop the table if the insert fails.
	Casting scenarios with invalid/inconsistent results
	Queries may hang on server-to-server exchange errors
	Catalogd may crash when loading metadata for tables with many partitions, many columns and with incremental stats
	Support individual memory allocations larger than 1 GB
	Impala Parser issue when using fully qualified table names that start with a number.
	Impala should tolerate bad locale settings
	Log Level 3 Not Recommended for Impala

	Fixed Issues in Apache Impala
	Further Information Available in Standalone CDH Release Notes
	Issues Fixed in Impala for CDH 5.6.0
	Issues Fixed in Impala for CDH 5.5.2
	SEGV in AnalyticEvalNode touching NULL input_stream_
	Free local allocations per row batch in non-partitioned AGG and HJ
	Free local allocations once for every row batch when building hash tables
	Prevent migrating incorrectly inferred identity predicates into inline views
	Fix GRANTs on URIs with uppercase letters
	Avoid sending large partition stats objects over thrift
	Throw AnalysisError if table properties are too large (for the Hive metastore)
	Make MAX_PAGE_HEADER_SIZE configurable
	reduce scanner memory usage
	Handle error when distinct and aggregates are used with a having clause
	Handle error when star based select item and aggregate are incorrectly used
	Refactor MemPool usage in HBase scan node
	Fix migration/assignment of On-clause predicates inside inline views
	DCHECK in parquet scanner after block read error
	PAGG hits mem_limit when switching to I/O buffers
	Fix check failed: sorter_runs_.back()->is_pinned_
	Don't ignore Status returned by DataStreamRecvr::CreateMerger()
	DataStreamSender::Send() does not return an error status if SendBatch() failed
	Re-enable SSL and Kerberos on server-server

	Issues Fixed in Impala for CDH 5.5.1
	Issues Fixed in Impala for CDH 5.5.0
	Fixes for Serious Errors
	Fixes for Correctness Errors

	Issues Fixed in Impala for CDH 5.4.9
	Query return empty result if it contains NullLiteral in inlineview
	HBase scan node uses 2-4x memory after upgrade to Impala 2.2.8
	Fix migration/assignment of On-clause predicates inside inline views.
	Fix wrong predicate assignment in outer joins
	Avoid sending large partition stats objects over thrift
	Avoid overflow when adding large intervals to TIMESTAMPs
	Analysis exception when a binary operator contains an IN operator with values
	Make MAX_PAGE_HEADER_SIZE configurable
	Fix spilling sorts with var-len slots that are NULL or empty.
	Work-around IMPALA-2344: Fail query with OOM in case block->Pin() fails
	Crash (likely race) tearing down BufferedBlockMgr on query failure
	QueryExecState doesn't check for query cancellation or errors
	Impala throws IllegalStateException when inserting data into a partition while select subquery group by partition columns

	Issues Fixed in Impala for CDH 5.4.8
	Impala is unable to read hive tables created with the "STORED AS AVRO" clause
	make Parquet scanner fail query if the file size metadata is stale
	Avoid allocating StringBuffer > 1GB in ScannerContext::Stream::GetBytesInternal()
	Disallow long (1<<30) strings in group_concat()
	avoid FnvHash64to32 with empty inputs
	The catalog does not close the connection to HMS during table invalidation
	Wrong DCHECK in PHJ::ProcessProbeBatch
	Avoid cardinality 0 in scan nodes of small tables and low selectivity

	Issues Fixed in Impala for CDH 5.4.7
	Warn if table stats are potentially corrupt.
	Pass correct child node in 2nd phase merge aggregation.
	Set the output smap of an EmptySetNode produced from an empty inline view.
	Set an InsertStmt's result exprs from the source statement's result exprs.
	Fix planning of empty union operands with analytics.
	Retain eq predicates bound by grouping slots with complex grouping exprs.
	Row count not set for empty partition when spec is used with compute incremental stats
	Explicit aliases + ordinals analysis bug
	Fix TupleIsNullPredicate to return false if no tuples are nullable.
	fix Expr::ComputeResultsLayout() logic
	Substitute an InsertStmt's partition key exprs with the root node's smap.

