
Cloudera Security

Important Notice
© 2010-2021 Cloudera, Inc. All rights reserved.

Cloudera, the Cloudera logo, and any other product or
service names or slogans contained in this document are trademarks of Cloudera and
its suppliers or licensors, and may not be copied, imitated or used, in whole or in part,
without the prior written permission of Cloudera or the applicable trademark holder. If
this documentation includes code, including but not limited to, code examples, Cloudera
makes this available to you under the terms of the Apache License, Version 2.0, including
any required notices. A copy of the Apache License Version 2.0, including any notices,
is included herein. A copy of the Apache License Version 2.0 can also be found here:
https://opensource.org/licenses/Apache-2.0

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software
Foundation. All other trademarks, registered trademarks, product names and company
names or logosmentioned in this document are the property of their respective owners.
Reference to any products, services, processes or other information, by trade name,
trademark, manufacturer, supplier or otherwise does not constitute or imply
endorsement, sponsorship or recommendation thereof by us.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this documentmay be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Cloudera.

Cloudera may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subjectmatter in this document. Except as expressly
provided in anywritten license agreement fromCloudera, the furnishing of this document
does not give you any license to these patents, trademarks copyrights, or other
intellectual property. For information about patents covering Cloudera products, see
http://tiny.cloudera.com/patents.

The information in this document is subject to change without notice. Cloudera shall
not be liable for any damages resulting from technical errors or omissions which may
be present in this document, or from use of this document.

Cloudera, Inc.
395 Page Mill Road
Palo Alto, CA 94306
info@cloudera.com
US: 1-888-789-1488
Intl: 1-650-362-0488
www.cloudera.com

Release Information

Version: Cloudera Enterprise 5.9.x
Date: February 3, 2021

Table of Contents

About this Guide..11

Security Overview for an Enterprise Data Hub..12
Security Requirements...12

Securing a Hadoop Cluster in Stages..12

Hadoop Security Architecture..13

Overview of Authentication Mechanisms for an Enterprise Data Hub..14
Basic Kerberos Concepts..15

Types of Kerberos Deployments...16

TLS/SSL Requirements for Secure Distribution of Kerberos Keytabs...22

Configuring Kerberos Authentication on a Cluster...23

Authentication Mechanisms used by Hadoop Projects..23

Overview of Data Protection Mechanisms for an Enterprise Data Hub...24
Protecting Data At-Rest...24

Password Redaction...26

Protecting Data In-Transit..27

Data Protection within Hadoop Projects..28

Overview of Authorization Mechanisms for an Enterprise Data Hub..29
Authorization Mechanisms in Hadoop...29

Integration with Authentication Mechanisms for Identity Management..35

Authorization within Hadoop Projects...35

Overview of Data Management Mechanisms for an Enterprise Data Hub..36
Cloudera Navigator..37

Integration within an EDH...38

Auditing in Hadoop Projects..38

How to Configure TLS Encryption for Cloudera Manager...40
Generate TLS Certificates...40
Generate the Cloudera Manager Server Certificate...40

Generate the Cloudera Manager Agent Certificates..42

Configuring TLS Encryption for the Cloudera Manager Admin Console...43
Step 1: Enable HTTPS for the Cloudera Manager Admin Console..43

Step 2: Specify SSL Truststore Properties for Cloudera Management Services..44

Step 3: Restart Cloudera Manager and Services..44

Configuring TLS Encryption for Cloudera Manager Agents..45
Step 1: Enable TLS Encryption for Agents in Cloudera Manager..45

Step 2: Enable TLS on Cloudera Manager Agent Hosts..45

Step 3: Restart Cloudera Manager Server and Agents...45

Step 4: Verify that the Cloudera Manager Server and Agents are Communicating...45

Enabling Server Certificate Verification on Cloudera Manager Agents..45

Configuring Agent Certificate Authentication..46
Step 1: Export the Private Key to a File..46

Step 2: Create a Password File...47

Step 3: Configure the Agent to Use Private Keys and Certificates..47

Step 4: Enable Agent Certificate Authentication..47

Step 5: Restart Cloudera Manager Server and Agents...47

Step 6: Verify that Cloudera Manager Server and Agents are Communicating...48

Configuring Authentication..49
Configuring Authentication in Cloudera Manager...49
Cloudera Manager User Accounts...50

Configuring External Authentication for Cloudera Manager...51

Kerberos Concepts - Principals, Keytabs and Delegation Tokens...57

Enabling Kerberos Authentication Using the Wizard...59

Enabling Kerberos Authentication for Single User Mode or Non-Default Users..69

Configuring a Cluster with Custom Kerberos Principals...70

Managing Kerberos Credentials Using Cloudera Manager..72

Using a Custom Kerberos Keytab Retrieval Script..74

Mapping Kerberos Principals to Short Names...75

Moving Kerberos Principals to Another OU Within Active Directory...75

Using Auth-to-Local Rules to Isolate Cluster Users..76

Enabling Kerberos Authentication Without the Wizard...76

Configuring Authentication in the Cloudera Navigator Data Management Component...................................88
Configuring External Authentication for the Cloudera Navigator Data Management Component.....................................88

Managing Users and Groups for the Cloudera Navigator Data Management Component...93

Configuring Authentication in CDH Using the Command Line...95
Enabling Kerberos Authentication for Hadoop Using the Command Line...95

FUSE Kerberos Configuration...118

Using kadmin to Create Kerberos Keytab Files...118

Configuring the Mapping from Kerberos Principals to Short Names...120

Enabling Debugging Output for the Sun Kerberos Classes...122

Flume Authentication...122
Configuring Flume's Security Properties..123

Configuring Kerberos for Flume Thrift Source and Sink Using Cloudera Manager..124

Configuring Kerberos for Flume Thrift Source and Sink Using the Command Line..125

Flume Account Requirements..126

Testing the Flume HDFS Sink Configuration...127

Writing to a Secure HBase Cluster...127

HBase Authentication..128

Configuring Kerberos Authentication for HBase..128

Configuring Secure HBase Replication...134

Configuring the HBase Client TGT Renewal Period..135

HCatalog Authentication..135
Before You Start...135

Step 1: Create the HTTP keytab file..135

Step 2: Configure WebHCat to Use Security...135

Step 3: Create Proxy Users...136

Step 4: Verify the Configuration...136

Hive Authentication...136
HiveServer2 Security Configuration...137

Hive Metastore Server Security Configuration...143

Using Hive to Run Queries on a Secure HBase Server..144

HttpFS Authentication..144
Configuring the HttpFS Server to Support Kerberos Security...145

Using curl to access an URL Protected by Kerberos HTTP SPNEGO..146

Hue Authentication..147
Enabling LDAP Authentication with HiveServer2 and Impala..147

Securing Sessions...147

Allowed HTTP Methods..148

Restricting the Cipher List..148

URL Redirect Whitelist...148

Oozie Permissions..149

Configuring Kerberos Authentication for Hue..149

Integrating Hue with LDAP..151

Configuring Hue for SAML..158

Impala Authentication..164
Enabling Kerberos Authentication for Impala..164

Enabling LDAP Authentication for Impala..167

Using Multiple Authentication Methods with Impala..170

Configuring Impala Delegation for Hue and BI Tools...170

Llama Authentication...171
Configuring Llama to Support Kerberos Security...171

Oozie Authentication...171
Configuring Kerberos Authentication for the Oozie Server..172

Configuring Oozie HA with Kerberos..173

Solr Authentication..174
Enabling Kerberos Authentication for Solr...175

Enabling LDAP Authentication for Solr...176

Using Kerberos with Solr..178

Spark Authentication..180
Configuring Kerberos Authentication for Spark Using the Command Line..181

Configuring Spark Authentication With a Shared Secret Using Cloudera Manager..182

Configuring Spark on YARN for Long-Running Applications...182

Sqoop 2 Authentication...182
Create the Sqoop 2 Principal and Keytab File..183

Configure Sqoop 2 to Use Kerberos..183

ZooKeeper Authentication...183
Configuring ZooKeeper Server for Kerberos Authentication..183

Configuring the ZooKeeper Client Shell to Support Kerberos Security...185

Verifying the Configuration..185

Hadoop Users in Cloudera Manager and CDH...186

Configuring a Cluster-dedicated MIT KDC with Cross-Realm Trust..191
When to use kadmin.local and kadmin..191

Setting up a Cluster-Dedicated KDC and Default Realm for the Hadoop Cluster...192

Integrating Hadoop Security with Active Directory..196
Configuring a Local MIT Kerberos Realm to Trust Active Directory..197

Integrating Hadoop Security with Alternate Authentication..199
Configuring the AuthenticationFilter to use Kerberos..199

Creating an AltKerberosAuthenticationHandler Subclass..199

Enabling Your AltKerberosAuthenticationHandler Subclass...199

Example Implementation for Oozie..201

Authenticating Kerberos Principals in Java Code...201

Using a Web Browser to Access an URL Protected by Kerberos HTTP SPNEGO...201

Troubleshooting Kerberos Issues...205
Verifying Kerberos Configuration...205

Authenticate to Kerberos using the kinit command line tool...207

Troubleshooting using service keytabs maintained by Cloudera Manager ...208

Examining Kerberos credentials with klist...209

Reviewing Service Ticket Credentials in Cross Realm Deployments...209

Enabling Debugging in Cloudera Manager for CDH Services...210

Enabling Debugging for Command Line Troubleshooting..210

Troubleshooting Authentication Issues..211
Common Security Problems and Their Solutions...211

Configuring Encryption...221
TLS/SSL Certificates Overview..221
Creating Certificates..222

Creating Java Keystores and Truststores..224

Private Key and Certificate Reuse Across Java Keystores and OpenSSL...227

Configuring TLS Security for Cloudera Manager..228
Configuring TLS (Encryption Only) for Cloudera Manager...230

Level 1: Configuring TLS Encryption for Cloudera Manager Agents...234

Level 2: Configuring TLS Verification of Cloudera Manager Server by the Agents...235

Level 3: Configuring TLS Authentication of Agents to the Cloudera Manager Server..237

TLS/SSL Communication Between Cloudera Manager and Cloudera Management Services..242

Troubleshooting TLS/SSL Issues in Cloudera Manager...244

Using Self-Signed Certificates (Level 1 TLS)..246

Configuring TLS/SSL for the Cloudera Navigator Data Management Component...247

Configuring TLS/SSL for Publishing Cloudera Navigator Audit Events to Kafka..248

Configuring TLS/SSL for Cloudera Management Service Roles..248

Configuring TLS/SSL Encryption for CDH Services..249
Prerequisites..249

Hadoop Services as TLS/SSL Servers and Clients..249

Compatible Certificate Formats for Hadoop Components...250

Configuring TLS/SSL for HDFS, YARN and MapReduce...250

Configuring TLS/SSL for HBase...253

Configuring TLS/SSL for Flume Thrift Source and Sink...254

Configuring Encrypted Communication Between HiveServer2 and Client Drivers...256

Configuring TLS/SSL for Hue..258

Configuring TLS/SSL for Impala..261

Configuring TLS/SSL for Oozie..263

Configuring TLS/SSL for Solr...265

Spark Encryption..269

Configuring TLS/SSL for HttpFS..270

Encrypted Shuffle and Encrypted Web UIs...272

Deployment Planning for Data at Rest Encryption...278
Data at Rest Encryption Reference Architecture..278

Data at Rest Encryption Requirements..279

Resource Planning for Data at Rest Encryption...282

HDFS Transparent Encryption...283
Key Concepts and Architecture..283

Attack Vectors..286

Optimizing Performance for HDFS Transparent Encryption...287

Enabling HDFS Encryption Using the Wizard...289

Managing Encryption Keys and Zones...296

Configuring the Key Management Server (KMS)...298

Securing the Key Management Server (KMS)..302

Migrating Keys from a Java KeyStore to Cloudera Navigator Key Trustee Server..313

Configuring CDH Services for HDFS Encryption..314

Troubleshooting HDFS Encryption ...320

Cloudera Navigator Key Trustee Server..322
Backing Up and Restoring Key Trustee Server and Clients...323

Initializing Standalone Key Trustee Server...333

Configuring a Mail Transfer Agent for Key Trustee Server...335

Verifying Cloudera Navigator Key Trustee Server Operations..335

Managing Key Trustee Server Organizations...336

Managing Key Trustee Server Certificates...338

Cloudera Navigator Key HSM...341
Initializing Navigator Key HSM..341

HSM-Specific Setup for Cloudera Navigator Key HSM...342

Validating Key HSM Settings..344

Creating a Key Store with CA-Signed Certificate..345

Managing the Navigator Key HSM Service..345

Integrating Key HSM with Key Trustee Server..346

Cloudera Navigator Encrypt...348
Registering Cloudera Navigator Encrypt with Key Trustee Server..349

Preparing for Encryption Using Cloudera Navigator Encrypt...352

Encrypting and Decrypting Data Using Cloudera Navigator Encrypt...358

Migrating eCryptfs-Encrypted Data to dm-crypt...360

Navigator Encrypt Access Control List..362

Maintaining Cloudera Navigator Encrypt..367

Configuring Encryption for Data Spills..372
MapReduce v2 (YARN)...372

HBase...373

Impala..373

Hive..373

Flume...373

Configuring Encrypted On-disk File Channels for Flume..373

Configuring Encrypted HDFS Data Transport..376
Using Cloudera Manager...376

Using the Command Line...376

Configuring Encrypted HBase Data Transport..377
Configuring Encrypted HBase Data Transport Using Cloudera Manager..377

Configuring Encrypted HBase Data Transport Using the Command Line..377

Configuring Authorization..378
Cloudera Manager User Roles..378
User Roles..378

Determining the Role of the Currently Logged in User..380

Removing the Full Administrator User Role...380

Cloudera Navigator Data Management Component User Roles..381
User Roles..381

Determining the Roles of the Logged-in User..381

HDFS Extended ACLs..382
Enabling HDFS Access Control Lists..382

Commands...382

HDFS Extended ACL Example...383

Configuring LDAP Group Mappings..384
Using Cloudera Manager...387

Using the Command Line...387

Authorization With Apache Sentry...388
Architecture Overview...388

Sentry Integration with the Hadoop Ecosystem...390

The Sentry Service..393

Sentry Policy File Authorization...431

Enabling Sentry Authorization for Impala..453

Configuring Sentry Authorization for Cloudera Search..464

Configuring HBase Authorization...471
Understanding HBase Access Levels..471

Enable HBase Authorization..473

Configure Access Control Lists for Authorization...474

Sensitive Data Redaction..475
Password Redaction...475

Cloudera Manager API Redaction..476

Log and Query Redaction - Scope and Rules..476

Enabling Log and Query Redaction Using Cloudera Manager..477

Configuring the Cloudera Navigator Data Management Component to Redact PII...477

Securing Connections to Amazon S3...479
Using Temporary Credentials to Connect to Amazon S3..479

Connecting to Amazon S3 Using TLS..479
hadoop-aws Connector..480

Hive/Beeline CLI...480

Impala Shell...480

Hue S3 File Browser...480

Impala Query Editor (Hue)...480

Hive Query Editor (Hue)...480

Enabling Server-Side Encryption for Data At-Rest on Amazon S3..480

Overview of Impala Security..482
Security Guidelines for Impala...482

Securing Impala Data and Log Files..483

Installation Considerations for Impala Security...484

Securing the Hive Metastore Database..484

Securing the Impala Web User Interface..484

Miscellaneous Topics..486
Jsvc, Task Controller and Container Executor Programs...486
MRv1 and YARN: The jsvc Program..486

MRv1 Only: The Linux TaskController Program..486

YARN Only: The Linux Container Executor Program...486

Task-controller and Container-executor Error Codes..487

MRv1 ONLY: Task-controller Error Codes..487

YARN ONLY: Container-executor Error Codes...489

Sqoop, Pig, and Whirr Security Support Status..491

Setting Up a Gateway Node to Restrict Cluster Access..491
Installing and Configuring the Firewall and Gateway..491

Accessing HDFS..492

Submitting and Monitoring Jobs..492

Logging a Security Support Case..493
Kerberos Issues..493

TLS/SSL Issues..493

LDAP Issues..493

Using Antivirus Software on CDH Hosts...493

Appendix: Apache License, Version 2.0...494

About this Guide

This guide is intended for system administratorswhowant to secure a cluster using data encryption, user authentication,
and authorization techniques. It provides conceptual overviews and how-to information about setting up various
Hadoop components for optimal security, including how to setup a gateway to restrict access.

This guide assumes that you have basic knowledge of Linux and systems administration practices, in general.

Cloudera Security | 11

About this Guide

Security Overview for an Enterprise Data Hub

Any systemmanaging data in production todaymustmeet security requirements imposed by government and industry
regulations, and by the general public, whose information may be housed in such systems. As a system designed to
support ever-increasing amounts and types of data, Hadoop core and ecosystem components are constantly being
re-evaluated and enhanced to meet ever-evolving security requirements, with the goal of thwarting any attack against
that data.

This overview provides some of the details from a high level, starting with broad security requirements for information
and the technology processes and capabilities aimed at meeting them. It includes a closer look at the four broad
information security goals with overviews of how specific Hadoop components can meet those goals. Some overviews
may include architectural considerations for set up and integration.

Security Requirements
Security encompasses broad business and operational goals that can be met by various technologies and processes:

• Perimeter Security focuses on guarding access to the cluster, its data, and its various services. In information
security, Authentication can help ensure that only validated users and processes are allowed entry to the cluster,
node, or other protected target.

• Data Protectionmeans preventing any unauthorized access to data, at rest and in transit. In information security,
this translates to Encryption.

• Entitlement includes defining privileges for users, applications, and processes, and enforcing those what users
and applications can do with data. In information security, this translates to Authorization.

• Transparency refers to monitoring and reporting on data usage at the where, when, and how of data usage.
Notions of transparency or visibility may be subsumed by the broader concept of data governance. In information
security, this translates to Auditing.

The Hadoop ecosystem covers a wide range of applications, datastores, and computing frameworks, and each of these
security components manifest these operational capabilities differently.

Securing a Hadoop Cluster in Stages
Given the complexity of security and thewide-range of possible cluster configurations, Cloudera recommends configuring
the security capabilities only after successfully setting up a cluster without any security. Taking a phased approach to
securing the cluster helps ensure that the cluster can meet the given target level.

• Level 0: A non-secure cluster, that is, a fully functioning cluster without any possible security configurations. Never
use such a system in a production environment: it is vulnerable to any and all attacks and exploits.

• Level 1: Aminimally secure cluster. First, set up authentication so that users and services cannot access the cluster
until they prove their identities. Next, configure simple authorization mechanisms that let you assign privileges

12 | Cloudera Security

Security Overview for an Enterprise Data Hub

to users and user groups. Set up auditing procedures to keep track of who accesses the cluster (and how).
Authentication, authorization, and auditing are minimal security measures only. Production systems would still
require well-trained cluster administrators and effective security procedures, certified by an expert.

• Level 2: For more robust security, encrypt all sensitive data (minimally) or encrypt all cluster data. Use
key-management systems to handle encryption keys. In addition to encryption, set up auditing on data in
metastores. Regularly review and update the system metadata. Ideally, set up your cluster so that you can trace
the lineage of any data object and meet any goals that may fall under the rubric of data governance.

• Level 3:Most secure, the secure enterprise data hub (EDH). Encrypt all data on the cluster, both at-rest and
in-transit. Use a fault-tolerant key management system. Auditing mechanisms put into place must comply with
industry, government, and regulatory standards (PCI, HIPAA, NIST, for example). The compliance requirement
extends beyond the EDH that stores the data, to any system that integrates with it.

Leveraging all four levels of security, Cloudera’s EDH platform can pass technology reviews for most common
compliance regulations.

Hadoop Security Architecture
What follows is a detailed depiction of the Hadoop ecosystem in particular as it shows the interactions between
different Cloudera Enterprise, security, and usermanagement components. It also shows howa production environment
with a couple of datacenters and assorted users and data feeds, both internal and external, will need to deal with
receiving and authenticating so many insecure connections.

• As illustrated, external data streams can be authenticated by mechanisms in place for Flume and Kafka. Any data
from legacy databases is ingested using Sqoop. Users such as data scientists and analysts can interact directly with
the cluster using interfaces such as Hue or Cloudera Manager. Alternatively, they could be using a service like
Impala for creating and submitting jobs for data analysis. All of these interactions can be protected by an Active
Directory Kerberos deployment.

• Encryption can be applied to data at-rest using transparent HDFS encryption with an enterprise-grade Key Trustee
Server. Cloudera also recommends using Navigator Encrypt to protect data on a cluster associated with the
Cloudera Manager, Cloudera Navigator, Hive and HBase metastores, and any log files or spills.

• Authorization policies can be enforced using Sentry (for services such as Hive, Impala and Search) as well as HDFS
Access Control Lists.

• Auditing capabilities can be provided by using Cloudera Navigator.

Cloudera Security | 13

Security Overview for an Enterprise Data Hub

Overview of Authentication Mechanisms for an Enterprise Data Hub
The purpose of authentication in Hadoop is simply to prove that users or services are who they claim to be. Typically,
authentication for CDH applications is handled using Kerberos, an enterprise-grade authentication protocol. Kerberos
provides strong security benefits including capabilities that render intercepted authentication packets unusable by an
attacker. It virtually eliminates the threat of impersonation by never sending a user's credentials in cleartext over the
network. Several components of the Hadoop ecosystem are converging to use Kerberos authentication with the option
to manage and store credentials in Active Directory (AD) or Lightweight Directory Access Protocol (LDAP). The rest of
this topic describes in detail some basic Kerberos concepts as they relate to Hadoop, and the different ways in which
Kerberos can be deployed on a CDH cluster.

For enterprise components such as Cloudera Manager, Cloudera Navigator, Hue, Hive, and Impala, that face external
clients, Cloudera also supports external authentication using services such as AD, LDAP, and SAML. For instructions on
how to configure external authentication, refer the Cloudera Security Guide.

14 | Cloudera Security

Security Overview for an Enterprise Data Hub

Basic Kerberos Concepts

Important: If you are not familiar with how the Kerberos authentication protocol works, make sure
you refer the following links before you proceed:

For more information about using an Active Directory KDC, refer the section on Direct to Active
Directory on page 20 and the Microsoft AD documentation.

For more information about installing and configuring MIT KDC, see:

• MIT Kerberos Home
• MIT Kerberos Documentation

This section describes howHadoop uses Kerberos principals and keytabs for user authentication. It also briefly describes
how Hadoop uses delegation tokens to authenticate jobs at execution time, to avoid overwhelming the KDC with
authentication requests for each job.

Kerberos Principals

A user in Kerberos is called a principal, which is made up of three distinct components: the primary, instance, and
realm. A Kerberos principal is used in a Kerberos-secured system to represent a unique identity. The first component
of the principal is called the primary, or sometimes the user component. The primary component is an arbitrary string
and may be the operating system username of the user or the name of a service. The primary component is followed
by an optional section called the instance, which is used to create principals that are used by users in special roles or
to define the host on which a service runs, for example. An instance, if it exists, is separated from the primary by a
slash and then the content is used to disambiguate multiple principals for a single user or service. The final component
of the principal is the realm. The realm is similar to a domain in DNS in that it logically defines a related group of objects,
although rather than hostnames as in DNS, the Kerberos realm defines a group of principals . Each realm can have its
own settings including the location of the KDC on the network and supported encryption algorithms. Large organizations
commonly create distinct realms to delegate administration of a realm to a group within the enterprise. Realms, by
convention, are written in uppercase characters.

Kerberos assigns tickets to Kerberos principals to enable them to access Kerberos-secured Hadoop services. For the
Hadoop daemon principals, the principal names should be of the format
username/fully.qualified.domain.name@YOUR-REALM.COM. In this guide, username in the
username/fully.qualified.domain.name@YOUR-REALM.COM principal refers to the username of an existing
Unix account that is used by Hadoop daemons, such as hdfs or mapred. Human users whowant to access the Hadoop
cluster also need to have Kerberos principals; in this case, username refers to the username of the user's Unix account,
such as joe or jane. Single-component principal names (such as joe@YOUR-REALM.COM) are acceptable for client
user accounts. Hadoop does not support more than two-component principal names.

Kerberos Keytabs

A keytab is a file containing pairs of Kerberos principals and an encrypted copy of that principal's key. A keytab file for
a Hadoop daemon is unique to each host since the principal names include the hostname. This file is used to authenticate
a principal on a host to Kerberos without human interaction or storing a password in a plain text file. Because having
access to the keytab file for a principal allows one to act as that principal, access to the keytab files should be tightly
secured. They should be readable by a minimal set of users, should be stored on local disk, and should not be included
in host backups, unless access to those backups is as secure as access to the local host.

Delegation Tokens

Users in a Hadoop cluster authenticate themselves to the NameNode using their Kerberos credentials. However, once
the user is authenticated, each job subsequently submitted must also be checked to ensure it comes from an
authenticated user. Since there could be a time gap between a job being submitted and the job being executed, during
which the user could have logged off, user credentials are passed to the NameNode using delegation tokens that can
be used for authentication in the future.

Cloudera Security | 15

Security Overview for an Enterprise Data Hub

https://technet.microsoft.com/en-us/library/bb742516.aspx
http://web.mit.edu/Kerberos
http://web.mit.edu/Kerberos/krb5-1.8/

Delegation tokens are a secret key shared with the NameNode, that can be used to impersonate a user to get a job
executed. While these tokens can be renewed, new tokens can only be obtained by clients authenticating to the
NameNode using Kerberos credentials. By default, delegation tokens are only valid for a day. However, since jobs can
last longer than a day, each token specifies a JobTracker as a renewer which is allowed to renew the delegation token
once a day, until the job completes, or for a maximum period of 7 days. When the job is complete, the JobTracker
requests the NameNode to cancel the delegation token.

Token Format

The NameNode uses a random masterKey to generate delegation tokens. All active tokens are stored in memory with
their expiry date (maxDate). Delegation tokens can either expire when the current time exceeds the expiry date, or,
they can be canceled by the owner of the token. Expired or canceled tokens are then deleted from memory. The
sequenceNumber serves as a unique ID for the tokens. The following section describes how the Delegation Token is
used for authentication.

TokenID = {ownerID, renewerID, issueDate, maxDate, sequenceNumber}
TokenAuthenticator = HMAC-SHA1(masterKey, TokenID)
Delegation Token = {TokenID, TokenAuthenticator}

Authentication Process

To begin the authentication process, the client first sends the TokenID to the NameNode. The NameNode uses this
TokenID and the masterKey to once again generate the corresponding TokenAuthenticator, and consequently, the
Delegation Token. If the NameNode finds that the token already exists in memory, and that the current time is less
than the expiry date (maxDate) of the token, then the token is considered valid. If valid, the client and the NameNode
will then authenticate each other by using the TokenAuthenticator that they possess as the secret key, and MD5 as
the protocol. Since the client and NameNode do not actually exchange TokenAuthenticators during the process, even
if authentication fails, the tokens are not compromised.

Token Renewal

Delegation tokensmust be renewed periodically by the designated renewer (renewerID). For example, if a JobTracker
is the designated renewer, the JobTracker will first authenticate itself to the NameNode. It will then send the token
to be authenticated to the NameNode. The NameNode verifies the following information before renewing the token:

• The JobTracker requesting renewal is the same as the one identified in the token by renewerID.
• The TokenAuthenticator generated by the NameNode using the TokenID and the masterKeymatches the one

previously stored by the NameNode.
• The current time must be less than the time specified by maxDate.

If the token renewal request is successful, the NameNode sets the new expiry date to min(current time+renew
period, maxDate). If the NameNode was restarted at any time, it will have lost all previous tokens from memory.
In this case, the tokenwill be saved tomemory once again, this timewith a newexpiry date. Hence, designated renewers
must renew all tokens with the NameNode after a restart, and before relaunching any failed tasks.

A designated renewer can also revive an expired or canceled token as long as the current time does not exceedmaxDate.
The NameNode cannot tell the difference between a token that was canceled, or has expired, and one that was erased
from memory due to a restart, since only the masterKey persists in memory. The masterKeymust be updated
regularly.

Types of Kerberos Deployments

Kerberos provides strong security benefits including capabilities that render intercepted authentication packets unusable
by an attacker. It virtually eliminates the threat of impersonation by never sending a user's credentials in cleartext
over the network. Several components of the Hadoop ecosystem are converging to use Kerberos authentication with
the option to manage and store credentials in LDAP or AD. Microsoft's Active Directory (AD) is an LDAP directory that
also provides Kerberos authentication for added security. Before you configure Kerberos on your cluster, ensure you

16 | Cloudera Security

Security Overview for an Enterprise Data Hub

have a working KDC (MIT KDC or Active Directory), set up. You can then use Cloudera Manager's Kerberos wizard to
automate several aspects of configuring Kerberos authentication on your cluster.

Without Kerberos enabled, Hadoop only checks to ensure that a user and their groupmembership is valid in the context
of HDFS. However, it makes no effort to verify that the user is who they say they are.

With Kerberos enabled, users must first authenticate themselves to a Kerberos Key Distribution Centre (KDC) to obtain
a valid Ticket-Granting-Ticket (TGT). The TGT is then used by Hadoop services to verify the user's identity.With Kerberos,
a user is not only authenticated on the system they are logged into, but they are also authenticated to the network.
Any subsequent interactions with other services that have been configured to allow Kerberos authentication for user
access, are also secured.

This section describes the architectural options that are available for deploying Hadoop security in enterprise
environments. Each option includes a high-level description of the approach along with a list of pros and cons. There
are three options currently available:

Local MIT KDC

This approach uses an MIT KDC that is local to the cluster. Users and services will have to authenticate with this local
KDC before they can interact with the CDH components on the cluster.

Architecture Summary:

• An MIT KDC and a distinct Kerberos realm is deployed locally to the CDH cluster. The local MIT KDC is typically
deployed on a Utility host. Additional replicated MIT KDCs for high-availability are optional.

• All cluster hosts must be configured to use the local MIT Kerberos realm using the krb5.conf file.
• All service and user principalsmust be created in the local MIT KDC and Kerberos realm.
• The local MIT KDC will authenticate both the service principals (using keytab files) and user principals (using

passwords).
• ClouderaManager connects to the localMIT KDC to create andmanage the principals for the CDH services running

on the cluster. To do this Cloudera Manager uses an admin principal and keytab that is created during the security
setup. This step has been automated by the Kerberos wizard. Instructions for manually creating the Cloudera
Manager admin principal are provided in the Cloudera Manager security documentation.

• Typically, the localMIT KDC administrator is responsible for creating all other user principals. If you use the Kerberos
wizard, Cloudera Manager will create these principals and associated keytab files for you.

Cloudera Security | 17

Security Overview for an Enterprise Data Hub

ConsPros

This mechanism is not integrated with central
authentication system.

The authentication mechanism is isolated from the rest
of the enterprise.

User and service principals must be created in the local
MIT KDC, which can be time-consuming.

This is fairly easy to setup, especially if you use the
Cloudera Manager Kerberos wizard that automates
creation and distribution of service principals and keytab
files.

The local MIT KDC can be a single point of failure for the
cluster unless replicated KDCs can be configured for
high-availability.

The local MIT KDC is yet another authentication system
to manage.

Local MIT KDC with Active Directory Integration

This approach uses an MIT KDC and Kerberos realm that is local to the cluster. However, Active Directory stores the
user principals that will access the cluster in a central realm. Users will have to authenticate with this central AD realm
to obtain TGTs before they can interact with CDH services on the cluster. Note that CDH service principals reside only
in the local KDC realm.

Architecture Summary:

• An MIT KDC and a distinct Kerberos realm is deployed locally to the CDH cluster. The local MIT KDC is typically
deployed on a Utility host and additional replicated MIT KDCs for high-availability are optional.

• All cluster hosts are configured with both Kerberos realms (local and central AD) using the krb5.conf file. The
default realm should be the local MIT Kerberos realm.

18 | Cloudera Security

Security Overview for an Enterprise Data Hub

• Service principals should be created in the localMIT KDC and the local Kerberos realm. ClouderaManager connects
to the local MIT KDC to create and manage the principals for the CDH services running on the cluster. To do this,
ClouderaManager uses an admin principal and keytab that is created during the security setup. This step has been
automated by the Kerberos wizard. Instructions for manually creating the Cloudera Manager admin principal are
provided in the Cloudera Manager security documentation.

• A one-way, cross-realm trust must be set up from the local Kerberos realm to the central AD realm containing the
user principals that require access to the CDH cluster. There is no need to create the service principals in the
central AD realm and no need to create user principals in the local realm.

ConsPros

The local MIT KDC can be a single point of failure (SPOF)
for the cluster. Replicated KDCs can be configured for
high-availability.

The local MIT KDC serves as a shield for the central Active
Directory from the many hosts and services in a CDH
cluster. Service restarts in a large cluster create many
simultaneous authentication requests. If Active Directory
is unable to handle the spike in load, then the cluster can
effectively cause a distributed denial of service (DDOS)
attack.

Cloudera Security | 19

Security Overview for an Enterprise Data Hub

ConsPros

The local MIT KDC is yet another authentication system
to manage.

This is fairly easy to setup, especially if you use the
Cloudera Manager Kerberos wizard that automates
creation and distribution of service principals and keytab
files.

Active Directory administrators will only need to be
involved to configure the cross-realm trust during setup.

Integration with central Active Directory for user principal
authentication results in a more complete authentication
solution.

Allows for incremental configuration. Hadoop security can
be configured and verified using local MIT KDC
independently of integrating with Active Directory.

Direct to Active Directory

This approach uses the central Active Directory as the KDC. No local KDC is required. Before you decide upon an AD
KDC deployment, make sure you are aware of the following possible ramifications of that decision.

Considerations when using an Active Directory KDC
Performance:

As your cluster grows, so will the volume of Authentication Service (AS) and Ticket Granting Service (TGS) interaction
between the services on each cluster server. Consider evaluating the volume of this interaction against the Active
Directory domain controllers you have configured for the cluster before rolling this feature out to a production
environment. If cluster performance suffers, over time it might become necessary to dedicate a set of AD domain
controllers to larger deployments. Cloudera recommends you use a dedicated AD instance for every 100 nodes in your
cluster. However, note that this recommendation may not apply to high-volume clusters, or cases where the AD host
is also being used for LDAP lookups.

Network Proximity:

By default, Kerberos uses UDP for client/server communication. Often, AD services are in a different network than
project application services such as Hadoop. If the domain controllers supporting a cluster for Kerberos are not in the
same subnet, or they're separated by a firewall, consider using the udp_preference_limit = 1 setting in the
[libdefaults] section of the krb5.conf used by cluster services. Cloudera strongly recommends against using AD
domain controller (KDC) servers that are separated from the cluster by a WAN connection, as latency in this service
will significantly impact cluster performance.

Process:

Troubleshooting the cluster's operations, especially for Kerberos-enabled services, will need to includeAD administration
resources. Evaluate your organizational processes for engaging the AD administration team, and how to escalate in
case a cluster outage occurs due to issues with Kerberos authentication against AD services. In some situations it might
be necessary to enable Kerberos event logging to address desktop and KDC issues within windows environments.

Also note that if you decommission any Cloudera Manager roles or nodes, the related AD accounts will need to be
deleted manually. This is required because Cloudera Manager will not delete existing entries in Active Directory.

Architecture Summary

• All service and user principals are created in the Active Directory KDC.
• All cluster hosts are configured with the central AD Kerberos realm using krb5.conf.
• Cloudera Manager connects to the Active Directory KDC to create and manage the principals for the CDH services

running on the cluster. To do this, Cloudera Manager uses a principal that has the privileges to create other
accounts within the given Organisational Unit (OU). This step has been automated by the Kerberos wizard.

20 | Cloudera Security

Security Overview for an Enterprise Data Hub

https://support.microsoft.com/en-us/kb/262177?wa=wsignin1.0

Instructions for manually creating the Cloudera Manager admin principal are provided in the Cloudera Manager
security documentation.

• All service and user principals are authenticated by the Active Directory KDC.

Note: If it is not possible to create the ClouderaManager admin principal with the required privileges
in the Active Directory KDC, then the CDH services principals will need to be created manually. The
corresponding keytab files should then be stored securely on the Cloudera Manager Server host.
Cloudera Manager's Custom Kerberos Keytab Retrieval script can be used to retrieve the keytab files
from the local filesystem.

Identity Integration with Active Directory

A core requirement for enabling Kerberos security in the platform is that users have accounts on all cluster processing
nodes. Commercial products such as Centrify or Quest Authentication Services (QAS) provide integration of all cluster
hosts for user and group resolution to Active Directory. These tools support automated Kerberos authentication on
login by users to a Linux host with AD. For sites not using Active Directory, or sites wanting to use an open source
solution, the Site Security Services Daemon (SSSD) can be used with either AD or OpenLDAP compatible directory
services and MIT Kerberos for the same needs.

Cloudera Security | 21

Security Overview for an Enterprise Data Hub

For third-party providers, you may have to purchase licenses from the respective vendors. This procedure requires
some planning as it takes time to procure these licenses and deploy these products on a cluster. Care should be taken
to ensure that the identity management product does not associate the service principal names (SPNs) with the host
principals when the computers are joined to the AD domain. For example, Centrify by default associates the HTTP SPN
with the host principal. So the HTTP SPN should be specifically excluded when the hosts are joined to the domain.

You will also need to complete the following setup tasks in AD:

• Active Directory Organizational Unit (OU) and OU user - A separate OU in Active Directory should be created
along with an account that has privileges to create additional accounts in that OU.

• Enable SSL for AD - Cloudera Manager should be able to connect to AD on the LDAPS (TCP 636) port.

• Principals and Keytabs - In a direct-to-AD deployment that is set up using the Kerberos wizard, by default, all
required principals and keytabs will be created, deployed and managed by Cloudera Manager. However, if for
some reason you cannot allow ClouderaManager tomanage your direct-to-AD deployment, then unique accounts
should be manually created in AD for each service running on each host and keytab files must be provided for the
same. These accounts should have the AD User Principal Name (UPN) set to service/fqdn@REALM, and the
Service Principal Name (SPN) set to service/fqdn. The principal name in the keytab files should be the UPN of
the account. The keytab files should follow the naming convention: servicename_fqdn.keytab. The following
principals and keytab files must be created for each host they run on: Hadoop Users in Cloudera Manager and
CDH on page 186.

• AD Bind Account - Create an AD account that will be used for LDAP bindings in Hue, Cloudera Manager and
Cloudera Navigator.

• AD Groups for Privileged Users - Create AD groups and add members for the authorized users, HDFS admins and
HDFS superuser groups.

• Authorized users – A group consisting of all users that need access to the cluster
• HDFS admins – Groups of users that will run HDFS administrative commands
• HDFS super users – Group of users that require superuser privilege, that is, read/wwrite access to all data

and directories in HDFS

Putting regular users into the HDFS superuser group is not recommended. Instead, an account that
administrators escalate issues to, should be part of the HDFS superuser group.

• AD Groups for Role-Based Access to Cloudera Manager and Cloudera Navigator - Create AD groups and add
members to these groups so you can later configure role-based access to ClouderaManager and ClouderaNavigator.

ClouderaManager roles and their definitions are available here: ClouderaManagerUser Roles on page 378. Cloudera
Navigator roles and their definitions are available here: Cloudera Navigator Data Management Component User
Roles on page 381

• ADTest Users andGroups - At least one existing AD user and the group that the user belongs to should be provided
to test whether authorization rules work as expected.

TLS/SSL Requirements for Secure Distribution of Kerberos Keytabs

Communication between ClouderaManager Server and ClouderaManager Agents must be encrypted so that sensitive
information such as Kerberos keytabs are not distributed from the Server to Agents in cleartext.

This means, if you want to implement Level 3 TLS, you will need to provide TLS certificates for every host in the cluster.
For minimal security, that is, Level 1 TLS, you will at least need to provide a certificate for the ClouderaManager Server
host, and a certificate for each of the gateway nodes to secure the web consoles.

If the CA that signs these certificates is an internal CA, then you will also need to provide the complete certificate chain
of the CA that signed these certificates. The same certificates can be used to encrypt ClouderaManager, Hue, HiveServer2
& Impala JDBC/ODBC interfaces, and for encrypted shuffle. If any external services such as LDAPS or SAMLuse certificates
signed by an internal CA, then the public certificate of the Root CA and any intermediate CA in the chain should be
provided.

22 | Cloudera Security

Security Overview for an Enterprise Data Hub

Configuring Kerberos Authentication on a Cluster

Before you use the following sections to configure Kerberos on your cluster, ensure you have a working KDC (MIT KDC
or Active Directory), set up.

You can use one of the following ways to set up Kerberos authentication on your cluster using Cloudera Manager:

• Cloudera Manager 5.1 introduced a new wizard to automate the procedure to set up Kerberos on a cluster. Using
the KDC information you enter, the wizard will create new principals and keytab files for your CDH services. The
wizard can be used to deploy the krb5.conf file cluster-wide, and automate othermanual tasks such as stopping
all services, deploying client configuration and restarting all services on the cluster.

If you want to use the Kerberos wizard, follow the instructions at Enabling Kerberos Authentication Using the
Wizard on page 59.

• If you do notwant to use the Kerberoswizard, follow the instructions at Enabling Kerberos AuthenticationWithout
the Wizard on page 76.

Authentication Mechanisms used by Hadoop Projects

Authentication CapabilitiesProject

Kerberos, SPNEGO (HttpFS)HDFS

Kerberos (also see HDFS)MapReduce

Kerberos (also see HDFS)YARN

Kerberos (partial)Accumulo

Kerberos (starting CDH 5.4)Flume

Kerberos (HBase Thrift and REST clients must perform their own user
authentication)

HBase

NoneHiveServer

Kerberos, LDAP, Custom/pluggable authenticationHiveServer2

KerberosHive Metastore

Kerberos, LDAP, SAML, Custom/pluggable authenticationHue

Kerberos, LDAP, SPNEGO (Impala Web Console)Impala

Kerberos, SPNEGOOozie

KerberosPig

Kerberos, SPNEGOSearch

KerberosSentry

KerberosSpark

KerberosSqoop

Kerberos (starting CDH 5.4)Sqoop2

KerberosZookeeper

Kerberos, LDAP, SAMLCloudera Manager

See Cloudera ManagerCloudera Navigator

See Cloudera ManagerBackup and Disaster Recovery

Cloudera Security | 23

Security Overview for an Enterprise Data Hub

Overview of Data Protection Mechanisms for an Enterprise Data Hub
The goal of data protection is to ensure that only authorized users can view, use, or contribute to a data set. These
security controls add another layer of protection against potential threats by end-users, administrators and any other
potentially-malicious actors on the network. The means to achieving this goal consists of two parts: protecting data
when it is persisted to disk or other storagemediums, commonly called data-at-rest, and protecting datawhile itmoves
from one process or system to another, that is, data in transit.

Several common compliance regulations call for data protection in addition to the other security controls discussed in
this paper. Cloudera provides security for data in transit, through TLS and other mechanisms - centrally deployed
through Cloudera Manager. Transparent data-at-rest protection is provided through the combination of transparent
HDFS encryption, Navigator Encrypt, and Navigator Key Trustee.

Protecting Data At-Rest

For data-at-rest, there are several risk avenues that may lead to unprivileged access, such as exposed data on a hard
drive after a mechanical failure, or, data being accessed by previously-compromised accounts. Data-at-rest is also
complicated by longevity; where and how does one store the keys to decrypt data throughout an arbitrary period of
retention. Keymanagement issues, such asmitigating compromised keys and the re-encryption of data, also complicate
the process.

However, in some cases, youmight find that relying on encryption to protect your data is not sufficient.With encryption,
sensitive data may still be exposed to an administrator who has complete access to the cluster. Even users with
appropriate ACLs on the data could have access to logs and queries where sensitive data might have leaked. To prevent
such leaks, Cloudera now allows you to mask personally identifiable information (PII) from log files, audit data and SQL
queries.

Encryption Options Available with Hadoop

Hadoop, as a central data hub for many kinds of data within an organization, naturally has different needs for data
protection depending on the audience and processes while using a given data set. CDH provides transparent HDFS
encryption, ensuring that all sensitive data is encrypted before being stored on disk. This capability, together with
enterprise-grade encryption key management with Navigator Key Trustee, delivers the necessary protection to meet
regulatory compliance for most enterprises. HDFS Encryption together with Navigator Encrypt (available with Cloudera
Enterprise) provides transparent encryption for Hadoop, for both data and metadata. These solutions automatically
encrypt data while the cluster continues to run as usual, with a very low performance impact. It is massively scalable,
allowing encryption to happen in parallel against all the data nodes - as the cluster grows, encryption grows with it.

Additionally, this transparent encryption is optimized for the Intel chipset for high performance. Intel chipsets include
AES-NI co-processors, which provide special capabilities that make encryption workloads run extremely fast. Not all
AES-NI is equal, and Cloudera is able to take advantage of the latest Intel advances for even faster performance.

As an example, the figure below shows a sample deployment that uses CDH's transparent HDFS encryption to protect
the data stored in HDFS, while Navigator Encrypt is being used to protect all other data on the cluster associated with
the Cloudera Manager, Cloudera Navigator, Hive and HBase metadata stores, along with any logs or spills. Navigator
Key Trustee is being used to provide robust and fault-tolerant key management.

24 | Cloudera Security

Security Overview for an Enterprise Data Hub

Encryption can be applied at a number of levels within Hadoop:

• OS Filesystem-level - Encryption can be applied at the Linux operating system filesystem level to cover all files in
a volume. An example of this approach is Cloudera Navigator Encrypt on page 348 (formerly Gazzang zNcrypt)
which is available for Cloudera customers licensed for Cloudera Navigator. Navigator Encrypt operates at the Linux
volume level, so it can encrypt cluster data inside and outside HDFS, such as temp/spill files, configuration files
and metadata databases (to be used only for data related to a CDH cluster). Navigator Encrypt must be used with
Cloudera Navigator Key Trustee Server on page 322 (formerly Gazzang zTrustee).

CDH components, such as Impala, MapReduce, YARN, or HBase, also have the ability to encrypt data that lives
temporarily on the local filesystem outside HDFS. To enable this feature, see Configuring Encryption for Data Spills
on page 372.

• Network-level - Encryption can be applied to encrypt data just before it gets sent across a network and to decrypt
it just after receipt. In Hadoop, this means coverage for data sent from client user interfaces as well as
service-to-service communication like remote procedure calls (RPCs). This protection uses industry-standard
protocols such as TLS/SSL.

Note: Cloudera Manager and CDH components support either TLS 1.0, TLS 1.1, or TLS 1.2, but
not SSL 3.0. References to SSL continue only because of its widespread use in technical jargon.

• HDFS-level - Encryption applied by the HDFS client software. HDFS Transparent Encryption on page 283 operates
at the HDFS folder level, allowing you to encrypt some folders and leave others unencrypted. HDFS transparent
encryption cannot encrypt any data outside HDFS. To ensure reliable key storage (so that data is not lost), use
Cloudera Navigator Key Trustee Server; the default Java keystore can be used for test purposes. For more
information, see Enabling HDFS Encryption Using Cloudera Navigator Key Trustee Server on page 290.

Unlike OS and network-level encryption, HDFS transparent encryption is end-to-end. That is, it protects data at
rest and in transit, which makes it more efficient than implementing a combination of OS-level and network-level
encryption.

Data Redaction with Hadoop

Data redaction is the suppression of sensitive data, such as any personally identifiable information (PII). PII can be used
on its own orwith other information to identify or locate a single person, or to identify an individual in context. Enabling
redaction allow you to transform PII to a pattern that does not contain any identifiable information. For example, you

Cloudera Security | 25

Security Overview for an Enterprise Data Hub

could replace all Social Security numbers (SSN) like 123-45-6789with an unintelligible pattern like XXX-XX-XXXX, or
replace only part of the SSN (XXX-XX-6789).

Although encryption techniques are available to protect Hadoop data, the underlying problem with using encryption
is that an admin who has complete access to the cluster also access to unencrypted sensitive user data. Even users
with appropriate ACLs on the data could have access to logs and queries where sensitive data might have leaked.

Data redaction provides compliance with industry regulations such as PCI and HIPAA, which require that access to PII
be restricted to only those users whose jobs require such access. PII or other sensitive data must not be available
through any other channels to users like cluster administrators or data analysts. However, if you already have permissions
to access PII through queries, the query results will not be redacted. Redaction only applies to any incidental leak of
data. Queries and query results must not show up in cleartext in logs, configuration files, UIs, or other unprotected
areas.

Scope:

Data redaction in CDH targets sensitive SQL data and log files. Currently, you can enable or disable redaction for the
whole cluster with a simple HDFS service-wide configuration change. Redaction is implemented with the assumption
that sensitive information resides in the data itself, not the metadata. If you enable redaction for a file, only sensitive
data inside the file is redacted. Metadata such as the name of the file or file owner is not redacted.

When data redaction is enabled, the following data is redacted:

• Logs in HDFS and any dependent cluster services. Log redaction is not available in Isilon-based clusters.
• Audit data sent to Cloudera Navigator
• SQL query strings displayed by Hue, Hive, and Impala.

For more information on enabling this feature, see Sensitive Data Redaction on page 475.

Password Redaction

Starting with Cloudera Manager and CDH 5.5, passwords are no longer accessible in cleartext through the Cloudera
Manager Admin Console or in the configuration files stored on disk. For components that use core Hadoop such as
HDFS, HBase, and Hive, Cloudera Manager Server uses Hadoop's CredentialProvider interface to encrypt and
store passwords inside a secure creds.jceks keystore file. For components that do not use core Hadoop, such as
Hue and Impala, instead of the password, Cloudera Manager Server uses a password_script =
/path/to/script/that/will/emit/password.sh parameter that, when run, writes the password to stdout.
Passwords contained within Cloudera Manager and Cloudera Navigator properties have been redacted internally in
Cloudera Manager.

However, the database password contained in Cloudera Manager Server's
/etc/cloudera-scm-server/db.properties file has not been redacted. The db.properties file is managed
by customers and is populatedmanually when the ClouderaManager Server database is being set up for the first time.
Since this occurs before the ClouderaManager Server has even started, encrypting the contents of this file is a completely
different challenge as compared to that of redacting configuration files.

Password redaction (not including log and query redaction) is enabled by default for deployments with Cloudera
Manager 5.5 (or higher) managing CDH 5.5 (or higher). There are no user-visible controls to enable or disable this
feature. It is expected to work out of the box. The primary places where you will encounter the effects of password
redaction are:

• In the Cloudera Manager Admin Console, on the Processes page for a given role instance, passwords in the linked
configuration files have been replaced by *******.

• On the Cloudera Manager Server and Agent hosts, all configuration files in the
/var/run/cloudera-scm-agent/process directory will have their passwords replaced by *******.

• In the Cloudera Manager Admin Console, Advanced Configuration Snippet parameters will be redacted to block
sensitive information such as passwords or secret keys. Users who have the permission to edit the parameter will
still see the sensitive words, but read-only users without edit privileges will only see the redacted version.

Redaction of Advanced Configuration Snippet parameters is based on detecting keywords explicitly defined as
sensitive in the contents of these parameters. That is, parameters containing the keywords password, key, aws,

26 | Cloudera Security

Security Overview for an Enterprise Data Hub

or secret, will be redacted for users who do not have the required edit privileges. Default values for sensitive fields
are not redacted since defaults are published in the public documentation. Default passwords pose a security risk
and should not be used in production.

A limitation of this feature is that the list of keywords used to determine sensitive information is currently limited
to those listed above and is not configurable using the Cloudera Manager Admin Console.

Protecting Data In-Transit

For data-in-transit, implementing data protection and encryption is relatively easy. Wire encryption is built into the
Hadoop stack, such as SSL, and typically does not require external systems. This data-in-transit encryption is built using
session-level, one-time keys, by means of a session handshake with immediate and subsequent transmission. Thus,
data-in-transit avoids much of the key management issues associated with data-at-rest due the temporal nature of
the keys, but it does rely on proper authentication; a certificate compromise is an issue with authentication, but can
compromise wire encryption. As the name implies, data-in-transit covers the secure transfer and intermediate storage
of data. This applies to all process-to-process communication, within the same node or between nodes. There are
three primary communication channels:

• HDFS Transparent Encryption: Data encrypted using HDFS Transparent Encryption on page 283 is protected
end-to-end. Any data written to and from HDFS can only be encrypted or decrypted by the client. HDFS does not
have access to the unencrypted data or the encryption keys. This supports both, at-rest encryption as well as
in-transit encryption.

• Data Transfer: The first channel is data transfer, including the reading and writing of data blocks to HDFS. Hadoop
uses a SASL-enabled wrapper around its native direct TCP/IP-based transport, called DataTransportProtocol,
to secure the I/O streams within an DIGEST-MD5 envelope (For steps, see Configuring Encrypted HDFS Data
Transport on page 376). This procedure also employs secured HadoopRPC (see Remote Procedure Calls) for the
key exchange. The HttpFS REST interface, however, does not provide secure communication between the client
and HDFS, only secured authentication using SPNEGO.

For the transfer of data between DataNodes during the shuffle phase of a MapReduce job (that is, moving
intermediate results between the Map and Reduce portions of the job), Hadoop secures the communication
channel with HTTP Secure (HTTPS) using Transport Layer Security (TLS). See Encrypted Shuffle and EncryptedWeb
UIs on page 272.

