
Cloudera Search

Important Notice
© 2010-2021 Cloudera, Inc. All rights reserved.

Cloudera, the Cloudera logo, and any other product or
service names or slogans contained in this document are trademarks of Cloudera and
its suppliers or licensors, and may not be copied, imitated or used, in whole or in part,
without the prior written permission of Cloudera or the applicable trademark holder. If
this documentation includes code, including but not limited to, code examples, Cloudera
makes this available to you under the terms of the Apache License, Version 2.0, including
any required notices. A copy of the Apache License Version 2.0, including any notices,
is included herein. A copy of the Apache License Version 2.0 can also be found here:
https://opensource.org/licenses/Apache-2.0

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software
Foundation. All other trademarks, registered trademarks, product names and company
names or logosmentioned in this document are the property of their respective owners.
Reference to any products, services, processes or other information, by trade name,
trademark, manufacturer, supplier or otherwise does not constitute or imply
endorsement, sponsorship or recommendation thereof by us.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this documentmay be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Cloudera.

Cloudera may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subjectmatter in this document. Except as expressly
provided in anywritten license agreement fromCloudera, the furnishing of this document
does not give you any license to these patents, trademarks copyrights, or other
intellectual property. For information about patents covering Cloudera products, see
http://tiny.cloudera.com/patents.

The information in this document is subject to change without notice. Cloudera shall
not be liable for any damages resulting from technical errors or omissions which may
be present in this document, or from use of this document.

Cloudera, Inc.
395 Page Mill Road
Palo Alto, CA 94306
info@cloudera.com
US: 1-888-789-1488
Intl: 1-650-362-0488
www.cloudera.com

Release Information

Version: Cloudera Search 5.7.x
Date: February 3, 2021

Table of Contents

Cloudera Search QuickStart Guide..7
Prerequisites for Cloudera Search QuickStart Scenarios..7

Load and Index Data in Search...7

Using Search to Query Loaded Data...8

Cloudera Search User Guide...10
Cloudera Search Tutorial..10
Validating the Deployment with the Solr REST API..10

Preparing to Index Data with Cloudera Search..11

Using MapReduce Batch Indexing with Cloudera Search..12

Near Real Time (NRT) Indexing Using Flume and the Solr Sink..16

Using Hue with Cloudera Search..21

Managing Solr Using solrctl..22
Understanding configs and instancedirs..23

Included Immutable Config Templates...24

solrctl Reference...24

Example solrctl Usage..26

Spark Indexing..27

MapReduce Batch Indexing Reference...33
MapReduceIndexerTool..33

HdfsFindTool..40

Flume Near Real-Time Indexing Reference..42
Flume Morphline Solr Sink Configuration Options...43

Flume Morphline Interceptor Configuration Options...44

Flume Solr UUIDInterceptor Configuration Options...45

Flume Solr BlobHandler Configuration Options...45

Flume Solr BlobDeserializer Configuration Options...46

Extracting, Transforming, and Loading Data With Cloudera Morphlines...46
Example Morphline Usage...49

Using the Lily HBase Batch Indexer for Indexing..53
Populating an HBase Table..53

Creating a Corresponding Collection in Search..53

Creating a Lily HBase Indexer Configuration..54

Creating a Morphline Configuration File...54

Understanding the extractHBaseCells Morphline Command...55

Running HBaseMapReduceIndexerTool...56

Understanding --go-live and HDFS ACLs..57

HBaseMapReduceIndexerTool...57

Configuring the Lily HBase NRT Indexer Service for Use with Cloudera Search...63
Enabling Cluster-wide HBase Replication...63

Pointing a Lily HBase NRT Indexer Service at an HBase Cluster that Needs to Be Indexed..63

Configuring Lily HBase Indexer Security...64

Starting a Lily HBase NRT Indexer Service..66

Using the Lily HBase NRT Indexer Service..66

Schemaless Mode Overview and Best Practices..68

Using Search through a Proxy for High Availability..70
Overview of Proxy Usage and Load Balancing for Search..70

Special Proxy Considerations for Clusters Using Kerberos...70

Migrating Solr Replicas...71

Using Custom JAR Files with Search...74

Enabling Kerberos Authentication for Search..75

Using Kerberos with Search...76

Enabling Sentry Authorization for Search using the Command Line..79
Using Roles and Privileges with Sentry..79

Using Users and Groups with Sentry..80

Using Policy Files with Sentry...81

Sample Sentry Configuration...81

Enabling Sentry in Cloudera Search for CDH 5...82

Providing Document-Level Security Using Sentry..84

Enabling Secure Impersonation...86

Debugging Failed Sentry Authorization Requests..87

Appendix: Authorization Privilege Model for Search...87

Search High Availability..89

Renaming Cloudera Manager Managed Hosts...91
Prerequisites..91

Stopping Cloudera Manager Services..91

Editing the server_host Value..92

Updating Name Services..92

Updating the Cloudera Manager Database...92

Starting Cloudera Manager Services..93

Updating for NameNode High Availability Automatic Failover...93

Updating Cloudera Management Service Host Information..94

Returning the System to a Running State..94

Tuning the Solr Server..94
Tuning to Complete During Setup..94

General Tuning...95

Other Resources...101

Troubleshooting Cloudera Search..101
Static Solr Log Analysis..103

Cloudera Search Glossary...105

Cloudera Search Frequently Asked Questions...106
General...106
What is Cloudera Search?..106

What is the difference between Lucene and Solr?...106

What is Apache Tika?...106

How does Cloudera Search relate to web search?...106

How does Cloudera Search relate to enterprise search?...106

How does Cloudera Search relate to custom search applications?..106

Do Search security features use Kerberos?..106

Do I need to configure Sentry restrictions for each access mode, such as for the admin console and for the command

line?..107

Does Search support indexing data stored in JSON files and objects?...107

How can I set up Cloudera Search so that results include links back to the source that contains the result?...................107

Why do I get an error “no field name specified in query and no default specified via 'df' param" when I query a

Schemaless collection?...107

Performance and Fail Over...107
How large of an index does Cloudera Search support per search server?...107

What is the response time latency I can expect?...108

What happens when a write to the Lucene indexer fails?...108

What hardware or configuration changes can I make to improve Search performance?...108

Are there settings that can help avoid out of memory (OOM) errors during data ingestion?...108

How can I redistribute shards across a cluster?...108

Can I adjust replication levels?...108

Schema Management..108
If my schema changes, will I need to re-index all of my data and files?..108

Can I extract fields based on regular expressions or rules?...109

Can I use nested schemas?..109

What is Apache Avro and how can I use an Avro schema for more flexible schema evolution?..109

Supportability...109
Does Cloudera Search support multiple languages?...109

Which file formats does Cloudera Search support for indexing? Does it support searching images?...............................109

Cloudera Search Frequently Asked Questions...110
General...110
What is Cloudera Search?..110

What is the difference between Lucene and Solr?...110

What is Apache Tika?...110

How does Cloudera Search relate to web search?...110

How does Cloudera Search relate to enterprise search?...110

How does Cloudera Search relate to custom search applications?..110

Do Search security features use Kerberos?..110

Do I need to configure Sentry restrictions for each access mode, such as for the admin console and for the command

line?..111

Does Search support indexing data stored in JSON files and objects?...111

How can I set up Cloudera Search so that results include links back to the source that contains the result?...................111

Why do I get an error “no field name specified in query and no default specified via 'df' param" when I query a

Schemaless collection?...111

Performance and Fail Over...111
How large of an index does Cloudera Search support per search server?...111

What is the response time latency I can expect?...112

What happens when a write to the Lucene indexer fails?...112

What hardware or configuration changes can I make to improve Search performance?...112

Are there settings that can help avoid out of memory (OOM) errors during data ingestion?...112

How can I redistribute shards across a cluster?...112

Can I adjust replication levels?...112

Schema Management..112
If my schema changes, will I need to re-index all of my data and files?..112

Can I extract fields based on regular expressions or rules?...113

Can I use nested schemas?..113

What is Apache Avro and how can I use an Avro schema for more flexible schema evolution?..113

Supportability...113
Does Cloudera Search support multiple languages?...113

Which file formats does Cloudera Search support for indexing? Does it support searching images?...............................113

Appendix: Apache License, Version 2.0...114

Cloudera Search QuickStart Guide

This guide shows how to establish and use a sample deployment to query a real data set. At a high level, you set up a
cluster, enable search, run a script to create an index and load data, and then run queries.

Prerequisites for Cloudera Search QuickStart Scenarios
Before installing Search, install Cloudera Manager and a CDH cluster. The scenario in this guide works with CDH 5.7.x
and Cloudera Manager 5.7.x. The quickstart.sh script and supporting files are included with CDH. Install Cloudera
Manager, CDH, and Solr using the Cloudera Manager and CDH QuickStart Guide.

The primary services that the Search Quick Start depends on are:

• HDFS: Stores data. Deploy on all hosts.
• ZooKeeper: Coordinates Solr hosts. Deploy on one host. Use default port 2181. The examples refer to a machine

named search-zk. You may want to give your Zookeeper machine this name to simplify reusing content exactly
as it appears in this document. If you choose a different name, you must adjust some commands accordingly.

• Solr with SolrCloud: Provides search services such as document indexing and querying. Deploy on two hosts.
• Hue: Includes the Search application, which you can use to complete search queries. Deploy Hue on one host.

After you have completed the installation processes outlined in the ClouderaManager Quick Start Guide, you can Load
and Index Data in Search on page 7.

Load and Index Data in Search
Execute the script found in a subdirectory of the following locations. The path for the script often includes the product
version, such as Cloudera Manager 5.7.x, so path details vary. To address this issue, use wildcards.

• Packages: /usr/share/doc. If Search for CDH 5.7.2 is installed to the default location using packages, the Quick
Start script is found in /usr/share/doc/search-*/quickstart.

• Parcels: /opt/cloudera/parcels/CDH/share/doc. If Search for CDH 5.7.2 is installed to the default location
using parcels, the Quick Start script is found in
/opt/cloudera/parcels/CDH/share/doc/search-*/quickstart.

The script uses several defaults that you might want to modify:

Table 1: Script Parameters and Defaults

NotesDefaultParameter

For use on an HDFS HA cluster. If you use
NAMENODE_CONNECT, do not use NAMENODE_HOST or
NAMENODE_PORT.

`hostname`:8020NAMENODE_CONNECT

If you use NAMENODE_HOST and NAMENODE_PORT, do not
use NAMENODE_CONNECT.

`hostname`NAMENODE_HOST

If you use NAMENODE_HOST and NAMENODE_PORT, do not
use NAMENODE_CONNECT.

8020NAMENODE_PORT

Zookeeper ensemble to point to. For example:

zk1,zk2,zk3:2181/solr

`hostname`:2181/solrZOOKEEPER_ENSEMBLE

Cloudera Search | 7

Cloudera Search QuickStart Guide

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_qs_quick_start.html

NotesDefaultParameter

If you use ZOOKEEPER_ENSEMBLE, do not use
ZOOKEEPER_HOST or ZOOKEEPER_PORT,
ZOOKEEPER_ROOT.

`hostname`ZOOKEEPER_HOST

2181ZOOKEEPER_PORT

/solrZOOKEEPER_ROOT

${HDFS_USER:="${USER}"}HDFS_USER

/opt/cloudera/parcels/SOLR/lib/solrSOLR_HOME

By default, the script is configured to run on the NameNode host, which is also running ZooKeeper. Override these
defaults with custom values when you start quickstart.sh. For example, to use an alternate NameNode and HDFS
user ID, you could start the script as follows:

$ NAMENODE_HOST=nnhost HDFS_USER=jsmith ./quickstart.sh

The first time the script runs, it downloads required files such as the Enron data and configuration files. If you run the
script again, it uses the Enron information already downloaded, as opposed to downloading this information again.
On such subsequent runs, the existing data is used to re-create the enron-email-collection SolrCloud collection.

Note: Downloading the data from its server, expanding the data, and uploading the data can be time
consuming. Although your connection and CPU speed determine the time these processes require,
fifteen minutes is typical and longer is not uncommon.

The script also generates a Solr configuration and creates a collection in SolrCloud. The following sections describes
what the script does and how you can complete these steps manually, if desired. The script completes the following
tasks:

1. Set variables such as hostnames and directories.
2. Create a directory to which to copy the Enron data and then copy that data to this location. This data is about 422

MB and in some tests took about five minutes to download and two minutes to untar.
3. Create directories for the current user in HDFS, change ownership of that directory to the current user, create a

directory for the Enron data, and load the Enron data to that directory. In some tests, it took about a minute to
copy approximately 3 GB of untarred data.

4. Use solrctl to create a template of the instance directory.
5. Use solrctl to create a new Solr collection for the Enron mail collection.
6. Create a directory to which the MapReduceBatchIndexer can write results. Ensure that the directory is empty.
7. Use the MapReduceIndexerTool to index the Enron data and push the result live to enron-mail-collection.

In some tests, it took about seven minutes to complete this task.

Using Search to Query Loaded Data
After loading data into Search as described in Load and Index Data in Search on page 7, you can use Hue to query
data.

Hue must have admin privileges to query loaded data. This is because querying requires Hue import collections or
indexes, and these processes can only be completed with admin permissions on the Solr service.

1. Connect to Cloudera Manager and click the Hue service, which is often named something like HUE-1. Click Hue
Web UI.

2. Click the Searchmenu.
3. Select the Enron collection for import.

8 | Cloudera Search

Cloudera Search QuickStart Guide

http://download.srv.cs.cmu.edu/%7Eenron/enron_mail_20110402.tgz

4. (Optional) Click the Enron collection to configure how the search results display. For more information, see Hue
Configuration.

5. Type a search string in the Search... text box and press Enter.
6. Review the results of your Search.

Cloudera Search | 9

Cloudera Search QuickStart Guide

http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_hue_config.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_hue_config.html

Cloudera Search User Guide

This guide explains how to configure and use Cloudera Search. This includes topics such as extracting, transforming,
and loading data, establishing high availability, and troubleshooting.

Cloudera Search documentation includes:

• Cloudera Search Release Notes
• Cloudera Search Version and Download Information
• CDH Version and Packaging Information
• Search Installation
• Cloudera Search Frequently Asked Questions on page 106

Cloudera Search Tutorial
The topics in this tutorial document assume you have completed the instructions in the Cloudera Search Installation
Guide.

Warning: This tutorial is intended for use in an unsecured environment. In an environment that
requires Kerberos authentication, this tutorial cannot be completed without additional configuration.

This tutorial first describes preparatory steps:

• Validating the Deployment with the Solr REST API
• Preparing to Index Data

Following are two tutorial topics, including indexing strategies:

• Batch Indexing Using MapReduce
• Near Real Time (NRT) Indexing Using Flume and the Solr Sink

This tutorial uses a modified schema.xml and solrconfig.xml file. In the versions of these files included with the
tutorial, unused fields have been removed for simplicity. Original versions of these files includemany additional options.
For information on all available options, see the Solr wiki:

• SchemaXml
• SolrConfigXml

Validating the Deployment with the Solr REST API

Validate the deployment by indexing and querying documents with the Solr REST API. Before beginning this process,
you must have access to the Solr admin web console, as detailed in Deploying Cloudera Search.

Note: Validating deployments using the Solr REST API only succeeds if Kerberos is not required. Use
the following processes only if Kerberos is disabled.

Initiating the collection

1. Generate the configuration files for the collection:

$ solrctl instancedir --generate $HOME/solr_configs

10 | Cloudera Search

Cloudera Search User Guide

http://www.cloudera.com/documentation/enterprise/latest/topics/rg_cdh_vd.html
http://www.cloudera.com/documentation/enterprise/latest/topics/search_installing.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/latest/Cloudera-Search-Installation-Guide/Cloudera-Search-Installation-Guide.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Search/latest/Cloudera-Search-Installation-Guide/Cloudera-Search-Installation-Guide.html
http://wiki.apache.org/solr/SchemaXml
http://wiki.apache.org/solr/SolrConfigXml

2. Upload the instance directory to ZooKeeper:

$ solrctl instancedir --create collection1 $HOME/solr_configs

3. Create the new collection:

$ solrctl collection --create collection1 -s 2 -c collection1

Indexing Data

Begin by indexing data to be queried later. Sample data is provided in the installed packages. Replace $SOLRHOST in
the example below with the name of any host running the Solr process.

• Parcel-based Installation:

$ cd /opt/cloudera/parcels/CDH/share/doc/solr-doc*/example/exampledocs
$ java -Durl=http://$SOLRHOST:8983/solr/collection1/update -jar post.jar *.xml

• Package-based Installation:

$ cd /usr/share/doc/solr-doc*/example/exampledocs
$ java -Durl=http://$SOLRHOST:8983/solr/collection1/update -jar post.jar *.xml

Running Queries

After you have indexed data, you can run a query.

To run a query:

1. Open the following link in a browser, replacing $SOLRHOST with the name of any host running the Solr process:
http://$SOLRHOST:8983/solr.

2. Click the collection name in the left panel.
3. Click Query in the Menu and select execute query.

Note: Choose wt as json and select the indent option in the web GUI to see more readable output.

Next Steps

Consider indexing more data using the Solr REST API, or move to batch indexing withMapReduce or NRT indexing with
Flume. To learn more about Solr, see the Apache Solr Tutorial.

Preparing to Index Data with Cloudera Search

Complete the following steps to prepare for indexing example data with MapReduce or Flume:

1. Start a SolrCloud cluster containing two servers (this example uses two shards) as described in Deploying Cloudera
Search. Stop and continue with the next step here after you verify the Runtime Solr Configuration.

2. Generate the configuration files for the collection, including the tweet specific schema.xml:

• Parcel-based Installation:

$ solrctl instancedir --generate $HOME/solr_configs2
$ cp
/opt/cloudera/parcels/CDH/share/doc/search*/examples/solr-nrt/collection1/conf/schema.xml
 \
$HOME/solr_configs2/conf

Cloudera Search | 11

Cloudera Search User Guide

http://lucene.apache.org/solr/4_3_0/tutorial.html

• Package-based Installation:

$ solrctl instancedir --generate $HOME/solr_configs2
$ cp /usr/share/doc/search*/examples/solr-nrt/collection1/conf/schema.xml \
$HOME/solr_configs2/conf

3. Upload the instance directory to ZooKeeper:

$ solrctl instancedir --create collection1 $HOME/solr_configs2/

4. Create the new collection:

$ solrctl collection --create collection1 -s 2 -c collection1

5. Verify the collection is live. For example, for the localhost, use http://localhost:8983/solr/#/~cloud.
6. Prepare the configuration for use with MapReduce:

$ cp -r $HOME/solr_configs2 $HOME/collection1

7. Locate input files suitable for indexing, and check that the directory exists. This example assumes you are running
the following commands as $USER with access to HDFS.

• Parcel-based Installation:

$ sudo -u hdfs hadoop fs -mkdir -p /user/$USER
$ sudo -u hdfs hadoop fs -chown $USER:$USER /user/$USER
$ hadoop fs -mkdir -p /user/$USER/indir
$ hadoop fs -copyFromLocal \
/opt/cloudera/parcels/CDH/share/doc/search*/examples/test-documents/sample-statuses-*.avro
 \
/user/$USER/indir/
$ hadoop fs -ls /user/$USER/indir

• Package-based Installation:

$ sudo -u hdfs hadoop fs -mkdir -p /user/$USER
$ sudo -u hdfs hadoop fs -chown $USER:$USER /user/$USER
$ hadoop fs -mkdir -p /user/$USER/indir
$ hadoop fs -copyFromLocal \
/usr/share/doc/search*/examples/test-documents/sample-statuses-*.avro \
/user/$USER/indir/
$ hadoop fs -ls /user/$USER/indir

8. Ensure that outdir is empty and exists in HDFS:

$ hadoop fs -rm -r -skipTrash /user/$USER/outdir
$ hadoop fs -mkdir /user/$USER/outdir
$ hadoop fs -ls /user/$USER/outdir

9. Collect HDFS/MapReduce configuration details by downloading them from Cloudera Manager or using
/etc/hadoop, depending on your installation mechanism for the Hadoop cluster. This example uses the
configuration in /etc/hadoop/conf.cloudera.mapreduce1. Substitute the correct Hadoop configuration
path for your cluster.

Using MapReduce Batch Indexing with Cloudera Search

The following sections include examples that illustrate using MapReduce to index tweets. These examples require that
you:

• Complete the process of Preparing to Index Data.

12 | Cloudera Search

Cloudera Search User Guide

http://www.cloudera.com/documentation/enterprise/latest/topics/search_install_mapreduce_tools_search.html

• Install theMapReduce tools for Cloudera Search as described in Installing MapReduce Tools for use with Cloudera
Search.

Batch Indexing into Online Solr Servers Using GoLive

Warning: If you are batch indexing into online Solr servers using GoLive, do not also batch index into
offline Solr shards.

MapReduceIndexerTool is a MapReduce batch job driver that creates a set of Solr index shards from a set of input files
andwrites the indexes into HDFS in a flexible, scalable, and fault-tolerantmanner. Using GoLive,MapReduceIndexerTool
also supports merging the output shards into a set of live customer-facing Solr servers, typically a SolrCloud. The
following sample steps demonstrate these capabilities.

1. Delete all existing documents in Solr.

$ solrctl collection --deletedocs collection1

2. Run theMapReduce job using GoLive. Replace $NNHOST and $ZKHOST in the commandwith your NameNode and
ZooKeeper host names and port numbers, as required. You do not need to specify --solr-home-dir because
the job accesses it from ZooKeeper.

• Parcel-based Installation:

$ hadoop --config /etc/hadoop/conf.cloudera.mapreduce1 jar \
/opt/cloudera/parcels/CDH/lib/solr/contrib/mr/search-mr-*-job.jar \
org.apache.solr.hadoop.MapReduceIndexerTool -D \
'mapred.child.java.opts=-Xmx500m' --log4j \
/opt/cloudera/parcels/CDH/share/doc/search*/examples/solr-nrt/log4j.properties
--morphline-file \
/opt/cloudera/parcels/CDH/share/doc/search*/examples/solr-nrt/test-morphlines/tutorialReadAvroContainer.conf
 \
--output-dir hdfs://$NNHOST:8020/user/$USER/outdir --verbose --go-live \
--zk-host $ZKHOST:2181/solr --collection collection1 \
hdfs://$NNHOST:8020/user/$USER/indir

• Package-based Installation:

$ hadoop --config /etc/hadoop/conf.cloudera.mapreduce1 jar \
/usr/lib/solr/contrib/mr/search-mr-*-job.jar \
org.apache.solr.hadoop.MapReduceIndexerTool -D \
'mapred.child.java.opts=-Xmx500m' --log4j \
/usr/share/doc/search*/examples/solr-nrt/log4j.properties --morphline-file \
/usr/share/doc/search*/examples/solr-nrt/test-morphlines/tutorialReadAvroContainer.conf
 \
--output-dir hdfs://$NNHOST:8020/user/$USER/outdir --verbose --go-live \
--zk-host $ZKHOST:2181/solr --collection collection1 \
hdfs://$NNHOST:8020/user/$USER/indir

Cloudera Search | 13

Cloudera Search User Guide

http://www.cloudera.com/documentation/enterprise/latest/topics/search_install_mapreduce_tools_search.html
http://www.cloudera.com/documentation/enterprise/latest/topics/search_install_mapreduce_tools_search.html

Note: This command requires a morphline file, which must include a SOLR_LOCATOR. Any CLI
parameters for --zkhost and --collection override the parameters of the solrLocator.
The snippet that includes the SOLR_LOCATORmight appear as follows:

SOLR_LOCATOR : {
 # Name of solr collection
 collection : collection

 # ZooKeeper ensemble
 zkHost : "$ZK_HOST"
}

morphlines : [
 {
 id : morphline1
 importCommands : ["org.kitesdk.**", "org.apache.solr.**"]
 commands : [
 { generateUUID { field : id } }

 { # Remove record fields that are unknown to Solr schema.xml.

 # Recall that Solr throws an exception on any attempt to
load a document that
 # contains a field that isn't specified in schema.xml.
 sanitizeUnknownSolrFields {
 solrLocator : ${SOLR_LOCATOR} # Location from which to
fetch Solr schema
 }
 }

 { logDebug { format : "output record: {}", args : ["@{}"] } }

 {
 loadSolr {
 solrLocator : ${SOLR_LOCATOR}
 }
 }
]
 }
]

3. Check the job tracker status at http://localhost:50030/jobtracker.jsp.
4. When the job is complete, run some Solr queries. For example, for myserver.example.com, use:

http://myserver.example.com:8983/solr/collection1/select?q=*%3A*&wt=json&indent=true

For help on how to run a Hadoop MapReduce job, use the following command:

• Parcel-based Installation:

$ hadoop jar /opt/cloudera/parcels/CDH/lib/solr/contrib/mr/search-mr-*-job.jar \
org.apache.solr.hadoop.MapReduceIndexerTool --help

• Package-based Installation:

$ hadoop jar /usr/lib/solr/contrib/mr/search-mr-*-job.jar \
org.apache.solr.hadoop.MapReduceIndexerTool --help

14 | Cloudera Search

Cloudera Search User Guide

Note:

• For development purposes, use the MapReduceIndexerTool --dry-run option to run
in local mode and print documents to stdout, instead of loading them to Solr. Using this
option causes the morphline to execute in the client process without submitting a job to
MapReduce. Executing in the client process provides faster turnaround during early trial and
debug sessions.

• To print diagnostic information, such as the content of records as they pass through the
morphline commands, enable TRACE log level diagnostics by adding the following entry to
your log4j.properties file:

log4j.logger.com.cloudera.cdk.morphline=TRACE

Thelog4j.properties file canbepassedusing theMapReduceIndexerTool --log4j
command-line option.

Batch Indexing into Offline Solr Shards

Running the MapReduce job without GoLive causes the job to create a set of Solr index shards from a set of input files
andwrite the indexes to HDFS. You can then explicitly point each Solr server to one of the HDFS output shard directories.

Batch indexing into offline Solr shards is mainly intended for offline use-cases by experts. Cases requiring read-only
indexes for searching can be handled using batch indexing without the --go-live option. By not using GoLive, you
can avoid copying datasets between segments, thereby reducing resource demands.

1. Delete all existing documents in Solr.

$ solrctl collection --deletedocs collection1
$ sudo -u hdfs hadoop fs -rm -r -skipTrash /user/$USER/outdir

2. Run the Hadoop MapReduce job, replacing $NNHOST in the command with your NameNode hostname and port
number, as required.

• Parcel-based Installation:

$ hadoop --config /etc/hadoop/conf.cloudera.mapreduce1 jar \
/opt/cloudera/parcels/CDH/lib/solr/contrib/mr/search-mr-*-job.jar \
org.apache.solr.hadoop.MapReduceIndexerTool -D \
'mapred.child.java.opts=-Xmx500m' --log4j \
/opt/cloudera/parcels/CDH/share/doc/search*/examples/solr-nrt/log4j.properties
--morphline-file \
/opt/cloudera/parcels/CDH/share/doc/search*/examples/solr-nrt/test-morphlines/tutorialReadAvroContainer.conf
 \
--output-dir hdfs://$NNHOST:8020/user/$USER/outdir --verbose --solr-home-dir \
$HOME/collection1 --shards 2 hdfs://$NNHOST:8020/user/$USER/indir

• Package-based Installation:

$ hadoop --config /etc/hadoop/conf.cloudera.mapreduce1 jar \
/usr/lib/solr/contrib/mr/search-mr-*-job.jar \
org.apache.solr.hadoop.MapReduceIndexerTool -D \
'mapred.child.java.opts=-Xmx500m' --log4j \
/usr/share/doc/search*/examples/solr-nrt/log4j.properties --morphline-file \
/usr/share/doc/search*/examples/solr-nrt/test-morphlines/tutorialReadAvroContainer.conf
 \
--output-dir hdfs://$NNHOST:8020/user/$USER/outdir --verbose --solr-home-dir \
$HOME/collection1 --shards 2 hdfs://$NNHOST:8020/user/$USER/indir

3. Check the job tracker status. For example, for the localhost, use http://localhost:50030/jobtracker.jsp.

Cloudera Search | 15

Cloudera Search User Guide

4. After the job is completed, check the generated index files. Individual shards are written to the results directory
with names of the form part-00000, part-00001, part-00002. There are only two shards in this example.

$ hadoop fs -ls /user/$USER/outdir/results
$ hadoop fs -ls /user/$USER/outdir/results/part-00000/data/index

5. Stop Solr on each host of the cluster.

$ sudo service solr-server stop

6. List the host name folders used as part of the path to each index in the SolrCloud cluster.

$ hadoop fs -ls /solr/collection1

7. Move index shards into place.

a. Remove outdated files:

$ sudo -u solr hadoop fs -rm -r -skipTrash \
/solr/collection1/$HOSTNAME1/data/index
$ sudo -u solr hadoop fs -rm -r -skipTrash \
/solr/collection1/$HOSTNAME2/data/tlog

b. Ensure correct ownership of required directories:

$ sudo -u hdfs hadoop fs -chown -R solr /user/$USER/outdir/results

c. Move the two index shards into place (the two servers you set up in Preparing to Index Data with Cloudera
Search on page 11):

$ sudo -u solr hadoop fs -mv /user/$USER/outdir/results/part-00000/data/index \
/solr/collection1/$HOSTNAME1/data/
$ sudo -u solr hadoop fs -mv /user/$USER/outdir/results/part-00001/data/index \
/solr/collection1/$HOSTNAME2/data/

8. Start Solr on each host of the cluster:

$ sudo service solr-server start

9. Run some Solr queries. For example, for myserver.example.com, use:
http://myserver.example.com:8983/solr/collection1/select?q=*%3A*&wt=json&indent=true

Near Real Time (NRT) Indexing Using Flume and the Solr Sink

The following section describes how to use Flume to index tweets. Before beginning, complete the process of Preparing
to Index Data.

Deploying Solr Sink into the Flume Agent

Copy the configuration files.

• Parcel-based Installation:

$ sudo cp -r $HOME/solr_configs2 /etc/flume-ng/conf/collection1
$ sudo cp /opt/cloudera/parcels/CDH/share/doc/search*/examples/solr-nrt/twitter-flume.conf
 \
/etc/flume-ng/conf/flume.conf
$ sudo cp
/opt/cloudera/parcels/CDH/share/doc/search*/examples/solr-nrt/test-morphlines/tutorialReadAvroContainer.conf
 \
/etc/flume-ng/conf/morphline.conf

16 | Cloudera Search

Cloudera Search User Guide

• Package-based Installation:

$ sudo cp -r $HOME/solr_configs2 /etc/flume-ng/conf/collection1
$ sudo cp /usr/share/doc/search*/examples/solr-nrt/twitter-flume.conf \
/etc/flume-ng/conf/flume.conf
$ sudo cp
/usr/share/doc/search*/examples/solr-nrt/test-morphlines/tutorialReadAvroContainer.conf
 \
/etc/flume-ng/conf/morphline.conf

Configuring the Flume Solr Sink

This topic describes modifying configuration files by using either:

• Cloudera Manager in a parcel-based installations to edit the configuration files similar to the process described
in Configuring the Flume Agents.

• Command-line tools in a package-based installation to edit files.

1. Modify the Flume configuration to specify the Flume source details and set up the flow. You must set the relative
or absolute path to the morphline configuration file.

• Parcel-based Installation: In the ClouderaManager Admin Console, select Flume > Configuration andmodify
Configuration File to include:

agent.sinks.solrSink.morphlineFile =
/opt/cloudera/parcels/CDH/etc/flume-ng/conf/morphline.conf

• Package-based Installation: Edit /etc/flume-ng/conf/flume.conf to include:

agent.sinks.solrSink.morphlineFile = /etc/flume-ng/conf/morphline.conf

2. Modify the Morphline configuration to specify the Solr location details using a SOLR_LOCATOR.

• Parcel-based Installation: In the ClouderaManager Admin Console, select Flume > Configuration andmodify
Morphline File.

• Package-based Installation: Edit /etc/flume-ng/conf/morphline.conf.

The snippet that includes the SOLR_LOCATORmight appear as follows:

SOLR_LOCATOR : {
 # Name of solr collection
 collection : collection

 # ZooKeeper ensemble
 zkHost : "$ZK_HOST"
}

morphlines : [
 {
 id : morphline1
 importCommands : ["org.kitesdk.**", "org.apache.solr.**"]
 commands : [
 { generateUUID { field : id } }

 { # Remove record fields that are unknown to Solr schema.xml.
 # Recall that Solr throws an exception on any attempt to load a document that
 # contains a field that isn't specified in schema.xml.
 sanitizeUnknownSolrFields {
 solrLocator : ${SOLR_LOCATOR} # Location from which to fetch Solr schema
 }
 }

 { logDebug { format : "output record: {}", args : ["@{}"] } }

 {
 loadSolr {

Cloudera Search | 17

Cloudera Search User Guide

 solrLocator : ${SOLR_LOCATOR}
 }
 }
]
 }
]

3. Copy flume-env.sh.template to flume-env.sh:

• Parcel-based Installation:

$ sudo cp /opt/cloudera/parcels/CDH/etc/flume-ng/conf/flume-env.sh.template \
/opt/cloudera/parcels/CDH/etc/flume-ng/conf/flume-env.sh

• Package-based Installation:

$ sudo cp /etc/flume-ng/conf/flume-env.sh.template \
/etc/flume-ng/conf/flume-env.sh

4. Update the Java heap size.

• Parcel-based Installation: In the Cloudera Manager Admin Console, select Flume > Configuration. In the
Search box enter Java Heap Size. Modify Java Heap Size of Agent in Bytes to be 500 and chooseMiB
units.

• Package-based Installation: Edit /etc/flume-ng/conf/flume-env.sh or
/opt/cloudera/parcels/CDH/etc/flume-ng/conf/flume-env.sh, inserting or replacingJAVA_OPTS
as follows:

JAVA_OPTS="-Xmx500m"

5. (Optional) Modify Flume logging settings to facilitate monitoring and debugging:

• Parcel-based Installation: In the ClouderaManager Admin Console, select Flume > Configuration andmodify
Agent Logging Advanced Configuration Snippet (Safety Valve) to include:

log4j.logger.org.apache.flume.sink.solr=DEBUG
log4j.logger.org.kitesdk.morphline=TRACE

• Package-based Installation: Use the following commands:

$ sudo bash -c 'echo "log4j.logger.org.apache.flume.sink.solr=DEBUG" >> \
/etc/flume-ng/conf/log4j.properties'
$ sudo bash -c 'echo "log4j.logger.org.kitesdk.morphline=TRACE" >> \
/etc/flume-ng/conf/log4j.properties'

6. (Optional) In a packaged-based installation, you can configure where Flume finds Cloudera Search dependencies
for Flume Solr Sink using SEARCH_HOME. For example, if you installed Flume from a tarball package, you can
configure it to find required files by setting SEARCH_HOME. To set SEARCH_HOME use a command of the form:

$ export SEARCH_HOME=/usr/lib/search

Alternatively, you can add the same setting to flume-env.sh.

In a ClouderaManagermanaged environment, ClouderaManager automatically updates the SOLR_HOME location
with any additional required dependencies.