	Issues Fixed in Impala for CDH 5.4.5
	Impala DML/DDL operations corrupt table metadata leading to Hive query failures
	Avoiding a DCHECK of NULL hash table in spilled right joins
	Bug in PrintTColumnValue caused wrong stats for TINYINT partition cols
	Where clause does not propagate to joins inside nested views
	Add effective_user() builtin
	Make UTC to local TimestampValue conversion faster.
	Workaround IMPALA-1619 in BufferedBlockMgr::ConsumeMemory()

	Issues Fixed in Impala for CDH 5.4.3
	Enable using Isilon as the underlying filesystem.
	Expand set of supported timezones.
	Impala Timestamp ISO-8601 Support.
	Fix wrong warning when insert overwrite to empty table
	Expand parsing of decimals to include scientific notation

	Issues Fixed in Impala for CDH 5.4.1
	Issues Fixed in the 2.2.0 Release / CDH 5.4.0
	Altering a column's type causes column stats to stop sticking for that column
	Impala may leak or use too many file descriptors
	Spurious stale block locality messages
	DROP TABLE fails after COMPUTE STATS and ALTER TABLE RENAME to a different database.
	IMPALA-1556 causes memory leak with secure connections
	unix_timestamp() does not return correct time
	Impala incorrectly handles text data missing a newline on the last line
	Impala's ACLs check do not consider all group ACLs, only checked first one.
	Fix infinite loop opening or closing file with invalid metadata
	Cannot write Parquet files when values are larger than 64KB
	Impala Will Not Run on Certain Intel CPUs

	Issues Fixed in the 2.1.7 Release / CDH 5.3.9
	Query return empty result if it contains NullLiteral in inlineview
	Fix edge cases for decimal/integer cast
	Constant filter expressions are not checked for errors and state cleanup on exception / DCHECK on destroying an ExprContext
	QueryExecState does not check for query cancellation or errors

	Issues Fixed in the 2.1.6 Release / CDH 5.3.8
	Wrong DCHECK in PHJ::ProcessProbeBatch
	LargestSpilledPartition was not checking if partition is closed
	Avoid cardinality 0 in scan nodes of small tables and low selectivity
	fix Expr::ComputeResultsLayout() logic
	Properly unescape string value for HBase filters
	Avoiding a DCHECK of NULL hash table in spilled right joins

	Issues Fixed in the 2.1.5 Release / CDH 5.3.6
	Avoid calling ProcessBatch with out_batch->AtCapacity in right joins

	Issues Fixed in the 2.1.4 Release / CDH 5.3.4
	Crash: impala::TupleIsNullPredicate::Prepare
	Expand parsing of decimals to include scientific notation
	INSERT/CTAS evaluates and applies constant predicates.
	Assign predicates below analytic functions with a compatible partition by clause
	FIRST_VALUE may produce incorrect results with preceding windows
	FIRST_VALUE rewrite fn type might not match slot type
	AnalyticEvalNode cannot handle partition/order by exprs with NaN
	AnalyticEvalNode not properly handling nullable tuples

	Issues Fixed in the 2.1.3 Release / CDH 5.3.3
	Add compatibility flag for Hive-Parquet-Timestamps
	Use snprintf() instead of lexical_cast() in float-to-string casts
	Fix partition spilling cleanup when new stream OOMs
	Impala's ACLs check do not consider all group ACLs, only checked first one.
	Fix infinite loop opening or closing file with invalid metadata
	external-data-source-executor leaking global jni refs
	Spurious stale block locality messages

	Issues Fixed in the 2.1.2 Release / CDH 5.3.2
	Impala incorrectly handles double numbers with more than 19 significant decimal digits
	unix_timestamp() does not return correct time
	Row Count Mismatch: Partition pruning with NULL
	Fetch column stats in bulk using new (Hive .13) HMS APIs

	Issues Fixed in the 2.1.1 Release / CDH 5.3.1
	IMPALA-1556 causes memory leak with secure connections
	TSaslServerTransport::Factory::getTransport() leaks transport map entries