• Remote Procedure Calls: The second channel is system calls to remote procedures (RPC) to the various systems
and frameworks within a Hadoop cluster. Like data transfer activities, Hadoop has its own native protocol for RPC,
called HadoopRPC, which is used for Hadoop API client communication, intra-Hadoop services communication,
as well as monitoring, heartbeats, and other non-data, non-user activity. HadoopRPC is SASL-enabled for secured
transport and defaults to Kerberos andDIGEST-MD5depending on the type of communication and security settings.
For steps, see Configuring Encrypted HDFS Data Transport on page 376.

• User Interfaces: The third channel includes the various web-based user interfaces within a Hadoop cluster. For
secured transport, the solution is straightforward; these interfaces employ HTTPS.

SSL/TLS Certificates Overview

Certificates can be signed in one three different ways:

Usage NoteType

Recommended. Using certificates signedby a trusted public CA simplifies deployment because
the default Java client already trusts most public CAs. Obtain certificates from one of the

Public CA-signed
certificates

trusted well-known (public) CAs, such as Symantec and Comodo, as detailed in Generate TLS
Certificates on page 40

Obtain certificates from your organization's internal CA if your organization has its own.
Using an internal CA can reduce costs (although cluster configurationmay require establishing

Internal CA-signed
certificates

the trust chain for certificates signed by an internal CA, depending on your IT infrastructure).
See How to Configure TLS Encryption for Cloudera Manager on page 40 for information
about establishing trust as part of configuring a Cloudera Manager cluster.

Cloudera Security | 27

Security Overview for an Enterprise Data Hub

Usage NoteType

Not recommended for production deployments. Using self-signed certificates requires
configuring each client to trust the specific certificate, in addition to generating and

Self-signed certificates

distributing the certificates. However, to use self-signed certificates in a non-production
(test, lab, proof-of-concept) deployment, see Using Self-Signed Certificates (Level 1 TLS) on
page 246.

For more information on setting up SSL/TLS certificates, continue reading the topics at TLS/SSL Certificates Overview
on page 221.

TLS Encryption Levels for Cloudera Manager

Transport Layer Security (TLS) provides encryption and authentication in communication between the ClouderaManager
Server and Agents. Encryption prevents snooping, and authentication helps prevent problems caused by malicious
servers or agents.

See Configuring TLS Security for Cloudera Manager on page 228 for details.

TLS/SSL Encryption for CDH Components

Cloudera recommends securing a cluster using Kerberos authentication before enabling encryption such as SSL on a
cluster. If you enable SSL for a cluster that does not already have Kerberos authentication configured, a warning will
be displayed.

Hadoop services differ in their use of SSL as follows:

• HDFS, MapReduce, and YARN daemons act as both SSL servers and clients.
• HBase daemons act as SSL servers only.
• Oozie daemons act as SSL servers only.
• Hue acts as an SSL client to all of the above.

Daemons that act as SSL servers load the keystores when starting up. When a client connects to an SSL server daemon,
the server transmits the certificate loaded at startup time to the client, which then uses its truststore to validate the
server’s certificate.

For information on setting up SSL/TLS for CDH services, see Configuring TLS/SSL Encryption for CDH Services on page
249.

Data Protection within Hadoop Projects

The table below lists the various encryption capabilities that can be leveraged by CDH components and Cloudera
Manager.

Encryption for Data-at-Rest

(HDFS Encryption + Navigator Encrypt +
Navigator Key Trustee)

Encryption for Data-in-TransitProject

YesSASL (RPC), SASL (DataTransferProtocol)HDFS

YesSASL (RPC), HTTPS (encrypted shuffle)MapReduce

YesSASL (RPC)YARN

YesPartial - Only for RPCs andWeb UI (Not directly
configurable in Cloudera Manager)

Accumulo

YesTLS (Avro RPC)Flume

YesSASL - For web interfaces, inter-component
replication, theHBase shell and the REST, Thrift
1 and Thrift 2 interfaces

HBase

28 | Cloudera Security

Security Overview for an Enterprise Data Hub

Encryption for Data-at-Rest

(HDFS Encryption + Navigator Encrypt +
Navigator Key Trustee)

Encryption for Data-in-TransitProject

YesSASL (Thrift), SASL (JDBC), TLS (JDBC, ODBC)HiveServer2

YesTLSHue

TLS or SASL between impalad and clients, but
not between daemons

Impala

YesTLSOozie

YesN/APig

YesTLSSearch

YesSASL (RPC)Sentry

YesNoneSpark

YesPartial - Depends on theRDBMSdatabase driver
in use

Sqoop

YesPartial - You can encrypt the JDBC connection
depending on the RDBMS database driver

Sqoop2

NoSASL (RPC)ZooKeeper

YesTLS - Does not include monitoringCloudera Manager

YesTLS - Also see Cloudera ManagerCloudera Navigator

YesTLS - Also see Cloudera ManagerBackup and Disaster
Recovery

Overview of Authorization Mechanisms for an Enterprise Data Hub
Authorization is concerned with who or what has access or control over a given resource or service. Within Hadoop,
there are many resources and services ranging from computing frameworks to client applications and, of course, an
unbounded amount and number of types of data, given the flexibility and scalability of the underlying HDFS storage
system. However, the authorization risks facing enterprises stems directly from Hadoop’s storage and computing
breadth and richness. Many audiences can and want to use, contribute, and view the data within Hadoop, and this
trend will accelerate within organizations as Hadoop becomes critical to the data management infrastructure. Initially,
an IT organization might employ a Hadoop cluster for ETL processing with only a handful of developers within the
organization requesting access to the data and services. Yet as other teams, like line-of-business analysts, recognize
the utility of Hadoop and its data, they may demand new computing needs, like interactive SQL or search, as well as
request the addition of business-sensitive data within Hadoop. Since Hadoop merges together the capabilities of
multiple varied, and previously separate IT systems as an enterprise data hub that stores and works on all data within
an organization, it requiresmultiple authorization controlswith varying granularities. In such cases, Hadoopmanagement
tools simplify setup and maintenance by:

• Tying all users to groups, which can be specified in existing LDAP or AD directories.
• Providing role-based access control for similar interaction methods, like batch and interactive SQL queries. For

example, Apache Sentry permissions apply to Hive (HiveServer2) and Impala.

Authorization Mechanisms in Hadoop

Authorization for data access in Hadoop typically manifests in three forms:

• POSIX-style permissions on files and directories

Cloudera Security | 29

Security Overview for an Enterprise Data Hub

• Access Control Lists (ACL) for management of services and resources
• Role-Based Access Control (RBAC) for certain services with advanced access controls to data.

Accordingly, CDH currently provides the following forms of access control:

• Traditional POSIX-style permissions for directories and files, where each directory and file is assigned a single
owner and group. Each assignment has a basic set of permissions available; file permissions are simply read, write,
and execute, and directories have an additional permission to determine access to child directories. (LINKTO)

• Extended Access Control Lists (ACLs) for HDFS that provide fine-grained control of permissions for HDFS files by
allowing you to set different permissions for specific named users or named groups.

• Apache HBase uses ACLs to authorize various operations (READ, WRITE, CREATE, ADMIN) by column, column
family, and column family qualifier. HBase ACLs are granted and revoked to both users and groups.

• Role-based access control with Apache Sentry.As of ClouderaManager 5.1.x, Sentry permissions can be configured
using either policy files or the database-backed Sentry service.

– The Sentry service is the preferred way to set up Sentry permissions. See The Sentry Service on page 393 for
more information.

– For the policy file approach to configuring Sentry, see Sentry Policy File Authorization on page 431.

Important: Cloudera does not support Apache Ranger or Hive's native authorization frameworks
for configuring access control in Hive. Use Cloudera-supported Apache Sentry instead.

POSIX Permissions

The majority of services within the Hadoop ecosystem, from client applications like the CLI shell to tools written to use
the Hadoop API, directly access data stored within HDFS. HDFS uses POSIX-style permissions for directories and files;
each directory and file is assigned a single owner and group. Each assignment has a basic set of permissions available;
file permissions are simply read, write, and execute, and directories have an additional permission to determine access
to child directories.

Ownership and group membership for a given HDFS asset determines a user’s privileges. If a given user fails either of
these criteria, they are denied access. For services that may attempt to access more than one file, such asMapReduce,
Cloudera Search, and others, data access is determined separately for each file access attempt. File permissions in
HDFS are managed by the NameNode.

Access Control Lists

Hadoop also maintains general access controls for the services themselves in addition to the data within each service
and in HDFS. Service access control lists (ACL) are typically defined within the global hadoop-policy.xml file and range
fromNameNode access to client-to-DataNode communication. In the context ofMapReduce and YARN, user and group
identifiers form the basis for determining permission for job submission or modification.

In addition, with MapReduce and YARN, jobs can be submitted using queues controlled by a scheduler, which is one
of the components comprising the resource management capabilities within the cluster. Administrators define
permissions to individual queues using ACLs. ACLs can also be defined on a job-by-job basis. Like HDFS permissions,
local user accounts and groups must exist on each executing server, otherwise the queues will be unusable except by
superuser accounts.

Apache HBase also uses ACLs for data-level authorization. HBase ACLs authorize various operations (READ, WRITE,
CREATE, ADMIN) by column, column family, and column family qualifier. HBase ACLs are granted and revoked to both
users and groups. Local user accounts are required for proper authorization, similar to HDFS permissions.

Apache ZooKeeper also maintains ACLs to the information stored within the DataNodes of a ZooKeeper data tree.

Role-Based Access Control with Apache Sentry

For finer-grained access to data accessible using schema -- that is, data structures described by the Apache Hive
Metastore and used by computing engines like Hive and Impala, as well as collections and indices within Cloudera
Search -- CDH supports Apache Sentry , which offers a role-based privilege model for this data and its given schema.

30 | Cloudera Security

Security Overview for an Enterprise Data Hub

Apache Sentry is a granular, role-based authorization module for Hadoop. Sentry provides the ability to control and
enforce precise levels of privileges on data for authenticated users and applications on a Hadoop cluster. Sentry
currently works out of the box with Apache Hive, Hive Metastore/HCatalog, Apache Solr, Cloudera Impala and HDFS
(limited to Hive table data).

Sentry is designed to be a pluggable authorization engine for Hadoop components. It allows you to define authorization
rules to validate a user or application’s access requests for Hadoop resources. Sentry is highly modular and can support
authorization for a wide variety of data models in Hadoop.

Architecture Overview

Sentry Components

There are three components involved in the authorization process:

• Sentry Server

The Sentry RPC server manages the authorization metadata. It supports interfaces to securely retrieve and
manipulate the metadata.

• Data Engine

This is a data processing application such as Hive or Impala that needs to authorize access to data or metadata
resources. The data engine loads the Sentry plugin and all client requests for accessing resources are intercepted
and routed to the Sentry plugin for validation.

• Sentry Plugin

The Sentry plugin runs in the data engine. It offers interfaces to manipulate authorization metadata stored in the
Sentry Server, and includes the authorization policy engine that evaluates access requests using the authorization
metadata retrieved from the server.

Key Concepts

• Authentication - Verifying credentials to reliably identify a user
• Authorization - Limiting the user’s access to a given resource
• User - Individual identified by underlying authentication system
• Group - A set of users, maintained by the authentication system
• Privilege - An instruction or rule that allows access to an object
• Role - A set of privileges; a template to combine multiple access rules
• Authorization models - Defines the objects to be subject to authorization rules and the granularity of actions

allowed. For example, in the SQL model, the objects can be databases or tables, and the actions are SELECT,
INSERT, and CREATE. For the Search model, the objects are indexes, collections and documents; the access
modes are query and update.

User Identity and Group Mapping

Sentry relies on underlying authentication systems such as Kerberos or LDAP to identify the user. It also uses the group
mapping mechanism configured in Hadoop to ensure that Sentry sees the same group mapping as other components
of the Hadoop ecosystem.

Cloudera Security | 31

Security Overview for an Enterprise Data Hub

Consider users Alice and Bob who belong to an Active Directory (AD) group called finance-department. Bob also
belongs to a group called finance-managers. In Sentry, you first create roles and then grant privileges to these roles.
For example, you can create a role called Analyst and grant SELECT on tables Customer and Sales to this role.

The next step is to join these authentication entities (users and groups) to authorization entities (roles). This can be
done by granting the Analyst role to the finance-department group. Now Bob and Alice who are members of the
finance-department group get SELECT privilege to the Customer and Sales tables.

Role-based access control (RBAC) is a powerful mechanism to manage authorization for a large set of users and data
objects in a typical enterprise. New data objects get added or removed, users join, move, or leave organisations all the
time. RBAC makes managing this a lot easier. Hence, as an extension of the discussed previously, if Carol joins the
Finance Department, all you need to do is add her to the finance-department group in AD. This will give Carol
access to data from the Sales and Customer tables.

Unified Authorization

Another important aspect of Sentry is the unified authorization. The access control rules once defined, work across
multiple data access tools. For example, being granted the Analyst role in the previous example will allow Bob, Alice,
and others in the finance-department group to access table data from SQL engines such as Hive and Impala, as
well as using MapReduce, Pig applications or metadata access using HCatalog.

Sentry Integration with the Hadoop Ecosystem

As illustrated above, Apache Sentry works with multiple Hadoop components. At the heart you have the Sentry Server
which stores authorization metadata and provides APIs for tools to retrieve and modify this metadata securely.

Note that the Sentry Server only facilitates the metadata. The actual authorization decision is made by a policy engine
which runs in data processing applications such as Hive or Impala. Each component loads the Sentry plugin which
includes the service client for dealingwith the Sentry service and the policy engine to validate the authorization request.

Hive and Sentry

Consider an example where Hive gets a request to access an object in a certain mode by a client. If Bob submits the
following Hive query:

select * from production.sales

32 | Cloudera Security

Security Overview for an Enterprise Data Hub

Hive will identify that user Bob is requesting SELECT access to the Sales table. At this point Hive will ask the Sentry
plugin to validate Bob’s access request. The plugin will retrieve Bob’s privileges related to the Sales table and the policy
engine will determine if the request is valid.

Hiveworkswith both, the Sentry service and policy files. Cloudera recommends you use the Sentry servicewhichmakes
it easier to manage user privileges. For more details and instructions, see The Sentry Service on page 393 or Sentry
Policy File Authorization on page 431.

Impala and Sentry

Authorization processing in Impala is similar to that in Hive. The main difference is caching of privileges. Impala’s
Catalog server manages caching schema metadata and propagating it to all Impala server nodes. This Catalog server
caches Sentry metadata as well. As a result, authorization validation in Impala happens locally and much faster.

For detailed documentation, see Enabling Sentry Authorization for Impala on page 453.

Cloudera Security | 33

Security Overview for an Enterprise Data Hub

Sentry-HDFS Synchronization

Sentry-HDFS authorization is focused on Hive warehouse data - that is, any data that is part of a table in Hive or Impala.
The real objective of this integration is to expand the same authorization checks to Hivewarehouse data being accessed
from any other components such as Pig, MapReduce or Spark. At this point, this feature does not replace HDFS ACLs.
Tables that are not associated with Sentry will retain their old ACLs.

The mapping of Sentry privileges to HDFS ACL permissions is as follows:

• SELECT privilege -> Read access on the file.
• INSERT privilege -> Write access on the file.
• ALL privilege -> Read and Write access on the file.

The NameNode loads a Sentry plugin that caches Sentry privileges as well Hive metadata. This helps HDFS to keep file
permissions and Hive tables privileges in sync. The Sentry plugin periodically polls the Sentry and Metastore to keep
the metadata changes in sync.

For example, if Bob runs a Pig job that is reading from the Sales table data files, Pig will try to get the file handle from
HDFS. At that point the Sentry plugin on the NameNode will figure out that the file is part of Hive data and overlay
Sentry privileges on top of the file ACLs. As a result, HDFS will enforce the same privileges for this Pig client that Hive
would apply for a SQL query.

For HDFS-Sentry synchronization towork, youmust use the Sentry service, not policy file authorization. See Synchronizing
HDFS ACLs and Sentry Permissions on page 424, for more details.

Search and Sentry

Sentry can apply a range of restrictions to various Search tasks, such accessing data or creating collections. These
restrictions are consistently applied, regardless of the way users attempt to complete actions. For example, restricting
access to data in a collection restricts that access whether queries come from the command line, from a browser, or
through the admin console.

With Search, Sentry stores its privilege policies in a policy file (for example, sentry-provider.ini) which is stored in an
HDFS location such as hdfs://ha-nn-uri/user/solr/sentry/sentry-provider.ini.

Sentry with Search does not support multiple policy files for multiple databases. However, you must use a separate
policy file for each Sentry-enabled service. For example, Hive and Search were using policy file authorization, using a
combined Hive and Search policy file would result in an invalid configuration and failed authorization on both services.

Note: While Hive and Impala are compatible with the database-backed Sentry service, Search still
uses Sentry’s policy file authorization. Note that it is possible for a single cluster to use both, the Sentry
service (for Hive and Impala as described above) and Sentry policy files (for Solr).

For detailed documentation, see Configuring Sentry Authorization for Cloudera Search on page 464.

Authorization Administration

The Sentry Server supports APIs to securely manipulate roles and privileges. Both Hive and Impala support SQL
statements tomanage privileges natively. Sentry assumes that HiveServer2 and Impala run as superusers, usually called

34 | Cloudera Security

Security Overview for an Enterprise Data Hub

hive and impala. To initiate top-level permissions for Sentry, an admin must login as a superuser.You can use either
Beeline or the Impala shell to execute the following sample statement:

GRANT ROLE Analyst TO GROUP finance-managers

Using Hue to Manage Sentry Permissions

Hue supports a Security app tomanage Sentry authorization. This allows users to explore and change table permissions.
Here is a video blog that demonstrates its functionality.

Integration with Authentication Mechanisms for Identity Management

Like many distributed systems, Hadoop projects and workloads often consist of a collection of processes working in
concert. In some instances, the initial user process conducts authorization throughout the entirety of the workload or
job’s lifecycle. But for processes that spawn additional processes, authorization can pose challenges. In this case, the
spawned processes are set to execute as if they were the authenticated user, that is, setuid, and thus only have the
privileges of that user. The overarching system requires a mapping to the authenticated principal and the user account
must exist on the local host system for the setuid to succeed.

Important:

• Cloudera strongly recommends against using Hadoop's LdapGroupsMapping provider.
LdapGroupsMapping should only be used in cases where OS-level integration is not possible.
Production clusters require an identity provider that works well with all applications, not just
Hadoop. Hence, often the preferred mechanism is to use tools such as SSSD, VAS or Centrify to
replicate LDAP groups.

• Cloudera does not support the use of Winbind in production environments. Winbind uses an
inefficient approach to user/groupmapping, whichmay lead to lowperformance or cluster failures
as the size of the cluster, and the number of users and groups increases.

Irrespective of the mechanism used, user/group mappings must be applied consistently across all
cluster hosts for ease with maintenance.

System and Service Authorization - Several Hadoop services are limited to inter-service interactions and are not
intended for end-user access. These services do support authentication to protect against unauthorized or malicious
users. However, any user or, more typically, another service that has login credentials and can authenticate to the
service is authorized to perform all actions allowed by the target service. Examples include ZooKeeper, which is used
by internal systems such as YARN, Cloudera Search, and HBase, and Flume, which is configured directly by Hadoop
administrators and thus offers no user controls.

The authenticated Kerberos principals for these “system” services are checked each time they access other services
such as HDFS, HBase, and MapReduce, and therefore must be authorized to use those resources. Thus, the fact that
Flume does not have an explicit authorization model does not imply that Flume has unrestricted access to HDFS and
other services; the Flume service principals still must be authorized for specific locations of the HDFS file system.
Hadoop administrators can establish separate system users for a services such as Flume to segment and impose access
rights to only the parts of the file system for a specific Flume application.

Authorization within Hadoop Projects

Authorization CapabilitiesProject

File Permissions, Sentry*HDFS

File Permissions, Sentry*MapReduce

File Permissions, Sentry*YARN

Accumulo

Cloudera Security | 35

Security Overview for an Enterprise Data Hub

http://gethue.com/apache-sentry-made-easy-with-the-new-hue-security-app/

Authorization CapabilitiesProject

NoneFlume

HBase ACLsHBase

File Permissions, SentryHiveServer2

Hue authorization mechanisms (assigning permissions to Hue apps)Hue

SentryImpala

ACLsOozie

File Permissions, Sentry*Pig

File Permissions, SentrySearch

N/ASentry

File Permissions, Sentry*Spark

N/ASqoop

NoneSqoop2

ACLsZooKeeper

Cloudera Manager rolesCloudera Manager

Cloudera Navigator rolesCloudera Navigator

N/ABackup and Disaster Recovery

* Sentry HDFS plug-in; when enabled, Sentry enforces its own access permissions over files that are part of tables
defined in the Hive Metastore.

Overview of Data Management Mechanisms for an Enterprise Data Hub
It is critical that an organization understand where the data in the cluster is coming from and how it's being used. The
goal of auditing is to capture a complete and immutable record of all activity within a system. Auditing plays a central
role in three key activities within the enterprise:

• First, auditing is part of a system’s security regime and can explain what happened, when, and to whom or what
in case of a breach or other malicious intent. For example, if a rogue administrator deletes a user’s data set,
auditing provides the details of this action, and the correct data may be retrieved from backup.

• The second activity is compliance, and auditing participates in satisfying the core requirements of regulations
associated with sensitive or personally identifiable data (PII), such as the Health Insurance Portability and
Accountability Act (HIPAA) or the Payment Card Industry (PCI) Data Security Standard. Auditing provides the
touchpoints necessary to construct the trail of who, how, when, and how often data is produced, viewed, and
manipulated.

• Lastly, auditing provides the historical data and context for data forensics. Audit information leads to the
understanding of how various populations use different data sets and can help establish the access patterns of
these data sets. This examination, such as trend analysis, is broader in scope than compliance and can assist
content and system owners in their data optimization efforts.

The risks facing auditing are the reliable, timely, and tamper-proof capture of all activity, including administrative
actions. Until recently, the native Hadoop ecosystem has relied primarily on using log files. Log files are unacceptable
for most audit use cases in the enterprise as real-time monitoring is impossible, and log mechanics can be unreliable
- a system crash before or during a write commit can compromise integrity and lead to data loss.

36 | Cloudera Security

Security Overview for an Enterprise Data Hub

ClouderaNavigator is a fully integrated datamanagement and security tool for theHadoopplatform.Datamanagement
and security capabilities are critical for enterprise customers that are in highly regulated industries and have stringent
compliance requirements. This topic only provides an overview of some of the auditing and metadata management
capabilities that Cloudera Navigator offers. For complete details, see Cloudera Data Management.

Cloudera Navigator

The following sections describe some of the categories of functionalities Cloudera Navigator provides for auditing,
metadata management and lineage.

Auditing

While Hadoophas historically lacked centralized cross-component audit capabilities, products such as ClouderaNavigator
add secured, real-time audit components to key data and access frameworks. Cloudera Navigator allows administrators
to configure, collect, and view audit events, to understand who accessed what data and how. Cloudera Navigator also
allows administrators to generate reports that list the HDFS access permissions granted to groups.Cloudera Navigator
tracks access permissions and actual accesses to all entities in HDFS, Hive, HBase, Impala, Sentry, and Solr, and the
Cloudera Navigator Metadata Server itself to help answer questions such as - who has access to which entities, which
entities were accessed by a user, when was an entity accessed and by whom, what entities were accessed using a
service, and which device was used to access. Cloudera Navigator auditing supports tracking access to:

• HDFS entities accessed by HDFS, Hive, HBase, Impala, and Solr services
• HBase and Impala
• Hive metadata
• Sentry
• Solr
• Cloudera Navigator Metadata Server

Data collected from these services also provides visibility into usage patterns for users, ability to see point-in-time
permissions and how they have changed (leveraging Sentry), and review and verify HDFS permissions. Cloudera
Navigator also provides out-of-the-box integration with leading enterprise metadata, lineage, and SIEM applications.
For details on how Cloudera Navigator handles auditing, see Cloudera Navigator Auditing Architecture.

Metadata Management

For metadata and data discovery, Cloudera Navigator features complete metadata storage. First, it consolidates the
technical metadata for all data inside Hadoop into a single, searchable interface and allows for automatic tagging of

Cloudera Security | 37

Security Overview for an Enterprise Data Hub

data based on the external sources entering the cluster. For example, if there is an external ETL process, data can be
automatically tagged as such when it enters Hadoop. Second, it supports user-based tagging to augment files, tables,
and individual columnswith custom business context, tags, and key/value pairs. Combined, this allows data to be easily
discovered, classified, and located to not only support governance and compliance, but also user discovery within
Hadoop.

Cloudera Navigator also includes metadata policy management that can trigger actions (such as the autoclassification
of metadata) for specific datasets based on arrival or scheduled intervals. This allows users to easily set, monitor, and
enforce data management policies, while also integrating with common third-party tools.

For details on how Cloudera Navigator handles metatdata, see Cloudera Navigator Metadata Architecture.

Lineage

Cloudera Navigator provides an automatic collection and easy visualization of upstream and downstream data lineage
to verify reliability. For each data source, it shows, down to the column-level within that data source, what the precise
upstream data sources were, the transforms performed to produce it, and the impact that data has on downstream
artifacts. Cloudera Navigator supports tracking the lineage of HDFS files, datasets, and directories, Hive tables and
columns, MapReduce and YARN jobs, Hive queries, Impala queries, Pig scripts, Oozie workflows, Spark jobs, and Sqoop
jobs. For details, see Cloudera Navigator Lineage Diagrams.

Integration within an EDH

The monitoring and reporting of Hadoop systems, while critical elements to its enterprise usage, are only a part of an
enterprise’s complete audit infrastructure and data policy. Often these enterprise tools and policies require that all
audit information route through a central interface to aid comprehensive reporting, and Hadoop-specific audit data
can be integrated with these existing enterprise SIEM applications and other tools. For example, Cloudera Navigator
exposes Hadoop audit data through several delivery methods:

• Using syslog, thus acting as a mediator between the raw event streams in Hadoop and the SIEM tools.
• Using a REST API for custom enterprise tools.
• You can also simply export the data to a file, such as a comma-delimited text file.

Auditing in Hadoop Projects

The table below depicts the auditing capabilities of Cloudera Manager and CDH components.

38 | Cloudera Security

Security Overview for an Enterprise Data Hub

Auditing CapabilitiesProject

Events captured by Cloudera Navigator (including security events*)HDFS

Inferred through HDFSMapReduce

Inferred through HDFSYARN

Log Files - Partial inclusion of security events; does not include non-bulk writesAccumulo

Log FilesFlume

Audit events captured by Cloudera Navigator (including security events*)HBase

Audit events captured by Cloudera NavigatorHiveServer2

Inferred through underlying componentsHue

Audit events captured by Cloudera NavigatorImpala

Log FilesOozie

Inferred through HDFSPig

Log FilesSearch

Audit events captured by Cloudera NavigatorSentry

Inferred through HDFSSpark

Log FilesSqoop

Log Files (including security events*)Sqoop2

Log FilesZooKeeper

Audit events captured by Cloudera Navigator (partial capture of security events*)Cloudera Manager

Audit events captured by Cloudera Navigator itselfCloudera Navigator

NoneBackup and Disaster Recovery

* - Security events include a machine readable log of the following activities:

• User data read
• User data written
• Permission changes
• Configuration changes
• Login attempts
• Escalation of privileges
• Session Tracking
• Key Operations (Key Trustee)

Cloudera Security | 39

Security Overview for an Enterprise Data Hub

How to Configure TLS Encryption for Cloudera Manager

When you configure authentication and authorization on a cluster, ClouderaManager Server sends sensitive information
over the network to cluster hosts, such as Kerberos keytabs and configuration files that contain passwords. To secure
this transfer, you must configure TLS encryption between Cloudera Manager Server and all cluster hosts.

TLS encryption is also used to secure client connections to the Cloudera Manager Admin Interface, using HTTPS.

Cloudera Manager also supports TLS authentication. Without certificate authentication, a malicious user can add a
host to Cloudera Manager by installing the Cloudera Manager Agent software and configuring it to communicate with
Cloudera Manager Server. To prevent this, you must install certificates on each agent host and configure Cloudera
Manager Server to trust those certificates.

This guide shows how to configure and enable TLS encryption and certificate authentication for Cloudera Manager.
The provided examples use an internal certificate authority (CA) to sign all TLS certificates, so this guide also shows
you how to establish trust with the CA. (For certificates signed by a trusted public CA, establishing trust is not necessary,
because the Java Development Kit (JDK) already trusts them.)

Use this guide to enable TLS encryption and certificate authentication for Cloudera Manager:

Generate TLS Certificates

Important:

• You must use the Oracle JDK keytool utility. Do not use other JDK (such as OpenJDK) command
line tools for this procedure. If you havemultiple JDKs, set the PATH variable such that the Oracle
JDK is first. For example:

$ export JAVA_HOME=/usr/java/jdk1.7.0_67-cloudera
$ export PATH=$JAVA_HOME/bin:$PATH

• Use the same password for the -keypass and -storepass values. Cloudera Manager does not
support using different passwords for the key and keystore.

Before configuring Cloudera Manager Server and all Cloudera Manager Agents to use TLS encryption, generate the
server and agent certificates:

Generate the Cloudera Manager Server Certificate

The following procedure assumes that an internal certificate authority (CA) is used, and shows how to establish trust
for that internal CA. If you are using a trusted public CA (such as Symantec, GeoTrust, Comodo, and others), you do
not need to explicitly establish trust for the issued certificates, unless you are using an older JDK and a newer public
CA. Older JDKs might not trust newer public CAs by default.

1. On the Cloudera Manager Server host, create the /opt/cloudera/security/pki directory:

$ sudo mkdir -p /opt/cloudera/security/pki

If you choose to use a different directory, make sure you use the same directory on all cluster hosts to simplify
management and maintenance.

2. Use the keytool utility to generate a Java keystore and certificate signing request (CSR). Replace the OU, O, L,
ST, and C entrieswith the values for your environment.When prompted, use the same password for the keystore

40 | Cloudera Security

How to Configure TLS Encryption for Cloudera Manager

password and key password. Cloudera Manager does not support using different passwords for the key and
keystore.

$JAVA_HOME/bin/keytool -genkeypair -alias $(hostname -f) -keyalg RSA -keystore
/opt/cloudera/security/pki/$(hostname -f).jks -keysize 2048 -dname "CN=$(hostname
-f),OU=Engineering,O=Cloudera,L=Palo Alto,ST=California,C=US" -ext san=dns:$(hostname
-f)

$JAVA_HOME/bin/keytool -certreq -alias $(hostname -f) -keystore
/opt/cloudera/security/pki/$(hostname -f).jks -file /opt/cloudera/security/pki/$(hostname
 -f).csr -ext san=dns:$(hostname -f)

3. Submit the CSR file (for example, cm01.example.com-server.csr) to your certificate authority to obtain a
server certificate. If possible, obtain the certificate in PEM (Base64 ASCII) format. The certificate file is in PEM
format if it looks like this:

-----BEGIN CERTIFICATE-----
MIIDAzCCAesCAQAwgY0xCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlh
MRIwEAYDVQQHEwlQYWxvIEFsdG8xETAPBgNVBAoTCENsb3VkZXJhMRQwEgYDVQQL
…
tudY0C32LjGjWOg5ALliN9Oy1u2xRKGAVfapbzAZ2rchtlCZc7mtaT6BXgW8S+Db
0HhuObn1/8TL4Ho9G+KlJB3MWik2oEbOvQt0rBidMr9qaNX86m0i7pouXZelZ5c5
UnDPtrhW6A==
-----END CERTIFICATE-----

If your issued certificate is in binary (DER) format, convert it to PEM format.

4. After you receive the signed certificate, copy it to /opt/cloudera/security/pki/$(hostname
-f)-server.cert.pem.

5. Copy the root and intermediate CA certificates to /opt/cloudera/security/pki/rootca.cert.pem and
/opt/cloudera/security/pki/intca.cert.pem on the Cloudera Manager Server host. If you have a
concatenated file containing the root CA and an intermediate CA certificate, split the file along the END
CERTIFICATE/BEGIN CERTIFICATE boundary into individual files. If there are multiple intermediate CA
certificates, use unique file names such as intca-1.cert.pem, intca-1.cert.pem, and so on.

6. On the Cloudera Manager Server host, copy the JDK cacerts file to jssecacerts:

$ sudo cp $JAVA_HOME/jre/lib/security/cacerts $JAVA_HOME/jre/lib/security/jssecacerts

If you do not have the $JAVA_HOME variable set, replace it with the path to the Oracle JDK (for example,
/usr/java/jdk1.7.0_67-cloudera/).

Note: The Oracle JDK uses the jssecacerts file for its default truststore if it exists. Otherwise,
it uses the cacerts file. Creating the jssecacerts file allows you to trust an internal CAwithout
modifying the cacerts file that is included with the JDK.

7. Import the root CA certificate into the JDK truststore. If you do not have the $JAVA_HOME variable set, replace it
with the path to the Oracle JDK.

$ sudo keytool -importcert -alias rootca -keystore $JAVA_HOME/jre/lib/security/jssecacerts
 \
-file /opt/cloudera/security/pki/rootca.cert.pem -storepass changeit

The default password for the cacerts file is changeit. Cloudera recommends changing this password by running:

keytool -storepasswd -keystore $JAVA_HOME/jre/lib/security/cacerts

8. Copy the jssecacerts file from the ClouderaManager Server host to all other cluster hosts. Make sure you copy
the file to the correct location ($JAVA_HOME/jre/lib/security/jssecacerts), because the Oracle JDK
expects it there.

Cloudera Security | 41

How to Configure TLS Encryption for Cloudera Manager

9. On the Cloudera Manager Server host, append the intermediate CA certificate to the signed server certificate,
and then import it into the keystore. Make sure that you use the append operator (>>) and not the overwrite
operator (>):

$ sudo cat /opt/cloudera/security/pki/intca.cert.pem >>
/opt/cloudera/security/pki/$(hostname -f)-server.cert.pem
$ sudo keytool -importcert -alias $(hostname -f)-server \
-file /opt/cloudera/security/pki/$(hostname -f)-server.cert.pem \
-keystore /opt/cloudera/security/pki/$(hostname -f)-server.jks

If you see a message like the following, enter yes to continue:

... is not trusted. Install reply anyway? [no]: yes

Youmust see the following response verifying that the certificate has been properly imported against its private
key.

Certificate reply was installed in keystore

If you do not see this response, contact Cloudera Support.

Generate the Cloudera Manager Agent Certificates

Complete the following procedure on each Cloudera Manager Agent host. The provided examples continue to use an
internal certificate authority (CA) to sign the agent certificates.

1. On all Cloudera Manager Agent hosts, create the /opt/cloudera/security/pki directory:

$ sudo mkdir -p /opt/cloudera/security/pki

If you choose to use a different directory, make sure you use the same directory on all cluster hosts to simplify
management and maintenance.

2. On all Cloudera Manager Agent hosts, create a Java Keystore and private key as follows:

$ keytool -genkeypair -alias $(hostname -f)-agent -keyalg RSA -keystore \
/opt/cloudera/security/pki/$(hostname -f)-keystore.jks -keysize 2048 -dname \
"CN=$(hostname -f),OU=Engineering,O=Cloudera,L=Palo Alto,ST=California,C=US" \
-storepass password -keypass password

Use the same password for the -keypass and -storepass values. Cloudera Manager does not support using
different passwords for the key and keystore.

3. On all Cloudera Manager Agent hosts, generate the certificate signing request (CSR) and submit it to a CA. Use
the keytool extended attributes to specify both serverAuth and clientAuth options:

$ keytool -certreq -alias $(hostname -f)-agent \
-keystore /opt/cloudera/security/pki/$(hostname -f)-agent.jks \
-file /opt/cloudera/security/pki/$(hostname -f)-agent.csr \
-ext EKU=serverAuth,clientAuth \
-storepass password -keypass password

For security purposes, many commercial CAs ignore requested extensions in a CSR. Make sure that you inform
the CA that you require certificates with both server and client authentication options.

4. For each signed certificate you receive, copy it to /opt/cloudera/security/pki/$(hostname
-f)-agent.cert.pem on the correct host.

5. Inspect the certificates to verify that both server and client authentication options are present:

$ openssl x509 -in /opt/cloudera/security/pki/$(hostname -f)-agent.cert.pem -noout -text

42 | Cloudera Security

How to Configure TLS Encryption for Cloudera Manager

Look for output similar to the following:

X509v3 Extended Key Usage:
 TLS Web Server Authentication, TLS Web Client Authentication
X509v3 Subject Alternative Name:
DNS:your.hosts.name.com
If the certificate does not have the DNS field, re-submit the CSR to the CA, and request
 that they generate a certificate that keeps the Subject Alternative Name field intact.

If the certificate does not have both TLS Web Server Authentication and TLS Web Client
Authentication listed in theX509v3 Extended Key Usage section, re-submit the CSR to the CA, and request
that they generate a certificate that can be used for both server and client authentication.

6. Copy the root and intermediate CA certificates to /opt/cloudera/security/pki/rootca.cert.pem and
/opt/cloudera/security/pki/intca.cert.pem on each Cloudera Manager Agent host. If you have a
concatenated file containing the root CA and an intermediate CA certificate, split the file along the END
CERTIFICATE/BEGIN CERTIFICATE boundary into individual files. If there are multiple intermediate CA
certificates, use unique file names such as intca-1.cert.pem, intca-1.cert.pem, and so on.

7. On each Cloudera Manager Agent host, append the intermediate CA certificate to the signed certificate, and then
import it into the keystore. Make sure that you use the append operator (>>) and not the overwrite operator (>):

$ sudo cat /opt/cloudera/security/pki/intca.cert.pem >>
/opt/cloudera/security/pki/$(hostname -f)-agent.cert.pem
$ sudo keytool -importcert -alias $(hostname -f)-agent \
-file /opt/cloudera/security/pki/$(hostname -f)-agent.cert.pem \
-keystore /opt/cloudera/security/pki/$(hostname -f)-agent.jks

If you see a message like the following, enter yes to continue:

... is not trusted. Install reply anyway? [no]: yes

Youmust see the following response verifying that the certificate has been properly imported against its private
key.

Certificate reply was installed in keystore

If you do not see this response, contact Cloudera Support.

8. On each Cloudera Manager Agent host, create symbolic links (symlink) for the certificate and keystore files:

$ ln -s /opt/cloudera/security/pki/$(hostname -f)-agent.cert.pem
/opt/cloudera/security/pki/agent.cert.pem
$ ln -s /opt/cloudera/security/pki/$(hostname -f)-agent.jks
/opt/cloudera/security/pki/agent.jks

This allows you to use the same /etc/cloudera-scm-agent/config.ini file on all agent hosts rather than
maintaining a file for each agent.

Configuring TLS Encryption for the Cloudera Manager Admin Console
Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

Use the following procedure to enable TLS encryption for the Cloudera Manager Server admin interface. Make sure
you have generated the server certificate as described in Generate the Cloudera Manager Server Certificate on page
40.

Step 1: Enable HTTPS for the Cloudera Manager Admin Console

1. Log in to the Cloudera Manager Admin Console.
2. Select Administration > Settings.

Cloudera Security | 43

How to Configure TLS Encryption for Cloudera Manager

3. Select the Security category.
4. Configure the following TLS settings:

DescriptionProperty

The complete path to the keystore file. In this example, the path is
/opt/cloudera/security/pki/cm01.example.com-server.jks. Replace
cm01.example.com with the Cloudera Manager Server hostname.

ClouderaManager TLS/SSL
Server JKS Keystore File
Location

The password for the
/opt/cloudera/security/jks/cm01.example.com-server.jks keystore.

ClouderaManager TLS/SSL
Server JKS Keystore File
Password

Check this box to enable TLS encryption for Cloudera Manager.Use TLS Encryption for
Admin Console

5. Click Save Changes to save the settings.

Step 2: Specify SSL Truststore Properties for Cloudera Management Services

When enabling TLS for the Cloudera Manager Server admin interface, you must set the Java truststore location and
password in the Cloudera Management Services configuration. Otherwise, roles such as Host Monitor and Service
Monitor cannot connect to Cloudera Manager Server and will not start.

Configure the path and password for the $JAVA_HOME/jre/lib/security/jssecacerts truststore that you
created earlier. Make sure that you copied this file to all cluster hosts, including the Cloudera Management Service
hosts.

1. Open the Cloudera Manager Administration Console and go to the Cloudera Management Service service.
2. Click the Configuration tab.
3. Select Scope > Cloudera Management Service (Service-Wide).
4. Select Category > Security.
5. Edit the following TLS/SSL properties according to your cluster configuration.

DescriptionProperty

The path to the client truststore file used inHTTPS communication. This truststore
contains certificates of trusted servers, or of Certificate Authorities trusted to

TLS/SSL Client Truststore File
Location

identify servers. For this example, set the value to
$JAVA_HOME/jre/lib/security/jssecacerts. Replace$JAVA_HOMEwith
the path to the Oracle JDK.

The password for the truststore file.TLS/SSL Client Truststore File
Password

6. Click Save Changes to commit the changes.

Step 3: Restart Cloudera Manager and Services

You must restart both Cloudera Manager Server and the Cloudera Management Service for TLS encryption to work.
Otherwise, the ClouderaManagement Services (such as Host Monitor and ServiceMonitor) cannot communicate with
Cloudera Manager Server.

1. Restart the Cloudera Manager Server by running service cloudera-scm-server restart on the Cloudera
Manager Server host.

2. After the restart completes, connect to the Cloudera Manager Admin Console using the HTTPS URL (for example:
https://cm01.example.com:7183). If you used an internal CA-signed certificate, you must configure your
browser to trust the certificate. Otherwise, youwill see awarning in your browser any time you access the Cloudera
Manager Administration Console. By default, certificates issued by public commercial CAs are trusted by most
browsers, and no additional configuration is necessary if your certificate is signed by one of them.

44 | Cloudera Security

How to Configure TLS Encryption for Cloudera Manager

3. Restart the Cloudera Management Service (Cloudera Management Service > Actions > Restart).

Configuring TLS Encryption for Cloudera Manager Agents
Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

Use the following procedure to encrypt the communication between ClouderaManager Server and ClouderaManager
Agents:

Step 1: Enable TLS Encryption for Agents in Cloudera Manager

Configure the TLS properties for Cloudera Manager Agents.

1. Log in to the Cloudera Manager Admin Console.
2. Select Administration > Settings.
3. Select the Security category.
4. Select the Use TLS Encryption for Agents option.
5. Click Save Changes.

Step 2: Enable TLS on Cloudera Manager Agent Hosts

To enable TLS between the Cloudera Manager agents and Cloudera Manager, you must specify values for the TLS
properties in the /etc/cloudera-scm-agent/config.ini configuration file on all agent hosts.

1. Oneach agent host, open the/etc/cloudera-scm-agent/config.ini configuration file and set theuse_tls
parameter in the [Security] section as follows:

use_tls=1

Alternatively, you can edit the config.ini file on one host, and then copy it to the other hosts because this file
by default does not contain host-specific information. If you have modified properties such as
listening_hostname or listening_ip address in config.ini, you must edit the file individually on each
host.

Step 3: Restart Cloudera Manager Server and Agents

Restart the Cloudera Manager Server with the following command to activate the TLS configuration settings.

$ sudo service cloudera-scm-server restart

On each agent host, restart the Cloudera Manager agent service:

$ sudo service cloudera-scm-agent restart

Step 4: Verify that the Cloudera Manager Server and Agents are Communicating

In the Cloudera Manager Admin Console, go to Hosts > All Hosts. If you see successful heartbeats reported in the Last
Heartbeat column after restarting the agents, TLS encryption is working properly.

Enabling Server Certificate Verification on Cloudera Manager Agents
Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

If you have completed the previous sections, communication between Cloudera Manager server and the agents is
encrypted, but the certificate authenticity is not verified. For full security, you must configure the agents to verify the
ClouderaManager server certificate. If you are using a server certificate signed by an internal certificate authority (CA),
you must configure the agents to trust that CA:

Cloudera Security | 45

How to Configure TLS Encryption for Cloudera Manager

1. Oneach agent host, open the/etc/cloudera-scm-agent/config.ini configuration file, and thenuncomment
and set the following property:

verify_cert_file=/opt/cloudera/security/pki/rootca.cert.pem

Alternatively, you can edit the config.ini file on one host, and then copy it to the other hosts because this file
by default does not contain host-specific information. If you have modified properties such as
listening_hostname or listening_ip address in config.ini, you must edit the file individually on each
host.

2. Restart the Cloudera Manager agents. On each agent host, run the following command:

$ sudo service cloudera-scm-agent restart

3. Restart the Cloudera Management Service. On the Home > Status tab, click

to the right of the Cloudera Management Service and select Restart.
4. Verify that the ClouderaManager server and agents are communicating. In the ClouderaManager Admin Console,

go to Hosts > All Hosts. If you see successful heartbeats reported in the Last Heartbeat column after restarting
the agents and management service, TLS verification is working properly. If not, check the agent log
(/var/log/cloudera-scm-agent/cloudera-scm-agent.log) for errors.

Configuring Agent Certificate Authentication

Important: Repeat this procedure on each agent host.

Without certificate authentication, a malicious user can add a host to Cloudera Manager by installing the Cloudera
Manager agent software and configuring it to communicate with Cloudera Manager Server. To prevent this, you must
configure Cloudera Manager to trust the agent certificates.

Step 1: Export the Private Key to a File

On each Cloudera Manager Agent host, use the keytool utility to export the private key and certificate to a PKCS12
file, which can then be split up into individual key and certificate files using the openssl command:

1. Export the private key and certificate:

$ keytool -importkeystore -srckeystore /opt/cloudera/security/pki/$(hostname -f)-agent.jks
 \
-srcstorepass password -srckeypass password -destkeystore
/opt/cloudera/security/pki/$(hostname -f)-agent.p12 \
-deststoretype PKCS12 -srcalias $(hostname -f)-agent -deststorepass password -destkeypass
password

2. Use the openssl command to export the private key into its own file:

$ openssl pkcs12 -in /opt/cloudera/security/pki/$(hostname -f)-agent.p12 -passin
pass:password -nocerts \
-out /opt/cloudera/security/pki/$(hostname -f)-agent.key -passout pass:password

3. Create a symbolic link for the .key file:

$ ln -s /opt/cloudera/security/pki/$(hostname -f)-agent.key
/opt/cloudera/security/pki/agent.key

46 | Cloudera Security

How to Configure TLS Encryption for Cloudera Manager

This allows you to use the same /etc/cloudera-scm-agent/config.ini file on all agent hosts rather than
maintaining a file for each agent.

Step 2: Create a Password File

The ClouderaManager agent obtains the password from a text file, not from a command line parameter or environment
variable. The password file allows you to use file permissions to protect the password. For example, run the following
commands on each Cloudera Manager Agent host, or run them on one host and copy the file to the other hosts:

$ echo "password" > /etc/cloudera-scm-agent/agentkey.pw
$ sudo chown root:root /etc/cloudera-scm-agent/agentkey.pw
$ sudo chmod 440 /etc/cloudera-scm-agent/agentkey.pw

Replace password with the password you created in Step 1: Export the Private Key to a File on page 46.

Step 3: Configure the Agent to Use Private Keys and Certificates

On a Cloudera Manager Agent, open the /etc/cloudera-scm-agent/config.ini configuration file and edit the
following properties.

DescriptionExample ValueProperty

Path to the private key file./opt/cloudera/security/pki/agent.keyclient_key_file

Path to the private key password file./etc/cloudera-scm-agent/agentkey.pwclient_keypw_file

Path to the client certificate file./opt/cloudera/security/pki/agent.cert.pemclient_cert_file

Copy the file to all other cluster hosts. If you havemodified properties such aslistening_hostnameorlistening_ip
address in config.ini, you must edit the file individually on each host.

Step 4: Enable Agent Certificate Authentication

1. Log in to the Cloudera Manager Admin Console.
2. Select Administration > Settings.
3. Click the Security category.
4. Configure the following TLS settings:

DescriptionSetting

Select this option to enable TLS authentication of agents to the server.UseTLSAuthenticationofAgents
to Server

Specify the full filesystem path to the jssecacerts file located on the
Cloudera Manager Server host. For example,
/usr/java/jdk1.7.0_67-cloudera/jre/lib/security/jssecacerts.

Cloudera Manager TLS/SSL
Certificate Trust Store File

Specify the password for the jssecacerts truststore.Cloudera Manager TLS/SSL
Certificate Trust Store Password

5. Click Save Changes to save the settings.

Step 5: Restart Cloudera Manager Server and Agents

1. On the Cloudera Manager server host, restart the Cloudera Manager server:

$ sudo service cloudera-scm-server restart

Cloudera Security | 47

How to Configure TLS Encryption for Cloudera Manager

2. On every agent host, restart the Cloudera Manager agent:

$ sudo service cloudera-scm-agent restart

Step 6: Verify that Cloudera Manager Server and Agents are Communicating

In the Cloudera Manager Admin Console, go to Hosts > All Hosts. If you see successful heartbeats reported in the Last
Heartbeat column after restarting the agents and server, TLS certificate authentication is working properly. If not,
check the agent log (/var/log/cloudera-scm-agent/cloudera-scm-agent.log) for errors.

48 | Cloudera Security

How to Configure TLS Encryption for Cloudera Manager

Configuring Authentication

The purpose of authentication in Hadoop, as in other systems, is simply to prove that a user or service is who he or
she claims to be.

Typically, authentication in enterprises is managed through a single distributed system, such as a Lightweight Directory
Access Protocol (LDAP) directory. LDAP authentication consists of straightforward username/password services backed
by a variety of storage systems, ranging from file to database.

A common enterprise-grade authentication system is Kerberos. Kerberos provides strong security benefits including
capabilities that render intercepted authentication packets unusable by an attacker. It virtually eliminates the threat
of impersonation by never sending a user's credentials in cleartext over the network.

Several components of theHadoop ecosystemare converging to use Kerberos authenticationwith the option tomanage
and store credentials in LDAP or AD. For example, Microsoft's Active Directory (AD) is an LDAP directory that also
provides Kerberos authentication for added security.

Before you use this guide to configure Kerberos on your cluster, ensure you have a working KDC (MIT KDC or Active
Directory), set up. You can then use Cloudera Manager's Kerberos wizard to automate several aspects of Kerberos
configuration on your cluster.

Important:

• You can use either Cloudera Manager or the following command-line instructions to complete
this configuration.

• This information applies specifically to CDH 5.9.x. If you use an earlier version of CDH, see the
documentation for that version located at Cloudera Documentation.

Configuring Authentication in Cloudera Manager

Before You Begin

When you configure authentication and authorization on a cluster, ClouderaManager Server sends sensitive information
over the network to cluster hosts, such as Kerberos keytabs and configuration files that contain passwords. To secure
this transfer, youmust configure TLS encryption between ClouderaManager Server and all cluster hosts. For instruction
on enabling TLS encryption for ClouderaManager, see How to Configure TLS Encryption for ClouderaManager on page
40.

Why Use Cloudera Manager to Implement Kerberos Authentication?

If you do not use ClouderaManager to implement Hadoop security, youmustmanually create and deploy the Kerberos
principals and keytabs on every host in your cluster. If you have a large number of hosts, this can be a time-consuming
and error-prone process. After creating and deploying the keytabs, you must also manually configure properties in the
core-site.xml,hdfs-site.xml,mapred-site.xml, andtaskcontroller.cfg files on everyhost in the cluster
to enable and configure Hadoop security in HDFS andMapReduce. You must also manually configure properties in the
oozie-site.xml and hue.ini files on certain cluster hosts to enable and configure Hadoop security in Oozie and
Hue.

Cloudera Manager enables you to automate all of those manual tasks. Cloudera Manager can automatically create
and deploy a keytab file for the hdfs user and a keytab file for the mapred user on every host in your cluster, as well
as keytab files for the oozie and hue users on select hosts. The hdfs keytab file contains entries for the hdfs principal
and a host principal, and the mapred keytab file contains entries for the mapred principal and a host principal. The
host principal will be the same in both keytab files. The oozie keytab file contains entries for the oozie principal
and a HTTP principal. The hue keytab file contains an entry for the hue principal. Cloudera Manager can also

Cloudera Security | 49

Configuring Authentication

http://www.cloudera.com/content/support/en/documentation.html

automatically configure the appropriate properties in the core-site.xml, hdfs-site.xml, mapred-site.xml,
and taskcontroller.cfg files on every host in the cluster, and the appropriate properties in oozie-site.xml
andhue.ini for select hosts. Lastly, ClouderaManager can automatically start up theNameNode, DataNode, Secondary
NameNode, JobTracker, TaskTracker, Oozie Server, and Hue roles once all the appropriate configuration changes have
been made.

Ways to Configure Kerberos Authentication Using Cloudera Manager

You can use one of the following ways to set up Kerberos authentication on your cluster using Cloudera Manager:

• Cloudera Manager 5.1 introduced a new wizard to automate the procedure to set up Kerberos on a cluster. Using
the KDC information you enter, the wizard will create new principals and keytab files for your CDH services. The
wizard can be used to deploy the krb5.conf file cluster-wide, and automate othermanual tasks such as stopping
all services, deploying client configuration and restarting all services on the cluster.