18 | Cloudera Search

Cloudera Search User Guide

Configuring Flume Solr Sink to Sip from the Twitter Firehose

Edit/etc/flume-ng/conf/flume.confor/opt/cloudera/parcels/CDH/etc/flume-ng/conf/flume.conf
and replace the following properties with credentials from a valid Twitter account. The Flume TwitterSource uses the
Twitter 1.1 API, which requires authentication of both the consumer (application) and the user (you).

agent.sources.twitterSrc.consumerKey = YOUR_TWITTER_CONSUMER_KEY
agent.sources.twitterSrc.consumerSecret = YOUR_TWITTER_CONSUMER_SECRET
agent.sources.twitterSrc.accessToken = YOUR_TWITTER_ACCESS_TOKEN
agent.sources.twitterSrc.accessTokenSecret = YOUR_TWITTER_ACCESS_TOKEN_SECRET

Use the Twitter developer site to generate these four codes by completing the following steps:

1. Sign in to https://apps.twitter.com with a Twitter account.
2. SelectMy applications from the drop-down menu in the top-right corner, and Create a new application.
3. Fill in the form to represent the Search installation. This can represent multiple clusters, and does not require the

callback URL. Because this is not a publicly distributed application, the values you enter for the required name,
description, and website fields are not important.

4. Click Createmy access token at the bottom of the page. Youmay have to refresh the page to see the access token.

Substitute the consumer key, consumer secret, access token, and access token secret into flume.conf. Consider this
information confidential, just like your regular Twitter credentials.

To enable authentication, ensure the system clock is set correctly on all hosts where Flume connects to Twitter. You
can install NTP and keep the host synchronized by running thentpd service, ormanually synchronize using the command
sudo ntpdate pool.ntp.org . To confirm that the time is set correctly, make sure that the output of the command
date --utcmatches the time shown at http://www.timeanddate.com/worldclock/timezone/utc. You can also set
the time manually using the date command.

Starting the Flume Agent

1. Delete all existing documents in Solr:

$ solrctl collection --deletedocs collection1

2. Check the status of the Flume Agent to determine if it is running or not:

$ sudo /etc/init.d/flume-ng-agent status

3. Use the start or restart functions. For example, to restart a running Flume Agent:

$ sudo /etc/init.d/flume-ng-agent restart

4. Monitor progress in the Flume log file and watch for errors:

$ tail -f /var/log/flume-ng/flume.log

After restarting the Flume agent, use the Cloudera Search GUI. For example, for the localhost, use
http://localhost:8983/solr/collection1/select?q=*%3A*&sort=created_at+desc&wt=json&indent=true

to verify that new tweets have been ingested into Solr. The query sorts the result set such that the most recently
ingested tweets are at the top, based on the created_at timestamp. If you rerun the query, new tweets show up at
the top of the result set.

To print diagnostic information, such as the content of records as they pass through the morphline commands, enable
TRACE log level diagnostics by adding the following to your log4j.properties file:

log4j.logger.com.cloudera.cdk.morphline=TRACE

In Cloudera Manager, you can use the safety valve to enable TRACE log level.

Cloudera Search | 19

Cloudera Search User Guide

https://apps.twitter.com
http://www.timeanddate.com/worldclock/timezone/utc

Navigate toMenu Services > Flume > Configuration >View and Edit >Agent >Advanced >Agent Logging Safety Valve.
After setting this value, restart the service.

Indexing a File Containing Tweets with Flume HTTPSource

HTTPSource lets you ingest data into Solr by POSTing a file using HTTP. HTTPSource sends data using a channel to a
sink, in this case a SolrSink. For more information, see Flume Solr BlobHandler Configuration Options on page 45.

1. Delete all existing documents in Solr:

$ sudo /etc/init.d/flume-ng-agent stop
$ solrctl collection --deletedocs collection1

2. Comment out TwitterSource in /etc/flume-ng/conf/flume.conf and uncomment HTTPSource:

comment out “agent.sources = twitterSrc”
uncomment “agent.sources = httpSrc”

3. Restart the Flume Agent:

$ sudo /etc/init.d/flume-ng-agent restart

4. Send a file containing tweets to the HTTPSource:

• Parcel-based Installation:

$ curl --data-binary \
@/opt/cloudera/parcels/CDH/share/doc/search-*/examples/test-documents/sample-statuses-20120906-141433-medium.avro
 \
'http://127.0.0.1:5140?resourceName=sample-statuses-20120906-141433-medium.avro' \
--header 'Content-Type:application/octet-stream' --verbose

• Package-based Installation:

$ curl --data-binary \
@/usr/share/doc/search-*/examples/test-documents/sample-statuses-20120906-141433-medium.avro
 \
'http://127.0.0.1:5140?resourceName=sample-statuses-20120906-141433-medium.avro' \
--header 'Content-Type:application/octet-stream' --verbose

5. Check the log for status or errors:

$ cat /var/log/flume-ng/flume.log

Use the Cloudera Search GUI at
http://localhost:8983/solr/collection1/select?q=*%3A*&wt=json&indent=true to verify that new
tweets have been ingested into Solr as expected.

Indexing a File Containing Tweets with Flume SpoolDirectorySource

SpoolDirectorySource specifies a directory on a local disk that Flumemonitors. Flume automatically transfers data
from files in this directory to Solr. SpoolDirectorySource sends data using a channel to a sink, in this case a SolrSink.

1. Delete all existing documents in Solr:

$ sudo /etc/init.d/flume-ng-agent stop
$ solrctl collection --deletedocs collection1

20 | Cloudera Search

Cloudera Search User Guide

2. Comment out TwitterSource and HTTPSource in /etc/flume-ng/conf/flume.conf and uncomment
SpoolDirectorySource:

Comment out "agent.sources = twitterSrc"
Comment out “agent.sources = httpSrc”
“agent.sources = spoolSrc”

3. Delete any old spool directory and create a new spool directory:

$ rm -fr /tmp/myspooldir
$ sudo -u flume mkdir /tmp/myspooldir

4. Restart the Flume Agent:

$ sudo /etc/init.d/flume-ng-agent restart

5. Send a file containing tweets to the SpoolDirectorySource. To ensure no partial files are ingested, copy and
then atomically move files:

• Parcel-based Installation:

$ sudo -u flume cp \
/opt/cloudera/parcels/CDH/share/doc/search*/examples/test-documents/sample-statuses-20120906-141433-medium.avro
 \
/tmp/myspooldir/.sample-statuses-20120906-141433-medium.avro
$ sudo -u flume mv /tmp/myspooldir/.sample-statuses-20120906-141433-medium.avro \
/tmp/myspooldir/sample-statuses-20120906-141433-medium.avro

• Package-based Installation:

$ sudo -u flume cp \
/usr/share/doc/search*/examples/test-documents/sample-statuses-20120906-141433-medium.avro
 \
/tmp/myspooldir/.sample-statuses-20120906-141433-medium.avro
$ sudo -u flume mv /tmp/myspooldir/.sample-statuses-20120906-141433-medium.avro \
/tmp/myspooldir/sample-statuses-20120906-141433-medium.avro

6. Check the log for status or errors.

$ cat /var/log/flume-ng/flume.log

7. Check the completion status.

$ find /tmp/myspooldir

Use the Cloudera Search GUI. For example, for the localhost, use
http://localhost:8983/solr/collection1/select?q=*%3A*&wt=json&indent=true to verify that new
tweets have been ingested into Solr.

Using Hue with Cloudera Search

Hue includes a search application that provides a customizable UI. Using Hue with Cloudera Search involves importing
collections. After you import collections, you can work with them through the Hue user interface.

You can create a new search using the Hue Web UI. For example, for the server myserver.example.com, use:
http://myserver.example.com:8888/search/new_search.

Search User Interface in Hue

The following figure shows the Search application integrated with the Hue user interface.

Cloudera Search | 21

Cloudera Search User Guide

Hue Search Twitter Demo

The demo uses similar processes to those described in the Running Queries on page 11. The demo illustrates:

• That only regular Solr APIs are used.
• Faceting by fields, range, or dates, as well as sorting by time in seconds.
• The result snippet editor and preview, function for downloading, extra css/js, labels, and field picking assist.
• Showing multi-collections.
• Showing highlighting of search term.
• Showing facet ordering.
• The auto-complete handler using /suggest.

Managing Solr Using solrctl
Use the solrctl utility to manage a SolrCloud deployment. You can manipulate SolrCloud collections, SolrCloud
collection instance directories, and individual cores.

A SolrCloud collection is the top-level object for indexing documents and providing a query interface. Each SolrCloud
collection must be associated with an instance directory, though note that different collections can use the same
instance directory. Each SolrCloud collection is typically replicated (sharded) among several SolrCloud instances. Each
replica is called a SolrCloud core and is assigned to an individual SolrCloud host. The assignment process is managed
automatically, although you can apply fine-grained control over each individual core using the core command. A
typical deployment workflow with solrctl consists of:

• Deploying the ZooKeeper coordination service
• Deploying solr-server daemons to each host
• Initializing the state of the ZooKeeper coordination service using init command

22 | Cloudera Search

Cloudera Search User Guide

• Starting each solr-server daemon
• Establishing a configuration.

– If using Configs, creating a config from a config template.
– If using instance directories, generating an instance directory and uploading the instance directory to

ZooKeeper.

• Associating a new collection with the name of the config or instance directory.

Understanding configs and instancedirs

solrctl includes a config command that uses the Config API to directly manage configurations represented in
Config objects. Config objects represent collection configuration information as specified by the solrctl
collection --create -c configName command. instancedirs and Config objects handle the same information,
meeting the same need from the Solr server perspective, but there a number of differences between these two
implementations.

Table 2: Config and instancedir Comparison

instancedirConfigAttribute

No ZooKeeper security support. Any
user can create, delete, or modify
instancedirs directly in ZooKeeper.

Security support provided.Security

• In a Kerberos-enabled cluster, the
ZooKeeper nodes associatedwith
configurations created using the
Config API automatically has
proper ZooKeeper ACLs. Because
instancedir updates
ZooKeeper directly, it is the
client's responsibility to add the
proper ACLs, which is
cumbersome.

• Sentry can be used to control
access to the Config API,
providing access control. For
more information, see Enabling
Sentry Authorization for Search
using the Command Line on page
79.

Manually edited locally and
re-uploaded directly to ZooKeeper
using solrctl instancedir.

Generated from existing configs or
instancedirs in ZooKeeper using the
ConfigSet API.

Creation method

One standard template.Several predefined templates are
available. These can be used as the

Template support

basis for creating additional configs.
Additional templates can be created
by creating configs that are
immutable.

Mutable templates that use a
Managed Schema can be modified
using the Schema API as opposed to
being manually edited. As a result,
configs are less flexible, but they are
also less error-prone than instancedirs.

Cloudera Search | 23

Cloudera Search User Guide

instancedirConfigAttribute

instancedirs include a single template
that supports enabling Sentry. To

Configs include a number of
templates, each with Sentry-enabled

Sentry support

enable Sentry with instancedirs,and non-Sentry-enabled versions. To
overwrite the originalenable Sentry, choose a

Sentry-enabled template. solrconfig.xml file with
solrconfig.xml.secure as
described in Enabling Sentry in
Cloudera Search for CDH 5 on page
82.

Included Immutable Config Templates

Configs can be declared as immutable, which means they cannot be deleted or have their Schema updated by the
Schema API. Immutable configs are uneditable config templates that are the basis for additional configs.

Solr provides a set of immutable config templates. These templates are only available after Solr initialization, so
templates are not available in upgrades until after Solr is initialized or re-initialized. Templates include:

Table 3: Available Config Templates and Attributes

Supports SentryUses Schemaless SolrSupports Schema APITemplate Name

predefinedTemplate

managedTemplate

schemalessTemplate

predefinedTemplateSecure

managedTemplateSecure

schemalessTemplateSecure

solrctl Reference

Use the solrctl utility to manage a SolrCloud deployment. You can manipulate SolrCloud collections, SolrCloud
collection instance directories, and individual cores.

In general, if an operation succeeds, solrctl exits silently with a success exit code. If an error occurs, solrctl prints
a diagnostics message combined with a failure exit code.

You can execute solrctl on any host that is configured as part of the SolrCloud. To execute any solrctl command
on a host outside of SolrCloud deployment, ensure that SolrCloud hosts are reachable and provide --zk and --solr
command line options.

If you are using solrctl to manage your deployment in an environment that requires Kerberos authentication, you
must have a valid Kerberos ticket, which you can get using kinit.

You can see examples of using solrctl in Deploying Cloudera Search.

For collection configuration, users have the option of interacting directly with ZooKeeper using the instancedir
option or using Solr's ConfigSet API using the config option. For more information on this topic, see Understanding
configs and instancedirs on page 23.

Syntax

You can initialize the state of the entire SolrCloud deployment and each individual host within the SolrCloud deployment
by using solrctl. The general solrctl command syntax is:

solrctl [options] command [command-arg] [command [command-arg]] ...

24 | Cloudera Search

Cloudera Search User Guide

Each element and its possible values are described in the following sections.

Options

If used, the following options must precede commands:

• --solr solr_uri: Directs solrctl to a SolrCloud web API available at a given URI. This option is required for
hosts running outside of SolrCloud. A sample URI might be: http://host1.cluster.com:8983/solr.

• --zk zk_ensemble: Directs solrctl to a particular ZooKeeper coordination service ensemble. This option is
required for hosts running outside of SolrCloud. For example:
host1.cluster.com:2181,host2.cluster.com:2181/solr.

• --jaas jaas.conf: Used to identify a JAAS configuration that specifies the principal with permissions tomodify
solrmetadata. The principal is typically "solr". In a Kerberos-enabled environmentwhere solrmetadata is protected
using ZooKeeper ACLs, modifying metadata using solrctl requires this parameter.

• --help: Prints help.
• --quiet: Suppresses most solrctlmessages.

Commands

The solrctl commands init, instancedir, config, collection, core, and cluster affect the entire SolrCloud
deployment and are executed only once per required operation.

The solrctl core command affects a single SolrCloud host.

• init [--force]: The init command, which initializes the overall state of the SolrCloud deployment, must be
executed before starting solr-server daemons for the first time. Use this command cautiously because it erases
all SolrCloud deployment state information. After successful initialization, you cannot recover any previous state.

• instancedir [--generate path [-schemaless]] [--create name path] [--update name path]

[--get name path] [--delete name] [--list]: Manipulates the instance directories. The following
options are supported:

– --generate path: Allows users to generate the template of the instance directory. The template is stored
at a designated path in a local filesystem and has configuration files under ./conf.

– -schemaless A schemaless template of the instance directory is generated. For more information on
schemaless support, see Schemaless Mode Overview and Best Practices on page 68.

– --create name path: Pushes a copy of the instance directory from the local filesystem to SolrCloud. If an
instance directory is already available to SolrCloud, this command fails. See --update for changing name
paths that already exist.

– --update name path: Updates an existing SolrCloud copy of an instance directory based on the files in a
local filesystem. This command is analogous to first using --delete name followed by --create name
path.

– --get name path: Downloads the named collection instance directory at a specified path in a local filesystem.
Once downloaded, files can be further edited.

– --delete name: Deletes the instance directory name from SolrCloud.
– --list: Prints a list of all available instance directories known to SolrCloud.

• config [--create name baseConfig [-p name=value]...] [--delete name]: Manipulates configs.
The following options are supported:

– --create name baseConfig [-p name=value]...: Creates a new config based on an existing config.
The config is created with the specified name, using baseConfig as the template. -p can be used to override
a baseConfig setting. immutable is the only property that supports override. Formore information on existing
templates, see Included Immutable Config Templates on page 24.

– --delete name: Deletes a config.

• collection [--create name -s <numShards> [-c <collection.configName>] [-r

<replicationFactor>] [-m <maxShardsPerHost>] [-n <createHostSet>]] [--delete name]

Cloudera Search | 25

Cloudera Search User Guide

[--reload name] [--stat name] [--list] [--deletedocs name]: Manipulates collections. The
following options are supported:

– --create name -s <numShards> [-a] [-c <collection.configName>] [-r

<replicationFactor>] [-m <maxShardsPerHost>] [-n <createHostSet>]]: Creates a new
collection.

New collections are given the specified name, and are sharded to <numShards>.

The -a option configures auto-addition of replicas if machines hosting existing shards become unavailable.

SolrCloud hosts are configured using the <collection.configName> instance directory. Replication is
configured by a factor of <replicationFactor>. The maximum shards per host is determined by
<maxShardsPerHost>, and the collection is allocated to the hosts specified in <createHostSet>.

The only required parameters are name and numShards. If collection.configName is not provided, it is
assumed to be the same as the name of the collection.

– --delete name: Deletes a collection.
– --reload name: Reloads a collection.
– --stat name: Outputs SolrCloud specific run-time information for a collection.
– --list: Lists all collections registered in SolrCloud.
– --deletedocs name: Purges all indexed documents from a collection.

• core [--create name [-p name=value]...] [--reload name] [--unload name] [--status

name]: Manipulates cores. This is one of two commands that you can execute on a particular SolrCloud host.

Warning: Use this expert command with caution.

The following options are supported:

– --create name [-p name=value]...: Creates a new core on a specified SolrCloud host. The core is
configured using name=values pairs. For more details on configuration options, see Solr documentation.

– --reload name: Reloads a core.
– --unload name: Unloads a core.
– --status name: Prints status of a core.

Example solrctl Usage

This topic includes some examples of:

• Configuration changes that may be required for solrctl to function as desired.
• Common tasks completed with solrctl.

Using solrctl with an HTTP proxy

Using solrctl to manage a deployment in an environment that uses an http_proxy fails because solrctl uses
curl, which attempts to use the web proxy. You can disable the proxy so solrctl succeeds:

• Modify the settings for the current shell by exporting the NO_PROXY. For example:

$ export NO_PROXY='*'

• Modify the settings for single commands by prefacing solrctl commands with NO_PROXY='*'. For example:

$ NO_PROXY='*' solrctl collection --create yourCollectionName

26 | Cloudera Search

Cloudera Search User Guide

http://lucene.apache.org/solr/resources.html

Adding Another Collection with Replication

To support scaling for the query load, create a second collectionwith replication. Havingmultiple servers with replicated
collections distributes the request load for each shard. Create one shard cluster with a replication factor of two. Your
cluster must have at least two running servers to support this configuration, so ensure Cloudera Search is installed on
at least two servers. A replication factor of two causes two copies of the index files to be stored in two different
locations.

1. Generate the config files for the collection:

$ solrctl instancedir --generate $HOME/solr_configs2

2. Upload the instance directory to ZooKeeper:

$ solrctl instancedir --create collection1 $HOME/solr_configs2

3. Create the second collection:

$ solrctl collection --create collection1 -s 1 -r 2

4. Verify that the collection is live and that the one shard is served by two hosts. For example, for the server
myhost.example.com, you should receive content from:
http://myhost.example.com:8983/solr/#/~cloud.

Creating Replicas of Existing Shards

You can create additional replicas of existing shards using a command of the following form:

$ solrctl --zk <zkensemble> --solr <target solr server> core \
--create <new core name> -p collection=<collection> -p shard=<shard to replicate>

For example to create a new replica of collection named collection1 that is comprised of shard1, use the following
command:

$ solrctl --zk myZKEnsemble:2181/solr --solr mySolrServer:8983/solr core \
--create collection1_shard1_replica2 -p collection=collection1 -p shard=shard1

Converting instancedirs to configs

Cloudera Search supports converting existing deployments that use instancedirs to use configs.

To modify a collection to use configs

1. Make note of the existing instancedir name. This information is required later. For example, myConfig.
2. Delete the existing instancedir. For example:

solrctl instancedir --delete myConfig

3. Create a config using the same name as the instancedir you just deleted.

solrctl config --create myConfig baseConfig -p immutable=false

4. Reload the affected collection.

Spark Indexing
Spark indexing uses the CrunchIndexerTool and requires a working MapReduce or Spark cluster, such as one installed
using Cloudera Manager. Spark indexing is enabled when the CrunchIndexerTool is installed, as described in Installing
the Spark Indexer.

Cloudera Search | 27

Cloudera Search User Guide

http://www.cloudera.com/documentation/enterprise/latest/topics/search_install_spark_indexer.html
http://www.cloudera.com/documentation/enterprise/latest/topics/search_install_spark_indexer.html

CrunchIndexerTool is a Spark or MapReduce ETL batch job that pipes data from (splittable or non-splittable) HDFS files
into Apache Solr, and runs the data through a morphline for extraction and transformation. The program is designed
for flexible, scalable, fault-tolerant batch ETL pipeline jobs. It is implemented as an Apache Crunch pipeline, allowing
it to run on Apache Hadoop MapReduce or the Apache Spark execution engine.

Note: This command requires a morphline file, which must include a SOLR_LOCATOR. The snippet
that includes the SOLR_LOCATORmight appear as follows:

SOLR_LOCATOR : {
 # Name of solr collection
 collection : collection

 # ZooKeeper ensemble
 zkHost : "$ZK_HOST"
}

morphlines : [
 {
 id : morphline1
 importCommands : ["org.kitesdk.**", "org.apache.solr.**"]
 commands : [
 { generateUUID { field : id } }

 { # Remove record fields that are unknown to Solr schema.xml.
 # Recall that Solr throws an exception on any attempt to load
a document that
 # contains a field that isn't specified in schema.xml.
 sanitizeUnknownSolrFields {
 solrLocator : ${SOLR_LOCATOR} # Location from which to fetch
 Solr schema
 }
 }

 { logDebug { format : "output record: {}", args : ["@{}"] } }

 {
 loadSolr {
 solrLocator : ${SOLR_LOCATOR}
 }
 }
]
 }
]

More details are available through command-line help. TheCrunchIndexerTool jar does not contain all dependencies,
unlike other Search indexing tools. Therefore, it is helpful to capture dependencies to variables that are used in invoking
the help.

• To assign dependency information to variables and invoke help in a default parcels installation, use:

$ export myDriverJarDir=/opt/cloudera/parcels/CDH/lib/solr/contrib/crunch
$ export myDependencyJarDir=/opt/cloudera/parcels/CDH/lib/search/lib/search-crunch
$ export myDependencyJarPaths=$(find $myDependencyJarDir -name '*.jar' | sort | tr '\n'
 ':' | head -c -1)
$ export myDriverJar=$(find $myDriverJarDir -maxdepth 1 -name 'search-crunch.jar' !
-name '-job.jar' ! -name '*-sources.jar')
$ export HADOOP_CLASSPATH=$myDependencyJarPaths;
$ hadoop jar $myDriverJar org.apache.solr.crunch.CrunchIndexerTool -help

• To assign dependency information to variables and invoke help in a default packages installation, use:

$ export myDriverJarDir=/usr/lib/solr/contrib/crunch
$ export myDependencyJarDir=/usr/lib/search/lib/search-crunch
$ export myDependencyJarPaths=$(find $myDependencyJarDir -name '*.jar' | sort | tr '\n'
 ':' | head -c -1)
$ export myDriverJar=$(find $myDriverJarDir -maxdepth 1 -name 'search-crunch.jar' !
-name '-job.jar' ! -name '*-sources.jar')

28 | Cloudera Search

Cloudera Search User Guide

$ export HADOOP_CLASSPATH=$myDependencyJarPaths;
$ hadoop jar $myDriverJar org.apache.solr.crunch.CrunchIndexerTool -help

MapReduceUsage: export HADOOP_CLASSPATH=$myDependencyJarPaths; hadoop jar $myDriverJar
org.apache.solr.crunch.CrunchIndexerTool --libjars $myDependencyJarFiles
[MapReduceGenericOptions]...
 [--input-file-list URI] [--input-file-format FQCN]
 [--input-file-projection-schema FILE]
 [--input-file-reader-schema FILE] --morphline-file FILE
 [--morphline-id STRING] [--pipeline-type STRING] [--xhelp]
 [--mappers INTEGER] [--dry-run] [--log4j FILE] [--chatty]
 [HDFS_URI [HDFS_URI ...]]

SparkUsage: spark-submit [SparkGenericOptions]... --master local|yarn --deploy-mode
client|cluster
--jars $myDependencyJarFiles --class org.apache.solr.crunch.CrunchIndexerTool $myDriverJar

 [--input-file-list URI] [--input-file-format FQCN]
 [--input-file-projection-schema FILE]
 [--input-file-reader-schema FILE] --morphline-file FILE
 [--morphline-id STRING] [--pipeline-type STRING] [--xhelp]
 [--mappers INTEGER] [--dry-run] [--log4j FILE] [--chatty]
 [HDFS_URI [HDFS_URI ...]]

Spark or MapReduce ETL batch job that pipes data from (splittable or non-
splittable) HDFS files into Apache Solr, and along the way runs the data
through a Morphline for extraction and transformation. The program is
designed for flexible, scalable and fault-tolerant batch ETL pipeline
jobs. It is implemented as an Apache Crunch pipeline and as such can run
on either the Apache Hadoop MapReduce or Apache Spark execution engine.

The program proceeds in several consecutive phases, as follows:

1) Randomization phase: This (parallel) phase randomizes the list of HDFS
input files in order to spread ingestion load more evenly among the mapper
tasks of the subsequent phase. This phase is only executed for non-
splittables files, and skipped otherwise.

2) Extraction phase: This (parallel) phase emits a series of HDFS file
input streams (for non-splittable files) or a series of input data records
(for splittable files).

3) Morphline phase: This (parallel) phase receives the items of the
previous phase, and uses a Morphline to extract the relevant content,
transform it and load zero or more documents into Solr. The ETL
functionality is flexible and customizable using chains of arbitrary
morphline commands that pipe records from one transformation command to
another. Commands to parse and transform a set of standard data formats
such as Avro, Parquet, CSV, Text, HTML, XML, PDF, MS-Office, etc. are
provided out of the box, and additional custom commands and parsers for
additional file or data formats can be added as custom morphline commands.
Any kind of data format can be processed and any kind output format can be
generated by any custom Morphline ETL logic. Also, this phase can be used
to send data directly to a live SolrCloud cluster (via the loadSolr
morphline command).

The program is implemented as a Crunch pipeline and as such Crunch
optimizes the logical phases mentioned above into an efficient physical
execution plan that runs a single mapper-only job, or as the corresponding
Spark equivalent.

Fault Tolerance: Task attempts are retried on failure per the standard
MapReduce or Spark semantics. If the whole job fails you can retry simply
by rerunning the program again using the same arguments.

Comparison with MapReduceIndexerTool:

1) CrunchIndexerTool can also run on the Spark execution engine, not just
on MapReduce.
2) CrunchIndexerTool enables interactive low latency prototyping, in
particular in Spark 'local' mode.
3) CrunchIndexerTool supports updates (and deletes) of existing documents

Cloudera Search | 29

Cloudera Search User Guide

in Solr, not just inserts.
4) CrunchIndexerTool can exploit data locality for splittable Hadoop files
(text, avro, avroParquet).
We recommend MapReduceIndexerTool for large scale batch ingestion use
cases where updates (or deletes) of existing documents in Solr are not
required, and we recommend CrunchIndexerTool for all other use cases.

CrunchIndexerOptions:
 HDFS_URI HDFS URI of file or directory tree to ingest.
 (default: [])
 --input-file-list URI, --input-list URI
 Local URI or HDFS URI of a UTF-8 encoded file
 containing a list of HDFS URIs to ingest, one URI
 per line in the file. If '-' is specified, URIs
 are read from the standard input. Multiple --
 input-file-list arguments can be specified.
 --input-file-format FQCN
 The Hadoop FileInputFormat to use for extracting
 data from splittable HDFS files. Can be a fully
 qualified Java class name or one of ['text',
 'avro', 'avroParquet']. If this option is present
 the extraction phase will emit a series of input
 data records rather than a series of HDFS file
 input streams.
 --input-file-projection-schema FILE
 Relative or absolute path to an Avro schema file
 on the local file system. This will be used as
 the projection schema for Parquet input files.
 --input-file-reader-schema FILE
 Relative or absolute path to an Avro schema file
 on the local file system. This will be used as
 the reader schema for Avro or Parquet input
 files. Example: src/test/resources/test-
 documents/strings.avsc
 --morphline-file FILE Relative or absolute path to a local config file
 that contains one or more morphlines. The file
 must be UTF-8 encoded. It will be uploaded to
 each remote task. Example: /path/to/morphline.conf
 --morphline-id STRING The identifier of the morphline that shall be
 executed within the morphline config file
 specified by --morphline-file. If the --morphline-
 id option is omitted the first (i.e. top-most)
 morphline within the config file is used.
 Example: morphline1
 --pipeline-type STRING
 The engine to use for executing the job. Can be
 'mapreduce' or 'spark'. (default: mapreduce)
 --xhelp, --help, -help
 Show this help message and exit
 --mappers INTEGER Tuning knob that indicates the maximum number of
 MR mapper tasks to use. -1 indicates use all map
 slots available on the cluster. This parameter
 only applies to non-splittable input files
 (default: -1)
 --dry-run Run the pipeline but print documents to stdout
 instead of loading them into Solr. This can be
 used for quicker turnaround during early trial &
 debug sessions. (default: false)
 --log4j FILE Relative or absolute path to a log4j.properties
 config file on the local file system. This file
 will be uploaded to each remote task. Example:
 /path/to/log4j.properties
 --chatty Turn on verbose output. (default: false)

SparkGenericOptions: To print all options run 'spark-submit --help'

MapReduceGenericOptions: Generic options supported are
 --conf <configuration file>
 specify an application configuration file
 -D <property=value> use value for given property
 --fs <local|namenode:port>
 specify a namenode
 --jt <local|resourcemanager:port>

30 | Cloudera Search

Cloudera Search User Guide

 specify a ResourceManager
 --files <comma separated list of files>
 specify comma separated files to be copied to the
 map reduce cluster
 --libjars <comma separated list of jars>
 specify comma separated jar files to include in
 the classpath.
 --archives <comma separated list of archives>
 specify comma separated archives to be unarchived
 on the compute machines.

The general command line syntax is
bin/hadoop command [genericOptions] [commandOptions]

Examples:

Prepare - Copy input files into HDFS:
export myResourcesDir=src/test/resources # for build from git
export myResourcesDir=/opt/cloudera/parcels/CDH/share/doc/search-*/search-crunch # for
 CDH with parcels
export myResourcesDir=/usr/share/doc/search-*/search-crunch # for CDH with packages
hadoop fs -copyFromLocal $myResourcesDir/test-documents/hello1.txt
hdfs:/user/systest/input/

Prepare variables for convenient reuse:
export myDriverJarDir=target # for build from git
export myDriverJarDir=/opt/cloudera/parcels/CDH/lib/solr/contrib/crunch # for CDH with
 parcels
export myDriverJarDir=/usr/lib/solr/contrib/crunch # for CDH with packages
export myDependencyJarDir=target/lib # for build from git
export myDependencyJarDir=/opt/cloudera/parcels/CDH/lib/search/lib/search-crunch # for
 CDH with parcels
export myDependencyJarDir=/usr/lib/search/lib/search-crunch # for CDH with packages
export myDriverJar=$(find $myDriverJarDir -maxdepth 1 -name 'search-crunch-*.jar' !
-name '*-job.jar' ! -name '*-sources.jar')
export myDependencyJarFiles=$(find $myDependencyJarDir -name '*.jar' | sort | tr '\n'
',' | head -c -1)
export myDependencyJarPaths=$(find $myDependencyJarDir -name '*.jar' | sort | tr '\n'
':' | head -c -1)
export myJVMOptions="-DmaxConnectionsPerHost=10000 -DmaxConnections=10000
-Djava.io.tmpdir=/my/tmp/dir/" \
connection settings for solrj, also custom tmp dir

MapReduce on Yarn - Ingest text file line by line into Solr:
export HADOOP_CLIENT_OPTS="$myJVMOptions"; export \
HADOOP_CLASSPATH=$myDependencyJarPaths; hadoop \
 --config /etc/hadoop/conf.cloudera.YARN-1 \
 jar $myDriverJar org.apache.solr.crunch.CrunchIndexerTool \
 --libjars $myDependencyJarFiles \
 -D mapreduce.map.java.opts="-Xmx500m $myJVMOptions" \
 -D morphlineVariable.ZK_HOST=$(hostname):2181/solr \
 --files $myResourcesDir/test-documents/string.avsc \
 --morphline-file $myResourcesDir/test-morphlines/loadSolrLine.conf \
 --pipeline-type mapreduce \
 --chatty \
 --log4j $myResourcesDir/log4j.properties \
 /user/systest/input/hello1.txt

Spark in Local Mode (for rapid prototyping) - Ingest into Solr:
spark-submit \
 --master local \
 --deploy-mode client \
 --jars $myDependencyJarFiles \
 --executor-memory 500M \
 --conf "spark.executor.extraJavaOptions=$myJVMOptions" \
 --driver-java-options "$myJVMOptions" \
 # --driver-library-path /opt/cloudera/parcels/CDH/lib/hadoop/lib/native \
 # for Snappy on CDH with parcels\
 # --driver-library-path /usr/lib/hadoop/lib/native \
 # for Snappy on CDH with packages \
 --class org.apache.solr.crunch.CrunchIndexerTool \
 $myDriverJar \

Cloudera Search | 31

Cloudera Search User Guide

 -D morphlineVariable.ZK_HOST=$(hostname):2181/solr \
 --morphline-file $myResourcesDir/test-morphlines/loadSolrLine.conf \
 --pipeline-type spark \
 --chatty \
 --log4j $myResourcesDir/log4j.properties \
 /user/systest/input/hello1.txt

Spark on Yarn in Client Mode (for testing) - Ingest into Solr:
Same as above, except replace '--master local' with '--master yarn'

View the yarn executor log files (there is no GUI yet):
yarn logs --applicationId $application_XYZ

Spark on Yarn in Cluster Mode (for production) - Ingest into Solr:
spark-submit \
 --master yarn \
 --deploy-mode cluster \
 --jars $myDependencyJarFiles \
 --executor-memory 500M \
 --conf "spark.executor.extraJavaOptions=$myJVMOptions" \
 --driver-java-options "$myJVMOptions" \
 --class org.apache.solr.crunch.CrunchIndexerTool \
 --files $(ls $myResourcesDir/log4j.properties),$(ls
$myResourcesDir/test-morphlines/loadSolrLine.conf)\
 $myDriverJar \
 -D hadoop.tmp.dir=/tmp \
 -D morphlineVariable.ZK_HOST=$(hostname):2181/solr \
 --morphline-file loadSolrLine.conf \
 --pipeline-type spark \
 --chatty \
 --log4j log4j.properties \
 /user/systest/input/hello1.txt

Spark on Yarn in Cluster Mode (for production) - Ingest into Secure (Kerberos-enabled)
 Solr:
Spark requires two additional steps compared to non-secure solr:
(NOTE: MapReduce does not require extra steps for communicating with kerberos-enabled
 Solr)
1) Create a delegation token file
a) kinit as the user who will make solr requests
b) request a delegation token from solr and save it to a file:
e.g. using curl:
"curl --negotiate -u: http://solr-host:port/solr/?op=GETDELEGATIONTOKEN >
tokenFile.txt"
2) Pass the delegation token file to spark-submit:
a) add the delegation token file via --files
b) pass the file name via -D tokenFile
spark places this file in the cwd of the executor, so only list the file name,
 no path
spark-submit \
 --master yarn \
 --deploy-mode cluster \
 --jars $myDependencyJarFiles \
 --executor-memory 500M \
 --conf "spark.executor.extraJavaOptions=$myJVMOptions" \
 --driver-java-options "$myJVMOptions" \
 --class org.apache.solr.crunch.CrunchIndexerTool \
 --files $(ls $myResourcesDir/log4j.properties),$(ls
$myResourcesDir/test-morphlines/loadSolrLine.conf),tokenFile.txt\
 $myDriverJar \
 -D hadoop.tmp.dir=/tmp \
 -D morphlineVariable.ZK_HOST=$(hostname):2181/solr \
 -DtokenFile=tokenFile.txt \
 --morphline-file loadSolrLine.conf \
 --pipeline-type spark \
 --chatty \
 --log4j log4j.properties \
 /user/systest/input/hello1.txt

32 | Cloudera Search

Cloudera Search User Guide

MapReduce Batch Indexing Reference
Cloudera Search provides the ability to batch index documents using MapReduce jobs.