	Issues Fixed in the 2.1.0 Release / CDH 5.3.0
	Kerberos fetches 3x slower
	Compressed file needs to be hold on entirely in Memory
	Cannot read hbase metadata with NullPointerException: null
	Serious errors / crashes

	Issues Fixed in the 2.0.5 Release / CDH 5.2.6
	Issues Fixed in the 2.0.4 Release / CDH 5.2.5
	Add compatibility flag for Hive-Parquet-Timestamps
	IoMgr infinite loop opening/closing file when shorter than cached metadata size

	Issues Fixed in the 2.0.3 Release / CDH 5.2.4
	Anti join could produce incorrect results when spilling
	Row Count Mismatch: Partition pruning with NULL
	Fetch column stats in bulk using new (Hive .13) HMS APIs

	Issues Fixed in the 2.0.2 Release / CDH 5.2.3
	GROUP BY on STRING column produces inconsistent results
	Fix leaked file descriptor and excessive file descriptor use
	unix_timestamp() does not return correct time
	Impala should randomly select cached replica
	Impala does not always give short name to Llama.
	accept unmangled native UDF symbols

	Issues Fixed in the 2.0.1 Release / CDH 5.2.1
	Queries fail with metastore exception after upgrade and compute stats

	Issues Fixed in the 2.0.0 Release / CDH 5.2.0
	Join Hint is dropped when used inside a view
	WHERE condition ignored in simple query with RIGHT JOIN
	Query with self joined table may produce incorrect results
	Incorrect plan after reordering predicates (inner join following outer join)
	Combining fragments with compatible data partitions can lead to incorrect results due to type incompatibilities (missing casts).
	Predicate dropped: Inline view + DISTINCT aggregate in outer query
	Reuse of a column in JOIN predicate may lead to incorrect results
	Usage of TRUNC with string timestamp reliably crashes node
	Timestamp Cast Returns invalid TIMESTAMP
	IllegalStateException upon JOIN of DECIMAL columns with different precision
	Allow creating Avro tables without column definitions. Allow COMPUTE STATS to always work on Impala-created Avro tables.
	Ensure all webserver output is escaped
	Queries with union in inline view have empty resource requests
	Impala does not employ ACLs when checking path permissions for LOAD and INSERT
	Impala does not map principals to lowercase, affecting Sentry authorisation

	Issues Fixed in the 1.4.4 Release / CDH 5.1.5
	Issues Fixed in the 1.4.3 Release / CDH 5.1.4
	Issues Fixed in the 1.4.2 Release / CDH 5.1.3
	Issues Fixed in the 1.4.1 Release / CDH 5.1.2
	impalad terminating with Boost exception
	Impalad uses wrong string format when writing logs
	Update HS2 client API.
	Impalad catalog updates can fail with error: "IllegalArgumentException: fromKey out of range" at com.cloudera.impala.catalog.CatalogDeltaLog
	"Total" time counter does not capture all the network transmit time
	Impala will crash when reading certain Avro files containing bytes data
	Support specifying a custom AuthorizationProvider in Impala

	Issues Fixed in the 1.4.0 Release / CDH 5.1.0
	Failed DCHECK in disk-io-mgr-reader-context.cc:174
	impala-shell only works with ASCII characters
	The extended view definition SQL text in Views created by Impala should always have fully-qualified table names
	Impala forgets about partitions with non-existant locations
	CREATE TABLE LIKE fails if source is a view
	Improve partition pruning time
	Improve compute stats performance
	When I run CREATE TABLE new_table LIKE avro_table, the schema does not get mapped properly from an avro schema to a hive schema
	Race condition in IoMgr. Blocked ranges enqueued after cancel.
	Deadlock in scan node

	Issues Fixed in the 1.3.3 Release / CDH 5.0.5
	Issues Fixed in the 1.3.2 Release / CDH 5.0.4
	Failed DCHECK in disk-io-mgr-reader-context.cc:174