If you want to use the Kerberos wizard, follow the instructions at Enabling Kerberos Authentication Using the
Wizard on page 59.

• If you do notwant to use the Kerberoswizard, follow the instructions at Enabling Kerberos AuthenticationWithout
the Wizard on page 76.

Cloudera Manager User Accounts

Minimum Required Role: User Administrator (also provided by Full Administrator)

Access to ClouderaManager features is controlled by user accounts. A user account identifies howa user is authenticated
and determines what privileges are granted to the user.

When you are logged in to the Cloudera Manager Admin Console, the username you are logged in as is located at the

far right of the top navigation bar—for example, if you are logged in as admin you will see .

A user with the User Administrator or Full Administrator role manages user accounts through the Administration >
Users page. View active user sessions on the User Sessions tab.

User Authentication

Cloudera Manager provides several mechanisms for authenticating users. You can configure Cloudera Manager to
authenticate users against the Cloudera Manager database or against an external authentication service. The external
authentication service can be an LDAP server (Active Directory or an OpenLDAP compatible directory), or you can
specify another external service. ClouderaManager also supports using the Security AssertionMarkup Language (SAML)
to enable single sign-on.

If you are using LDAP or another external service, you can configure ClouderaManager so that it can use bothmethods
of authentication (internal database and external service), and you can determine the order in which it performs these
searches. If you select an external authenticationmechanism, Full Administrator users can always authenticate against
the Cloudera Manager database. This prevents locking everyone out if the authentication settings are misconfigured,
such as with a bad LDAP URL.

With external authentication, you can restrict login access tomembers of specific groups, and can specify groupswhose
members are automatically given Full Administrator access to Cloudera Manager.

Users accounts in the Cloudera Manager database page show Cloudera Manager in the User Type column. User
accounts in an LDAP directory or other external authentication mechanism show External in the User Type column.

User Roles

User accounts include the user's role, which determines the Cloudera Manager features visible to the user and the
actions the user can perform. All tasks in the Cloudera Manager documentation indicate which role is required to
perform the task. For more information about user roles, see Cloudera Manager User Roles on page 378.

50 | Cloudera Security

Configuring Authentication

Determining the Role of the Currently Logged in User

1. Click the logged-in username at the far right of the top navigation bar. The role displays under the username. For
example:

Changing the Logged-In Internal User Password

1. Click the logged-in username at the far right of the top navigation bar and select Change Password.
2. Enter the current password and a new password twice, and then click OK.

Adding an Internal User Account

1. Select Administration > Users.
2. Click the Add User button.
3. Enter a username and password.
4. In the Role drop-down menu, select a role for the new user.
5. Click Add.

Assigning User Roles

1. Select Administration > Users.
2. Check the checkbox next to one or more usernames.
3. Select Actions for Selected > Assign User Roles.
4. In the drop-down menu, select the role.
5. Click the Assign Role button.

Changing an Internal User Account Password

1. Select Administration > Users.
2. Click the Change Password button next to a username with User Type Cloudera Manager.
3. Type the new password and repeat it to confirm.
4. Click the Update button to make the change.

Deleting Internal User Accounts

1. Select Administration > Users.
2. Check the checkbox next to one or more usernames with User Type Cloudera Manager.
3. Select Actions for Selected > Delete.
4. Click the OK button. (There is no confirmation of the action.)

Viewing User Sessions

1. Select Administration > Users.
2. Click the tab User Sessions.

Configuring External Authentication for Cloudera Manager

Minimum Required Role: User Administrator (also provided by Full Administrator)

Important: This feature is available only with a Cloudera Enterprise license. It is not available in
Cloudera Express. For information on Cloudera Enterprise licenses, see Managing Licenses.

Cloudera Manager supports user authentication against an internal database and against an external service. The
following sections describe how to configure the supported external services.

Cloudera Security | 51

Configuring Authentication

Configuring Authentication Using Active Directory

1. Select Administration > Settings.
2. In the left-hand column, select the External Authentication category.
3. In the Authentication Backend Order field, select the order in which Cloudera Manager should attempt its

authentication. You can choose to authenticate users using just one of the methods (using Cloudera Manager's
own database is the default), or you can set it so that if the user cannot be authenticated by the first method, it
will attempt using the second method.

4. For External Authentication Type, select Active Directory.
5. In the LDAP URL property, provide the URL of the Active Directory server.
6. In the Active Directory NT Domain property, provide the NT domain to authenticate against.

LDAP URL and Active Directory NT Domain are the only settings required to allow anyone in AD to log in to
Cloudera Manager. For example, if you set LDAP URL to ldap://adserver.example.com and the Active
Directory NT Domain to ADREALM.EXAMPLE.COM, AD users should now be able to log into Cloudera Manager
using just their username, such as sampleuser. They no longer require the complete string:
sampleuser@ADREALM.EXAMPLE.COM.

7. In the LDAPUser Groups property, optionally provide a comma-separated list of case-sensitive LDAP group names.
If this list is provided, only users who are members of one or more of the groups in the list will be allowed to log
into Cloudera Manager. If this property is left empty, all authenticated LDAP users will be able to log into Cloudera
Manager. For example, if there is a group called CN=ClouderaManagerUsers,OU=Groups,DC=corp,DC=com,
add the group name ClouderaManagerUsers to the LDAP User Groups list to allow members of that group to
log in to Cloudera Manager.

8. To automatically assign a role to users when they log in, provide a comma-separated list of LDAP group names in
the following properties:

• LDAP Full Administrator Groups
• LDAP User Administrator Groups
• LDAP Cluster Administrator Groups
• LDAP BDR Administrator Groups
• LDAP Configurator Groups
• LDAP Navigator Administrator Groups
• LDAP Operator Groups
• LDAP Limited Operator Groups
• LDAP Auditor Groups

If you specify groups in these properties, users must also be a member of at least one of the groups specified in
the LDAP User Groups property or they will not be allowed to log in. If these properties are left empty, users will
be assigned to the Read-Only role and any other role assignmentmust be performedmanually by an Administrator.

Note: Auser that is added to an LDAP groupwill not automatically be assigned the corresponding
role in the internal Cloudera Manager database. Hence, the Users page in Cloudera Manager will
display such users' roles as Read-Only, as this page only queries the Cloudera Manager database,
and not LDAP.

9. Restart the Cloudera Manager Server.

Configuring Authentication Using an OpenLDAP-compatible Server

For an OpenLDAP-compatible directory, you have several options for searching for users and groups:

• You can specify a single base Distinguished Name (DN) and then provide a "Distinguished Name Pattern" to use
to match a specific user in the LDAP directory.

• Search filter options let you search for a particular user based on somewhat broader search criteria – for example
Cloudera Manager users could be members of different groups or organizational units (OUs), so a single pattern

52 | Cloudera Security

Configuring Authentication

does not find all those users. Search filter options also let you find all the groups to which a user belongs, to help
determine if that user should have login or admin access.

1. Select Administration > Settings.
2. In the left-hand column, select the External Authentication category.
3. In the Authentication Backend Order field, select the order in which Cloudera Manager should attempt its

authentication. You can choose to authenticate users using just one of the methods (using Cloudera Manager's
own database is the default), or you can set it so that if the user cannot be authenticated by the first method, it
will attempt using the second method.

4. For External Authentication Type, select LDAP.
5. In the LDAP URL property, provide the URL of the LDAP server and (optionally) the base Distinguished Name (DN)

(the search base) as part of the URL — for example ldap://ldap-server.corp.com/dc=corp,dc=com.
6. If your server does not allow anonymous binding, provide the user DN and password to be used to bind to the

directory. These are the LDAP Bind User Distinguished Name and LDAP Bind Password properties. By default,
Cloudera Manager assumes anonymous binding.

7. Use one of the following methods to search for users and groups:

• You can search using User or Group search filters, using the LDAP User Search Base, LDAP User Search Filter,
LDAP Group Search Base and LDAP Group Search Filter settings. These allow you to combine a base DN with
a search filter to allow a greater range of search targets.

For example, if youwant to authenticate userswhomay be in one ofmultiple OUs, the search filtermechanism
will allow this. You can specify the User Search Base DN as dc=corp,dc=com and the user search filter as
uid={0}. Then Cloudera Manager will search for the user anywhere in the tree starting from the Base DN.
Suppose you have two OUs—ou=Engineering and ou=Operations—Cloudera Manager will find User
"foo" if it exists in either of these OUs, that is, uid=foo,ou=Engineering,dc=corp,dc=com or
uid=foo,ou=Operations,dc=corp,dc=com.

You can use a user search filter along with a DN pattern, so that the search filter provides a fallback if the DN
pattern search fails.

The Groups filters let you search to determine if a DN or username is a member of a target group. In this
case, the filter you provide can be something like member={0} where {0} will be replaced with the DN of
the user you are authenticating. For a filter requiring the username, {1}may be used, as memberUid={1}.
This will return a list of groups the user belongs to, which will be compared to the list in the group properties
discussed in step 8 of Configuring Authentication Using Active Directory on page 52.

OR

• Alternatively, specify a single baseDistinguishedName (DN) and then provide a "DistinguishedNamePattern"
in the LDAP Distinguished Name Pattern property.

Use {0} in the pattern to indicate where the username should go. For example, to search for a distinguished
name where the uid attribute is the username, you might provide a pattern similar to
uid={0},ou=People,dc=corp,dc=com. Cloudera Manager substitutes the name provided at login into
this pattern and performs a search for that specific user. So if a user provides the username "foo" at the
Cloudera Manager login page, Cloudera Manager will search for the DN
uid=foo,ou=People,dc=corp,dc=com.

If you provided a base DN along with the URL, the pattern only needs to specify the rest of the DN pattern.
For example, if the URL you provide is ldap://ldap-server.corp.com/dc=corp,dc=com, and the
pattern is uid={0},ou=People, then the search DN will be uid=foo,ou=People,dc=corp,dc=com.

8. Restart the Cloudera Manager Server.

Configuring Cloudera Manager to Use LDAPS

If the LDAP server certificate has been signed by a trusted Certificate Authority (that is, VeriSign, GeoTrust, and so on),
steps 1 and 2 below may not be necessary.

Cloudera Security | 53

Configuring Authentication

1. Copy the CA certificate file to the Cloudera Manager Server host.
2. Import the CA certificate(s) from the CA certificate file to the local truststore. The default truststore is located in

the $JAVA_HOME/jre/lib/security/cacerts file. This contains the default CA information shipped with the
JDK. Create an alternate default file called jssecacerts in the same location as the cacerts file. You can now
safely append CA certificates for any private or public CAs not present in the default cacerts file, while keeping
the original file intact.

For our example, we will follow this recommendation by copying the default cacerts file into the new
jssecacerts file, and then importing the CA certificate to this alternate truststore.

cp $JAVA_HOME/jre/lib/security/cacerts $JAVA_HOME/jre/lib/security/jssecacerts

$ /usr/java/latest/bin/keytool -import -alias nt_domain_name
-keystore /usr/java/latest/jre/lib/security/jssecacerts -file path_to_CA_cert

Note: The default password for the cacerts store is changeit. The -alias does not always
need to be the domain name.

Alternatively, you can use the Java options: javax.net.ssl.trustStore and
javax.net.ssl.trustStorePassword. Open the /etc/default/cloudera-scm-server file and add the
following options:

export CMF_JAVA_OPTS="-Xmx2G -XX:MaxPermSize=256m -XX:+HeapDumpOnOutOfMemoryError
-XX:HeapDumpPath=/tmp
-Djavax.net.ssl.trustStore=/usr/java/default/jre/lib/security/jssecacerts
-Djavax.net.ssl.trustStorePassword=changeit"

3. Configure the LDAP URL property to use ldaps://ldap_server instead of ldap://ldap_server.
4. Restart the Cloudera Manager Server.

Configuring Authentication Using an External Program

You can configure Cloudera Manager to use an external authentication program of your own choosing. Typically, this
may be a custom script that interacts with a custom authentication service. Cloudera Manager will call the external
programwith the username as the first command line argument. The password is passed overstdin. ClouderaManager
assumes the program will return the following exit codes identifying the user role for a successful authentication:

• 0 - Read-Only
• 1 - Full Administrator
• 2 - Limited Operator
• 3 - Operator
• 4 - Configurator
• 5 - Cluster Administrator
• 6 - BDR Administrator
• 7 - Navigator Administrator
• 8 - User Administrator
• 9 - Auditor
• 10 - Key Administrator

and a negative value is returned for a failure to authenticate.

To configure authentication using an external program:

1. Select Administration > Settings.
2. In the left-hand column, select the External Authentication category.
3. In the Authentication Backend Order field, select the order in which Cloudera Manager should attempt its

authentication. You can choose to authenticate users using just one of the methods (using Cloudera Manager's

54 | Cloudera Security

Configuring Authentication

own database is the default), or you can set it so that if the user cannot be authenticated by the first method, it
will attempt using the second method.

4. For External Authentication Type, select External Program.
5. Provide a path to the external program in the External Authentication Program Path property.

Configuring Authentication Using SAML

ClouderaManager supports the Security AssertionMarkup Language (SAML), an XML-basedopen standard data format
for exchanging authentication and authorization data between parties, in particular, between an identity provider
(IDP) and a service provider (SP). The SAML specification defines three roles: the principal (typically a user), the IDP,
and the SP. In the use case addressed by SAML, the principal (user agent) requests a service from the service provider.
The service provider requests and obtains an identity assertion from the IDP. On the basis of this assertion, the SP can
make an access control decision—in other words it can decide whether to perform some service for the connected
principal.

The primary SAML use case is called web browser single sign-on (SSO). A user wielding a user agent (usually a web
browser) requests a web resource protected by a SAML SP. The SP, wanting to know the identity of the requesting
user, issues an authentication request to a SAML IDP through the user agent. In the context of this terminology, Cloudera
Manager operates as a SP. This topic discusses the Cloudera Manager part of the configuration process; it assumes
that you are familiar with SAML and SAML configuration in a general sense, and that you have a functioning IDP already
deployed.

Note:

• Cloudera Manager supports both SP- and IDP-initiated SSO.
• The logout action in Cloudera Manager will send a single-logout request to the IDP.
• SAML authentication has been tested with specific configurations of CA Single Sign-On (formerly

SiteMinder) and Shibboleth. While SAML is a standard, there is a great deal of variability in
configuration between different IDP products, so it is possible that other IDP implementations,
or other configurations of CA Single Sign-On and Shibboleth, may not interoperate with Cloudera
Manager.

• To bypass SSO if SAML configuration is incorrect or not working, you can login using a Cloudera
Manager local account using the URL: http://cm_host:7180/cmf/localLogin

Setting up Cloudera Manager to use SAML requires the following steps.

Preparing Files

You will need to prepare the following files and information, and provide these to Cloudera Manager:

• A Java keystore containing a private key for ClouderaManager to use to sign/encrypt SAMLmessages. For guidance
on creating Java keystores, see Creating Java Keystores and Truststores on page 224.

• The SAML metadata XML file from your IDP. This file must contain the public certificates needed to verify the
sign/encrypt key used by your IDP per the SAML Metadata Interoperability Profile. For example, if you are using
the Shibboleth IdP, the metadata file is available at: https://<IdPHOST>:8080/idp/shibboleth.

Note: For guidance on how to obtain the metadata XML file from your IDP, either contact your
IDP administrator or consult the documentation for the version of the IDP you are using.

• The entity ID that should be used to identify the Cloudera Manager instance
• How the user ID is passed in the SAML authentication response:

– As an attribute. If so, what identifier is used.
– As the NameID.

• The method by which the Cloudera Manager role will be established:

– From an attribute in the authentication response:

Cloudera Security | 55

Configuring Authentication

What identifier will be used for the attribute–
– What values will be passed to indicate each role

– From an external script that will be called for each use:

– The script takes user ID as $1
– The script sets an exit code to reflect successful authentication of the assigned role:

– 0 - Full Administrator
– 1 - Read-Only
– 2 - Limited Operator
– 3 - Operator
– 4 - Configurator
– 5 - Cluster Administrator
– 6 - BDR Administrator
– 7 - Navigator Administrator
– 8 - User Administrator
– 9 - Auditor
– 10 - Key Administrator

and a negative value is returned for a failure to authenticate.

Configuring Cloudera Manager

1. Select Administration > Settings.
2. In the left-hand column, select the External Authentication category.
3. Set the External Authentication Type property to SAML (the Authentication Backend Order property is ignored

for SAML).
4. Set the Path to SAML IDP Metadata File property to point to the IDP metadata file.
5. Set the Path to SAML Keystore File property to point to the Java keystore prepared earlier.
6. In the SAML Keystore Password property, set the keystore password.
7. In the Alias of SAML Sign/Encrypt Private Key property, set the alias used to identify the private key for Cloudera

Manager to use.
8. In the SAML Sign/Encrypt Private Key Password property, set the private key password.
9. Set the SAML Entity ID property if:

• There is more than one Cloudera Manager instance being used with the same IDP (each instance needs a
different entity ID).

• Entity IDs are assigned by organizational policy.

10. In the Source of User ID in SAML Response property, set whether the user ID will be obtained from an attribute
or the NameID.

If an attribute will be used, set the attribute name in the SAML attribute identifier for user ID property. The
default value is the normal OID used for user IDs and so may not need to be changed.

11. In the SAMLRole assignmentmechanism property, set whether the role assignmentwill be done from an attribute
or an external script.

• If an attribute will be used:

– In the SAML attribute identifier for user role property, set the attribute name if necessary. The default
value is the normal OID used for OrganizationalUnits and so may not need to be changed.

– In the SAML Attribute Values for Roles property, set which attribute values will be used to indicate the
user role.

56 | Cloudera Security

Configuring Authentication

• If an external script will be used, set the path to that script in the Path to SAML Role Assignment Script
property. Make sure that the script is executable (an executable binary is fine - it doesn’t need to be a shell
script).

12. Save the changes. Cloudera Manager will run a set of validations that ensure it can find the metadata XML and
the keystore, and that the passwords are correct. If you see a validation error, correct the problem before
proceeding.

13. Restart the Cloudera Manager Server.

Configuring the IDP

After the Cloudera Manager Server is restarted, it will attempt to redirect to the IDP login page instead of showing the
normal CM page. This may or may not succeed, depending on how the IDP is configured. In either case, the IDP will
need to be configured to recognize CM before authentication will actually succeed. The details of this process are
specific to each IDP implementation - refer to your IDP documentation for details. If you are using the Shibboleth IdP,
information on configuring the IdP to communicate with a Service Provider is available here.

1. Download the Cloudera Manager’s SAML metadata XML file from http://hostname:7180/saml/metadata.
2. Inspect the metadata file and ensure that any URLs contained in the file can be resolved by users’ web browsers.

The IDP will redirect web browsers to these URLs at various points in the process. If the browser cannot resolve
them, authentication will fail. If the URLs are incorrect, you can manually fix the XML file or set the Entity Base
URL in the CM configuration to the right value, and then re-download the file.

3. Provide this metadata file to your IDP using whatever mechanism your IDP provides.
4. Ensure that the IDP has access to whatever public certificates are necessary to validate the private key that was

provided to Cloudera Manager earlier.
5. Ensure that the IDP is configured to provide the User ID and Role using the attribute names that ClouderaManager

was configured to expect, if relevant.
6. Ensure the changes to the IDP configuration have taken effect (a restart may be necessary).

Verifying Authentication and Authorization

1. Return to the Cloudera Manager Admin Console and refresh the login page.
2. Attempt to log in with credentials for a user that is entitled. The authentication should complete and you should

see the Home > Status tab.
3. If authentication fails, you will see an IDP provided error message. Cloudera Manager is not involved in this part

of the process, and you must ensure the IDP is working correctly to complete the authentication.
4. If authentication succeeds but the user is not authorized to use Cloudera Manager, they will be taken to an error

page by Cloudera Manager that explains the situation. If an user who should be authorized sees this error, then
you will need to verify their role configuration, and ensure that it is being properly communicated to Cloudera
Manager, whether by attribute or external script. The Cloudera Manager log will provide details on failures to
establish a user’s role. If any errors occur during role mapping, Cloudera Manager will assume the user is
unauthorized.

Kerberos Concepts - Principals, Keytabs and Delegation Tokens

This section describes howHadoop uses Kerberos principals and keytabs for user authentication. It also briefly describes
how Hadoop uses delegation tokens to authenticate jobs at execution time, to avoid overwhelming the KDC with
authentication requests for each job.

Kerberos Principals

A user in Kerberos is called a principal, which is made up of three distinct components: the primary, instance, and
realm. A Kerberos principal is used in a Kerberos-secured system to represent a unique identity. The first component
of the principal is called the primary, or sometimes the user component. The primary component is an arbitrary string
and may be the operating system username of the user or the name of a service. The primary component is followed
by an optional section called the instance, which is used to create principals that are used by users in special roles or
to define the host on which a service runs, for example. An instance, if it exists, is separated from the primary by a
slash and then the content is used to disambiguate multiple principals for a single user or service. The final component
of the principal is the realm. The realm is similar to a domain in DNS in that it logically defines a related group of objects,

Cloudera Security | 57

Configuring Authentication

https://wiki.shibboleth.net/confluence/display/SHIB2/IdPConfiguration

although rather than hostnames as in DNS, the Kerberos realm defines a group of principals . Each realm can have its
own settings including the location of the KDC on the network and supported encryption algorithms. Large organizations
commonly create distinct realms to delegate administration of a realm to a group within the enterprise. Realms, by
convention, are written in uppercase characters.

Kerberos assigns tickets to Kerberos principals to enable them to access Kerberos-secured Hadoop services. For the
Hadoop daemon principals, the principal names should be of the format
service/fully.qualified.domain.name@YOUR-REALM.COM. Here, service in the
service/fully.qualified.domain.name@YOUR-REALM.COM principal refers to the username of an existing Unix
account that is used by Hadoop daemons, such as hdfs or mapred.

Human users who want to access the Hadoop cluster also need to have Kerberos principals of the format,
username@YOUR-REALM.COM; in this case, username refers to the username of the user's Unix account, such as joe
or jane. Single-component principal names (such as joe@YOUR-REALM.COM) are typical for client user accounts.
Hadoop does not support more than two-component principal names.

Kerberos Keytabs

A keytab is a file containing pairs of Kerberos principals and an encrypted copy of that principal's key. A keytab file for
a Hadoop daemon is unique to each host since the principal names include the hostname. This file is used to authenticate
a principal on a host to Kerberos without human interaction or storing a password in a plain text file. Because having
access to the keytab file for a principal allows one to act as that principal, access to the keytab files should be tightly
secured. They should be readable by a minimal set of users, should be stored on local disk, and should not be included
in host backups, unless access to those backups is as secure as access to the local host.

Delegation Tokens

Users in a Hadoop cluster authenticate themselves to the NameNode using their Kerberos credentials. However, once
the user is authenticated, each job subsequently submitted must also be checked to ensure it comes from an
authenticated user. Since there could be a time gap between a job being submitted and the job being executed, during
which the user could have logged off, user credentials are passed to the NameNode using delegation tokens that can
be used for authentication in the future.

Delegation tokens are a secret key shared with the NameNode, that can be used to impersonate a user to get a job
executed. While these tokens can be renewed, new tokens can only be obtained by clients authenticating to the
NameNode using Kerberos credentials. By default, delegation tokens are only valid for a day. However, since jobs can
last longer than a day, each token specifies a NodeManager as a renewer which is allowed to renew the delegation
token once a day, until the job completes, or for a maximum period of 7 days. When the job is complete, the
NodeManager requests the NameNode to cancel the delegation token.

Token Format

The NameNode uses a random masterKey to generate delegation tokens. All active tokens are stored in memory with
their expiry date (maxDate). Delegation tokens can either expire when the current time exceeds the expiry date, or,
they can be canceled by the owner of the token. Expired or canceled tokens are then deleted from memory. The
sequenceNumber serves as a unique ID for the tokens. The following section describes how the Delegation Token is
used for authentication.

TokenID = {ownerID, renewerID, issueDate, maxDate, sequenceNumber}
TokenAuthenticator = HMAC-SHA1(masterKey, TokenID)
Delegation Token = {TokenID, TokenAuthenticator}

Authentication Process

To begin the authentication process, the client first sends the TokenID to the NameNode. The NameNode uses this
TokenID and the masterKey to once again generate the corresponding TokenAuthenticator, and consequently, the
Delegation Token. If the NameNode finds that the token already exists in memory, and that the current time is less
than the expiry date (maxDate) of the token, then the token is considered valid. If valid, the client and the NameNode
will then authenticate each other by using the TokenAuthenticator that they possess as the secret key, and MD5 as

58 | Cloudera Security

Configuring Authentication

the protocol. Since the client and NameNode do not actually exchange TokenAuthenticators during the process, even
if authentication fails, the tokens are not compromised.

Token Renewal

Delegation tokens must be renewed periodically by the designated renewer (renewerID). For example, if a
NodeManager is the designated renewer, the NodeManager will first authenticate itself to the NameNode. It will then
send the token to be authenticated to the NameNode. The NameNode verifies the following information before
renewing the token:

• The NodeManager requesting renewal is the same as the one identified in the token by renewerID.
• The TokenAuthenticator generated by the NameNode using the TokenID and the masterKeymatches the one

previously stored by the NameNode.
• The current time must be less than the time specified by maxDate.

If the token renewal request is successful, the NameNode sets the new expiry date to min(current time+renew
period, maxDate). If the NameNode was restarted at any time, it will have lost all previous tokens from memory.
In this case, the tokenwill be saved tomemory once again, this timewith a newexpiry date. Hence, designated renewers
must renew all tokens with the NameNode after a restart, and before relaunching any failed tasks.

A designated renewer can also revive an expired or canceled token as long as the current time does not exceedmaxDate.
The NameNode cannot tell the difference between a token that was canceled, or has expired, and one that was erased
from memory due to a restart, since only the masterKey persists in memory. The masterKeymust be updated
regularly.

Enabling Kerberos Authentication Using the Wizard

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

Important: Ensure you have secured communication between the Cloudera Manager Server and
Agents before you enable Kerberos on your cluster. Kerberos keytabs are sent from the Cloudera
Manager Server to the Agents, and must be encrypted to prevent potential misuse of leaked keytabs.
For instructions on securing this transfer with TLS encryption, see How to Configure TLS Encryption
for Cloudera Manager on page 40.

This guide describes how to use Cloudera Manager and the Kerberos wizard (introduced in Cloudera Manager 5.1.0)
to automate many of the manual tasks of implementing Kerberos security on your CDH cluster.

• Prerequisites - These instructions assume you know how to install and configure Kerberos, you already have a
working Kerberos key distribution center (KDC) and realm setup, and that you've installed the following Kerberos
client packages on all cluster hosts and hosts that will be used to access the cluster, depending on the OS in use.

Packages RequiredOS

RHEL 7 Compatible, RHEL
6 Compatible, RHEL 5
Compatible

• openldap-clients on the Cloudera Manager Server host
• krb5-workstation, krb5-libs on ALL hosts

SLES • openldap2-client on the Cloudera Manager Server host
• krb5-client on ALL hosts

Ubuntu or Debian • ldap-utils on the Cloudera Manager Server host
• krb5-user on ALL hosts

Windows • krb5-workstation, krb5-libs on ALL hosts

Furthermore, Oozie andHue require that the realm support renewable tickets. ClouderaManager supports setting
up kerberized clusters with MIT KDC and Active Directory.

Cloudera Security | 59

Configuring Authentication

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/using_kerberos
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/sect-security_guide-kerberos
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/sect-security_guide-kerberos
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/deployment_guide/ch-kerberos
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/deployment_guide/ch-kerberos
https://www.suse.com/documentation/sles11/singlehtml/book_security/book_security.html
https://help.ubuntu.com/community/Kerberos
http://technet.microsoft.com/en-us/library/bb742433.aspx#EDAA

Important: If you want to integrate Kerberos directly with Active Directory, ensure you have
support from your AD administration team to do so. This includes any future support required
to troubleshoot issues such as Kerberos TGT/TGS ticket renewal, access to KDC logs for debugging
and so on.

For more information about using an Active Directory KDC, refer the section on Direct to Active Directory on page
20 and the Microsoft AD documentation.

For more information about installing and configuring MIT KDC, see:

• MIT Kerberos Home
• MIT Kerberos Documentation

• Cloudera supports the Kerberos version that shipswith each supported operating system listed in CDH and Cloudera
Manager Supported Operating Systems.

Step 1: Install Cloudera Manager and CDH

If you have not already done so, Cloudera strongly recommends that you install and configure the Cloudera Manager
Server and Cloudera Manager Agents and CDH to set up a fully-functional CDH cluster before you begin doing the
following steps to implement Hadoop security features.

Overview of the User Accounts and Groups in CDH and Cloudera Manager to Support Security

User Accounts and Groups in CDH and Cloudera Manager Required to Support Security:

When you install the CDH packages and the Cloudera Manager Agents on your cluster hosts, Cloudera Manager takes
some steps to provide system security such as creating the following Unix accounts and setting directory permissions
as shown in the following table. TheseUnix accounts and directory permissionsworkwith the Hadoop Kerberos security
requirements.

Note: Cloudera Manager 5.3 introduces a new single user mode. In single user mode, the Cloudera
Manager Agent and all the processes run by services managed by Cloudera Manager are started as a
single configured user and group. See Configuring Single User Mode for more information.

Runs These RolesThis User

NameNode, DataNodes, and Secondary Nodehdfs

JobTracker and TaskTrackers (MR1) and Job History Server (YARN)mapred

ResourceManager and NodeManagers (YARN)yarn

Oozie Serveroozie

Hue Server, Beeswax Server, Authorization Manager, and Job Designerhue

The hdfs user also acts as the HDFS superuser.

When you install the Cloudera Manager Server on the server host, a new Unix user account called cloudera-scm is
created automatically to support security. The Cloudera Manager Server uses this account to create host principals
and deploy the keytabs on your cluster.

Depending on whether you installed CDH and Cloudera Manager at the same time or not, use one of the following
sections for information on configuring directory ownerships on cluster hosts:

If you installed CDH and Cloudera Manager at the Same Time

If you have a new installation and you installed CDH and Cloudera Manager at the same time, when you started the
Cloudera Manager Agents on your cluster hosts, the Cloudera Manager Agent on each host automatically configured
the directory owners shown in the following table to support security. Assuming the owners are configured as shown,

60 | Cloudera Security

Configuring Authentication

https://technet.microsoft.com/en-us/library/bb742516.aspx
http://web.mit.edu/Kerberos
http://web.mit.edu/Kerberos/krb5-1.8/

the Hadoop daemons can then automatically set the permissions for each of the directories specified by the properties
shown below to make sure they are properly restricted. It's critical that the owners are configured exactly as shown
below, so do not change them:

OwnerDirectory Specified in this Property

hdfs:hadoopdfs.name.dir

hdfs:hadoopdfs.data.dir

mapred:hadoopmapred.local.dir

mapred:hadoopmapred.system.dir in HDFS

yarn:yarnyarn.nodemanager.local-dirs

yarn:yarnyarn.nodemanager.log-dirs

oozie:oozieoozie.service.StoreService.jdbc.url (if using
Derby)

hue:hue[[database]] name

hue:huejavax.jdo.option.ConnectionURL

If you Installed and Used CDH Before Installing Cloudera Manager

If you have been using HDFS and runningMapReduce jobs in an existing installation of CDHbefore you installed Cloudera
Manager, you must manually configure the owners of the directories shown in the table above. Doing so enables the
Hadoop daemons to automatically set the permissions for each of the directories. It's critical that youmanually configure
the owners exactly as shown above.

Step 2: If You are Using AES-256 Encryption, Install the JCE Policy File

If you are using CentOS or Red Hat Enterprise Linux 5.5 or higher, which use AES-256 encryption by default for tickets,
you must install the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy File on all cluster and
Hadoop user hosts. There are 2 ways to do this:

• In the Cloudera Manager Admin Console, navigate to the Hosts page. Both, the Add New Hosts to Cluster wizard
and the Re-run Upgrade Wizard will give you the option to have Cloudera Manager install the JCE Policy file for
you.

• You can follow the JCE Policy File installation instructions in the README.txt file included in the
jce_policy-x.zip file.

Alternatively, you can configure Kerberos to not use AES-256 by removing aes256-cts:normal from the
supported_enctypes field of the kdc.conf or krb5.conf file. Note that after changing the kdc.conf file, you'll
need to restart both the KDC and the kadmin server for those changes to take affect. You may also need to recreate
or change the password of the relevant principals, including potentially the Ticket Granting Ticket principal
(krbtgt/REALM@REALM). If AES-256 is still used after all of those steps, it's because the aes256-cts:normal setting
existed when the Kerberos database was created. To fix this, create a new Kerberos database and then restart both
the KDC and the kadmin server.

To verify the type of encryption used in your cluster:

1. For MIT KDC: On the local KDC host, type this command in the kadmin.local or kadmin shell to create a test
principal:

kadmin: addprinc test

For Active Directory: Create a new AD account with the name, test.

Cloudera Security | 61

Configuring Authentication

http://www.oracle.com/technetwork/java/javase/downloads/index.html

2. On a cluster host, type this command to start a Kerberos session as test:

$ kinit test

3. On a cluster host, type this command to view the encryption type in use:

$ klist -e

If AES is being used, output like the following is displayed after you type the klist command (note that AES-256
is included in the output):

Ticket cache: FILE:/tmp/krb5cc_0
Default principal: test@Cloudera Manager
Valid starting Expires Service principal
05/19/11 13:25:04 05/20/11 13:25:04 krbtgt/Cloudera Manager@Cloudera Manager
 Etype (skey, tkt): AES-256 CTS mode with 96-bit SHA-1 HMAC, AES-256 CTS mode with
96-bit SHA-1 HMAC

Step 3: Get or Create a Kerberos Principal for the Cloudera Manager Server

In order to create and deploy the host principals and keytabs on your cluster, the Cloudera Manager Server must have
the correct Kerberos principal. Specifically, the Cloudera Manager Server must have a Kerberos principal that has
privileges to create other accounts.

To get or create the Kerberos principal for the Cloudera Manager Server, you can do either of the following:

• Ask your Kerberos administrator to create a Kerberos administrator principal for the Cloudera Manager Server.
• Create the Kerberos principal for the Cloudera Manager Server yourself by using the following instructions in this

step.

If for some reason, you cannot create a Cloudera Manager administrator principal on your KDC with the privileges to
create other principals and keytabs for CDH services, then these will need to be created manually, and then retrieved
by Cloudera Manager. See, Using a Custom Kerberos Keytab Retrieval Script on page 74.

Creating the Cloudera Manager Principal

The following instructions illustrate an example of creating the Cloudera Manager Server principal for MIT KDC and
Active Directory KDC. (If you are using another version of Kerberos, refer to your Kerberos documentation for
instructions.)

If you are using Active Directory:

1. Create an Organizational Unit (OU) in your AD setup where all the principals used by your CDH cluster will reside.
2. Add a new user account to Active Directory, for example, <username>@YOUR-REALM.COM. The password for this

user should be set to never expire.
3. Use AD's Delegate Control wizard to allow this new user to Create, Delete and Manage User Accounts.

If you are using MIT KDC:
Typically, principals with the second component of admin in the principal name (for example,
username/admin@YOUR-LOCAL-REALM.com) have administrator privileges. This is why admin is shown in the
following example.

Note: If you are running kadmin and the Kerberos Key Distribution Center (KDC) on the same host,
use kadmin.local in the following steps. If the Kerberos KDC is running on a remote host, you must
use kadmin instead of kadmin.local.

62 | Cloudera Security

Configuring Authentication

In the kadmin.local or kadmin shell, type the following command to create the Cloudera Manager Server principal,
replacing YOUR-LOCAL-REALM.COM with the name of your realm:

kadmin: addprinc -pw <Password> cloudera-scm/admin@YOUR-LOCAL-REALM.COM

Step 4: Enabling Kerberos Using the Wizard

Minimum Required Role: Full Administrator

To start the Kerberos wizard:

1.
Go to the ClouderaManager Admin Console and click to the right of the cluster for which you want to enable
Kerberos authentication.

2. Select Enable Kerberos.

Before you Begin Using the Wizard

The Welcome page lists the following action items that you should complete before you begin to secure the cluster
using this wizard:

• Set up a working KDC. Cloudera Manager supports authentication with MIT KDC and Active Directory.
• Configure the KDC to allow renewable tickets with non-zero ticket lifetimes.

Active Directory allows renewable tickets with non-zero lifetimes by default. You can verify this by checkingDomain
Security Settings > Account Policies > Kerberos Policy in Active Directory.

For MIT KDC, make sure you have the following lines in the kdc.conf.

max_life = 1d
max_renewable_life = 7d

• If you are using Active Directory, make sure LDAP over TLS/SSL (LDAPS) is enabled for the Domain Controllers.
• Install the following packages on your cluster depending on the OS in use.

Packages RequiredOS

RHEL 7 Compatible, RHEL
6 Compatible, RHEL 5
Compatible

• openldap-clients on the Cloudera Manager Server host
• krb5-workstation, krb5-libs on ALL hosts

SLES • openldap2-client on the Cloudera Manager Server host
• krb5-client on ALL hosts

Ubuntu or Debian • ldap-utils on the Cloudera Manager Server host
• krb5-user on ALL hosts

Windows • krb5-workstation, krb5-libs on ALL hosts

• Create an account for ClouderaManager that has the permissions to create other accounts in the KDC. This should
have been completed as part of Step 3: Get or Create a Kerberos Principal for the Cloudera Manager Server on
page 62.

Cloudera Security | 63

Configuring Authentication

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/using_kerberos
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/sect-security_guide-kerberos
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/sect-security_guide-kerberos
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/deployment_guide/ch-kerberos
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/deployment_guide/ch-kerberos
https://www.suse.com/documentation/sles11/singlehtml/book_security/book_security.html
https://help.ubuntu.com/community/Kerberos
http://technet.microsoft.com/en-us/library/bb742433.aspx#EDAA

Important:

If you have enabled YARN Resource Manager HA in your non-secure cluster, you should clear the
StateStore znode in ZooKeeper before enabling Kerberos. To do this:

1. Go to the Cloudera Manager Admin Console home page, click to the right of the YARN service
and select Stop.

2. When you see a Finished status, the service has stopped.
3. Go to the YARN service and select Actions > Format State Store.
4. When the command completes, click Close.

Once you are able to check all the items on this list, click Continue.

KDC Information

On this page, select the KDC type you are using, MIT KDC or Active Directory, and complete the fields as applicable to
enable Cloudera Manager to generate principals/accounts for the CDH services running on the cluster.

Note:

• If you are using AD and havemultiple Domain Controllers behind a Load Balancer, enter the name
of the Load Balancer in the KDC Server Host field and any one of the Domain Controllers inActive
Directory Domain Controller Override. Hadoop daemons will use the Load Balancer for
authentication, but Cloudera Manager will use the override for creating accounts.

• If you have multiple Domain Controllers (in case of AD) or MIT KDC servers, only enter the name
of any one of them in the KDC Server Host field. Cloudera Manager will use that server only for
creating accounts. If you choose to use ClouderaManager tomanage krb5.conf, you can specify
the rest of the Domain Controllers using Safety Valve as explained below.

• Make sure the entries for the Kerberos Encryption Types field matches what your KDC supports.
• If you are using an Active Directory KDC, you can configure Active Directory account properties

such as objectClass and accountExpires directly from the Cloudera Manager UI. You can
also enable Cloudera Manager to delete existing AD accounts so that new ones can be created
when Kerberos credentials are being regenerated. See Managing Active Directory Account
Properties on page 72.

Click Continue to proceed.

KRB5 Configuration

Manage krb5.conf through Cloudera Manager allows you to choose whether Cloudera Manager should deploy the
krb5.conf on your cluster or not. If left unchecked, you must ensure that the krb5.conf is deployed on all hosts in
the cluster, including the Cloudera Manager Server's host.

If you checkManage krb5.conf through Cloudera Manager, this page will let you configure the properties that will be
emitted in it. In particular, the safety valves on this page can be used to configure cross-realm authentication. More
information can be found at Configuring a Cluster-dedicated MIT KDC with Cross-Realm Trust on page 191.

Note: Cloudera Manager is unable to use a non-default realm. You must specify the default realm.

Click Continue to proceed.

Import KDC Account Manager Credentials

Enter the username and password for the user that can create principals for CDH cluster in the KDC. This is the
user/principal you created in Step 3: Get or Create a Kerberos Principal for the Cloudera Manager Server on page 62.
Cloudera Manager encrypts the username and password into a keytab and uses it as needed to create new principals.

64 | Cloudera Security

Configuring Authentication

Note: The username entered should have the realm portion in upper-case only as shown in the
example in the UI.

Click Continue to proceed.

(Optional) Configuring Custom Kerberos Principals

Starting with Cloudera Manager 5.4, you can configure custom service principals for CDH services. Before you begin
making configuration changes, see Configuring a Clusterwith CustomKerberos Principals on page 70 for some additional
configuration changes required and limitations.

Configure HDFS DataNode Ports

On this page, specify the privileged ports needed by the DataNode's Transceiver Protocol and the HTTP Web UI in a
secure cluster.

Use the checkbox to confirm you are ready to restart the cluster. Click Continue.

Enabling Kerberos

This page lets you track the progress made by the wizard as it first stops all services on your cluster, deploys the
krb5.conf, generates keytabs for other CDH services, deploys client configuration and finally restarts all services.
Click Continue.

Congratulations

The final page lists the cluster(s) for which Kerberos has been successfully enabled. Click Finish to return to the Cloudera
Manager Admin Console home page.

Step 5: Create the HDFS Superuser

To be able to create homedirectories for users, youwill need access to theHDFS superuser account. (CDH automatically
created the HDFS superuser account on each cluster host during CDH installation.) When you enabled Kerberos for
the HDFS service, you lost access to the default HDFS superuser account using sudo -u hdfs commands. Cloudera
recommends you use a different user account as the superuser, not the default hdfs account.

Designating a Non-Default Superuser Group

To designate a different group of superusers instead of using the default hdfs account, follow these steps:

1. Go to the Cloudera Manager Admin Console and navigate to the HDFS service.
2. Click the Configuration tab.
3. Select Scope > HDFS (Service-Wide).
4. Select Category > Security.
5. Locate the Superuser Group property and change the value to the appropriate group name for your environment.

For example, <superuser>.
6. Click Save Changes to commit the changes.
7. Restart the HDFS service.

To enable your access to the superuser account now that Kerberos is enabled, you must now create a Kerberos
principal or an Active Directory user whose first component is <superuser>:

If you are using Active Directory
Add a new user account to Active Directory, <superuser>@YOUR-REALM.COM. The password for this account should
be set to never expire.

Cloudera Security | 65

Configuring Authentication

If you are using MIT KDC

1. In the kadmin.local or kadmin shell, type the following command to create a Kerberos principal called
<superuser>:

kadmin: addprinc <superuser>@YOUR-LOCAL-REALM.COM

This command prompts you to create a password for the <superuser> principal. You should use a strong password
because having access to this principal provides superuser access to all of the files in HDFS.

2. To run commands as the HDFS superuser, you must obtain Kerberos credentials for the <superuser> principal. To
do so, run the following command and provide the appropriate password when prompted.

$ kinit <superuser>@YOUR-LOCAL-REALM.COM

Step 6: Get or Create a Kerberos Principal for Each User Account

Now that Kerberos is configured and enabled on your cluster, you and every other Hadoop user must have a Kerberos
principal or keytab to obtain Kerberos credentials to be allowed to access the cluster and use the Hadoop services. In
the next step of this procedure, you will need to create your own Kerberos principals to verify that Kerberos security
is working on your cluster. If you and the other Hadoop users already have a Kerberos principal or keytab, or if your
Kerberos administrator can provide them, you can skip ahead to the next step.

The following instructions explain how to create a Kerberos principal for a user account.

If you are using Active Directory

Add a new AD user account for each new user that should have access to the cluster. You do not need to make any
changes to existing user accounts.

If you are using MIT KDC

1. In the kadmin.local or kadmin shell, use the following command to create user principals by replacing
YOUR-LOCAL-REALM.COM with the name of your realm, and replacing USERNAME with a username:

kadmin: addprinc USERNAME@YOUR-LOCAL-REALM.COM

2. Enter and re-enter a password when prompted.

Step 7: Prepare the Cluster for Each User

Before you and other users can access the cluster, there are a few tasks you must do to prepare the hosts for each
user.

1. Make sure all hosts in the cluster have a Linux user account with the same name as the first component of that
user's principal name. For example, the Linux account joe should exist on every box if the user's principal name
is joe@YOUR-REALM.COM. You can use LDAP for this step if it is available in your organization.

Note: Each account must have a user ID that is greater than or equal to 1000. In the
/etc/hadoop/conf/taskcontroller.cfg file, the default setting for the banned.users
property is mapred, hdfs, and bin to prevent jobs from being submitted using those user
accounts. The default setting for the min.user.id property is 1000 to prevent jobs from being
submitted with a user ID less than 1000, which are conventionally Unix super users.

2. Create a subdirectory under /user on HDFS for each user account (for example, /user/joe). Change the owner
and group of that directory to be the user.

$ hadoop fs -mkdir /user/joe
$ hadoop fs -chown joe /user/joe

66 | Cloudera Security

Configuring Authentication

Note: sudo -u hdfs is not included in the commands above. This is because it is not required if
Kerberos is enabled on your cluster. You will, however, need to have Kerberos credentials for the
HDFS super user to successfully run these commands. For information on gaining access to the HDFS
super user account, see Step 13: Create the HDFS Superuser Principal on page 85

Step 8: Verify that Kerberos Security is Working

After you have Kerberos credentials, you can verify that Kerberos security is working on your cluster by trying to run
MapReduce jobs. To confirm, try launching a sleep or a pi job from the provided Hadoop examples
(/usr/lib/hadoop/hadoop-examples.jar).

Note:

This section assumes you have a fully-functional CDH cluster and you have been able to access HDFS
and run MapReduce jobs before you followed these instructions to configure and enable Kerberos
on your cluster. If you have not already done so, you should at a minimum use the Cloudera Manager
Admin Console to generate a client configuration file to enable you to access the cluster. For
instructions, see Deploying Client Configuration Files.

To verify that Kerberos security is working:

1. Acquire Kerberos credentials for your user account.

$ kinit USERNAME@YOUR-LOCAL-REALM.COM

2. Enter a password when prompted.
3. Submit a sample pi calculation as a test MapReduce job. Use the following command if you use a package-based

setup for Cloudera Manager:

$ hadoop jar /usr/lib/hadoop-0.20-mapreduce/hadoop-examples.jar pi 10 10000
Number of Maps = 10
Samples per Map = 10000
...
Job Finished in 38.572 seconds
Estimated value of Pi is 3.14120000000000000000

If you have a parcel-based setup, use the following command instead:

$ hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-0.20-mapreduce/hadoop-examples.jar pi
 10 10000
Number of Maps = 10
Samples per Map = 10000
...
Job Finished in 30.958 seconds
Estimated value of Pi is 3.14120000000000000000

You have now verified that Kerberos security is working on your cluster.

Cloudera Security | 67

Configuring Authentication

Important:

Running a MapReduce job will fail if you do not have a valid Kerberos ticket in your credentials cache.
You can examine the Kerberos tickets currently in your credentials cache by running the klist
command. You can obtain a ticket by running the kinit command and either specifying a keytab file
containing credentials, or entering the password for your principal. If you do not have a valid ticket,
you will receive an error such as:

11/01/04 12:08:12 WARN ipc.Client:
Exception encountered while connecting to the server :
javax.security.sasl.SaslException:GSS initiate failed
[Caused by GSSException: No valid credentials provided (Mechanism level:
 Failed to find any
Kerberos tgt)]
Bad connection to FS. command aborted. exception: Call to
nn-host/10.0.0.2:8020 failed on local exception:
java.io.IOException:javax.security.sasl.SaslException: GSS initiate
failed
[Caused by GSSException: No valid credentials provided
(Mechanism level: Failed to find any Kerberos tgt)]

Step 9: (Optional) Enable Authentication for HTTP Web Consoles for Hadoop Roles

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Authentication for access to the HDFS,MapReduce, and YARN roles' web consoles can be enabled using a configuration
option for the appropriate service. To enable this authentication:

1. From the Clusters tab, select the service (HDFS,MapReduce, or YARN) forwhich youwant to enable authentication.
2. Click the Configuration tab.
3. Select Scope > service name Service-Wide.
4. Select Category > Security.
5. Type Enable Kerberos in the Search box.
6. Select Enable Kerberos Authentication for HTTP Web-Consoles.
7. Click Save Changes to commit the changes.
8. When the command finishes, restart all roles of that service.

Enabling SPNEGO as an Authentication Backend for Hue

1. In Cloudera Manager, set the authentication backend to SpnegoDjangoBackend.

a. Go to the Cloudera Manager Admin Console. From the Clusters tab, select the Hue service.
b. Click the Configuration tab.
c. Select Scope > Service-Wide.
d. Select Category > Security.
e. Locate theAuthenticationBackendproperty and selectdesktop.auth.backend.SpnegoDjangoBackend.
f. Click Save Changes.

2. Restart the Hue service.
3. On the host running the Hue Kerberos Ticket Renewer, switch to the KT_RENEWER process directory. For example:

cd /var/run/cloudera-scm-agent/process/`ls -lrt /var/run/cloudera-scm-agent/process/
 \
| awk '{print $9}' |grep KT_RENEWER| tail -1`/

4. Verify that the Hue keytab includes the HTTP principal.

klist -kte ./hue.keytab

68 | Cloudera Security

Configuring Authentication

Keytab name: FILE:./hue.keytab
KVNO Timestamp Principal
---- ----------------- --
1 03/09/15 20:20:35 hue/host-10-16-8-168.openstacklocal@EXAMPLE.CLOUDERA.COM
(aes128-cts-hmac-sha1-96)
1 03/09/15 20:20:36 HTTP/host-10-16-8-168.openstacklocal@EXAMPLE.CLOUDERA.COM
(aes128-cts-hmac-sha1-96)

5. Copy the hue.keytab file to /var/lib/hue and change ownership to the hue user and group.

$ cp ./hue.keytab /var/lib/hue/
$ chown hue:hue /var/lib/hue/hue.keytab

6. Go to the Cloudera Manager Admin Console. From the Clusters tab, select the Hue service.
7. Click the Configuration tab.
8. Select Scope > Service-Wide.
9. Select Category > Advanced.
10. Locate the Hue Service Environment Advanced Configuration Snippet (Safety Valve) property and add the

following line:

KRB5_KTNAME=/var/lib/hue/hue.keytab

11. Click Save Changes to commit the changes.
12. Restart the Hue service.

Enabling Kerberos Authentication for Single User Mode or Non-Default Users

The steps described in this topic are only applicable in the following cases:

• You are running the Cloudera Manager in the single user mode. In this case, configure all the services described
in the table below.

OR

• You are running one or more CDH services with non-default users. This means if you have modified the default
value for the System User property for any service in Cloudera Manager, you must only perform the command
(as described below) corresponding to that service, to be able to successfully run jobs with the non-default user.

Configure the mapred.system.dir directory to be owned by the mapred user.

sudo -u hdfs hadoop fs -chown mapred:hadoop
${mapred.system.dir}

MapReduce

By default, mapred.system.dir is /tmp/mapred/system.

Give the hbase user ownership of the HBase root directory:

sudo -u hdfs hadoop fs -chown -R hbase ${hbase.rootdir}

HBase

By default, hbase.rootdir is /hbase.

Give the hive user ownership of the /user/hive directory.

sudo -u hdfs hadoop fs -chown hive /user/hive

Hive

For every NodeManager host, for each path in yarn.nodemanager.local-dirs, run:

rm -rf ${yarn.nodemanager.local-dirs}/usercache/*

YARN

This removes the /usercache directory that contains intermediate data stored for
previous jobs.

Cloudera Security | 69

Configuring Authentication

Configuring a Cluster with Custom Kerberos Principals

By default, the Cloudera Manager Kerberos wizard configures CDH services to use the same Kerberos principals as the
default process users. For example, the hdfs principal for the HDFS service, and the hive principal for the Hive service.
The advantage to this is that when Kerberos is enabled, no HDFS directory permissions need to be changed for the
new principals. However, starting with Cloudera Manager 5.4, you can configure custom service principals for CDH
services.

Important Considerations

• Using different Kerberos principals for different services will make it easier to track the HDFS directories being
accessed by each service.

• If you are using ShellBasedUnixGroupsMapping to obtain user-group mappings, ensure you have the UNIX
accounts for the principals present on all hosts of the cluster.

Configuring Directory Permissions
Configure the following HDFS directories to give their corresponding custom service principals read, write and
execute permissions.

HDFS DirectoryService

Accumulo • HDFS Directory
• /user/principal

HBase Root DirectoryHBase

Hive • Hive Warehouse Directory
• /user/principal

/user/principalImpala

/tmp/mapredMapReduce v1

Oozie ShareLib Root DirectoryOozie

HDFS Data DirectorySolr

Spark on YARN • /user/principal

• Spark History Location
• Spark Jar Location

/user/principalSqoop2

Configuring CDH Services
The following services will require additional settings if you are using custom principals:

• HDFS - If you have enabled synchronization of HDFS and Sentry permissions, add the Hive and Impala principals
to the Sentry Authorization Provider Group property.