If you did not install MapReduce tools required for Cloudera Search, do so on hosts where you want to submit a batch
indexing job as described in Installing MapReduce Tools for use with Cloudera Search.

For information on tools related to batch indexing, see:

• MapReduceIndexerTool
• HDFSFindTool

Running an Example Indexing Job

See Cloudera Search Tutorial for examples of running a MapReduce job to index documents.

MapReduceIndexerTool

MapReduceIndexerTool is a MapReduce batch job driver that takes a morphline and creates a set of Solr index shards
from a set of input files and writes the indexes into HDFS in a flexible, scalable, and fault-tolerant manner.

For more information on Morphlines, see:

• Extracting, Transforming, and LoadingDataWith ClouderaMorphlines on page 46 for an introduction toMorphlines.
• ExampleMorphlineUsage on page 49 formorphline examples, discussion of those examples, and links to additional

information.

MapReduceIndexerTool also supportsmerging the output shards into a set of live customer-facing Solr servers, typically
a SolrCloud.

Important: Merging output shards into live customer-facing Solr servers can only be completed if all
replicas are online.

The indexer creates an offline index on HDFS in the output directory specified by the --output-dir parameter. If
the --go-live parameter is specified, Solr merges the resulting offline index into the live running service. Thus, the
Solr service must have read access to the contents of the output directory in order to complete the --go-live step.
In an environment with restrictive permissions, such as one with an HDFS umask of 077, the Solr user may not be able
to read the contents of the newly created directory. To address this issue, the indexer automatically applies the HDFS
ACLs to enable Solr to read the output directory contents. These ACLs are only applied if HDFS ACLs are enabled on
the HDFS NameNode. For more information, see HDFS Extended ACLs.

The indexer onlymakes ACL updates to the output directory and its contents. If the output directory's parent directories
do not include the execute permission, the Solr service is not be able to access the output directory. Solr must have
execute permissions from standard permissions or ACLs on the parent directories of the output directory.

Note: Using --libjars parameter in dry-runmode does not work. Instead, specify the JAR files
using the HADOOP_CLASSPATH environmental variable.

MapReduceIndexerTool Input Splits

Different from some other indexing tools, theMapReduceIndexerTool does not operate on HDFS blocks as input splits.
This means that when indexing a smaller number of large files, fewer nodes may be involved. For example, indexing
two files that are each one GB results in two nodes acting as mappers. If these files were stored on a system with a
128 MB block size, other mappers might divide the work on the two files among 16 mappers, corresponding to the 16
HDFS blocks that store the two files.

This intentional design choice aligns with MapReduceIndexerTool supporting indexing non-splittable file formats such
as JSON, XML, jpg, or log4j.

Cloudera Search | 33

Cloudera Search User Guide

http://www.cloudera.com/documentation/enterprise/latest/topics/search_install_mapreduce_tools_search.html

In theory, this could result in inefficient use of resources when a single node indexes a large file while many other
nodes sit idle. In reality, this indexing strategy typically results in satisfactory performance in production environments
because in most cases the number of files is large enough that work is spread throughout the cluster.

While dividing tasks by input splits does not present problems in most cases, users may still want to divide indexing
tasks along HDFS splits. In that case, use the CrunchIndexerTool, which can work with Hadoop input splits using the
input-file-format option.

Invoking Command-Line Help

• To invoke the command-line help in a default parcels installation, use:

$ hadoop jar /opt/cloudera/parcels/CDH-*/jars/search-mr-*-job.jar \
org.apache.solr.hadoop.MapReduceIndexerTool --help

• To invoke the command-line help in a default packages installation, use:

$ hadoop jar /usr/lib/solr/contrib/mr/search-mr-*-job.jar \
org.apache.solr.hadoop.MapReduceIndexerTool --help

usage: hadoop [GenericOptions]... jar search-mr-*-job.jar
org.apache.solr.hadoop.MapReduceIndexerTool
 [--help] --output-dir HDFS_URI [--input-list URI]
 --morphline-file FILE [--morphline-id STRING] [--solr-home-dir DIR]
 [--update-conflict-resolver FQCN] [--mappers INTEGER]
 [--reducers INTEGER] [--max-segments INTEGER]
 [--fair-scheduler-pool STRING] [--dry-run] [--log4j FILE]
 [--verbose] [--show-non-solr-cloud] [--zk-host STRING] [--go-live]
 [--collection STRING] [--go-live-threads INTEGER]
 [HDFS_URI [HDFS_URI ...]]

MapReduce batch job driver that takes a morphline and creates a set of
Solr index shards from a set of input files and writes the indexes into
HDFS, in a flexible, scalable and fault-tolerant manner. It also supports
merging the output shards into a set of live customer facing Solr
servers, typically a SolrCloud. The program proceeds in several
consecutive MapReduce based phases, as follows:

1) Randomization phase: This (parallel) phase randomizes the list of
input files in order to spread indexing load more evenly among the
mappers of the subsequent phase.

2) Mapper phase: This (parallel) phase takes the input files, extracts
the relevant content, transforms it and hands SolrInputDocuments to a set
of reducers. The ETL functionality is flexible and customizable using
chains of arbitrary morphline commands that pipe records from one
transformation command to another. Commands to parse and transform a set
of standard data formats such as Avro, CSV, Text, HTML, XML, PDF, Word,
Excel, etc. are provided out of the box, and additional custom commands
and parsers for additional file or data formats can be added as morphline
plugins. This is done by implementing a simple Java interface that
consumes a record (e.g. a file in the form of an InputStream plus some
headers plus contextual metadata) and generates as output zero or more
records. Any kind of data format can be indexed and any Solr documents
for any kind of Solr schema can be generated, and any custom ETL logic
can be registered and executed.
Record fields, including MIME types, can also explicitly be passed by
force from the CLI to the morphline, for example: hadoop ... -D
morphlineField._attachment_mimetype=text/csv

3) Reducer phase: This (parallel) phase loads the mapper's
SolrInputDocuments into one EmbeddedSolrServer per reducer. Each such
reducer and Solr server can be seen as a (micro) shard. The Solr servers
store their data in HDFS.

4) Mapper-only merge phase: This (parallel) phase merges the set of
reducer shards into the number of solr shards expected by the user, using
a mapper-only job. This phase is omitted if the number of shards is
already equal to the number of shards expected by the user.

34 | Cloudera Search

Cloudera Search User Guide

5) Go-live phase: This optional (parallel) phase merges the output shards
of the previous phase into a set of live customer facing Solr servers,
typically a SolrCloud. If this phase is omitted you can explicitly point
each Solr server to one of the HDFS output shard directories.

Fault Tolerance: Mapper and reducer task attempts are retried on failure
per the standard MapReduce semantics. On program startup all data in the
--output-dir is deleted if that output directory already exists. If the
whole job fails you can retry simply by rerunning the program again using
the same arguments.

positional arguments:
 HDFS_URI HDFS URI of file or directory tree to index.
 (default: [])

optional arguments:
 --help, -help, -h Show this help message and exit
 --input-list URI Local URI or HDFS URI of a UTF-8 encoded file
 containing a list of HDFS URIs to index, one URI
 per line in the file. If '-' is specified, URIs
 are read from the standard input. Multiple --
 input-list arguments can be specified.
 --morphline-id STRING The identifier of the morphline that shall be
 executed within the morphline config file
 specified by --morphline-file. If the --
 morphline-id option is ommitted the first (i.e.
 top-most) morphline within the config file is
 used. Example: morphline1
 --solr-home-dir DIR Optional relative or absolute path to a local
 dir containing Solr conf/ dir and in particular
 conf/solrconfig.xml and optionally also lib/
 dir. This directory will be uploaded to each MR
 task. Example: src/test/resources/solr/minimr
 --update-conflict-resolver FQCN
 Fully qualified class name of a Java class that
 implements the UpdateConflictResolver interface.
 This enables deduplication and ordering of a
 series of document updates for the same unique
 document key. For example, a MapReduce batch job
 might index multiple files in the same job where
 some of the files contain old and new versions
 of the very same document, using the same unique
 document key.
 Typically, implementations of this interface
 forbid collisions by throwing an exception, or
 ignore all but the most recent document version,
 or, in the general case, order colliding updates
 ascending from least recent to most recent
 (partial) update. The caller of this interface
 (i.e. the Hadoop Reducer) will then apply the
 updates to Solr in the order returned by the
 orderUpdates() method.
 The default
 RetainMostRecentUpdateConflictResolver
 implementation ignores all but the most recent
 document version, based on a configurable
 numeric Solr field, which defaults to the
 file_last_modified timestamp (default: org.
 apache.solr.hadoop.dedup.
 RetainMostRecentUpdateConflictResolver)
 --mappers INTEGER Tuning knob that indicates the maximum number of
 MR mapper tasks to use. -1 indicates use all map
 slots available on the cluster. (default: -1)
 --reducers INTEGER Tuning knob that indicates the number of
 reducers to index into. -1 indicates use all
 reduce slots available on the cluster. 0
 indicates use one reducer per output shard,
 which disables the mtree merge MR algorithm. The
 mtree merge MR algorithm improves scalability by
 spreading load (in particular CPU load) among a
 number of parallel reducers that can be much
 larger than the number of solr shards expected

Cloudera Search | 35

Cloudera Search User Guide

 by the user. It can be seen as an extension of
 concurrent lucene merges and tiered lucene
 merges to the clustered case. The subsequent
 mapper-only phase merges the output of said
 large number of reducers to the number of shards
 expected by the user, again by utilizing more
 available parallelism on the cluster. (default:
 -1)
 --max-segments INTEGER
 Tuning knob that indicates the maximum number of
 segments to be contained on output in the index
 of each reducer shard. After a reducer has built
 its output index it applies a merge policy to
 merge segments until there are <= maxSegments
 lucene segments left in this index. Merging
 segments involves reading and rewriting all data
 in all these segment files, potentially multiple
 times, which is very I/O intensive and time
 consuming. However, an index with fewer segments
 can later be merged faster, and it can later be
 queried faster once deployed to a live Solr
 serving shard. Set maxSegments to 1 to optimize
 the index for low query latency. In a nutshell,
 a small maxSegments value trades indexing
 latency for subsequently improved query latency.
 This can be a reasonable trade-off for batch
 indexing systems. (default: 1)
 --fair-scheduler-pool STRING
 Optional tuning knob that indicates the name of
 the fair scheduler pool to submit jobs to. The
 Fair Scheduler is a pluggable MapReduce
 scheduler that provides a way to share large
 clusters. Fair scheduling is a method of
 assigning resources to jobs such that all jobs
 get, on average, an equal share of resources
 over time. When there is a single job running,
 that job uses the entire cluster. When other
 jobs are submitted, tasks slots that free up are
 assigned to the new jobs, so that each job gets
 roughly the same amount of CPU time. Unlike the
 default Hadoop scheduler, which forms a queue of
 jobs, this lets short jobs finish in reasonable
 time while not starving long jobs. It is also an
 easy way to share a cluster between multiple of
 users. Fair sharing can also work with job
 priorities - the priorities are used as weights
 to determine the fraction of total compute time
 that each job gets.
 --dry-run Run in local mode and print documents to stdout
 instead of loading them into Solr. This executes
 the morphline in the client process (without
 submitting a job to MR) for quicker turnaround
 during early trial & debug sessions. (default:
 false)
 --log4j FILE Relative or absolute path to a log4j.properties
 config file on the local file system. This file
 will be uploaded to each MR task. Example:
 /path/to/log4j.properties
 --verbose, -v Turn on verbose output. (default: false)
 --show-non-solr-cloud Also show options for Non-SolrCloud mode as part
 of --help. (default: false)

Required arguments:
 --output-dir HDFS_URI HDFS directory to write Solr indexes to. Inside
 there one output directory per shard will be
 generated. Example: hdfs://c2202.mycompany.
 com/user/$USER/test
 --morphline-file FILE Relative or absolute path to a local config file
 that contains one or more morphlines. The file
 must be UTF-8 encoded. Example:
 /path/to/morphline.conf

Cluster arguments:

36 | Cloudera Search

Cloudera Search User Guide

 Arguments that provide information about your Solr cluster.

 --zk-host STRING The address of a ZooKeeper ensemble being used
 by a SolrCloud cluster. This ZooKeeper ensemble
 will be examined to determine the number of
 output shards to create as well as the Solr URLs
 to merge the output shards into when using the --
 go-live option. Requires that you also pass the
 --collection to merge the shards into.

 The --zk-host option implements the same
 partitioning semantics as the standard SolrCloud
 Near-Real-Time (NRT) API. This enables to mix
 batch updates from MapReduce ingestion with
 updates from standard Solr NRT ingestion on the
 same SolrCloud cluster, using identical unique
 document keys.

 Format is: a list of comma separated host:port
 pairs, each corresponding to a zk server.
 Example: '127.0.0.1:2181,127.0.0.1:
 2182,127.0.0.1:2183' If the optional chroot
 suffix is used the example would look like:
 '127.0.0.1:2181/solr,127.0.0.1:2182/solr,
 127.0.0.1:2183/solr' where the client would be
 rooted at '/solr' and all paths would be
 relative to this root - i.e.
 getting/setting/etc... '/foo/bar' would result
 in operations being run on '/solr/foo/bar' (from
 the server perspective).

 If --solr-home-dir is not specified, the Solr
 home directory for the collection will be
 downloaded from this ZooKeeper ensemble.

Go live arguments:
 Arguments for merging the shards that are built into a live Solr
 cluster. Also see the Cluster arguments.

 --go-live Allows you to optionally merge the final index
 shards into a live Solr cluster after they are
 built. You can pass the ZooKeeper address with --
 zk-host and the relevant cluster information
 will be auto detected. (default: false)
 --collection STRING The SolrCloud collection to merge shards into
 when using --go-live and --zk-host. Example:
 collection1
 --go-live-threads INTEGER
 Tuning knob that indicates the maximum number of
 live merges to run in parallel at one time.
 (default: 1000)

Generic options supported are
 --conf <configuration file>
 specify an application configuration file
 -D <property=value> use value for given property
 --fs <local|namenode:port>
 specify a namenode
 --jt <local|jobtracker:port>
 specify a job tracker
 --files <comma separated list of files>
 specify comma separated files to be copied to
 the map reduce cluster
 --libjars <comma separated list of jars>
 specify comma separated jar files to include in
 the classpath.
 --archives <comma separated list of archives>
 specify comma separated archives to be
 unarchived on the compute machines.

The general command line syntax is
bin/hadoop command [genericOptions] [commandOptions]

Cloudera Search | 37

Cloudera Search User Guide

Examples:

(Re)index an Avro based Twitter tweet file:
sudo -u hdfs hadoop \
 --config /etc/hadoop/conf.cloudera.mapreduce1 \
 jar target/search-mr-*-job.jar org.apache.solr.hadoop.MapReduceIndexerTool \
 -D 'mapred.child.java.opts=-Xmx500m' \
 --log4j src/test/resources/log4j.properties \
 --morphline-file
../search-core/src/test/resources/test-morphlines/tutorialReadAvroContainer.conf \
 --solr-home-dir src/test/resources/solr/minimr \
 --output-dir hdfs://c2202.mycompany.com/user/$USER/test \
 --shards 1 \
 hdfs:///user/$USER/test-documents/sample-statuses-20120906-141433.avro

(Re)index all files that match all of the following conditions:
1) File is contained in dir tree hdfs:///user/$USER/solrloadtest/twitter/tweets
2) file name matches the glob pattern 'sample-statuses*.gz'
3) file was last modified less than 100000 minutes ago
4) file size is between 1 MB and 1 GB
Also include extra library jar file containing JSON tweet Java parser:
hadoop jar target/search-mr-*-job.jar org.apache.solr.hadoop.HdfsFindTool \
 -find hdfs:///user/$USER/solrloadtest/twitter/tweets \
 -type f \
 -name 'sample-statuses*.gz' \
 -mmin -1000000 \
 -size -100000000c \
 -size +1000000c \
| sudo -u hdfs hadoop \
 --config /etc/hadoop/conf.cloudera.mapreduce1 \
 jar target/search-mr-*-job.jar org.apache.solr.hadoop.MapReduceIndexerTool \
 --libjars /path/to/kite-morphlines-twitter-0.10.0.jar \
 -D 'mapred.child.java.opts=-Xmx500m' \
 --log4j src/test/resources/log4j.properties \
 --morphline-file
../search-core/src/test/resources/test-morphlines/tutorialReadJsonTestTweets.conf \
 --solr-home-dir src/test/resources/solr/minimr \
 --output-dir hdfs://c2202.mycompany.com/user/$USER/test \
 --shards 100 \
 --input-list -

Go live by merging resulting index shards into a live Solr cluster
(explicitly specify Solr URLs - for a SolrCloud cluster see next example):
sudo -u hdfs hadoop \
 --config /etc/hadoop/conf.cloudera.mapreduce1 \
 jar target/search-mr-*-job.jar org.apache.solr.hadoop.MapReduceIndexerTool \
 -D 'mapred.child.java.opts=-Xmx500m' \
 --log4j src/test/resources/log4j.properties \
 --morphline-file
../search-core/src/test/resources/test-morphlines/tutorialReadAvroContainer.conf \
 --solr-home-dir src/test/resources/solr/minimr \
 --output-dir hdfs://c2202.mycompany.com/user/$USER/test \
 --shard-url http://solr001.mycompany.com:8983/solr/collection1 \
 --shard-url http://solr002.mycompany.com:8983/solr/collection1 \
 --go-live \
 hdfs:///user/foo/indir

Go live by merging resulting index shards into a live SolrCloud cluster
(discover shards and Solr URLs through ZooKeeper):
sudo -u hdfs hadoop \
 --config /etc/hadoop/conf.cloudera.mapreduce1 \
 jar target/search-mr-*-job.jar org.apache.solr.hadoop.MapReduceIndexerTool \
 -D 'mapred.child.java.opts=-Xmx500m' \
 --log4j src/test/resources/log4j.properties \
 --morphline-file
../search-core/src/test/resources/test-morphlines/tutorialReadAvroContainer.conf \
 --output-dir hdfs://c2202.mycompany.com/user/$USER/test \
 --zk-host zk01.mycompany.com:2181/solr \
 --collection collection1 \
 --go-live \
 hdfs:///user/foo/indir

MapReduce on Yarn - Pass custom JVM arguments (including a custom tmp directory)

38 | Cloudera Search

Cloudera Search User Guide

HADOOP_CLIENT_OPTS='-DmaxConnectionsPerHost=10000 -DmaxConnections=10000
-Djava.io.tmpdir=/my/tmp/dir/'; \
sudo -u hdfs hadoop \
 --config /etc/hadoop/conf.cloudera.mapreduce1 \
 jar target/search-mr-*-job.jar org.apache.solr.hadoop.MapReduceIndexerTool \
 -D 'mapreduce.map.java.opts=-DmaxConnectionsPerHost=10000 -DmaxConnections=10000' \
 -D 'mapreduce.reduce.java.opts=-DmaxConnectionsPerHost=10000 -DmaxConnections=10000'
 \
 --log4j src/test/resources/log4j.properties \
 --morphline-file
../search-core/src/test/resources/test-morphlines/tutorialReadAvroContainer.conf \
 --solr-home-dir src/test/resources/solr/minimr \
 --output-dir hdfs://c2202.mycompany.com/user/$USER/test \
 --shards 1 \
 hdfs:///user/$USER/test-documents/sample-statuses-20120906-141433.avro

MapReduce on MR1 - Pass custom JVM arguments (including a custom tmp directory)
HADOOP_CLIENT_OPTS='-DmaxConnectionsPerHost=10000 -DmaxConnections=10000
-Djava.io.tmpdir=/my/tmp/dir/'; \
sudo -u hdfs hadoop \
 --config /etc/hadoop/conf.cloudera.mapreduce1 \
 jar target/search-mr-*-job.jar org.apache.solr.hadoop.MapReduceIndexerTool \
 -D 'mapred.child.java.opts=-DmaxConnectionsPerHost=10000 -DmaxConnections=10000' \
 --log4j src/test/resources/log4j.properties \
 --morphline-file
../search-core/src/test/resources/test-morphlines/tutorialReadAvroContainer.conf \
 --solr-home-dir src/test/resources/solr/minimr \
 --output-dir hdfs://c2202.mycompany.com/user/$USER/test \
 --shards 1 \
 hdfs:///user/$USER/test-documents/sample-statuses-20120906-141433.avro

MapReduceIndexerTool Metadata

The MapReduceIndexerTool generates metadata fields for each input file when indexing. These fields can be used in
morphline commands. These fields can also be stored in Solr, by adding definitions like the following to your Solr
schema.xml file. After the MapReduce indexing process completes, the fields are searchable through Solr.

<!-- file metadata -->
<field name="file_download_url" type="string" indexed="false" stored="true" />
<field name="file_upload_url" type="string" indexed="false" stored="true" />
<field name="file_scheme" type="string" indexed="true" stored="true" />
<field name="file_host" type="string" indexed="true" stored="true" />
<field name="file_port" type="int" indexed="true" stored="true" />
<field name="file_path" type="string" indexed="true" stored="true" />
<field name="file_name" type="string" indexed="true" stored="true" />
<field name="file_length" type="tlong" indexed="true" stored="true" />
<field name="file_last_modified" type="tlong" indexed="true" stored="true" />
<field name="file_owner" type="string" indexed="true" stored="true" />
<field name="file_group" type="string" indexed="true" stored="true" />
<field name="file_permissions_user" type="string" indexed="true" stored="true" />
<field name="file_permissions_group" type="string" indexed="true" stored="true" />
<field name="file_permissions_other" type="string" indexed="true" stored="true" />
<field name="file_permissions_stickybit" type="boolean" indexed="true" stored="true" />

Example output:

"file_upload_url":"foo/test-documents/sample-statuses-20120906-141433.avro",
"file_download_url":"hdfs://host1.mycompany.com:8020/user/foo/
test-documents/sample-statuses-20120906-141433.avro",
"file_scheme":"hdfs",
"file_host":"host1.mycompany.com",
"file_port":8020,
"file_name":"sample-statuses-20120906-141433.avro",
"file_path":"/user/foo/test-documents/sample-statuses-20120906-141433.avro",
"file_last_modified":1357193447106,
"file_length":1512,
"file_owner":"foo",
"file_group":"foo",
"file_permissions_user":"rw-",
"file_permissions_group":"r--",

Cloudera Search | 39

Cloudera Search User Guide

"file_permissions_other":"r--",
"file_permissions_stickybit":false,

HdfsFindTool

HdfsFindTool is essentially the HDFS version of the Linux file system find command. The command walks one or more
HDFS directory trees, finds all HDFS files that match the specified expression, and applies selected actions to them. By
default, it prints the list of matching HDFS file paths to stdout, one path per line. The output file list can be piped into
the MapReduceIndexerTool using the MapReduceIndexerTool --inputlist option.

Note: The Hadoop file system shell (hadoop fs) also includes find functionality for searching HDFS.
For more information on the Hadoop find command, use hadoop fs -help find.

More details are available through command-line help. The command used to invoke the help varies by installation
type and may vary further in custom installations.

• To invoke the command-line help in a default parcels installation, use:

$ hadoop jar /opt/cloudera/parcels/CDH-*/jars/search-mr-*-job.jar \
org.apache.solr.hadoop.HdfsFindTool -help

• To invoke the command-line help in a default packages installation, use:

$ hadoop jar /usr/lib/solr/contrib/mr/search-mr-job.jar \
 org.apache.solr.hadoop.HdfsFindTool -help

More details are available through the command line help:

Usage: hadoop fs [generic options]
 [-find <path> ... <expression> ...]
 [-help [cmd ...]]
 [-usage [cmd ...]]

-find <path> ... <expression> ...: Finds all files that match the specified expression
 and applies selected actions to them.

 The following primary expressions are recognised:
 -atime n
 -amin n
 Evaluates as true if the file access time subtracted from
 the start time is n days (or minutes if -amin is used).

 -blocks n
 Evaluates to true if the number of file blocks is n.

 -class classname [args ...]
 Executes the named expression class.

 -depth
 Always evaluates to true. Causes directory contents to be
 evaluated before the directory itself.

 -empty
 Evaluates as true if the file is empty or directory has no
 contents.

 -group groupname
 Evaluates as true if the file belongs to the specified
 group.

 -mtime n
 -mmin n
 Evaluates as true if the file modification time subtracted
 from the start time is n days (or minutes if -mmin is used)

40 | Cloudera Search

Cloudera Search User Guide

 -name pattern
 -iname pattern
 Evaluates as true if the basename of the file matches the
 pattern using standard file system globbing.
 If -iname is used then the match is case insensitive.

 -newer file
 Evaluates as true if the modification time of the current
 file is more recent than the modification time of the
 specified file.

 -nogroup
 Evaluates as true if the file does not have a valid group.

 -nouser
 Evaluates as true if the file does not have a valid owner.

 -perm [-]mode
 -perm [-]onum
 Evaluates as true if the file permissions match that
 specified. If the hyphen is specified then the expression
 shall evaluate as true if at least the bits specified
 match, otherwise an exact match is required.
 The mode may be specified using either symbolic notation,
 eg 'u=rwx,g+x+w' or as an octal number.

 -print
 -print0
 Always evaluates to true. Causes the current pathname to be
 written to standard output. If the -print0 expression is
 used then an ASCII NULL character is appended.

 -prune
 Always evaluates to true. Causes the find command to not
 descend any further down this directory tree. Does not
 have any affect if the -depth expression is specified.

 -replicas n
 Evaluates to true if the number of file replicas is n.

 -size n[c]
 Evaluates to true if the file size in 512 byte blocks is n.
 If n is followed by the character 'c' then the size is in bytes.

 -type filetype
 Evaluates to true if the file type matches that specified.
 The following file type values are supported:
 'd' (directory), 'l' (symbolic link), 'f' (regular file).

 -user username
 Evaluates as true if the owner of the file matches the
 specified user.

 The following operators are recognised:
 expression -a expression
 expression -and expression
 expression expression
 Logical AND operator for joining two expressions. Returns
 true if both child expressions return true. Implied by the
 juxtaposition of two expressions and so does not need to be
 explicitly specified. The second expression will not be
 applied if the first fails.

 ! expression
 -not expression
 Evaluates as true if the expression evaluates as false and
 vice-versa.

 expression -o expression
 expression -or expression
 Logical OR operator for joining two expressions. Returns
 true if one of the child expressions returns true. The
 second expression will not be applied if the first returns

Cloudera Search | 41

Cloudera Search User Guide

 true.

-help [cmd ...]: Displays help for given command or all commands if none
 is specified.

-usage [cmd ...]: Displays the usage for given command or all commands if none
 is specified.

Generic options supported are
-conf <configuration file> specify an application configuration file
-D <property=value> use value for given property
-fs <local|namenode:port> specify a namenode
-jt <local|jobtracker:port> specify a job tracker
-files <comma separated list of files> specify comma separated files to be copied to
 the map reduce cluster
-libjars <comma separated list of jars> specify comma separated jar files to include
 in the classpath.
-archives <comma separated list of archives> specify comma separated archives to be
 unarchived on the compute machines.

The general command line syntax is
bin/hadoop command [genericOptions] [commandOptions]

For example, to find all files that:

• Are contained in the directory tree hdfs:///user/$USER/solrloadtest/twitter/tweets
• Have a name matching the glob pattern sample-statuses*.gz
• Were modified less than 60 minutes ago
• Are between 1 MB and 1 GB

You could use the following:

$ hadoop jar /usr/lib/solr/contrib/mr/search-mr-*-job.jar \
org.apache.solr.hadoop.HdfsFindTool -find \
hdfs:///user/$USER/solrloadtest/twitter/tweets -type f -name \
'sample-statuses*.gz' -mmin -60 -size -1000000000c -size +1000000c

Flume Near Real-Time Indexing Reference
The Flume Solr Sink is a flexible, scalable, fault tolerant, transactional, near real-time (NRT) system for processing a
continuous stream of records into live search indexes. Latency from the time of data arrival to the time data appears
in search query results is measured in seconds and is tunable.

Data flows from sources through Flume hosts across the network to Flume Solr sinks. The sinks extract the relevant
data, transform it, and load it into a set of live Solr search servers, which in turn serve queries to end users or search
applications.

The ETL functionality is flexible and customizable, using chains of morphline commands that pipe records from one
transformation command to another. Commands to parse and transform a set of standard data formats such as Avro,
CSV, text, HTML, XML, PDF, Word, or Excel, are provided out of the box. You can add additional custom commands
and parsers as morphline plug-ins for other file or data formats. Do this by implementing a simple Java interface that
consumes a record such as a file in the form of an InputStream plus some headers and contextual metadata. The record
consumed by the Java interface is used to generate record output. Any kind of data format can be indexed, any Solr
documents for any kind of Solr schema can be generated, and any custom ETL logic can be registered and executed.

Routing to multiple Solr collections improves multi-tenancy, and routing to a SolrCloud cluster improves scalability.
Flume SolrSink servers can be co-located with live Solr servers serving end user queries, or deployed on separate
industry-standard hardware to improve scalability and reliability. Indexing load can be spread across a large number
of Flume SolrSink servers, and Flume features such as Load balancing Sink Processor can help improve scalability and
achieve high availability. .

Flume indexing provides low-latency data acquisition and querying. It complements (instead of replaces) use cases
based on batch analysis of HDFS data usingMapReduce. Inmany use cases, data flows simultaneously from the producer

42 | Cloudera Search

Cloudera Search User Guide

http://flume.apache.org/FlumeUserGuide.html#load-balancing-sink-processor

through Flume into both Solr and HDFS using features such as the Replicating Channel Selector to replicate an incoming
flow into two output flows. You can use near real-time ingestion as well as batch analysis tools.

For a more comprehensive discussion of the Flume Architecture, see Large Scale Data Ingestion using Flume.

After configuring Flume, start it as detailed in Flume Installation.

See the Cloudera Search Tutorial for exercises that showhow to configure and run a Flume SolrSink to index documents.

Flume Morphline Solr Sink Configuration Options

You can use the standard configuration file flume.conf to configure Flume agents, including their sources, sinks, and
channels. For more information about flume.conf, see the Flume User Guide.

Flume Morphline SolrSink provides the following configuration options in the flume.conf file:

DescriptionDefaultProperty Name

The FQCN of this class:

org.apache.flume.sink.solr.
morphline.MorphlineSolrSink

type

The maximum number of events to take
per flume transaction.

100batchSize

The maximum duration per Flume
transaction (ms). The transaction commits

1000batchDurationMillis

after this duration or when batchSize is
exceeded, whichever comes first.

The FQCN of a class implementing

org.apache.flume.sink.solr.
morphline.SolrIndexer

org.apache.flume.sink.solr.
morphline.MorphlineSolrIndexer

indexerClass

The location of themorphline configuration
file.

n/amorphlineFile

• In a Cloudera Manager deployment,
use:

agent.sinks.solrSink.
morphlineFile=morphlines.conf

• In unmanaged deployments, provide
the relative or absolute path on the
local filesystem to the morphline
configuration file. For example:

/etc/flume-ng/conf/
tutorialReadAvroContainer.conf

Name used to identify a morphline if there
are multiple morphlines in a morphline
configuration file.

nullmorphlineId

This example shows a flume.conf section for a SolrSink for the agent named agent:

agent.sinks.solrSink.type = org.apache.flume.sink.solr.morphline.MorphlineSolrSink
agent.sinks.solrSink.channel = memoryChannel
agent.sinks.solrSink.batchSize = 100
agent.sinks.solrSink.batchDurationMillis = 1000
agent.sinks.solrSink.morphlineFile = /etc/flume-ng/conf/morphline.conf
agent.sinks.solrSink.morphlineId = morphline1

Cloudera Search | 43

Cloudera Search User Guide

http://flume.apache.org/FlumeUserGuide.html#replicating-channel-selector-default
http://www.slideshare.net/ydn/flume-hug
http://flume.apache.org/FlumeUserGuide.html

Note: The examples in this document use a FlumeMemoryChannel to easily get started. For production
use it is oftenmore appropriate to configure a Flume FileChannel instead, which is a high performance
transactional persistent queue.

Flume Morphline Interceptor Configuration Options

Flume can modify and drop events in-flight with the help of Interceptors, which can be attached to any Flume source.
Flume MorphlineInterceptor executes the transformations of a morphline on intercepted events. For example the
morphline can ignore events or alter or insert certain event headers using regular expression-based pattern matching,
or it can auto-detect and set a MIME type using Apache Tika on events that are intercepted. This packet sniffing can
be used for content-based routing in a Flume topology.

Flume supportsmultiplexing the event flow to destinations by defining a flowmultiplexer that can replicate or selectively
route an event to channels. This example shows a source from agent “foo” fanning out the flow to three different
channels. This fan out can be replicating or multiplexing. In replicating, each event is sent to all three channels. In
multiplexing, an event is delivered to a subset of available channels when that event's attributematches a preconfigured
value. For example, if an event attribute called stream.type is set to application/pdf, it goes to channel1 and
channel3. If the attribute is set toavro/binary, it goes tochannel2. If that channel is unavailable then an exception
is thrown and the event is replayed later when the channel becomes available again. You can set the mapping in the
flume.conf file.

Flume MorphlineInterceptor provides the following configuration options in the flume.conf file:

DescriptionDefaultProperty
Name

The FQCN of this class:

org.apache.flume.sink.solr.
morphline.MorphlineInterceptor$Builder

type

The location of the morphline configuration file.n/amorphlineFile

• In a Cloudera Manager deployment, use:

agent.sources.avroSrc.interceptors.
morphlineinterceptor.morphlineFile = morphlines.conf

• In unmanaged deployments, provide the relative or absolute path on the
local filesystem to the morphline configuration file. For example,
/etc/flume-ng/conf/morphline.conf.

The nameused to identify amorphline if a config file hasmultiplemorphlines.nullmorphlineId

This example shows a flume.conf section for a MorphlineInterceptor for the agent named "agent":

agent.sources.avroSrc.interceptors = morphlineinterceptor
agent.sources.avroSrc.interceptors.morphlineinterceptor.type =
org.apache.flume.sink.solr.morphline.MorphlineInterceptor$Builder
agent.sources.avroSrc.interceptors.morphlineinterceptor.morphlineFile =
/etc/flume-ng/conf/morphline.conf
agent.sources.avroSrc.interceptors.morphlineinterceptor.morphlineId = morphline1

Note: A morphline interceptor cannot generate more than one output record for each input event.

44 | Cloudera Search

Cloudera Search User Guide

http://flume.apache.org/FlumeUserGuide.html
http://flume.apache.org/FlumeUserGuide.html
http://flume.apache.org/FlumeUserGuide.html#flume-interceptors
http://en.wikipedia.org/wiki/Internet_media_type
http://flume.apache.org/FlumeUserGuide.html#multiplexing-the-flow

Flume Solr UUIDInterceptor Configuration Options

Flume can modify or drop events in-flight with the help of Interceptors, which can be attached to any Flume Source.
Flume Solr UUIDInterceptor sets a universally unique identifier on all intercepted events. For example, UUID
b5755073-77a9-43c1-8fad-b7a586fc1b97 represents a 128-bit value.

You can use UUIDInterceptor to automatically assign a UUID to a document event if no application-level unique key
for the event is available. Assign UUIDs to events as soon as they enter the Flume network—that is, in the first Flume
source of the flow. This enables deduplicating documents that may be accidentally duplicated as a result of replication
and redelivery in a Flume network that is designed for high availability and high performance. If available, an
application-level key is preferable to an auto-generated UUID because it enables subsequent updates and deletion of
the document in Solr using that key.

Flume Solr UUIDInterceptor provides the following configuration options in the flume.conf file:

DescriptionDefaultProperty Name

The FQCN of this class:

org.apache.flume.sink.solr.
morphline.UUIDInterceptor$Builder

type

The name of the Flume header to modify.idheaderName

If the UUID header already exists, determine whether it is preserved.truepreserveExisting

The prefix string constant to prepend to each generated UUID.""prefix

For examples, see the BlobHandler and BlobDeserializer.