	Issues Fixed in the 1.3.1 Release / CDH 5.0.3
	Impalad crashes when left joining inline view that has aggregate using distinct
	Incorrect result with group by query with null value in group by data
	Drop Function does not clear local library cache
	Compute stats doesn't propagate underlying error correctly
	Inserts should respect changes in partition location
	Text data with carriage returns generates wrong results for count(*)
	IO Mgr should take instance memory limit into account when creating io buffers
	Impala should provide an option for new sub directories to automatically inherit the permissions of the parent directory
	Illegal state exception (or crash) in query with UNION in inline view
	INSERT column reordering doesn't work with SELECT clause

	Issues Fixed in the 1.3.0 Release / CDH 5.0.0
	Inner join after right join may produce wrong results
	Incorrect results with codegen on multi-column group by with NULLs.
	Using distinct inside aggregate function may cause incorrect result when using having clause
	Aggregation on union inside (inline) view not distributed properly.
	Wrong expression may be used in aggregate query if there are multiple similar expressions
	Incorrect results when changing the order of aggregates in the select list with codegen enabled
	Union queries give Wrong result in a UNION followed by SIGSEGV in another union
	String data in MR-produced parquet files may be read incorrectly
	Compute stats need to use quotes with identifiers that are Impala keywords
	COMPUTE STATS child queries do not inherit parent query options.
	COMPUTE STATS should update partitions in batches
	Fail early (in analysis) when COMPUTE STATS is run against Avro table with no columns

	Issues Fixed in the 1.2.4 Release
	The Catalog Server exits with an OOM error after a certain number of CREATE statements
	Catalog Server consumes excessive cpu cycle
	Query against Avro table crashes Impala with codegen enabled
	Statestore seems to send concurrent heartbeats to the same subscriber leading to repeated "Subscriber 'hostname' is registering with statestore, ignoring update" messages
	Join predicate incorrectly ignored
	Query result differing between Impala and Hive
	ArrayIndexOutOfBoundsException / Invalid query handle when reading large HBase cell
	select with distinct and full outer join, impalad coredump
	Impala cannot load tables with more than Short.MAX_VALUE number of partitions
	Various issues with HBase row key specification

	Issues Fixed in the 1.2.3 Release
	Impala cannot read Parquet files with multiple row groups

	Issues Fixed in the 1.2.2 Release
	Order of table references in FROM clause is critical for optimal performance
	Parquet in CDH4.5 writes data files that are sometimes unreadable by Impala
	Deadlock in statestore when unregistering a subscriber and building a topic update
	IllegalStateException when doing a union involving a group by
	Impala Parquet Writer hit DCHECK in RleEncoder
	Hive UDF jars cannot be loaded by the FE

	Issues Fixed in the 1.2.1 Release
	Scanners use too much memory when reading past scan range
	Join node consumes memory way beyond mem-limit
	Excessive memory consumption when query tables with 1k columns (Parquet file)

	Issues Fixed in the 1.2.0 Beta Release
	Issues Fixed in the 1.1.1 Release
	Unexpected LLVM Crash When Querying Doubles on CentOS 5.x
	"block size is too big" error with Snappy-compressed RCFile containing null
	Cannot query RC file for table that has more columns than the data file
	Views Sometimes Not Utilizing Partition Pruning
	Update the serde name we write into the metastore for Parquet tables
	Selective queries over large tables produce unnecessary memory consumption
	Impala stopped to query AVRO tables
	Impala continues to allocate more memory even though it has exceed its mem-limit

	Issues Fixed in the 1.1.0 Release
	10-20% perf regression for most queries across all table formats
	planner fails with "Join requires at least one equality predicate between the two tables" when "from" table order does not match "where" join order
	Parquet writer uses excessive memory with partitions
	Comments in impala-shell in interactive mode are not handled properly causing syntax errors or wrong results
	Cancelled queries sometimes aren't removed from the inflight query list
	Impala's 1.0.1 Shell Broke Python 2.4 Compatibility (AttributeError: 'module' object has no attribute 'field_size_limit)

	Issues Fixed in the 1.0.1 Release
	Impala parquet scanner cannot read all data files generated by other frameworks
	Impala is unable to query RCFile tables which describe fewer columns than the file's header.
	Impala does not correctly substitute _HOST with hostname in --principal
	HBase query missed the last region
	Hbase region changes are not handled correctly
	Query state for successful create table is EXCEPTION
	Double check release of JNI-allocated byte-strings
	Impala returns 0 for bad time values in UNIX_TIMESTAMP, Hive returns NULL
	INSERT INTO TABLE SELECT <constant> does not work.