1. Go to the HDFS service.
2. Click Configuration.
3. Select Scope > HDFS Service-Wide.
4. Select Category > Security.
5. Locate the Sentry Authorization Provider Group property and add the custom Hive and Impala principals.
6. Click Save Changes.

• YARN - The principals used by YARN daemons should be part of hadoop group so that they are allowed to read
JobHistory Server data.

70 | Cloudera Security

Configuring Authentication

• Impala - If you are running the Hue service with a custom principal, configure Impala to allow the Hue principal
to impersonate other users.

1. Go to the Impala service.
2. Click Configuration.
3. Select Scope > Impala (Service-Wide).
4. Select Category > Policy File-Based Sentry.
5. Locate the Proxy User Configuration property and add the custom Hue principal.
6. Click Save Changes.

• Hive - If the Sentry service is enabled, allow the Kerberos principals used by Hive, Impala, Hue, HDFS and the
Service Monitor to bypass Sentry authorization in the Hive metastore.

1. Go to the Hive service.
2. Click Configuration.
3. Select Scope > Impala (Service-Wide).
4. Select Category > Policy File-Based Sentry.
5. Locate the Bypass Sentry Authorization Users property and add the custom Hive, Impala, Hue and HDFS

principals to the list.
6. Click Save Changes.

• Spark on YARN - The principal used by the Spark service should be part of the spark group.
• Sentry - Allow the Hive, Impala, Hue and HDFS principals to connect to the Sentry service.

1. Go to the Sentry service.
2. Click Configuration.
3. Search for theAllowed Connecting Users property and add the customHive, Impala, Hue andHDFS principals

to the list.
4. Search for the Admin Groups property and include the groups to which the Hive, Impala, and Hue principals

belong.
5. Click Save Changes.

• Cloudera Management Service - Configure the Reports Manager principal and the Navigator principal for HDFS
as HDFS superusers.

1. Go to the Cloudera Management Service.
2. Click Configuration.
3. Search for kerberos.
4. Locate the Reports Manager Kerberos Principal property and set it to a principal with administrative and

superuser privileges on all HDFS services.
5. Locate the Navigator Kerberos Principal for HDFS property and set it to a principal with administrative and

superuser privileges on all HDFS services.
6. Click Save Changes.

Incompatibilities
The following features do not work with custom principals:

• Llama must always use the default Kerberos principal llama.
• If you are using MapReduce v1, the Activity Monitor and Cloudera Navigator should use the same principal as the

Hue service.
• If you are using the Java KeyStore KMS or KeyTrustee KMS with a custom principal, you will need to add the proxy

user for the custom principal to the kms-site.xml safety valve.

For example, if you’ve replaced the default oozie principal with oozieprinc, add the
hadoop.kms.proxyuser.oozieprinc.groupsandhadoop.kms.proxyuser.oozieprinc.hostsproperties
to the kms-site.xml safety valve.

Cloudera Security | 71

Configuring Authentication

Managing Kerberos Credentials Using Cloudera Manager

Minimum Required Role: Full Administrator

As soon as you enable Hadoop secure authentication for HDFS and MapReduce service instances, Cloudera Manager
starts creating the Kerberos principals for each of the role instances. The amount of time this process will take depends
on the number of hosts and HDFS and MapReduce role instances on your cluster. The process can take from a few
seconds for a small cluster to several minutes for a larger cluster. After the process is completed, you can use the
Cloudera Manager Admin Console to view the list of Kerberos principals that Cloudera Manager has created for the
cluster. Make sure there are principals for each of the hosts and HDFS and MapReduce role instances on your cluster.
If there are no principals after 10 minutes, then there is most likely a problem with the principal creation. See the
Troubleshooting Authentication Issues on page 211 section for more information. If necessary, you can use Cloudera
Manager to regenerate the principals.

Important:

• Regenerate principals using the Cloudera Manager Admin Console only, and not directly using
kadmin shell.

• Do not regenerate the principals for your cluster unless you have made a global configuration
change, such as changing the encryption type.

• If you are using an MIT KDC, be sure to read Configuring a Cluster-dedicated MIT KDC with
Cross-Realm Trust on page 191 to avoid making your existing host keytabs invalid.

Managing Active Directory Account Properties

If you are using an Active Directory KDC, ClouderaManager 5.8 (and higher) will allow you to configure Active Directory
accounts and customize the credential regeneration process using the Cloudera Manager Admin Console. You can also
use ClouderaManager to configure the encryption types to be used by your Active Directory account. Once youmodify
any Active Directory account properties, you must regenerate Kerberos credentials to reflect those changes. The
credential regeneration process requires you to delete existing accounts before new ones are created.

By default, Cloudera Manager does not delete accounts in Active Directory. Hence, to regenerate Kerberos principals
contained in Active Directory, you need tomanually delete the existing Active Directory accounts. You can either delete
and regenerate all existing Active Directory accounts, or only delete those with the userPrincipalName (or login name)
that you will later manually select for regeneration. If the accounts haven't already been deleted manually, the
regeneration process will throw an error message saying that deletion of accounts is required before you proceed.

Modifying Active Directory Account Properties Using Cloudera Manager

If you are using an Active Directory KDC, you can configure Active Directory account properties such as objectClass
and accountExpires directly from the Cloudera Manager Admin Console. Any changes to these properties will be
reflected in the regenerated Kerberos credentials. To configure AD account properties:

1. Go to the Cloudera Manager Admin Console and click the Administration tab.
2. Select Administration > Settings.
3. Click the Kerberos category.
4. Locate the Active Directory Account Properties and edit as required. By default, the property will be set to:

accountExpires=0,objectClass=top,objectClass=person,objectClass=organizationalPerson,objectClass=user

5. Locate the Active Directory Password Properties and edit the field as needed. By default, the property will be set
to:

length=12,minLowerCaseLetters=2,minUpperCaseLetters=2,minDigits=2,minSpaces=0,minSpecialChars=0,specialChars=?.!$%̂ *()-_+=~

6. Click Save Changes to commit the changes.
7. Regenerate Kerberos credentials with the new properties.

72 | Cloudera Security

Configuring Authentication

Enabling Credential Regeneration for Active Directory Accounts Using Cloudera Manager

To avoid having to delete accounts manually, use the following steps to set the Active Directory Delete Accounts on
Credential Regeneration property to allow ClouderaManager to automatically delete existing Active Directory accounts
when new ones are created during regeneration. If this property is left unchecked (which is the default), Cloudera
Manager will not be able to regenerate credentials automatically.

1. Go to the Cloudera Manager Admin Console and click the Administration tab.
2. Select Administration > Settings.
3. Click the Kerberos category.
4. Locate the Active Directory Delete Accounts on Credential Regeneration and check this property.
5. Click Save Changes to commit the changes.

Configuring Encryption Types for Active Directory KDC Using Cloudera Manager

Cloudera Manager allows you to configure the encryption types (or enctype) used by an Active Directory KDC to
protect its data. Cloudera supports the following encryption types:

• rc4-hmac

• aes128-cts

• aes256-cts

• des-cbc-crc

• des-cbc-md5

To configure encryption types for an Active Directory KDC:

1. Go to the Cloudera Manager Admin Console and click the Administration tab.
2. Select Administration > Settings.
3. Click the Kerberos category.
4. Locate the Kerberos Encryption Types and click to add the encryption types you want Active Directory to use.

Make sure they are on Cloudera's list of supported enctypes.
5. Check the checkbox for theActive Directory Set Encryption Types property. This will automatically set the Cloudera

Manager AD account to use the encryption types configured in the previous step.
6. Click Save Changes to commit the changes.

Moving Kerberos Principals to Another OU Within Active Directory

If you have a Kerberized cluster configured with an Active Directory KDC, you can use the following steps to move the
Kerberos principals from one AD Ogranizational Unit (OU) to another.

1. Create the new OU on the Active Directory Server.
2. Use AD's Delegate Control wizard to set the permissions on the newOU such that the configured ClouderaManager

admin account has the ability to Create, Delete and Manage User Accounts within this OU.
3. Stop the cluster.
4. Stop the Cloudera Management Service.
5. In Active Directory, move all the Cloudera Manager and CDH components' user accounts to the new OU.
6. Go to Cloudera Manager and go to Administration > Security.
7. Go to the Kerberos Credentials tab and click Configuration.
8. Select Scope > Settings.
9. Select Category > Kerberos.
10. Locate the Active Directory Suffix property and edit the value to reflect the new OU name.
11. Click Save Changes to commit the changes.

Viewing and Regenerating Kerberos Credentials Using Cloudera Manager (MIT and AD)

Use the following instructions to regenerate the principals for your cluster.

1. Select Administration > Security.

Cloudera Security | 73

Configuring Authentication

2. The currently configured Kerberos principals are displayed under the Kerberos Credentials tab. If you are running
HDFS, the hdfs/hostname and host/hostname principals are listed. If you are running MapReduce, the
mapred/hostname and host/hostname principals are listed. The principals for other running services are also
listed.

3. Only if necessary, select the principals you want to regenerate.
4. Click Regenerate.

Running the Security Inspector

The Security Inspector uses the Host Inspector to run a security-related set of commands on the hosts in your cluster.
It reports on matters such as how Java is configured for encryption and on the default realms configured on each host:

1. Select Administration > Security.
2. Click Security Inspector. Cloudera Manager begins several tasks to inspect the managed hosts.
3. After the inspection completes, click Download Result Data or Show Inspector Results to review the results.

Using a Custom Kerberos Keytab Retrieval Script

The Cloudera Manager Kerberos setup procedure requires you to create an administrator account for the Cloudera
Manager user. Cloudera Manager then connects to your KDC and uses this admin account to generate principals and
keytabs for the remaining CDH services. If for some reason, you cannot create a Cloudera Manager administrator
account on your KDC with the privileges to create other principals and keytabs for CDH services, then these will need
to be created manually.

Cloudera Manager gives you the option to use a custom script to retrieve keytabs from the local filesystem. To use a
custom Kerberos keytab retrieval script:

1. The KDC administrators should create the required principals and keytabs, and store them securely on the Cloudera
Manager Server host.

2. Create the keytab retrieval script. Your script should take two arguments: a full principal name for which it should
retrieve a keytab, and a destination towhich it canwrite the keytab. The scriptmust be executable by the Cloudera
Manager admin user, cloudera-scm. Depending on the principal name input by Cloudera Manager, the script
should locate the corresponding keytab on the Cloudera Manager Server host (stored in step 1), and copy it into
a location accessible to the cloudera-scm user. Here is a simple example:

#!/bin/bash

Cloudera Manager will input a destination path
DEST="$1"

Cloudera Manager will input the principal name in the format: <service>/<fqdn>@REALM
PRINC="$2"

Assuming the '<service>_<fqdn>@REALM.keytab' naming convention for keytab files
IN=$(echo $PRINC | sed -e 's/\//_/')
SRC="/keytabs/${IN}.keytab"

Copy the keytab to the destination input by Cloudera Manager
cp -v $SRC $DEST

Note that the script will change according to the keytab naming convention followed by your organization.

3. Configure the location for the script in Cloudera Manager:

a. Go to the Cloudera Manager Admin console.
b. Select Administration > Settings.
c. Select Category > Kerberos.
d. Locate the Custom Kerberos Keytab Retrieval Script and set it to point to the script created in step 2.
e. Click Save Changes to commit the changes.

74 | Cloudera Security

Configuring Authentication

4. Once the Custom Kerberos Keytab Retrieval Script property is set, whenever Cloudera Manager needs a keytab,
it will ignore all other Kerberos configuration and run the keytab retrieval script to copy the required keytab to
the desired destination.

5. Cloudera Manager can now distribute the keytab to the services that need access to it.

Note: The ClouderaNavigatorweb server accesses HDFS andHue using the keytabs corresponding
to those principals; however the custom script does not move these additional keytabs to the
Navigator Metadata Server. To complete the setup for Navigator, move keytabs for HDFS and
Hue principals to the Navigator home directory on the Navigator Metadata Server host manually
(typically /var/lib/cloudera-scm-navigator).

Mapping Kerberos Principals to Short Names

Kerberos user principals typically have the format username@REALM, whereas Hadoop usernames are typically just
username. To translate Kerberos principals to Hadoop usernames, Hadoop uses rules defined in the
hadoop.security.auth_to_local property. The default setting strips the @REALM portion from the Kerberos
principal, where REALM is the Kerberos realm defined by the default_realm setting in the NameNode krb5.conf
file.

If you configure your cluster's Kerberos realm to trust other realms, such as a trust between your cluster's realm and
a central Active Directory or MIT Kerberos realm, you must identify the trusted realms in Cloudera Manager so it can
automatically generate the appropriate rules. If you do not do so, user accounts in those realms cannot access the
cluster.

To specify trusted realms using Cloudera Manager:

1. Go to the HDFS Service > Configuration tab.
2. Select Scope > HDFS (Service-Wide).
3. Select Category > Security.
4. In the Search field, type Kerberos Realms to find the Trusted Kerberos Realms and Additional Rules to Map

Kerberos Principals to Short Names settings.
5. Add realms that are trusted by the cluster's Kerberos realm. Realm names, including Active Directory realms, must

be specified in uppercase letters (for example, CORP.EXAMPLE.COM). To add multiple realms, use the button.
6. Click Save Changes.

The auto-generated mapping rules strip the Kerberos realm (for example, @CORP.EXAMPLE.COM) for each realm
specified in the Trusted Kerberos Realms setting. To customize the mapping rules, specify additional rules in the
Additional Rules to Map Kerberos Principals to Short Names setting, one rule per line. Only enter rules in this field;
ClouderaManager automatically surrounds the ruleswith the appropriate XML tags for the generated core-site.xml
file. For more information on creating custom rules, including how to translate mixed-case Kerberos principals to
lowercase Hadoop usernames, see Mapping Rule Syntax on page 120.

If you specify custom mapping rules for a Kerberos realm using the Additional Rules to Map Kerberos Principals to
Short Names setting, ensure that the same realm is not specified in the Trusted Kerberos Realms setting. If it is, the
auto-generated rule (which only strips the realm from the principal and does no additional transformations) takes
precedent, and the custom rule is ignored.

For these changes to take effect, you must restart the cluster and redeploy the client configuration. On the Cloudera
Manager Home > Status tab, click the cluster-wide button and select Deploy Client Configuration.

Moving Kerberos Principals to Another OU Within Active Directory

If you have a Kerberized cluster configured with an Active Directory KDC, you can use the following steps to move the
Kerberos principals from one AD Ogranizational Unit (OU) to another.

1. Create the new OU on the Active Directory Server.
2. Use AD's Delegate Control wizard to set the permissions on the newOU such that the configured ClouderaManager

admin account has the ability to Create, Delete and Manage User Accounts within this OU.

Cloudera Security | 75

Configuring Authentication

3. Stop the cluster.
4. Stop the Cloudera Management Service.
5. In Active Directory, move all the Cloudera Manager and CDH components' user accounts to the new OU.
6. Go to Cloudera Manager and go to Administration > Security.
7. Go to the Kerberos Credentials tab and click Configuration.
8. Select Scope > Settings.
9. Select Category > Kerberos.
10. Locate the Active Directory Suffix property and edit the value to reflect the new OU name.
11. Click Save Changes to commit the changes.

Using Auth-to-Local Rules to Isolate Cluster Users

By default, the Hadoop auth-to-local rules map a principal of the form <username>/<hostname>@<REALM> to
<username>. This means if there are multiple clusters in the same realm, then principals associated with hosts of one
cluster would map to the same user in all other clusters.

For example, if you have two clusters, cluster1-host-[1..4].example.com and cluster2-host-
[1..4].example.com, that are part of the same Kerberos realm, EXAMPLE.COM, then the cluster2 principal,
hdfs/cluster2-host1.example.com@EXAMPLE.COM, will map to the hdfs user even on cluster1 hosts.

To prevent this, use auth-to-local rules as follows to ensure only principals containing hostnames of cluster1 are
mapped to legitimate users.

1. Go to the HDFS Service > Configuration tab.
2. Select Scope > HDFS (Service-Wide).
3. Select Category > Security.
4. In the Search field, type Additional Rules to find the Additional Rules to Map Kerberos Principals to Short

Names settings.
5. Additional mapping rules can be added to the Additional Rules to Map Kerberos Principals to Short Names

property. These rules will be inserted before the rules generated from the list of trusted realms (configured above)
and before the default rule.

RULE:[2:$1/$2@$0](hdfs/cluster1-host1.example.com@EXAMPLE.COM)s/(.*)@EXAMPLE.COM/hdfs/
RULE:[2:$1/$2@$0](hdfs/cluster1-host2.example.com@EXAMPLE.COM)s/(.*)@EXAMPLE.COM/hdfs/
RULE:[2:$1/$2@$0](hdfs/cluster1-host3.example.com@EXAMPLE.COM)s/(.*)@EXAMPLE.COM/hdfs/
RULE:[2:$1/$2@$0](hdfs/cluster1-host4.example.com@EXAMPLE.COM)s/(.*)@EXAMPLE.COM/hdfs/
RULE:[2:$1/$2@$0](hdfs.*@EXAMPLE.COM)s/(.*)@EXAMPLE.COM/nobody/

In the example, the principal hdfs/<hostname>@REALM is mapped to the hdfs user if <hostname> is one of
the cluster hosts. Otherwise it gets mapped to nobody, thus ensuring that principals from other clusters do not
have access to cluster1.

If the cluster hosts can be represented with a regular expression, that expression can be used to make the
configuration easier and more conducive to scaling. For example:

RULE:[2:$1/$2@$0](hdfs/cluster1-host[1-4].example.com@EXAMPLE.COM)s/(.*)@EXAMPLE.COM/hdfs/
RULE:[2:$1/$2@$0](hdfs.*@EXAMPLE.COM)s/(.*)@EXAMPLE.COM/nobody/

6. Click Save Changes.
7. Restart the HDFS service and any dependent services.

Enabling Kerberos Authentication Without the Wizard

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Note that certain steps in the following procedure to configure Kerberos security may not be completed without Full
Administrator role privileges.

76 | Cloudera Security

Configuring Authentication

Important: Ensure you have secured communication between the Cloudera Manager Server and
Agents before you enable Kerberos on your cluster. Kerberos keytabs are sent from the Cloudera
Manager Server to the Agents, and must be encrypted to prevent potential misuse of leaked keytabs.
For instructions on securing this transfer with TLS encryption, see How to Configure TLS Encryption
for Cloudera Manager on page 40.

• Prerequisites - These instructions assume you know how to install and configure Kerberos, you already have a
working Kerberos key distribution center (KDC) and realm setup, and that you've installed the following Kerberos
client packages on all cluster hosts and hosts that will be used to access the cluster, depending on the OS in use.

Packages RequiredOS

RHEL 7 Compatible, RHEL
6 Compatible, RHEL 5
Compatible

• openldap-clients on the Cloudera Manager Server host
• krb5-workstation, krb5-libs on ALL hosts

SLES • openldap2-client on the Cloudera Manager Server host
• krb5-client on ALL hosts

Ubuntu or Debian • ldap-utils on the Cloudera Manager Server host
• krb5-user on ALL hosts

Windows • krb5-workstation, krb5-libs on ALL hosts

Furthermore, Oozie andHue require that the realm support renewable tickets. ClouderaManager supports setting
up kerberized clusters with MIT KDC and Active Directory.

Important: If you want to integrate Kerberos directly with Active Directory, ensure you have
support from your AD administration team to do so. This includes any future support required
to troubleshoot issues such as Kerberos TGT/TGS ticket renewal, access to KDC logs for debugging
and so on.

For more information about using an Active Directory KDC, refer the section on Direct to Active Directory on page
20 and the Microsoft AD documentation.

For more information about installing and configuring MIT KDC, see:

• MIT Kerberos Home
• MIT Kerberos Documentation

• Cloudera supports the Kerberos version that shipswith each supported operating system listed in CDH and Cloudera
Manager Supported Operating Systems.

Here are the general steps to using Cloudera Manager to configure Hadoop security on your cluster, each of which is
described in more detail in the following sections:

Step 1: Install Cloudera Manager and CDH

If you have not already done so, Cloudera strongly recommends that you install and configure the Cloudera Manager
Server and Cloudera Manager Agents and CDH to set up a fully-functional CDH cluster before you begin performing
the steps to implement Kerberos authentication.

User Accounts and Groups in CDH and Cloudera Manager Required to Support Security:

When you install the CDH packages and the Cloudera Manager Agents on your cluster hosts, Cloudera Manager takes
some steps to provide system security such as creating the following Unix accounts and setting directory permissions
as shown in the following table. TheseUnix accounts and directory permissionsworkwith the Hadoop Kerberos security
requirements.

Cloudera Security | 77

Configuring Authentication

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/system-level_authentication_guide/using_kerberos
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/sect-security_guide-kerberos
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/security_guide/sect-security_guide-kerberos
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/deployment_guide/ch-kerberos
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/5/html/deployment_guide/ch-kerberos
https://www.suse.com/documentation/sles11/singlehtml/book_security/book_security.html
https://help.ubuntu.com/community/Kerberos
http://technet.microsoft.com/en-us/library/bb742433.aspx#EDAA
https://technet.microsoft.com/en-us/library/bb742516.aspx
http://web.mit.edu/Kerberos
http://web.mit.edu/Kerberos/krb5-1.8/

Note: Cloudera Manager 5.3 introduces a new single user mode. In single user mode, the Cloudera
Manager Agent and all the processes run by services managed by Cloudera Manager are started as a
single configured user and group. See Configuring Single User Mode for more information.

Runs These RolesThis User

NameNode, DataNodes, and Secondary Nodehdfs

JobTracker and TaskTrackers (MR1) and Job History Server (YARN)mapred

ResourceManager and NodeManagers (YARN)yarn

Oozie Serveroozie

Hue Server, Beeswax Server, Authorization Manager, and Job Designerhue

The hdfs user also acts as the HDFS superuser.

When you install the Cloudera Manager Server on the server host, a new Unix user account called cloudera-scm is
created automatically to support security. The Cloudera Manager Server uses this account to create and deploy the
host principals and keytabs on your cluster.

Depending on whether you installed CDH and Cloudera Manager at the same time or not, use one of the following
sections for information on configuring directory ownerships on cluster hosts:

If you installed CDH and Cloudera Manager at the Same Time

If you have a new installation and you installed CDH and Cloudera Manager at the same time, when you started the
Cloudera Manager Agents on your cluster hosts, the Cloudera Manager Agent on each host automatically configured
the directory owners shown in the following table to support security. Assuming the owners are configured as shown,
the Hadoop daemons can then automatically set the permissions for each of the directories specified by the properties
shown below to make sure they are properly restricted. It's critical that the owners are configured exactly as shown
below, so do not change them:

OwnerDirectory Specified in this Property

hdfs:hadoopdfs.name.dir

hdfs:hadoopdfs.data.dir

mapred:hadoopmapred.local.dir

mapred:hadoopmapred.system.dir in HDFS

yarn:yarnyarn.nodemanager.local-dirs

yarn:yarnyarn.nodemanager.log-dirs

oozie:oozieoozie.service.StoreService.jdbc.url (if using
Derby)

hue:hue[[database]] name

hue:huejavax.jdo.option.ConnectionURL

If you Installed and Used CDH Before Installing Cloudera Manager

If you have been using HDFS and runningMapReduce jobs in an existing installation of CDHbefore you installed Cloudera
Manager, you must manually configure the owners of the directories shown in the table above. Doing so enables the
Hadoop daemons to automatically set the permissions for each of the directories. It's critical that youmanually configure
the owners exactly as shown above.

78 | Cloudera Security

Configuring Authentication

Step 2: If You are Using AES-256 Encryption, Install the JCE Policy File

If you are using CentOS or RHEL 5.5 or higher, which use AES-256 encryption by default for tickets, you must install
the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy File on all cluster and Hadoop user hosts.
There are 2 ways to do this:

• In the Cloudera Manager Admin Console, navigate to the Hosts page. Both, the Add New Hosts to Cluster wizard
and the Re-run Upgrade Wizard will give you the option to have Cloudera Manager install the JCE Policy file for
you.

• You can follow the JCE Policy File installation instructions in the README.txt file included in the
jce_policy-x.zip file.

Alternatively, you can configure Kerberos to not use AES-256 by removing aes256-cts:normal from the
supported_enctypes field of the kdc.conf or krb5.conf file. Note that after changing the kdc.conf file, you'll
need to restart both the KDC and the kadmin server for those changes to take affect. You may also need to recreate
or change the password of the relevant principals, including potentially the Ticket Granting Ticket principal (for example,
krbtgt/EXAMPLE.COM@EXAMPLE.COM). If AES-256 is still used after all of those steps, it's because the
aes256-cts:normal setting existed when the Kerberos database was created. To fix this, create a new Kerberos
database and then restart both the KDC and the kadmin server.

To verify the type of encryption used in your cluster:

1. On the local KDC host, type this command in the kadmin.local or kadmin shell to create a test principal:

kadmin: addprinc test

2. On a cluster host, type this command to start a Kerberos session as the test principal:

$ kinit test

3. After successfully running the previous command, type this command to view the encryption type in use:

$ klist -e

If AES is being used, output like the following is displayed after you type the klist command (note that AES-256
is included in the output):

Ticket cache: FILE:/tmp/krb5cc_0
Default principal: test@EXAMPLE.COM
Valid starting Expires Service principal
05/19/11 13:25:04 05/20/11 13:25:04 krbtgt/EXAMPLE.COM@EXAMPLE.COM
 Etype (skey, tkt): AES-256 CTS mode with 96-bit SHA-1 HMAC, AES-256 CTS mode with
96-bit SHA-1 HMAC

Step 3: Get or Create a Kerberos Principal for the Cloudera Manager Server

In order to create and deploy the host principals and keytabs on your cluster, the Cloudera Manager Server must have
the correct Kerberos principal. Specifically, the Cloudera Manager Server must have a Kerberos principal that has
administrator privileges. Typically, principals with the second component of admin in the principal name (for example,
username/admin@EXAMPLE.COM) have administrator privileges. This iswhyadmin is shown in the following instructions
and examples.

To get or create the Kerberos principal for the Cloudera Manager Server, you can do either of the following:

• Ask your Kerberos administrator to create a Kerberos administrator principal for the Cloudera Manager Server.
• Create the Kerberos principal for the Cloudera Manager Server yourself by using the following instructions in this

step.

Cloudera Security | 79

Configuring Authentication

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Creating the Cloudera Manager Principal

If you are using Active Directory

1. Create an Organizational Unit (OU) in your AD where all the principals used by your CDH cluster will reside.
2. Add a new AD user, for example, <username>@EXAMPLE.COM. The password for this user should be set to never

expire.
3. Use AD's Delegate Control wizard to allow this new user to Create, Delete and Manage User Accounts.

If you are using MIT KDC

The instructions in this section illustrate an example of creating the ClouderaManager Server principal forMIT Kerberos.
(If you are using another version of Kerberos, refer to your Kerberos documentation for instructions.)

Note: If you are running kadmin and the Kerberos Key Distribution Center (KDC) on the same host,
use kadmin.local in the following steps. If the Kerberos KDC is running on a remote host, you must
use kadmin instead of kadmin.local.

In the kadmin.local or kadmin shell, type the following command to create the Cloudera Manager Server principal,
replacing EXAMPLE.COM with the name of your realm:

kadmin: addprinc -pw <Password> cloudera-scm/admin@EXAMPLE.COM

Step 4: Import KDC Account Manager Credentials

1. In the Cloudera Manager Admin Console, select Administration > Security.
2. Go to the Kerberos Credentials tab and click Import Kerberos Account Manager Credentials.
3. In the Import Kerberos Account Manager Credentials dialog box, enter the username and password for the user

that can create principals for CDH cluster in the KDC. This is the user/principal you created in Step 3: Get or Create
a Kerberos Principal for the Cloudera Manager Server on page 79. Cloudera Manager encrypts the username and
password into a keytab and uses it as needed to create new principals.

Note: The username entered should have the realm portion in upper-case only as shown in the
example in the UI.

Click Close when complete.

Step 5: Configure the Kerberos Default Realm in the Cloudera Manager Admin Console

Minimum Required Role: Full Administrator

Important: Hadoop is unable to use a non-default realm. The Kerberos default realm is configured
in the libdefaults property in the /etc/krb5.conf file on every host in the cluster:

[libdefaults]
 default_realm = EXAMPLE.COM

1. In the Cloudera Manager Admin Console, select Administration > Settings.
2. Click the Security category, and enter the Kerberos realm for the cluster in the Kerberos Security Realm field (for

example, EXAMPLE.COM or HADOOP.EXAMPLE.COM) that you configured in the krb5.conf file.
3. Click Save Changes.

Step 6: Stop All Services

Minimum Required Role: Operator (also provided by Configurator, Cluster Administrator, Full Administrator)

80 | Cloudera Security

Configuring Authentication

Before you enable security in CDH, you must stop all Hadoop daemons in your cluster and then change some
configuration properties. You must stop all daemons in the cluster because after one Hadoop daemon has been
restarted with the configuration properties set to enable security. Daemons running without security enabled will be
unable to communicate with that daemon. This requirement to stop all daemons makes it impossible to do a rolling
upgrade to enable security on a Hadoop cluster.

Stop all running services, and the Cloudera Management service, as follows:

Stopping All Services

1. On the Home > Status tab, click

to the right of the cluster name and select Stop.
2. Click Stop in the confirmation screen. The Command Details window shows the progress of stopping services.

When All services successfully stopped appears, the task is complete and you can close the Command Details
window.

Stopping the Cloudera Management Service

1. On the Home > Status tab, click

to the right of Cloudera Management Service and select Stop.
2. Click Stop to confirm. The Command Details window shows the progress of stopping the roles.
3. When Command completed with n/n successful subcommands appears, the task is complete. Click Close.

Step 7: Enable Hadoop Security

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

To enable Hadoop security for the cluster, you enable it on an HDFS service. After you do so, the Cloudera Manager
Server automatically enables Hadoop security on theMapReduce and YARN services associatedwith that HDFS service.

1. Go to the HDFS Service > Configuration tab.
2. In the Search field, type Hadoop Secure to show the Hadoop security properties (found under the Service-Wide

> Security category).
3. Click the value for theHadoop Secure Authentication property and select the kerberos option to enable Hadoop

security on the selected HDFS service.
4. Click the value for the Hadoop Secure Authorization property and select the checkbox to enable service-level

authorization on the selected HDFS service. You can specify comma-separated lists of users and groups authorized
to use Hadoop services or perform admin operations using the following properties under the Service-Wide >
Security section:

• Authorized Users: Comma-separated list of users authorized to use Hadoop services.
• Authorized Groups: Comma-separated list of groups authorized to use Hadoop services.
• AuthorizedAdminUsers: Comma-separated list of users authorized to performadmin operations onHadoop.
• Authorized Admin Groups: Comma-separated list of groups authorized to perform admin operations on

Hadoop.

Important: For Cloudera Manager's Monitoring services to work, the hue user should always be
added as an authorized user.

5. In the Search field, type DataNode Transceiver to find the DataNode Transceiver Port property.
6. Click the value for the DataNode Transceiver Port property and specify a privileged port number (below 1024).

Cloudera recommends 1004.

Cloudera Security | 81

Configuring Authentication

Note: If there is more than one DataNode Role Group, youmust specify a privileged port number
for each DataNode Transceiver Port property.

7. In the Search field, typeDataNodeHTTP to find theDataNodeHTTPWebUI Port property and specify a privileged
port number (below 1024). Cloudera recommends 1006.

Note: These port numbers for the two DataNode properties must be below 1024 to provide part
of the security mechanism to make it impossible for a user to run a MapReduce task that
impersonates a DataNode. The port numbers for the NameNode and Secondary NameNode can
be anything you want, but the default port numbers are good ones to use.

8. In the Search field type Data Directory Permissions to find the DataNode Data Directory Permissions property.
9. Reset the value for the DataNode Data Directory Permissions property to the default value of 700 if not already

set to that.
10. Make sure you have changed theDataNode Transceiver Port,DataNodeDataDirectory Permissions andDataNode

HTTP Web UI Port properties for every DataNode role group.
11. Click Save Changes to save the configuration settings.

To enable ZooKeeper security:

1. Go to the ZooKeeper Service > Configuration tab and click View and Edit.
2. Click the value for Enable Kerberos Authentication property.
3. Click Save Changes to save the configuration settings.

To enable HBase security:

1. Go to the HBase Service > Configuration tab and click View and Edit.
2. In the Search field, type HBase Secure to show the Hadoop security properties (found under the Service-Wide >

Security category).
3. Click the value for the HBase Secure Authorization property and select the checkbox to enable authorization on

the selected HBase service.
4. Click the value for the HBase Secure Authentication property and select kerberos to enable authorization on

the selected HBase service.
5. Click Save Changes to save the configuration settings.

(CDH 4.3 or later) To enable Solr security:

1. Go to the Solr Service > Configuration tab and click View and Edit.
2. In the Search field, type Solr Secure to show the Solr security properties (found under the Service-Wide > Security

category).
3. Click the value for the Solr Secure Authentication property and select kerberos to enable authorization on the

selected Solr service.
4. Click Save Changes to save the configuration settings.

Note: If you use the Cloudera Manager Admin Console to generate a client configuration file after
you enable Hadoop security on your cluster, the generated configuration file will not contain the
Kerberos principal and keytab file that end users need to authenticate. Users must obtain Kerberos
principal and keytab file from your Kerberos administrator and then run the kinit command
themselves.

Step 8: Wait for the Generate Credentials Command to Finish

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

82 | Cloudera Security

Configuring Authentication

After you enable security for any of the services in Cloudera Manager, a command called Generate Credentials will be
triggered automatically. You can watch the progress of the command on the top right corner of the screen that shows
the running commands. Wait for this command to finish (indicated by a grey box containing "0" in it).

Step 9: Enable Hue to Work with Hadoop Security using Cloudera Manager

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

For Hue to work properly with a secure Kerberos cluster deployed with Cloudera Manager, you must add the Kerberos
Ticket Renewer to the Hue service. You can do so in Cloudera Manager by adding a Kerberos Ticket Renewer role
instance on each host with a Hue Server role.

The Hue Kerberos Ticket Renewer only renews tickets for the Hue service principal,
hue/<hostname>@<YOUR-REALM.COM>. TheHue principal impersonates other users for applicationswithinHue such
as the Job Browser, File Browser and so on.

Core Hadoop services such as HDFS and MapReduce do not use the Hue Kerberos Ticket Renewer. They obtain tickets
at startup and use those tickets to obtain Delegation Tokens for variou access privileges. Each service handles its own
ticket renewal as needed.

Adding a Kerberos Ticket Renewer role instance in Cloudera Manager:

1. Go to the Hue service.
2. Click the Instances tab.
3. Click the Add Role Instances button.
4. Assign the Kerberos Ticket Renewer role instance to the same host as the Hue server.

When the wizard status is Finished, the Kerberos Ticket Renewer role instance is configured. The Hue service now
works with the secure Hadoop cluster.

5. Repeat these steps for each Hue Server role.

Troubleshooting the Kerberos Ticket Renewer:

If the Hue Kerberos Ticket Renewer does not start, check the configuration of your Kerberos Key Distribution Center
(KDC). Look at the ticket renewal property, maxrenewlife, to ensure that the principals, hue/<hostname> and
krbtgt, are renewable. If these principals are not renewable, run the following commands on the KDC to enable them:

kadmin.local: modprinc -maxrenewlife 90day krbtgt/YOUR_REALM.COM
kadmin.local: modprinc -maxrenewlife 90day +allow_renewable hue/<hostname>@YOUR-REALM.COM

Step 10: (Flume Only) Use Substitution Variables for the Kerberos Principal and Keytab

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

As described in Flume security configuration, if you are using Flume on a secure cluster you must configure the HDFS
sink or HBase sink with the following configuration options in the flume.conf file:

• kerberosPrincipal - fully qualified principal.
• kerberosKeytab - location on the local host of the keytab containing the user and host keys for the above

principal

Since ClouderaManager generates the Flume keytab files for you, and the locations of the keytab files cannot be known
beforehand, substitution variables are required for Flume. ClouderaManager provides two Flume substitution variables
called $KERBEROS_PRINCIPAL and $KERBEROS_KEYTAB to configure the principal name and the keytab file path
respectively on each host.

Cloudera Security | 83

Configuring Authentication

HDFS Sink Example

The following example shows an HDFS sink configuration in the flume.conf file (the majority of the HDFS sink
configuration options have been omitted):

agent.sinks.sink-1.type = HDFS
agent.sinks.sink-1.hdfs.kerberosPrincipal = flume/_HOST@YOUR-REALM.COM
agent.sinks.sink-1.hdfs.kerberosKeytab = /etc/flume-ng/conf/flume.keytab
agent.sinks.sink-1.hdfs.proxyUser = weblogs

The text below shows the same configuration options with the substitution variables:

agent.sinks.sink-1.type = hdfs
agent.sinks.sink-1.hdfs.kerberosPrincipal = $KERBEROS_PRINCIPAL
agent.sinks.sink-1.hdfs.kerberosKeytab = $KERBEROS_KEYTAB
agent.sinks.sink-1.hdfs.proxyUser = weblogs

HBase Sink Example

The following example shows an HBase sink configuration in the flume.conf file (the majority of the HBase sink
configuration options have been omitted):

agent.sinks.sink-1.type = hbase
agent.sinks.sink-1.kerberosPrincipal = flume/_HOST@YOUR-REALM.COM
agent.sinks.sink-1.kerberosKeytab = /etc/flume-ng/conf/flume.keytab

The text below shows the same configuration options with the substitution variables:

agent.sinks.sink-1.type = hbase
agent.sinks.sink-1.kerberosPrincipal = $KERBEROS_PRINCIPAL
agent.sinks.sink-1.kerberosKeytab = $KERBEROS_KEYTAB

Use the Flume Substitution Variables for the Kerberos Principal and Keytab

Complete the following steps to have Cloudera Manager add these variables to the flume.conf file on every host
that Cloudera Manager manages.

1. Go to the Flume service > Configuration page in Cloudera Manager.
2. Click Agent.
3. In the Configuration File property, add the configuration options with the substitution variables. For example:

agent.sinks.sink-1.type = hdfs
agent.sinks.sink-1.hdfs.kerberosPrincipal = $KERBEROS_PRINCIPAL
agent.sinks.sink-1.hdfs.kerberosKeytab = $KERBEROS_KEYTAB
agent.sinks.sink-1.hdfs.proxyUser = weblogs

4. Click Save.

Step 11: Start All Services

Minimum Required Role: Operator (also provided by Configurator, Cluster Administrator, Full Administrator)

Start all services on your cluster:

Starting All Services

1. On the Home > Status tab, click

to the right of the cluster name and select Start.
2. Click Start that appears in the next screen to confirm. The CommandDetailswindow shows the progress of starting

services.

84 | Cloudera Security

Configuring Authentication

When All services successfully started appears, the task is complete and you can close the Command Details
window.

Starting the Cloudera Management Service

1. On the Home > Status tab, click

to the right of Cloudera Management Service and select Start.
2. Click Start to confirm. The Command Details window shows the progress of starting the roles.
3. When Command completed with n/n successful subcommands appears, the task is complete. Click Close.

Step 12: Deploy Client Configurations

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. On the Home > Status tab, click

to the right of the cluster name and select Deploy Client Configuration.
2. Click Deploy Client Configuration.

Step 13: Create the HDFS Superuser Principal

To be able to create homedirectories for users, youwill need access to theHDFS superuser account. (CDH automatically
created the HDFS superuser account on each cluster host during CDH installation.) When you enabled Kerberos for
the HDFS service, you lost access to the default HDFS superuser account using sudo -u hdfs commands. Cloudera
recommends you use a different user account as the superuser, not the default hdfs account.

Designating a Non-Default Superuser Group

To designate a different group of superusers instead of using the default hdfs account, follow these steps:

1. Go to the Cloudera Manager Admin Console and navigate to the HDFS service.
2. Click the Configuration tab.
3. Select Scope > HDFS (Service-Wide).
4. Select Category > Security.
5. Locate the Superuser Group property and change the value to the appropriate group name for your environment.

For example, <superuser>.
6. Click Save Changes to commit the changes.
7. Restart the HDFS service.

To enable your access to the superuser account now that Kerberos is enabled, you must now create a Kerberos
principal or an Active Directory user whose first component is <superuser>:

If you are using Active Directory
Add a new user account to Active Directory, <superuser>@YOUR-REALM.COM. The password for this account should
be set to never expire.

If you are using MIT KDC

1. In the kadmin.local or kadmin shell, type the following command to create a Kerberos principal called
<superuser>:

kadmin: addprinc <superuser>@YOUR-LOCAL-REALM.COM

This command prompts you to create a password for the <superuser> principal. You should use a strong password
because having access to this principal provides superuser access to all of the files in HDFS.

Cloudera Security | 85

Configuring Authentication

2. To run commands as the HDFS superuser, you must obtain Kerberos credentials for the <superuser> principal. To
do so, run the following command and provide the appropriate password when prompted.

$ kinit <superuser>@YOUR-LOCAL-REALM.COM

Step 14: Get or Create a Kerberos Principal for Each User Account

Now that Kerberos is configured and enabled on your cluster, you and every other Hadoop user must have a Kerberos
principal or keytab to obtain Kerberos credentials to be allowed to access the cluster and use the Hadoop services. In
the next step of this procedure, you need to create your own Kerberos principals to verify that Kerberos security is
working on your cluster. If you and the other Hadoop users already have a Kerberos principal or keytab, or if your
Kerberos administrator can provide them, you can skip ahead to the next step.

The following instructions explain how to create a Kerberos principal for a user account.

If you are using Active Directory

Add a newAD user account, <username>@EXAMPLE.COM for each ClouderaManager service that should use Kerberos
authentication. The password for these service accounts should be set to never expire.

If you are using MIT KDC

1. In the kadmin.local or kadmin shell, use the following command to create a principal for your account by replacing
EXAMPLE.COM with the name of your realm, and replacing username with a username:

kadmin: addprinc username@EXAMPLE.COM

2. When prompted, enter the password twice.

Step 15: Prepare the Cluster for Each User

Before you and other users can access the cluster, there are a few tasks you must do to prepare the hosts for each
user.

1. Make sure all hosts in the cluster have a Unix user account with the same name as the first component of that
user's principal name. For example, the Unix account joe should exist on every box if the user's principal name
is joe@YOUR-REALM.COM. You can use LDAP for this step if it is available in your organization.

Note: Each account must have a user ID that is greater than or equal to 1000. In the
/etc/hadoop/conf/taskcontroller.cfg file, the default setting for the banned.users
property ismapred,hdfs, andbin to prevent jobs frombeing submitted from those user accounts.
The default setting for the min.user.id property is 1000 to prevent jobs from being submitted
with a user ID less than 1000, which are conventionally Unix super users.

2. Create a subdirectory under /user on HDFS for each user account (for example, /user/joe). Change the owner
and group of that directory to be the user.

$ hadoop fs -mkdir /user/joe
$ hadoop fs -chown joe /user/joe

Note: sudo -u hdfs is not included in the commands above. This is because it is not required if
Kerberos is enabled on your cluster. You will, however, need to have Kerberos credentials for the
HDFS super user to successfully run these commands. For information on gaining access to the HDFS
super user account, see Step 13: Create the HDFS Superuser Principal on page 85

86 | Cloudera Security

Configuring Authentication

Step 16: Verify that Kerberos Security is Working

After you have Kerberos credentials, you can verify that Kerberos security is working on your cluster by trying to run
MapReduce jobs. To confirm, try launching a sleep or a pi job from the provided Hadoop examples
(/usr/lib/hadoop/hadoop-examples.jar).

Note:

This section assumes you have a fully-functional CDH cluster and you have been able to access HDFS
and run MapReduce jobs before you followed these instructions to configure and enable Kerberos
on your cluster. If you have not already done so, you should at a minimum use the Cloudera Manager
Admin Console to generate a client configuration file to enable you to access the cluster. For
instructions, see Deploying Client Configuration Files.

To verify that Kerberos security is working:

1. Acquire Kerberos credentials for your user account.

$ kinit USERNAME@YOUR-LOCAL-REALM.COM

2. Enter a password when prompted.
3. Submit a sample pi calculation as a test MapReduce job. Use the following command if you use a package-based

setup for Cloudera Manager:

$ hadoop jar /usr/lib/hadoop-0.20/hadoop-0.20.2*examples.jar pi 10 10000
Number of Maps = 10
Samples per Map = 10000
...
Job Finished in 38.572 seconds
Estimated value of Pi is 3.14120000000000000000

If you have a parcel-based setup, use the following command instead:

$ hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-0.20-mapreduce/hadoop-examples.jar pi
 10 10000
Number of Maps = 10
Samples per Map = 10000
...
Job Finished in 30.958 seconds
Estimated value of Pi is 3.14120000000000000000

You have now verified that Kerberos security is working on your cluster.

Cloudera Security | 87

Configuring Authentication

Important:

Running a MapReduce job will fail if you do not have a valid Kerberos ticket in your credentials cache.
You can examine the Kerberos tickets currently in your credentials cache by running the klist
command. You can obtain a ticket by running the kinit command and either specifying a keytab file
containing credentials, or entering the password for your principal. If you do not have a valid ticket,
you will receive an error such as:

11/01/04 12:08:12 WARN ipc.Client:
Exception encountered while connecting to the server :
javax.security.sasl.SaslException:GSS initiate failed
[Caused by GSSException: No valid credentials provided (Mechanism level:
 Failed to find any
Kerberos tgt)]
Bad connection to FS. command aborted. exception: Call to
nn-host/10.0.0.2:8020 failed on local exception:
java.io.IOException:javax.security.sasl.SaslException: GSS initiate
failed
[Caused by GSSException: No valid credentials provided
(Mechanism level: Failed to find any Kerberos tgt)]

Step 17: (Optional) Enable Authentication for HTTP Web Consoles for Hadoop Roles

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Authentication for access to the HDFS,MapReduce, and YARN roles' web consoles can be enabled using a configuration
option for the appropriate service. To enable this authentication:

1. From the Clusters tab, select the service (HDFS,MapReduce, or YARN) forwhich youwant to enable authentication.
2. Click the Configuration tab.
3. Select Scope > serviceName Service-Wide.
4. Select Category > Security.
5. Select Enable Kerberos Authentication for HTTP Web-Consoles.
6. Click Save Changes to commit the changes.
7. Once the command finishes, restart all roles of that service.

Configuring Authentication in the Cloudera Navigator Data Management Component
ClouderaNavigator datamanagement component supports user authentication against ClouderaManager user accounts
and against an external LDAP or Active Directory service. External authentication enables you to assign Cloudera
Navigator user roles to LDAP or Active Directory groups containing the appropriate users for each user role.
Authenticationwith a ClouderaManager user account requires either the Full Administrator or Navigator Administrator
user role, and enables the user to use Cloudera Navigator features or to configure the external authentication service.

Configuring External Authentication for the Cloudera Navigator Data Management Component

Minimum Required Role: Navigator Administrator (also provided by Full Administrator)

Important: This feature is available only with a Cloudera Enterprise license. It is not available in
Cloudera Express. For information on Cloudera Enterprise licenses, see Managing Licenses.

Cloudera Navigator supports user authentication against Cloudera Manager user accounts and against an external
service. The external service can be either LDAP or Active Directory. User authentication against Cloudera Manager
user accounts requires users to have one of two Cloudera Manager user roles, either Full Administrator or Navigator
Administrator. External authentication enables you to assign Cloudera Navigator user roles to LDAP or Active Directory
groups to which the appropriate users belong.

88 | Cloudera Security

Configuring Authentication

For more information about Cloudera Manager user accounts, see Cloudera Manager User Accounts on page 50. For
more information about Cloudera Navigator user roles, see Cloudera Navigator Data Management Component User
Roles on page 381.

The following sections describe how to configure the supported external directory services.

Configuring Cloudera Navigator Authentication Using Active Directory

Important:

Cloudera Navigator has its own role-based access control and user management scheme. If you want
to use LDAP/AD authentication, Cloudera Navigator roles must be explicitly assigned to AD users to
allow them to log in to Navigator. To assign roles to AD users, log in to Cloudera Navigator for the first
time using a ClouderaManager admin user. Any non-externally authenticated ClouderaManager user
that has Full Administrator or Navigator Administrator privileges will have admin access to Cloudera
Navigator. You can use this account to set up user groups and assign Cloudera Navigator roles to AD
users.

Hence, Cloudera recommends that the Authentication Backend Order property be set initially to
ClouderaManager then External. Otherwise, the external authentication systemwill be checked first,
and if the same user credentials also exist in the specified LDAP or Active Directory, the user will be
authenticated there, and will not be authenticated as a Cloudera Manager administrator. Since no
user roles will have been set up yet for the users in the external authentication system, the user's
attempt to log in will fail. Once the groups and user roles for Cloudera Navigator are set up, the
Authentication Backend Order can be changed to External then ClouderaManager or External Only,
if desired.

To configure Cloudera Navigator to use AD authentication:

1. Select Clusters > Cloudera Management Service.
2. Click the Configuration tab.
3. Select Scope > Navigator Metadata Server.
4. Select Category > External Authentication.
5. In the Authentication Backend Order field, select the order in which Cloudera Navigator should attempt its

authentication. You can choose to authenticate users using just one of the methods (using Cloudera Manager
user accounts is the default), or you can set it so that if the user cannot be authenticated by the first method, it
will attempt using the second method.

6. In the External Authentication Type property, select Active Directory.
7. In the LDAP URL property, provide the URL of the LDAP/Active Directory server to authenticate against. The URL

has the form: [ldap|ldaps]://hostname:port. If a port is not specified, the default LDAP port is used (389
for LDAP and 636 for LDAPS). For more details on the LDAP URL format, see RFC 2255 .

8. For the Bind Distinguished Name property, you require the userPrincipalName (UPN) of the user to bind as.
For example, if the UPN is sampleuser@EXAMPLE.COM, the Bind Distinguished Name provided can be either
sampleuser or the complete UPN, sampleuser@EXAMPLE.COM. This is used to connect to Active Directory for
searching groups and to get other user information.

9. In the LDAP Bind Password, enter the password for the bind user entered above.
10. In the Active Directory NT Domain property, provide the NT domain to authenticate against.
11. Click Save Changes to commit the changes.
12. After changing the configuration settings, restart the Navigator Metadata Service: click the Instances tab on the

ClouderaManagement Service page, checkNavigatorMetadata Service, and clickActions for Selected > Restart.

Configuring Cloudera Navigator Authentication Using an OpenLDAP-compatible Server

For an OpenLDAP-compatible directory, you have several options for searching for users and groups:

• You can specify a single base Distinguished Name (DN) and then provide a "Distinguished Name Pattern" to use
to match a specific user in the LDAP directory.

Cloudera Security | 89

Configuring Authentication

http://www.ietf.org/rfc/rfc2255.txt

• Search filter options let you search for a particular user based on somewhat broader search criteria – for example
Cloudera Navigator users could be members of different groups or organizational units (OUs), so a single pattern
does not find all those users. Search filter options also let you find all the groups to which a user belongs, to help
determine if that user should be allowed to log in.

1. Select Clusters > Cloudera Management Service.
2. Click the Configuration tab.
3. Select Scope > Navigator Metadata Server.
4. Select Category > External Authentication.
5. In the Authentication Backend Order field, select the order in which Cloudera Navigator should attempt its

authentication. You can choose to authenticate users using just one of the methods (using Cloudera Manager
user accounts is the default), or you can set it so that if the user cannot be authenticated by the first method, it
will attempt using the second method.

6. In the External Authentication Type, select LDAP.
7. In the LDAP URL property, provide the URL of the LDAP server and (optionally) the base Distinguished Name (DN)

(the search base) as part of the URL — for example ldap://ldap-server.corp.com/dc=corp,dc=com.
8. In the LDAP Bind User Distinguished Name property, enter the user's sAMAcountName. This is used to connect

to the LDAP server for searching groups and to get other user information.
9. In the LDAP Bind Password property, enter the password for the bind user entered above.
10. To use a single "DistinguishedNamePattern", provide a pattern in the LDAPDistinguishedNamePattern property.

Use {0} in the pattern to indicate where the username should go. For example, to search for a distinguished name
where the uid attribute is the username, you might provide a pattern similar to
uid={0},ou=People,dc=corp,dc=com. Cloudera Navigator substitutes the name provided at login into this
pattern and performs a search for that specific user. So if a user provides the username "foo" at the Cloudera
Navigator login page, Cloudera Navigator will search for the DN uid=foo,ou=People,dc=corp,dc=com.

If you provided a base DN along with the URL, the pattern only needs to specify the rest of the DN pattern. For
example, if the URL you provide is ldap://ldap-server.corp.com/dc=corp,dc=com, and the pattern is
uid={0},ou=People, then the search DN will be uid=foo,ou=People,dc=corp,dc=com.