Flume Solr BlobHandler Configuration Options

Flume accepts Flume events by HTTP POST and GET with the help of HTTPSource.

By default, HTTPSource splits JSON input into Flume events. As an alternative, Flume Solr BlobHandler for HTTPSource
returns an event that contains the request parameters as well as the Binary Large Object (BLOB) uploaded with this
request. This approach is not suitable for very large objects because it buffers the entire BLOB.

Flume Solr BlobHandler provides the following configuration options in the flume.conf file:

DescriptionDefaultProperty Name

The FQCN of this class:

org.apache.flume.sink.
solr.morphline.BlobHandler

handler

Themaximumnumber of bytes to read
and buffer for a request.

100000000 (100 MB)handler.maxBlobLength

This example shows a flume.conf section for a HTTPSource with a BlobHandler for the agent named agent:

agent.sources.httpSrc.type = org.apache.flume.source.http.HTTPSource
agent.sources.httpSrc.port = 5140
agent.sources.httpSrc.handler = org.apache.flume.sink.solr.morphline.BlobHandler
agent.sources.httpSrc.handler.maxBlobLength = 2000000000
agent.sources.httpSrc.interceptors = uuidinterceptor
agent.sources.httpSrc.interceptors.uuidinterceptor.type =
org.apache.flume.sink.solr.morphline.UUIDInterceptor$Builder
agent.sources.httpSrc.interceptors.uuidinterceptor.headerName = id
#agent.sources.httpSrc.interceptors.uuidinterceptor.preserveExisting = false
#agent.sources.httpSrc.interceptors.uuidinterceptor.prefix = myhostname
agent.sources.httpSrc.channels = memoryChannel

Cloudera Search | 45

Cloudera Search User Guide

http://flume.apache.org/FlumeUserGuide.html
http://flume.apache.org/FlumeUserGuide.html

Flume Solr BlobDeserializer Configuration Options

Using SpoolDirectorySource, Flume can ingest data from files located in a spooling directory on disk. Unlike other
asynchronous sources, SpoolDirectorySource does not lose data even if Flume is restarted or fails. Flume watches
the directory for new files and ingests them as they are detected.

By default, SpoolDirectorySource splits text input on newlines into Flume events. You can change this behavior
by having Flume Solr BlobDeserializer read Binary Large Objects (BLOBs) from SpoolDirectorySource. This
alternative approach is not suitable for very large objects because the entire BLOB is buffered.

Flume Solr BlobDeserializer provides the following configuration options in the flume.conf file:

DescriptionDefaultProperty Name

The FQCN of this class:

org.apache.flume.sink.solr.
morphline.BlobDeserializer$Builder

deserializer

Themaximumnumber of bytes to read
and buffer for a given request.

100000000 (100 MB)deserializer.maxBlobLength

This example shows a flume.conf section for a SpoolDirectorySourcewith a BlobDeserializer for the agent
named agent:

agent.sources.spoolSrc.type = spooldir
agent.sources.spoolSrc.spoolDir = /tmp/myspooldir
agent.sources.spoolSrc.ignorePattern = \.
agent.sources.spoolSrc.deserializer =
org.apache.flume.sink.solr.morphline.BlobDeserializer$Builder
agent.sources.spoolSrc.deserializer.maxBlobLength = 2000000000
agent.sources.spoolSrc.batchSize = 1
agent.sources.spoolSrc.fileHeader = true
agent.sources.spoolSrc.fileHeaderKey = resourceName
agent.sources.spoolSrc.interceptors = uuidinterceptor
agent.sources.spoolSrc.interceptors.uuidinterceptor.type =
org.apache.flume.sink.solr.morphline.UUIDInterceptor$Builder
agent.sources.spoolSrc.interceptors.uuidinterceptor.headerName = id
#agent.sources.spoolSrc.interceptors.uuidinterceptor.preserveExisting = false
#agent.sources.spoolSrc.interceptors.uuidinterceptor.prefix = myhostname
agent.sources.spoolSrc.channels = memoryChannel

Extracting, Transforming, and Loading Data With Cloudera Morphlines
Cloudera Morphlines is an open-source framework that reduces the time and skills required to build or change Search
indexing applications. A morphline is a rich configuration file that simplifies defining an ETL transformation chain. Use
these chains to consume any kind of data from any data source, process the data, and load the results into Cloudera
Search. Executing in a small, embeddable Java runtime system, morphlines can be used for near real-time applications
as well as batch processing applications. The following diagram shows the process flow:

Morphlines can be seen as an evolution of Unix pipelines, where the data model is generalized to work with streams
of generic records, including arbitrary binary payloads. Morphlines can be embedded into Hadoop components such
as Search, Flume, MapReduce, Pig, Hive, and Sqoop.

46 | Cloudera Search

Cloudera Search User Guide

http://flume.apache.org/FlumeUserGuide.html

The framework ships with a set of frequently used high-level transformation and I/O commands that can be combined
in application-specificways. The plug-in systemallows you to add new transformations and I/O commands and integrates
existing functionality and third-party systems.

This integration enables the following:

• Rapid Hadoop ETL application prototyping
• Complex stream and event processing in real time
• Flexible log file analysis
• Integration of multiple heterogeneous input schemas and file formats
• Reuse of ETL logic building blocks across Search applications

The high-performance Cloudera runtime compiles a morphline, processing all commands for a morphline in the same
thread and adding no artificial overhead. For high scalability, you can deploy many morphline instances on a cluster
in many Flume agents and MapReduce tasks.

The following components execute morphlines:

• MapReduceIndexerTool
• Flume Morphline Solr Sink and Flume MorphlineInterceptor

Cloudera also provides a corresponding Cloudera Search Tutorial.

Data Morphlines Support

Morphlines manipulate continuous or arbitrarily large streams of records. The data model can be described as follows:
A record is a set of named fields where each field has an ordered list of one or more values. A value can be any Java
Object. That is, a record is essentially a hash table where each hash table entry contains a String key and a list of Java
Objects as values. (The implementation uses Guava’s ArrayListMultimap, which is a ListMultimap). Note that a
field can have multiple values and any two records need not use common field names. This flexible data model
corresponds exactly to the characteristics of the Solr/Lucene data model, meaning a record can be seen as a
SolrInputDocument. A field with zero values is removed from the record - fields with zero values effectively do not
exist.

Not only structured data, but also arbitrary binary data can be passed into and processed by amorphline. By convention,
a record can contain an optional field named _attachment_body, which can be a Java java.io.InputStream or
Java byte[]. Optionally, such binary input data can be characterized in more detail by setting the fields named
_attachment_mimetype (such as application/pdf) and _attachment_charset (such as UTF-8) and
_attachment_name (such as cars.pdf), which assists in detecting and parsing the data type.

This generic data model is useful to support a wide range of applications.

Important: Cloudera Search does not support contribmodules, such as DataImportHandler.

How Morphlines Act on Data

A command transforms a record into zero or more records. Commands can access all record fields. For example,
commands can parse fields, set fields, remove fields, rename fields, find and replace values, split a field into multiple
fields, split a field into multiple values, or drop records. Often, regular expression based pattern matching is used as
part of the process of acting on fields. The output records of a command are passed to the next command in the chain.
A command has a Boolean return code, indicating success or failure.

For example, consider the case of a multi-line input record: A command could take this multi-line input record and
divide the single record into multiple output records, one for each line. This output could then later be further divided
using regular expression commands, splitting each single line record out into multiple fields in application specific
ways.

A command can extract, clean, transform, join, integrate, enrich and decorate records inmany otherways. For example,
a command can join records with external data sources such as relational databases, key-value stores, local files or IP

Cloudera Search | 47

Cloudera Search User Guide

Geo lookup tables. It can also perform tasks such as DNS resolution, expand shortened URLs, fetch linked metadata
from social networks, perform sentiment analysis and annotate the record accordingly, continuouslymaintain statistics
for analytics over sliding windows, compute exact or approximate distinct values and quantiles.

A command can also consume records and pass them to external systems. For example, a command can load records
into Solr orwrite them to aMapReduce Reducer or pass them into an online dashboard. The following diagram illustrates
some pathways along which data might flow with the help of morphlines:

Morphline Characteristics

A command can contain nested commands. Thus, a morphline is a tree of commands, akin to a push-based data flow
engine or operator tree in DBMS query execution engines.

A morphline has no notion of persistence, durability, distributed computing, or host failover. A morphline is basically
just a chain of in-memory transformations in the current thread. There is no need for a morphline to manage multiple
processes, hosts, or threads because this is already addressed by host systems such as MapReduce, Flume, or Storm.
However, amorphline does support passing notifications on the control plane to command subtrees. Such notifications
include BEGIN_TRANSACTION, COMMIT_TRANSACTION, ROLLBACK_TRANSACTION, SHUTDOWN.

Themorphline configuration file is implemented using the HOCON format (Human-Optimized Config Object Notation).
HOCON is basically JSON slightly adjusted for configuration file use cases. HOCON syntax is defined at HOCON github
page and is also used by Akka and Play.

How Morphlines Are Implemented

Cloudera Search includes several maven modules that contain morphline commands for integration with Apache Solr
including SolrCloud, flexible log file analysis, single-line records, multi-line records, CSV files, regular expression based
pattern matching and extraction, operations on record fields for assignment and comparison, operations on record
fields with list and set semantics, if-then-else conditionals, string and timestamp conversions, scripting support for

48 | Cloudera Search

Cloudera Search User Guide

https://github.com/typesafehub/config/blob/master/HOCON.md
https://github.com/typesafehub/config/blob/master/HOCON.md
http://akka.io
http://www.playframework.com/

dynamic Java code, a small rules engine, logging, metrics and counters, integration with Avro, integration with Apache
SolrCell and all Apache Tika parsers, integration with Apache Hadoop Sequence Files, auto-detection of MIME types
from binary data using Apache Tika, and decompression and unpacking of arbitrarily nested container file formats,
among others. These are described in the following chapters.

Example Morphline Usage

The following examples show how you can use morphlines.

Using Morphlines to Index Avro

This example illustrates using a morphline to index an Avro file with a schema.

1. View the content of the Avro file to understand the data:

$ wget http://archive.apache.org/dist/avro/avro-1.7.4/java/avro-tools-1.7.4.jar
$ java -jar avro-tools-1.7.4.jar tojson \
/usr/share/doc/search*/examples/test-documents/sample-statuses-20120906-141433.avro

2. Inspect the schema of the Avro file:

$ java -jar avro-tools-1.7.4.jar getschema
/usr/share/doc/search*/examples/test-documents/sample-statuses-20120906-141433.avro

{
 "type" : "record",
 "name" : "Doc",
 "doc" : "adoc",
 "fields" : [{
 "name" : "id",
 "type" : "string"
 }, {
 "name" : "user_statuses_count",
 "type" : ["int", "null"]
 }, {
 "name" : "user_screen_name",
 "type" : ["string", "null"]
 }, {
 "name" : "created_at",
 "type" : ["string", "null"]
 }, {
 "name" : "text",
 "type" : ["string", "null"]
 }

 ...

]
}

3. Extract the id, user_screen_name, created_at, and text fields from the Avro records, and then store and
index them in Solr, using the following Solr schema definition in schema.xml:

<fields>
 <field name="id" type="string" indexed="true" stored="true" required="true"
multiValued="false" />
 <field name="username" type="text_en" indexed="true" stored="true" />
 <field name="created_at" type="tdate" indexed="true" stored="true" />
 <field name="text" type="text_en" indexed="true" stored="true" />

 <field name="_version_" type="long" indexed="true" stored="true"/>
 <dynamicField name="ignored_*" type="ignored"/>
</fields>

The Solr output schema omits some Avro input fields, such as user_statuses_count. If your data includes Avro
input fields that are not included in the Solr output schema, youmaywant tomake changes to data as it is ingested.
For example, suppose you need to rename the input field user_screen_name to the output field username.

Cloudera Search | 49

Cloudera Search User Guide

Also suppose that the time format for the created_at field is yyyy-MM-dd'T'HH:mm:ss'Z'. Finally, suppose
any unknown fields present are to be removed. Recall that Solr throws an exception on any attempt to load a
document that contains a field that is not specified in schema.xml.

4. These transformation rules that make it possible to modify data so it fits your particular schema can be expressed
with morphline commands called readAvroContainer, extractAvroPaths, convertTimestamp,
sanitizeUnknownSolrFields and loadSolr, by editing a morphline.conf file.

Specify server locations in a SOLR_LOCATOR variable; used later in
variable substitutions:
SOLR_LOCATOR : {
 # Name of solr collection
 collection : collection1

 # ZooKeeper ensemble
 zkHost : "127.0.0.1:2181/solr"
}

Specify an array of one or more morphlines, each of which defines an ETL
transformation chain. A morphline consists of one or more potentially
nested commands. A morphline is a way to consume records such as Flume events,
HDFS files or blocks, turn them into a stream of records, and pipe the stream
of records through a set of easily configurable transformations on its way to
Solr.
morphlines : [
 {
 # Name used to identify a morphline. For example, used if there are multiple
 # morphlines in a morphline config file.
 id : morphline1

 # Import all morphline commands in these java packages and their subpackages.
 # Other commands that may be present on the classpath are not visible to this
 # morphline.
 importCommands : ["org.kitesdk.**", "org.apache.solr.**"]

 commands : [
 {
 # Parse Avro container file and emit a record for each Avro object
 readAvroContainer {
 # Optionally, require the input to match one of these MIME types:
 # supportedMimeTypes : [avro/binary]

 # Optionally, use a custom Avro schema in JSON format inline:
 # readerSchemaString : """<json can go here>"""

 # Optionally, use a custom Avro schema file in JSON format:
 # readerSchemaFile : /path/to/syslog.avsc
 }
 }

 {
 # Consume the output record of the previous command and pipe another
 # record downstream.
 #
 # extractAvroPaths is a command that uses zero or more Avro path
 # excodeblockssions to extract values from an Avro object. Each excodeblockssion

 # consists of a record output field name, which appears to the left of the
 # colon ':' and zero or more path steps, which appear to the right.
 # Each path step is separated by a '/' slash. Avro arrays are
 # traversed with the '[]' notation.
 #
 # The result of a path excodeblockssion is a list of objects, each of which
 # is added to the given record output field.
 #
 # The path language supports all Avro concepts, including nested
 # structures, records, arrays, maps, unions, and others, as well as a flatten
 # option that collects the primitives in a subtree into a flat list. In the
 # paths specification, entries on the left of the colon are the target Solr
 # field and entries on the right specify the Avro source paths. Paths are read
 # from the source that is named to the right of the colon and written to the
 # field that is named on the left.

50 | Cloudera Search

Cloudera Search User Guide

http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#readAvroContainer
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#extractAvroPaths
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#convertTimestamp
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#sanitizeUnknownSolrFields
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#loadSolr

 extractAvroPaths {
 flatten : false
 paths : {
 id : /id
 username : /user_screen_name
 created_at : /created_at
 text : /text
 }
 }
 }

 # Consume the output record of the previous command and pipe another
 # record downstream.
 #
 # convert timestamp field to native Solr timestamp format
 # such as 2012-09-06T07:14:34Z to 2012-09-06T07:14:34.000Z
 {
 convertTimestamp {
 field : created_at
 inputFormats : ["yyyy-MM-dd'T'HH:mm:ss'Z'", "yyyy-MM-dd"]
 inputTimezone : America/Los_Angeles
 outputFormat : "yyyy-MM-dd'T'HH:mm:ss.SSS'Z'"
 outputTimezone : UTC
 }
 }

 # Consume the output record of the previous command and pipe another
 # record downstream.
 #
 # This command deletes record fields that are unknown to Solr
 # schema.xml.
 #
 # Recall that Solr throws an exception on any attempt to load a document
 # that contains a field that is not specified in schema.xml.
 {
 sanitizeUnknownSolrFields {
 # Location from which to fetch Solr schema
 solrLocator : ${SOLR_LOCATOR}
 }
 }

 # log the record at DEBUG level to SLF4J
 { logDebug { format : "output record: {}", args : ["@{}"] } }

 # load the record into a Solr server or MapReduce Reducer
 {
 loadSolr {
 solrLocator : ${SOLR_LOCATOR}
 }
 }
]
 }
]

Using Morphlines with Syslog

The following example illustrates using a morphline to extract information from a syslog file. A syslog file contains
semi-structured lines of the following form:

<164>Feb 4 10:46:14 syslog sshd[607]: listening on 0.0.0.0 port 22.

The program extracts the following record from the log line and loads it into Solr:

syslog_pri:164
syslog_timestamp:Feb 4 10:46:14
syslog_hostname:syslog
syslog_program:sshd
syslog_pid:607
syslog_message:listening on 0.0.0.0 port 22.

Cloudera Search | 51

Cloudera Search User Guide

Use the following rules to create a chain of transformation commands, which are expressed with the readLine, grok,
and logDebugmorphline commands, by editing a morphline.conf file.

Specify server locations in a SOLR_LOCATOR variable; used later in
variable substitutions:
SOLR_LOCATOR : {
 # Name of solr collection
 collection : collection1

 # ZooKeeper ensemble
 zkHost : "127.0.0.1:2181/solr"
}

Specify an array of one or more morphlines, each of which defines an ETL
transformation chain. A morphline consists of one or more potentially
nested commands. A morphline is a way to consume records such as Flume events,
HDFS files or blocks, turn them into a stream of records, and pipe the stream
of records through a set of easily configurable transformations on the way to
a target application such as Solr.
morphlines : [
 {
 id : morphline1
 importCommands : ["org.kitesdk.**"]

 commands : [
 {
 readLine {
 charset : UTF-8
 }
 }

 {
 grok {
 # a grok-dictionary is a config file that contains prefabricated regular
expressions
 # that can be referred to by name.
 # grok patterns specify such a regex name, plus an optional output field name.
 # The syntax is %{REGEX_NAME:OUTPUT_FIELD_NAME}
 # The input line is expected in the "message" input field.
 dictionaryFiles : [target/test-classes/grok-dictionaries]
 expressions : {
 message : """<%{POSINT:syslog_pri}>%{SYSLOGTIMESTAMP:syslog_timestamp}
%{SYSLOGHOST:syslog_hostname} %{DATA:syslog_program}(?:\[%{POSINT:syslog_pid}\])?:
%{GREEDYDATA:syslog_message}"""
 }
 }
 }

 # Consume the output record of the previous command and pipe another
 # record downstream.
 #
 # This command deletes record fields that are unknown to Solr
 # schema.xml.
 #
 # Recall that Solr throws an exception on any attempt to load a document
 # that contains a field that is not specified in schema.xml.
 {
 sanitizeUnknownSolrFields {
 # Location from which to fetch Solr schema
 solrLocator : ${SOLR_LOCATOR}
 }
 }

 # log the record at DEBUG level to SLF4J
 { logDebug { format : "output record: {}", args : ["@{}"] } }

 # load the record into a Solr server or MapReduce Reducer
 {
 loadSolr {
 solrLocator : ${SOLR_LOCATOR}
 }
 }

52 | Cloudera Search

Cloudera Search User Guide

http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#readLine
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#grok
http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#logTrace_logDebug_logInfo_logWarn_logError

]
 }
]

Next Steps

Learn more about morphlines and Kite. Cloudera Search for CDH 5.7.2 includes a build of Kite 0.10.0 that includes Kite
0.17.0 fixes and features. For more information, see:

• Kite Software Development Kit
• Morphlines Reference Guide

Using the Lily HBase Batch Indexer for Indexing
With Cloudera Search, you can batch index HBase tables using MapReduce jobs. This batch indexing does not require:

• HBase replication
• The Lily HBase Indexer Service
• Registering a Lily HBase Indexer configuration with the Lily HBase Indexer Service

The indexer supports flexible, custom, application-specific rules to extract, transform, and load HBase data into Solr.
Solr search results can containcolumnFamily:qualifier links back to the data stored in HBase. Thisway, applications
can use the search result set to directly access matching raw HBase cells.

Batch indexing column families of tables in an HBase cluster requires:

• Populating an HBase table
• Creating a corresponding collection in Search
• Creating a Lily HBase Indexer configuration
• Creating a Morphline configuration file
• Understanding the extractHBaseCellsmorphline command
• Running HBaseMapReduceIndexerTool

Important: Do not use the Lily HBase Batch Indexer during a rolling upgrade. The indexer requires
all replicas be hosted on the sameHBase version. If an indexing job is running during a rolling upgrade,
different nodes may be running pre- and post-upgrade versions of HBase, resulting in a temporarily
unsupported configuration.

Populating an HBase Table

After configuring and starting your system, create an HBase table and add rows to it. For example:

$ hbase shell

hbase(main):002:0> create 'record', {NAME => 'data'}
hbase(main):002:0> put 'record', 'row1', 'data', 'value'
hbase(main):001:0> put 'record', 'row2', 'data', 'value2'

Creating a Corresponding Collection in Search

A collection in Search used for HBase indexingmust have a Solr schema that accommodates the types of HBase column
families and qualifiers that are being indexed. To begin, consider adding the all-inclusive data field to a default schema.
Once you decide on a schema, create a collection using a command of the form:

$ solrctl instancedir --generate $HOME/hbase-collection1
$ edit $HOME/hbase-collection1/conf/schema.xml
$ solrctl instancedir --create hbase-collection1 $HOME/hbase-collection1
$ solrctl collection --create hbase-collection1

Cloudera Search | 53

Cloudera Search User Guide

http://kitesdk.org/docs/0.13.0/kite-morphlines/index.html
http://kitesdk.org/docs/0.13.0/kite-morphlines/morphlinesReferenceGuide.html

Creating a Lily HBase Indexer Configuration

Configure individual Lily HBase Indexers using the hbase-indexer command-line utility. Typically, there is one Lily
HBase Indexer configuration for each HBase table, but there can be as many Lily HBase Indexer configurations as there
are tables, column families, and corresponding collections in Search. Each Lily HBase Indexer configuration is defined
in an XML file, such as morphline-hbase-mapper.xml.

An indexer configuration XML file must refer to the MorphlineResultToSolrMapper implementation and point to
the location of aMorphline configuration file, as shown in the followingmorphline-hbase-mapper.xml indexer
configuration file:

$ cat $HOME/morphline-hbase-mapper.xml

<?xml version="1.0"?>
<indexer table="record"
mapper="com.ngdata.hbaseindexer.morphline.MorphlineResultToSolrMapper">

 <!-- The relative or absolute path on the local file system to the
 morphline configuration file. -->
 <!-- Use relative path "morphlines.conf" for morphlines managed by
 Cloudera Manager -->
 <param name="morphlineFile" value="/etc/hbase-solr/conf/morphlines.conf"/>

 <!-- The optional morphlineId identifies a morphline if there are multiple
 morphlines in morphlines.conf -->
 <!-- <param name="morphlineId" value="morphline1"/> -->

</indexer>

The Lily HBase Indexer configuration file also supports the standard attributes of any HBase Lily Indexer on the top-level
<indexer> element: table, mapping-type, read-row, mapper, unique-key-formatter,
unique-key-field,row-field,column-family-field, andtable-family-field. It does not support
the <field> element and <extract> elements.

Creating a Morphline Configuration File

After creating an indexer configuration XML file, control its behavior by configuring morphline ETL transformation
commands in a morphlines.conf configuration file. The morphlines.conf configuration file can contain any
number of morphline commands. Typically, an extractHBaseCells command is the first command. The
readAvroContainer or readAvromorphline commands are often used to extract Avro data from the HBase byte
array. This configuration file can be shared among different applications that use morphlines.

$ cat /etc/hbase-solr/conf/morphlines.conf

morphlines : [
 {
 id : morphline1
 importCommands : ["org.kitesdk.morphline.**", "com.ngdata.**"]

 commands : [
 {
 extractHBaseCells {
 mappings : [
 {
 inputColumn : "data:*"
 outputField : "data"
 type : string
 source : value
 }

 #{
 # inputColumn : "data:item"
 # outputField : "_attachment_body"
 # type : "byte[]"
 # source : value
 #}
]

54 | Cloudera Search

Cloudera Search User Guide

https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#table
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#mapping-type
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#read-row
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#mapper
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#unique-key-formatter
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#unique-key-field
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#row-field
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#column-family-field
https://github.com/NGDATA/hbase-indexer/wiki/Indexer-configuration#table-family-field

 }
 }

 #for avro use with type : "byte[]" in extractHBaseCells mapping above
 #{ readAvroContainer {} }
 #{
 # extractAvroPaths {
 # paths : {
 # data : /user_name
 # }
 # }
 #}

 { logTrace { format : "output record: {}", args : ["@{}"] } }
]
 }
]

Note: To function properly, the morphline must not contain a loadSolr command. The enclosing
Lily HBase Indexer must load documents into Solr, instead the morphline itself.

Understanding the extractHBaseCellsMorphline Command

The extractHBaseCellsmorphline command extracts cells from an HBase result and transforms the values into a
SolrInputDocument. The command consists of an array of zero or more mapping specifications.

Each mapping has:

• The inputColumn parameter, which specifies the data from HBase for populating a field in Solr. It has the form
of a column family name and qualifier, separated by a colon. The qualifier portion can end in an asterisk, which
is interpreted as a wildcard. In this case, all matching column-family and qualifier expressions are used. The
following are examples of valid inputColumn values:

– mycolumnfamily:myqualifier

– mycolumnfamily:my*

– mycolumnfamily:*

• The outputField parameter specifies the morphline record field to which to add output values. The morphline
record field is also known as the Solr document field. Example: first_name.

• Dynamic output fields are enabled by the outputField parameter ending with a * wildcard. For example:

inputColumn : "m:e:*"
outputField : "belongs_to_*"

In this case, if you make these puts in HBase:

put 'table_name' , 'row1' , 'm:e:1' , 'foo'
put 'table_name' , 'row1' , 'm:e:9' , 'bar'

Then the fields of the Solr document are as follows:

belongs_to_1 : foo
belongs_to_9 : bar

• The type parameter defines the data type of the content in HBase. All input data is stored in HBase as byte arrays,
but all content in Solr is indexed as text, so a method for converting byte arrays to the actual data type is required.
The type parameter can be the name of a type that is supported by
org.apache.hadoop.hbase.util.Bytes.to* (which currently includesbyte[],int,long,string,boolean,
float, double, short, and bigdecimal). Use type byte[] to pass the byte array through to the morphline
without conversion.

– type:byte[] copies the byte array unmodified into the record output field

Cloudera Search | 55

Cloudera Search User Guide

– type:int converts with org.apache.hadoop.hbase.util.Bytes.toInt

– type:long converts with org.apache.hadoop.hbase.util.Bytes.toLong

– type:string converts with org.apache.hadoop.hbase.util.Bytes.toString

– type:boolean converts with org.apache.hadoop.hbase.util.Bytes.toBoolean

– type:float converts with org.apache.hadoop.hbase.util.Bytes.toFloat

– type:double converts with org.apache.hadoop.hbase.util.Bytes.toDouble

– type:short converts with org.apache.hadoop.hbase.util.Bytes.toShort

– type:bigdecimal converts with org.apache.hadoop.hbase.util.Bytes.toBigDecimal

Alternatively, the type parameter can be the name of a Java class that implements the
com.ngdata.hbaseindexer.parse.ByteArrayValueMapper interface.

HBase data formatting does not alwaysmatchwhat is specified byorg.apache.hadoop.hbase.util.Bytes.*.
For example, this can occur with data of type float or double. You can enable indexing of such HBase data by
converting the data. There are various ways to do so including:

• Using Java morphline command to parse input data, converting it to the expected output. For example:

{
 imports : "import java.util.*;" code: """ // manipulate the contents of a record field

 String stringAmount = (String) record.getFirstValue("amount");
 Double dbl = Double.parseDouble(stringAmount); record.replaceValues("amount",dbl);
 return child.process(record); // pass record to next command in chain """
}

• Creating table fields with binary format and then using types such as double or float in a morphline.conf.
You could create a table in HBase for storing doubles using commands similar to:

CREATE TABLE sample_lily_hbase (id string, amount double, ts timestamp)
STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES ('hbase.columns.mapping' = ':key,ti:amount#b,ti:ts,')
TBLPROPERTIES ('hbase.table.name' = 'sample_lily');

• The source parameter determines which portion of an HBase KeyValue is used as indexing input. Valid choices
are value or qualifier. When value is specified, the HBase cell value is used as input for indexing. When
qualifier is specified, then the HBase column qualifier is used as input for indexing. The default is value.

Running HBaseMapReduceIndexerTool

Run HBaseMapReduceIndexerTool to index the HBase table using a MapReduce job, as follows:

hadoop --config /etc/hadoop/conf \
jar /usr/lib/hbase-solr/tools/hbase-indexer-mr-*-job.jar \
--conf /etc/hbase/conf/hbase-site.xml -D 'mapred.child.java.opts=-Xmx500m' \
--hbase-indexer-file $HOME/morphline-hbase-mapper.xml \
--zk-host 127.0.0.1/solr --collection hbase-collection1 \
--go-live --log4j src/test/resources/log4j.properties

Note: For development purposes, use the--dry-runoption to run in localmode andprint documents
to stdout, instead of loading them to Solr. Using this option causes the morphline to execute in the
client processwithout submitting a job toMapReduce. Executing in the client process provides quicker
results during early trial and debug sessions.

56 | Cloudera Search

Cloudera Search User Guide

Note: To print diagnostic information, such as the content of records as they pass through morphline
commands, enable TRACE log level diagnostics by adding the following to yourlog4j.properties
file:

log4j.logger.org.kitesdk.morphline=TRACE
log4j.logger.com.ngdata=TRACE

The log4j.properties file can be passed using the --log4j command-line option.

Understanding --go-live and HDFS ACLs

When run with a reduce phase, as opposed to as a mapper-only job, the indexer creates an offline index on HDFS in
the output directory specified by the --output-dir parameter. If the --go-live parameter is specified, Solr merges
the resulting offline index into the live running service. Thus, the Solr service must have read access to the contents
of the output directory in order to complete the --go-live step. If --overwrite-output-dir is specified, the
indexer deletes and recreates any existing output directory; in an environment with restrictive permissions, such as
one with an HDFS umask of 077, the Solr user may not be able to read the contents of the newly created directory. To
address this issue, the indexer automatically applies theHDFS ACLs to enable Solr to read the output directory contents.
These ACLs are only applied if HDFS ACLs are enabled on theHDFSNameNode. Formore information, seeHDFS Extended
ACLs.

The indexer onlymakes ACL updates to the output directory and its contents. If the output directory's parent directories
do not include the execute permission, the Solr service cannot access the output directory. Solr must have execute
permissions from standard permissions or ACLs on the parent directories of the output directory.

HBaseMapReduceIndexerTool

HBaseMapReduceIndexerTool is a MapReduce batch job driver that takes input data from an HBase table, creates Solr
index shards, andwrites the indexes into HDFS in a flexible, scalable, and fault-tolerantmanner. It also supportsmerging
the output shards into a set of live customer-facing Solr servers in SolrCloud.

Important: Merging output shards into live customer-facing Solr servers can only be completed if all
replicas are online.

• To invoke the command-line help in a default parcels installation, use:

$ hadoop jar /opt/cloudera/parcels/CDH-*/jars/hbase-indexer-mr-*-job.jar --help

• To invoke the command-line help in a default packages installation, use:

$ hadoop jar /usr/lib/hbase-solr/tools/hbase-indexer-mr-*-job.jar --help

usage: hadoop [GenericOptions]... jar hbase-indexer-mr-*-job.jar
 [--hbase-indexer-zk STRING] [--hbase-indexer-name STRING]
 [--hbase-indexer-file FILE]
 [--hbase-indexer-component-factory STRING]
 [--hbase-table-name STRING] [--hbase-start-row BINARYSTRING]
 [--hbase-end-row BINARYSTRING] [--hbase-start-time STRING]
 [--hbase-end-time STRING] [--hbase-timestamp-format STRING]
 [--zk-host STRING] [--go-live] [--collection STRING]
 [--go-live-threads INTEGER] [--help] [--output-dir HDFS_URI]
 [--overwrite-output-dir] [--morphline-file FILE]
 [--morphline-id STRING] [--update-conflict-resolver FQCN]
 [--reducers INTEGER] [--max-segments INTEGER]
 [--fair-scheduler-pool STRING] [--dry-run] [--log4j FILE]
 [--verbose] [--clear-index] [--show-non-solr-cloud]

MapReduce batch job driver that takes input data from an HBase table and
creates Solr index shards and writes the indexes into HDFS, in a flexible,

Cloudera Search | 57

Cloudera Search User Guide

scalable, and fault-tolerant manner. It also supports merging the output
shards into a set of live customer-facing Solr servers in SolrCloud.
Optionally, documents can be sent directly from the mapper tasks to
SolrCloud, which is a much less scalable approach but enables updating
existing documents in SolrCloud. The program proceeds in one or multiple
consecutive MapReduce-based phases, as follows:

1) Mapper phase: This (parallel) phase scans over the input HBase table,
extracts the relevant content, and transforms it into SolrInputDocuments.
If run as a mapper-only job, this phase also writes the SolrInputDocuments
directly to a live SolrCloud cluster. The conversion from HBase records
into Solr documents is performed via a hbase-indexer configuration and
typically based on a morphline.

2) Reducer phase: This (parallel) phase loads the mapper's
SolrInputDocuments into one EmbeddedSolrServer per reducer. Each such
reducer and Solr server can be seen as a (micro) shard. The Solr servers
store their data in HDFS.

3) Mapper-only merge phase: This (parallel) phase merges the set of
reducer shards into the number of Solr shards expected by the user, using
a mapper-only job. This phase is omitted if the number of shards is
already equal to the number of shards expected by the user

4) Go-live phase: This optional (parallel) phase merges the output shards
of the previous phase into a set of live customer-facing Solr servers in
SolrCloud. If this phase is omitted you can explicitly point each Solr
server to one of the HDFS output shard directories

Fault Tolerance: Mapper and reducer task attempts are retried on failure
per the standard MapReduce semantics. On program startup all data in the --
output-dir is deleted if that output directory already exists and --
overwrite-output-dir is specified. This means that if the whole job fails
you can retry simply by rerunning the program again using the same
arguments.

HBase Indexer parameters:
 Parameters for specifying the HBase indexer definition and where it
 should be loaded from.

 --hbase-indexer-zk STRING
 The address of the ZooKeeper ensemble from which
 to fetch the indexer definition named --hbase-
 indexer-name. Format is: a list of comma
 separated host:port pairs, each corresponding to
 a zk server. Example: '127.0.0.1:2181,127.0.0.1:
 2182,127.0.0.1:2183'
 --hbase-indexer-name STRING
 The name of the indexer configuration to fetch
 from the ZooKeeper ensemble specified with --
 hbase-indexer-zk. Example: myIndexer
 --hbase-indexer-file FILE
 Optional relative or absolute path to a local
 HBase indexer XML configuration file. If supplied,
 this overrides --hbase-indexer-zk and
 --hbase-indexer-name. Example:
 /path/to/morphline-hbase-mapper.xml
 --hbase-indexer-component-factory STRING
 Classname of the hbase indexer component factory.

HBase scan parameters:
 Parameters for specifying what data is included while reading from HBase.

 --hbase-table-name STRING
 Optional name of the HBase table containing the
 records to be indexed. If supplied, this
 overrides the value from the --hbase-indexer-*
 options. Example: myTable
 --hbase-start-row BINARYSTRING
 Binary string representation of start row from
 which to start indexing (inclusive). The format
 of the supplied row key should use two-digit hex
 values prefixed by \x for non-ASCII characters (e.