	Issues Fixed in the 1.0 GA Release
	Undeterministically receive "ERROR: unknown row bach destination..." and "ERROR: Invalid query handle" from impala shell when running union query
	Insert with NULL partition keys results in SIGSEGV.
	INSERT queries don't show completed profiles on the debug webpage
	Impala HBase scan is very slow
	Add some library version validation logic to impalad when loading impala-lzo shared library
	Problems inserting into tables with TIMESTAMP partition columns leading table metadata loading failures and failed dchecks
	Ctrl-C sometimes interrupts shell in system call, rather than cancelling query
	Empty string partition value causes metastore update failure
	Round() does not output the right precision
	Cannot cast string literal to string
	Excessive mem usage for certain queries which are very selective
	HdfsScanNode crashes in UpdateCounters
	Parquet performance issues on large dataset
	impala not populating hive metadata correctly for create table
	impala daemons die if statestore goes down
	Constant SELECT clauses do not work in subqueries
	Right outer Join includes NULLs as well and hence wrong result count
	Parquet scanner hangs for some queries

	Issues Fixed in Version 0.7 of the Beta Release
	Impala does not gracefully handle unsupported Hive table types (INDEX and VIEW tables)
	DDL statements (CREATE/ALTER/DROP TABLE) are not supported in the Impala Beta Release
	Avro is not supported in the Impala Beta Release
	Impala does not currently allow limiting the memory consumption of a single query
	Aggregate of a subquery result set returns wrong results if the subquery contains a 'limit' and data is distributed across multiple nodes
	Partition pruning for arbitrary predicates that are fully bound by a particular partition column

	Issues Fixed in Version 0.6 of the Beta Release
	Impala reads the NameNode address and port as command line parameters
	Queries may fail on secure environment due to impalad Kerberos ticket expiration
	Concurrent queries may fail when Impala uses Thrift to communicate with the Hive Metastore
	impalad fails to start if unable to connect to the Hive Metastore
	Impala treats database names as case-sensitive in some contexts
	Impala does not ignore hidden HDFS files

	Issues Fixed in Version 0.5 of the Beta Release
	Impala may have reduced performance on tables that contain a large number of partitions
	Backend client connections not getting cached causes an observable latency in secure clusters
	Concurrent queries may fail with error: "Table object has not been been initialised : `PARTITIONS`"
	UNIX_TIMESTAMP format behaviour deviates from Hive when format matches a prefix of the time value

	Issues Fixed in Version 0.4 of the Beta Release
	Impala fails to refresh the Hive metastore if a Hive temporary configuration file is removed
	lpad/rpad builtin functions is not correct.
	Files with .gz extension reported as 'not supported'
	Queries with large limits would hang.
	Order by on a string column produces incorrect results if there are empty strings

	Issues Fixed in Version 0.3 of the Beta Release
	All table loading errors show as unknown table
	A table that cannot be loaded will disappear from SHOW TABLES
	Impala cannot read from HBase tables that are not created as external tables in the hive metastore.
	Certain queries that contain OUTER JOINs may return incorrect results

	Issues Fixed in Version 0.2 of the Beta Release
	Subqueries which contain aggregates cannot be joined with other tables or Impala may crash
	An insert with a limit that runs as more than one query fragment inserts more rows than the limit.
	Query with limit clause might fail.
	Files in unsupported compression formats are read as plain text.
	Impala server raises a null pointer exception when running an HBase query.

	Appendix: Apache License, Version 2.0