11. You can also search using User or Group search filters, using the LDAP User Search Base, LDAP User Search Filter,
LDAP Group Search Base and LDAP Group Search Filter settings. These allow you to combine a base DN with a
search filter to allow a greater range of search targets.

For example, if you want to authenticate users who may be in one of multiple OUs, the search filter mechanism
will allow this. You can specify theUser Search Base DN as dc=corp,dc=com and the user search filter as uid={0}.
Then Cloudera Navigator will search for the user anywhere in the tree starting from the Base DN. Suppose you
have two OUs—ou=Engineering and ou=Operations—Cloudera Navigator will find User "foo" if it exists in
either of these OUs, that is, uid=foo,ou=Engineering,dc=corp,dc=com or
uid=foo,ou=Operations,dc=corp,dc=com.

You can use a user search filter along with a DN pattern, so that the search filter provides a fallback if the DN
pattern search fails.

The Groups filters let you search to determine if a DN or username is a member of a target group. In this case,
the filter you provide can be something like member={0}where {0}will be replaced with the DN of the user you
are authenticating. For a filter requiring the username, {1}may be used, as memberUid={1}. This will return a
list of groups to which the user belongs.

12. Click Save Changes to commit the changes.
13. After changing the configuration settings, restart the Navigator Metadata Service: click the Instances tab on the

ClouderaManagement Service page, checkNavigatorMetadata Service, and clickActions for Selected > Restart.

Configuring Cloudera Navigator to Use LDAPS

If the LDAP server certificate has been signed by a trusted Certificate Authority (that is, VeriSign, GeoTrust, and so on),
steps 1 and 2 below may not be necessary.

90 | Cloudera Security

Configuring Authentication

1. Copy the CA certificate file to the Cloudera Navigator Server host.
2. Import the CA certificate(s) from the CA certificate file to the local truststore. The default truststore is located in

the $JAVA_HOME/jre/lib/security/cacerts file. This contains the default CA information shipped with the
JDK. Create an alternate default file called jssecacerts in the same location as the cacerts file. You can now
safely append CA certificates for any private or public CAs not present in the default cacerts file, while keeping
the original file intact.

For our example, we will follow this recommendation by copying the default cacerts file into the new
jssecacerts file, and then importing the CA certificate to this alternate truststore.

$ cp $JAVA_HOME/jre/lib/security/cacerts \
 $JAVA_HOME/jre/lib/jssecacerts

$ /usr/java/latest/bin/keytool -import -alias nt_domain_name \
-keystore /usr/java/latest/jre/lib/security/jssecacerts -file path_to_cert

Note:

• The default password for the cacerts store is changeit.
• The alias can be any name (not just the domain name).

3. Configure the LDAP URL property to use ldaps://ldap_server instead of ldap://ldap_server.

Configuring Cloudera Navigator Authentication Using SAML

Cloudera Navigator supports the Security Assertion Markup Language (SAML), an XML-based open standard data
format for exchanging authentication and authorization data between parties, in particular, between an identity
provider (IDP) and a service provider (SP). The SAML specification defines three roles: the principal (typically a user),
the IDP, and the SP. In the use case addressed by SAML, the principal (user agent) requests a service from the service
provider. The service provider requests and obtains an identity assertion from the IDP. On the basis of this assertion,
the SP can make an access control decision—in other words it can decide whether to perform some service for the
connected principal.

The primary SAML use case is called web browser single sign-on (SSO). A user wielding a user agent (usually a web
browser) requests a web resource protected by a SAML SP. The SP, wanting to know the identity of the requesting
user, issues an authentication request to a SAML IDP through the user agent. In the context of this terminology, Cloudera
Navigator operates as a SP. This topic discusses the Cloudera Navigator part of the configuration process; it assumes
that you are familiar with SAML and SAML configuration in a general sense, and that you have a functioning IDP already
deployed.

Setting up Cloudera Navigator to use SAML requires the following steps.

Preparing Files

You will need to prepare the following files and information, and provide these to Cloudera Navigator:

• A Java keystore containing a private key for Cloudera Navigator to use to sign/encrypt SAML messages.
• The SAML metadata XML file from your IDP. This file must contain the public certificates needed to verify the

sign/encrypt key used by your IDP per the SAML Metadata Interoperability Profile.
• The entity ID that should be used to identify the Navigator Metadata Server instance.
• How the user ID is passed in the SAML authentication response:

– As an attribute. If so, what identifier is used.
– As the NameID.

• The method by which the Cloudera Navigator role will be established:

– From an attribute in the authentication response:

– What identifier will be used for the attribute

Cloudera Security | 91

Configuring Authentication

– What values will be passed to indicate each role

– From an external script that will be called for each use:

– The script takes user ID as $1
– The script must assign an exit code to reflect successful authentication of the assigned role:

– 0 - Full Administrator
– 1 - User Administrator
– 2 - Auditing Viewer
– 4 - Lineage Viewer
– 8 - Metadata Administrator
– 16 - Policy Viewer
– 32 - Policy Administrator
– 64 - Custom Metadata Administrator
– A negative value is returned for a failure to authenticate

To assign more than one role, add the numbers for the roles. For example, to assign the Policy Viewer
and User Administrator roles, the exit code should be 17.

Configuring Cloudera Navigator

1. Select Clusters > Cloudera Management Service.
2. Click the Configuration tab.
3. Select Scope > Navigator Metadata Server.
4. Select Category > External Authentication.
5. Type SAML in the Search box.
6. Set the External Authentication Type property to SAML (the Authentication Backend Order property is ignored

for SAML).
7. Set the Path to SAML IDP Metadata File property to point to the IDP metadata file.
8. Set the Path to SAML Keystore File property to point to the Java keystore file containing the Cloudera Navigator

private key (prepared above).
9. In the SAML Keystore Password property, set the SAML keystore password.
10. In the Alias of SAML Sign/Encrypt Private Key property, set the alias used to identify the private key for Cloudera

Navigator to use.
11. In the SAML Sign/Encrypt Private Key Password property, set the password for the sign/encrypt private key.
12. Set the SAML Entity ID property if:

• There is more than one Cloudera Navigator instance being used with the same IDP (each instance needs a
different entity ID).

• Entity IDs are assigned by organizational policy.

The entity ID value should be unique to the current Navigator Metadata Server installation.
13. In the Source of User ID in SAML Response property, set whether the user ID will be obtained from an attribute

or the NameID.

If an attribute will be used, set the attribute name in the SAML Attribute Identifier for User ID property. The
default value is the normal OID used for user IDs and so may not need to be changed.

14. In the SAMLRole AssignmentMechanism property, setwhether the role assignmentwill be done froman attribute
or an external script.

• If an attribute will be used:

– In the SAML Attribute Identifier for User Role property, set the attribute name if necessary. The default
value is the normal OID used for OrganizationalUnits and so may not need to be changed.

– In the SAML Attribute Values for Roles property, set which attribute values will be used to indicate the
user role.

92 | Cloudera Security

Configuring Authentication

• If an external script will be used, set the path to that script in the Path to SAML Role Assignment Script
property. Make sure that the script is executable (an executable binary is fine - it doesn’t need to be a shell
script).

15. Click Save Changes to commit the changes.
16. Restart the Navigator Metadata Server role.

Configuring the IDP

After the Cloudera Navigator is restarted, it will attempt to redirect to the IDP login page instead of showing the normal
Cloudera Navigator login page. This may or may not succeed, depending on how the IDP is configured. In either case,
the IDP will need to be configured to recognize Cloudera Navigator before authentication will actually succeed. The
details of this process are specific to each IDP implementation - refer to your IDP documentation for details.

1. Download Cloudera Navigator's SAML metadata XML file from http://hostname:7187/saml/metadata.
2. Inspect the metadata file and ensure that any URLs contained in the file can be resolved by users’ web browsers.

The IDP will redirect web browsers to these URLs at various points in the process. If the browser cannot resolve
them, authentication will fail. If the URLs are incorrect, you can manually fix the XML file or set the SAML Entity
Base URL property in the Navigator Metadata Server configuration to the right value, and then re-download the
file.

3. Provide this metadata file to your IDP using whatever mechanism your IDP provides.
4. Ensure that the IDP has access to whatever public certificates are necessary to validate the private key that was

provided by Cloudera Navigator earlier.
5. Ensure that the IDP is configured to provide the User ID and Role using the attribute names that Cloudera Navigator

was configured to expect, if relevant.
6. Ensure the changes to the IDP configuration have taken effect (a restart may be necessary).

Verifying Authentication and Authorization

1. Return to the Cloudera Navigator home page at: http://hostname:7187/.
2. Attempt to log in with credentials for a user that is entitled. The authentication should complete and you should

see the Home page.
3. If authentication fails, you will see an IDP provided error message. Cloudera Navigator is not involved in this part

of the process, and you must ensure the IDP is working correctly to complete the authentication.
4. If authentication succeeds but the user is not authorized to use Cloudera Navigator, they will be taken to an error

page that explains the situation. If a user who should be authorized sees this error, then you will need to verify
their role configuration, and ensure that it is being properly communicated to the Navigator Metadata Server,
whether by attribute or external script. The Cloudera Navigator log will provide details on failures to establish a
user’s role. If any errors occur during role mapping, Cloudera Navigator will assume the user is unauthorized.

Bypassing SAML SSO

As of ClouderaManager 5.9.3 (Navigator 2.8.3), you can bypass SAML SSO by directly accessing the Cloudera Navigator
login page at http://hostname:7187/locallogin.html. You can turn off this bypass by setting the Skip
Authorization Check property (nav.auth.skip_saml_auth_check) in the Navigator Metadata Server Advanced
Configuration Snippet (Safety Valve) for cloudera-navigator.properties .

Managing Users and Groups for the Cloudera Navigator Data Management Component

Minimum Required Role: User Administrator (also provided by Full Administrator)

These required roles refer to Cloudera Navigator user roles. Users with the Cloudera Manager user roles Navigator
Administrator or Full Administratorwho log into the ClouderaNavigatorWebUIwith their ClouderaManager credentials
are logged into Cloudera Navigator with the Full Administrator Cloudera Navigator user role.

Cloudera Navigator supports user authentication against Cloudera Manager user accounts and against an external
LDAP or Active Directory service. External authentication enables you to assign Cloudera Navigator user roles to LDAP
or Active Directory groups containing the appropriate users for each user role.

Cloudera Security | 93

Configuring Authentication

Assigning Cloudera Navigator User Roles to LDAP or Active Directory Groups

This section assumes that values for your LDAP or Active Directory directory service have been configured in Cloudera
Manager as described in Configuring External Authentication for Cloudera Navigator. This section also assumes that
your LDAP or Active Directory service contains user groups that correspond to Cloudera Navigator user roles having
the permissions you want each group of users to have. If not, you should assign your users to such groups now. The
Cloudera Navigator user roles are as follows:

• Full Administrator
• User Administrator
• Auditing Viewer
• Lineage Viewer
• Metadata Administrator
• Policy Viewer
• Policy Administrator

Each of these roles and the permissions associated with them are described in Cloudera Navigator User Roles.

To add or remove Cloudera Navigator user roles to LDAP or Active Directory user groups, you should know the names
of the directory groups you want to configure, and then perform the following steps:

1. Do one of the following:

• Enter the URL of the Navigator UI in a browser: http://Navigator_Metadata_Server_host:port/,
where Navigator_Metadata_Server_host is the name of the host on which you are running the Navigator
Metadata Server role and port is the port configured for the role. The default port of the Navigator Metadata
Server is 7187. To change the port, follow the instructions in Configuring the NavigatorMetadata Server Port.

• Select Clusters > Cloudera Management Service > Cloudera Navigator.
• Navigate from the Navigator Metadata Server role:

1. Select Clusters > Cloudera Management Service.
2. Click the Instances tab.
3. Click the Navigator Metadata Server role.
4. Click the Cloudera Navigator link.

2. Log in to Cloudera Navigator with the credentials of a user having one or more of the following user roles:

• Cloudera Manager Full Administrator
• Cloudera Manager Navigator Administrator
• Cloudera Navigator Full Administrator
• Cloudera Navigator User Administrator

3. Click the Administration tab in the upper right.
4. Click the Role Management tab.
5. Search for an LDAP or Active Directory group by entering its name (or the first portion of the name) in the search

field and pressing Enter or Return.

• Select All Groups to search among all groups in the external directory.
• SelectGroupswith Navigator Roles to display only external directory groups that have already been assigned

one or more Cloudera Navigator user roles.

6. From the LDAP or Active Directory groups displayed, select the group to which you want to assign a Cloudera
Navigator user role or roles. If roles have already been assigned to the group, they are listed beneath the name
of the group in the main panel.

7. ClickManage Role Assignment in the upper right.
8. Click the checkbox for each Cloudera Navigator user role youwant assigned to that Active Directory or LDAP group.

Uncheck any already-assigned roles that you want to remove from the group.
9. Click Save.

94 | Cloudera Security

Configuring Authentication

If a user's role assignments are changed, the changes take effect with the user's next new session, that is, the next
time the user logs in to Cloudera Navigator.

Configuring Authentication in CDH Using the Command Line
The security features in CDH 5 enable Hadoop to preventmalicious user impersonation. The Hadoop daemons leverage
Kerberos to perform user authentication on all remote procedure calls (RPCs). Group resolution is performed on the
Hadoop master nodes, NameNode, JobTracker and ResourceManager to guarantee that group membership cannot
be manipulated by users. Map tasks are run under the user account of the user who submitted the job, ensuring
isolation there. In addition to these features, new authorization mechanisms have been introduced to HDFS and
MapReduce to enable more control over user access to data.

The security features in CDH 5 meet the needs of most Hadoop customers because typically the cluster is accessible
only to trusted personnel. In particular, Hadoop's current threat model assumes that users cannot:

1. Have root access to cluster machines.
2. Have root access to shared client machines.
3. Read or modify packets on the network of the cluster.

Note:

CDH 5 supports encryption of all user data sent over the network. For configuration instructions, see
Configuring Encrypted Shuffle, Encrypted Web UIs, and Encrypted HDFS Transport.

Note also that there is no built-in support for on-disk encryption.

Enabling Kerberos Authentication for Hadoop Using the Command Line

Important:

These instructions assume you knowhow to install and configure Kerberos, you already have aworking
Kerberos Key Distribution Center (KDC) and realm setup, and that you've installed the Kerberos user
packages on all cluster machines and machines which will be used to access the cluster. Furthermore,
Oozie and Hue require that the realm support renewable tickets. Formore information about installing
and configuring Kerberos, see:

• MIT Kerberos Home
• MIT Kerberos Documentation
• Kerberos Explained
• Microsoft Kerberos Overview
• Microsoft Kerberos in Windows Server 2008
• Microsoft Kerberos in Windows Server 2003

Kerberos security in CDH 5 has been tested with the following version of MIT Kerberos 5:

• krb5-1.6.1 on Red Hat Enterprise Linux 5 and CentOS 5

Kerberos security in CDH 5 is supported with the following versions of MIT Kerberos 5:

• krb5-1.6.3 on SUSE Linux Enterprise Server (SLES) 11 Service Pack 1
• krb5-1.8.1 on Ubuntu
• krb5-1.8.2 on Red Hat Enterprise Linux 6 and CentOS 6
• krb5-1.9 on Red Hat Enterprise Linux 6.1

Cloudera Security | 95

Configuring Authentication

http://web.mit.edu/Kerberos
http://web.mit.edu/Kerberos/krb5-1.8/
https://technet.microsoft.com/en-us/library/bb742516.aspx
https://msdn.microsoft.com/en-us/library/aa378747.aspx
http://technet.microsoft.com/en-us/library/cc753173(WS.10).aspx
https://www.microsoft.com/en-us/download/details.aspx?id=53314

Note: The krb5-server package includes a logrotate policy file to rotate log files monthly. To
take advantage of this, install the logrotate package. No additional configuration is necessary.

If you want to enable Kerberos SPNEGO-based authentication for the Hadoop web interfaces, see the Hadoop Auth,
Java HTTP SPNEGO Documentation.

Here are the general steps to configuring secure Hadoop, each of which is described in more detail in the following
sections:

Step 1: Install CDH 5

Cloudera strongly recommends that you set up a fully-functional CDH 5 cluster before you begin configuring it to use
Hadoop's security features. When a secure Hadoop cluster is not configured correctly, the resulting error messages
are in a preliminary state, so it's best to start implementing security after you are sure your Hadoop cluster is working
properly without security.

For information about installing and configuring Hadoop and CDH 5 components, and deploying them on a cluster, see
#unique_215.

Step 2: Verify User Accounts and Groups in CDH 5 Due to Security

Note: CDH 5 introduces a new version of MapReduce: MapReduce 2.0 (MRv2) built on the YARN
framework. In this document, we refer to this new version as YARN. CDH 5 also provides an
implementation of the previous version of MapReduce, referred to as MRv1 in this document.

• If you are using MRv1, see Step 2a (MRv1 only): Verify User Accounts and Groups in MRv1 on page 96 for
configuration information.

• If you are using YARN, see Step 2b (YARN only): Verify User Accounts and Groups in YARN on page 98 for
configuration information.

Step 2a (MRv1 only): Verify User Accounts and Groups in MRv1

Note: If you are using YARN, skip this step and proceed to Step 2b (YARN only): Verify User Accounts
and Groups in YARN.

During CDH 5 package installation of MRv1, the following Unix user accounts are automatically created to support
security:

Runs These Hadoop ProgramsThis User

HDFS: NameNode, DataNodes, Secondary NameNode (or
Standby NameNode if you are using HA)

hdfs

MRv1: JobTracker and TaskTrackersmapred

The hdfs user also acts as the HDFS superuser.

The hadoop user no longer exists in CDH 5. If you currently use the hadoop user to run applications as an HDFS
super-user, you should instead use the new hdfs user, or create a separate Unix account for your application such as
myhadoopapp.

MRv1: Directory Ownership in the Local File System

Because the HDFS and MapReduce services run as different users, you must be sure to configure the correct directory
ownership of the following files on the local filesystem of each host:

96 | Cloudera Security

Configuring Authentication

https://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-auth/index.html
https://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-auth/index.html

PermissionsOwnerDirectoryFile System

drwx------hdfs:hdfsdfs.namenode.name.dir

(dfs.name.dir is
Local

deprecated but will also
work)

drwx------hdfs:hdfsdfs.datanode.data.dir

(dfs.data.dir is
Local

deprecated but will also
work)

drwxr-xr-xmapred:mapredmapred.local.dirLocal

See also Deploying MapReduce v1 (MRv1) on a Cluster.

You must also configure the following permissions for the HDFS and MapReduce log directories (the default locations
in /var/log/hadoop-hdfs and /var/log/hadoop-0.20-mapreduce), and the $MAPRED_LOG_DIR/userlogs/
directory:

PermissionsOwnerDirectoryFile System

drwxrwxr-xhdfs:hdfsHDFS_LOG_DIRLocal

drwxrwxr-xmapred:mapredMAPRED_LOG_DIRLocal

permissions will be set
automatically at daemon
start time

mapred:anygroupuserlogs directory in
MAPRED_LOG_DIR

Local

MRv1: Directory Ownership on HDFS

The following directories on HDFS must also be configured as follows:

PermissionsOwnerDirectoryFile System

drwx------mapred:hadoopmapreduce.jobtracker.system.dir

(mapred.system.dir is
HDFS

deprecated but will also
work)

drwxr-xr-xhdfs:hadoop/ (root directory)HDFS

MRv1: Changing the Directory Ownership on HDFS

• If Hadoop security is enabled, use kinit hdfs to obtain Kerberos credentials for the hdfs user by running the
following commands before changing the directory ownership on HDFS:

$ sudo -u hdfs kinit -k -t hdfs.keytab hdfs/fully.qualified.domain.name@YOUR-REALM.COM

Ifkinit hdfs does notwork initially, runkinit -R after runningkinit to obtain credentials. (Formore information,
see Troubleshooting Authentication Issues on page 211). To change the directory ownership on HDFS, run the following
commands. Replace the example/mapred/system directory in the commands belowwith theHDFS directory specified

1 In CDH 5, package installation and the Hadoop daemons will automatically configure the correct permissions for
you if you configure the directory ownership correctly as shown in the table above.

2 When starting up, MapReduce sets the permissions for the mapreduce.jobtracker.system.dir (or
mapred.system.dir) directory in HDFS, assuming the user mapred owns that directory.

Cloudera Security | 97

Configuring Authentication

by themapreduce.jobtracker.system.dir (ormapred.system.dir) property in theconf/mapred-site.xml
file:

$ sudo -u hdfs hadoop fs -chown mapred:hadoop /mapred/system
$ sudo -u hdfs hadoop fs -chown hdfs:hadoop /
$ sudo -u hdfs hadoop fs -chmod -R 700 /mapred/system
$ sudo -u hdfs hadoop fs -chmod 755 /

• In addition (whether or not Hadoop security is enabled) create the /tmp directory. For instructions on creating
/tmp and setting its permissions, see these instructions.

Step 2b (YARN only): Verify User Accounts and Groups in YARN

Note: If you are usingMRv1, skip this step and proceed to Step 3: If you are Using AES-256 Encryption,
Install the JCE Policy File on page 100.

During CDH 5 package installation ofMapReduce 2.0 (YARN), the following Unix user accounts are automatically created
to support security:

Runs These Hadoop ProgramsThis User

HDFS: NameNode, DataNodes, Standby NameNode (if you are using HA)hdfs

YARN: ResourceManager, NodeManageryarn

YARN: MapReduce JobHistory Servermapred

Important: The HDFS and YARN daemons must run as different Unix users; for example, hdfs and
yarn. The MapReduce JobHistory server must run as user mapred. Having all of these users share a
common Unix group is recommended; for example, hadoop.

YARN: Directory Ownership in the Local Filesystem

Because the HDFS and MapReduce services run as different users, you must be sure to configure the correct directory
ownership of the following files on the local filesystem of each host:

Permissions (see Footnote
1)

OwnerDirectoryFile System

drwx------hdfs:hdfsdfs.namenode.name.dir

(dfs.name.dir is
Local

deprecated but will also
work)

drwx------hdfs:hdfsdfs.datanode.data.dir

(dfs.data.dir is
Local

deprecated but will also
work)

drwxr-xr-xyarn:yarnyarn.nodemanager.local-dirsLocal

drwxr-xr-xyarn:yarnyarn.nodemanager.log-dirsLocal

--Sr-s---root:yarncontainer-executorLocal

r--------root:yarnconf/container-executor.cfgLocal

98 | Cloudera Security

Configuring Authentication

Important: Configuration changes to the Linux container executor could result in local NodeManager
directories (such as usercache) being left with incorrect permissions. To avoid this, when making
changes using either Cloudera Manager or the command line, first manually remove the existing
NodeManager local directories from all configured local directories
(yarn.nodemanager.local-dirs), and let the NodeManager recreate the directory structure.

You must also configure the following permissions for the HDFS, YARN and MapReduce log directories (the default
locations in /var/log/hadoop-hdfs, /var/log/hadoop-yarn and /var/log/hadoop-mapreduce):

PermissionsOwnerDirectoryFile System

drwxrwxr-xhdfs:hdfsHDFS_LOG_DIRLocal

drwxrwxr-xyarn:yarn$YARN_LOG_DIRLocal

drwxrwxr-xmapred:mapredMAPRED_LOG_DIRLocal

YARN: Directory Ownership on HDFS

The following directories on HDFS must also be configured as follows:

PermissionsOwnerDirectoryFile System

drwxr-xr-xhdfs:hadoop/ (root directory)HDFS

drwxrwxrwxtyarn:hadoopyarn.nodemanager.remote-app-log-dirHDFS

drwxrwxrwxtmapred:hadoopmapreduce.jobhistory.intermediate-done-dirHDFS

drwxr-x---mapred:hadoopmapreduce.jobhistory.done-dirHDFS

YARN: Changing the Directory Ownership on HDFS
If Hadoop security is enabled, use kinit hdfs to obtain Kerberos credentials for the hdfs user by running the
following commands:

$ sudo -u hdfs kinit -k -t hdfs.keytab hdfs/fully.qualified.domain.name@YOUR-REALM.COM
$ hadoop fs -chown hdfs:hadoop /
$ hadoop fs -chmod 755 /

If kinit hdfs does not work initially, run kinit -R after running kinit to obtain credentials. See Troubleshooting
Authentication Issues on page 211. To change the directory ownership on HDFS, run the following commands:

$ sudo -u hdfs hadoop fs -chown hdfs:hadoop /
$ sudo -u hdfs hadoop fs -chmod 755 /
$ sudo -u hdfs hadoop fs -chown yarn:hadoop [yarn.nodemanager.remote-app-log-dir]
$ sudo -u hdfs hadoop fs -chmod 1777 [yarn.nodemanager.remote-app-log-dir]
$ sudo -u hdfs hadoop fs -chown mapred:hadoop [mapreduce.jobhistory.intermediate-done-dir]
$ sudo -u hdfs hadoop fs -chmod 1777 [mapreduce.jobhistory.intermediate-done-dir]
$ sudo -u hdfs hadoop fs -chown mapred:hadoop [mapreduce.jobhistory.done-dir]
$ sudo -u hdfs hadoop fs -chmod 750 [mapreduce.jobhistory.done-dir]

• In addition (whether or not Hadoop security is enabled) create the /tmp directory. For instructions on creating
/tmp and setting its permissions, see Step 7: If Necessary, Create the HDFS /tmp Directory.

• In addition (whether or not Hadoop security is enabled), change permissions on the /user/history Directory.
See Step 8: Create the history Directory and Set Permissions.

3 In CDH 5, package installation and the Hadoop daemons will automatically configure the correct permissions for
you if you configure the directory ownership correctly as shown in the two tables above. See also Deploying
MapReduce v2 (YARN) on a Cluster.

Cloudera Security | 99

Configuring Authentication

Step 3: If you are Using AES-256 Encryption, Install the JCE Policy File

If you are using CentOS/Red Hat Enterprise Linux 5.6 or higher, or Ubuntu, which use AES-256 encryption by default
for tickets, you must install the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy File on all
cluster and Hadoop user machines. For JCE Policy File installation instructions, see the README.txt file included in
the jce_policy-x.zip file.

Alternatively, you can configure Kerberos to not use AES-256 by removing aes256-cts:normal from the
supported_enctypes field of the kdc.conf or krb5.conf file. After changing the kdc.conf file, you must restart
both the KDC and the kadmin server for those changes to take affect. You may also need to re-create or change the
password of the relevant principals, including potentially the Ticket Granting Ticket principal (krbtgt/REALM@REALM).
If AES-256 is still used after completing steps, the aes256-cts:normal setting existed when the Kerberos database
was created. To fix this, create a new Kerberos database and then restart both the KDC and the kadmin server.

To verify the type of encryption used in your cluster:

1. On the local KDC host, type this command to create a test principal:

$ kadmin -q "addprinc test"

2. On a cluster host, type this command to start a Kerberos session as test:

$ kinit test

3. On a cluster host, type this command to view the encryption type in use:

$ klist -e

If AES is being used, output like the following is displayed after you type the klist command; note that AES-256
is included in the output:

Ticket cache: FILE:/tmp/krb5cc_0
Default principal: test@SCM
Valid starting Expires Service principal
05/19/11 13:25:04 05/20/11 13:25:04 krbtgt/SCM@SCM
 Etype (skey, tkt): AES-256 CTS mode with 96-bit SHA-1 HMAC, AES-256 CTS mode with
96-bit SHA-1 HMAC

Step 4: Create and Deploy the Kerberos Principals and Keytab Files

A Kerberos principal is used in a Kerberos-secured system to represent a unique identity. Kerberos assigns tickets to
Kerberos principals to enable them to access Kerberos-secured Hadoop services. For Hadoop, the principals should be
of the format username/fully.qualified.domain.name@YOUR-REALM.COM. In this guide, the term username

in the username/fully.qualified.domain.name@YOUR-REALM.COM principal refers to the username of an
existing Unix account, such as hdfs or mapred.

A keytab is a file containing pairs of Kerberos principals and an encrypted copy of that principal's key. The keytab files
are unique to each host since their keys include the hostname. This file is used to authenticate a principal on a host to
Kerberos without human interaction or storing a password in a plain text file. Because having access to the keytab file
for a principal allows one to act as that principal, access to the keytab files should be tightly secured. They should be
readable by a minimal set of users, should be stored on local disk, and should not be included in machine backups,
unless access to those backups is as secure as access to the local machine.

100 | Cloudera Security

Configuring Authentication

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Important:

For both MRv1 and YARN deployments: On every machine in your cluster, there must be a keytab
file for the hdfs user and a keytab file for the mapred user. The hdfs keytab file must contain entries
for the hdfs principal and a HTTP principal, and the mapred keytab file must contain entries for the
mapred principal and a HTTP principal. On each respective machine, the HTTP principal will be the
same in both keytab files.

In addition, for YARN deployments only: On every machine in your cluster, there must be a keytab
file for the yarn user. The yarn keytab file must contain entries for the yarn principal and a HTTP
principal. On each respective machine, the HTTP principal in the yarn keytab file will be the same as
the HTTP principal in the hdfs and mapred keytab files.

Note:

The following instructions illustrate an example of creating keytab files for MIT Kerberos. If you are
using another version of Kerberos, refer to your Kerberos documentation for instructions. You may
use either kadmin or kadmin.local to run these commands.

When to Use kadmin.local and kadmin

When creating the Kerberos principals and keytabs, you can use kadmin.local or kadmin depending on your access
and account:

• If you have root access to the KDC machine, but you do not have a Kerberos admin account, use kadmin.local.
• If you do not have root access to the KDC machine, but you do have a Kerberos admin account, use kadmin.
• If you have both root access to the KDC machine and a Kerberos admin account, you can use either one.

To start kadmin.local (on the KDC machine) or kadmin from any machine, run this command:

$ sudo kadmin.local

OR:

$ kadmin

Note:

In this guide, kadmin is shown as the prompt for commands in the kadmin shell, but you can type the
same commands at the kadmin.local prompt in the kadmin.local shell.

Note:

Running kadmin.local may prompt you for a password because it is being run via sudo. You should
provide your Unix password. Running kadmin may prompt you for a password because you need
Kerberos admin privileges. You should provide your Kerberos admin password.

Cloudera Security | 101

Configuring Authentication

To create the Kerberos principals

Important:

If you plan to useOozie, Impala, or the Hue Kerberos ticket renewer in your cluster, youmust configure
your KDC to allow tickets to be renewed, and you must configure krb5.conf to request renewable
tickets. Typically, you can do this by adding the max_renewable_life setting to your realm in
kdc.conf, and by adding the renew_lifetime parameter to the libdefaults section of
krb5.conf. For more information about renewable tickets, see the Kerberos documentation.

Do the following steps for every host in your cluster. Run the commands in the kadmin.local or kadmin shell, replacing
the fully.qualified.domain.name in the commands with the fully qualified domain name of each host. Replace
YOUR-REALM.COM with the name of the Kerberos realm your Hadoop cluster is in.

1. In the kadmin.local or kadmin shell, create the hdfs principal. This principal is used for the NameNode, Secondary
NameNode, and DataNodes.

kadmin: addprinc -randkey hdfs/fully.qualified.domain.name@YOUR-REALM.COM

Note:

If your Kerberos administrator or company has a policy about principal names that does not allow
you to use the format shown above, you canwork around that issue by configuring the<kerberos
principal> to <short name>mapping that is built into Hadoop. For more information, see
Configuring the Mapping from Kerberos Principals to Short Names.

2. Create the mapred principal. If you are using MRv1, the mapred principal is used for the JobTracker and
TaskTrackers. If you are using YARN, the mapred principal is used for the MapReduce Job History Server.

kadmin: addprinc -randkey mapred/fully.qualified.domain.name@YOUR-REALM.COM

3. YARN only: Create the yarn principal. This principal is used for the ResourceManager and NodeManager.

kadmin: addprinc -randkey yarn/fully.qualified.domain.name@YOUR-REALM.COM

4. Create the HTTP principal.

kadmin: addprinc -randkey HTTP/fully.qualified.domain.name@YOUR-REALM.COM

Important:

The HTTP principal must be in the format
HTTP/fully.qualified.domain.name@YOUR-REALM.COM. The first componentof theprincipal
must be the literal string "HTTP". This format is standard for HTTP principals in SPNEGO and is
hard-coded in Hadoop. It cannot be deviated from.

102 | Cloudera Security

Configuring Authentication

http://web.mit.edu/Kerberos/krb5-1.8/

To create the Kerberos keytab files

Important:

The instructions in this section for creating keytab files require using the Kerberos norandkey option
in the xst command. If your version of Kerberos does not support the norandkey option, or if you
cannot use kadmin.local, then use these alternate instructions to create appropriate Kerberos
keytab files. After using those alternate instructions to create the keytab files, continue with the next
section To deploy the Kerberos keytab files.

Do the following steps for every host in your cluster. Run the commands in the kadmin.local or kadmin shell, replacing
the fully.qualified.domain.name in the commands with the fully qualified domain name of each host:

1. Create the hdfs keytab file that will contain the hdfs principal and HTTP principal. This keytab file is used for the
NameNode, Secondary NameNode, and DataNodes.

kadmin: xst -norandkey -k hdfs.keytab hdfs/fully.qualified.domain.name
HTTP/fully.qualified.domain.name

2. Create the mapred keytab file that will contain the mapred principal and HTTP principal. If you are using MRv1,
the mapred keytab file is used for the JobTracker and TaskTrackers. If you are using YARN, the mapred keytab file
is used for the MapReduce Job History Server.

kadmin: xst -norandkey -k mapred.keytab mapred/fully.qualified.domain.name
HTTP/fully.qualified.domain.name

3. YARN only: Create the yarn keytab file that will contain the yarn principal and HTTP principal. This keytab file
is used for the ResourceManager and NodeManager.

kadmin: xst -norandkey -k yarn.keytab yarn/fully.qualified.domain.name
HTTP/fully.qualified.domain.name

4. Use klist to display the keytab file entries; a correctly-created hdfs keytab file should look something like this:

$ klist -e -k -t hdfs.keytab
Keytab name: WRFILE:hdfs.keytab
slot KVNO Principal
---- ---- ---
 1 7 HTTP/fully.qualified.domain.name@YOUR-REALM.COM (DES cbc mode with CRC-32)

 2 7 HTTP/fully.qualified.domain.name@YOUR-REALM.COM (Triple DES cbc mode with
 HMAC/sha1)
 3 7 hdfs/fully.qualified.domain.name@YOUR-REALM.COM (DES cbc mode with CRC-32)

 4 7 hdfs/fully.qualified.domain.name@YOUR-REALM.COM (Triple DES cbc mode with
 HMAC/sha1)

5. Continue with the next section To deploy the Kerberos keytab files.

To deploy the Kerberos keytab files

On every node in the cluster, repeat the following steps to deploy the hdfs.keytab and mapred.keytab files. If you
are using YARN, you will also deploy the yarn.keytab file.

1. On the host machine, copy or move the keytab files to a directory that Hadoop can access, such as
/etc/hadoop/conf.

a. If you are using MRv1:

$ sudo mv hdfs.keytab mapred.keytab /etc/hadoop/conf/

Cloudera Security | 103

Configuring Authentication

If you are using YARN:

$ sudo mv hdfs.keytab mapred.keytab yarn.keytab /etc/hadoop/conf/

b. Make sure that the hdfs.keytab file is only readable by the hdfs user, and that the mapred.keytab file
is only readable by the mapred user.

$ sudo chown hdfs:hadoop /etc/hadoop/conf/hdfs.keytab
$ sudo chown mapred:hadoop /etc/hadoop/conf/mapred.keytab
$ sudo chmod 400 /etc/hadoop/conf/*.keytab

Note:

To enable you to use the same configuration files on every host, Cloudera recommends that
you use the same name for the keytab files on every host.

c. YARN only:Make sure that the yarn.keytab file is only readable by the yarn user.

$ sudo chown yarn:hadoop /etc/hadoop/conf/yarn.keytab
$ sudo chmod 400 /etc/hadoop/conf/yarn.keytab

Important:

If the NameNode, Secondary NameNode, DataNode, JobTracker, TaskTrackers, HttpFS, or
Oozie services are configured to use Kerberos HTTP SPNEGO authentication, and two ormore
of these services are running on the same host, then all of the running services must use the
same HTTP principal and keytab file used for their HTTP endpoints.

Step 5: Shut Down the Cluster

To enable security in CDH, you must stop all Hadoop daemons in your cluster and then change some configuration
properties. You must stop all daemons in the cluster because after one Hadoop daemon has been restarted with the
configuration properties set to enable security, daemons runningwithout security enabledwill be unable to communicate
with that daemon. This requirement to shut down all daemons makes it impossible to do a rolling upgrade to enable
security on a Hadoop cluster.

To shut down the cluster, run the following command on every node in your cluster (as root):

$ for x in `cd /etc/init.d ; ls hadoop-*` ; do sudo service $x stop ; done

Step 6: Enable Hadoop Security

Cloudera recommends that all of the Hadoop configuration files throughout the cluster have the same contents.

To enable Hadoop security, add the following properties to the core-site.xml file on every machine in the cluster:

<property>
 <name>hadoop.security.authentication</name>
 <value>kerberos</value> <!-- A value of "simple" would disable security. -->
</property>

<property>
 <name>hadoop.security.authorization</name>
 <value>true</value>
</property>

104 | Cloudera Security

Configuring Authentication

Enabling Service-Level Authorization for Hadoop Services

Service-level authorizations prevent users from accessing a cluster at the course-grained level. For example, when
Authorized Users and Authorized Groups are setup properly, an unauthorized user cannot use the hdfs shell to list the
contents of HDFS. This also limits the exposure of world-readable files to an explicit set of users instead of all
authenticated users, which could be, for example, every user in Active Directory.

The hadoop-policy.xml file maintains access control lists (ACL) for Hadoop services. Each ACL consists of
comma-separated lists of users and groups separated by a space. For example:

user_a,user_b group_a,group_b

If you only want to specify a set of users, add a comma-separated list of users followed by a blank space. Similarly, to
specify only authorized groups, use a blank space at the beginning. A * can be used to give access to all users.

For example, to give users, ann, bob, and groups, group_a, group_b access to Hadoop's DataNodeProtocol service,
modify thesecurity.datanode.protocol.acl property inhadoop-policy.xml. Similarly, to give all users access
to the InterTrackerProtocol service, modify security.inter.tracker.protocol.acl as follows:

<property>
 <name>security.datanode.protocol.acl</name>
 <value>ann,bob group_a,group_b</value>
 <description>ACL for DatanodeProtocol, which is used by datanodes to
 communicate with the namenode.</description>
</property>

<property>
 <name>security.inter.tracker.protocol.acl</name>
 <value>*</value>
 <description>ACL for InterTrackerProtocol, which is used by tasktrackers to
 communicate with the jobtracker.</description>
</property>

For more details, see Service-Level Authorization in Hadoop.

Step 7: Configure Secure HDFS

When following the instructions in this section to configure the properties in the hdfs-site.xml file, keep the
following important guidelines in mind:

• The properties for each daemon (NameNode, Secondary NameNode, and DataNode) must specify both the HDFS
and HTTP principals, as well as the path to the HDFS keytab file.

• The Kerberos principals for the NameNode, Secondary NameNode, and DataNode are configured in the
hdfs-site.xml file. The same hdfs-site.xml file with all three of these principals must be installed on every
hostmachine in the cluster. That is, it is not sufficient to have theNameNode principal configured on theNameNode
host machine only. This is because, for example, the DataNode must know the principal name of the NameNode
in order to send heartbeats to it. Kerberos authentication is bi-directional.

• The special string _HOST in the properties is replaced at run-time by the fully qualified domain name of the host
machinewhere the daemon is running. This requires that reverseDNS is properlyworking on all the hosts configured
this way. You may use _HOST only as the entirety of the second component of a principal name. For example,
hdfs/_HOST@YOUR-REALM.COM is valid, but hdfs._HOST@YOUR-REALM.COM and
hdfs/_HOST.example.com@YOUR-REALM.COM are not.

• When performing the _HOST substitution for the Kerberos principal names, the NameNode determines its own
hostnamebasedon the configured valueoffs.default.name, whereas theDataNodesdetermine their hostnames
based on the result of reverse DNS resolution on the DataNode hosts. Likewise, the JobTracker uses the configured
value of mapred.job.tracker to determine its hostname whereas the TaskTrackers, like the DataNodes, use
reverse DNS.

• The dfs.datanode.address and dfs.datanode.http.address port numbers for the DataNodemust be
below 1024, because this provides part of the security mechanism to make it impossible for a user to run a map
task which impersonates a DataNode. The port numbers for the NameNode and Secondary NameNode can be
anything you want, but the default port numbers are good ones to use.

Cloudera Security | 105

Configuring Authentication

https://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-project-dist/hadoop-common/ServiceLevelAuth.html

To configure secure HDFS

Add the following properties to the hdfs-site.xml file on everymachine in the cluster. Replace these example values
shown belowwith the correct settings for your site: path to the HDFS keytab, YOUR-REALM.COM, fully qualified domain
name of NN, and fully qualified domain name of 2NN

<!-- General HDFS security config -->
<property>
 <name>dfs.block.access.token.enable</name>
 <value>true</value>
</property>

<!-- NameNode security config -->
<property>
 <name>dfs.namenode.keytab.file</name>
 <value>/etc/hadoop/conf/hdfs.keytab</value> <!-- path to the HDFS keytab -->
</property>
<property>
 <name>dfs.namenode.kerberos.principal</name>
 <value>hdfs/_HOST@YOUR-REALM.COM</value>
</property>
<property>
 <name>dfs.namenode.kerberos.internal.spnego.principal</name>
 <value>HTTP/_HOST@YOUR-REALM.COM</value>
</property>

<!-- Secondary NameNode security config -->
<property>
 <name>dfs.secondary.namenode.keytab.file</name>
 <value>/etc/hadoop/conf/hdfs.keytab</value> <!-- path to the HDFS keytab -->
</property>
<property>
 <name>dfs.secondary.namenode.kerberos.principal</name>
 <value>hdfs/_HOST@YOUR-REALM.COM</value>
</property>
<property>
 <name>dfs.secondary.namenode.kerberos.internal.spnego.principal</name>
 <value>HTTP/_HOST@YOUR-REALM.COM</value>
</property>

<!-- DataNode security config -->
<property>
 <name>dfs.datanode.data.dir.perm</name>
 <value>700</value>
</property>
<property>
 <name>dfs.datanode.address</name>
 <value>0.0.0.0:1004</value>
</property>
<property>
 <name>dfs.datanode.http.address</name>
 <value>0.0.0.0:1006</value>
</property>
<property>
 <name>dfs.datanode.keytab.file</name>
 <value>/etc/hadoop/conf/hdfs.keytab</value> <!-- path to the HDFS keytab -->
</property>
<property>
 <name>dfs.datanode.kerberos.principal</name>
 <value>hdfs/_HOST@YOUR-REALM.COM</value>
</property>

<!-- Web Authentication config -->
<property>
 <name>dfs.web.authentication.kerberos.principal</name>
 <value>HTTP/_HOST@YOUR_REALM</value>
 </property>

106 | Cloudera Security

Configuring Authentication

To enable TLS/SSL for HDFS

Add the following property to hdfs-site.xml on every machine in your cluster.

<property>
<name>dfs.http.policy</name>
<value>HTTPS_ONLY</value>
</property>

Optional Step 8: Configuring Security for HDFS High Availability

CDH 5 supports the HDFS High Availability (HA) feature with Kerberos security enabled. There are two use cases that
affect security for HA:

• If you are not using Quorum-based Storage (see Software Configuration for Quorum-based Storage), then no extra
configuration for HA is necessary if automatic failover is not enabled. If automatic failover is enabled then access
to ZooKeeper should be secured. See the Software Configuration for Shared Storage Using NFS documentation
for details.

• If you are using Quorum-based Storage, then you must configure security for Quorum-based Storage by following
the instructions in this section.

To configure security for Quorum-based Storage:

Add the following Quorum-based Storage configuration properties to the hdfs-site.xml file on all of the machines
in the cluster:

<property>
 <name>dfs.journalnode.keytab.file</name>
 <value>/etc/hadoop/conf/hdfs.keytab</value> <!-- path to the HDFS keytab -->
</property>
<property>
 <name>dfs.journalnode.kerberos.principal</name>
 <value>hdfs/_HOST@YOUR-REALM.COM</value>
</property>
<property>
 <name>dfs.journalnode.kerberos.internal.spnego.principal</name>
 <value>HTTP/_HOST@YOUR-REALM.COM</value>
</property>

Note:

If you already have principals and keytabs created for the machines where the JournalNodes are
running, then you should reuse those principals and keytabs in the configuration properties above.
You will likely have these principals and keytabs already created if you are collocating a JournalNode
on a machine with another HDFS daemon.

Optional Step 9: Configure secure WebHDFS

Note:

If you are not using WebHDFS, you can skip this step.

Security for WebHDFS is disabled by default. If you want use WebHDFS with a secure cluster, this is the time to enable
and configure it.

To configure secure WebHDFS:

Cloudera Security | 107

Configuring Authentication

1. If you have not already done so, enable WebHDFS by adding the following property to the hdfs-site.xml file
on every machine in the cluster.

<property>
 <name>dfs.webhdfs.enabled</name>
 <value>true</value>
</property>

2. Add the following properties to the hdfs-site.xml file on every machine in the cluster. Replace the example
values shown below with the correct settings for your site.

<property>
 <name>dfs.web.authentication.kerberos.principal</name>
 <value>HTTP/_HOST@YOUR-REALM.COM</value>
</property>

<property>
 <name>dfs.web.authentication.kerberos.keytab</name>
 <value>/etc/hadoop/conf/HTTP.keytab</value> <!-- path to the HTTP keytab -->
</property>

Optional Step 10: Configuring a secure HDFS NFS Gateway

To deploy a Kerberized HDFS NFS gateway, add the following configuration properties to hdfs-site.xml on the NFS
server.

<property>
<name>dfs.nfs.keytab.file</name>
<value>/etc/hadoop/conf/hdfs.keytab</value> <!-- path to the HDFS or NFS gateway keytab
 -->
</property>

<property>
<name>dfs.nfs.kerberos.principal</name>
<value>hdfs/_HOST@YOUR-REALM.COM</value>
</property>

Potential Insecurities with a Kerberized NFS Gateway

When configuring an NFS gateway in a secure cluster, the gateway accesses the contents of HDFS using the HDFS
service principals. However, authorization for end users is handled by comparing the end user's UID/GID against the
UID/GID of the files on the NFS mount. No Kerberos is involved in authenticating the user first.

Because HDFS metadata doesn't have any UIDs/GIDs, only names and groups, the NFS gateway maps user names and
group names to UIDs and GIDs. The user names and group names used for this mapping are derived from the local
users of the host where the NFS gateway is running. The mapped IDs are then presented to the NFS client for
authorization. The NFS client performs the authorization locally, comparing the UID/GID presented by the NFS Gateway
to the IDs of the users on the remote host.

Themain riskwith this procedure is that it's quite possible to create local users with UIDs thatwere previously associated
with any superusers. For example, users with access to HDFS can view the directories that belong to the hdfs user,
and they can also access the underlying metadata to obtain the associated UID. Assuming the directories owned by
hdfs have their UID set to xyz, a malicious user could create a new local user on the NFS gateway host with the UID
set to xyz. This local user will now be able to freely access the hdfs user's files.

Solutions:

• Set the NFS Gateway property, Allowed Hosts and Privileges, to allow only those NFS clients that are trusted and
managed by the Hadoop administrators.

1. Go to the Cloudera Manager Admin Console and navigate to the HDFS service.
2. Click the Configuration tab.
3. Select Scope > NFS Gateway.

108 | Cloudera Security

Configuring Authentication

4. Select Category >Main.
5. Locate theAllowedHosts and Privileges property and set it to a list of trusted host names and access privileges

(ro - read-only, rw - read/write). For example:

192.168.0.0/22 rw
host1.example.org ro

The current default setting of this property is * rw, which is a security risk because it lets everybody map
the NFS export in read-write mode.

6. Click Save Changes to commit the changes.

• Specify a user with restricted privileges for the dfs.nfs.kerberos.principal property, so that the NFS
gateway has limited access to the NFS contents. The current default setting for this property is
hdfs/_HOST@YOUR-REALM.COM</value>, which gives the NFS gateway unrestricted access to HDFS.

Step 11: Set Variables for Secure DataNodes

In order to allow DataNodes to start on a secure Hadoop cluster, you must set the following variables on all DataNodes
in /etc/default/hadoop-hdfs-datanode.

export HADOOP_SECURE_DN_USER=hdfs
export HADOOP_SECURE_DN_PID_DIR=/var/lib/hadoop-hdfs
export HADOOP_SECURE_DN_LOG_DIR=/var/log/hadoop-hdfs
export JSVC_HOME=/usr/lib/bigtop-utils/

Note:

Depending on the version of Linux you are using, you may not have the /usr/lib/bigtop-utils
directory on your system. If that is the case, set the JSVC_HOME variable to the
/usr/libexec/bigtop-utils directory by using this command:

export JSVC_HOME=/usr/libexec/bigtop-utils

Step 12: Start up the NameNode

You are now ready to start the NameNode. Use the service command to run the /etc/init.d script.

$ sudo service hadoop-hdfs-namenode start

You'll see some extra information in the logs such as:

10/10/25 17:01:46 INFO security.UserGroupInformation:
Login successful for user hdfs/fully.qualified.domain.name@YOUR-REALM.COM using keytab
 file /etc/hadoop/conf/hdfs.keytab

and:

12/05/23 18:18:31 INFO http.HttpServer: Adding Kerberos (SPNEGO) filter to
getDelegationToken
12/05/23 18:18:31 INFO http.HttpServer: Adding Kerberos (SPNEGO) filter to
renewDelegationToken
12/05/23 18:18:31 INFO http.HttpServer: Adding Kerberos (SPNEGO) filter to
cancelDelegationToken
12/05/23 18:18:31 INFO http.HttpServer: Adding Kerberos (SPNEGO) filter to fsck
12/05/23 18:18:31 INFO http.HttpServer: Adding Kerberos (SPNEGO) filter to getimage
12/05/23 18:18:31 INFO http.HttpServer: Jetty bound to port 50070
12/05/23 18:18:31 INFO mortbay.log: jetty-6.1.26
12/05/23 18:18:31 INFO server.KerberosAuthenticationHandler: Login using keytab
/etc/hadoop/conf/hdfs.keytab, for principal
HTTP/fully.qualified.domain.name@YOUR-REALM.COM
12/05/23 18:18:31 INFO server.KerberosAuthenticationHandler: Initialized, principal

Cloudera Security | 109

Configuring Authentication

[HTTP/fully.qualified.domain.name@YOUR-REALM.COM] from keytab
[/etc/hadoop/conf/hdfs.keytab]

You can verify that theNameNode is working properly by opening aweb browser to http://machine:50070/where
machine is the name of the machine where the NameNode is running.

Cloudera also recommends testing that the NameNode is working properly by performing a metadata-only HDFS
operation, which will now require correct Kerberos credentials. For example:

$ hadoop fs -ls

Information about the kinit Command

Important:

Running the hadoop fs -ls command will fail if you do not have a valid Kerberos ticket in your
credentials cache. You can examine the Kerberos tickets currently in your credentials cache by running
the klist command. You can obtain a ticket by running the kinit command and either specifying
a keytab file containing credentials, or entering the password for your principal. If you do not have a
valid ticket, you will receive an error such as:

11/01/04 12:08:12 WARN ipc.Client: Exception encountered while connecting
 to the server : javax.security.sasl.SaslException:
 GSS initiate failed [Caused by GSSException: No valid credentials
provided (Mechanism level: Failed to find any Kerberos tgt)]
Bad connection to FS. command aborted. exception: Call to
nn-host/10.0.0.2:8020 failed on local exception: java.io.IOException:
javax.security.sasl.SaslException: GSS initiate failed [Caused by
GSSException: No valid credentials provided (Mechanism level: Failed to
 find any Kerberos tgt)]

Note:

The kinit commandmust either be on the path for user accounts running the Hadoop client, or else
thehadoop.kerberos.kinit.commandparameter incore-site.xmlmust bemanually configured
to the absolute path to the kinit command.

Note:

If you are running MIT Kerberos 1.8.1 or higher, a bug in versions of the Oracle JDK 6 Update 26 and
higher causes Java to be unable to read the Kerberos credentials cache even after you have successfully
obtained a Kerberos ticket using kinit. To workaround this bug, run kinit -R after running kinit
initially to obtain credentials. Doing so will cause the ticket to be renewed, and the credentials cache
rewritten in a format which Java can read. For more information about this problem, see
Troubleshooting.

Step 12: Start up a DataNode

Begin by starting oneDataNodeonly tomake sure it can properly connect to theNameNode.Use theservice command
to run the /etc/init.d script.

$ sudo service hadoop-hdfs-datanode start

110 | Cloudera Security

Configuring Authentication

You'll see some extra information in the logs such as:

10/10/25 17:21:41 INFO security.UserGroupInformation:
Login successful for user hdfs/fully.qualified.domain.name@YOUR-REALM.COM using keytab
 file /etc/hadoop/conf/hdfs.keytab

If you can get a single DataNode running and you can see it registering with the NameNode in the logs, then start up
all the DataNodes. You should now be able to do all HDFS operations.