58 | Cloudera Search

Cloudera Search User Guide

 g. 'row\x00'). The semantics of this argument are
 the same as those for the HBase Scan#setStartRow
 method. The default is to include the first row
 of the table. Example: AAAA
 --hbase-end-row BINARYSTRING
 Binary string representation of end row prefix at
 which to stop indexing (exclusive). See the
 description of --hbase-start-row for more
 information. The default is to include the last
 row of the table. Example: CCCC
 --hbase-start-time STRING
 Earliest timestamp (inclusive) in time range of
 HBase cells to be included for indexing. The
 default is to include all cells. Example: 0
 --hbase-end-time STRING
 Latest timestamp (exclusive) of HBase cells to be
 included for indexing. The default is to include
 all cells. Example: 123456789
 --hbase-timestamp-format STRING
 Timestamp format to be used to interpret --hbase-
 start-time and --hbase-end-time. This is a java.
 text.SimpleDateFormat compliant format (see http:
 //docs.oracle.
 com/javase/6/docs/api/java/text/SimpleDateFormat.
 html). If this parameter is omitted then the
 timestamps are interpreted as number of
 milliseconds since the standard epoch (Unix
 time). Example: "yyyy-MM-dd'T'HH:mm:ss.SSSZ"

Solr cluster arguments:
 Arguments that provide information about your Solr cluster.

 --zk-host STRING The address of a ZooKeeper ensemble being used by
 a SolrCloud cluster. This ZooKeeper ensemble will
 be examined to determine the number of output
 shards to create as well as the Solr URLs to
 merge the output shards into when using the --go-
 live option. Requires that you also pass the --
 collection to merge the shards into.

 The --zk-host option implements the same
 partitioning semantics as the standard SolrCloud
 Near-Real-Time (NRT) API. This enables to mix
 batch updates from MapReduce ingestion with
 updates from standard Solr NRT ingestion on the
 same SolrCloud cluster, using identical unique
 document keys.

 Format is: a list of comma separated host:port
 pairs, each corresponding to a zk server.
 Example: '127.0.0.1:2181,127.0.0.1:2182,127.0.0.1:
 2183' If the optional chroot suffix is used the
 example would look like: '127.0.0.1:2181/solr,
 127.0.0.1:2182/solr,127.0.0.1:2183/solr' where
 the client would be rooted at '/solr' and all
 paths would be relative to this root - i.e.
 getting/setting/etc... '/foo/bar' would result in
 operations being run on '/solr/foo/bar' (from the
 server perspective).

Go live arguments:
 Arguments for merging the shards that are built into a live Solr
 cluster. Also see the Cluster arguments.

 --go-live Allows you to optionally merge the final index
 shards into a live Solr cluster after they are
 built. You can pass the ZooKeeper address with --
 zk-host and the relevant cluster information will
 be auto detected. (default: false)
 --collection STRING The SolrCloud collection to merge shards into
 when using --go-live and --zk-host. Example:
 collection1

Cloudera Search | 59

Cloudera Search User Guide

 --go-live-threads INTEGER
 Tuning knob that indicates the maximum number of
 live merges to run in parallel at one time.
 (default: 1000)

Optional arguments:
 --help, -help, -h Show this help message and exit
 --output-dir HDFS_URI HDFS directory to write Solr indexes to. Inside
 there one output directory per shard will be
 generated. Example: hdfs://c2202.mycompany.
 com/user/$USER/test
 --overwrite-output-dir
 Overwrite the directory specified by --output-dir
 if it already exists. Using this parameter will
 result in the output directory being recursively
 deleted at job startup. (default: false)
 --morphline-file FILE Relative or absolute path to a local config file
 that contains one or more morphlines. The file
 must be UTF-8 encoded. The file will be uploaded
 to each MR task. If supplied, this overrides the
 value from the --hbase-indexer-* options.
 Example: /path/to/morphlines.conf
 --morphline-id STRING The identifier of the morphline that shall be
 executed within the morphline config file, e.g.
 specified by --morphline-file. If the --morphline-
 id option is omitted the first (i.e. top-most)
 morphline within the config file is used. If
 supplied, this overrides the value from the --
 hbase-indexer-* options. Example: morphline1
 --update-conflict-resolver FQCN
 Fully qualified class name of a Java class that
 implements the UpdateConflictResolver interface.
 This enables deduplication and ordering of a
 series of document updates for the same unique
 document key. For example, a MapReduce batch job
 might index multiple files in the same job where
 some of the files contain old and new versions of
 the very same document, using the same unique
 document key.
 Typically, implementations of this interface
 forbid collisions by throwing an exception, or
 ignore all but the most recent document version,
 or, in the general case, order colliding updates
 ascending from least recent to most recent
 (partial) update. The caller of this interface (i.
 e. the Hadoop Reducer) will then apply the
 updates to Solr in the order returned by the
 orderUpdates() method.
 The default
 RetainMostRecentUpdateConflictResolver
 implementation ignores all but the most recent
 document version, based on a configurable numeric
 Solr field, which defaults to the
 file_last_modified timestamp (default: org.apache.
 solr.hadoop.dedup.
 RetainMostRecentUpdateConflictResolver)
 --reducers INTEGER Tuning knob that indicates the number of reducers
 to index into. 0 indicates that no reducers
 should be used, and documents should be sent
 directly from the mapper tasks to live Solr
 servers. -1 indicates use all reduce slots
 available on the cluster. -2 indicates use one
 reducer per output shard, which disables the
 mtree merge MR algorithm. The mtree merge MR
 algorithm improves scalability by spreading load
 (in particular CPU load) among a number of
 parallel reducers that can be much larger than
 the number of solr shards expected by the user.
 It can be seen as an extension of concurrent
 lucene merges and tiered lucene merges to the
 clustered case. The subsequent mapper-only phase
 merges the output of said large number of
 reducers to the number of shards expected by the

60 | Cloudera Search

Cloudera Search User Guide

 user, again by utilizing more available
 parallelism on the cluster. (default: -1)
 --max-segments INTEGER
 Tuning knob that indicates the maximum number of
 segments to be contained on output in the index
 of each reducer shard. After a reducer has built
 its output index it applies a merge policy to
 merge segments until there are <= maxSegments
 lucene segments left in this index. Merging
 segments involves reading and rewriting all data
 in all these segment files, potentially multiple
 times, which is very I/O intensive and time
 consuming. However, an index with fewer segments
 can later be merged faster, and it can later be
 queried faster once deployed to a live Solr
 serving shard. Set maxSegments to 1 to optimize
 the index for low query latency. In a nutshell, a
 small maxSegments value trades indexing latency
 for subsequently improved query latency. This can
 be a reasonable trade-off for batch indexing
 systems. (default: 1)
 --fair-scheduler-pool STRING
 Optional tuning knob that indicates the name of
 the fair scheduler pool to submit jobs to. The
 Fair Scheduler is a pluggable MapReduce scheduler
 that provides a way to share large clusters. Fair
 scheduling is a method of assigning resources to
 jobs such that all jobs get, on average, an equal
 share of resources over time. When there is a
 single job running, that job uses the entire
 cluster. When other jobs are submitted, tasks
 slots that free up are assigned to the new jobs,
 so that each job gets roughly the same amount of
 CPU time. Unlike the default Hadoop scheduler,
 which forms a queue of jobs, this lets short jobs
 finish in reasonable time while not starving long
 jobs. It is also an easy way to share a cluster
 between multiple of users. Fair sharing can also
 work with job priorities - the priorities are
 used as weights to determine the fraction of
 total compute time that each job gets.
 --dry-run Run in local mode and print documents to stdout
 instead of loading them into Solr. This executes
 the morphline in the client process (without
 submitting a job to MR) for quicker turnaround
 during early trial & debug sessions. (default:
 false)
 --log4j FILE Relative or absolute path to a log4j.properties
 config file on the local file system. This file
 will be uploaded to each MR task. Example:
 /path/to/log4j.properties
 --verbose, -v Turn on verbose output. (default: false)
 --clear-index Will attempt to delete all entries in a solr
 index before starting batch build. This is not
 transactional so if the build fails the index
 will be empty. (default: false)
 --show-non-solr-cloud Also show options for Non-SolrCloud mode as part
 of --help. (default: false)

Generic options supported are
 --conf <configuration file>
 specify an application configuration file
 -D <property=value> use value for given property
 --fs <local|namenode:port>
 specify a namenode
 --jt <local|jobtracker:port>
 specify a job tracker
 --files <comma separated list of files>
 specify comma separated files to be copied to the
 map reduce cluster
 --libjars <comma separated list of jars>
 specify comma separated jar files to include in
 the classpath.

Cloudera Search | 61

Cloudera Search User Guide

 --archives <comma separated list of archives>
 specify comma separated archives to be unarchived
 on the compute machines.

The general command line syntax is
bin/hadoop command [genericOptions] [commandOptions]

Examples:

(Re)index a table in GoLive mode based on a local indexer config file
hadoop --config /etc/hadoop/conf \
 jar hbase-indexer-mr-*-job.jar \
 --conf /etc/hbase/conf/hbase-site.xml \
 -D 'mapred.child.java.opts=-Xmx500m' \
 --hbase-indexer-file indexer.xml \
 --zk-host 127.0.0.1/solr \
 --collection collection1 \
 --go-live \
 --log4j src/test/resources/log4j.properties

(Re)index a table in GoLive mode using a local morphline-based indexer config file
Also include extra library jar file containing JSON tweet Java parser:
hadoop --config /etc/hadoop/conf \
 jar hbase-indexer-mr-*-job.jar \
 --conf /etc/hbase/conf/hbase-site.xml \
 --libjars /path/to/kite-morphlines-twitter-0.10.0.jar \
 -D 'mapred.child.java.opts=-Xmx500m' \
 --hbase-indexer-file src/test/resources/morphline_indexer_without_zk.xml \
 --zk-host 127.0.0.1/solr \
 --collection collection1 \
 --go-live \
 --morphline-file src/test/resources/morphlines.conf \
 --output-dir hdfs://c2202.mycompany.com/user/$USER/test \
 --overwrite-output-dir \
 --log4j src/test/resources/log4j.properties

(Re)index a table in GoLive mode
hadoop --config /etc/hadoop/conf \
 jar hbase-indexer-mr-*-job.jar \
 --conf /etc/hbase/conf/hbase-site.xml \
 -D 'mapred.child.java.opts=-Xmx500m' \
 --hbase-indexer-file indexer.xml \
 --zk-host 127.0.0.1/solr \
 --collection collection1 \
 --go-live \
 --log4j src/test/resources/log4j.properties

(Re)index a table with direct writes to SolrCloud
hadoop --config /etc/hadoop/conf \
 jar hbase-indexer-mr-*-job.jar \
 --conf /etc/hbase/conf/hbase-site.xml \
 -D 'mapred.child.java.opts=-Xmx500m' \
 --hbase-indexer-file indexer.xml \
 --zk-host 127.0.0.1/solr \
 --collection collection1 \
 --reducers 0 \
 --log4j src/test/resources/log4j.properties

(Re)index a table based on a indexer config stored in ZK
hadoop --config /etc/hadoop/conf \
 jar hbase-indexer-mr-*-job.jar \
 --conf /etc/hbase/conf/hbase-site.xml \
 -D 'mapred.child.java.opts=-Xmx500m' \
 --hbase-indexer-zk zk01 \
 --hbase-indexer-name docindexer \
 --go-live \
 --log4j src/test/resources/log4j.properties

MapReduce on Yarn - Pass custom JVM arguments
HADOOP_CLIENT_OPTS='-DmaxConnectionsPerHost=10000 -DmaxConnections=10000'; \
hadoop --config /etc/hadoop/conf \
 jar hbase-indexer-mr-*-job.jar \
 --conf /etc/hbase/conf/hbase-site.xml \

62 | Cloudera Search

Cloudera Search User Guide

 -D 'mapreduce.map.java.opts=-DmaxConnectionsPerHost=10000 -DmaxConnections=10000' \
 -D 'mapreduce.reduce.java.opts=-DmaxConnectionsPerHost=10000 -DmaxConnections=10000'
 \
 --hbase-indexer-zk zk01 \
 --hbase-indexer-name docindexer \
 --go-live \
 --log4j src/test/resources/log4j.properties\n

MapReduce on MR1 - Pass custom JVM arguments
HADOOP_CLIENT_OPTS='-DmaxConnectionsPerHost=10000 -DmaxConnections=10000'; \
hadoop --config /etc/hadoop/conf \
 jar hbase-indexer-mr-*-job.jar \
 --conf /etc/hbase/conf/hbase-site.xml \
 -D 'mapreduce.child.java.opts=-DmaxConnectionsPerHost=10000 -DmaxConnections=10000'
\
 --hbase-indexer-zk zk01 \ " --hbase-indexer-name docindexer \
 --go-live \
 --log4j src/test/resources/log4j.properties\n\n");

Configuring the Lily HBase NRT Indexer Service for Use with Cloudera Search
The Lily HBase NRT Indexer Service is a flexible, scalable, fault-tolerant, transactional, near real-time (NRT) system for
processing a continuous stream of HBase cell updates into live search indexes. Typically it takes seconds for data
ingested into HBase to appear in search results; this duration is tunable. The Lily HBase Indexer uses SolrCloud to index
data stored in HBase. As HBase applies inserts, updates, and deletes to HBase table cells, the indexer keeps Solr
consistent with the HBase table contents, using standard HBase replication. The indexer supports flexible custom
application-specific rules to extract, transform, and load HBase data into Solr. Solr search results can contain
columnFamily:qualifier links back to the data stored in HBase. This way, applications can use the Search result
set to directly access matching raw HBase cells. Indexing and searching do not affect operational stability or write
throughput of HBase because the indexing and searching processes are separate and asynchronous to HBase.

The Lily HBase NRT Indexer Service must be deployed in an environment with a running HBase cluster, a running
SolrCloud cluster, and at least one ZooKeeper cluster. This can be donewith orwithout ClouderaManager. SeeManaging
Services for more information on adding services such as the Lily HBase Indexer Service.

Enabling Cluster-wide HBase Replication

The Lily HBase Indexer is implemented using HBase replication, presenting indexers as RegionServers of the worker
cluster. This requires HBase replication on the HBase cluster, as well as the individual tables to be indexed. An example
of settings required for configuring cluster-wide HBase replication is shown
in /usr/share/doc/hbase-solr-doc*/demo/hbase-site.xml. You must add these settings to all of the
hbase-site.xml configuration files on the HBase cluster, except the
replication.replicationsource.implementationproperty. You canuse theClouderaManagerHBase Indexer
Service GUI to do this. After making these updates, restart your HBase cluster.

Pointing a Lily HBase NRT Indexer Service at an HBase Cluster that Needs to Be Indexed

Before starting Lily HBase NRT Indexer services, youmust configure individual services with the location of a ZooKeeper
ensemble that is used for the target HBase cluster. Add the following property to
/etc/hbase-solr/conf/hbase-indexer-site.xml. Remember to replace hbase-cluster-zookeeper with
the actual ensemble string found in the hbase-site.xml configuration file:

<property>
 <name>hbase.zookeeper.quorum</name>
 <value>hbase-cluster-zookeeper</value>
</property>

Cloudera Search | 63

Cloudera Search User Guide

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_managing_services.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_managing_services.html

Configure all Lily HBase NRT Indexer Services to use a particular ZooKeeper ensemble to coordinate with one another.
Add the following property to /etc/hbase-solr/conf/hbase-indexer-site.xml, and replace
hbase-cluster-zookeeper:2181 with the actual ensemble string:

<property>
 <name>hbaseindexer.zookeeper.connectstring</name>
 <value>hbase-cluster-zookeeper:2181</value>
</property>

Configuring Lily HBase Indexer Security

Beginningwith CDH 5.4 the Lily HBase Indexer includes an HTTP interface for the list-indexers, create-indexer,
update-indexer, anddelete-indexer commands. This interface can be configured to use Kerberos and to integrate
with Sentry.

Configuring Lily HBase Indexer to Use Security

To configure the Lily HBase Indexer to use security, you must create principals and keytabs and then modify default
configurations.

To create principals and keytabs

Repeat this process on all Lily HBase Indexer hosts.

1. Create a Lily HBase Indexer service user principal using the syntax:
hbase/<fully.qualified.domain.name>@<YOUR-REALM>. This principal is used to authenticate with the
Hadoop cluster. where: fully.qualified.domain.name is the host where the Lily HBase Indexer is running
YOUR-REALM is the name of your Kerberos realm.

$ kadmin
kadmin: addprinc -randkey hbase/fully.qualified.domain.name@YOUR-REALM.COM

2. Create aHTTP serviceuser principal using the syntax:HTTP/<fully.qualified.domain.name>@<YOUR-REALM>.
This principal is used to authenticate user requests coming to the Lily HBase Indexer web-services. where:
fully.qualified.domain.name is the host where the Lily HBase Indexer is running YOUR-REALM is the name
of your Kerberos realm.

kadmin: addprinc -randkey HTTP/fully.qualified.domain.name@YOUR-REALM.COM

Note:

The HTTP/ component of the HTTP service user principal must be upper case as shown in the
syntax and example above.

3. Create keytab files with both principals.

kadmin: xst -norandkey -k hbase.keytab hbase/fully.qualified.domain.name \
HTTP/fully.qualified.domain.name

4. Test that credentials in the merged keytab file work. For example:

$ klist -e -k -t hbase.keytab

5. Copy the hbase.keytab file to the Lily HBase Indexer configuration directory. The owner of the hbase.keytab
file should be the hbase user and the file should have owner-only read permissions.

To modify default configurations

Repeat this process on all Lily HBase Indexer hosts.

1. Modify the hbase-indexer-site.xml file as follows:

 <property>
 <name>hbaseindexer.authentication.type</name>
 <value>kerberos</value>

64 | Cloudera Search

Cloudera Search User Guide

 </property>
 <property>
 <name>hbaseindexer.authentication.kerberos.keytab</name>
 <value>hbase.keytab</value>
 </property>
 <property>
 <name>hbaseindexer.authentication.kerberos.principal</name>
 <value>HTTP/localhost@LOCALHOST</value>
 </property>
 <property>
 <name>hbaseindexer.authentication.kerberos.name.rules</name>
 <value>DEFAULT</value>
 </property>

2. Set up the Java Authentication and Authorization Service (JAAS). Create a jaas.conf file in the HBase-Indexer
configuration directory containing the following settings. Make sure that you substitute a value for principal
that matches your particular environment.

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 useTicketCache=false
 keyTab="/etc/hbase/conf/hbase.keytab"
 principal="hbase/fully.qualified.domain.name@<YOUR-REALM>";
};

Then,modifyhbase-indexer-env.sh in thehbase-indexer configurationdirectory to add the jaas configuration
to the system properties. You can do this by adding -Djava.security.auth.login.config to the
HBASE_INDEXER_OPTS. For example, you might add the following:

HBASE_INDEXER_OPTS = "$HBASE_INDEXER_OPTS
-Djava.security.auth.login.config=/path/to/your/jaas.conf"

Sentry integration

The Lily HBase Indexer uses a file-based access control model similar to that provided by Solr-Sentry integration, which
is described in Enabling Sentry Authorization for Search using the Command Line on page 79. For details on configuring
the HTTP API, which Sentry requires, see Configuring Clients to Use the HTTP Interface on page 68. The Lily HBase
Indexer's file-based access controlmodel supports specifying READ andWRITE privileges for each indexer. The privileges
work as follows:

• If role has WRITE privilege for indexer1, a call to create, update, or delete indexer1 succeeds.
• If role has READ privilege for indexer1, a call to list-indexers will list indexer1, if it exists. If an indexer called indexer2

exists, but the role does not have READ privileges for it, information about indexer2 is filtered out of the response.

To configure Sentry for the Lily HBase Indexer, add the following properties to hbase-indexer-site.xml:

 <property>
 <name>sentry.hbaseindexer.sentry.site</name>
 <value>sentry-site.xml</value> (full or relative path)
 </property>
 <property>
 <name>hbaseindexer.rest.resource.package</name>
 <value>org/apache/sentry/binding/hbaseindexer/rest</value>
 </property>

Note: These settings can be added using Cloudera Manager or by manually editing the
hbase-indexer-site.xml file.

Cloudera Search | 65

Cloudera Search User Guide

Starting a Lily HBase NRT Indexer Service

You can use the Cloudera Manager GUI to start Lily HBase NRT Indexer Service on a set of machines. In non-managed
deployments, you can start a Lily HBase Indexer Daemon manually on the local host with the following command:

sudo service hbase-solr-indexer restart

After starting the Lily HBase NRT Indexer Services, verify that all daemons are running using the jps tool from theOracle
JDK, which you can obtain from the Java SE Downloads page. If you are running a pseudo-distributed HDFS installation
and a Lily HBase NRT Indexer Service installation on one machine, jps shows the following output:

$ sudo jps -lm
31407 sun.tools.jps.Jps -lm
26393 com.ngdata.hbaseindexer.Main

Using the Lily HBase NRT Indexer Service

To index for column families of tables in an HBase cluster:

• Enable replication on HBase column families
• Create collections and configurations
• Register a Lily HBase Indexer configuration with the Lily HBase Indexer Service
• Verify that indexing is working

Enabling Replication on HBase Column Families

Ensure that cluster-wide HBase replication is enabled. Use the HBase shell to define column-family replication settings.

For every existing table, set the REPLICATION_SCOPE on every column family that needs to be indexed by issuing a
command of the form:

$ hbase shell
hbase shell> disable 'record'
hbase shell> alter 'record', {NAME => 'data', REPLICATION_SCOPE => 1}
hbase shell> enable 'record'

For every new table, set the REPLICATION_SCOPE on every column family that needs to be indexed by issuing a
command of the form:

$ hbase shell
hbase shell> create 'record', {NAME => 'data', REPLICATION_SCOPE => 1}

Creating Collections and Configurations

The tasks required for the Lily HBase NRT Indexer Services are the same as those described for the Lily HBase Batch
Indexer. Follow the steps described in these sections:

• Creating a Corresponding Collection in Search on page 53
• Creating a Lily HBase Indexer Configuration on page 54
• Creating a Morphline Configuration File on page 54

Registering a Lily HBase Indexer Configuration with the Lily HBase Indexer Service

When the content of the Lily HBase Indexer configuration XML file is satisfactory, register it with the Lily HBase Indexer
Service. Register the Lily HBase Indexer configuration file by uploading the Lily HBase Indexer configuration XML file
to ZooKeeper. For example:

$ hbase-indexer add-indexer \
--name myIndexer \
--indexer-conf $HOME/morphline-hbase-mapper.xml \

66 | Cloudera Search

Cloudera Search User Guide

--connection-param solr.zk=solr-cloude-zk1,solr-cloude-zk2/solr \
--connection-param solr.collection=hbase-collection1 \
--zookeeper hbase-cluster-zookeeper:2181

Verify that the indexer was successfully created as follows:

$ hbase-indexer list-indexers
Number of indexes: 1

myIndexer
 + Lifecycle state: ACTIVE
 + Incremental indexing state: SUBSCRIBE_AND_CONSUME
 + Batch indexing state: INACTIVE
 + SEP subscription ID: Indexer_myIndexer
 + SEP subscription timestamp: 2013-06-12T11:23:35.635-07:00
 + Connection type: solr
 + Connection params:
 + solr.collection = hbase-collection1
 + solr.zk = localhost/solr
 + Indexer config:
 110 bytes, use -dump to see content
 + Batch index config:
 (none)
 + Default batch index config:
 (none)
 + Processes
 + 1 running processes
 + 0 failed processes

Use theupdate-indexer anddelete-indexer command-line options of thehbase-indexer utility tomanipulate
existing Lily HBase Indexers.

For more help, use the following commands:

$ hbase-indexer add-indexer --help
$ hbase-indexer list-indexers --help
$ hbase-indexer update-indexer --help
$ hbase-indexer delete-indexer --help

The morphlines.conf configuration file must be present on every host that runs an indexer.

You can use the Cloudera Manager Admin Console to update morphlines.conf:

1. Go to the Key-Value Store Indexer service.
2. Click the Configuration tab.
3. Select Scope > KS_INDEXER (Service Wide)
4. Select Category >Morphlines.
5. For theMorphlines File property, paste the new morphlines.conf content into the Value field.
6. Click Save Changes to commit the changes.

Cloudera Manager automatically copies pasted configuration files to the current working directory of all Lily HBase
Indexer cluster processes on start and restart of the Lily HBase Indexer Service. In this case, the file location
/etc/hbase-solr/conf/morphlines.conf is not applicable.

Morphline configuration files can be changed without re-creating the indexer itself. In such a case, you must restart
the Lily HBase Indexer service.

Verifying that Indexing Works

Add rows to the indexed HBase table. For example:

$ hbase shell
hbase(main):001:0> put 'record', 'row1', 'data', 'value'
hbase(main):002:0> put 'record', 'row2', 'data', 'value2'

Cloudera Search | 67

Cloudera Search User Guide

If the put operation succeeds, wait a few seconds, go to the SolrCloud UI query page, and query the data. Note the
updated rows in Solr.

To print diagnostic information, such as the content of records as they pass through the morphline commands, enable
the TRACE log level. For example, you might add two lines to your log4j.properties file:

log4j.logger.com.cloudera.cdk.morphline=TRACE
log4j.logger.com.ngdata=TRACE

In Cloudera Manager do the following:

1. Go to the Key-Value Store Indexer service.
2. Click the Configuration tab.
3. Select Scope > Lily HBase Indexer.
4. Select Category > Advanced.
5. Locate the Lily HBase Indexer Logging Advanced Configuration Snippet (Safety Valve) property or search for it

by typing its name in the Search box.

If more than one role group applies to this configuration, edit the value for the appropriate role group. See
Modifying Configuration Properties Using Cloudera Manager.

6. Click Save Changes to commit the changes.
7. Restart the Key-Value Store Indexer service.

Note: The nameof the particular Key-Value Store Indexer service can vary. Themost common variation
is a different number at the end of the name.

Examine the log files in /var/log/hbase-solr/lily-hbase-indexer-* for details.

Configuring Clients to Use the HTTP Interface

By default, the client does not use the new HTTP interface. Use the HTTP interface only if you want to take advantage
of one of the features it provides, such as Kerberos authentication and Sentry integration. The client now supports
passing two additional parameters to the list-indexers, create-indexer, delete-indexer, and
update-indexer commands:

• --http: An HTTP URI to the hbase-indexer HTTP API. By default, this URI is of the form
http://host:11060/indexer/. If this URI is passed, the Lily HBase Indexer uses the HTTP API. If this URI is
not passed, the indexer uses the old behavior of communicating directly with ZooKeeper.

• --jaas: The specification of a jaas configuration file. This is only necessary for Kerberos-enabled deployments.

Note: Cloudera recommends using FQDNs for both the Lily HBase Indexer host and the ZooKeeper
host. Using FQDNs helps ensure proper Kerberos domain mapping.

For example:

hbase-indexer list-indexers --http http://host:port/indexer/ \
--jaas jaas.conf --zookeeper host:port

Schemaless Mode Overview and Best Practices
Schemaless mode removes the need to design a schema before beginning to use Search. This can help you begin using
Search more quickly, but schemaless mode is typically less efficient and effective than using a deliberately designed
schema.

68 | Cloudera Search

Cloudera Search User Guide

Note: Cloudera recommends pre-defining a schema before moving to production.

With the default non-schemaless mode, you create a schema by writing a schema.xml file before loading data into
Solr so it can be used by Cloudera Search. You typically write a different schema definition for each type of data being
ingested, because the different types usually have different field names and values. This is done by examining the data
to be imported so its structure can be understood, and then creating a schema that accommodates that data. For
example, emails might have a field for recipients and log files might have a field for IP addresses for machines reporting
errors. Conversely, emails typically do not have an IP address field and log files typically do not have recipients. Therefore,
The schema you use to import emails is different from the schema you use to import log files.

Cloudera Search offers schemaless mode to help facilitate sample deployments without the need to pre-define a
schema. While schemaless is not suitable for production environments, it can help demonstrate the functionality and
features of Cloudera Search. Schemaless mode operates based on three principles:

1. The schema is automatically updated using an API. When not using schemaless mode, users manually modify the
schema.xml file or use the Schema API.

2. As data is ingested, it is analyzed and a guess is made about the type of data in the field. Supported types include
Boolean, Integer, Long, Float, Double, Date, and Text.

3. When a new field is encountered, the schema is automatically updated using the API. The update is based on the
guess about the type of data in the field.

For example, if schemaless encounters a field that contains "6.022", this would be determined to be type Float, whereas
"Mon May 04 09:51:52 CDT 2009" would be determined to be type Date.

By combining these techniques, Schemaless:

1. Starts without a populated schema.
2. Intakes and analyzes data.
3. Modifies the schema based on guesses about the data.
4. Ingests the data so it can be searched based on the schema updates.

To generate a configuration for use in Schemaless mode, use solrctl instancedir --generate path
-schemaless. Then, create the instancedir and collection as with non-schemaless mode. For more information, see
solrctl Reference on page 24.

Best Practices

User Defined Schemas Recommended for Production Use Cases

Schemaless Solr is useful for getting started quickly and for understanding the underlying structure of the data you
want to search. However, Schemaless Solr is not recommended for production use cases. Because the schema is
automatically generated, a mistake like misspelling the name of the field alters the schema, rather than producing an
error. The mistake may not be caught until much later and once caught, may require re-indexing to fix. Also, an
unexpected input format may cause the type guessing to pick a field type that is incompatible with data that is
subsequently ingested, preventing further ingestion until the incompatibility is manually addressed. Such a case is rare,
but could occur. For example, if the first instance of a field was an integer, such as '9', but subsequent entries were
text such as '10 Spring Street', the schema would make it impossible to properly ingest those subsequent entries.
Therefore, Schemaless Solr may be useful for deciding on a schema during the exploratory stage of development, but
Cloudera recommends defining the schema in the traditional way before moving to production.

Give each Collection its own unique Instancedir

Solr supports using the same instancedir formultiple collections. In schemalessmode, automatic schema field additions
actually change the underlying instancedir. Thus, if two collections are using the same instancedir, schema field additions
meant for one collection will actually affect the other one as well. Therefore, Cloudera recommended that each
collection have its own instancedir.

Cloudera Search | 69

Cloudera Search User Guide

Using Search through a Proxy for High Availability
Using a proxy server to relay requests to and from the Solr service can helpmeet availability requirements in production
clusters serving many users.

A proxy server works a set of servers that is organized into a server group. A proxy server does not necessarily work
with all servers in a deployment.

Overview of Proxy Usage and Load Balancing for Search

Configuring a proxy server to relay requests to and from the Solr service has the following advantages:

• Applications connect to a single well-known host and port, rather than keeping track of the hosts where the Solr
service is running. This is especially useful for non-Java Solr clients such as web browsers or command-line tools
such as curl.

Note: Solr Java client (solrj) can introspect Zookeeper metadata to automatically locate the
individual Solr servers, so load-balancing proxy support is not necessary.

• If any host running the Solr service becomes unavailable, application connection requests still succeed because
you always connect to the proxy server rather than a specific host running the Solr server.

• Users can configure an SSL terminating proxy for Solr to secure the data exchanged with the external clients
without requiring SSL configuration for the Solr cluster itself. This is relevant only if the Solr cluster is deployed
on a trusted network and needs to communicate with clients that may not be on the same network. Many of the
advantages of SSL offloading are described in SSL Offloading, Encryption, and Certificates with NGINX.

• The "coordinator host" for each Search query potentially requires more memory and CPU cycles than the other
hosts that process the query. The proxy server can issue queries using round-robin scheduling, so that each
connection uses a different coordinator host. This load-balancing technique lets the hosts running the Solr service
share this additional work, rather than concentrating it on a single machine.

The following setup steps are a general outline that apply to any load-balancing proxy software.

1. Download the load-balancing proxy software. It should only need to be installed and configured on a single host.
2. Configure the software, typically by editing a configuration file. Set up a port on which the load balancer listens

to relay Search requests back and forth.
3. Specify the host and port settings for each Solr service host. These are the hosts that the load balancer chooses

from when relaying each query. In most cases, use 8983, the default query and update port.
4. Run the load-balancing proxy server, pointing it at the configuration file that you set up.

Special Proxy Considerations for Clusters Using Kerberos

In a cluster using Kerberos, applications check host credentials to verify that the host they are connecting to is the
same one that is actually processing the request, to preventman-in-the-middle attacks. To clarify that the load-balancing
proxy server is legitimate, perform these extra Kerberos setup steps:

1. This section assumes you are starting with a Kerberos-enabled cluster. See Search Authentication for instructions
for setting up Search with Kerberos. See the CDH Security Guide for general steps to set up Kerberos: CDH 5
instructions.

2. Choose the host you will use for the proxy server. Based on the Kerberos setup procedure, it should already have
an entry solr/proxy_host@realm in its keytab. If not, go back over the initial Kerberos configuration steps to
the keytab on each host running solr as described in Search Authentication.

3. Copy the keytab file from the proxy host to all other hosts in the cluster that run the solr daemon. (For optimal
performance, solr should be running on all DataNodes in the cluster.) Put the keytab file in a secure location on
each of these other hosts.

70 | Cloudera Search

Cloudera Search User Guide

https://www.nginx.com/blog/nginx-ssl/
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_sg_kerberos_prin_keytab_deploy.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_sg_kerberos_prin_keytab_deploy.html

4. For each solr node, merge the existing keytab with the proxy’s keytab using ktutil, producing a new keytab file.
For example:

$ ktutil
ktutil: read_kt proxy.keytab
ktutil: read_kt solr.keytab
ktutil: write_kt proxy_Search.keytab
ktutil: quit

5. Make sure that the Search user has permission to read this merged keytab file.
6. For every host running Solr daemon, edit the SOLR_AUTHENTICATION_KERBEROS_PRINCIPAL property in

/etc/default/solr file to set the value to *. The value should appear as:

SOLR_AUTHENTICATION_KERBEROS_PRINCIPAL=*

7. Restart the Search service to make the changes take effect.

Configuring Dependent Services

Other services that use Search must also be configured to use the load balancer. For example, Hue may need
reconfiguration. To reconfigure dependent services, ensure that the service uses aURL constructed of the load balancer
hostname and port number when referring to Solr service. For example, in case of Hue, update hue.ini file to set
solr_url parameter to a url referring load balancer. URL referring load balancers are typically of the form
http://<load-balancer-host>:<port>/solr. For example, the value might appear as:

solr_url=http://load-balancer.example.com:1518/solr

Migrating Solr Replicas
When you replace a host, migrating replicas on that host to the new host, instead of depending on failure recovery,
can help ensure optimal performance.

Where possible, the Solr service routes requests to the proper host. Both ADDREPLICA and DELETEREPLICA calls
can be sent to any host in the cluster.

• For adding replicas, the node parameter ensures the new replica is created on the intended host. If no host is
specified, Solr selects a host with relatively fewer replicas.

• For deleting replicas, the request is routed to the host that hosts the replica to be deleted.

Adding replicas can be resource intensive. For best results, add replicas when the system is not under heavy load. For
example, do not add additional replicas when heavy indexing is occurring or when MapReduceIndexerTool jobs are
running.

Cloudera recommends using API calls to create and unload cores. Do not use the Cloudera Manager Admin Console
or the Solr Admin UI for these tasks.

This procedure uses the following names:

• Host names:

– origin at the IP address 192.168.1.81:8983_solr.
– destination at the IP address 192.168.1.82:8983_solr.

• Collection name email
• Replicas:

– The original replica email_shard1_replica1, which is on origin.
– The new replica email_shard1_replica2, which will be on destination.