Step 14: Set the Sticky Bit on HDFS Directories

This step is optional but strongly recommended for security. In CDH 5, HDFS file permissions have support for the sticky
bit. The sticky bit can be set on directories, preventing anyone except the superuser, directory owner, or file owner
from deleting or moving the files within the directory. Setting the sticky bit for a file has no effect. This is useful for
directories such as /tmpwhich previously had to be set to beworld-writable. To set the sticky bit on the /tmp directory,
run the following command:

$ sudo -u hdfs kinit -k -t hdfs.keytab hdfs/fully.qualified.domain.name@YOUR-REALM.COM
$ sudo -u hdfs hadoop fs -chmod 1777 /tmp

After running this command, the permissions on /tmp will appear as shown below. (Note the "t" instead of the final
"x".)

$ hadoop fs -ls /
Found 2 items
drwxrwxrwt - hdfs supergroup 0 2011-02-14 15:55 /tmp
drwxr-xr-x - hdfs supergroup 0 2011-02-14 14:01 /user

Step 15: Start up the Secondary NameNode (if used)

At this point, you should be able to start the Secondary NameNode if you are using one:

$ sudo service hadoop-hdfs-secondarynamenode start

Note:

If you are using HDFSHA, do not use the Secondary NameNode. See Configuring HDFSHigh Availability
for instructions on configuring and deploying the Standby NameNode.

You'll see some extra information in the logs such as:

10/10/26 12:03:18 INFO security.UserGroupInformation:
Login successful for user hdfs/fully.qualified.domain.name@YOUR-REALM using keytab file
 /etc/hadoop/conf/hdfs.keytab

and:

12/05/23 18:33:06 INFO http.HttpServer: Adding Kerberos (SPNEGO) filter to getimage
12/05/23 18:33:06 INFO http.HttpServer: Jetty bound to port 50090
12/05/23 18:33:06 INFO mortbay.log: jetty-6.1.26
12/05/23 18:33:06 INFO server.KerberosAuthenticationHandler: Login using keytab
/etc/hadoop/conf/hdfs.keytab, for principal
HTTP/fully.qualified.domain.name@YOUR-REALM.COM
12/05/23 18:33:06 INFO server.KerberosAuthenticationHandler: Initialized, principal
[HTTP/fully.qualified.domain.name@YOUR-REALM.COM] from keytab
[/etc/hadoop/conf/hdfs.keytab]

You should make sure that the Secondary NameNode not only starts, but that it is successfully checkpointing.

Cloudera Security | 111

Configuring Authentication

If you're using the service command to start the Secondary NameNode from the /etc/init.d scripts, Cloudera
recommends setting the property fs.checkpoint.period in the hdfs-site.xml file to a very low value (such as
5), and then monitoring the Secondary NameNode logs for a successful startup and checkpoint. Once you are satisfied
that the SecondaryNameNode is checkpointing properly, you should reset thefs.checkpoint.period to a reasonable
value, or return it to the default, and then restart the Secondary NameNode.

You can make the Secondary NameNode perform a checkpoint by doing the following:

$ sudo -u hdfs hdfs secondarynamenode -checkpoint force

Note that this will not cause a running Secondary NameNode to checkpoint, but rather will start up a Secondary
NameNode that will immediately perform a checkpoint and then shut down. This can be useful for debugging.

Note:

If you encounter errors during Secondary NameNode checkpointing, it may be helpful to enable
Kerberos debugging output. For instructions, see Enabling Debugging Output for the Sun Kerberos
Classes.

Step 16: Configure Either MRv1 Security or YARN Security

At this point, you are ready to configure either MRv1 Security or YARN Security.

• If you are using MRv1, do the steps in Configuring MRv1 Security to configure, start, and test secure MRv1.

• If you are using YARN, do the steps in Configuring YARN Security to configure, start, and test secure YARN.

Configuring MRv1 Security

If you are using YARN, skip this section and see Configuring YARN Security.

If you are using MRv1, do the following steps to configure, start, and test secure MRv1.

1. Step 1: Configure Secure MRv1 on page 112
2. Step 2: Start up the JobTracker on page 114
3. Step 3: Start up a TaskTracker on page 114
4. Step 4: Try Running a Map/Reduce Job on page 114

Step 1: Configure Secure MRv1

Keep the following important information in mind when configuring secure MapReduce:

• The properties for JobTracker and TaskTrackermust specify themapred principal, aswell as the path to themapred
keytab file.

• The Kerberos principals for the JobTracker and TaskTracker are configured in the mapred-site.xml file. The
same mapred-site.xml file with both of these principals must be installed on every host machine in the cluster.
That is, it is not sufficient to have the JobTracker principal configured on the JobTracker host machine only. This
is because, for example, the TaskTracker must know the principal name of the JobTracker to securely register with
the JobTracker. Kerberos authentication is bi-directional.

• Do not use ${user.name} in the value of the mapred.local.dir or hadoop.log.dir properties in
mapred-site.xml. Doing so can prevent tasks from launching on a secure cluster.

• Make sure that each user who will be running MRv1 jobs exists on all cluster hosts (that is, on every host that
hosts any MRv1 daemon).

• Make sure the value specified for mapred.local.dir is identical in mapred-site.xml and
taskcontroller.cfg. If the values are different, this error message is returned.

• Make sure the value specified in taskcontroller.cfg for hadoop.log.dir is the same as what the Hadoop
daemons are using, which is /var/log/hadoop-0.20-mapreduce by default and can be configured in
mapred-site.xml. If the values are different, this error message is returned.

To configure secure MapReduce:

112 | Cloudera Security

Configuring Authentication

1. Add the following properties to the mapred-site.xml file on every machine in the cluster:

<!-- JobTracker security configs -->
<property>
 <name>mapreduce.jobtracker.kerberos.principal</name>
 <value>mapred/_HOST@YOUR-REALM.COM</value>
</property>
<property>
 <name>mapreduce.jobtracker.keytab.file</name>
 <value>/etc/hadoop/conf/mapred.keytab</value> <!-- path to the MapReduce keytab -->
</property>

<!-- TaskTracker security configs -->
<property>
 <name>mapreduce.tasktracker.kerberos.principal</name>
 <value>mapred/_HOST@YOUR-REALM.COM</value>
</property>
<property>
 <name>mapreduce.tasktracker.keytab.file</name>
 <value>/etc/hadoop/conf/mapred.keytab</value> <!-- path to the MapReduce keytab -->
</property>

<!-- TaskController settings -->
<property>
 <name>mapred.task.tracker.task-controller</name>
 <value>org.apache.hadoop.mapred.LinuxTaskController</value>
</property>
<property>
 <name>mapreduce.tasktracker.group</name>
 <value>mapred</value>
</property>

2. Create a file called taskcontroller.cfg that contains the following information:

hadoop.log.dir=<Path to Hadoop log directory. Should be same value used to start the
TaskTracker. This is required to set proper permissions on the log files so that they
can be written to by the user's tasks and read by the TaskTracker for serving on the
web UI.>
mapreduce.tasktracker.group=mapred
banned.users=mapred,hdfs,bin
min.user.id=1000

Note: T

he default setting for the banned.users property in the taskcontroller.cfg file is mapred,
hdfs, and bin to prevent jobs from being submitted using those user accounts. The default
setting for the min.user.id property is 1000 to prevent jobs from being submitted with a user
ID less than 1000, which are conventionally Unix super users. Some operating systems such as
CentOS 5 use a default value of 500 and above for user IDs, not 1000. If this is the case on your
system, change the default setting for the min.user.id property to 500. If there are user
accounts on your cluster that have a user ID less than the value specified for the min.user.id
property, the TaskTracker returns an error code of 255.

3. The path to the taskcontroller.cfg file is determined relative to the location of the task-controller
binary. Specifically, the path is <path of task-controller binary>/../../conf/taskcontroller.cfg.
If you installed the CDH 5 package, this path will always correspond to
/etc/hadoop/conf/taskcontroller.cfg.

Note:

For more information about the task-controller program, see Information about Other Hadoop
Security Programs.

Cloudera Security | 113

Configuring Authentication

Important:

The same mapred-site.xml file and the same hdfs-site.xml file must both be installed on every
host machine in the cluster so that the NameNode, Secondary NameNode, DataNode, JobTracker and
TaskTracker can all connect securely with each other.

Step 2: Start up the JobTracker

You are now ready to start the JobTracker.

If you're using the /etc/init.d/hadoop-0.20-mapreduce-jobtracker script, then you can use the service
command to run it now:

$ sudo service hadoop-0.20-mapreduce-jobtracker start

You can verify that the JobTracker is working properly by opening a web browser to http://machine:50030/where
machine is the name of the machine where the JobTracker is running.

Step 3: Start up a TaskTracker

You are now ready to start a TaskTracker.

If you're using the /etc/init.d/hadoop-0.20-mapreduce-tasktracker script, then you can use the service
command to run it now:

$ sudo service hadoop-0.20-mapreduce-tasktracker start

Step 4: Try Running a Map/Reduce Job

You should nowbe able to runMap/Reduce jobs. To confirm, try launching a sleep or a pi job from the providedHadoop
examples (/usr/lib/hadoop-0.20-mapreduce/hadoop-examples.jar). You need Kerberos credentials to do
so.

Important:

Remember that the user who launches the job must exist on every host.

Configuring YARN Security

This page explains how to configure, start, and test secure YARN. For instructions on MapReduce1, see Configuring
MRv1 Security.

1. Configure Secure YARN.
2. Start up the ResourceManager.
3. Start up the NodeManager.
4. Start up the MapReduce Job History Server.
5. Try Running a Map/Reduce YARN Job.
6. (Optional) Configure YARN for Long-running Applications

Step 1: Configure Secure YARN

Before you start:

• The Kerberos principals for the ResourceManager and NodeManager are configured in the yarn-site.xml file.
The same yarn-site.xml file must be installed on every host machine in the cluster.

• Make sure that each user who runs YARN jobs exists on all cluster nodes (that is, on every node that hosts any
YARN daemon).

To configure secure YARN:

114 | Cloudera Security

Configuring Authentication

1. Add the following properties to the yarn-site.xml file on every machine in the cluster:

<!-- ResourceManager security configs -->
<property>
 <name>yarn.resourcemanager.keytab</name>
 <value>/etc/hadoop/conf/yarn.keytab</value> <!-- path to the YARN keytab -->
</property>
<property>
 <name>yarn.resourcemanager.principal</name>
 <value>yarn/_HOST@YOUR-REALM.COM</value>
</property>

<!-- NodeManager security configs -->
<property>
 <name>yarn.nodemanager.keytab</name>
 <value>/etc/hadoop/conf/yarn.keytab</value> <!-- path to the YARN keytab -->
</property>
<property>
 <name>yarn.nodemanager.principal</name>
 <value>yarn/_HOST@YOUR-REALM.COM</value>
</property>
<property>
 <name>yarn.nodemanager.container-executor.class</name>
 <value>org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor</value>
</property>
<property>
 <name>yarn.nodemanager.linux-container-executor.group</name>
 <value>yarn</value>
</property>

<!-- To enable TLS/SSL -->
<property>
 <name>yarn.http.policy</name>
 <value>HTTPS_ONLY</value>
</property>

2. Add the following properties to the mapred-site.xml file on every machine in the cluster:

<!-- MapReduce JobHistory Server security configs -->
<property>
 <name>mapreduce.jobhistory.address</name>
 <value>host:port</value> <!-- Host and port of the MapReduce JobHistory Server; default
 port is 10020 -->
</property>
<property>
 <name>mapreduce.jobhistory.keytab</name>
 <value>/etc/hadoop/conf/mapred.keytab</value> <!-- path to the MAPRED keytab for the
 JobHistory Server -->
</property>
<property>
 <name>mapreduce.jobhistory.principal</name>
 <value>mapred/_HOST@YOUR-REALM.COM</value>
</property>

<!-- To enable TLS/SSL -->
<property>
 <name>mapreduce.jobhistory.http.policy</name>
 <value>HTTPS_ONLY</value>
</property>

3. Create a file called container-executor.cfg for the Linux Container Executor program that contains the
following information:

yarn.nodemanager.local-dirs=<comma-separated list of paths to local NodeManager
directories. Should be same values specified in yarn-site.xml. Required to validate
paths passed to container-executor in order.>
yarn.nodemanager.linux-container-executor.group=yarn
yarn.nodemanager.log-dirs=<comma-separated list of paths to local NodeManager log
directories. Should be same values specified in yarn-site.xml. Required to set proper
permissions on the log files so that they can be written to by the user's containers
and read by the NodeManager for log aggregation.

Cloudera Security | 115

Configuring Authentication

banned.users=hdfs,yarn,mapred,bin
min.user.id=1000

Note:

In the container-executor.cfg file, the default setting for the banned.users property is
hdfs, yarn, mapred, and bin to prevent jobs from being submitted using those user accounts.
The default setting for the min.user.id property is 1000 to prevent jobs from being submitted
with a user ID less than 1000, which are conventionally Unix super users. Some operating systems
such as CentOS 5 use a default value of 500 and above for user IDs, not 1000. If this is the case
on your system, change the default setting for the min.user.id property to 500. If there are
user accounts on your cluster that have a user ID less than the value specified for themin.user.id
property, the NodeManager returns an error code of 255.

4. The path to the container-executor.cfg file is determined relative to the location of the container-executor
binary. Specifically, the path is <dirname of container-executor
binary>/../etc/hadoop/container-executor.cfg. If you installed the CDH5package, this pathwill always
correspond to /etc/hadoop/conf/container-executor.cfg.

Note:

The container-executor program requires that the paths including and leading up to the
directories specified inyarn.nodemanager.local-dirs andyarn.nodemanager.log-dirs
to be set to 755 permissions as shown in this table on permissions on directories.

5. Verify that the ownership and permissions of the container-executor program corresponds to:

---Sr-s--- 1 root yarn 36264 May 20 15:30 container-executor

Note: Formore information about the Linux Container Executor program, see Information about
Other Hadoop Security Programs.

Step 2: Start the ResourceManager

You are now ready to start the ResourceManager.

Note: Always start ResourceManager before starting NodeManager.

If you're using the/etc/init.d/hadoop-yarn-resourcemanager script, then you canuse theservice command
to run it now:

$ sudo service hadoop-yarn-resourcemanager start

You can verify that the ResourceManager is working properly by opening a web browser to http://host:8088/ where
host is the name of the machine where the ResourceManager is running.

Step 3: Start the NodeManager

You are now ready to start the NodeManager.

116 | Cloudera Security

Configuring Authentication

If you're using the /etc/init.d/hadoop-yarn-nodemanager script, then you can use the service command to
run it now:

$ sudo service hadoop-yarn-nodemanager start

You can verify that the NodeManager is working properly by opening a web browser to http://host:8042/ where host
is the name of the machine where the NodeManager is running.

Step 4: Start the MapReduce Job History Server

You are now ready to start the MapReduce JobHistory Server.

If you're using the /etc/init.d/hadoop-mapreduce-historyserver script, then you can use the service
command to run it now:

$ sudo service hadoop-mapreduce-historyserver start

You can verify that the MapReduce JobHistory Server is working properly by opening a web browser to
http://host:19888/ where host is the name of the machine where the MapReduce JobHistory Server is running.

Step 5: Try Running a Map/Reduce YARN Job

You should nowbe able to runMap/Reduce jobs. To confirm, try launching a sleep or a pi job from the providedHadoop
examples (/usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar). You need Kerberos credentials
to do so.

Important: The user who launches the job must exist on every node.

To try running a MapReduce job using YARN, set the HADOOP_MAPRED_HOME environment variable and then submit
the job. For example:

$ export HADOOP_MAPRED_HOME=/usr/lib/hadoop-mapreduce
$ /usr/bin/hadoop jar /usr/lib/hadoop-mapreduce/hadoop-mapreduce-examples.jar pi 10
10000

Step 6: (Optional) Configure YARN for Long-running Applications

Long-running applications such as Spark Streaming jobs will need additional configuration since the default settings
only allow the hdfs user's delegation tokens a maximum lifetime of 7 days which is not always sufficient.

You can work around this by configuring the ResourceManager as a proxy user for the corresponding HDFS NameNode
so that the ResourceManager can request new tokens when the existing ones are past their maximum lifetime. YARN
will then be able to continue performing localization and log-aggregation on behalf of the hdfs user.

Set the following property in yarn-site.xml to true:

<property>
<name>yarn.resourcemanager.proxy-user-privileges.enabled</name>
<value>true</value>
</property>

Configure the following properties in core-site.xml on the HDFS NameNode. You can use a more restrictive
configuration by specifying hosts/groups instead of * as in the example below.

<property>
<name>hadoop.proxyuser.yarn.hosts</name>
<value>*</value>
</property>

<property>
<name>hadoop.proxyuser.yarn.groups</name>

Cloudera Security | 117

Configuring Authentication

<value>*</value>
</property>

FUSE Kerberos Configuration

This section describes how to use FUSE (Filesystem in Userspace) and CDH with Kerberos security on your Hadoop
cluster. FUSE enables you to mount HDFS, which makes HDFS files accessible just as if they were UNIX files.

To use FUSE and CDH with Kerberos security, follow these guidelines:

• For each HDFS user, make sure that there is a UNIX user with the same name. If there isn't, some files in the FUSE
mount point will appear to be owned by a non-existent user. Although this is harmless, it can cause confusion.

• When using Kerberos authentication, users must run kinit before accessing the FUSE mount point. Failure to
do this will result in I/O errors when the user attempts to access the mount point. For security reasons, it is not
possible to list the files in the mount point without first running kinit.

• When a user runs kinit, all processes that run as that user can use the Kerberos credentials. It is not necessary
to run kinit in the same shell as the process accessing the FUSE mount point.

Using kadmin to Create Kerberos Keytab Files

If your version of Kerberos does not support the Kerberos -norandkey option in the xst command, or if you must
use kadmin because you cannot use kadmin.local, then you can use the following procedure to create Kerberos
keytab files. Using the -norandkey option when creating keytabs is optional and a convenience, but it is not required.

Important:

For both MRv1 and YARN deployments: On every machine in your cluster, there must be a keytab
file for the hdfs user and a keytab file for the mapred user. The hdfs keytab file must contain entries
for the hdfs principal and an HTTP principal, and the mapred keytab file must contain entries for the
mapred principal and an HTTP principal. On each respective machine, the HTTP principal will be the
same in both keytab files.

In addition, for YARN deployments only: On every machine in your cluster, there must be a keytab
file for the yarn user. The yarn keytab file must contain entries for the yarn principal and an HTTP
principal. On each respective machine, the HTTP principal in the yarn keytab file will be the same as
the HTTP principal in the hdfs and mapred keytab files.

For instructions, see To create the Kerberos keytab files on page 118.

Note:

These instructions illustrate an example of creating keytab files for MIT Kerberos. If you are using
another version of Kerberos, refer to your Kerberos documentation for instructions. You can use either
kadmin or kadmin.local to run these commands.

To create the Kerberos keytab files

Do the following steps for every host in your cluster, replacing the fully.qualified.domain.name in the commands
with the fully qualified domain name of each host:

1. Create the hdfs keytab file, which contains an entry for the hdfs principal. This keytab file is used for the
NameNode, Secondary NameNode, and DataNodes.

$ kadmin
kadmin: xst -k hdfs-unmerged.keytab hdfs/fully.qualified.domain.name

118 | Cloudera Security

Configuring Authentication

2. Create the mapred keytab file, which contains an entry for the mapred principal. If you are using MRv1, the
mapred keytab file is used for the JobTracker and TaskTrackers. If you are using YARN, the mapred keytab file is
used for the MapReduce Job History Server.

kadmin: xst -k mapred-unmerged.keytab mapred/fully.qualified.domain.name

3. YARN only: Create the yarn keytab file, which contains an entry for the yarn principal. This keytab file is used
for the ResourceManager and NodeManager.

kadmin: xst -k yarn-unmerged.keytab yarn/fully.qualified.domain.name

4. Create the http keytab file, which contains an entry for the HTTP principal.

kadmin: xst -k http.keytab HTTP/fully.qualified.domain.name

5. Use the ktutil command to merge the previously-created keytabs:

$ ktutil
ktutil: rkt hdfs-unmerged.keytab
ktutil: rkt http.keytab
ktutil: wkt hdfs.keytab
ktutil: clear
ktutil: rkt mapred-unmerged.keytab
ktutil: rkt http.keytab
ktutil: wkt mapred.keytab
ktutil: clear
ktutil: rkt yarn-unmerged.keytab
ktutil: rkt http.keytab
ktutil: wkt yarn.keytab

This procedure creates three new files: hdfs.keytab, mapred.keytab and yarn.keytab. These files contain
entries for the hdfs and HTTP principals, the mapred and HTTP principals, and the yarn and HTTP principals
respectively.

6. Use klist to display the keytab file entries. For example, a correctly-created hdfs keytab file should look
something like this:

$ klist -e -k -t hdfs.keytab
Keytab name: WRFILE:hdfs.keytab
slot KVNO Principal
---- ---- ---
 1 7 HTTP/fully.qualified.domain.name@YOUR-REALM.COM (DES cbc mode with CRC-32)

 2 7 HTTP/fully.qualified.domain.name@YOUR-REALM.COM (Triple DES cbc mode with
 HMAC/sha1)
 3 7 hdfs/fully.qualified.domain.name@YOUR-REALM.COM (DES cbc mode with CRC-32)

 4 7 hdfs/fully.qualified.domain.name@YOUR-REALM.COM (Triple DES cbc mode with
 HMAC/sha1)

7. To verify that you have performed the merge procedure correctly, make sure you can obtain credentials as both
the hdfs and HTTP principals using the single merged keytab:

$ kinit -k -t hdfs.keytab hdfs/fully.qualified.domain.name@YOUR-REALM.COM
$ kinit -k -t hdfs.keytab HTTP/fully.qualified.domain.name@YOUR-REALM.COM

If either of these commands fails with an error message such as "kinit: Key table entry not found
while getting initial credentials", then something has gone wrong during the merge procedure. Go
back to step 1 of this document and verify that you performed all the steps correctly.

8. To continue the procedure of configuring Hadoop security in CDH 5, follow the instructions in the section To deploy
the Kerberos keytab files.

Cloudera Security | 119

Configuring Authentication

Configuring the Mapping from Kerberos Principals to Short Names

You configure the mapping from Kerberos principals to short names in the hadoop.security.auth_to_local
property setting in the core-site.xml file. Kerberos has this support natively, and Hadoop's implementation reuses
Kerberos's configuration language to specify the mapping.

A mapping consists of a set of rules that are evaluated in the order listed in the hadoop.security.auth_to_local
property. The first rule that matches a principal name is used to map that principal name to a short name. Any later
rules in the list that match the same principal name are ignored.

You specify the mapping rules on separate lines in the hadoop.security.auth_to_local property as follows:

<property>
 <name>hadoop.security.auth_to_local</name>
 <value>
 RULE:[<principal translation>](<acceptance filter>)<short name substitution>
 RULE:[<principal translation>](<acceptance filter>)<short name substitution>
 DEFAULT
 </value>
</property>

Mapping Rule Syntax

To specify a mapping rule, use the prefix string RULE: followed by three sections—principal translation, acceptance
filter, and short name substitution—described in more detail below. The syntax of a mapping rule is:

RULE:[<principal translation>](<acceptance filter>)<short name substitution>

Principal Translation

The first section of a rule, <principal translation>, performs the matching of the principal name to the rule. If
there is a match, the principal translation also does the initial translation of the principal name to a short name. In the
<principal translation> section, you specify the number of components in the principal name and the pattern
you want to use to translate those principal component(s) and realm into a short name. In Kerberos terminology, a
principal name is a set of components separated by slash ("/") characters.

The principal translation is composed of two parts that are both specified within "[]" using the following syntax:

[<number of components in principal name>:<initial specification of short name>]

where:

<number of components in principal name> – This first part specifies the number of components in the principal name
(not including the realm) and must be 1 or 2. A value of 1 specifies principal names that have a single component (for
example, hdfs), and 2 specifies principal names that have two components (for example,
hdfs/fully.qualified.domain.name). A principal name that has only one component will only match
single-component rules, and a principal name that has two components will only match two-component rules.

<initial specification of short name> – This second part specifies a pattern for translating the principal component(s)
and the realm into a short name. The variable $0 translates the realm, $1 translates the first component, and $2
translates the second component.

Here are some examples of principal translation sections. These examples use atm@YOUR-REALM.COM and
atm/fully.qualified.domain.name@YOUR-REALM.COM as principal name inputs:

Translates atm/fully.qualified.domain.name@YOUR-REALM.COM
into this short name

Translates atm@YOUR-REALM.
COM into this short name

This Principal
Translation

Rule does not match1atm@YOUR-REALM.COM[1:$1@$0]

Rule does not match1atm[1:$1]

Rule does not match1atm.foo[1:$1.foo]

120 | Cloudera Security

Configuring Authentication

Translates atm/fully.qualified.domain.name@YOUR-REALM.COM
into this short name

Translates atm@YOUR-REALM.
COM into this short name

This Principal
Translation

atm/fully.qualified.domain.name@YOUR-REALM.COMRule does not match2[2:$1/$2@$0]

atm/fully.qualified.domain.nameRule does not match2[2:$1/$2]

atm@YOUR-REALM.COMRule does not match2[2:$1@$0]

atmRule does not match2[2:$1]

Footnotes:
1Rule does not match because there are two components in principal name
atm/fully.qualified.domain.name@YOUR-REALM.COM

2Rule does not match because there is one component in principal name atm@YOUR-REALM.COM

Acceptance Filter

The second section of a rule, (<acceptance filter>), matches the translated short name from the principal
translation (that is, the output from the first section). The acceptance filter is specified in "()" characters and is a
standard regular expression. A rulematches only if the specified regular expressionmatches the entire translated short
name from the principal translation. That is, there's an implied ^ at the beginning of the pattern and an implied $ at
the end.

Short Name Substitution

The third and final section of a rule is the (<short name substitution>). If there is a match in the second section,
the acceptance filter, the (<short name substitution>) section does a final translation of the short name from
the first section. This translation is a sed replacement expression (s/.../.../g) that translates the short name from
the first section into the final short name string. The short name substitution section is optional. In many cases, it is
sufficient to use the first two sections only.

Converting Principal Names to Lowercase

In someorganizations, naming conventions result inmixed-case usernames (for example, John.Doe) or even uppercase
usernames (for example, JDOE) in Active Directory or LDAP. This can cause a conflict when the Linux username and
HDFS home directory are lowercase.

To convert principal names to lowercase, append /L to the rule.

Example Rules

Suppose all of your service principals are either of the form
App.service-name/fully.qualified.domain.name@YOUR-REALM.COM or
App.service-name@YOUR-REALM.COM, and you want to map these to the short name string service-name. To do
this, your rule set would be:

<property>
 <name>hadoop.security.auth_to_local</name>
 <value>
 RULE:[1:$1](App\..*)s/App\.(.*)/$1/g
 RULE:[2:$1](App\..*)s/App\.(.*)/$1/g
 DEFAULT
 </value>
</property>

The first $1 in each rule is a reference to the first component of the full principal name, and the second $1 is a regular
expression back-reference to text that is matched by (.*).

Cloudera Security | 121

Configuring Authentication

In the following example, suppose your company's naming scheme for user accounts in Active Directory is
FirstnameLastname (for example, JohnDoe), but user home directories in HDFS are /user/firstnamelastname.
The following rule set converts user accounts in the CORP.EXAMPLE.COM domain to lowercase.

<property>
 <name>hadoop.security.auth_to_local</name>
 <value>
 RULE:[2:$1@$0](HTTP@\QCORP.EXAMPLE.COM\E$)s/@\QCORP.EXAMPLE.COM\E$//
 RULE:[1:$1@$0](.*@\QCORP.EXAMPLE.COM\E$)s/@\QCORP.EXAMPLE.COM\E$///L
 RULE:[2:$1@$0](.*@\QCORP.EXAMPLE.COM\E$)s/@\QCORP.EXAMPLE.COM\E$///L
 DEFAULT
 </value>
</property>

In this example, the JohnDoe@CORP.EXAMPLE.COM principal becomes the johndoe HDFS user.

Default Rule

You can specify an optional default rule called DEFAULT (see example above). The default rule reduces a principal
namedown to its first component only. For example, the default rule reduces the principal namesatm@YOUR-REALM.COM
or atm/fully.qualified.domain.name@YOUR-REALM.COM down to atm, assuming that the default domain is
YOUR-REALM.COM.

The default rule applies only if the principal is in the default realm.

If a principal name does not match any of the specified rules, the mapping for that principal name will fail.

Testing Mapping Rules

You can test mapping rules for a long principal name by running:

$ hadoop org.apache.hadoop.security.HadoopKerberosName name1 name2 name3

Enabling Debugging Output for the Sun Kerberos Classes

Initially getting a secure Hadoop cluster configured properly can be tricky, especially for those who are not yet familiar
with Kerberos. To help with this, it can be useful to enable debugging output for the Sun Kerberos classes. To do so,
set the HADOOP_OPTS environment variable to the following:

HADOOP_OPTS="-Dsun.security.krb5.debug=true"

Flume Authentication
Flume agents have the ability to store data on an HDFS filesystem configured with Hadoop security. The Kerberos
system and protocols authenticate communications between clients and services. Hadoop clients include users and
MapReduce jobs on behalf of users, and the services include HDFS andMapReduce. Flume acts as a Kerberos principal
(user) and needs Kerberos credentials to interact with the Kerberos security-enabled service. Authenticating a user or
a service can be done using a Kerberos keytab file. This file contains a key that is used to obtain a ticket-granting ticket
(TGT). The TGT is used to mutually authenticate the client and the service using the Kerberos KDC.

The following sections describe how to use Flume 1.3.x and CDH 5 with Kerberos security on your Hadoop cluster:

Important:

To enable Flume to work with Kerberos security on your Hadoop cluster, make sure you perform the
installation and configuration steps in Configuring Hadoop Security in CDH 5.

122 | Cloudera Security

Configuring Authentication

Note:

These instructions have been tested with CDH 5 and MIT Kerberos 5 only. The following instructions
describe an example of how to configure a Flume agent to be a client as the user flume to a secure
HDFS service. This section does not describe how to secure the communications between Flume
agents, which is not currently implemented.

Configuring Flume's Security Properties

Contents:

Writing as a single user for all HDFS sinks in a given Flume agent

The Hadoop services require a three-part principal that has the form of
username/fully.qualified.domain.name@YOUR-REALM.COM. Cloudera recommends using flume as the first
component and the fully qualified domain name of the host machine as the second. Assuming that Kerberos and
security-enabled Hadoop have been properly configured on the Hadoop cluster itself, you must add the following
parameters to the Flume agent's flume.conf configuration file, which is typically located at
/etc/flume-ng/conf/flume.conf:

agentName.sinks.sinkName.hdfs.kerberosPrincipal =
flume/fully.qualified.domain.name@YOUR-REALM.COM
agentName.sinks.sinkName.hdfs.kerberosKeytab = /etc/flume-ng/conf/flume.keytab

where:

agentName is the name of the Flume agent being configured, which in this release defaults to the value "agent".
sinkName is the name of the HDFS sink that is being configured. The respective sink's typemust be HDFS. These
properties can also be set using the substitution strings $KERBEROS_PRINCIPAL and $KERBEROS_KEYTAB, respectively.

In the previous example, flume is the first component of the principal name, fully.qualified.domain.name is
the second, and YOUR-REALM.COM is the name of the Kerberos realm your Hadoop cluster is in. The
/etc/flume-ng/conf/flume.keytab file contains the keys necessary for
flume/fully.qualified.domain.name@YOUR-REALM.COM to authenticate with other services.

Flume and Hadoop also provide a simple keyword, _HOST, that gets expanded to be the fully qualified domain name
of the host machine where the service is running. This allows you to have one flume.conf file with the same
hdfs.kerberosPrincipal value on all of your agent host machines.

agentName.sinks.sinkName.hdfs.kerberosPrincipal = flume/_HOST@YOUR-REALM.COM

Writing as different users across multiple HDFS sinks in a single Flume agent

In this release, support has been added for secure impersonation of Hadoop users (similar to "sudo" in UNIX). This is
implemented in a way similar to how Oozie implements secure user impersonation.

The following steps to set up secure impersonation from Flume to HDFS assume your cluster is configured using
Kerberos. (However, impersonation also works on non-Kerberos secured clusters, and Kerberos-specific aspects should
be omitted in that case.)

1. Configure Hadoop to allow impersonation. Add the following configuration properties to your core-site.xml.

<property>
 <name>hadoop.proxyuser.flume.groups</name>
 <value>group1,group2</value>
 <description>Allow the flume user to impersonate any members of group1 and
group2</description>
</property>
<property>
 <name>hadoop.proxyuser.flume.hosts</name>
 <value>host1,host2</value>

Cloudera Security | 123

Configuring Authentication

 <description>Allow the flume user to connect only from host1 and host2 to impersonate
 a user</description>
</property>

You can use the wildcard character * to enable impersonation of any user from any host. For more information,
see Secure Impersonation.

2. Set up a Kerberos keytab for the Kerberos principal and host Flume is connecting to HDFS from. This user must
match the Hadoop configuration in the preceding step. For instructions, see Configuring Hadoop Security in CDH
5.

3. Configure the HDFS sink with the following configuration options:
4. hdfs.kerberosPrincipal - fully qualified principal. Note: _HOSTwill be replaced by the hostname of the local

machine (only in-between the / and @ characters)
5. hdfs.kerberosKeytab - location on the local machine of the keytab containing the user and host keys for the

above principal
6. hdfs.proxyUser - the proxy user to impersonate

Example snippet (the majority of the HDFS sink configuration options have been omitted):

agent.sinks.sink-1.type = HDFS
agent.sinks.sink-1.hdfs.kerberosPrincipal = flume/_HOST@YOUR-REALM.COM
agent.sinks.sink-1.hdfs.kerberosKeytab = /etc/flume-ng/conf/flume.keytab
agent.sinks.sink-1.hdfs.proxyUser = weblogs

agent.sinks.sink-2.type = HDFS
agent.sinks.sink-2.hdfs.kerberosPrincipal = flume/_HOST@YOUR-REALM.COM
agent.sinks.sink-2.hdfs.kerberosKeytab = /etc/flume-ng/conf/flume.keytab
agent.sinks.sink-2.hdfs.proxyUser = applogs

In the above example, the flume Kerberos principal impersonates the user weblogs in sink-1 and the user applogs
in sink-2. This will only be allowed if the Kerberos KDC authenticates the specified principal (flume in this case), and
the if NameNode authorizes impersonation of the specified proxy user by the specified principal.

Limitations

At this time, Flume does not support using multiple Kerberos principals or keytabs in the same agent. Therefore, if you
want to create files as multiple users on HDFS, then impersonation must be configured, and exactly one principal must
be configured in Hadoop to allow impersonation of all desired accounts. In addition, the same keytab path must be
used across all HDFS sinks in the same agent. If you attempt to configure multiple principals or keytabs in the same
agent, Flume will emit the following error message:

Cannot use multiple kerberos principals in the same agent. Must restart agent to use
new principal or keytab.

Configuring Kerberos for Flume Thrift Source and Sink Using Cloudera Manager

The Thrift source can be configured to start in secure mode by enabling Kerberos authentication. To communicate
with a secure Thrift source, the Thrift sink should also be operating in secure mode.

1. Open the Cloudera Manager Admin Console and go to the Flume service.
2. Click the Configuration tab.
3. Select Scope > Agent.
4. Select Category >Main.
5. Edit the Configuration File property and add the Thrift source and sink properties listed in the tables below to the

configuration file.

124 | Cloudera Security

Configuring Authentication

http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-common/Superusers.html

Table 1: Thrift Source Properties

DescriptionProperty

Set to true to enable Kerberos authentication. The
agent-principal and agent-keytab properties are required

kerberos

for successful authentication. The Thrift source in secure mode,
will accept connections only from Thrift sinks that have
Kerberos-enabled and are successfully authenticated to the KDC.

The Kerberos principal used by the Thrift Source to authenticate
to the KDC.

agent-principal

The path to the keytab file used by the Thrift Source in combination
with the agent-principal to authenticate to the KDC.

agent-keytab

Table 2: Thrift Sink Properties

DescriptionProperty

Set to true to enable Kerberos authentication. In Kerberos mode,
client-principal, client-keytab and server-principal are required for

kerberos

successful authentication and communication to a Kerberos enabled
Thrift Source.

The principal used by the Thrift Sink to authenticate to the Kerberos
KDC.

client-principal

The path to the keytab file used by the Thrift Sink in combination
with the client-principal to authenticate to the KDC.

client-keytab

The principal of the Thrift Source to which this Thrift Sink connects.server-principal

Note: Since Cloudera Manager generates the Flume keytab files for you, and the locations of
the keytab files cannot be known beforehand, substitution variables are required for Flume.
Cloudera Manager provides two Flume substitution variables called $KERBEROS_PRINCIPAL
and $KERBEROS_KEYTAB to configure the principal name and the keytab file path respectively
on each host.

Make sure you are configuring these properties for each Thrift source and sink instance managed by Cloudera
Manager. For example, for agent a1, source r1, and sink k1, you would add the following properties:

Kerberos properties for Thrift source s1
a1.sources.r1.kerberos=true
a1.sources.r1.agent-principal=<source_principal>
a1.sources.r1.agent-keytab=<path/to/source/keytab>

Kerberos properties for Thrift sink k1
a1.sinks.k1.kerberos=true
a1.sinks.k1.client-principal=<sink_principal>
a1.sinks.k1.client-keytab=<path/to/sink/keytab>
a1.sinks.k1.server-principal=<path/to/source/keytab>

6. Click Save Changes to commit the changes.
7. Restart the Flume service.

Configuring Kerberos for Flume Thrift Source and Sink Using the Command Line

The Thrift source can be configured to start in secure mode by enabling Kerberos authentication. To communicate
with a secure Thrift source, the Thrift sink should also be operating in secure mode.

Cloudera Security | 125

Configuring Authentication

The following tables list the properties that must be configured in the /etc/flume-ng/conf/flume.conf file to
enable Kerberos for Flume's Thrift source and sink instances.

Table 3: Thrift Source Properties

DescriptionProperty

Set to true to enable Kerberos authentication. The
agent-principal and agent-keytab properties are required for

kerberos

successful authentication. The Thrift source in securemode,will accept
connections only from Thrift sinks that have Kerberos-enabled and
are successfully authenticated to the KDC.

The Kerberos principal used by the Thrift Source to authenticate to
the KDC.

agent-principal

The path to the keytab file used by the Thrift Source in combination
with the agent-principal to authenticate to the KDC.

agent-keytab

Table 4: Thrift Sink Properties

DescriptionProperty

Set to true to enable Kerberos authentication. In Kerberos mode,
client-principal, client-keytab and server-principal are required for

kerberos

successful authentication and communication to a Kerberos enabled
Thrift Source.

The principal used by the Thrift Sink to authenticate to the Kerberos
KDC.

client-principal

The path to the keytab file used by the Thrift Sink in combination with
the client-principal to authenticate to the KDC.

client-keytab

The principal of the Thrift Source to which this Thrift Sink connects.server-principal

Make sure you are configuring these properties for each Thrift source and sink instance. For example, for agent a1,
source r1, and sink k1, you would add the following properties:

Kerberos properties for Thrift source s1
a1.sources.r1.kerberos=true
a1.sources.r1.agent-principal=<source_principal>
a1.sources.r1.agent-keytab=<path/to/source/keytab>

Kerberos properties for Thrift sink k1
a1.sinks.k1.kerberos=true
a1.sinks.k1.client-principal=<sink_principal>
a1.sinks.k1.client-keytab=<path/to/sink/keytab>
a1.sinks.k1.server-principal=<path/to/source/keytab>

Configure these sets of properties for as many instances of the Thrift source and sink as needed to enable Kerberos.

Flume Account Requirements

This section provides an overview of the account and credential requirements for Flume to write to a Kerberized HDFS.
Note the distinctions between the Flume agent machine, DataNode machine, and NameNode machine, as well as the
flume Unix user account versus the flume Hadoop/Kerberos user account.

• Each Flume agent machine that writes to HDFS (using a configured HDFS sink) needs a Kerberos principal of the
form:

flume/fully.qualified.domain.name@YOUR-REALM.COM

126 | Cloudera Security

Configuring Authentication

where fully.qualified.domain.name is the fully qualified domain name of the given Flume agent host
machine, and YOUR-REALM.COM is the Kerberos realm.

• Each Flume agent machine that writes to HDFS does not need to have a flume Unix user account to write files
owned by the flume Hadoop/Kerberos user. Only the keytab for the flume Hadoop/Kerberos user is required
on the Flume agent machine.

• DataNode machines do not need Flume Kerberos keytabs and also do not need the flume Unix user account.

• TaskTracker (MRv1) or NodeManager (YARN) machines need a flume Unix user account if and only ifMapReduce
jobs are being run as the flume Hadoop/Kerberos user.

• The NameNode machine needs to be able to resolve the groups of the flume user. The groups of the flume user
on the NameNode machine are mapped to the Hadoop groups used for authorizing access.

• The NameNode machine does not need a Flume Kerberos keytab.

Testing the Flume HDFS Sink Configuration

To test whether your Flume HDFS sink is properly configured to connect to your secure HDFS cluster, you must run
data through Flume. An easy way to do this is to configure a Netcat source, a Memory channel, and an HDFS sink. Start
Flume with that configuration, and use the nc command (available freely online and with many UNIX distributions) to
send events to the Netcat source port. The resulting events should appear on HDFS in the configured location. If the
events do not appear, check the Flume log at /var/log/flume-ng/flume.log for any error messages related to
Kerberos.

Writing to a Secure HBase Cluster

Before you write to a secure HBase cluster, be aware of the following:

• Flume must be configured to use Kerberos security as documented above, and HBase must be configured to use
Kerberos security as documented in HBase Security Configuration.

• The hbase-site.xml file, which must be configured to use Kerberos security, must be in Flume's classpath or
HBASE_HOME/conf.

• HBaseSink org.apache.flume.sink.hbase.HBaseSink supports secure HBase, but AsyncHBaseSink
org.apache.flume.sink.hbase.AsyncHBaseSink does not.

• The Flume HBase sink takes the kerberosPrincipal and kerberosKeytab parameters:

– kerberosPrincipal – specifies the Kerberos principal to be used
– kerberosKeytab – specifies the path to the Kerberos keytab
– These are defined as:

agent.sinks.hbaseSink.kerberosPrincipal = flume/fully.qualified.domain.name@YOUR-REALM.COM
agent.sinks.hbaseSink.kerberosKeytab = /etc/flume-ng/conf/flume.keytab

– You can use the $KERBEROS_PRINCIPAL and $KERBEROS_KEYTAB substitution variables to configure the
principal name and the keytab file path. See the following documentation for steps on how to configure the
substitution variables: Use Substitution Variables for the Kerberos Principal and Keytab.

• If HBase is running with the AccessController coprocessor, the flume user (or whichever user the agent is running
as) must have permissions to write to the same table and the column family that the sink is configured to write
to. You can grant permissions using the grant command from HBase shell as explained in HBase Security
Configuration.

• The Flume HBase Sink does not currently support impersonation; it will write to HBase as the user the agent is
being run as.

• If you want to use HDFS Sink and HBase Sink to write to HDFS and HBase from the same agent respectively, both
sinks have to use the same principal and keytab. If you want to use different credentials, the sinks have to be on
different agents.

Cloudera Security | 127

Configuring Authentication

• Each Flume agent machine that writes to HBase (using a configured HBase sink) needs a Kerberos principal of the
form:

flume/fully.qualified.domain.name@YOUR-REALM.COM

where fully.qualified.domain.name is the fully qualified domain name of the given Flume agent host
machine, and YOUR-REALM.COM is the Kerberos realm.

HBase Authentication
To configure HBase security, complete the following tasks:

1. Configure HBaseAuthentication: Youmust establish amechanism for HBase servers and clients to securely identify
themselves with HDFS, ZooKeeper, and each other. This ensures that hosts are who they claim to be.

Note:

• To enable HBase to work with Kerberos security, you must perform the installation and
configuration steps in Configuring Hadoop Security in CDH 5 and ZooKeeper Security
Configuration.

• Although an HBase Thrift server can connect to a secured Hadoop cluster, access is not
secured from clients to the HBase Thrift server. To encrypt communication between clients
and the HBase Thrift Server, see Configuring TLS/SSL for HBase Thrift Server on page 254.

The following sections describe how to use Apache HBase and CDH 5 with Kerberos security:

• Configuring Kerberos Authentication for HBase on page 128
• Configuring Secure HBase Replication on page 134
• Configuring the HBase Client TGT Renewal Period on page 135

2. Configure HBase Authorization: You must establish rules for the resources that clients are allowed to access. For
more information, see Configuring HBase Authorization on page 471.

Using the Hue HBase App

Hue includes an HBase App that allows you to interact with HBase through a Thrift proxy server. Because Hue sits
between the Thrift server and the client, the Thrift server assumes that all HBase operations come from the hue user
and not the client. To ensure that users in Hue are only allowed to perform HBase operations assigned to their own
credentials, and not those of the hue user, you must enable HBase impersonation. For more information about the
how to enable doAs Impersonation for the HBase Browser Application, see Enabling the HBase Browser Application
with doAs Impersonation.

Configuring Kerberos Authentication for HBase

Using Kerberos for authentication for the HBase component requires that you also use Kerberos authentication for
ZooKeeper. This means that HBase Master, RegionServer, and client hosts must each have a Kerberos principal for
authenticating to the ZooKeeper ensemble. The steps below provide the details. Before you start, be sure that:

• Kerberos is enabled for the cluster, as detailed in Enabling Kerberos Authentication Using the Wizard.
• Kerberos principals for Cloudera Manager Server, HBase, and ZooKeeper hosts exist and are available for use. See

Managing Kerberos Credentials Using Cloudera Manager on page 72 for details.

Cloudera Manager automatically configures authentication between HBase to ZooKeeper and sets up the HBase Thrift
gateway to support impersonation (doAs). However, youmustmanually configure the HBase REST service for Kerberos
(it currently uses Simple authentication by default, instead of Kerberos). See Configure HBase REST Server for Kerberos
Authentication on page 129 for details.

128 | Cloudera Security

Configuring Authentication

http://gethue.com/the-web-ui-for-hbase-hbase-browser/
http://gethue.com/hbase-browsing-with-doas-impersonation-and-kerberos/

Note: Impersonation (doAs) cannot be usedwith Thrift framed transport (TFramedTransport) because
SASL does not work with Thrift framed transport.

You can use either Cloudera Manager or the command line to configure Kerberos authentication for HBase. Using
Cloudera Manager simplifies the process, but both approaches are detailed below. This page includes these topics:

Configuring Kerberos Authentication for HBase Using Cloudera Manager

Cloudera Manager simplifies the task of configuring Kerberos authentication for HBase.

Configure HBase Servers to Authenticate with a Secure HDFS Cluster Using Cloudera Manager

Required Role: Cluster Administrator or Full Administrator

1. Log on to Cloudera Manager Admin Console.
2. Go to the HBase service (select Clusters > HBASE).
3. Click the Configuration tab.
4. Under the Scope filter, click HBase (Service-Wide).
5. Under the Category filter, click Security.
6. Ensure the Kerberos principal for the HBase service was generated.
7. Find theHBase Secure Authentication property (type "HBase Secure" in the Search box, if necessary), and confirm

(or enter) the principal to use for HBase.
8. Select kerberos as the authentication type.
9. Click Save Changes.
10. Restart the role.
11. Restart the service. Select Restart from the Actions drop-down menu adjacent to HBASE-n (Cluster).

Configure HBase Servers and Clients to Authenticate with a Secure ZooKeeper

As mentioned above, secure HBase also requires secure ZooKeeper. The various HBase host systems—Master,
RegionServer, and client—must have a principal to use to authenticate to the secure ZooKeeper ensemble. This is
handled transparently by Cloudera Manager when you enable Kerberos as detailed above.

Configure HBase REST Server for Kerberos Authentication

Currently, the HBase REST Server uses Simple (rather than Kerberos) authentication by default. You must manually
modify the setting using the Cloudera Manager Admin Console, as follows:

1. Log on to Cloudera Manager Admin Console.
2. Select Clusters > HBASE.
3. Click the Configuration tab.
4. Under the Scope filter, click HBase (Service-Wide).
5. Under the Category filter, click Security.
6. Find the HBase REST Authentication property:

7. Click kerberos to select Kerberos instead of simple authentication.
8. Click Save Changes.
9. Restart the role.
10. Restart the service. Select Restart from the Actions drop-down menu adjacent to HBASE-n (Cluster).

Cloudera Security | 129

Configuring Authentication

Configuring Kerberos Authentication for HBase Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.9.x. See Cloudera Documentation for information

specific to other releases.

Configure HBase Servers to Authenticate with a Secure HDFS Cluster Using the Command Line

To configure HBase servers to authenticate with a secure HDFS cluster, do the following:

Enable HBase Authentication

Set the hbase.security.authentication property to kerberos in hbase-site.xml on every host acting as an
HBase master, RegionServer, or client. In CDH 5, hbase.rpc.engine is automatically detected and does not need to
be set.

<property>
 <name>hbase.security.authentication</name>
 <value>kerberos</value>
</property>

Configure HBase Kerberos Principals

To run on a secure HDFS cluster, HBasemust authenticate itself to the HDFS services. HBase acts as a Kerberos principal
and needs Kerberos credentials to interact with the Kerberos-enabled HDFS daemons. You can authenticate a service
by using a keytab file, which contains a key that allows the service to authenticate to the Kerberos Key Distribution
Center (KDC).

1. Create a service principal for the HBase server using the following syntax. This principal is used to authenticate
the HBase server with the HDFS services. Cloudera recommends using hbase as the username.

$ kadmin
kadmin: addprinc -randkey hbase/fully.qualified.domain.name@YOUR-REALM.COM

fully.qualified.domain.name is the host where the HBase server is running, and YOUR-REALM is the name
of your Kerberos realm.

2. Create a keytab file for the HBase server.

$ kadmin
kadmin: xst -k hbase.keytab hbase/fully.qualified.domain.name

3. Copy the hbase.keytab file to the /etc/hbase/conf directory on the HBase server host. The owner of the
hbase.keytab file should be the hbase user, and the file should have owner-only read permissions—that is,
assign the file 0400 permissions and make it owned by hbase:hbase.

-r-------- 1 hbase hbase 1343 2012-01-09 10:39 hbase.keytab

4. To test that the keytab file was created properly, try to obtain Kerberos credentials as the HBase principal using
only the keytab file. Substitute your fully.qualified.domain.name and realm in the following command:

$ kinit -k -t /etc/hbase/conf/hbase.keytab
hbase/fully.qualified.domain.name@YOUR-REALM.COM

5. In the /etc/hbase/conf/hbase-site.xml configuration file on all cluster hosts running the HBase daemon,
add the following lines:

<property>
 <name>hbase.regionserver.kerberos.principal</name>

130 | Cloudera Security

Configuring Authentication

http://www.cloudera.com/content/support/en/documentation.html

 <value>hbase/_HOST@YOUR-REALM.COM</value>
</property>

<property>
 <name>hbase.regionserver.keytab.file</name>
 <value>/etc/hbase/conf/hbase.keytab</value>
</property>

<property>
 <name>hbase.master.kerberos.principal</name>
 <value>hbase/_HOST@YOUR-REALM.COM</value>
</property>

<property>
<name>hbase.master.keytab.file</name>
<value>/etc/hbase/conf/hbase.keytab</value>
</property>

Configure HBase Servers and Clients to Authenticate with a Secure ZooKeeper

To run a secure HBase, you must also use a secure ZooKeeper. To use a secure ZooKeeper, each HBase host machine
(Master, RegionServer, and client) must have a principal that allows it to authenticate with your secure ZooKeeper
ensemble. The steps below assume that:

• ZooKeeper has been secured per the steps in ZooKeeper Security Configuration.
• ZooKeeper is notmanaged by HBase.
• You have successfully completed steps above (Enable HBase Authentication, Configure HBase Kerberos Principals)

and have principal and keytab files in place for every HBase server and client.

To configure HBase Servers and clients to authenticate to ZooKeeper, you must:

Configure HBase JVMs (all Masters, RegionServers, and clients) to Use JAAS

1. On each host, set up a Java Authentication and Authorization Service (JAAS) by creating a
/etc/hbase/conf/zk-jaas.conf file that contains the following:

 Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 useTicketCache=false
 keyTab="/etc/hbase/conf/hbase.keytab"
 principal="hbase/fully.qualified.domain.name@<YOUR-REALM>";
 };

2. Modify the hbase-env.sh file on HBase server and client hosts to include the following:

 export HBASE_OPTS="$HBASE_OPTS
-Djava.security.auth.login.config=/etc/hbase/conf/zk-jaas.conf"
 export HBASE_MANAGES_ZK=false

3. Restart the HBase cluster.

Configure the HBase Servers (Masters and RegionServers) to Use Authentication to Connect to ZooKeeper

Note: These steps are required for command-line configuration only. Cloudera Manager does this
automatically.

1. Update your hbase-site.xml on each HBase server host with the following properties:

<configuration>
 <property>
 <name>hbase.zookeeper.quorum</name>
 <value>$ZK_NODES</value>
 </property>
 <property>

Cloudera Security | 131

Configuring Authentication

 <name>hbase.cluster.distributed</name>
 <value>true</value>
 </property>
</configuration>

$ZK_NODES is the comma-separated list of hostnames of the ZooKeeper Quorum hosts that you configured
according to the instructions in ZooKeeper Security Configuration.

2. Add the following lines to the ZooKeeper configuration file zoo.cfg:

kerberos.removeHostFromPrincipal=true
kerberos.removeRealmFromPrincipal=true

3. Restart ZooKeeper.

Configure Authentication for the HBase REST and Thrift Gateways

By default, the REST gateway does not support impersonation, but accesses HBase as a statically configured user. The
actual user who initiated the request is not tracked. With impersonation, the REST gateway user is a proxy user. The
HBase server records the actual user who initiates each request and uses this information to apply authorization.

1. Enable support for proxy users by adding the following properties to hbase-site.xml. Substitute the REST
gateway proxy user for $USER, and the allowed group list for $GROUPS.

<property>
 <name>hbase.security.authorization</name>
 <value>true</value>
</property>
<property>
 <name>hadoop.proxyuser.$USER.groups</name>
 <value>$GROUPS</value>
</property>
<property>
 <name>hadoop.proxyuser.$USER.hosts</name>
 <value>$GROUPS</value>
</property>

2. Enable REST gateway impersonation by adding the following to the hbase-site.xml file for every REST gateway:

<property>
 <name>hbase.rest.authentication.type</name>
 <value>kerberos</value>
</property>
<property>
 <name>hbase.rest.authentication.kerberos.principal</name>
 <value>HTTP/fully.qualified.domain.name@<YOUR-REALM/value>
</property>
<property>
 <name>hbase.rest.authentication.kerberos.keytab</name>
 <value>/etc/hbase/conf/hbase.keytab</value>
</property>

3. Add the following properties to hbase-site.xml for each Thrift gateway, replacing the Kerberos principal with
a valid value:

<property>
 <name>hbase.thrift.keytab.file</name>
 <value>/etc/hbase/conf/hbase.keytab</value>
</property>
<property>
 <name>hbase.thrift.kerberos.principal</name>
 <value>hbase/fully.qualified.domain.name@<YOUR-REALM</value>
</property>
<property>
 <name>hbase.thrift.security.qop</name>
 <value>auth</value>
</property>

132 | Cloudera Security

Configuring Authentication

The value for the property hbase.thrift.security.qop can be one of the following:

• auth-conf—Authentication, integrity, and confidentiality checking

• auth-int—Authentication and integrity checking

• auth—Authentication checking only

4. To use the Thrift API principal to interact with HBase, add the hbase.thrift.kerberos.principal to the
acl table. For example, to provide administrative access to the Thrift API principal thrift_server, run anHBase
Shell command like the following:

hbase> grant'thrift_server', 'RWCA'

5. Optional: ConfigureHTTPS transport for Thrift by configuring the following parameters, substituting the placeholders
with actual values:

<property>
 <name>hbase.thrift.ssl.enabled</name>
 <value>true</value>
</property>
<property>
 <name>hbase.thrift.ssl.keystore.store</name>
 <value>LOCATION_OF_KEYSTORE</value>
</property>
<property>
 <name>hbase.thrift.ssl.keystore.password</name>
 <value>KEYSTORE_PASSWORD</value>
</property>
<property>
 <name>hbase.thrift.ssl.keystore.keypassword</name>
 <value>LOCATION_OF_KEYSTORE_KEY_PASSWORD</value>
</property>

The Thrift gateway authenticates with HBase using the supplied credential. No authentication is performed by
the Thrift gateway itself. All client access through the Thrift gateway uses the gateway’s credential, and all clients
have its privileges.

Configure doAs Impersonation for the HBase Thrift Gateway

Note: If you use framed transport, you cannot use doAs impersonation, because SASL does not work
with Thrift framed transport.

doAs Impersonation provides a flexibleway to use the same client to impersonatemultiple principals.doAs is supported
only in Thrift 1, not Thrift 2.

Enable doAs support by adding the following properties to hbase-site.xml on each Thrift gateway:

<property>
 <name>hbase.regionserver.thrift.http</name>
 <value>true</value>
</property>
<property>
 <name>hbase.thrift.support.proxyuser</name>
 <value>true/value>
</property>

See the demo client for information on using doAs impersonation in your client applications.

Start HBase

Cloudera Security | 133

Configuring Authentication

https://github.com/apache/hbase/blob/master/hbase-examples/src/main/java/org/apache/hadoop/hbase/thrift/HttpDoAsClient.java

If the configuration worked, you see something similar to the following in the HBase Master and RegionServer logs
when you start the cluster:

INFO zookeeper.ZooKeeper: Initiating client connection,
connectString=ZK_QUORUM_SERVER:2181 sessionTimeout=180000 watcher=master:60000
INFO zookeeper.ClientCnxn: Opening socket connection to server /ZK_QUORUM_SERVER:2181
INFO zookeeper.RecoverableZooKeeper: The identifier of this process is
PID@ZK_QUORUM_SERVER
INFO zookeeper.Login: successfully logged in.
INFO client.ZooKeeperSaslClient: Client will use GSSAPI as SASL mechanism.
INFO zookeeper.Login: TGT refresh thread started.
INFO zookeeper.ClientCnxn: Socket connection established to ZK_QUORUM_SERVER:2181,
initiating session
INFO zookeeper.Login: TGT valid starting at: Sun Apr 08 22:43:59 UTC 2012
INFO zookeeper.Login: TGT expires: Mon Apr 09 22:43:59 UTC 2012
INFO zookeeper.Login: TGT refresh sleeping until: Mon Apr 09 18:30:37 UTC 2012
INFO zookeeper.ClientCnxn: Session establishment complete on server ZK_QUORUM_SERVER:2181,
 sessionid = 0x134106594320000, negotiated timeout = 180000

Configuring Secure HBase Replication

If you are using HBase Replication and youwant tomake it secure, read this section for instructions. Before proceeding,
you should already have configured HBase Replication by following the instructions in the HBase Replication section
of the CDH 5 Installation Guide.

To configure secure HBase replication, you must configure cross realm support for Kerberos, ZooKeeper, and Hadoop.

Note: HBase peer-to-peer replication from a non-Kerberized cluster to a Kerberized cluster is not
supported.

To configure secure HBase replication:

1. Create krbtgt principals for the two realms. For example, if you have two realms called ONE.COM and TWO.COM,
you need to add the following principals: krbtgt/ONE.COM@TWO.COM and krbtgt/TWO.COM@ONE.COM. Add
these two principals at both realms. There must be at least one common encryption mode between these two
realms.

kadmin: addprinc -e "<enc_type_list>" krbtgt/ONE.COM@TWO.COM
kadmin: addprinc -e "<enc_type_list>" krbtgt/TWO.COM@ONE.COM

2. Add rules for creating short names in Zookeeper. To do this, add a system level property in java.env, defined
in the conf directory. Here is an example rule that illustrates how to add support for the realm called ONE.COM,
and have two members in the principal (such as service/instance@ONE.COM):

-Dzookeeper.security.auth_to_local=RULE:[2:\$1@\$0](.*@\\QONE.COM\\E$)s/@\\QONE.COM\\E$//DEFAULT

The above code example adds support for the ONE.COM realm in a different realm. So, in the case of replication,
you must add a rule for the primary cluster realm in the replica cluster realm. DEFAULT is for defining the default
rule.

3. Add rules for creating short names in the Hadoop processes. To do this, add the
hadoop.security.auth_to_local property in the core-site.xml file in the replica cluster. For example,
to add support for the ONE.COM realm:

<property>
 <name>hadoop.security.auth_to_local</name>
 <value>
 RULE:[2:$1@$0](.*@\QONE.COM\E$)s/@\QONE.COM\E$//
 DEFAULT
 </value>
</property>

For more information about adding rules, see Configuring the Mapping from Kerberos Principals to Short Names.

134 | Cloudera Security

Configuring Authentication

Configuring the HBase Client TGT Renewal Period

An HBase client user must also have a Kerberos principal which typically has a password that only the user knows. You
should configure the maxrenewlife setting for the client's principal to a value that allows the user enough time to
finish HBase client processes before the ticket granting ticket (TGT) expires. For example, if the HBase client processes
require up to four days to complete, you should create the user's principal and configure the maxrenewlife setting
by using this command:

kadmin: addprinc -maxrenewlife 4days

HCatalog Authentication
This section describes how to configure HCatalog in CDH 5 with Kerberos security in a Hadoop cluster:

• Before You Start on page 135
• Step 1: Create the HTTP keytab file on page 135
• Step 2: Configure WebHCat to Use Security on page 135
• Step 3: Create Proxy Users on page 136
• Step 4: Verify the Configuration on page 136

For more information about HCatalog see Installing and Using HCatalog.

Before You Start

Secure Web HCatalog requires a running remote Hive metastore service configured in secure mode. See Hive
MetaStoreServer Security Configuration for instructions. Running secure WebHCat with an embedded repository is
not supported.

Step 1: Create the HTTP keytab file

You need to create a keytab file for WebHCat. Follow these steps:

1. Create the file:

kadmin: addprinc -randkey HTTP/fully.qualified.domain.name@YOUR-REALM.COM
kadmin: xst -k HTTP.keytab HTTP/fully.qualified.domain.name

2. Move the file into the WebHCat configuration directory and restrict its access exclusively to the hcatalog user:

$ mv HTTP.keytab /etc/webhcat/conf/
$ chown hcatalog /etc/webhcat/conf/HTTP.keytab
$ chmod 400 /etc/webhcat/conf/HTTP.keytab

Step 2: Configure WebHCat to Use Security

Create or edit the WebHCat configuration file webhcat-site.xml in the configuration directory and set following
properties:

ValueProperty

Any random valuetempleton.kerberos.secret

/etc/webhcat/conf/HTTP.keytabtempleton.kerberos.keytab

HTTP/fully.qualified.domain.name@YOUR-REALM.COMtempleton.kerberos.principal

Cloudera Security | 135

Configuring Authentication

Example configuration:

<property>
 <name>templeton.kerberos.secret</name>
 <value>SuPerS3c3tV@lue!</value>
 </property>

 <property>
 <name>templeton.kerberos.keytab</name>
 <value>/etc/webhcat/conf/HTTP.keytab</value>
 </property>

 <property>
 <name>templeton.kerberos.principal</name>
 <value>HTTP/fully.qualified.domain.name@YOUR-REALM.COM</value>
 </property>

Step 3: Create Proxy Users

WebHCat needs access to yourNameNode towork properly, and so youmust configure Hadoop to allow impersonation
from the hcatalog user. To do this, edit your core-site.xml configuration file and set the
hadoop.proxyuser.HTTP.hosts and hadoop.proxyuser.HTTP.groups properties to specify the hosts from
which HCatalog can do the impersonation and what users can be impersonated. You can use the value * for "any".

Example configuration:

 <property>
 <name>hadoop.proxyuser.HTTP.hosts</name>
 <value>*</value>
 </property>
 <property>
 <name>hadoop.proxyuser.HTTP.groups</name>
 <value>*</value>
 </property>

Step 4: Verify the Configuration

After restarting WebHcat you can verify that it is working by using curl (you may need to run kinit first):

$ curl --negotiate -i -u :
'http://fully.qualified.domain.name:50111/templeton/v1/ddl/database'

Hive Authentication
Hive authentication involves configuring Hive metastore, HiveServer2, and all Hive clients to use your deployment of
LDAP/Active Directory Kerberos on your cluster.

Here is a summary of the status of Hive authentication in CDH 5:

• HiveServer2 supports authentication of the Thrift client using Kerberos or user/password validation backed by
LDAP. For configuration instructions, see HiveServer2 Security Configuration.

• Earlier versions of HiveServer do not support Kerberos authentication for clients. However, theHiveMetaStoreServer
does support Kerberos authentication for Thrift clients. For configuration instructions, see Hive MetaStoreServer
Security Configuration.

See also: Using Hive to Run Queries on a Secure HBase Server on page 144

For authorization, Hive uses Apache Sentry to enable role-based, fine-grained authorization for HiveServer2. See Apache
Sentry Overview.

136 | Cloudera Security

Configuring Authentication

Important: Cloudera does not support Apache Ranger or Hive's native authorization frameworks for
configuring access control in Hive. Use Cloudera-supported Apache Sentry instead.

HiveServer2 Security Configuration

HiveServer2 supports authentication of the Thrift client using the following methods:

• Kerberos authentication
• LDAP authentication

Startingwith CDH5.7, clusters running LDAP-enabledHiveServer2 deployments also accept Kerberos authentication.
This ensures that users are not forced to enter usernames/passwords manually, and are able to take advantage
of the multiple authentication schemes SASL offers. In CDH 5.6 and lower, HiveServer2 stops accepting delegation
tokens when any alternate authentication is enabled.

Kerberos authentication is supported between the Thrift client and HiveServer2, and between HiveServer2 and secure
HDFS. LDAP authentication is supported only between the Thrift client and HiveServer2.

To configure HiveServer2 to use one of these authenticationmodes, configure the hive.server2.authentication
configuration property.

Enabling Kerberos Authentication for HiveServer2

If you configure HiveServer2 to use Kerberos authentication, HiveServer2 acquires a Kerberos ticket during startup.
HiveServer2 requires a principal and keytab file specified in the configuration. Client applications (for example, JDBC
or Beeline) must have a valid Kerberos ticket before initiating a connection to HiveServer2.

Configuring HiveServer2 for Kerberos-Secured Clusters

To enable Kerberos Authentication for HiveServer2, add the following properties in the
/etc/hive/conf/hive-site.xml file:

<property>
 <name>hive.server2.authentication</name>
 <value>KERBEROS</value>
</property>
<property>
 <name>hive.server2.authentication.kerberos.principal</name>
 <value>hive/_HOST@YOUR-REALM.COM</value>
</property>
<property>
 <name>hive.server2.authentication.kerberos.keytab</name>
 <value>/etc/hive/conf/hive.keytab</value>
</property>

where:

• hive.server2.authentication is a client-facing property that controls the type of authenticationHiveServer2
uses for connections to clients. In this case, HiveServer2 uses Kerberos to authenticate incoming clients.

• The _HOST@YOUR-REALM.COM value in the example above is the Kerberos principal for the hostwhere HiveServer2
is running. The string _HOST in the properties is replaced at run time by the fully qualified domain name (FQDN)
of the host machine where the daemon is running. Reverse DNS must be working on all the hosts configured this
way. Replace YOUR-REALM.COM with the name of the Kerberos realm your Hadoop cluster is in.

• The /etc/hive/conf/hive.keytab value in the example above is a keytab file for that principal.

If you configure HiveServer2 to use both Kerberos authentication and secure impersonation, JDBC clients and Beeline
can specify an alternate session user. If these clients have proxy user privileges, HiveServer2 impersonates the alternate
user instead of the one connecting. The alternate user can be specified by the JDBC connection string
proxyUser=userName

Cloudera Security | 137

Configuring Authentication

Configuring JDBC Clients for Kerberos Authentication with HiveServer2 (Using the Apache Hive Driver in Beeline)

JDBC-basedclientsmust includeprincipal=<hive.server2.authentication.principal> in the JDBCconnection
string. For example:

String url =
"jdbc:hive2://node1:10000/default;principal=hive/HiveServer2Host@YOUR-REALM.COM"
Connection con = DriverManager.getConnection(url);

where hive is the principal configured in hive-site.xml and HiveServer2Host is the host where HiveServer2 is
running.

For JDBC clients using the Cloudera JDBC driver, see Cloudera JDBC Driver for Hive. For ODBC clients, see Cloudera
ODBC Driver for Apache Hive.

Using Beeline to Connect to a Secure HiveServer2

Use the following command to start beeline and connect to a secure HiveServer2 process. In this example, the
HiveServer2 process is running on localhost at port 10000:

$ /usr/lib/hive/bin/beeline
beeline> !connect
jdbc:hive2://localhost:10000/default;principal=hive/HiveServer2Host@YOUR-REALM.COM
0: jdbc:hive2://localhost:10000/default>

For more information about the Beeline CLI, see Using the Beeline CLI.

For instructions on encrypting communicationwith theODBC/JDBC drivers, see Configuring Encrypted Communication
Between HiveServer2 and Client Drivers on page 256.

Using LDAP Username/Password Authentication with HiveServer2

As an alternative to Kerberos authentication, you can configure HiveServer2 to use user and password validation backed
by LDAP. The client sends a username and password during connection initiation. HiveServer2 validates these credentials
using an external LDAP service.

You can enable LDAP Authentication with HiveServer2 using Active Directory or OpenLDAP.

Important: When using LDAP username/password authenticationwith HiveServer2, youmust enable
encrypted communication between HiveServer2 and its client drivers to avoid sending cleartext
passwords. For instructions, see Configuring Encrypted Communication Between HiveServer2 and
Client Drivers on page 256. To avoid sending LDAP credentials over a network in cleartext, see
Configuring LDAPS Authentication with HiveServer2 on page 140.

Enabling LDAP Authentication with HiveServer2 using Active Directory

• For managed clusters, use Cloudera Manager:

1. In the ClouderaManager Admin Console, clickHive in the list of components, and then select the Configuration
tab.

2. Type "ldap" in the Search text box to locate the LDAP configuration fields.
3. Check Enable LDAP Authentication.
4. Enter the LDAP URL in the format ldap[s]://<host>:<port>
5. Enter the Active Directory Domain for your environment.
6. Click Save Changes.

• For unmanaged clusters, use the command line:

138 | Cloudera Security

Configuring Authentication

http://www.cloudera.com/content/www/en-us/downloads/connectors/hive/jdbc/2-5-15.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Connectors/PDF/Cloudera-ODBC-Driver-for-Apache-Hive-Install-Guide.pdf
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Connectors/PDF/Cloudera-ODBC-Driver-for-Apache-Hive-Install-Guide.pdf

Add the following properties to the hive-site.xml:

<property>
 <name>hive.server2.authentication</name>
 <value>LDAP</value>
</property>
<property>
 <name>hive.server2.authentication.ldap.url</name>
 <value>LDAP_URLL</value>
</property>
<property>
 <name>hive.server2.authentication.ldap.Domain</name>
 <value>AD_DOMAIN_ADDRESS</value>
</property>

Where:

The LDAP_URL value is the access URL for your LDAP server. For example, ldap[s]://<host>:<port>

Enabling LDAP Authentication with HiveServer2 using OpenLDAP

To enable LDAP authentication using OpenLDAP, include the following properties in hive-site.xml:

<property>
 <name>hive.server2.authentication</name>
 <value>LDAP</value>
</property>
<property>
 <name>hive.server2.authentication.ldap.url</name>
 <value>LDAP_URL</value>
</property>
<property>
 <name>hive.server2.authentication.ldap.baseDN</name>
 <value>LDAP_BaseDN</value>
</property>

where:

• The LDAP_URL value is the access URL for your LDAP server.
• The LDAP_BaseDN value is the base LDAP DN for your LDAP server; for example,

ou=People,dc=example,dc=com.

Configuring JDBC Clients for LDAP Authentication with HiveServer2

The JDBC client requires a connection URL as shown below.

JDBC-based clients must include user=LDAP_Userid;password=LDAP_Password in the JDBC connection string.
For example:

String url
="jdbc:hive2://#<host>:#<port>/#<dbName>;ssl=true;sslTrustStore=#<ssl_truststore_path>;trustStorePassword=#<truststore_password>"
Connection con = DriverManager.getConnection(url);

where the LDAP_Userid value is the user ID and LDAP_Password is the password of the client user.

For ODBC Clients, see Cloudera ODBC Driver for Apache Hive.

Enabling LDAP Authentication for HiveServer2 in Hue

Enable LDAP authentication with HiveServer2 by setting the following properties under the [beeswax] section in
hue.ini.

LDAP username of Hue user to be authenticated.auth_username

LDAP password of Hue user to be authenticated.auth_password

Cloudera Security | 139

Configuring Authentication

http://www.cloudera.com/content/cloudera-content/cloudera-docs/Connectors/PDF/Cloudera-ODBC-Driver-for-Apache-Hive-Install-Guide.pdf

Hive uses these login details to authenticate to LDAP. The Hive service trusts that Hue has validated the user being
impersonated.

Configuring LDAPS Authentication with HiveServer2

HiveServer2 supports LDAP username/password authentication for clients. Clients send LDAP credentials to HiveServer2
which in turn verifies them against the configured LDAP provider, such as OpenLDAP or Microsoft Active Directory.
Most implementations now support LDAPS (LDAP over TLS/SSL), an authentication protocol that uses TLS/SSL to encrypt
communication between the LDAP service and its client (in this case, HiveServer2) to avoid sending LDAP credentials
in cleartext.

To configure the LDAPS service with HiveServer2:

1. Import the LDAP server CA certificate or the server certificate into a truststore on the HiveServer2 host. If you
import the CA certificate, HiveServer2 will trust any server with a certificate issued by the LDAP server's CA. If you
only import the server certificate, HiveServer2 trusts only that server. See Creating Java Keystores and Truststores
on page 224 for more details.

2. Make sure the truststore file is readable by the hive user.
3. Set the hive.server2.authentication.ldap.url configuration property in hive-site.xml to the LDAPS

URL. For example, ldaps://sample.myhost.com.

Note: The URL scheme should be ldaps and not ldap.

4. If this is a managed cluster, in ClouderaManager, go to the Hive service and select Configuration. Under Category,
select Security. In the right panel, search for HiveServer2 TLS/SSL Certificate Trust Store File, and add the path
to the truststore file that you created in step 1.

If you are using an unmanaged cluster, set the environment variable HADOOP_OPTS as follows:

HADOOP_OPTS="-Djavax.net.ssl.trustStore=<trustStore-file-path>
-Djavax.net.ssl.trustStorePassword=<trustStore-password>"

5. Restart HiveServer2.

Pluggable Authentication

Pluggable authentication allows you to provide a custom authentication provider for HiveServer2.

To enable pluggable authentication:

1. Set the following properties in /etc/hive/conf/hive-site.xml:

<property>
 <name>hive.server2.authentication</name>
 <value>CUSTOM</value>
 <description>Client authentication types.
 NONE: no authentication check
 LDAP: LDAP/AD based authentication
 KERBEROS: Kerberos/GSSAPI authentication
 CUSTOM: Custom authentication provider
 (Use with property hive.server2.custom.authentication.class)
 </description>
</property>

<property>
 <name>hive.server2.custom.authentication.class</name>
 <value>pluggable-auth-class-name</value>
 <description>
 Custom authentication class. Used when property
 'hive.server2.authentication' is set to 'CUSTOM'. Provided class
 must be a proper implementation of the interface
 org.apache.hive.service.auth.PasswdAuthenticationProvider. HiveServer2
 will call its Authenticate(user, passed) method to authenticate requests.

140 | Cloudera Security

Configuring Authentication

 The implementation may optionally extend the Hadoop's
 org.apache.hadoop.conf.Configured class to grab Hive's Configuration object.
 </description>
</property>

2. Make the class available in the CLASSPATH of HiveServer2.

Trusted Delegation with HiveServer2

HiveServer2 determines the identity of the connecting user from the underlying authentication subsystem (Kerberos
or LDAP). Any new session started for this connection runs on behalf of this connecting user. If the server is configured
to proxy the user at the Hadoop level, then all MapReduce jobs and HDFS accesses will be performed with the identity
of the connecting user. If Apache Sentry is configured, then this connecting userid can also be used to verify access
rights to underlying tables and views.

In CDH 4.5, a connecting user (for example, hue) with Hadoop-level superuser privileges, can request an alternate user
for the given session. HiveServer2 will check if the connecting user has Hadoop-level privileges to proxy the requested
userid (for example, bob). If it does, then the new session will be run on behalf of the alternate user, bob, requested
by connecting user, hue.

To specify an alternate user for new connections, the JDBC client needs to add the
hive.server2.proxy.user=<alternate_user_id>property to the JDBC connectionURL.Note that the connecting
user needs to have Hadoop-level proxy privileges over the alternate user. For example, if user hue requests access to
run a session as user bob, the JDBC connection string should be as follows:

Login as super user Hue
kinit hue -k -t hue.keytab hue@MY-REALM.COM

Connect using following JDBC connection string

jdbc:hive2://myHost.myOrg.com:10000/default;principal=hive/_HOST@MY-REALM.COM;hive.server2.proxy.user=bob

HiveServer2 Impersonation

Important: This is not the recommendedmethod to implement HiveServer2 authorization. Cloudera
recommends you use Sentry to implement this instead.

Impersonation in HiveServer2 allows users to execute queries and access HDFS files as the connected user rather than
the super user who started the HiveServer2 daemon. This enforces an access control policy at the file level using HDFS
file permissions or ACLs. Keeping impersonation enabled means Sentry does not have end-to-end control over the
authorization process. While Sentry can enforce access control policies on tables and views in the Hive warehouse, it
has no control over permissions on the underlying table files in HDFS. Hence, even if users do not have the Sentry
privileges required to access a table in the warehouse, as long as they have permission to access the corresponding
table file in HDFS, any jobs or queries submitted will bypass Sentry authorization checks and execute successfully.

To configure Sentry correctly, restrict ownership of the Hive warehouse to hive:hive and disable Hive impersonation
as described here.

To enable impersonation in HiveServer2:

1. Add the following property to the/etc/hive/conf/hive-site.xml file and set the value totrue. (The default
value is false.)

<property>
 <name>hive.server2.enable.impersonation</name>
 <description>Enable user impersonation for HiveServer2</description>
 <value>true</value>
</property>

Cloudera Security | 141

Configuring Authentication

2. In HDFS or MapReduce configurations, add the following property to the core-site.xml file:

<property>
 <name>hadoop.proxyuser.hive.hosts</name>
 <value>*</value>
</property>
<property>
 <name>hadoop.proxyuser.hive.groups</name>
 <value>*</value>
</property>

See also File System Permissions.

Securing the Hive Metastore

Note: This is not the recommended method to protect the Hive Metastore. Cloudera recommends
you use Sentry to implement this instead.

To prevent users from accessing the Hive metastore and the Hive metastore database using any method other than
through HiveServer2, the following actions are recommended:

• Add a firewall rule on the metastore service host to allow access to the metastore port only from the HiveServer2
host. You can do this using iptables.

• Grant access to the metastore database only from the metastore service host. This is specified for MySQL as:

GRANT ALL PRIVILEGES ON metastore.* TO 'hive'@'metastorehost';

where metastorehost is the host where the metastore service is running.

• Make sure users who are not admins cannot log on to the host on which HiveServer2 runs.

Disabling the Hive Security Configuration

Hive's security related metadata is stored in the configuration file hive-site.xml. The following sections describe
how to disable security for the Hive service.

Disable Client/Server Authentication
To disable client/server authentication, set hive.server2.authentication to NONE. For example,

<property>
 <name>hive.server2.authentication</name>
 <value>NONE</value>
 <description>
 Client authentication types.
 NONE: no authentication check
 LDAP: LDAP/AD based authentication
 KERBEROS: Kerberos/GSSAPI authentication
 CUSTOM: Custom authentication provider
 (Use with property hive.server2.custom.authentication.class)
 </description>
</property>

Disable Hive Metastore security
To disable Hive Metastore security, perform the following steps:

• Set the hive.metastore.sasl.enabled property to false in all configurations, the metastore service side
as well as for all clients of the metastore. For example, these might include HiveServer2, Impala, Pig and so on.

• Remove or comment the following parameters in hive-site.xml for the metastore service. Note that this is a
server-only change.

– hive.metastore.kerberos.keytab.file

142 | Cloudera Security

Configuring Authentication

http://en.wikipedia.org/wiki/Iptables

– hive.metastore.kerberos.principal

Disable Underlying Hadoop Security

If you also want to disable the underlying Hadoop security, remove or comment out the following parameters in
hive-site.xml.

• hive.server2.authentication.kerberos.keytab

• hive.server2.authentication.kerberos.principal

Hive Metastore Server Security Configuration

Important:

This section describes how to configure security for the Hive metastore server. If you are using
HiveServer2, see HiveServer2 Security Configuration.

Here is a summary of Hive metastore server security in CDH 5:

• No additional configuration is required to run Hive on top of a security-enabled Hadoop cluster in standalone
mode using a local or embedded metastore.

• HiveServer does not support Kerberos authentication for clients. While it is possible to run HiveServer with a
secured Hadoop cluster, doing so creates a security hole since HiveServer does not authenticate the Thrift clients
that connect to it. Instead, you can use HiveServer2 HiveServer2 Security Configuration.

• The Hive metastore server supports Kerberos authentication for Thrift clients. For example, you can configure a
standalone Hive metastore server instance to force clients to authenticate with Kerberos by setting the following
properties in the hive-site.xml configuration file used by the metastore server:

<property>
 <name>hive.metastore.sasl.enabled</name>
 <value>true</value>
 <description>If true, the metastore thrift interface will be secured with SASL. Clients
 must authenticate with Kerberos.</description>
</property>

<property>
 <name>hive.metastore.kerberos.keytab.file</name>
 <value>/etc/hive/conf/hive.keytab</value>
 <description>The path to the Kerberos Keytab file containing the metastore thrift
server's service principal.</description>
</property>

<property>
 <name>hive.metastore.kerberos.principal</name>
 <value>hive/_HOST@YOUR-REALM.COM</value>
 <description>The service principal for the metastore thrift server. The special string
 _HOST will be replaced automatically with the correct host name.</description>
</property>

Note:

The values shown above for the hive.metastore.kerberos.keytab.file and
hive.metastore.kerberos.principal properties are examples which you will need to
replace with the appropriate values for your cluster. Also note that the Hive keytab file should
have its access permissions set to 600 and be owned by the same account that is used to run the
Metastore server, which is the hive user by default.

• Requests to access the metadata are fulfilled by the Hive metastore impersonating the requesting user. This
includes read access to the list of databases, tables, properties of each table such as their HDFS location and file
type. You can restrict access to the Hive metastore service by allowing it to impersonate only a subset of Kerberos

Cloudera Security | 143

Configuring Authentication

users. This can be done by setting the hadoop.proxyuser.hive.groups property in core-site.xml on the
Hive metastore host.

For example, if you want to give the hive user permission to impersonate members of groups hive and user1:

<property>
<name>hadoop.proxyuser.hive.groups</name>
<value>hive,user1</value>
</property>

In this example, the Hive metastore can impersonate users belonging to only the hive and user1 groups.
Connection requests from users not belonging to these groups will be rejected.

Using Hive to Run Queries on a Secure HBase Server

To use Hive to run queries on a secure HBase Server, you must set the following HIVE_OPTS environment variable:

env HIVE_OPTS="-hiveconf hbase.security.authentication=kerberos -hiveconf
hbase.master.kerberos.principal=hbase/_HOST@YOUR-REALM.COM -hiveconf
hbase.regionserver.kerberos.principal=hbase/_HOST@YOUR-REALM.COM -hiveconf
hbase.zookeeper.quorum=zookeeper1,zookeeper2,zookeeper3" hive

where:

• You replace YOUR-REALM with the name of your Kerberos realm
• You replace zookeeper1,zookeeper2,zookeeper3 with the names of your ZooKeeper servers. The

hbase.zookeeper.quorum property is configured in the hbase-site.xml file.
• The special string _HOST is replaced at run-time by the fully qualified domain name of the host machine where

the HBase Master or RegionServer is running. This requires that reverse DNS is properly working on all the hosts
configured this way.

In the following, _HOST is the name of the host where the HBase Master is running:

-hiveconf hbase.master.kerberos.principal=hbase/_HOST@YOUR-REALM.COM

In the following, _HOST is the hostname of the HBase RegionServer that the application is connecting to:

-hiveconf hbase.regionserver.kerberos.principal=hbase/_HOST@YOUR-REALM.COM

Note:

You can also set the HIVE_OPTS environment variable in your shell profile.

HttpFS Authentication
This section describes how to configure HttpFS CDH 5 with Kerberos security on a Hadoop cluster:

• Configuring the HttpFS Server to Support Kerberos Security on page 145
• Using curl to access an URL Protected by Kerberos HTTP SPNEGO on page 146

For more information about HttpFS, see
https://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-hdfs-httpfs/index.html.

Important:

To enable HttpFS to work with Kerberos security on your Hadoop cluster, make sure you perform the
installation and configuration steps in Configuring Hadoop Security in CDH 5.

144 | Cloudera Security

Configuring Authentication

https://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-hdfs-httpfs/index.html

Important:

If the NameNode, Secondary NameNode, DataNode, JobTracker, TaskTrackers, ResourceManager,
NodeManagers, HttpFS, or Oozie services are configured to use Kerberos HTTP SPNEGOauthentication,
and two or more of these services are running on the same host, then all of the running services must
use the same HTTP principal and keytab file used for their HTTP endpoints.

Configuring the HttpFS Server to Support Kerberos Security

1. Create an HttpFS service user principal that is used to authenticate with the Hadoop cluster. The syntax of the
principal is: httpfs/<fully.qualified.domain.name>@<YOUR-REALM> where:
fully.qualified.domain.name is the host where the HttpFS server is running YOUR-REALM is the name of
your Kerberos realm

kadmin: addprinc -randkey httpfs/fully.qualified.domain.name@YOUR-REALM.COM

2. Create a HTTP service user principal that is used to authenticate user requests coming to the HttpFS HTTP
web-services. The syntax of the principal is:HTTP/<fully.qualified.domain.name>@<YOUR-REALM>where:
'fully.qualified.domain.name' is the host where the HttpFS server is running YOUR-REALM is the name
of your Kerberos realm

kadmin: addprinc -randkey HTTP/fully.qualified.domain.name@YOUR-REALM.COM

Important:

The HTTP/ component of the HTTP service user principal must be upper case as shown in the
syntax and example above.

3. Create keytab files with both principals.

$ kadmin
kadmin: xst -k httpfs.keytab httpfs/fully.qualified.domain.name
kadmin: xst -k http.keytab HTTP/fully.qualified.domain.name

4. Merge the two keytab files into a single keytab file:

$ ktutil
ktutil: rkt httpfs.keytab
ktutil: rkt http.keytab
ktutil: wkt httpfs-http.keytab

5. Test that credentials in the merged keytab file work. For example:

$ klist -e -k -t httpfs-http.keytab

6. Copy thehttpfs-http.keytab file to theHttpFS configurationdirectory. Theownerof thehttpfs-http.keytab
file should be the httpfs user and the file should have owner-only read permissions.

7. Edit the HttpFS server httpfs-site.xml configuration file in the HttpFS configuration directory by setting the
following properties:

ValueProperty

kerberoshttpfs.authentication.type

kerberoshttpfs.hadoop.authentication.type

HTTP/<HTTPFS-HOSTNAME>@<YOUR-REALM.COM>httpfs.authentication.kerberos.principal

Cloudera Security | 145

Configuring Authentication

ValueProperty

/etc/hadoop-httpfs/conf/httpfs-http.keytabhttpfs.authentication.kerberos.keytab

httpfs/<HTTPFS-HOSTNAME>@<YOUR-REALM.COM>httpfs.hadoop.authentication.kerberos.principal

/etc/hadoop-httpfs/conf/httpfs-http.keytabhttpfs.hadoop.authentication.kerberos.keytab

Use the value configured for
'hadoop.security.auth_to_local' in 'core-site.xml'

httpfs.authentication.kerberos.name.rules

Important:

You must restart the HttpFS server to have the configuration changes take effect.

Using curl to access an URL Protected by Kerberos HTTP SPNEGO

Important:

Your version of curlmust support GSS and be capable of running curl -V.

To configure curl to access an URL protected by Kerberos HTTP SPNEGO:

1. Run curl -V:

$ curl -V
curl 7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7 OpenSSL/0.9.8l
zlib/1.2.3
Protocols: tftp ftp telnet dict ldap http file https ftps
Features: GSS-Negotiate IPv6 Largefile NTLM SSL libz

2. Login to the KDC using kinit.

$ kinit
Please enter the password for tucu@LOCALHOST:

3. Use curl to fetch the protected URL:

$ curl --cacert
 /path/to/truststore.pem --negotiate -u : -b ~/cookiejar.txt -c
~/cookiejar.txt https://localhost:14000/webhdfs/v1/?op=liststatus

where:

• The --cacert option is required if you are using TLS/SSL certificates that curl does not recognize by default.
• The --negotiate option enables SPNEGO in curl.
• The -u : option is required but the username is ignored (the principal that has been specified for kinit is

used).
• The -b and -c options are used to store and send HTTP cookies.
• Cloudera does not recommend using the -k or --insecure option as it turns off curl's ability to verify the

certificate.

146 | Cloudera Security

Configuring Authentication

Hue Authentication
This page describes properties in the Hue configuration file, hue.ini, that support authentication and Hue security
in general.

For information on configuring Hue with Kerberos, , encrypting session communication, and enabling single sign-on
with SAML, see:

• Configuring Kerberos Authentication for Hue on page 149
• Integrating Hue with LDAP on page 151
• Configuring Hue for SAML on page 158

Enabling LDAP Authentication with HiveServer2 and Impala

LDAP authentication with HiveServer2 and Impala can be enabled by setting the following properties under their
respective sections in hue.ini, [beeswax] and [impala].

LDAP username of Hue user to be authenticated.auth_username

LDAP password of Hue user to be authenticated.auth_password

These login details are only used by Impala and Hive to authenticate to LDAP. The Impala and Hive services trust Hue
to have already validated the user being impersonated, rather than simply passing on the credentials.

Securing Sessions

When a session expires, the screen blurs and the user is automatically logged out of the HueWebUI. Logging on returns
the user to same location.

Session Timeout

User sessions are controlled with the ttl (time-to-live) property under [desktop]> [[session]] in hue.ini. After
n seconds, the session expires whether active or not.

The cookie with the users session ID expires after n seconds.ttl

Default: ttl=1209600 which is 60*60*24*14 seconds or 2 weeks

Idle Session Timeout

Idle sessions are controlled with the idle_session_timeout property under [desktop] > [[auth]] in hue.ini.
Sessions that are idle for n seconds, expire. You can disable this property by setting it to a negative value.

User session IDs expire after idle for n seconds. A negative value means idle
sessions do not expire.

idle_session_timeout

idle_session_timeout=900means that sessions expire after being idle
for 15 minutes

idle_session_timeout=-1means that idle sessions do not expire (until
ttl)

Secure Login

Login properties are set in hue.ini under [desktop] > [[auth]]. They are based on django-axes 1.5.0.

If true, users must change password on first login.

Must enable
backend=desktop.auth.backend.AllowFirstUserDjangoBackend

change_default_password

Cloudera Security | 147

Configuring Authentication

https://github.com/cloudera/hue/blob/master/desktop/conf.dist/hue.ini
https://pypi.python.org/pypi/django-axes/1.5.0

User accounts are disabled n seconds after logout. If negative, user sessions
never expire.

expires_after

Apply expires_after to superusers.expire_superusers

Failed logins are forgotten after n seconds.login_cooloff_time

Number of login attempts allowed before a record is created for failed logins.login_failure_limit

If true, lock out IP after exceeding login_failure_limit.

If login_lock_out_by_combination_user_and_ip=true, lock out IP
and user.

login_lock_out_at_failure

If login_lock_out_use_user_agent=true, also lock out user agent.

If true, lock out IP and user.login_lock_out_by_combination_user_and_ip

If true, lock out user agent (such as a browser).login_lock_out_use_user_agent

Secure Cookies

Secure session cookies can be enabled by specifying the secure configuration property under the [desktop]>
[[session]] section in hue.ini. Additionally, you can set the http_only flag for cookies containing users' session
IDs.

The cookie with the user session ID is secure. Should only be enabled with
HTTPS.

secure

Default: false

The cookie with the user session ID uses the HTTP only flag.http_only

Default: true

If the HttpOnly flag is included in the HTTP response header, the cookie cannot
be accessed through a client side script.

Use session-length cookies. Logs out the user when the browser window is
closed.

expire_at_browser_close

Default: false

Allowed HTTP Methods

You can specify the HTTP request methods that the server should respond to using the http_allowed_methods
property under the [desktop] section in hue.ini.

Default: options,get,head,post,put,delete,connecthttp_allowed_methods

Restricting the Cipher List

Cipher list support with HTTPS can be restricted by specifying the ssl_cipher_list configuration property under
the [desktop] section in hue.ini.

Default: !aNULL:!eNULL:!LOW:!EXPORT:!SSLv2ssl_cipher_list

URL Redirect Whitelist

Restrict the domains or pages to which Hue can redirect users. The redirect_whitelist property can be found
under the [desktop] section in hue.ini.

148 | Cloudera Security

Configuring Authentication

For example, to restrict users to your local domain and FQDN, the following
value can be used: ^\/.*$,^http:\/\/www.mydomain.com\/.*$

redirect_whitelist

Oozie Permissions

Access to theOozie dashboard and editor can be individually controlled in the HueWebUI underUser Admin >Groups.

DescriptionGroups Property in UI

Enable Oozie Dashboard read-only access for all jobs.

Default: true

oozie.dashboard_jobs_access

Disable Oozie Editor access.

Default: false

oozie.disable_editor_access

Configuring Kerberos Authentication for Hue

To configure the Hue server to support Hadoop security using Kerberos:

1. Create a Hue user principal in the same realm as the Hadoop cluster of the form:

kadmin: addprinc -randkey hue/hue.server.fully.qualified.domain.name@YOUR-REALM.COM

where: hue is the principal the Hue server is running as, hue.server.fully.qualified.domain.name is the
fully qualified domain name (FQDN) of your Hue server, YOUR-REALM.COM is the name of the Kerberos realm
your Hadoop cluster is in

2. Create a keytab file for the Hue principal using the same procedure that you used to create the keytab for the
hdfs or mapred principal for a specific host. You should name this file hue.keytab and put this keytab file in
the directory /etc/hue on themachine running the Hue server. Like all keytab files, this file should have themost
limited set of permissions possible. It should be owned by the user running the hue server (usuallyhue) and should
have the permission 400.

3. To test that the keytab file was created properly, try to obtain Kerberos credentials as the Hue principal using only
the keytab file. Substitute your FQDN and realm in the following command:

$ kinit -k -t /etc/hue/hue.keytab
hue/hue.server.fully.qualified.domain.name@YOUR-REALM.COM

4. In the /etc/hue/hue.ini configuration file, add the following lines in the sections shown. Replace the
kinit_path value, /usr/kerberos/bin/kinit, shown below with the correct path on the user's system.

[desktop]

 [[kerberos]]
 # Path to Hue's Kerberos keytab file
 hue_keytab=/etc/hue/hue.keytab
 # Kerberos principal name for Hue
 hue_principal=hue/FQDN@REALM
 # add kinit path for non root users
 kinit_path=/usr/kerberos/bin/kinit

[beeswax]
 # If Kerberos security is enabled, use fully qualified domain name (FQDN)
 ## hive_server_host=<FQDN of Hive Server>
 # Hive configuration directory, where hive-site.xml is located
 ## hive_conf_dir=/etc/hive/conf

[impala]
 ## server_host=localhost
 # The following property is required when impalad and Hue
 # are not running on the same host
 ## impala_principal=impala/impalad.hostname.domainname.com

Cloudera Security | 149

Configuring Authentication

[search]
 # URL of the Solr Server
 ## solr_url=http://localhost:8983/solr/
 # Requires FQDN in solr_url if enabled
 ## security_enabled=false

[hadoop]

 [[hdfs_clusters]]

 [[[default]]]
 # Enter the host and port on which you are running the Hadoop NameNode
 namenode_host=FQDN
 hdfs_port=8020
 http_port=50070
 security_enabled=true

 # Thrift plugin port for the name node
 ## thrift_port=10090

 # Configuration for YARN (MR2)
 # --
 [[yarn_clusters]]

 [[[default]]]
 # Enter the host on which you are running the ResourceManager
 ## resourcemanager_host=localhost
 # Change this if your YARN cluster is Kerberos-secured
 ## security_enabled=false

 # Thrift plug-in port for the JobTracker
 ## thrift_port=9290

[liboozie]
 # The URL where the Oozie service runs on. This is required in order for users to submit
 jobs.
 ## oozie_url=http://localhost:11000/oozie
 # Requires FQDN in oozie_url if enabled
 ## security_enabled=false

Important:

In the /etc/hue/hue.ini file, verify the following:

— Make sure the jobtracker_host property is set to the fully qualified domain name of the
host running the JobTracker. The JobTracker hostname must be fully qualified in a secured
environment.

— Make sure the fs.defaultfs property under each [[hdfs_clusters]] section contains the
fully-qualified domain name of the file system access point, which is typically the NameNode.

—Make sure the hive_conf_dir property under the [beeswax] section points to a directory
containing a valid hive-site.xml (either the original or a synced copy).

— Make sure the FQDN specified for HiveServer2 is the same as the FQDN specified for the
hue_principal configuration property. Without this, HiveServer2 will not work with security
enabled.

Also note that HiveServer2 currently does not support SSL when using Kerberos.

5. In the /etc/hadoop/conf/core-site.xml configuration file on all of your cluster nodes, add the following
lines:

<!-- Hue security configuration -->
<property>
 <name>hue.kerberos.principal.shortname</name>
 <value>hue</value>

150 | Cloudera Security

Configuring Authentication

</property>
<property>
 <name>hadoop.proxyuser.hue.groups</name>
 <value>*</value> <!-- A group which all users of Hue belong to, or the wildcard value
 "*" -->
</property>
<property>
 <name>hadoop.proxyuser.hue.hosts</name>
 <value>hue.server.fully.qualified.domain.name</value>
</property>

Important:

Make sure you change the /etc/hadoop/conf/core-site.xml configuration file on all of
your cluster nodes.

6. If Hue is configured to communicate to Hadoop using HttpFS, then you must add the following properties to
httpfs-site.xml:

<property>
 <name>httpfs.proxyuser.hue.hosts</name>
 <value>fully.qualified.domain.name</value>
</property>
<property>
 <name>httpfs.proxyuser.hue.groups</name>
 <value>*</value>
</property>

7. Add the following properties to the Oozie server oozie-site.xml configuration file in the Oozie configuration
directory:

<property>
 <name>oozie.service.ProxyUserService.proxyuser.hue.hosts</name>
 <value>*</value>
</property>
<property>
 <name>oozie.service.ProxyUserService.proxyuser.hue.groups</name>
 <value>*</value>
</property>

8. Restart the JobTracker to load the changes from the core-site.xml file.

$ sudo service hadoop-0.20-mapreduce-jobtracker restart

9. Restart Oozie to load the changes from the oozie-site.xml file.

$ sudo service oozie restart

10. Restart the NameNode, JobTracker, and all DataNodes to load the changes from the core-site.xml file.

$ sudo service hadoop-0.20-(namenode|jobtracker|datanode) restart

Integrating Hue with LDAP

When Hue is integrated with LDAP users can use their existing credentials to authenticate and inherit their existing
groups transparently. There is no need to save or duplicate any employee password in Hue. There are several other
ways to authenticate with Hue such as PAM, SPNEGO, OpenID, OAuth, and SAML2. This topic details how you can
configure Hue to authenticate against an LDAP directory server.

Cloudera Security | 151

Configuring Authentication

When authenticating using LDAP, Hue validates login credentials against an LDAP directory service if configured with
the LDAP authentication backend:

[desktop]
[[auth]]
backend=desktop.auth.backend.LdapBackend

The LDAP authentication backendwill automatically create users that don’t exist in Hue by default. Hue needs to import
users to properly perform the authentication. Passwords are never imported when importing users. If you want to
disable automatic import set the create_users_on_login property under the [desktop] > [[ldap]] section
of hue.ini to false.

[desktop]
[[ldap]]
create_users_on_login=false

The purpose of disabling the automatic import is to allow only a predefined list of manually imported users to login.

There are two ways to authenticate with a directory service through Hue:

• Search Bind
• Direct Bind

You can specify the authentication mechanism using the search_bind_authentication property under the
[desktop] > [[ldap]] section of hue.ini.

Uses search bind authentication by default. Set this property to false to use
direct bind authentication.

Default: true

search_bind_authentication

Search Bind
The search bind mechanism for authenticating will perform an ldapsearch against the directory service and bind
using the found distinguished name (DN) and password provided. This is the default method of authentication used
by Hue with LDAP.

The following configuration properties under the [desktop] > [[ldap]] > [[[users]]] section in hue.ini
can be set to restrict the search process.

General LDAP filter to restrict the search.

Default: "objectclass=*"

user_filter

The attribute that will be considered the username to be searched against.
Typical attributes to search for include: uid, sAMAccountName.

Default: sAMAccountName

user_name_attr

With the above configuration, the LDAP search filter will take on the form:

(&(objectClass=*)(sAMAccountName=<user entered username>))

Important: Setting search_bind_authentication=true in hue.ini tells Hue to perform an
LDAP search using the bind credentials specified for the bind_dn and bind_password configuration
properties. Hue will start searching the subtree starting from the base DN specified for the base_dn
property. It will then search the base DN for an entry whose attribute, specified in user_name_attr,
has the same value as the short name provided on login. The search filter, defined in user_filter
will also be used to limit the search.

152 | Cloudera Security

Configuring Authentication

http://www.zytrax.com/books/ldap/ch14/#ldapsearch
http://www.zytrax.com/books/ldap/apa/dn-rdn.html
http://www.zytrax.com/books/ldap/apa/search.html

Direct Bind

The direct bind mechanism for authenticating will bind to the LDAP server using the username and password provided
at login.

The following configuration properties can be used to determine how Hue binds to the LDAP server. These can be set
under the [desktop] > [[ldap]] section of hue.ini.

The NT domain to connect to (only for use with Active Directory). This
AD-specific property allows Hue to authenticate with AD without having to

nt_domain

follow LDAP references to other partitions. This typically maps to the email
address of the user or the user's ID in conjunction with the domain.

If provided, Hue will use User Principal Names (UPNs) to bind to the LDAP
service.

Default: mycompany.com

Provides a template for the DN that will ultimately be sent to the directory
service when authenticating. The <username> parameter will be replaced
with the username provided at login.

Default: "uid=<username>,ou=People,dc=mycompany,dc=com"

ldap_username_pattern

Important: Setting search_bind_authentication=false in hue.ini tells Hue to perform a
direct bind to LDAP using the credentials provided (not bind_dn and bind_password specified in
hue.ini). There are two ways direct bind works depending on whether the nt_domain property is
specified in hue.ini:

• nt_domain is specified: This is used to connect to an Active Directory service. In this case, the
User Principal Name (UPN) is used to perform a direct bind. Hue forms the UPN by concatenating
the short name provided at login with the nt_domain. For example, <short
name>@<nt_domain>. The ldap_username_pattern property is ignored.

• nt_domain is not specified: This is used to connect to all other directory services (can handle
Active Directory, but nt_domain is the preferred way for AD). In this case,
ldap_username_pattern is used and it should take on the form
cn=<username>,dc=example,dc=comwhere<username>will be replacedwith the username
provided at login.

Importing LDAP Users and Groups

If an LDAP user needs to be part of a certain group and be given a particular set of permissions, you can import this
user with the User Admin interface in Hue.

Cloudera Security | 153

Configuring Authentication

http://msdn.microsoft.com/en-us/library/windows/desktop/ms680857(v=vs.85).aspx

Groups can also be imported using the User Admin interface, and users can be added to this group. As in the image
below, not only can groups be discovered using DN and rDN search, but users that are members of the group or
members of its subordinate groups can be imported as well.

You have the following options available when importing a user/group:

• Distinguished name: If checked, the username provided must be a full distinguished name (for example,
uid=hue,ou=People,dc=gethue,dc=com). Otherwise, the Username provided should be a fragment of a
Relative Distinguished Name (rDN) (for example, the username huemaps to the rDN uid=hue). Hue will perform
an LDAP search using the samemethods and configurations as described above. That is, Huewill take the provided
username and create a search filter using the user_filter and user_name_attr configurations.

• Create home directory: If checked, when the user is imported, their home directory in HDFS will automatically
be created if it doesn’t already exist.

Important: When managing LDAP entries, the User Admin app will always perform an LDAP search
and will always use bind_dn, bind_password, base_dn, as defined in hue.ini.

154 | Cloudera Security

Configuring Authentication

http://www.zytrax.com/books/ldap/apa/dn-rdn.html
http://www.zytrax.com/books/ldap/apa/dn-rdn.html

Synchronizing LDAP Users and Groups

Users and groups can be synchronized with the directory service using the User Admin interface or using a command
line utility. The image from the Importing LDAP Users and Groups section uses the words Add/Sync to indicate that
when a user or group that already exists in Hue is being added, it will in fact be synchronized instead. In the case of
importing users for a particular group, new users will be imported and existing users will be synchronized.

Note: Users that have been deleted from the directory service will not be deleted from Hue. Those
users can be manually deactivated from Hue using the User Admin interface.

Attributes Synchronized

Currently, only the first name, last name, and email address are synchronized. Hue looks for the LDAP attributes
givenName, sn, and mailwhen synchronizing. The user_name_attr configuration property is used to appropriately
choose the username in Hue. For instance, if user_name_attr’ is set to uid”, then the "uid" returned by the directory
service will be used as the username of the user in Hue.