To migrate a replica to a new host

Cloudera Search | 71

Cloudera Search User Guide

1. (Optional) If you want to add a replica to a particular node, review the contents of the live_nodes directory on
ZooKeeper to find all nodes available to host replicas. Open the Solr Administration User interface, click Cloud,
click Tree, and expand live_nodes. The Solr Administration User Interface, including live_nodes, might appear as
follows:

Note: Information about Solr nodes can also be found in clusterstate.json, but that file
only lists nodes currently hosting replicas. Nodes running Solr but not currently hosting replicas
are not listed in clusterstate.json.

2. Add the new replica on destination server using the ADDREPLICA API.

http://192.168.1.81:8983/solr/admin/collections?action=ADDREPLICA&collection=email&shard=shard1&node=192.168.1.82:8983_solr

3. Verify that the replica creation succeeds and moves from recovery state to ACTIVE. You can check the replica
status in the Cloud view,which can be found at aURL similar to:http://192.168.1.82:8983/solr/#/~cloud.

72 | Cloudera Search

Cloudera Search User Guide

Note: Do not delete the original replica until the new one is in the ACTIVE state.When the newly
added replica is listed as ACTIVE, the index has been fully replicated to the newly added replica.
The total time to replicate an index varies according to factors such as network bandwidth and
the size of the index. Replication times on the scale of hours are not uncommon and do not
necessarily indicate a problem.

You can use the details command to get an XML document that contains information about
replication progress. Use curl or a browser to access a URI similar to:

http://192.168.1.82:8983/solr/email_shard1_replica2/replication?command=details

Accessing this URI returns an XML document that contains content about replication progress. A
snippet of the XML content might appear as follows:

...
<str name="numFilesDownloaded">126</str>
<str name="replication StartTime">Tue Jan 21 14:34:43 PST 2014</str>
<str name="timeElapsed">457s</str>
<str name="currentFile">4xt_Lucene41_0.pos</str>
<str name="currentFileSize">975.17 MB</str>
<str name="currentFileSizeDownloaded">545 MB</str>
<str name="currentFileSizePercent">55.0</str>
<str name="bytesDownloaded">8.16 GB</str>
<str name="totalPercent">73.0</str>
<str name="timeRemaining">166s</str>
<str name="downloadSpeed">18.29 MB</str>
...

4. Use the CLUSTERSTATUS API to retrieve information about the cluster, including current cluster status:

http://192.168.1.81:8983/solr/admin/collections?action=clusterstatus&wt=json&indent=true

Review the returned information to find the correct replica to remove. An example of the JSON file might appear
as follows:

5. Delete the old replica on origin server using the DELETEREPLICA API:

http://192.168.1.81:8983/solr/admin/collections?action=DELETEREPLICA&collection=email&shard=shard1&replica=core_node2

The DELTEREPLICA call removes the datadir.

Cloudera Search | 73

Cloudera Search User Guide

Using Custom JAR Files with Search
Search for CDH supports custom plug-in code. You load classes into JAR files and then configure Search to find these
files. To correctly deploy custom JARs, ensure that:

• Custom JARs are pushed to the same location on all nodes in your cluster that are hosting Cloudera Search (Solr
Service).

• Supporting configuration files direct Search to find the custom JAR files.
• Any required configuration files such as schema.xml or solrconfig.xml reference the custom JAR code.

The following procedure describes how to use custom JARs. Some cases may not require completion of every step.
For example, indexer tools that support passing JARs as arguments may not require modifying xml files. However,
completing all configuration steps helps ensure the custom JARs are used correctly in all cases.

Note: Search for CDH supports custom plug-in code, but it does not support enabling custom JARs
using the Blob Store API and special config API commands. Apache Solr 5.3 implements this functionality
so that JARs can be loaded to a special system-level collection and dynamically loaded at run time.

1. Place your custom JAR in the same location on all nodes in your cluster.
2. For all collections where custom JARs will be used, modify solrconfig.xml to include references to the new

JAR files.

These directives can include explicit or relative references and can use wildcards. In the solrconfig.xml file,
add <lib> directives to indicate the JAR file locations or <path> directives for specific jar files:

<lib path="/usr/lib/solr/lib/MyCustom.jar" />

or

<lib dir="/usr/lib/solr/lib" />

or

<lib dir="../../../myProject/lib" regex=".*\.jar" />

3. For all collections inwhich custom JARswill be used, reference custom JAR code in the appropriate Solr configuration
file. The two configuration files that most commonly reference code in custom JARs are solrconfig.xml and
schema.xml.

4. For all collections in which custom JARs will be used, use solrctl to update ZooKeeper's copies of configuration
files such as solrconfig.xml and schema.xml:

solrctl instancedir --update name path

• name specifies the instancedir associated with the collection using solrctl instancedir --create.
• path specifies the directory containing the collection's configuration files.

For example:

solrctl instancedir --update collection1 $HOME/solr_configs

5. For all collections in which custom JARs will be used, use RELOAD to refresh information:

http://<hostname>:<port>/solr/admin/collections?action=RELOAD&name=collectionname

For example:

http://example.com:8983/solr/admin/collections?action=RELOAD&name=collection1

74 | Cloudera Search

Cloudera Search User Guide

When the RELOAD command is issued to any node that hosts a collection, that node sends subcommands to all
replicas in the collection. All relevant nodes refresh their information, so this command must be issued once per
collection.

6. Ensure that the class path includes the location of the custom JAR file:

a. For example, if you store the custom JAR file in /opt/myProject/lib/, add that path as a line to the
~/.profile for the Solr user.

b. Restart the Solr service to reload the PATH variable.
c. Repeat this process of updating the PATH variable for all nodes.

The system is now configured to find custom JAR files. Some command-line tools includedwith Cloudera Search support
specifying JAR files. For example, when using MapReduceIndexerTool, use the --libjars option to specify JAR
files to use. Tools that support specifying custom JARs include:

• MapReduceIndexerTool
• Lily HBase Indexer
• HDFSFindTool
• CrunchIndexerTool
• Flume indexing

Enabling Kerberos Authentication for Search
Cloudera Search supports Kerberos authentication. All necessary packages are installed when you install Search. To
enable Kerberos, create principals and keytabs and then modify default configurations.

The following instructions only apply to configuring Kerberos in an unmanaged environment. Kerberos configuration
is automatically handled by Cloudera Manager if you are using Search in a Cloudera Manager environment.

To create principals and keytabs

Repeat this process on all Solr server hosts.

1. Create a Solr service user principal using the syntax:solr/<fully.qualified.domain.name>@<YOUR-REALM>.
This principal is used to authenticate with the Hadoop cluster. where: fully.qualified.domain.name is the
host where the Solr server is running YOUR-REALM is the name of your Kerberos realm.

$ kadmin
kadmin: addprinc -randkey solr/fully.qualified.domain.name@YOUR-REALM.COM

2. Create aHTTP serviceuser principal using the syntax:HTTP/<fully.qualified.domain.name>@<YOUR-REALM>.
This principal is used to authenticate user requests coming to the Solr web-services. where:
fully.qualified.domain.name is the host where the Solr server is running YOUR-REALM is the name of your
Kerberos realm.

kadmin: addprinc -randkey HTTP/fully.qualified.domain.name@YOUR-REALM.COM

Note:

The HTTP/ component of the HTTP service user principal must be upper case as shown in the
syntax and example above.

3. Create keytab files with both principals.

kadmin: xst -norandkey -k solr.keytab solr/fully.qualified.domain.name \
HTTP/fully.qualified.domain.name

4. Test that credentials in the merged keytab file work. For example:

$ klist -e -k -t solr.keytab

Cloudera Search | 75

Cloudera Search User Guide

5. Copy the solr.keytab file to the Solr configuration directory. The owner of the solr.keytab file should be
the solr user and the file should have owner-only read permissions.

To modify default configurations

Repeat this process on all Solr server hosts.

1. Ensure that the following properties appear in /etc/default/solr or
/opt/cloudera/parcels/CDH-*/etc/default/solrand that theyareuncommented.Modify theseproperties
to match your environment. The relevant properties to be uncommented and modified are:

SOLR_AUTHENTICATION_TYPE=kerberos
SOLR_AUTHENTICATION_SIMPLE_ALLOW_ANON=true
SOLR_AUTHENTICATION_KERBEROS_KEYTAB=/etc/solr/conf/solr.keytab
SOLR_AUTHENTICATION_KERBEROS_PRINCIPAL=HTTP/localhost@LOCALHOST
SOLR_AUTHENTICATION_KERBEROS_NAME_RULES=DEFAULT
SOLR_AUTHENTICATION_JAAS_CONF=/etc/solr/conf/jaas.conf

Note: Modify the values for these properties to match your environment. For example, the
SOLR_AUTHENTICATION_KERBEROS_PRINCIPAL=HTTP/localhost@LOCALHOSTmust include
the principal instance and Kerberos realm for your environment. That is often different from
localhost@LOCALHOST.

2. Set hadoop.security.auth_to_local to match the value specified by
SOLR_AUTHENTICATION_KERBEROS_NAME_RULES in /etc/default/solr or
/opt/cloudera/parcels/CDH-*/etc/default/solr.

Note: For information on how to configure the rules, see Configuring theMapping fromKerberos
Principals to Short Names. For additional information on using Solr with HDFS, see Configuring
Solr for Use with HDFS.

3. If using applications that use the solrj library, set up the Java Authentication and Authorization Service (JAAS).

a. Create a jaas.conf file in the Solr configuration directory containing the following settings. This file and its
location must match the SOLR_AUTHENTICATION_JAAS_CONF value. Make sure that you substitute a value
for principal that matches your particular environment.

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 useTicketCache=false
 keyTab="/etc/solr/conf/solr.keytab"
 principal="solr/fully.qualified.domain.name@<YOUR-REALM>";
};

Using Kerberos with Search
The process of enabling Solr clients to authenticatewith a secure Solr is specific to the client. This section demonstrates:

• Using Kerberos and curl
• Using solrctl
• Configuring SolrJ Library Usage
• This enables technologies including:

• Command line solutions
• Java applications
• The MapReduceIndexerTool

• Configuring Flume Morphline Solr Sink Usage

76 | Cloudera Search

Cloudera Search User Guide

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cdh_sg_kerbprin_to_sn.html
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cdh_sg_kerbprin_to_sn.html

Secure Solr requires that the CDH components that it interacts with are also secure. Secure Solr interacts with HDFS,
ZooKeeper and optionally HBase, MapReduce, and Flume.

Using Kerberos and curl

You can use Kerberos authenticationwith clients such ascurl. To usecurl, begin by acquiring valid Kerberos credentials
and then run the desired command. For example, you might use commands similar to the following:

$ kinit -kt username.keytab username
$ curl --negotiate -u foo:bar http://solrserver:8983/solr/

Note: Depending on the tool used to connect, additional arguments may be required. For example,
with curl, --negotiate and -u are required. The username and password specified with -u is not
actually checked because Kerberos is used. As a result, any value such as foo:bar or even just : is
acceptable. While any value can be provided for -u, note that the option is required. Omitting -u
results in a 401 Unauthorized error, even though the -u value is not actually used.

Using solrctl

If you are using solrctl to manage your deployment in an environment that requires Kerberos authentication, you
must have valid Kerberos credentials, which you can get using kinit. For more information on solrctl, see solrctl
Reference on page 24

Configuring SolrJ Library Usage

If using applications that use the solrj library, begin by establishing a Java Authentication and Authorization Service
(JAAS) configuration file.

Create a JAAS file:

• If you have already used kinit to get credentials, you can have the client use those credentials. In such a case,
modify your jaas-client.conf file to appear as follows:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=false
 useTicketCache=true
 principal="user/fully.qualified.domain.name@<YOUR-REALM>";
 };

where user/fully.qualified.domain.name@<YOUR-REALM> is replaced with your credentials.
• You want the client application to authenticate using a keytab you specify:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/path/to/keytab/user.keytab"
 storeKey=true
 useTicketCache=false
 principal="user/fully.qualified.domain.name@<YOUR-REALM>";
};

where /path/to/keytab/user.keytab is the keytab file you want to use and
user/fully.qualified.domain.name@<YOUR-REALM> is the principal in that keytab you want to use.

Use the JAAS file to enable solutions:

• Command line solutions

Cloudera Search | 77

Cloudera Search User Guide

Set the property when invoking the program. For example, if you were using a jar, you might use:

java -Djava.security.auth.login.config=/home/user/jaas-client.conf -jar app.jar

• Java applications

Set the Java system property java.security.auth.login.config. For example, if the JAAS configuration file
is located on the filesystem as /home/user/jaas-client.conf. The Java system property
java.security.auth.login.configmust be set to point to this file. Setting a Java system property can be
done programmatically, for example using a call such as:

System.setProperty("java.security.auth.login.config", "/home/user/jaas-client.conf");

• The MapReduceIndexerTool

The MapReduceIndexerTool uses SolrJ to pass the JAAS configuration file. Using the MapReduceIndexerTool in a
secure environment requires the use of the HADOOP_OPTS variable to specify the JAAS configuration file. For
example, you might issue a command such as the following:

HADOOP_OPTS="-Djava.security.auth.login.config=/home/user/jaas.conf" \
hadoop jar MapReduceIndexerTool

• Configuring the hbase-indexer CLI

Certain hbase-indexer CLI commands such as replication-status attempt to read ZooKeeper hosts owned
by HBase. To successfully use these commands in Search for CDH 4 in a secure environment, edit
/etc/hbase-indexer/conf and add the environment variable. For example, change:

export HBASE_INDEXER_OPTS="-XX:+UseConcMarkSweepGC"

To:

export HBASE_INDEXER_OPTS="-Djava.security.auth.login.config=/home/user/hbase-jaas.conf
 -XX:+UseConcMarkSweepGC"

Configuring Flume Morphline Solr Sink Usage

Repeat this process on all Flume hosts:

1. If you have not created a keytab file, do so now at /etc/flume-ng/conf/flume.keytab. This file should
contain the service principal flume/<fully.qualified.domain.name>@<YOUR-REALM>. See Flume
Authentication for more information.

2. Create a JAAS configuration file for flume at/etc/flume-ng/conf/jaas-client.conf. The file should appear
as follows:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 useTicketCache=false
 keyTab="/etc/flume-ng/conf/flume.keytab"
 principal="flume/<fully.qualified.domain.name>@<YOUR-REALM>";
};

3. Add the flume JAAS configuration to the JAVA_OPTS in /etc/flume-ng/conf/flume-env.sh. For example,
you might change:

JAVA_OPTS="-Xmx500m"

78 | Cloudera Search

Cloudera Search User Guide

to:

JAVA_OPTS="-Xmx500m -Djava.security.auth.login.config=/etc/flume-ng/conf/jaas-client.conf"

Enabling Sentry Authorization for Search using the Command Line
Sentry enables role-based, fine-grained authorization for Cloudera Search. Sentry can apply a range of restrictions to
various tasks, such as accessing data,managing configurations through config objects, or creating collections. Restrictions
are consistently applied, regardless of the way users attempt to complete actions. For example, restricting access to
data in a collection restricts that accesswhether queries come from the command line, froma browser, Hue, or through
the admin console.

• You can use either Cloudera Manager or the following command-line instructions to complete this configuration.
• This information applies specifically to CDH 5.7.x. If you use an earlier version of CDH, see the documentation for

that version located at Cloudera Documentation.

For information on enabling Sentry authorization using ClouderaManager, see Configuring Sentry Policy File Authorization
Using Cloudera Manager.

Follow the instructions below to configure Sentry under CDH 4.5 or higher or CDH 5. Sentry is included in the Search
installation.

Note: Sentry for Search depends on Kerberos authentication. For additional information on using
Kerberoswith Search, see Enabling Kerberos Authentication for Search on page 75 andUsing Kerberos
with Search on page 76.

This document describes configuring Sentry for Cloudera Search. For information about alternate ways to configure
Sentry or for information about installing Sentry for other services, see:

• Enabling Sentry Authorization for Solr for instructions for using ClouderaManager to configure Search Authorization
with Sentry.

• Overview of Impala Security for instructions on using Impala with Sentry.
• Sentry Installation for additional information on Sentry installation.

Using Roles and Privileges with Sentry

Sentry uses a role-based privilege model. A role is a set of rules for accessing a given Solr collection or Solr config.
Access to each collection is governed by three privileges: Query, Update, and *. Thewildcard (*) indicates all privileges.
In contract, access to each config is governed by a single privilege *, meaning all privileges.

• A rule for the Query privilege on collection called logs would be formulated as follows:

collection=logs->action=Query

• A rule for the * privilege, meaning all privileges, on the config called myConfig would be formulated as follows:

config=myConfig->action=*

No action implies * and * is the only valid action. Because config objects only support *, the following config
privilege is invalid:

config=myConfig->action=Update

Note thatconfig objects cannot be combinedwithcollection objects in a single privilege. For example, the following
combinations are illegal:

Cloudera Search | 79

Cloudera Search User Guide

http://www.cloudera.com/content/support/en/documentation.html
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/sg_policy_cm_config.html#concept_ldr_wvk_cl_unique_1
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/impala_security.html

•config=myConfig->collection=myCollection->action=*

•collection=myCollection->config=myConfig

You may specify these privileges separately. For example:

myRole = collection=myCollection->action=QUERY, config=myConfig->action=*

A role can contain multiple such rules, separated by commas. For example the engineer_rolemight contain the
Query privilege for hive_logs and hbase_logs collections, and the Update privilege for the current_bugs
collection. You would specify this as follows:

engineer_role = collection=hive_logs->action=Query, collection=hbase_logs->action=Query,
 collection=current_bugs->action=Update

Using Users and Groups with Sentry

• A user is an entity that is permitted by the Kerberos authentication system to access the Search service.
• A group connects the authentication system with the authorization system. It is a set of one or more users who

have been granted one or more authorization roles. Sentry allows a set of roles to be configured for a group.
• A configured group provider determines a user’s affiliationwith a group. The current release supports HDFS-backed

groups and locally configured groups. For example,

dev_ops = dev_role, ops_role

Here the group dev_ops is granted the roles dev_role and ops_role. The members of this group can complete
searches that are allowed by these roles.

User to Group Mapping

You can configure Sentry to use either Hadoop groups or groups defined in the policy file.

Important: You can use either Hadoop groups or local groups, but not both at the same time. Use
local groups if you want to do a quick proof-of-concept. For production, use Hadoop groups.

To configure Hadoop groups:

Set the sentry.provider property in sentry-site.xml to
org.apache.sentry.provider.file.HadoopGroupResourceAuthorizationProvider.

By default, this uses local shell groups. See the Group Mapping section of the HDFS Permissions Guide for more
information.

In this case, Sentry uses the Hadoop configuration described in Configuring LDAP Group Mappings. Cloudera Manager
automatically uses this configuration. In a deployment not managed by Cloudera Manager, manually set these
configuration parameters parameters in the hadoop-conf file that is passed to Solr.

OR

To configure local groups:

1. Define local groups in a [users] section of the Sentry Policy file. For example:

[users]
user1 = group1, group2, group3
user2 = group2, group3

80 | Cloudera Search

Cloudera Search User Guide

https://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#Group_Mapping

2. In sentry-site.xml, set search.sentry.provider as follows:

<property>
 <name>sentry.provider</name>
 <value>org.apache.sentry.provider.file.LocalGroupResourceAuthorizationProvider</value>

 </property>

Using Policy Files with Sentry

The sections that follow contain notes on creating and maintaining the policy file.

Warning: An invalid configuration disables all authorization while logging an exception.

Storing the Policy File

Considerations for storing the policy file(s) include:

1. Replication count - Because the file is read for each query, you should increase this; 10 is a reasonable value.
2. Updating the file - Updates to the file are only reflected when the Solr process is restarted.

Defining Roles

Keep in mind that role definitions are not cumulative; the newer definition replaces the older one. For example, the
following results in role1 having privilege2, not privilege1 and privilege2.

role1 = privilege1
role1 = privilege2

Sample Sentry Configuration

This section provides a sample configuration.

Note: Sentrywith CDH Search does not supportmultiple policy files. Other implementations of Sentry
such as Sentry for Hive do support different policy files for different databases, but Sentry for CDH
Search has no such support for multiple policies.

Policy File

The following is an example of a CDH Search policy file. The sentry-provider.ini would exist in an HDFS location
such as hdfs://ha-nn-uri/user/solr/sentry/sentry-provider.ini. This locationmust be readable by Solr.

Note: Use separate policy files for each Sentry-enabled service. Using one file for multiple services
results in each service failing on the other services' entries. For example, with a combined Hive and
Search file, Search would fail on Hive entries and Hive would fail on Search entries.

sentry-provider.ini

[groups]
Assigns each Hadoop group to its set of roles
engineer = engineer_role
ops = ops_role
dev_ops = engineer_role, ops_role
hbase_admin = hbase_admin_role

[roles]
The following grants all access to source_code.
"collection = source_code" can also be used as syntactic

Cloudera Search | 81

Cloudera Search User Guide

sugar for "collection = source_code->action=*"
engineer_role = collection = source_code->action=*

The following imply more restricted access.
ops_role = collection = hive_logs->action=Query
dev_ops_role = collection = hbase_logs->action=Query

#give hbase_admin_role the ability to create/delete/modify the hbase_logs collection
#as well as to update the config for the hbase_logs collection, called hbase_logs_config.
hbase_admin_role = collection=admin->action=*, collection=hbase_logs->action=*,
config=hbase_logs_config->action=*

Sentry Configuration File

Sentry stores the configuration as well as privilege policies in files. The sentry-site.xml file contains configuration
options such as privilege policy file location. The Policy File on page 81 contains the privileges and groups. It has a
.ini file format and should be stored on HDFS.

The following is an example of a sentry-site.xml file.

sentry-site.xml

<configuration>
 <property>
 <name>hive.sentry.provider</name>

<value>org.apache.sentry.provider.file.HadoopGroupResourceAuthorizationProvider</value>

 </property>

 <property>
 <name>sentry.solr.provider.resource</name>
 <value>/path/to/authz-provider.ini</value>
 <!--
 If the HDFS configuration files (core-site.xml, hdfs-site.xml)
 pointed to by SOLR_HDFS_CONFIG in /etc/default/solr
 point to HDFS, the path will be in HDFS;
 alternatively you could specify a full path,
 e.g.:hdfs://namenode:port/path/to/authz-provider.ini
 -->
 </property>

Enabling Sentry in Cloudera Search for CDH 5

You can enable Sentry using ClouderaManager or bymanuallymodifying files. Formore information on enabling Sentry
using ClouderaManager, see Configuring Sentry Policy File Authorization Using ClouderaManager and Enabling Sentry
Authorization for Solr.

Sentry is enabled with addition of two properties to /etc/default/solr or
/opt/cloudera/parcels/CDH-*/etc/default/solr.

• If you are using configs, you must configure the proper config=myConfig permissions as described in Using
Roles and Privileges with Sentry on page 79.

• In a Cloudera Manager deployment, these properties are added automatically when you click Enable Sentry
Authorization in the Solr configuration page in Cloudera Manager.

• In a deployment not managed by Cloudera Manager, you must make these changes yourself. The variable
SOLR_AUTHORIZATION_SENTRY_SITE specifies the path to sentry-site.xml. The variable
SOLR_AUTHORIZATION_SUPERUSER specifies the first part of SOLR_KERBEROS_PRINCIPAL. This is solr for
the majority of users, as solr is the default. Settings are of the form:

SOLR_AUTHORIZATION_SENTRY_SITE=/location/to/sentry-site.xml
SOLR_AUTHORIZATION_SUPERUSER=solr

To enable sentry collection-level authorization checking on a new collection, the instancedir for the collection must
use amodified version of solrconfig.xmlwith Sentry integration. Each collection has a separate solrconfig.xml

82 | Cloudera Search

Cloudera Search User Guide

file,meaning you candefine different behavior for each collection. The commandsolrctl instancedir --generate
generates two versions of solrconfig.xml: the standard solrconfig.xml without sentry integration, and the
sentry-integrated version called solrconfig.xml.secure. To use the sentry-integrated version, replace
solrconfig.xml with solrconfig.xml.secure before creating the instancedir.

You can enable Sentry on an existing collection. The process varies depending on whether you are using a config or
instancedir.

Enabling Sentry on Collections using configs

If you have a collection that is using a non-secured config, you can enable Sentry security on that collection bymodifying
the collection to use a secure config. The config in use must not be immutable, otherwise it cannot be changed. To
update an existing non-immutable config:

1. Delete the existing config using the solrctl config --delete command. For example:

solrctl config --delete myManaged

2. Create a new non-immutable config using the solrctl config --create command. Use a sentry-enabled
template such as managedTemplateSecure. The new config must have the same name as the config being
replaced. For example:

solrctl config --create myManaged managedTemplateSecure -p immutable=false

3. Reload the collection using to solrctl collection --reload command.

solrctl collection --reload myCollection

For a list of all available config templates, see Included Immutable Config Templates on page 24.

Enabling Sentry on Collections using instancedirs

If you have a collection that is using a non-secured instancedir configuration, you can enable Sentry security on that
collection bymodifying the settings that are stored in instancedir. For example, youmight have an existing collection
namedfoo and a standard solrconfig.xml. By default, collections are stored in instancedirs that use the collection's
name, which is foo in this case.

If your collection uses an unmodified solrconfig.xml file, you can enable Sentry by replacing the existing the
solrconfig.xml file. If your collection uses a solrconfig.xml that contains modifications you want to preserve,
you can attempt to use a difftool to find an integrate changes in to the secure template.

To enable Sentry on an existing collection without preserving customizations

Warning: Executing the following commands replaces your existing solrconfig.xml file. Any
customizations to this file will be lost.

generate a fresh instancedir
solrctl instancedir --generate foosecure
download the existing instancedir from ZK into subdirectory foo
solrctl instancedir --get foo foo
replace the existing solrconfig.xml with the sentry-enabled one
cp foosecure/conf/solrconfig.xml.secure foo/conf/solrconfig.xml
update the instancedir in ZK
solrctl instancedir --update foo foo
reload the collection
solrctl collection --reload foo

To enable Sentry on an existing collection and preserve customizations

Cloudera Search | 83

Cloudera Search User Guide

Generate a new instancedir, compare the differences between the default solrconfig.xml and
solrconfig.xml.secure files, and then add the elements that are unique to solrconfig.xml.secure to the file
that your environment is using.

1. Generate a fresh instancedir:

solrctl instancedir --generate foo

2. Compare the solrconfig.xml and solrconfig.xml.secure:

diff foo/conf/solrconfig.xml foo/conf/solrconfig.xml.secure

3. Add the elements that are unique to solrconfig.xml.secure to your existing solrconfig.xml file. You
might complete this process by manually editing your existing solrconfig.xml file or by using a merge tool.

Note: If you have modified or specified additional request handlers, consider that Sentry:

• Supports protecting additional query request handlers by adding a search component, which
should be shown in the diff.

• Supports protecting additional update request handlers with Sentry by adding an
updateRequestProcessorChain, which should be shown in the diff.

• Does not support protecting modified or specified additional "special" request handlers like
analysis handlers or admin handlers.

4. Reload the collection:

solrctl collection --reload foo

Providing Document-Level Security Using Sentry

For role-based access control of a collection, an administrator modifies a Sentry role so it has query, update, or
administrative access, as described above.

Collection-level authorization is useful when the access control requirements for the documents in the collection are
the same, but users may want to restrict access to a subset of documents in a collection. This finer-grained restriction
could be achieved by defining separate collections for each subset, but this is difficult to manage, requires duplicate
documents for each collection, and requires that these documents be kept synchronized.

Document-level access control solves this issue by associating authorization tokenswith each document in the collection.
This enables granting Sentry roles access to sets of documents in a collection.

Document-Level Security Model

Document-level security depends on a chain of relationships between users, groups, roles, and documents.

• Users are assigned to groups.
• Groups are assigned to roles.
• Roles are stored as "authorization tokens" in a specified field in the documents.

Document-level security supports restricting which documents can be viewed by which users. Access is provided by
adding roles as "authorization tokens" to a specified document field. Conversely, access is implicitly denied by omitting
roles from the specified field. In other words, in a document-level security enabled environment, a user might submit
a query that matches a document; if the user is not part of a group that has a role has been granted access to the
document, the result is not returned.

For example, Alice might belong to the administrators group. The administrators group may belong to the doc-mgmt
role. A document could be ingested and the doc-mgmt role could be added at ingest time. In such a case, if Alice
submitted a query that matched the document, Search would return the document, since Alice is then allowed to see
any document with the "doc-mgmt" authorization token.

84 | Cloudera Search

Cloudera Search User Guide

Similarly, Bob might belong to the guests group. The guests group may belong to the public-browser role. If Bob tried
the same query as Alice, but the document did not have the public-browser role, Search would not return the result
because Bob does not belong to a group that is associated with a role that has access.

Note that collection-level authorization rules still apply, if enabled. Even if Alice is able to view a document given
document-level authorization rules, if she is not allowed to query the collection, the query will fail.

Roles are typically added to documents when those documents are ingested, either via the standard Solr APIs or, if
using morphlines, the setValuesmorphline command.

Enabling Document-Level Security

Cloudera Search supports document-level security in Search for CDH 5.1 and later. Document-level security requires
collection-level security. Configuring collection-level security is described earlier in this topic.

Document-level security is disabled by default, so the first step in using document-level security is to enable the feature
bymodifying thesolrconfig.xml.secure file. Remember to replace thesolrconfig.xmlwith this file, as described
in Enabling Sentry in Cloudera Search for CDH 5 on page 82.

To enable document-level security, change solrconfig.xml.secure. The default file contents are as follows:

<searchComponent name="queryDocAuthorization">
 <!-- Set to true to enabled document-level authorization -->

 <bool name="enabled">false</bool>

 <!-- Field where the auth tokens are stored in the document -->
 <str name="sentryAuthField">sentry_auth</str>

 <!-- Auth token defined to allow any role to access the document.
 Uncomment to enable. -->

 <!--<str name="allRolesToken">*</str>-->

</searchComponent>

• The enabled Boolean determines whether document-level authorization is enabled. To enable document level
security, change this setting to true.

• The sentryAuthField string specifies the name of the field that is used for storing authorization information.
You can use the default setting of sentry_auth or you can specify some other string to be used for assigning
values during ingest.

Note: This field must exist as an explicit or dynamic field in the schema for the collection you
are creating with document-level security. sentry_auth exists in the default schema.xml,
which is automatically generated and can be found in the same directory as solrconfig.xml.

for the collection you are creating with document-level security. Schema.xml is in the generated
configuration in the same directory as the solrconfig.xml

• The allRolesToken string represents a special token defined to allow any role access to the document. By
default, this feature is disabled. To enable this feature, uncomment the specification and specify the token. This
token should be different from the name of any sentry role to avoid collision. By default it is "*". This feature is
useful when first configuring document level security or it can be useful in granting all roles access to a document
when the set of roles may change. See Best Practices for additional information.

Best Practices

Using allRolesToken

You may want to grant every user that belongs to a role access to certain documents. One way to accomplish this is
to specify all known roles in the document, but this requires updating or re-indexing the document if you add a new

Cloudera Search | 85

Cloudera Search User Guide

http://kitesdk.org/docs/current/kite-morphlines/morphlinesReferenceGuide.html#/setValues

role. Alternatively, an allUser role, specified in the Sentry .ini file, could contain all valid groups, but this role would
need to be updated every time a new group was added to the system. Instead, specifying allRolesToken allows any
user that belongs to a valid role to access the document. This access requires no updating as the system evolves.

In addition, allRolesTokenmay be useful for transitioning a deployment to use document-level security. Instead of
having to define all the roles upfront, all the documents can be specified with allRolesToken and later modified as
the roles are defined.

Consequences of Document-Level Authorization Only Affecting Queries

Document-level security does not prevent users from modifying documents or performing other update operations
on the collection. Update operations are only governed by collection-level authorization.

Document-level security can be used to prevent documents being returned in query results. If users are not granted
access to a document, those documents are not returned even if that user submits a query that matches those
documents. This does not have affect attempted updates.

Consequently, it is possible for a user to not have access to a set of documents based on document-level security, but
to still be able to modify the documents via their collection-level authorization update rights. This means that a user
can delete all documents in the collection. Similarly, a user might modify all documents, adding their authorization
token to each one. After such a modification, the user could access any document via querying. Therefore, if you are
restricting access using document-level security, consider granting collection-level update rights only to those users
you trust and assume they will be able to access every document in the collection.

Limitations on Query Size

By default queries support up to 1024 Boolean clauses. As a result, queries containing more that 1024 clauses may
cause errors. Because authorization information is added by Sentry as part of a query, using document-level security
can increase the number of clauses. In the case where users belong to many roles, even simple queries can become
quite large. If a query is too large, an error of the following form occurs:

org.apache.lucene.search.BooleanQuery$TooManyClauses: maxClauseCount is set to 1024

To change the supported number of clauses, edit the maxBooleanClauses setting in solrconfig.xml. For example,
to allow 2048 clauses, you would edit the setting so it appears as follows:

<maxBooleanClauses>2048</maxBooleanClauses>

For maxBooleanClauses to be applied as expected, make any change to this value to all collections and then restart
the service. Youmustmake this change to all collections because this optionmodifies a global Lucene property, affecting
all Solr cores. If different solrconfig.xml files have different values for this property, the effective value is determined
per host, based on the first Solr core to be initialized.

Enabling Secure Impersonation

Secure Impersonation is a feature that allows a user to make requests as another user in a secure way. For example,
to allow the following impersonations:

• User hue can make requests as any user from any host.
• User foo can make requests as any member of group bar, from host1 or host2.

Configure the following properties in /etc/default/solr or
/opt/cloudera/parcels/CDH-*/etc/default/solr:

SOLR_SECURITY_ALLOWED_PROXYUSERS=hue,foo
SOLR_SECURITY_PROXYUSER_hue_HOSTS=*
SOLR_SECURITY_PROXYUSER_hue_GROUPS=*
SOLR_SECURITY_PROXYUSER_foo_HOSTS=host1,host2
SOLR_SECURITY_PROXYUSER_foo_GROUPS=bar

SOLR_SECURITY_ALLOWED_PROXYUSERS lists all of the users allowed to impersonate. For a user x in
SOLR_SECURITY_ALLOWED_PROXYUSERS, SOLR_SECURITY_PROXYUSER_x_HOSTS list the hosts x is allowed to

86 | Cloudera Search

Cloudera Search User Guide

connect from to impersonate, and SOLR_SECURITY_PROXYUSERS_x_GROUPS lists the groups that the users is allowed
to impersonate members of. Both GROUPS and HOSTS support the wildcard * and both GROUPS and HOSTSmust be
defined for a specific user.

Note: ClouderaManager has its ownmanagement of secure impersonation for Hue. To add additional
users for Secure Impersonation, use the environment variable safety value for Solr to set the
environment variables as above. Be sure to include hue in SOLR_SECURITY_ALLOWED_PROXYUSERS
if you want to use secure impersonation for hue.

Debugging Failed Sentry Authorization Requests

Sentry logs all facts that lead up to authorization decisions at the debug level. If you do not understand why Sentry is
denying access, the best way to debug is to temporarily turn on debug logging:

• In ClouderaManager, add log4j.logger.org.apache.sentry=DEBUG to the logging settings for your service
through the corresponding Logging Safety Valve field for the Impala, Hive Server 2, or Solr Server services.

• On systems not managed by Cloudera Manager, add log4j.logger.org.apache.sentry=DEBUG to the
log4j.properties file on each host in the cluster, in the appropriate configuration directory for each service.

Specifically, look for exceptions and messages such as:

FilePermission server..., RequestPermission server...., result [true|false]

which indicate each evaluation Sentrymakes. TheFilePermission is from the policy file, whileRequestPermission
is the privilege required for the query. A RequestPermission will iterate over all appropriate FilePermission
settings until a match is found. If no matching privilege is found, Sentry returns false indicating “Access Denied” .

Appendix: Authorization Privilege Model for Search

The tables below refer to the request handlers defined in the generated solrconfig.xml.secure. If you are not
using this configuration file, the below may not apply.

admin is a special collection in sentry used to represent administrative actions. A non-administrative request may only
require privileges on the collection or config onwhich the request is being performed. This is called either collection1
or config1 in this appendix. An administrative request may require privileges on both the admin collection and
collection1. This is denoted as admin, collection1 in the tables below.

Note: If no privileges are granted, no access is possible. For example, accessing the Solr Admin UI
requires the QUERY privilege. If no users are granted the QUERY privilege, no access to the Solr Admin
UI is possible.

Table 4: Privilege table for non-administrative request handlers

Collections that Require PrivilegeRequired Collection PrivilegeRequest Handler

collection1QUERYselect

collection1QUERYquery

collection1QUERYget

collection1QUERYbrowse

collection1QUERYtvrh

collection1QUERYclustering

collection1QUERYterms

collection1QUERYelevate

Cloudera Search | 87

Cloudera Search User Guide

Collections that Require PrivilegeRequired Collection PrivilegeRequest Handler

collection1QUERYanalysis/field

collection1QUERYanalysis/document

collection1UPDATEupdate

collection1UPDATEupdate/json

collection1UPDATEupdate/csv

Table 5: Privilege table for collections admin actions

Collections that Require PrivilegeRequired Collection PrivilegeCollection Action

admin, collection1UPDATEcreate

admin, collection1UPDATEdelete

admin, collection1UPDATEreload

admin, collection1

Note: collection1
here refers to the name
of the alias, not the
underlying collection(s).
For example,
http://YOUR-HOST:8983/

solr/admin/collections?action=

CREATEALIAS&name=collection1

&collections=underlyingCollection

UPDATEcreateAlias

admin, collection1

Note: collection1
here refers to the name
of the alias, not the
underlying collection(s).
For example,
http://YOUR-HOST:8983/

solr/admin/collections?action=

DELETEALIAS&name=collection1

UPDATEdeleteAlias

admin, collection1UPDATEsyncShard

admin, collection1UPDATEsplitShard

admin, collection1UPDATEdeleteShard

Table 6: Privilege table for core admin actions

Collections that Require PrivilegeRequired Collection PrivilegeCollection Action

admin, collection1UPDATEcreate

admin, collection1UPDATErename

admin, collection1UPDATEload

88 | Cloudera Search

Cloudera Search User Guide

Collections that Require PrivilegeRequired Collection PrivilegeCollection Action

admin, collection1UPDATEunload

admin, collection1UPDATEstatus

adminUPDATEpersist

admin, collection1UPDATEreload

admin, collection1UPDATEswap

admin, collection1UPDATEmergeIndexes

admin, collection1UPDATEsplit

admin, collection1UPDATEprepRecover

admin, collection1UPDATErequestRecover

admin, collection1UPDATErequestSyncShard

admin, collection1UPDATErequestApplyUpdates

Table 7: Privilege table for Info and AdminHandlers

Collections that Require PrivilegeRequired Collection PrivilegeRequest Handler

adminQUERYLukeRequestHandler

adminQUERYSystemInfoHandler

adminQUERYSolrInfoMBeanHandler

adminQUERYPluginInfoHandler

adminQUERYThreadDumpHandler

adminQUERYPropertiesRequestHandler

adminQUERY, UPDATE (or *)LogginHandler

adminQUERYShowFileRequestHandler

Table 8: Privilege table for Config Admin actions

Configs that Require
Privilege

Required Config
Privilege

Collections that
Require Privilege

Required Collection
Privilege

Config Action

config1*adminUPDATECREATE

config1*adminUPDATEDELETE

Search High Availability
Mission critical, large-scale online production systems need to make progress without downtime despite some issues.
Cloudera Search provides two routes to configurable, highly available, and fault-tolerant data ingestion:

• Near Real Time (NRT) ingestion using the Flume Solr Sink
• MapReduce based batch ingestion using the MapReduceIndexerTool

Cloudera Search | 89

Cloudera Search User Guide

Production versus Test Mode

Some exceptions are generally transient, in which case the corresponding task can simply be retried. For example,
network connection errors or timeouts are recoverable exceptions. Conversely, tasks associated with an unrecoverable
exception cannot simply be retried. Corrupt ormalformed parser input data, parser bugs, and errors related to unknown
Solr schema fields produce unrecoverable exceptions.

Different modes determine how Cloudera Search responds to different types of exceptions.

• Configuration parameter isProductionMode=false (Non-production mode or test mode): Default configuration.
Cloudera Search throws exceptions to quickly reveal failures, providing better debugging diagnostics to the user.

• Configuration parameter isProductionMode=true (Production mode): Cloudera Search logs and ignores
unrecoverable exceptions, enablingmission-critical large-scale online production systems tomake progresswithout
downtime, despite some issues.

Note: Categorizing exceptions as recoverable or unrecoverable addresses most cases, though it is
possible that an unrecoverable exception could be accidentally misclassified as recoverable. Cloudera
provides the isIgnoringRecoverableExceptions configuration parameter to address such a
case. In a production environment, if an unrecoverable exception is discovered that is classified as
recoverable, change isIgnoringRecoverableExceptions to true. Doing so allows systems to
make progress and avoid retrying an event forever. This configuration flag should only be enabled if
a misclassification bug has been identified. Please report such bugs to Cloudera.

If Cloudera Search throws an exception according the rules described above, the caller, meaning Flume Solr Sink and
MapReduceIndexerTool, can catch the exception and retry the task if it meets the criteria for such retries.

Near Real Time Indexing with the Flume Solr Sink

The Flume Solr Sink uses the settings established by the isProductionMode and
isIgnoringRecoverableExceptions parameters. If a SolrSink does nonetheless receive an exception, the SolrSink
rolls the transaction back and pauses. This causes the Flume channel, which is essentially a queue, to redeliver the
transaction's events to the SolrSink approximately five seconds later. This redelivering of the transaction event retries
the ingest to Solr. This process of rolling back, backing off, and retrying continues until ingestion eventually succeeds.

Here is a corresponding example Flume configuration file flume.conf:

agent.sinks.solrSink.isProductionMode = true
agent.sinks.solrSink.isIgnoringRecoverableExceptions = true

In addition, Flume SolrSink automatically attempts to load balance and failover among the hosts of a SolrCloud before
it considers the transaction rollback and retry. Load balancing and failover is done with the help of ZooKeeper, which
itself can be configured to be highly available.

Further, Cloudera Manager can configure Flume so it automatically restarts if its process crashes.

To tolerate extended periods of Solr downtime, you can configure Flume to use a high-performance transactional
persistent queue in the form of a FileChannel. A FileChannel can use any number of local disk drives to buffer significant
amounts of data. For example, you might buffer many terabytes of events corresponding to a week of data. Further,
using the Replicating Channel Selector Flume feature, you can configure Flume to replicate the same data both into
HDFS as well as into Solr. Doing so ensures that if the Flume SolrSink channel runs out of disk space, data delivery is
still delivered to HDFS, and this data can later be ingested from HDFS into Solr using MapReduce.

Manymachines withmany Flume Solr Sinks and FileChannels can be used in a failover and load balancing configuration
to improve high availability and scalability. Flume SolrSink servers can be either co-locatedwith live Solr servers serving
end user queries, or Flume SolrSink servers can be deployed on separate industry standard hardware for improved
scalability and reliability. By spreading indexing load across a large number of Flume SolrSink servers you can improve
scalability. Indexing load can be replicated across multiple Flume SolrSink servers for high availability, for example
using Flume features such as Load balancing Sink Processor.

90 | Cloudera Search

Cloudera Search User Guide

http://flume.apache.org/FlumeUserGuide.html#file-channel
http://flume.apache.org/FlumeUserGuide.html#replicating-channel-selector-default
http://flume.apache.org/FlumeUserGuide.html#load-balancing-sink-processor

Batch Indexing with MapReduceIndexerTool

The Mappers and Reducers of the MapReduceIndexerTool follow the settings established by the isProductionMode
and isIgnoringRecoverableExceptions parameters. However, if a Mapper or Reducer of the
MapReduceIndexerTool does receive an exception, it does not retry at all. Instead it lets the MapReduce task fail
and relies on the Hadoop Job Tracker to retry failed MapReduce task attempts several times according to standard
Hadoop semantics. Cloudera Manager can configure the Hadoop Job Tracker to be highly available. On
MapReduceIndexerTool startup, all data in the output directory is deleted if that output directory already exists. To
retry an entire job that has failed, rerun the program using the same arguments.

For example:

hadoop ... MapReduceIndexerTool ... -D isProductionMode=true -D
isIgnoringRecoverableExceptions=true ...

Renaming Cloudera Manager Managed Hosts
Cloudera Search supports renaming hosts.

Note: This will require a cluster-wide outage.

Note: This procedure should not be used in environments running JobTracker high availability (HA).
If you are running JobTracker HA, contact Cloudera customer support for further assistance.

Renaming hosts involves stopping services and agents, changing settings, and restarting services and agents. You must
not restart services or agents before you are instructed to do so. Starting services or agents early may result in a
nonfunctional system state.

This topic describes how to change some or all host names in your cluster. Begin by shutting down all services in the
cluster.

Prerequisites

Before changing host names, back up the Cloudera Manager database using a tool such as mysqldump. For more
information, see mysqldump. Store this backup in a safe location. If problems occur, this backup can be used to restore
the original cluster state.

Stopping Cloudera Manager Services

Shut down all CDH and Cloudera Manager management services in the cluster.

1. For services that are managed as part of the cluster, click the down-arrow and choose Stop.
2. For any services that are still running, right-click each running service, and click Stop.
3. After you have stopped all services, shutdown Cloudera manager server.

RHEL-compatible or SLES systems:

$ sudo service cloudera-scm-server stop

Debian/Ubuntu systems:

$ sudo /usr/sbin/service cloudera-scm-server stop

4. Shutdown the Cloudera agents on the hosts whose names you are changing.

Cloudera Search | 91

Cloudera Search User Guide

https://dev.mysql.com/doc/refman/5.1/en/mysqldump.html

RHEL-compatible or SLES systems:

$ sudo service cloudera-scm-agent stop

Debian/Ubuntu systems:

$ sudo /usr/sbin/service cloudera-scm-agent stop

Editing the server_host Value

If you are renaming the host running Cloudera Manager, you must edit the server_host value in the config.ini
file on all hosts that are managed by Cloudera Manager. In most cases, the config.ini file is found at
/etc/cloudera-scm-agent/. The config.ini file may be found elsewhere if tarballs were used for installation.
For example, if you were renaming the Cloudera Manager host to newhostname.example.com, you would modify
the server_host value so it read as follows:

server_host=newhostname.example.com

Repeat this edit for all hosts that are managed by Cloudera Manager.

Updating Name Services

Update the names of the hosts using the name service method that applies for your operating system.

1. Edit the network or hostname file.

For RHEL-compatible systems, edit the HOSTNAME value in the network file to be the newhostname. For example,
you might change HOSTNAME in /etc/sysconfig/network to:

HOSTNAME=new.host.name.FQDN

For Debian systems, edit the hostname entries in the hostname file to include new hostname. For example, you
might delete the old hostname and add the new hostname to the /etc/hostname file so it reads:

new.host.name.FQDN

For SLES systems, edit the hostname entries in the HOSTNAME file to include new hostname. For example, you
might delete the old hostname and add the new hostname to the /etc/HOSTNAME file so it reads:

new.host.name.FQDN

2. Edit the /etc/hosts file. Replace all instances of the old hostname with the new hostname.

Updating the Cloudera Manager Database

Modify the Cloudera Manager database to reflect the new names. The commands vary depending on the type of
database you are using. For example, for MySQL, using the following process:

1. Log into mysql as root and use the ClouderaManager database. For example, for a database named cm, youmight
use the following command

mysql -h localhost -u scm -p
use cm;

mysql> select HOST_ID, HOST_IDENTIFIER, NAME from HOSTS;

Note theHOST_ID value for each of the hosts you aremodifying. Thiswill be$ROW_ID in the subsequent commands.

92 | Cloudera Search

Cloudera Search User Guide

2. For the hosts you're changing use a command of the form:

mysql> update HOSTS set HOST_IDENTIFIER = 'new.host.name.FQDN' where HOST_ID = $ROW_ID;

For example, a full transcript of user input from such a process might be:

 # mysql -u root -p
password>

mysql> show databases;
mysql> use cm;
mysql> select HOST_ID, HOST_IDENTIFIER, NAME from HOSTS;
mysql> update HOSTS set HOST_IDENTIFIER = 'new.host.name.FQDN' where HOST_ID = 2;

Starting Cloudera Manager Services

Restart the Cloudera Manager server and agents using commands of the form:

1. Start Cloudera agent on the hosts whose names you changed.

RHEL-compatible or SLES systems:

$ sudo service cloudera-scm-agent start

Debian/Ubuntu systems:

$ sudo /usr/sbin/service cloudera-scm-agent start

2. Start the Cloudera Manager Server.

RHEL-compatible or SLES systems:

$ sudo service cloudera-scm-server start

Debian/Ubuntu systems:

$ sudo /usr/sbin/service cloudera-scm-server start

Updating for NameNode High Availability Automatic Failover

If NameNode high availability automatic failover is enabled, youmust update the ZooKeeper Failover Controller (ZKFC)
to reflect the name changes. If you are not using NameNode high availability, skip to the next section.

Note: As stated earlier, this procedure should not be used in environments running JobTracker High
Availability (HA). If you have already completed the preceding steps in an environmentwith JobTracker
HA enabled, the subsequent steps should not be completed in your environment. Contact support
now.

To update the ZKFC host:

1. Start the ZooKeeper services using the Cloudera Manager Admin Console.

Note: Do not start any other services. It is especially important that you not start HDFS.

2. Log into one of the hosts that is hosting the ZooKeeper server role.

Cloudera Search | 93

Cloudera Search User Guide

3. Delete the nameservice znode. For a package based installation, delete the zkCli.sh file using a command similar
to:

$ rm -f /usr/lib/zookeeper/bin/zkCli.sh

For a parcel-based installation, delete the zkCli.sh file using a command similar to:

$ rm -f /opt/cloudera/parcels/CDH/lib/zookeeper/bin/zkCli.sh

4. Verify that the HA znode exists by checking for the hadoop-ha. For example:

zkCli$ ls /hadoop-ha

If the HA znode does not exist, use the Cloudera Manager Admin Console to select the HDFS service and then
choose Initialize High Availability State in ZooKeeper.

5. Delete the old znode. For example use a command similar to:

zkCli$ rm -rf /hadoop-ha/nameservice1

6. Use the Cloudera Manager Admin Console to initialize HA in ZooKeeper by clicking HDFS > Instances > Action >
Initialize High Availability State in Zookeeper….

Updating Cloudera Management Service Host Information

If you have changed the names of hosts hosting management services, youmust update themanagement service with
the new host name. Management services include Host Monitor, Service Monitor, Reports Manager, Activity Monitor,
and Navigator. You must do this for each service that is hosted on a host whose name has changed.

To update management service host name configuration

1. In the Cloudera Manager Admin Console, select the service
2. Click the Configuration tab.
3. Type Database Hostname in the Search box to locate all the database hostname properties.
4. Edit theManagement Service Name Database Hostname property for the new hostname.
5. Click Save Changes to commit the changes.

Returning the System to a Running State

Now that you have renamed hosts and updated settings to reflect these new names, redeploy client configuration
files.

• For ClouderaManager 4, see Redeploying the Client Configuration FilesManually in Deploying Client Configuration
Files.

• For Cloudera Manager 5, see Manually RedeployingClient Configuration Files in Client Configuration Files.

Start any services that were previously stopped.

Tuning the Solr Server
Solr performance tuning is a complex task. The following sections provide more details.

Tuning to Complete During Setup

Some tuning is best completed during the setup of you system or may require some re-indexing.

Configuring Lucene Version Requirements

You can configure Solr to use a specific version of Lucene. This can help ensure that the Lucene version that Search
uses includes the latest features and bug fixes. At the time that a version of Solr ships, Solr is typically configured to

94 | Cloudera Search

Cloudera Search User Guide

http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM4Ent/latest/Cloudera-Manager-Managing-Clusters/cmmc_deploy_client_config.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM4Ent/latest/Cloudera-Manager-Managing-Clusters/cmmc_deploy_client_config.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_client_config.html

use the appropriate Lucene version, in which case there is no need to change this setting. If a subsequent Lucene
update occurs, you can configure the Lucene version requirements by directly editing the luceneMatchVersion
element in the solrconfig.xml file. Versions are typically of the form x.y, such as 4.4. For example, to specify
version 4.4, you would ensure the following setting exists in solrconfig.xml:

<luceneMatchVersion>4.4</luceneMatchVersion>

Designing the Schema

When constructing a schema, use data types that most accurately describe the data that the fields will contain. For
example:

• Use the tdate type for dates. Do this instead of representing dates as strings.
• Consider using the text type that applies to your language, instead of using String. For example, you might use

text_en. Text types support returning results for subsets of an entry. For example, querying on "john" would
find "John Smith", whereas with the string type, only exact matches are returned.

• For IDs, use the string type.

Configuring the Heap Size

Set the Java heap size for the Solr Server to at least 16 GB for production environments. For more information on
memory requirements, see Guidelines for Deploying Cloudera Search.

General Tuning

The following tuning categories can be completed at any time. It is less important to implement these changes before
beginning to use your system.

General Tips

• Enablingmulti-threaded faceting can provide better performance for field faceting.Whenmulti-threaded faceting
is enabled, field faceting tasks are completed in a parallel with a thread working on every field faceting task
simultaneously. Performance improvements do not occur in all cases, but improvements are likely when all of the
following are true:

– The system uses highly concurrent hardware.
– Faceting operations apply to large data sets over multiple fields.
– There is not an unusually high number of queries occurring simultaneously on the system. Systems that are

lightly loaded or that are mainly engaged with ingestion and indexing may be helped by multi-threaded
faceting; for example, a system ingesting articles and being queried by a researcher. Systems heavily loaded
by user queries are less likely to be helped by multi-threaded faceting; for example, an e-commerce site with
heavy user-traffic.

Note: Multi-threaded faceting only applies to field faceting and not to query faceting.

• Field faceting identifies the number of unique entries for a field. For example,multi-threaded
faceting could be used to simultaneously facet for the number of unique entries for the
fields, "color" and "size". In such a case, there would be two threads, and each thread would
work on faceting one of the two fields.

• Query faceting identifies the number of unique entries that match a query for a field. For
example, query faceting could be used to find the number of unique entries in the "size"
field are between 1 and 5. Multi-threaded faceting does not apply to these operations.

To enable multi-threaded faceting, add facet-threads to queries. For example, to use up to 1000 threads, you
might use a query as follows:

http://localhost:8983/solr/collection1/select?q=*:*&facet=true&fl=id&facet.field=f0_ws&facet.threads=1000

Cloudera Search | 95

Cloudera Search User Guide

If facet-threads is omitted or set to 0, faceting is single-threaded. If facet-threads is set to a negative value,
such as -1,multi-threaded facetingwill use asmany threads as there are fields to facet up to themaximumnumber
of threads possible on the system.

• If your environment does not require Near Real Time (NRT), turn off soft auto-commit in solrconfig.xml.
• In most cases, do not change the default batch size setting of 1000. If you are working with especially large

documents, you may consider decreasing the batch size.
• To help identify any garbage collector (GC) issues, enable GC logging in production. The overhead is low and the

JVM supports GC log rolling as of 1.6.0_34.

– TheminimumrecommendedGC logging flags are:-XX:+PrintGCTimeStamps -XX:+PrintGCDateStamps
-XX:+PrintGCDetails.

– To rotate the GC logs: -Xloggc: -XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=
-XX:GCLogFileSize=.

Solr and HDFS - the Block Cache

Warning: Do not enable the Solr HDFS write cache, because it can lead to index corruption.

Cloudera Search enables Solr to store indexes in an HDFS filesystem. To maintain performance, an HDFS block cache
has been implemented using Least Recently Used (LRU) semantics. This enables Solr to cache HDFS index files on read
and write, storing the portions of the file in JVM direct memory (off heap) by default, or optionally in the JVM heap.

Batch jobs typically do not use the cache, while Solr servers (when serving queries or indexing documents) should.
When running indexing using MapReduce, the MR jobs themselves do not use the block cache. Block write caching is
turned off by default and should be left disabled.

Tuning of this cache is complex and best practices are continually being refined. In general, allocate a cache that is
about 10-20% of the amount of memory available on the system. For example, when running HDFS and Solr on a host
with 50 GB of memory, typically allocate 5-10 GB of memory using solr.hdfs.blockcache.slab.count. As index
sizes grow you may need to tune this parameter to maintain optimal performance.

Note: Block cache metrics are currently unavailable.

Configuration

The following parameters control caching. They can be configured at the Solr process level by setting the respective
system property or by editing the solrconfig.xml directly.

DescriptionDefaultCloudera
Manager Setting

Parameter

If enabled, one HDFS block cache is
used for each collection on a host. If

trueNot directly
configurable.

solr.hdfs.blockcache.global

blockcache.global is disabled,ClouderaManager
automatically each SolrCore on a host creates its
enables the global own private HDFS block cache.
block cache. To Enabling this parameter simplifies

managingHDFS block cachememory.override this
setting, you must
use the Solr
Service
Environment
Advanced

96 | Cloudera Search

Cloudera Search User Guide

DescriptionDefaultCloudera
Manager Setting

Parameter

Configuration
Snippet (Safety
Valve).

Enable the block cache.trueHDFS Block Cachesolr.hdfs.blockcache.enabled

Enable the read cache.trueNot directly
configurable. If

solr.hdfs.blockcache.read.enabled

the block cache is
enabled, Cloudera
Manager
automatically
enables the read
cache. To override
this setting, you
must use the Solr
Service
Environment
Advanced
Configuration
Snippet (Safety
Valve).

Enable the write cache.falseNot directly
configurable. If

solr.hdfs.blockcache.write.enabled

the block cache is
enabled, Cloudera
Manager
automatically
disables the write
cache.

Warning:
Do
not
enable
the
Solr
HDFS
write
cache,
because
it
can
lead
to
index
corruption.

Enable direct memory allocation. If
this is false, heap is used.

trueHDFS Block Cache
Off-HeapMemory

solr.hdfs.blockcache.direct.memory.allocation

Number of blocks per cache slab. The
size of the cache is 8 KB (the block

16384HDFS Block Cache
Blocks per Slab

solr.hdfs.blockcache.blocksperbank

Cloudera Search | 97

Cloudera Search User Guide

DescriptionDefaultCloudera
Manager Setting

Parameter

size) times the number of blocks per
slab times the number of slabs.

Number of slabs per block cache. The
size of the cache is 8 KB (the block

1HDFS Block Cache
Number of Slabs

solr.hdfs.blockcache.slab.count

size) times the number of blocks per
slab times the number of slabs.

Note:

Increasing the direct memory cache size may make it necessary to increase the maximum direct
memory size allowed by the JVM. Each Solr slab allocates the slab's memory, which is 128 MB by
default, as well as allocating some additional direct memory overhead. Therefore, ensure that the
MaxDirectMemorySize is set comfortably above the value expected for slabs alone. The amount of
additional memory required varies according to multiple factors, but for most cases, setting
MaxDirectMemorySize to at least 20-30% more than the total memory configured for slabs is
sufficient. Setting the MaxDirectMemorySize to the number of slabsmultiplied by the slab size does
not provide enough memory.

To set MaxDirectMemorySize using Cloudera Manager

1. Go to the Solr service.
2. Click the Configuration tab.
3. In the Search box, type Java Direct Memory Size of Solr Server in Bytes.
4. Set the new direct memory value.
5. Restart Solr servers after editing the parameter.

Solr HDFS optimizes caching when performing NRT indexing using Lucene's NRTCachingDirectory.

Lucene caches a newly created segment if both of the following conditions are true:

• The segment is the result of a flush or a merge and the estimated size of the merged segment is <=
solr.hdfs.nrtcachingdirectory.maxmergesizemb.

• The total cached bytes is <= solr.hdfs.nrtcachingdirectory.maxcachedmb.

The following parameters control NRT caching behavior:

DescriptionDefaultParameter

Whether to enable the
NRTCachingDirectory.

truesolr.hdfs.nrtcachingdirectory.enable

Size of the cache in megabytes.192solr.hdfs.nrtcachingdirectory.maxcachedmb

Maximum segment size to cache.16solr.hdfs.nrtcachingdirectory.maxmergesizemb

Here is an example of solrconfig.xml with defaults:

 <directoryFactory name="DirectoryFactory">
 <bool name="solr.hdfs.blockcache.enabled">${solr.hdfs.blockcache.enabled:true}</bool>

 <int name="solr.hdfs.blockcache.slab.count">${solr.hdfs.blockcache.slab.count:1}</int>

 <bool
name="solr.hdfs.blockcache.direct.memory.allocation">${solr.hdfs.blockcache.direct.memory.allocation:true}</bool>

 <int
name="solr.hdfs.blockcache.blocksperbank">${solr.hdfs.blockcache.blocksperbank:16384}</int>

98 | Cloudera Search

Cloudera Search User Guide

 <bool
name="solr.hdfs.blockcache.read.enabled">${solr.hdfs.blockcache.read.enabled:true}</bool>

 <bool
name="solr.hdfs.nrtcachingdirectory.enable">${solr.hdfs.nrtcachingdirectory.enable:true}</bool>

 <int
name="solr.hdfs.nrtcachingdirectory.maxmergesizemb">${solr.hdfs.nrtcachingdirectory.maxmergesizemb:16}</int>

 <int
name="solr.hdfs.nrtcachingdirectory.maxcachedmb">${solr.hdfs.nrtcachingdirectory.maxcachedmb:192}</int>
</directoryFactory>

The following example illustrates passing Java options by editing the /etc/default/solr or
/opt/cloudera/parcels/CDH-*/etc/default/solr configuration file:

CATALINA_OPTS="-Xmx10g -XX:MaxDirectMemorySize=20g -XX:+UseLargePages
-Dsolr.hdfs.blockcache.slab.count=100"

For better performance, Cloudera recommends setting the Linux swap space on all Solr server hosts as shown below:

minimize swappiness
sudo sysctl vm.swappiness=1
sudo bash -c 'echo "vm.swappiness=1">> /etc/sysctl.conf'
disable swap space until next reboot:
sudo /sbin/swapoff -a

Threads

Configure the Tomcat server to have more threads per Solr instance. Note that this is only effective if your hardware
is sufficiently powerful to accommodate the increased threads. 10,000 threads is a reasonable number to try in many
cases.

To change the maximum number of threads, add a maxThreads element to the Connector definition in the Tomcat
server's server.xml configuration file. For example, if you installed Search for CDH 5 using parcels installation, you
would modify the Connector definition in the <parcel
path>/CDH/etc/solr/tomcat-conf.dist/conf/server.xml file so this:

 <Connector port="${solr.port}" protocol="HTTP/1.1"
 connectionTimeout="20000"
 redirectPort="8443" />

Becomes this:

 <Connector port="${solr.port}" protocol="HTTP/1.1"
 maxThreads="10000"
 connectionTimeout="20000"
 redirectPort="8443" />

Garbage Collection

Choose different garbage collection options for best performance in different environments. Some garbage collection
options typically chosen include:

• Concurrent low pause collector: Use this collector in most cases. This collector attempts to minimize "Stop the
World" events. Avoiding these events can reduce connection timeouts, such as with ZooKeeper, and may improve
user experience. This collector is enabled using -XX:+UseConcMarkSweepGC.

• Throughput collector: Consider this collector if raw throughput is more important than user experience. This
collector typically usesmore "Stop theWorld" events so thismay negatively affect user experience and connection
timeouts such as ZooKeeper heartbeats. This collector is enabled using-XX:+UseParallelGC. IfUseParallelGC

Cloudera Search | 99

Cloudera Search User Guide

"Stop theWorld" events create problems, such as ZooKeeper timeouts, consider using theUseParNewGC collector
as an alternative collector with similar throughput benefits.

You can also affect garbage collection behavior by increasing the Eden space to accommodate new objects. With
additional Eden space, garbage collection does not need to run as frequently on new objects.

Replication

You can adjust the degree to which different data is replicated.

Replication Settings

Note: Do not adjust HDFS replication settings for Solr in most cases.

To adjust the Solr replication factor for index files stored in HDFS

1. Configure the solr.hdfs.confdir system property to refer to the Solr HDFS configuration files. Typically the
value is: -Dsolr.hdfs.confdir=/etc/solrhdfs/

• In a ClouderaManager deployment, set this value using the advanced Solr setting box advanced configuration
snippet.

• In a deployment not managed by Cloudera Manager, set the solr confdir system property by adding the
following to the command you used to invoke solr: -Dsolr.hdfs.confdir=/etc/solrhdfs

2. Set the DFS replication value in the HDFS configuration file at the location you specified in the previous step. For
example, to set the replication value to 2, you would change the dfs.replication setting as follows:

<property>
<name>dfs.replication<name>
<value>2<value>
<property>

3. Restart the Solr service.

Optionally, you can also configure the transaction log replication factor. Cloudera recommends leaving the value
unchanged at 3 or, barring that, leaving it greater than 1. Formore information on changing this setting, see Transaction
Log Replication.

Replicas

If you have sufficient additional hardware, add more replicas for a linear boost of query throughput. Note that adding
replicasmay slowwrite performance on the first replica, but otherwise this should haveminimal negative consequences.

Transaction Log Replication

Beginning with CDH 5.4.1, Search for CDH supports configurable transaction log replication levels for replication logs
stored in HDFS.

Configure the replication factor by modifying the tlogDfsReplication setting in solrconfig.xml. The
tlogDfsReplication is a new setting in the updateLog settings area. An excerpt of the solrconfig.xml file
where the transaction log replication factor is set is as follows:

 <updateHandler class="solr.DirectUpdateHandler2">

 <!-- Enables a transaction log, used for real-time get, durability, and
 and solr cloud replica recovery. The log can grow as big as
 uncommitted changes to the index, so use of a hard autoCommit
 is recommended (see below).
 "dir" - the target directory for transaction logs, defaults to the
 solr data directory. -->
 <updateLog>
 <str name="dir">${solr.ulog.dir:}</str>

100 | Cloudera Search

Cloudera Search User Guide

 <int name="tlogDfsReplication">${solr.ulog.tlogDfsReplication:3}</int>
 <int name="numVersionBuckets">${solr.ulog.numVersionBuckets:65536}</int>
 </updateLog>

The default replication level is 3. For clusters with fewer than three DataNodes (such as proof-of-concept clusters),
reduce this number to the amount of DataNodes in the cluster. Changing the replication level only applies to new
transaction logs.

Initial testing shows no significant performance regression for common use cases.

Shards

In some cases, oversharding can help improve performance including intake speed. If your environment includes
massively parallel hardware and you want to use these available resources, consider oversharding. You might increase
the number of replicas per host from 1 to 2 or 3. Making such changes creates complex interactions, so you should
continue tomonitor your system's performance to ensure that the benefits of oversharding do not outweigh the costs.

Commits

Changing commit values may improve performance in some situation. These changes result in tradeoffs and may not
be beneficial in all cases.

• For hard commit values, the default value of 60000 (60 seconds) is typically effective, though changing this value
to 120 seconds may improve performance in some cases. Note that setting this value to higher values, such as
600 seconds may result in undesirable performance tradeoffs.

• Consider increasing the auto-commit value from 15000 (15 seconds) to 120000 (120 seconds).
• Enable soft commits and set the value to the largest value that meets your requirements. The default value of

1000 (1 second) is too aggressive for some environments.

Other Resources

• General information on Solr caching is available on the SolrCaching page on the Solr Wiki.
• Information on issues that influence performance is available on the SolrPerformanceFactors page on the Solr

Wiki.
• Resource Management describes how to use Cloudera Manager to manage resources, for example with Linux

cgroups.
• For information on improving querying performance, see How to make searching faster.
• For information on improving indexing performance, see How to make indexing faster.

Troubleshooting Cloudera Search
After installing and deploying Cloudera Search, use the information in this section to troubleshoot problems.

Troubleshooting

The following table contains some common troubleshooting techniques.

Note: In the URLs in the following table, you must replace entries such as <server:port> with values from your
environment. The port defaults value is 8983, but see /etc/default/solr or
/opt/cloudera/parcels/CDH-*/etc/default/solr for the port if you are in doubt.

RecommendationExplanationSymptom

Examine Solr log. By default, the log can be found at
/var/log/solr/solr.out.

VariedAll

Cloudera Search | 101

Cloudera Search User Guide

http://wiki.apache.org/solr/SolrCaching
http://wiki.apache.org/solr/SolrPerformanceFactors
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CM4Ent/latest/Cloudera-Manager-Managing-Clusters/cmmc_resource_mgmt.html
http://wiki.apache.org/lucene-java/ImproveSearchingSpeed
http://wiki.apache.org/lucene-java/ImproveIndexingSpeed

RecommendationExplanationSymptom

Ensure users attempting to access the UI are granted the
QUERYprivilege. Formore information, see Enabling Sentry

If no privileges are granted, no access
is possible. For example, accessing the
Solr Admin UI requires the QUERY

The Solr Admin UI
is unavailable

Authorization for Search using the Command Line on page
79.privilege. If no users are granted the

QUERY privilege, no access to the Solr
Admin UI is possible.

Browse to http://server:port/solr to see if the server
responds. Check that cores are present. Check the contents
of cores to ensure that numDocs is more than 0.

Server may not be runningNo documents
found

Browsing http://server:port/solr/[collection
name]/select?q=*:*&wt=json&indent=true should

Core may not have documentsNo documents
found

show numFound, which is near the top, to be more than
0.

Ensure your application is using commons-codec 1.7 or
higher. Alternatively, use httpclient 4.2.5 instead of

This may be a version compatibility
issue. Httpclient 4.2.3, which ships
with solrj in Search 1.x, has a

The secure Solr
Server fails to
respond to Solrj
requests, but

version 4.2.3 in your application. Version 4.2.3 behaves
correctly with earlier versions of commons-codec.dependency on commons-codec 1.7.

If an earlier version ofother clients such
as curl can commons-codec is on the classpath,
communicate
successfully

httpclientmay be unable to
communicate using Kerberos.

Dynamic Solr Analysis

Any JMX-aware application can query Solr for information and display results dynamically. For example, Zabbix, Nagios,
and many others have been used successfully. When completing Static Solr Log Analysis, many of the items related to
extracting data from the log files can be seen from querying Solr, at least the last value (as opposed to the history
which is available from the log file). These are often useful for status boards. In general, anything available from the
Solr admin page can be requested on a live basis from Solr. Some possibilities include:

• numDocs/maxDoc per core. This can be important since the difference between these numbers indicates the
number of deleted documents in the index. Deleted documents take up disk space andmemory. If these numbers
vary greatly, this may be a rare case where optimizing is advisable.

• Cache statistics, including:

– Hit ratios
– Autowarm times
– Evictions

• Almost anything available on the admin page. Note that drilling down into the “schema browser” can be expensive.

Other Troubleshooting Information

Since the use cases for Solr and search vary, there is no single solution for all cases. That said, here are some common
challenges that many Search users have encountered:

• Testing with unrealistic data sets. For example, a users may test a prototype that uses faceting, grouping, sorting,
and complex schemas against a small data set. When this same system is used to load of real data, performance
issues occur. Using realistic data and use-cases is essential to getting accurate results.

• If the scenario seems to be that the system is slow to ingest data, consider:

– Upstream speed. If you have a SolrJ program pumping data to your cluster and ingesting documents at a rate
of 100 docs/second, the gating factor may be upstream speed. To test for limitations due to upstream speed,
comment out only the code that sends thedata to the server (for example,SolrHttpServer.add(doclist))

102 | Cloudera Search

Cloudera Search User Guide

and time the program. If you see a throughput bump of less than around 10%, this may indicate that your
system is spending most or all of the time getting the data from the system-of-record.

– This may require pre-processing.
– Indexing with a single thread from the client. ConcurrentUpdateSolrServer can use multiple threads to

avoid I/O waits.
– Too-frequent commits. This was historically an attempt to get NRT processing, but with SolrCloud hard

commits this should be quite rare.
– The complexity of the analysis chain. Note that this is rarely the core issue. A simple test is to change the

schema definitions to use trivial analysis chains and then measure performance.
– When the simple approaches fail to identify an issue, consider using profilers.

SolrCloud and ZooKeeper

SolrCloud is relatively new and relies on ZooKeeper to hold state information. There are not yet best practices related
to SolrCloud. Monitoring ZooKeeper is valuable in this case and is available through Cloudera Manager.

Static Solr Log Analysis

To do a static analysis, inspect the log files, schema files, and the actual index for issues. If possible, connect to the live
Solr instance while simultaneously examining log files so you can compare the schemawith the index. The schema and
the index can be out of sync in situations where the schema is changed, but the index was never rebuilt. Some hints
are:

• A high number or proportion of 0-match queries. This indicates that the user-facing part of the application is
making it easy for users to enter queries for which there are no matches. In Cloudera Search, given the size of the
data, this should be an extremely rare event.

• Queries that match an excessive number of documents. All documents that match a query have to be scored, and
the cost of scoring a query goes up as the number of hits increases. Examine any frequent queries that match
millions of documents. An exception to this case is “constant score queries”. Queries, such as those of the form
":" bypass the scoring process entirely.

• Overly complex queries. Defining what constitutes overly complex queries is difficult to do, but a very general rule
is that queries over 1024 characters in length are likely to be overly complex.

• High autowarm times. Autowarming is the process of filling caches. Some queries are run before a new searcher
serves the first live user request. This keeps the first few users from having to wait. Autowarming can take many
seconds or can be instantaneous. Excessive autowarm times often indicate excessively generous autowarm
parameters. Excessive autowarming usually has limited benefit, with longer runs effectively being wasted work.

– Cache autowarm. Each Solr cache has an autowarm parameter. You can usually set this value to an upper
limit of 128 and tune from there.

– FirstSearcher/NewSearcher. The solrconfig.xml file contains queries that can be fired when a new
searcher is opened (the index is updated) andwhen the server is first started. Particularly for firstSearcher,
it can be valuable to have a query that sorts relevant fields.

Note: The aforementioned flags are available from solrconfig.xml

• Exceptions. The Solr log file contains a record of all exceptions thrown. Some exceptions, such as exceptions
resulting from invalid query syntax are benign, but others, such as Out Of Memory, require attention.

• Excessively large caches. The size of caches such as the filter cache are bounded bymaxDoc/8. Having, for instance,
a filterCache with 10,000 entries is likely to result in Out Of Memory errors. Large caches occurring in cases where
there are many documents to index is normal and expected.

• Caches with low hit ratios, particularly filterCache. Each cache takes up some space, consuming resources. There
are several caches, each with its own hit rate.

– filterCache. This cache should have a relatively high hit ratio, typically around 80%.

Cloudera Search | 103

Cloudera Search User Guide

– queryResultCache. This is primarily used for paging so it can have a very low hit ratio. Each entry is quite
small as it is basically composed of the raw query as a string for a key and perhaps 20-40 ints. While useful,
unless users are experiencing paging, this requires relatively little attention.

– documentCache. This cache is a bit tricky. It’s used to cache the document data (stored fields) so various
components in a request handler don’t have to re-read the data from the disk. It’s an open question how
useful it is when using MMapDirectory to access the index.

• Very deep paging. Users seldom go beyond the first page and very rarely to go through 100 pages of results. A
&start=<pick your number> query indicates unusual usage that should be identified. Deep paging may
indicate some agent is completing scraping.

Note: Solr is not built to return full result sets no matter how deep. If returning the full result
set is required, explore alternatives to paging through the entire result set.

• Range queries should work on trie fields. Trie fields (numeric types) store extra information in the index to aid
in range queries. If range queries are used, it’s almost always a good idea to be using trie fields.

• fq clauses that use bare NOW. fq clauses are kept in a cache. The cache is a map from the fq clause to the
documents in your collection that satisfy that clause. Using bare NOW clauses virtually guarantees that the entry
in the filter cache is not be re-used.

• Multiple simultaneous searchers warming. This is an indication that there are excessively frequent commits or
that autowarming is taking too long. This usually indicates a misunderstanding of when you should issue commits,
often to simulate Near Real Time (NRT) processing or an indexing client is improperly completing commits. With
NRT, commits should be quite rare, and having more than one simultaneous autowarm should not happen.

• Stored fields that are never returned (fl= clauses). Examining the queries for fl= and correlating that with the
schema can tell if stored fields that are not used are specified. This mostly wastes disk space. And fl=* can make
this ambiguous. Nevertheless, it’s worth examining.

• Indexed fields that are never searched. This is the opposite of the case where stored fields are never returned.
This is more important in that this has real RAM consequences. Examine the request handlers for “edismax” style
parsers to be certain that indexed fields are not used.

• Queried but not analyzed fields. It’s rare for a field to be queried but not analyzed in any way. Usually this is only
valuable for “string” type fields which are suitable for machine-entered data, such as part numbers chosen from
a pick-list. Data that is not analyzed should not be used for anything that humans enter.

• String fields. String fields are completely unanalyzed. Unfortunately, some people confuse string with Java’s
String type and use them for text that should be tokenized. The general expectation is that string fields should
be used sparingly. More than just a few string fields indicates a design flaw.

• Whenever the schema is changed, re-index the entire data set. Solr uses the schema to set expectations about
the index. When schemas are changed, there’s no attempt to retrofit the changes to documents that are currently
indexed, but any new documents are indexed with the new schema definition. So old and new documents can
have the same field stored in vastly different formats (for example, String and TrieDate) making your index
inconsistent. This can be detected by examining the raw index.

• Query stats can be extracted from the logs. Statistics can be monitored on live systems, but it is more common
to have log files. Here are some of the statistics you can gather:

– Longest running queries
– 0-length queries
– average/mean/min/max query times
– You can get a sense of the effects of commits on the subsequent queries over some interval (time or number

of queries) to see if commits are the cause of intermittent slowdowns

• Too-frequent commits have historically been the cause of unsatisfactory performance. This is not so important
with NRT processing, but it is valuable to consider.

• Optimizing an index, which could improve search performance before, is much less necessary now. Anecdotal
evidence indicates optimizingmay help in some cases, but the general recommendation is to useexpungeDeletes,
instead of committing.

104 | Cloudera Search

Cloudera Search User Guide

Modern Lucene code doeswhatoptimize used to do to remove deleted data from the indexwhen segments
are merged. Think of this process as a background optimize. Note that merge policies based on segment size
can make this characterization inaccurate.

–

– It still may make sense to optimize a read-only index.
– Optimize is now renamed forceMerge.

Cloudera Search Glossary

commit

An operation that forces documents to be made searchable.

• hard - A commit that starts the autowarm process, closes old searchers and opens new ones. It may also trigger
replication.

• soft - New functionality with NRT and SolrCloud that makes documents searchable without requiring the work of
hard commits.

embedded Solr

The ability to execute Solr commands without having a separate servlet container. Generally, use of embedded Solr is
discouraged because it is often used due to the mistaken belief that HTTP is inherently too expensive to go fast. With
Cloudera Search, and especially if the idea of some kind of MapReduce process is adopted, embedded Solr is probably
advisable.

faceting

“Counting buckets” for a query. For example, suppose the search is for the term “shoes”. You might want to return a
result that there were various different quantities, such as "X brown, Y red and Z blue shoes" that matched the rest of
the query.

filter query (fq)

A clause that limits returned results. For instance, “fq=sex:male” limits results to males. Filter queries are cached and
reused.

Near Real Time (NRT)

The ability to search documents very soon after they are added to Solr. With SolrCloud, this is largely automatic and
measured in seconds.

replica

In SolrCloud, a complete copy of a shard. Each replica is identical, so only one replica has to be queried (per shard) for
searches.

sharding

Splitting a single logical index up into some number of sub-indexes, each ofwhich can be hosted on a separatemachine.
Solr (and especially SolrCloud) handles querying each shard and assembling the response into a single, coherent list.

SolrCloud

ZooKeeper-enabled, fault-tolerant, distributed Solr. This is new in Solr 4.0.

SolrJ

A Java API for interacting with a Solr instance.

Cloudera Search | 105

Cloudera Search User Guide

Cloudera Search Frequently Asked Questions

This section includes answers to questions commonly asked about Search for CDH. Questions are divided into the
following categories:

General
The following are general questions about Cloudera Search and the answers to those questions.

What is Cloudera Search?

Cloudera Search is Apache Solr integrated with CDH, including Apache Lucene, Apache SolrCloud, Apache Flume,
Apache Tika, and ApacheHadoopMapReduce andHDFS. Cloudera Search also includes valuable integrations thatmake
searching more scalable, easy to use, and optimized for both near-real-time and batch-oriented indexing. These
integrations include ClouderaMorphlines, a customizable transformation chain that simplifies loading any type of data
into Cloudera Search.

What is the difference between Lucene and Solr?

Lucene is a low-level search library that is accessed by a Java API. Solr is a search server that runs in a servlet container
and provides structure and convenience around the underlying Lucene library.

What is Apache Tika?

The Apache Tika toolkit detects and extracts metadata and structured text content from various documents using
existing parser libraries. Using the solrCellmorphline command, the output from Apache Tika can be mapped to a
Solr schema and indexed.

How does Cloudera Search relate to web search?

Traditional web search engines crawl web pages on the Internet for content to index. Cloudera Search indexes files
and data that are stored in HDFS and HBase. To make web data available through Cloudera Search, it needs to be
downloaded and stored in Cloudera Enterprise.

How does Cloudera Search relate to enterprise search?

Enterprise search connects with different backends (such as RDBMS and filesystems) and indexes data in all those
systems. Cloudera Search is intended as a full-text search capability for data in CDH. Cloudera Search is a tool added
to the Cloudera data processing platform and does not aim to be a stand-alone search solution, but rather a user-friendly
interface to explore data in Hadoop and HBase.

How does Cloudera Search relate to custom search applications?

Custom and specialized search applications are an excellent complement to the Cloudera data-processing platform.
Cloudera Search is not designed to be a custom application for niche vertical markets. However, Cloudera Search does
include a simple search GUI through a plug-in application for Hue. The Hue plug-in application is based on the Solr API
and allows for easy exploration, along with all of the other Hadoop frontend applications in Hue.

Do Search security features use Kerberos?

Yes, Cloudera Search includes support for Kerberos authentication. Search continues to use simple authentication with
the anonymous user as the default configuration, but Search now supports changing the authentication scheme to
Kerberos. All required packages are installed during the installation or upgrade process. Additional configuration is
required before Kerberos is available in your environment.

106 | Cloudera Search

Cloudera Search Frequently Asked Questions

http://lucene.apache.org/solr/
http://www.cloudera.com/products.html

Do I need to configure Sentry restrictions for each access mode, such as for the admin console and for
the command line?

Sentry restrictions are consistently applied regardless of the way users attempt to complete actions. For example,
restricting access to data in a collection consistently restricts that access, whether queries come from the command
line, from a browser, or through the admin console.

Does Search support indexing data stored in JSON files and objects?

Yes, you can use the readJson and extractJsonPathsmorphline commands that are included with the CDK to
access JSON data and files. For more information, see cdk-morphlines-json.

How can I set up Cloudera Search so that results include links back to the source that contains the result?

You can use stored results fields to create links back to source documents. For information on data types, including
the option to set results fields as stored, see the Solr Wiki page on SchemaXml.

For example, with MapReduceIndexerTool you can take advantage of fields such as file_path. See
MapReduceIndexerTool Metadata on page 39 for more information. The output from the MapReduceIndexerTool
includes file path information that can be used to construct links to source documents.

If you use the Hue UI, you can link to data in HDFS by inserting links of the form:

Download

Why do I get an error “no field name specified in query and no default specified via 'df' param" when I
query a Schemaless collection?

Schemaless collections initially have no default or df setting. As a result, simple searches that might succeed on
non-Schemaless collections may fail on Schemaless collections.

When a user submits a search, it must be clear which field Cloudera Search should query. A default field, or df, is often
specified in solrconfig.xml, and when this is the case, users can submit queries that do not specify fields. In such
situations, Solr uses the df value.

When a new collection is created in Schemaless mode, there are initially no fields defined, so no field can be chosen
as the df field. As a result, when query request handlers do not specify a df, errors can result. This issue can be
addressed in several ways:

• Queries can specify any valid field name on which to search. In such a case, no df is required.
• Queries can specify a default field using the df parameter. In such a case, the df is specified in the query.
• You can uncomment the df section of the generated schemaless solrconfig.xml file and set the df parameter

to the desired field. In such a case, all subsequent queries can use the df field in solrconfig.xml if no field or
df value is specified.

Performance and Fail Over
The following are questions about performance and fail over in Cloudera Search and the answers to those questions.

How large of an index does Cloudera Search support per search server?

This question includes toomany variables to provide a single answer. Typically, a server can host from 10 to 300million
documents, with the underlying index as large as hundreds of gigabytes. To determine a reasonablemaximumdocument
quantity and index size for servers in your deployment, prototype with realistic data and queries.

Cloudera Search | 107

Cloudera Search Frequently Asked Questions

http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#readJson
http://wiki.apache.org/solr/SchemaXml#Data_Types
http://gethue.com/tutorial-search-hadoop-in-hue/

What is the response time latency I can expect?

Many factors affect how quickly responses are returned. Some factors that contribute to latency include whether the
system is also completing indexing, the type of fields you are searching, whether the search results require aggregation,
and whether there are sufficient resources for your search services.

With appropriately-sized hardware, if the query results are found inmemory, theymay be returnedwithinmilliseconds.
Conversely, complex queries requiring results aggregation over huge indexes may take a few seconds.

The time between when Search begins to work on indexing new data and when that data can be queried can be as
short as a few seconds, depending on your configuration.

This high performance is supported by custom caching optimizations that Cloudera has added to the Solr/HDFS
integration. These optimizations allow for rapid read and writes of files in HDFS, performing at or above the speeds of
stand-alone Solr reading and writing from local disk.

What happens when a write to the Lucene indexer fails?

Cloudera Search provides two configurable, highly available, and fault-tolerant data ingestion schemes: near real-time
ingestion using the Flume Solr Sink and MapReduce-based batch ingestion using the MapReduceIndexerTool. These
approaches are discussed in more detail in Search High Availability on page 89.

What hardware or configuration changes can I make to improve Search performance?

Search performance can be constrained by CPU limits. If you're seeing bottlenecks, consider allocating more CPU to
Search.

Are there settings that can help avoid out of memory (OOM) errors during data ingestion?

A data ingestion pipeline can be made up of many connected segments, each of which may need to be evaluated for
sufficient resources. A common limiting factor is the relatively small default amount of permgen memory allocated to
the flume JVM. Allocating additional memory to the Flume JVM may help avoid OOM errors. For example, for JVM
settings for Flume, the following settings are often sufficient:

-Xmx2048m -XX:MaxPermSize=256M

How can I redistribute shards across a cluster?

You can move shards between hosts using the process described in Migrating Solr Replicas on page 71.

Can I adjust replication levels?

For information on adjusting replication levels, see Replication Settings. Do not adjust HDFS replication settings for
Solr in most cases.

Schema Management
The following are questions about schema management in Cloudera Search and the answers to those questions.

If my schema changes, will I need to re-index all of my data and files?

When you change the schema, Cloudera recommends re-indexing. For example, if you add a new field to the index,
apply the new field to all index entries through re-indexing. Re-indexing is required in such a case because existing
documents do not yet have the field. Cloudera Search includes a MapReduce batch-indexing solution for re-indexing
and a GoLive feature that assures updated indexes are dynamically served.

While you should typically re-index after adding a new field, this is not necessary if the new field applies only to new
documents or data. This is because, were indexing to be completed, existing documents would still have no data for
the field, making the effort unnecessary.

108 | Cloudera Search

Cloudera Search Frequently Asked Questions

For schema changes that only apply to queries, re-indexing is not necessary.

Can I extract fields based on regular expressions or rules?

Cloudera Search supports limited regular expressions in Search queries. For details, see Lucene Regular Expressions.

On data ingestion, Cloudera Search supports easy and powerful extraction of fields based on regular expressions. For
example the grokmorphline command supports field extraction using regular expressions.

Cloudera Search also includes support for rule directed ETLwith an extensible rule engine, in the formof the tryRules
morphline command.

Can I use nested schemas?

Cloudera Search does not support nesting documents in this release. Cloudera Search assumes documents in the
Cloudera Search repository have a flat structure.

What is Apache Avro and how can I use an Avro schema for more flexible schema evolution?

To learn more about Avro and Avro schemas, see the Avro Overview page and the Avro Specification page.

To see examples of how to implement inheritance, backwards compatibility, and polymorphism with Avro, see this
InfoQ article.

Supportability
The following are questions about supportability in Cloudera Search and the answers to those questions.

Does Cloudera Search support multiple languages?

Cloudera Search supports approximately 30 languages, includingmostWestern European languages, as well as Chinese,
Japanese, and Korean.

Which file formats does Cloudera Search support for indexing? Does it support searching images?

Cloudera Search uses the Apache Tika library for indexing many standard document formats. In addition, Cloudera
Search supports indexing and searching Avro files and a wide variety of other file types such as log files, Hadoop
Sequence Files, and CSV files. You can add support for indexing custom file formats using amorphline commandplug-in.

Cloudera Search | 109

Cloudera Search Frequently Asked Questions

http://lucene.apache.org/core/4_0_0/core/org/apache/lucene/util/automaton/RegExp.html
http://avro.apache.org/docs/1.4.1/index.html
http://avro.apache.org/docs/current/spec.html
http://www.infoq.com/articles/ApacheAvro
http://tika.apache.org/1.3/formats.html

Cloudera Search Frequently Asked Questions

This section includes answers to questions commonly asked about Search for CDH. Questions are divided into the
following categories:

General
The following are general questions about Cloudera Search and the answers to those questions.

What is Cloudera Search?

Cloudera Search is Apache Solr integrated with CDH, including Apache Lucene, Apache SolrCloud, Apache Flume,
Apache Tika, and ApacheHadoopMapReduce andHDFS. Cloudera Search also includes valuable integrations thatmake
searching more scalable, easy to use, and optimized for both near-real-time and batch-oriented indexing. These
integrations include ClouderaMorphlines, a customizable transformation chain that simplifies loading any type of data
into Cloudera Search.

What is the difference between Lucene and Solr?

Lucene is a low-level search library that is accessed by a Java API. Solr is a search server that runs in a servlet container
and provides structure and convenience around the underlying Lucene library.

What is Apache Tika?

The Apache Tika toolkit detects and extracts metadata and structured text content from various documents using
existing parser libraries. Using the solrCellmorphline command, the output from Apache Tika can be mapped to a
Solr schema and indexed.

How does Cloudera Search relate to web search?

Traditional web search engines crawl web pages on the Internet for content to index. Cloudera Search indexes files
and data that are stored in HDFS and HBase. To make web data available through Cloudera Search, it needs to be
downloaded and stored in Cloudera Enterprise.

How does Cloudera Search relate to enterprise search?

Enterprise search connects with different backends (such as RDBMS and filesystems) and indexes data in all those
systems. Cloudera Search is intended as a full-text search capability for data in CDH. Cloudera Search is a tool added
to the Cloudera data processing platform and does not aim to be a stand-alone search solution, but rather a user-friendly
interface to explore data in Hadoop and HBase.

How does Cloudera Search relate to custom search applications?

Custom and specialized search applications are an excellent complement to the Cloudera data-processing platform.
Cloudera Search is not designed to be a custom application for niche vertical markets. However, Cloudera Search does
include a simple search GUI through a plug-in application for Hue. The Hue plug-in application is based on the Solr API
and allows for easy exploration, along with all of the other Hadoop frontend applications in Hue.

Do Search security features use Kerberos?

Yes, Cloudera Search includes support for Kerberos authentication. Search continues to use simple authentication with
the anonymous user as the default configuration, but Search now supports changing the authentication scheme to
Kerberos. All required packages are installed during the installation or upgrade process. Additional configuration is
required before Kerberos is available in your environment.

110 | Cloudera Search

Cloudera Search Frequently Asked Questions

http://lucene.apache.org/solr/
http://www.cloudera.com/products.html

Do I need to configure Sentry restrictions for each access mode, such as for the admin console and for
the command line?

Sentry restrictions are consistently applied regardless of the way users attempt to complete actions. For example,
restricting access to data in a collection consistently restricts that access, whether queries come from the command
line, from a browser, or through the admin console.

Does Search support indexing data stored in JSON files and objects?

Yes, you can use the readJson and extractJsonPathsmorphline commands that are included with the CDK to
access JSON data and files. For more information, see cdk-morphlines-json.

How can I set up Cloudera Search so that results include links back to the source that contains the result?

You can use stored results fields to create links back to source documents. For information on data types, including
the option to set results fields as stored, see the Solr Wiki page on SchemaXml.

For example, with MapReduceIndexerTool you can take advantage of fields such as file_path. See
MapReduceIndexerTool Metadata on page 39 for more information. The output from the MapReduceIndexerTool
includes file path information that can be used to construct links to source documents.

If you use the Hue UI, you can link to data in HDFS by inserting links of the form:

Download

Why do I get an error “no field name specified in query and no default specified via 'df' param" when I
query a Schemaless collection?

Schemaless collections initially have no default or df setting. As a result, simple searches that might succeed on
non-Schemaless collections may fail on Schemaless collections.

When a user submits a search, it must be clear which field Cloudera Search should query. A default field, or df, is often
specified in solrconfig.xml, and when this is the case, users can submit queries that do not specify fields. In such
situations, Solr uses the df value.

When a new collection is created in Schemaless mode, there are initially no fields defined, so no field can be chosen
as the df field. As a result, when query request handlers do not specify a df, errors can result. This issue can be
addressed in several ways:

• Queries can specify any valid field name on which to search. In such a case, no df is required.
• Queries can specify a default field using the df parameter. In such a case, the df is specified in the query.
• You can uncomment the df section of the generated schemaless solrconfig.xml file and set the df parameter

to the desired field. In such a case, all subsequent queries can use the df field in solrconfig.xml if no field or
df value is specified.

Performance and Fail Over
The following are questions about performance and fail over in Cloudera Search and the answers to those questions.

How large of an index does Cloudera Search support per search server?

This question includes toomany variables to provide a single answer. Typically, a server can host from 10 to 300million
documents, with the underlying index as large as hundreds of gigabytes. To determine a reasonablemaximumdocument
quantity and index size for servers in your deployment, prototype with realistic data and queries.

Cloudera Search | 111

Cloudera Search Frequently Asked Questions

http://kitesdk.org/docs/current/morphlines/morphlinesReferenceGuide.html#readJson
http://wiki.apache.org/solr/SchemaXml#Data_Types
http://gethue.com/tutorial-search-hadoop-in-hue/

What is the response time latency I can expect?

Many factors affect how quickly responses are returned. Some factors that contribute to latency include whether the
system is also completing indexing, the type of fields you are searching, whether the search results require aggregation,
and whether there are sufficient resources for your search services.

With appropriately-sized hardware, if the query results are found inmemory, theymay be returnedwithinmilliseconds.
Conversely, complex queries requiring results aggregation over huge indexes may take a few seconds.

The time between when Search begins to work on indexing new data and when that data can be queried can be as
short as a few seconds, depending on your configuration.

This high performance is supported by custom caching optimizations that Cloudera has added to the Solr/HDFS
integration. These optimizations allow for rapid read and writes of files in HDFS, performing at or above the speeds of
stand-alone Solr reading and writing from local disk.

What happens when a write to the Lucene indexer fails?

Cloudera Search provides two configurable, highly available, and fault-tolerant data ingestion schemes: near real-time
ingestion using the Flume Solr Sink and MapReduce-based batch ingestion using the MapReduceIndexerTool. These
approaches are discussed in more detail in Search High Availability on page 89.

What hardware or configuration changes can I make to improve Search performance?

Search performance can be constrained by CPU limits. If you're seeing bottlenecks, consider allocating more CPU to
Search.

Are there settings that can help avoid out of memory (OOM) errors during data ingestion?

A data ingestion pipeline can be made up of many connected segments, each of which may need to be evaluated for
sufficient resources. A common limiting factor is the relatively small default amount of permgen memory allocated to
the flume JVM. Allocating additional memory to the Flume JVM may help avoid OOM errors. For example, for JVM
settings for Flume, the following settings are often sufficient:

-Xmx2048m -XX:MaxPermSize=256M

How can I redistribute shards across a cluster?

You can move shards between hosts using the process described in Migrating Solr Replicas on page 71.

Can I adjust replication levels?

For information on adjusting replication levels, see Replication Settings. Do not adjust HDFS replication settings for
Solr in most cases.

Schema Management
The following are questions about schema management in Cloudera Search and the answers to those questions.

If my schema changes, will I need to re-index all of my data and files?

When you change the schema, Cloudera recommends re-indexing. For example, if you add a new field to the index,
apply the new field to all index entries through re-indexing. Re-indexing is required in such a case because existing
documents do not yet have the field. Cloudera Search includes a MapReduce batch-indexing solution for re-indexing
and a GoLive feature that assures updated indexes are dynamically served.

While you should typically re-index after adding a new field, this is not necessary if the new field applies only to new
documents or data. This is because, were indexing to be completed, existing documents would still have no data for
the field, making the effort unnecessary.

112 | Cloudera Search

Cloudera Search Frequently Asked Questions

For schema changes that only apply to queries, re-indexing is not necessary.

Can I extract fields based on regular expressions or rules?

Cloudera Search supports limited regular expressions in Search queries. For details, see Lucene Regular Expressions.

On data ingestion, Cloudera Search supports easy and powerful extraction of fields based on regular expressions. For
example the grokmorphline command supports field extraction using regular expressions.

Cloudera Search also includes support for rule directed ETLwith an extensible rule engine, in the formof the tryRules
morphline command.

Can I use nested schemas?

Cloudera Search does not support nesting documents in this release. Cloudera Search assumes documents in the
Cloudera Search repository have a flat structure.

What is Apache Avro and how can I use an Avro schema for more flexible schema evolution?

To learn more about Avro and Avro schemas, see the Avro Overview page and the Avro Specification page.

To see examples of how to implement inheritance, backwards compatibility, and polymorphism with Avro, see this
InfoQ article.

Supportability
The following are questions about supportability in Cloudera Search and the answers to those questions.

Does Cloudera Search support multiple languages?

Cloudera Search supports approximately 30 languages, includingmostWestern European languages, as well as Chinese,
Japanese, and Korean.

Which file formats does Cloudera Search support for indexing? Does it support searching images?

Cloudera Search uses the Apache Tika library for indexing many standard document formats. In addition, Cloudera
Search supports indexing and searching Avro files and a wide variety of other file types such as log files, Hadoop
Sequence Files, and CSV files. You can add support for indexing custom file formats using amorphline commandplug-in.

Cloudera Search | 113

Cloudera Search Frequently Asked Questions

http://lucene.apache.org/core/4_0_0/core/org/apache/lucene/util/automaton/RegExp.html
http://avro.apache.org/docs/1.4.1/index.html
http://avro.apache.org/docs/current/spec.html
http://www.infoq.com/articles/ApacheAvro
http://tika.apache.org/1.3/formats.html

Appendix: Apache License, Version 2.0

SPDX short identifier: Apache-2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through
9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of
fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

"Object" form shall mean any form resulting frommechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole,
an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or
additions to thatWork or DerivativeWorks thereof, that is intentionally submitted to Licensor for inclusion in theWork
by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of
discussing and improving theWork, but excluding communication that is conspicuouslymarked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whoma Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare DerivativeWorks of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license tomake, havemade,
use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims

114 | Cloudera

Appendix: Apache License, Version 2.0

licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated
within theWork constitutes direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and
2. You must cause any modified files to carry prominent notices stating that You changed the files; and
3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,

and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part
of the Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along
with the DerivativeWorks; or, within a display generated by the DerivativeWorks, if andwherever such third-party
notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify
the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be
construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as
a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an "AS IS" BASIS,WITHOUTWARRANTIES OR CONDITIONSOF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required
by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable
to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure ormalfunction, or any and all other commercial damages or losses), even
if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

Cloudera | 115

Appendix: Apache License, Version 2.0

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
"[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class name and description of
purpose be included on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

116 | Cloudera

Appendix: Apache License, Version 2.0

	Table of Contents
	Cloudera Search QuickStart Guide
	Prerequisites for Cloudera Search QuickStart Scenarios
	Load and Index Data in Search
	Using Search to Query Loaded Data

	Cloudera Search User Guide
	Cloudera Search Tutorial
	Validating the Deployment with the Solr REST API
	Preparing to Index Data with Cloudera Search
	Using MapReduce Batch Indexing with Cloudera Search
	Near Real Time (NRT) Indexing Using Flume and the Solr Sink
	Deploying Solr Sink into the Flume Agent
	Configuring the Flume Solr Sink
	Configuring Flume Solr Sink to Sip from the Twitter Firehose
	Starting the Flume Agent
	Indexing a File Containing Tweets with Flume HTTPSource
	Indexing a File Containing Tweets with Flume SpoolDirectorySource

	Using Hue with Cloudera Search
	Search User Interface in Hue
	Hue Search Twitter Demo

	Managing Solr Using solrctl
	Understanding configs and instancedirs
	Included Immutable Config Templates
	solrctl Reference
	Example solrctl Usage
	Using solrctl with an HTTP proxy
	Adding Another Collection with Replication
	Creating Replicas of Existing Shards
	Converting instancedirs to configs

	Spark Indexing
	MapReduce Batch Indexing Reference
	MapReduceIndexerTool
	MapReduceIndexerTool Input Splits
	Invoking Command-Line Help
	MapReduceIndexerTool Metadata

	HdfsFindTool

	Flume Near Real-Time Indexing Reference
	Flume Morphline Solr Sink Configuration Options
	Flume Morphline Interceptor Configuration Options
	Flume Solr UUIDInterceptor Configuration Options
	Flume Solr BlobHandler Configuration Options
	Flume Solr BlobDeserializer Configuration Options

	Extracting, Transforming, and Loading Data With Cloudera Morphlines
	Example Morphline Usage

	Using the Lily HBase Batch Indexer for Indexing
	Populating an HBase Table
	Creating a Corresponding Collection in Search
	Creating a Lily HBase Indexer Configuration
	Creating a Morphline Configuration File
	Understanding the extractHBaseCells Morphline Command
	Running HBaseMapReduceIndexerTool
	Understanding --go-live and HDFS ACLs
	HBaseMapReduceIndexerTool

	Configuring the Lily HBase NRT Indexer Service for Use with Cloudera Search
	Enabling Cluster-wide HBase Replication
	Pointing a Lily HBase NRT Indexer Service at an HBase Cluster that Needs to Be Indexed
	Configuring Lily HBase Indexer Security
	Starting a Lily HBase NRT Indexer Service
	Using the Lily HBase NRT Indexer Service

	Schemaless Mode Overview and Best Practices
	Using Search through a Proxy for High Availability
	Overview of Proxy Usage and Load Balancing for Search
	Special Proxy Considerations for Clusters Using Kerberos

	Migrating Solr Replicas
	Using Custom JAR Files with Search
	Enabling Kerberos Authentication for Search
	Using Kerberos with Search
	Enabling Sentry Authorization for Search using the Command Line
	Using Roles and Privileges with Sentry
	Using Users and Groups with Sentry
	User to Group Mapping

	Using Policy Files with Sentry
	Storing the Policy File
	Defining Roles

	Sample Sentry Configuration
	Policy File
	Sentry Configuration File

	Enabling Sentry in Cloudera Search for CDH 5
	Enabling Sentry on Collections using configs
	Enabling Sentry on Collections using instancedirs

	Providing Document-Level Security Using Sentry
	Enabling Secure Impersonation
	Debugging Failed Sentry Authorization Requests
	Appendix: Authorization Privilege Model for Search

	Search High Availability
	Renaming Cloudera Manager Managed Hosts
	Prerequisites
	Stopping Cloudera Manager Services
	Editing the server_host Value
	Updating Name Services
	Updating the Cloudera Manager Database
	Starting Cloudera Manager Services
	Updating for NameNode High Availability Automatic Failover
	Updating Cloudera Management Service Host Information
	Returning the System to a Running State

	Tuning the Solr Server
	Tuning to Complete During Setup
	General Tuning
	Other Resources

	Troubleshooting Cloudera Search
	Static Solr Log Analysis

	Cloudera Search Glossary

	Cloudera Search Frequently Asked Questions
	General
	What is Cloudera Search?
	What is the difference between Lucene and Solr?
	What is Apache Tika?
	How does Cloudera Search relate to web search?
	How does Cloudera Search relate to enterprise search?
	How does Cloudera Search relate to custom search applications?
	Do Search security features use Kerberos?
	Do I need to configure Sentry restrictions for each access mode, such as for the admin console and for the command line?
	Does Search support indexing data stored in JSON files and objects?
	How can I set up Cloudera Search so that results include links back to the source that contains the result?
	Why do I get an error “no field name specified in query and no default specified via 'df' param" when I query a Schemaless collection?

	Performance and Fail Over
	How large of an index does Cloudera Search support per search server?
	What is the response time latency I can expect?
	What happens when a write to the Lucene indexer fails?
	What hardware or configuration changes can I make to improve Search performance?
	Are there settings that can help avoid out of memory (OOM) errors during data ingestion?
	How can I redistribute shards across a cluster?
	Can I adjust replication levels?

	Schema Management
	If my schema changes, will I need to re-index all of my data and files?
	Can I extract fields based on regular expressions or rules?
	Can I use nested schemas?
	What is Apache Avro and how can I use an Avro schema for more flexible schema evolution?

	Supportability
	Does Cloudera Search support multiple languages?
	Which file formats does Cloudera Search support for indexing? Does it support searching images?

	Cloudera Search Frequently Asked Questions
	General
	What is Cloudera Search?
	What is the difference between Lucene and Solr?
	What is Apache Tika?
	How does Cloudera Search relate to web search?
	How does Cloudera Search relate to enterprise search?
	How does Cloudera Search relate to custom search applications?
	Do Search security features use Kerberos?
	Do I need to configure Sentry restrictions for each access mode, such as for the admin console and for the command line?
	Does Search support indexing data stored in JSON files and objects?
	How can I set up Cloudera Search so that results include links back to the source that contains the result?
	Why do I get an error “no field name specified in query and no default specified via 'df' param" when I query a Schemaless collection?

	Performance and Fail Over
	How large of an index does Cloudera Search support per search server?
	What is the response time latency I can expect?
	What happens when a write to the Lucene indexer fails?
	What hardware or configuration changes can I make to improve Search performance?
	Are there settings that can help avoid out of memory (OOM) errors during data ingestion?
	How can I redistribute shards across a cluster?
	Can I adjust replication levels?

	Schema Management
	If my schema changes, will I need to re-index all of my data and files?
	Can I extract fields based on regular expressions or rules?
	Can I use nested schemas?
	What is Apache Avro and how can I use an Avro schema for more flexible schema evolution?

	Supportability
	Does Cloudera Search support multiple languages?
	Which file formats does Cloudera Search support for indexing? Does it support searching images?

	Appendix: Apache License, Version 2.0