User Admin interface

The Sync LDAP users/groups button in the User Admin interface will automatically synchronize all users and groups.

Synchronize Using a Command-Line Interface

For example, to synchronize users and groups using a command-line interface:

<hue root>/build/env/bin/hue sync_ldap_users_and_groups

Configuring Hue for Authentication against Multiple LDAP/Active Directory Servers

Hue also supports the ability to authenticate against multiple LDAP servers. Before attempting LDAP authentication
againstmultiple servers, ensure you have configured LDAP synchronization for each server, as described in the previous
section. As long as users and groups are synced across LDAP and Hue, authentication should work.

To configure multiple servers, determine the correct parameters for each server as described in the Integrating Hue
with LDAP on page 151 section above. In the hue.ini file, create a configuration section for each LDAP server under
[[[ldap_servers]]] named for the respective LDAP server, with the format [[[[<ldap_server>]]]].

If you are using Cloudera Manager, you can add the configuration section using an Advanced Configuration Snippet:

1. Go to the Hue Service.
2. Click Configuration.
3. Select Category > Advanced.
4. Locate the Hue Service Advanced Configuration Snippet (Safety Valve) for hue_safety_valve.ini property and

add a code snippet for each LDAP server. For example, for the server AD1.TEST.COM:

[desktop]
[[ldap]]
[[[ldap_servers]]]
[[[[AD1.TEST.COM]]]]
ldap_url=ldap://w2k8-ad1
search_bind_authentication=true
create_users_on_login=true
base_dn="cn=users,dc=ad1,dc=test,dc=com"
bind_dn="cn=Administrator,cn=users,dc=ad1,dc=test,dc=com"
bind_password="Password1"
[[[[AD2.TEST.COM]]]]
ldap_url=ldap://w2k8-ad2
search_bind_authentication=true
create_users_on_login=true
base_dn="cn=users,dc=ad2,dc=test,dc=com"
bind_dn="cn=Administrator,cn=users,dc=ad2,dc=test,dc=com"
bind_password="Password1"

Cloudera Security | 155

Configuring Authentication

https://github.com/cloudera/hue/blob/branch-3.5/apps/useradmin/src/useradmin/management/commands/sync_ldap_users_and_groups.py
https://github.com/cloudera/hue/blob/branch-3.5/apps/useradmin/src/useradmin/management/commands/sync_ldap_users_and_groups.py

5. Click Save Changes.
6. Restart the Hue service.

LDAPS/StartTLS support

Secure communication with LDAP is provided using the TLS/SSL and StartTLS protocols. They allow Hue to validate the
directory service it is going to converse with. Hence, if a Certificate Authority certificate file is provided, Hue will
communicate using LDAPS. You can specify the path to the CA certificate under:

[desktop]
 [[ldap]]
 ldap_cert=/etc/hue/ca.crt

The StartTLS protocol can be used as well:

[desktop]
 [[ldap]]
 use_start_tls=true

Troubleshooting LDAP Authentication Failures in Hue

The first step to diagnosing an LDAP issue is to run the ldapsearch command on the user or group that is involved
in the authentication failure. The ldapsearch command gives you a snapshot of the state of the directory for a user
or group. You can use the command to make sure the user or group has been configured as expected. The rest of this
section will walk you through the Hue configuration required for some common deployment scenarios. Once you have
made sure that hue.iniwas configured properly, enable LDAP debugging to be able to audit LDAP actions in the Hue
logs.

Hue Configuration for Common Deployment Scenarios

The following sections contain samples from the Hue configuration file, hue.ini, for common deployment scenarios.
These are followed by the output of the ldapsearch command for a user or group in each scenario. Use these to
make sure your configuration matches what is expected.

Hue Authentication against Active Directory using NT Domain

[[ldap]]
ldap_url=ldap://w2k12-ad1
nt_domain=test.com
base_dn="cn=users,dc=test,dc=com"
bind_dn="Administrator@test.com"
bind_password="Password1"

[[[users]]]
user_name_attr=sAMAccountName
user_filter="objectclass=*"

[[[groups]]]
group_name_attr=cn
group_filter="objectclass=*"

ldapsearch result for the username, sampleuser:

ldapsearch -x -LLL -H ldap://w2k12-ad1 -D "Administrator@test.com" -w Password1 -b
"cn=users,dc=test,dc=com" "(&(objectclass=*)(sAMAccountName=sampleuser))"

dn: CN=Sample User,CN=Users,DC=TEST,DC=COM
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: user
cn: Sample User
sn: Sample
givenName: Sample
distinguishedName: CN=Sample User,CN=Users,DC=TEST,DC=COM

156 | Cloudera Security

Configuring Authentication

displayName: Sample User
uSNCreated: 12762
memberOf: CN=endusers,CN=Users,DC=TEST,DC=COM
memberOf: CN=admins,CN=Users,DC=TEST,DC=COM
memberOf: CN=Domain Admins,CN=Users,DC=TEST,DC=COM
name: Sample User
sAMAccountName: sampleuser
sAMAccountType: 805306368
userPrincipalName: sampleuser@TEST.COM
.......

ldapsearch result for the group, samplegroup:

ldapsearch -x -LLL -H ldap://w2k12-ad1 -D "Administrator@test.com" -w Password1 -b
"cn=users,dc=test,dc=com" "(&(objectclass=*)(cn=samplegroup))"
dn: CN=endusers,CN=Users,DC=TEST,DC=COM
objectClass: top
objectClass: group
cn: endusers
member: CN=Test User1,CN=Users,DC=TEST,DC=COM
member: CN=Sample User,CN=Users,DC=TEST,DC=COM
distinguishedName: CN=endusers,CN=Users,DC=TEST,DC=COM
sAMAccountName: endusers
sAMAccountType: 268435456
......

The following command returns a list of all member domains for group, samplegroup:

ldapsearch -x -LLL -H ldap://w2k12-ad1 -D "Administrator@test.com" -w Password1 -b
"cn=users,dc=test,dc=com" "(&(objectclass=*)(cn=samplegroup))" member

dn: CN=endusers,CN=Users,DC=TEST,DC=COM
member: CN=Test User1,CN=Users,DC=TEST,DC=COM
member: CN=Sample User,CN=Users,DC=TEST,DC=COM

Hue Search Bind Authentication against an LDAP server

Make sure you have configured the ldap_url property to perform Search Bind Authentication against an LDAP server.

[[ldap]]
ldap_url=ldap://ldap.test.com
base_dn="dc=test,dc=com"

The ldapsearch result for sampleuser:

ldapsearch -x -LLL -H ldap://ldap.test.com -b "dc=test,dc=com" "(uid=sampleuser)"

dn: uid=sampleuser,ou=people,dc=test,dc=com
uid: sampleuser
displayName: Sample User
cn: Sample User
givenName: Sample
sn: User
initials: CH
mail: sampleuser@test.com
homeDirectory: /home/sampleuser
loginShell: /bin/bash
gecos: Sample User,,,,
objectClass: inetOrgPerson

The ldapsearch result for group, samplegroup:

ldapsearch -x -LLL -H ldap://ldap.test.com -b "dc=test,dc=com" "(cn=samplegroup)"

dn: cn=admins,ou=people,dc=test,dc=com
objectClass: groupOfNames
cn: admins

Cloudera Security | 157

Configuring Authentication

description: Group of Names
member: uid=sampleuser,ou=people,dc=test,dc=com
member: uid=hue,ou=people,dc=test,dc=com

The following command returns a list of all member domains for group, samplegroup:

ldapsearch -x -LLL -H ldap://ldap.test.com -b "dc=test,dc=com" "(cn=samplegroup)" member

dn: cn=admins,ou=people,dc=test,dc=com
member: uid=sampleuser,ou=people,dc=test,dc=com
member: uid=hue,ou=people,dc=test,dc=com

Enabling LDAP Debugging in Hue

Once you have confirmed that the ldapsearch command works as expected, enable LDAP debugging in Hue to view
Hue server logs in Cloudera Manager. Starting with CDH 5.4, you can view three different levels of LDAP actions in the
Hue server logs. To enable debugging, set the following options in the [[ldap]] section of the hue.ini file:

• debug - This enables python-ldap debugging. To enable, set to true.
• debug_level - Sets the debug level of the underlying LDAP C library. Set to a value between 0 and 255.
• trace_level - Sets the trace level for logging method calls. Set to a value between 0 and 9.

Enabling LDAP Debugging in Hue Using Cloudera Manager

1. Go to the Hue Service > Configuration and click Advanced in the Category.
2. Add the following after setting the values appropriately to the Hue Service Advanced Configuration Snippet

(Safety Valve) for hue_safety_valve.ini

[desktop]
[[ldap]]
debug=true
debug_level=255
trace_level=9

3. Add the following to the Hue Service Environment Advanced Configuration Snippet (Safety Valve).

DESKTOP_DEBUG=true
DEBUG=true

4. Save and restart Hue. You should now be able to view LDAP actions in the following logs:

• /var/log/hue/runcpserver.log

• /var/run/cloudera-scm-agent/process/<id>-hue-HUE_SERVER/logs

Configuring Hue for SAML

This page explains how to configure Hue to work with SAML (Security Assertion Markup Language) for Single Sign-on
(SSO) authentication. The SAML 2.0 Web Browser SSO profile has three components:

• User Agent - Browser that represents you, the user, seeking resources.
• Service Provider (SP) - Service (Hue) that sends authentication requests to SAML.
• Identity Provider (IdP) - SAML service that authenticates users.

When a user requests access to an application, Hue sends an authentication request from the browser to the Identity
Provider. The Identity Provider authenticates the user, sends a response, and redirects the browser back to Hue. You
can use any Identity Provider (such as Shibboleth) .

Note: This page addresses both managed and unmanaged deployments. Currently, Hue is the only
service that can be configured with Cloudera Manager.

158 | Cloudera Security

Configuring Authentication

http://cxf.apache.org/docs/saml-web-sso.html
http://shibboleth.net

Summary Steps for Configuring Hue with SAML

Prerequisite: Ensure you have an Identify Provider (such as Shibboleth) configured before starting.

Install Libraries

• Step 1: Install git, gcc, python-devel, swig and openssl.
• Step 2: Install xmlsec1 and xmlsec1-openssl and disable cipher algorithms.
• Step 3: Install djangosaml and pysaml2.

Configure Hue

• Step 4: Copy metadata from your Identity Provider's SAML server and save it in an XML file.
• Step 5: Configure Hue to work with SAML (in hue.ini) and restart the Hue server.

Configure SAML

• Step 6: Copy metadata from the Hue server and send it to the Identity Provider.

Detailed Steps for Configuring Hue with SAML
Prerequisite

The instructions on this page assume that you have an Identity Provider set up and running.

See the upstream Hue blog post, SSO with Hue: new SAML backend, for a demo on configuring Hue for single sign-on
(SSO) authentication with SAML 2.0 on the backend and Shibboleth as the Identity Provider.

Step 1: Install swig and openssl packages

1. Install git, gcc, python-devel, swig and openssl. Use yum for RHEL/CentOS/OLES and zypper for SLES:

<package manager> install git gcc python-devel swig openssl

2. [CDH 5.5.x and higher] Disable the cipher algorithms, MD5, RC4, and DH by appending the following code to the
file, /usr/java/<your_jdk_version>-cloudera/jre/lib/security/java.security:

jdk.tls.disabledAlgorithms=MD5, RC4, DH

See Troubleshooting on page 163 below.

Step 2: Install xmlsec1 and xmlsec1-openssl packages

Important: Ensure that the xmlsec1 package is executable by the user, hue.

Red Hat Enterprise Linux (RHEL, CentOS) and Oracle oraLinux (OL):

1. Download and install the EPEL repository to get the xmlsec1 package:

• RHEL/CentOs/OEL 7:

wget http://dl.fedoraproject.org/pub/epel/7/x86_64/e/epel-release-7-6.noarch.rpm
rpm -ivh epel-release-7-6.noarch.rpm

• RHEL/CentOs/OEL 6:

wget http://download.fedoraproject.org/pub/epel/6/x86_64/epel-release-6-8.noarch.rpm
rpm -ivh epel-release-6-8.noarch.rpm

• RHEL/CentOs/OEL 5:

wget http://download.fedoraproject.org/pub/epel/5/x86_64/epel-release-5-4.noarch.rpm
rpm -ivh epel-release-5-4.noarch.rpm

Cloudera Security | 159

Configuring Authentication

http://shibboleth.net/products/identity-provider.html
http://gethue.com/sso-with-hue-new-saml-backend/
http://shibboleth.net/products/

2. Install xmlsec1 and xmlsec1-openssl:

yum install xmlsec1 xmlsec1-openssl

SUSE Linux Enterprise Server (SLES):

Download the xmlsec1 package from http://www.aleksey.com/xmlsec/ and install:

wget http://www.aleksey.com/xmlsec/download/xmlsec1-<version>.tar.gz
tar -xvzf xmlsec1-<version>.tar.gz
cd xmlsec1-<version>
./configure && make
sudo make install

Step 3: Install djangosaml and pysaml2 libraries

Important: CDH 5.4.x and higher include the djangosaml and pysaml2 libraries. Do not install.

The libraries, djangosaml2 and pysaml2, support SAML in Hue. They depend on the xmlsec1 package to be installed
and executable by the user, hue.

build/env/bin/pip install -e git+https://github.com/abec/pysaml2@HEAD#egg=pysaml2
build/env/bin/pip install -e git+https://github.com/abec/djangosaml2@HEAD#egg=djangosaml2

Step 4: Copy Metadata from the SAML Server into an XML File

The Service Provider (Hue) and the Identity Provider (SAML) use a metadata file to confirm each other's veracity. Hue
stores metadata from the SAML server, and SAML stores metadata from Hue server (see Step 6: Configure SAML on
page 163).

Read the documentation of your Identity Provider for details on how to procure the XMLmetadata of the SAML server.
Paste the metadata into an XML file. When configuring Hue, set the property, metadata_file, to the path of this
file.

For example, if your Identity Provider is Shibboleth, visit
https://<identity_provider_host>:8443/idp/shibboleth, copy the metadata content, and paste it into
the Hue metadata file.

Note: You may have to edit the metadata you copy from your Identity Provider. For example, the
Identity Provider's port number (8443) might be missing from its URL.

Step 5: Configure Hue and Restart the Hue Server

To enable support for SAML, configure Hue with the necessary SAML parameters and values.

Users with unmanaged CDH deployments must manually edit /etc/hue/conf/hue.ini and restart the hue service:

sudo service hue restart

Users with managed CDH deployments must set these parameters in Cloudera Manager:

1. Go to the Hue service and click on the Configuration tab.
2. Filter by Scope > HUE-n (Service-Wide) and Category > Advanced.
3. Locate the property, Hue Service Advanced Configuration Snippet (Safety Valve) for hue_safety_valve.ini.
4. Input your SAML properties and values in the edit box. See the SAML configuration example below.
5. Click Save Changes.
6. Select Actions > Restart to restart the Hue service (which also restarts the Hue server).

160 | Cloudera Security

Configuring Authentication

https://www.aleksey.com/xmlsec/download.html
https://en.wikipedia.org/wiki/SAML_2.0#SAML_2.0_Metadata

Note: Hue logicallymerges the Hue Service and Hue Server snippets in Cloudera Manager with
hue.ini. Hue does not actually write them to hue.ini.

Example of a SAML configuration in hue.ini:

[desktop]
redirect_whitelist="^\/.*$,^https:\/\/saml.example.com\/.*$"
[[auth]]
backend=libsaml.backend.SAML2Backend

[libsaml]
xmlsec_binary=/usr/bin/xmlsec1
metadata_file=/opt/cloudera/security/saml/idp-metadata.xml
key_file=/opt/cloudera/security/saml/idp.key
cert_file=/opt/cloudera/security/saml/idp.crt
username_source=nameid
name_id_format="urn:oasis:names:tc:SAML:2.0:nameid-format:unspecified"
entity_id=hueserver1
#user_attribute_mapping='{"mail":"username","uid":"uid"}'
#required_attributes='["uid", "mail"]'
#base_url=https://hue.example.com:8888
#authn_requests_signed=true
#logout_enabled=true
#logout_requests_signed=true

Table 5: SAML parameters in /etc/hue/conf/hue.ini under the sections, [desktop] and [libsaml]

DescriptionSAML Parameter

Boolean, that when True, signs Hue-initiated authentication requests with an X.
509 certificate.

authn_requests_signed

Hard-coded value set to the SAML backend library packaged with Hue
(libsaml.backend.SAML2Backend).

backend

URL that the SAML Identity Provider uses for responses. Typically used in Load
balanced Hue environments.

base_url

Path to the X.509 certificate to be sent along with the encrypted metadata. File
format must be .PEM.

cert_file

Boolean, that when True, creates users from OpenId, upon successful login.create_users_on_login

Service provider ID. Can also accept a pattern where '<base_url>' is replaced with
the server URL base.

entity_id

Path to the private key used to encrypt the metadata. File format must be .PEM.key_file

Password used to decrypt the X.509 certificate in memory.key_file_password

Boolean, that when True, enables single logout.logout_enabled

Boolean, that when True, signs Hue-initiated logout requests with an X.509
certificate.

logout_requests_signed

Path to the readable metadata XML file that you copy from Identity Provider.metadata_file

The format of the NameID that Hue requests from the SAML server.name_id_format

Comma-separated list of optional attributes that Hue requests from the Identity
Provider.

optional_attributes

Comma-separated list of attributes that Hue requests from the Identity Provider.
For example, uid and email.

required_attributes

Cloudera Security | 161

Configuring Authentication

DescriptionSAML Parameter

Fully qualified domain name of the SAML server:
"^\/.*$,^https:\/\/<SAML_server_FQDN>\/.*$".

redirect_whitelist

Map of Identity Provider attributes to Hue django user attributes. For example,
{'uid':'username', 'email':'email'}.

user_attribute_mapping

Determines if username should be deremined from nameid or attributes.username_source

Path to the xmlsec_binary, an executable to sign, verify, encrypt, and decrypt
SAML requests and assertions. It must be executable by the user, hue.

xmlsec_binary

• redirect_whitelist:

Hue uses the property, redirect_whitelist, to protect itself from redirecting to unapproved URLs.

Set the parameter, redirect_whitelist, in the [desktop] section of hue.ini, to the fully qualified domain
name of the SAML server so that Hue can redirect to the SAML server for authentication.

redirect_whitelist=^\/.$,^https:\/\/<SAML_server_fully_qualified_domain_name>\/.$

• backend

Point the property, backend, to the SAML backend (packaged with Hue). The backend property is in hue.ini
under [desktop] > [[auth]] and should be configured as follows:

backend=libsaml.backend.SAML2Backend

• xmlsec_binary

Find the path to the XML Security (xmlsec) library that you installed in Step 2:

which xmlsec1

Point the parameter, xmlsec_binary, to the xmlsec1 path:

xmlsec_binary=/usr/bin/xmlsec1

• metadata_file

In Step 3, you created an XML file with metadata from your Identity Provider. Point the parameter, metadata_file,
to the path of that file:

metadata_file=/path/to/<your_idp_metadata_file>.xml

• key_file and cert_file

To enable communication between Hue and the Identity Provider, you need a private key and certificate. The
private key signs requests sent to the Identity Provider and the certificate file encrypts and decrypts messages
from the Identity Provider.

Copy these files from the Identity Provider and set key_file and cert_file to their respective paths. Both files
are in PEM format and must be named with the .PEM extension.

Note: The key and certificate files specified by the key_file and cert_file parameters in
hue.inimust be .PEM files.

Users with password-protected certificates can set the property, key_file_password in hue.ini. Hue uses
the password to decrypt the SAML certificate in memory and passes it to xmlsec1 through a named pipe. The
decrypted certificate never touches the disk. This only works for POSIX-compatible platforms.

162 | Cloudera Security

Configuring Authentication

Step 6: Configure SAML

After Hue is configured and restarted, copy themetadata generated by Hue server and send it to your Identity Provider
so they can configure the SAML server.

1. Ensure Hue is configured, restarted, and running.
2. Go to http://<hue_fqdn>:8888/saml2/metadata.
3. Copy the metadata and send it to your Identity Provider.
4. Ensure that your Identity Provider configures the SAML server with the Hue metadata (just as you configured the

Hue server with SAML metadata).

Troubleshooting

To enable DEBUGmessages for all the logs in the directory, /var/log/hue, choose one of these methods:

• In the Hue Web UI, go to the Home page, select Server Logs, and check the box by Force Debug Level. Debug is
enabled on-the-fly.

• In Cloudera Manager, go to Hue > Configuration, search for and set Enable Django Debug Mode, click Save
Changes, and Restart the Hue service.

• At the command line, open/etc/hue/conf/hue.ini, scroll to[desktop], and setdjango_debug_mode=true.
Restart the Hue service:

sudo service hue restart

SAML SSL Error

OpenSSL might fail in CDH 5.5.x and higher with this message:

SSLError: [Errno bad handshake] [('SSL routines', 'SSL3_CHECK_CERT_AND_ALGORITHM', 'dh
 key too small')]

To resolve, append the following code to the file,
/usr/java/<your_jdk_version>-cloudera/jre/lib/security/java.security:

jdk.tls.disabledAlgorithms=MD5, RC4, DH

SAML Decrypt Error

The following error is an indication that you are using a slightly different SAML protocol from what Hue expects:

Error: ('failed to decrypt', -1)

To resolve:

1. Download and rename Python script, fix-xmlsec1.txt.

wget http://www.cloudera.com/documentation/other/shared/fix-xmlsec1.txt -O fix-xmlsec1.py

2. Change permissions as appropriate, for example:

chmod 755 fix-xmlsec1.py

3. In hue.ini, set xmlsec_binary=<path_to_script>/fix-xmlsec1.py.
4. Run fix-xmlsec1.py.

This script repairs the known issue whereby xmlsec1 is not compiled with RetrievalMethod and cannot find the
location of the encrypted key. SAML2 responseswould sometimes placeEncryptedKeyoutside of theEncryptedData
tree. This script moves EncryptedKey under EncryptedData.

Cloudera Security | 163

Configuring Authentication

http://tiny.cloudera.com/fix-xmlsec1

Impala Authentication
Authentication is the mechanism to ensure that only specified hosts and users can connect to Impala. It also verifies
that when clients connect to Impala, they are connected to a legitimate server. This feature prevents spoofing such as
impersonation (setting up a phony client system with the same account and group names as a legitimate user) and
man-in-the-middle attacks (intercepting application requests before they reach Impala and eavesdropping on sensitive
information in the requests or the results).

Impala supports authentication using either Kerberos or LDAP.

Note: Regardless of the authenticationmechanism used, Impala always creates HDFS directories and
data files owned by the same user (typically impala). To implement user-level access to different
databases, tables, columns, partitions, and so on, use the Sentry authorization feature, as explained
in Enabling Sentry Authorization for Impala on page 453.

Once you are finished setting up authentication, move on to authorization, which involves specifying what databases,
tables, HDFS directories, and so on can be accessed by particular userswhen they connect through Impala. See Enabling
Sentry Authorization for Impala on page 453 for details.

Enabling Kerberos Authentication for Impala

Impala supports Kerberos authentication. For more information on enabling Kerberos authentication, see the topic
on Configuring Hadoop Security in the CDH 5 Security Guide.

When using Impala in a managed environment, Cloudera Manager automatically completes Kerberos configuration.
In an unmanaged environment, create a Kerberos principal for each host running impalad or statestored. Cloudera
recommends using a consistent format, such as impala/_HOST@Your-Realm, but you can use any three-part Kerberos
server principal.

In Impala 2.0 and later, user() returns the full Kerberos principal string, such as user@example.com, in a Kerberized
environment.

Note: Regardless of the authenticationmechanism used, Impala always creates HDFS directories and
data files owned by the same user (typically impala). To implement user-level access to different
databases, tables, columns, partitions, and so on, use the Sentry authorization feature, as explained
in Enabling Sentry Authorization for Impala on page 453.

An alternative form of authentication you can use is LDAP, described in Enabling LDAP Authentication for Impala on
page 167.

Requirements for Using Impala with Kerberos

On version 5 of Red Hat Enterprise Linux and comparable distributions, some additional setup is needed for the
impala-shell interpreter to connect to a Kerberos-enabled Impala cluster:

sudo yum install python-devel openssl-devel python-pip
sudo pip-python install ssl

164 | Cloudera Security

Configuring Authentication

http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_sg_cdh5_hadoop_security.html

Important:

• If you plan to use Impala in your cluster, you must configure your KDC to allow tickets to be
renewed, and you must configure krb5.conf to request renewable tickets. Typically, you can
do this by adding the max_renewable_life setting to your realm in kdc.conf, and by adding
the renew_lifetime parameter to the libdefaults section of krb5.conf.

For more information about renewable tickets, see the Kerberos documentation.

• The Impala Web UI does not support Kerberos authentication.

• You cannot use the Impala resource management feature on a cluster that has Kerberos
authentication enabled.

Start all impalad and statestored daemons with the --principal and --keytab-file flags set to the principal
and full path name of the keytab file containing the credentials for the principal.

Impala supports the Cloudera ODBC driver and the Kerberos interface provided. To use Kerberos through the ODBC
driver, the host type must be set depending on the level of the ODBD driver:

• SecImpala for the ODBC 1.0 driver.
• SecBeeswax for the ODBC 1.2 driver.
• Blank for the ODBC 2.0 driver or higher, when connecting to a secure cluster.
• HS2NoSasl for the ODBC 2.0 driver or higher, when connecting to a non-secure cluster.

To enable Kerberos in the Impala shell, start the impala-shell command using the -k flag.

To enable Impala to work with Kerberos security on your Hadoop cluster, make sure you perform the installation and
configuration steps in Authentication in the CDH 5 Security Guide.

Configuring Impala to Support Kerberos Security

Enabling Kerberos authentication for Impala involves steps that can be summarized as follows:

• Creating service principals for Impala and the HTTP service. Principal names take the form:
serviceName/fully.qualified.domain.name@KERBEROS.REALM

• Creating, merging, and distributing key tab files for these principals.
• Editing /etc/default/impala (in cluster not managed by Cloudera Manager), or editing the Security settings

in the Cloudera Manager interface, to accommodate Kerberos authentication.

Enabling Kerberos for Impala

1. Create an Impala service principal, specifying the name of the OS user that the Impala daemons run under, the
fully qualified domain name of each node running impalad, and the realm name. For example:

$ kadmin
kadmin: addprinc -requires_preauth -randkey
impala/impala_host.example.com@TEST.EXAMPLE.COM

2. Create an HTTP service principal. For example:

kadmin: addprinc -randkey HTTP/impala_host.example.com@TEST.EXAMPLE.COM

Note: TheHTTP component of the service principalmust be uppercase as shown in the preceding
example.

Cloudera Security | 165

Configuring Authentication

http://web.mit.edu/Kerberos/krb5-1.8/
http://www.cloudera.com/documentation/enterprise/latest/topics/sg_authentication.html

3. Create keytab files with both principals. For example:

kadmin: xst -k impala.keytab impala/impala_host.example.com
kadmin: xst -k http.keytab HTTP/impala_host.example.com
kadmin: quit

4. Use ktutil to read the contents of the two keytab files and then write those contents to a new file. For example:

$ ktutil
ktutil: rkt impala.keytab
ktutil: rkt http.keytab
ktutil: wkt impala-http.keytab
ktutil: quit

5. (Optional) Test that credentials in the merged keytab file are valid, and that the “renew until” date is in the future.
For example:

$ klist -e -k -t impala-http.keytab

6. Copy the impala-http.keytab file to the Impala configuration directory. Change the permissions to be only
read for the file owner and change the file owner to the impala user. By default, the Impala user and group are
both named impala. For example:

$ cp impala-http.keytab /etc/impala/conf
$ cd /etc/impala/conf
$ chmod 400 impala-http.keytab
$ chown impala:impala impala-http.keytab

7. Add Kerberos options to the Impala defaults file, /etc/default/impala. Add the options for both the impalad
and statestored daemons, using the IMPALA_SERVER_ARGS and IMPALA_STATE_STORE_ARGS variables. For
example, you might add:

-kerberos_reinit_interval=60
-principal=impala_1/impala_host.example.com@TEST.EXAMPLE.COM
-keytab_file=/var/run/cloudera-scm-agent/process/3212-impala-IMPALAD/impala.keytab

Formore information on changing the Impala defaults specified in /etc/default/impala, seeModifying Impala
Startup Options.

Note: Restart impalad and statestored for these configuration changes to take effect.

Enabling Kerberos for Impala with a Proxy Server

A common configuration for Impala with High Availability is to use a proxy server to submit requests to the actual
impalad daemons on different hosts in the cluster. This configuration avoids connection problems in case of machine
failure, because the proxy server can route new requests through one of the remaining hosts in the cluster. This
configuration also helps with load balancing, because the additional overhead of being the “coordinator node” for
each query is spread across multiple hosts.

Although you can set up a proxy serverwith orwithout Kerberos authentication, typically users set up a secure Kerberized
configuration. For information about setting up a proxy server for Impala, including Kerberos-specific steps, see Using
Impala through a Proxy for High Availability.

Enabling Impala Delegation for Kerberos Users

See Configuring Impala Delegation for Hue and BI Tools on page 170 for details about the delegation feature that lets
certain users submit queries using the credentials of other users.

166 | Cloudera Security

Configuring Authentication

Using TLS/SSL with Business Intelligence Tools

You can use Kerberos authentication, TLS/SSL encryption, or both to secure connections from JDBCandODBCapplications
to Impala. See Configuring Impala to Work with JDBC and Configuring Impala to Work with ODBC for details.

Prior to CDH 5.7 / Impala 2.5, the Hive JDBC driver did not support connections that use both Kerberos authentication
and SSL encryption. If your cluster is running an older release that has this restriction, to use both of these security
features with Impala through a JDBC application, use the Cloudera JDBC Connector as the JDBC driver.

Enabling Access to Internal Impala APIs for Kerberos Users

For applications that need direct access to Impala APIs, without going through the HiveServer2 or Beeswax interfaces,
you can specify a list of Kerberos users who are allowed to call those APIs. By default, the impala and hdfs users are
the only ones authorized for this kind of access. Any users not explicitly authorized through the
internal_principals_whitelist configuration setting are blocked from accessing the APIs. This setting applies
to all the Impala-related daemons, although currently it is primarily used for HDFS to control the behavior of the catalog
server.

Mapping Kerberos Principals to Short Names for Impala

In CDH 5.8 / Impala 2.6 and higher, Impala recognizes the auth_to_local setting, specified through the HDFS
configuration setting hadoop.security.auth_to_local or the ClouderaManager settingAdditional Rules toMap
Kerberos Principals to ShortNames. This feature is disabled by default, to avoid an unexpected change in security-related
behavior. To enable it:

• For clusters notmanaged by ClouderaManager, specify --load_auth_to_local_rules=true in the impalad
and catalogdconfiguration settings.

• For clustersmanaged by ClouderaManager, select theUseHDFSRules toMapKerberos Principals to ShortNames
checkbox to enable the service-wideload_auth_to_local_rules configuration setting. Then restart the Impala
service.

See Using Auth-to-Local Rules to Isolate Cluster Users for general information about this feature.

Enabling LDAP Authentication for Impala

Authentication is the process of allowing only specified named users to access the server (in this case, the Impala
server). This feature is crucial for any production deployment, to prevent misuse, tampering, or excessive load on the
server. Impala uses LDAP for authentication, verifying the credentials of each userwho connects throughimpala-shell,
Hue, a Business Intelligence tool, JDBC or ODBC application, and so on.

Note: Regardless of the authenticationmechanism used, Impala always creates HDFS directories and
data files owned by the same user (typically impala). To implement user-level access to different
databases, tables, columns, partitions, and so on, use the Sentry authorization feature, as explained
in Enabling Sentry Authorization for Impala on page 453.

An alternative formof authentication you can use is Kerberos, described in Enabling Kerberos Authentication for Impala
on page 164.

Requirements for Using Impala with LDAP

Authentication against LDAP servers is available in Impala 1.2.2 and higher. Impala 1.4.0 adds support for secure LDAP
authentication through SSL and TLS.

The Impala LDAP support lets you use Impala with systems such as Active Directory that use LDAP behind the scenes.

Kerberos Authentication for Connections Between Impala Components

Only client->Impala connections can be authenticated by LDAP.

Cloudera Security | 167

Configuring Authentication

http://www.cloudera.com/content/www/en-us/downloads.html.html
http://www.cloudera.com/documentation/enterprise/latest/topics/sg_auth_to_local_isolate.html

You must use the Kerberos authentication mechanism for connections between internal Impala components, such as
between the impalad, statestored, and catalogd daemons. See Enabling Kerberos Authentication for Impala on
page 164 on how to set up Kerberos for Impala.

Server-Side LDAP Setup

These requirements apply on the server side when configuring and starting Impala:

To enable LDAP authentication, set the following startup options for impalad:

• --enable_ldap_auth enables LDAP-based authentication between the client and Impala.
• --ldap_uri sets the URI of the LDAP server to use. Typically, the URI is prefixed with ldap://. In Impala 1.4.0

and higher, you can specify secure SSL-based LDAP transport by using the prefix ldaps://. The URI can optionally
specify the port, for example: ldap://ldap_server.cloudera.com:389 or
ldaps://ldap_server.cloudera.com:636. (389 and 636 are the default ports for non-SSL and SSL LDAP
connections, respectively.)

• For ldaps:// connections secured by SSL, --ldap_ca_certificate="/path/to/certificate/pem"
specifies the location of the certificate in standard .PEM format. Store this certificate on the local filesystem, in a
location that only the impala user and other trusted users can read.

Support for Custom Bind Strings

When Impala connects to LDAP it issues a bind call to the LDAP server to authenticate as the connected user. Impala
clients, including the Impala shell, provide the short name of the user to Impala. This is necessary so that Impala can
use Sentry for role-based access, which uses short names.

However, LDAP servers often require more complex, structured usernames for authentication. Impala supports three
ways of transforming the short name (for example, 'henry') to a more complicated string. If necessary, specify one
of the following configuration options when starting the impalad daemon on each DataNode:

• --ldap_domain: Replaces the username with a string username@ldap_domain.
• --ldap_baseDN: Replaces the username with a “distinguished name” (DN) of the form:

uid=userid,ldap_baseDN. (This is equivalent to a Hive option).
• --ldap_bind_pattern: This is the most general option, and replaces the username with the string

ldap_bind_pattern where all instances of the string #UID are replaced with userid. For example, an
ldap_bind_pattern of "user=#UID,OU=foo,CN=bar"with a username of henrywill construct a bind name
of "user=henry,OU=foo,CN=bar".

For clusters notmanaged by ClouderaManager, specify the option on theimpalad command line. For clustersmanaged
by Cloudera Manager 5.4.0 and higher, search for the configuration field names ldap_domain, ldap_basedn, or
ldap_bind_pattern, fill in and save the appropriate field values, and restart the Impala service. Prior to Cloudera
Manager 5.4.0, these valueswere filled in using the Impala DaemonCommand LineArgument Advanced Configuration
Snippet (Safety Valve) field.

These options are mutually exclusive; Impala does not start if more than one of these options is specified.

Secure LDAP Connections

To avoid sending credentials over the wire in cleartext, you must configure a secure connection between both the
client and Impala, and between Impala and the LDAP server. The secure connection could use SSL or TLS.

Secure LDAP connections through SSL:

For SSL-enabled LDAP connections, specify a prefix of ldaps:// instead of ldap://. Also, the default port for
SSL-enabled LDAP connections is 636 instead of 389.

Secure LDAP connections through TLS:

TLS, the successor to the SSL protocol, is supported by most modern LDAP servers. Unlike SSL connections, TLS
connections can be made on the same server port as non-TLS connections. To secure all connections using TLS, specify
the following flags as startup options to the impalad daemon:

168 | Cloudera Security

Configuring Authentication

http://en.wikipedia.org/wiki/Transport_Layer_Security

• --ldap_tls tells Impala to start a TLS connection to the LDAP server, and to fail authentication if it cannot be
done.

• --ldap_ca_certificate="/path/to/certificate/pem" specifies the location of the certificate in standard
.PEM format. Store this certificate on the local filesystem, in a location that only the impala user and other trusted
users can read.

LDAP Authentication for impala-shell Interpreter

To connect to Impala using LDAP authentication, you specify command-line options to the impala-shell command
interpreter and enter the password when prompted:

• -l enables LDAP authentication.
• -u sets the user. Per Active Directory, the user is the short username, not the full LDAP distinguished name. If

your LDAP settings include a search base, use the --ldap_bind_pattern on the impalad daemon to translate
the short user name from impala-shell automatically to the fully qualified name.

• impala-shell automatically prompts for the password.

For the full list of available impala-shell options, see impala-shell Configuration Options.

LDAP authentication for JDBC applications: See Configuring Impala to Work with JDBC for the format to use with the
JDBC connection string for servers using LDAP authentication.

Enabling LDAP for Impala in Hue

Enabling LDAP for Impala in Hue Using Cloudera Manager

1. Go to the Hue service.
2. Click the Configuration tab.
3. Select Scope > Hue Server.
4. Select Category > Advanced.
5. Add the following properties to the Hue Server Advanced Configuration Snippet (Safety Valve) for

hue_safety_valve_server.ini property.

[impala]
auth_username=<LDAP username of Hue user to be authenticated>
auth_password=<LDAP password of Hue user to be authenticated>

6. Click Save Changes.

Enabling LDAP for Impala in Hue Using the Command Line

LDAP authentication for the Impala app in Hue can be enabled by setting the following properties under the [impala]
section in hue.ini.

LDAP username of Hue user to be authenticated.auth_username

LDAP password of Hue user to be authenticated.auth_password

These login details are only used by Impala to authenticate to LDAP. The Impala service trusts Hue to have already
validated the user being impersonated, rather than simply passing on the credentials.

Enabling Impala Delegation for LDAP Users

See Configuring Impala Delegation for Hue and BI Tools on page 170 for details about the delegation feature that lets
certain users submit queries using the credentials of other users.

LDAP Restrictions for Impala

The LDAP support is preliminary. It currently has only been tested against Active Directory.

Cloudera Security | 169

Configuring Authentication

Using Multiple Authentication Methods with Impala

Impala 2.0 and later automatically handles both Kerberos and LDAP authentication. Each impalad daemon can accept
both Kerberos and LDAP requests through the same port. No special actions need to be taken if some users authenticate
through Kerberos and some through LDAP.

Prior to Impala 2.0, you had to configure each impalad to listen on a specific port depending on the kind of
authentication, then configure your network load balancer to forward each kind of request to a DataNode that was
set up with the appropriate authentication type. Once the initial request was made using either Kerberos or LDAP
authentication, Impala automatically handled theprocess of coordinating thework acrossmultiple nodes and transmitting
intermediate results back to the coordinator node.

Configuring Impala Delegation for Hue and BI Tools

When users submit Impala queries through a separate application, such as Hue or a business intelligence tool, typically
all requests are treated as coming from the same user. In Impala 1.2 and higher,,Impala supports applications to pass
along credentials for the users that connect to them, known as “delegation”, and to issue Impala queries with the
privileges for those users. Currently, the delegation feature is available only for Impala queries submitted through
application interfaces such as Hue and BI tools; for example, Impala cannot issue queries using the privileges of the
HDFS user.

The delegation feature is enabled by a startup option for impalad: --authorized_proxy_user_config. When
you specify this option, users whose names you specify (such as hue) can delegate the execution of a query to another
user. The query runs with the privileges of the delegated user, not the original user such as hue. The name of the
delegated user is passed using the HiveServer2 configuration property impala.doas.user.

You can specify a list of users that the application user can delegate to, or * to allow a superuser to delegate to any
other user. For example:

impalad --authorized_proxy_user_config 'hue=user1,user2;admin=*' ...

Note: Make sure to use single quotes or escape characters to ensure that any * characters do not
undergo wildcard expansion when specified in command-line arguments.

SeeModifying Impala StartupOptions for details about adding or changing impalad startup options. See this Cloudera
blog post for background information about the delegation capability in HiveServer2.

To set up authentication for the delegated users:

• On the server side, configure either user/password authentication through LDAP, or Kerberos authentication, for
all the delegatedusers. See Enabling LDAPAuthentication for Impala onpage167or Enabling KerberosAuthentication
for Impala on page 164 for details.

• On the client side, follow the instructions in the “Using User Name and Password” section in the ODBC driver
installation guide. Then search for “delegation” in that same installation guide to learn about the Delegation UID
field and DelegationUID configuration keyword to enable the delegation feature for ODBC-based BI tools.

Enabling Delegation in Cloudera Manager

To enable delegation in Cloudera Manager:

1. Navigate to Clusters > Impala > Configuration > Policy File-Based Sentry.
2. In the Proxy User Configuration field, type the a semicolon-separated list of key=value pairs of authorized proxy

users to the user(s) they can impersonate. The list of delegated users are delimited with a comma, e.g. hue=user1,
user2.

3. Click Save Changes and then restart Impala service.

170 | Cloudera Security

Configuring Authentication

http://blog.cloudera.com/blog/2013/07/how-hiveserver2-brings-security-and-concurrency-to-apache-hive/
http://blog.cloudera.com/blog/2013/07/how-hiveserver2-brings-security-and-concurrency-to-apache-hive/
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Connectors/PDF/Cloudera-ODBC-Driver-for-Impala-Install-Guide.pdf
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Connectors/PDF/Cloudera-ODBC-Driver-for-Impala-Install-Guide.pdf

Llama Authentication

Note:

The use of the Llama component for integrated resource management within YARN is no longer
supported with CDH 5.5 / Impala 2.3 and higher.

For clusters running Impala alongside other data management components, you define static service
pools to define the resources available to Impala and other components. Thenwithin the area allocated
for Impala, you can create dynamic service pools, each with its own settings for the Impala admission
control feature.

This section describes how to configure Llama in CDH 5 with Kerberos security in a Hadoop cluster.

Note: Llama has been tested only in a Cloudera Manager deployment. For information on using
Cloudera Manager to configure Llama and Impala, see Installing Impala.

Configuring Llama to Support Kerberos Security

1. Create a Llama service user principal using the syntax:llama/fully.qualified.domain.name@YOUR-REALM.
This principal is used to authenticate with the Hadoop cluster, where fully.qualified.domain.name is the host
where Llama is running and YOUR-REALM is the name of your Kerberos realm:

$ kadmin
kadmin: addprinc -randkey
llama/fully.qualified.domain.name@YOUR-REALM

2. Create a keytab file with the Llama principal:

$ kadmin
kadmin: xst -k llama.keytab llama/fully.qualified.domain.name

3. Test that the credentials in the keytab file work. For example:

$ klist -e -k -t llama.keytab

4. Copy the llama.keytab file to the Llama configuration directory. The owner of the llama.keytab file should
be the llama user and the file should have owner-only read permissions.

5. Edit the Llama llama-site.xml configuration file in the Llama configuration directory by setting the following
properties:

ValueProperty

truellama.am.server.thrift.security

llama/conf.keytabllama.am.server.thrift.kerberos.keytab.file

llama/fully.qualified.domain.namellama.am.server.thrift.kerberos.server.principal.name

impalallama.am.server.thrift.kerberos.notification.principal.name

6. Restart Llama to make the configuration changes take effect.

Oozie Authentication
This section describes how to configure Oozie CDH 5 with Kerberos security on a Hadoop cluster:

Cloudera Security | 171

Configuring Authentication

• Configuring Kerberos Authentication for the Oozie Server on page 172
• Configuring Oozie HA with Kerberos on page 173

Important:

To enable Oozie to work with Kerberos security on your Hadoop cluster, make sure you perform the
installation and configuration steps in Configuring Hadoop Security in CDH 5. Also note that when
Kerberos security is enabled in Oozie, a web browser that supports Kerberos HTTP SPNEGO is required
to access the Oozie web-console (for example, Firefox, Internet Explorer or Chrome).

Important:

If the NameNode, Secondary NameNode, DataNode, JobTracker, TaskTrackers, ResourceManager,
NodeManagers, HttpFS, or Oozie services are configured to use Kerberos HTTP SPNEGOauthentication,
and two or more of these services are running on the same host, then all of the running services must
use the same HTTP principal and keytab file used for their HTTP endpoints.

Configuring Kerberos Authentication for the Oozie Server

1. Create a Oozie service user principal using the syntax:
oozie/<fully.qualified.domain.name>@<YOUR-REALM>. This principal is used to authenticate with the
Hadoop cluster. where: fully.qualified.domain.name is the host where the Oozie server is running
YOUR-REALM is the name of your Kerberos realm.

kadmin: addprinc -randkey oozie/fully.qualified.domain.name@YOUR-REALM.COM

2. Create aHTTP serviceuser principal using the syntax:HTTP/<fully.qualified.domain.name>@<YOUR-REALM>.
This principal is used to authenticate user requests coming to the Oozie web-services. where:
fully.qualified.domain.name is the host where the Oozie server is running YOUR-REALM is the name of
your Kerberos realm.

kadmin: addprinc -randkey HTTP/fully.qualified.domain.name@YOUR-REALM.COM

Important:

The HTTP/ component of the HTTP service user principal must be upper case as shown in the
syntax and example above.

3. Create keytab files with both principals.

$ kadmin
kadmin: xst -k oozie.keytab oozie/fully.qualified.domain.name
kadmin: xst -k http.keytab HTTP/fully.qualified.domain.name

4. Merge the two keytab files into a single keytab file:

$ ktutil
ktutil: rkt oozie.keytab
ktutil: rkt http.keytab
ktutil: wkt oozie-http.keytab

5. Test that credentials in the merged keytab file work. For example:

$ klist -e -k -t oozie-http.keytab

172 | Cloudera Security

Configuring Authentication

6. Copy the oozie-http.keytab file to the Oozie configuration directory. The owner of the oozie-http.keytab
file should be the oozie user and the file should have owner-only read permissions.

7. Edit the Oozie server oozie-site.xml configuration file in the Oozie configuration directory by setting the
following properties:

Important: You must restart the Oozie server to have the configuration changes take effect.

ValueProperty

trueoozie.service.HadoopAccessorService.kerberos.enabled

<REALM>local.realm

/etc/oozie/conf/oozie-http.keytab for a
package installation, or

oozie.service.HadoopAccessorService.keytab.file

<EXPANDED_DIR>/conf/oozie-http.keytab for a
tarball installation

oozie/<fully.qualified.domain.name>@<YOUR-REALM.COM>oozie.service.HadoopAccessorService.kerberos.principal

kerberosoozie.authentication.type

HTTP/<fully.qualified.domain.name>@<YOUR-REALM.COM>oozie.authentication.kerberos.principal

Use the value configured for
hadoop.security.auth_to_local in
core-site.xml

oozie.authentication.kerberos.name.rules

Configuring Oozie HA with Kerberos

Important:

• If you use Cloudera Manager, do not use these command-line instructions. Use the Cloudera
Manager Kerberos wizard instead, which automates the steps described in this section. If you
have already enabled Kerberos, ClouderaManagerwill automatically generate Kerberos credentials
for the new Oozie server. It will also regenerate credentials for any existing servers.

• This information applies specifically to CDH 5.9.1. If you use a lower version of CDH, see the
documentation for that version located at Cloudera Documentation.

In CDH 5, you can configure multiple active Oozie servers against the same database, providing high availability for
Oozie. For instructions on setting up Oozie HA, see Oozie High Availability

Let's assume a setup with three hosts running Oozie servers: host1.example.com, host2.example.com, and
host3.example.com. The Load Balancerwhich directs traffic to theOozie servers is running onoozie.example.com.
Perform the following steps to configure Kerberos authentication on this Oozie HA-enabled deployment:

1. Assuming your Kerberos realm is EXAMPLE.COM, create the following Kerberos principals:

• oozie/host1.example.com@EXAMPLE.COM

• oozie/host2.example.com@EXAMPLE.COM

• oozie/host3.example.com@EXAMPLE.COM

• HTTP/host1.example.com@EXAMPLE.COM

• HTTP/host2.example.com@EXAMPLE.COM

• HTTP/host3.example.com@EXAMPLE.COM

Cloudera Security | 173

Configuring Authentication

http://www.cloudera.com/content/support/en/documentation.html

• For the Load Balancer: HTTP/oozie.example.com@EXAMPLE.COM

2. On each host, create a keytab file with the corresponding oozie and HTTP principals from the list above. Each
keytab file should also have the Load Balancer's HTTP principal. For example, the keytab file on host1 would
comprise:

• oozie/host1.example.com@EXAMPLE.COM

• HTTP/host1.example.com@EXAMPLE.COM

• HTTP/oozie.example.com@EXAMPLE.COM

3. On each host, configure the following properties in oozie-site.xml:

<property>
 <name>oozie.authentication.kerberos.principal</name>
 <value>HTTP/<hostname>@$EXAMPLE.COM</value>
 <description>
 Indicates the Kerberos principal to be used for HTTP endpoint.
 The principal MUST start with 'HTTP/' as per Kerberos HTTP SPNEGO specification.

 </description>
</property>

<property>
 <name>oozie.authentication.kerberos.keytab</name>
 <value>${oozie.service.HadoopAccessorService.keytab.file}</value>
 <description>
 Location of the keytab file with the credentials for the principal.
 Referring to the same keytab file Oozie uses for its Kerberos credentials for
Hadoop.
 </description>
</property>

Solr Authentication
This section describes how to configure Solr to enable authentication.

When authentication is enabled, only specified hosts and users can connect to Solr. Authentication also verifies that
clients connect to legitimate servers. This feature prevents spoofing such as impersonation and man-in-the-middle
attacks. Search supports Kerberos and LDAP authentication.

Cloudera Search supports a variety of combinations of authentication protocols:

Table 6: Authentication Protocol Combinations

Use CaseSolr Authentication

Insecure clusterNo authentication

TheHadoop cluster has Kerberos turned on and every user
(or client) connecting to Solr has a Kerberos principal.

Kerberos only

The Hadoop cluster has Kerberos turned on. External Solr
users (or clients) do not have Kerberos principals but do

Kerberos and LDAP

have identities in the LDAP server. Client authentication
using LDAP requires that Kerberos is enabled for the
cluster. Using LDAP alone is not supported.

Once you are finished setting up authentication, configure Sentry authorization. Authorization involves specifying
which resources can be accessed by particular users when they connect through Search. See Configuring Sentry
Authorization for Cloudera Search on page 464 for details.

174 | Cloudera Security

Configuring Authentication

Enabling Kerberos Authentication for Solr

Solr supports Kerberos authentication. All necessary packages are installedwhen you install Search. To enable Kerberos,
create principals and keytabs and then modify default configurations.

The following instructions only apply to configuring Kerberos in an unmanaged environment. Kerberos configuration
is automatically handled by Cloudera Manager if you are using in a Cloudera Manager environment.

To create principals and keytabs

Repeat this process on all Solr server hosts.

1. Create a Solr service user principal using the syntax:solr/<fully.qualified.domain.name>@<YOUR-REALM>.
This principal is used to authenticate with the Hadoop cluster. where: fully.qualified.domain.name is the
host where the Solr server is running YOUR-REALM is the name of your Kerberos realm.

$ kadmin
kadmin: addprinc -randkey solr/fully.qualified.domain.name@YOUR-REALM.COM

2. Create aHTTP serviceuser principal using the syntax:HTTP/<fully.qualified.domain.name>@<YOUR-REALM>.
This principal is used to authenticate user requests coming to the Solr web-services. where:
fully.qualified.domain.name is the host where the Solr server is running YOUR-REALM is the name of your
Kerberos realm.

kadmin: addprinc -randkey HTTP/fully.qualified.domain.name@YOUR-REALM.COM

Note:

The HTTP/ component of the HTTP service user principal must be upper case as shown in the
syntax and example above.

3. Create keytab files with both principals.

kadmin: xst -norandkey -k solr.keytab solr/fully.qualified.domain.name \
HTTP/fully.qualified.domain.name

4. Test that credentials in the merged keytab file work. For example:

$ klist -e -k -t solr.keytab

5. Copy the solr.keytab file to the Solr configuration directory. The owner of the solr.keytab file should be
the solr user and the file should have owner-only read permissions.

To modify default configurations

Repeat this process on all Solr server hosts.

1. Ensure that the following properties appear in /etc/default/solr or
/opt/cloudera/parcels/CDH-*/etc/default/solrand that theyareuncommented.Modify theseproperties
to match your environment. The relevant properties to be uncommented and modified are:

SOLR_AUTHENTICATION_TYPE=kerberos
SOLR_AUTHENTICATION_SIMPLE_ALLOW_ANON=true
SOLR_AUTHENTICATION_KERBEROS_KEYTAB=/etc/solr/conf/solr.keytab
SOLR_AUTHENTICATION_KERBEROS_PRINCIPAL=HTTP/localhost@LOCALHOST
SOLR_AUTHENTICATION_KERBEROS_NAME_RULES=DEFAULT
SOLR_AUTHENTICATION_JAAS_CONF=/etc/solr/conf/jaas.conf

Note: Modify the values for these properties to match your environment. For example, the
SOLR_AUTHENTICATION_KERBEROS_PRINCIPAL=HTTP/localhost@LOCALHOSTmust include
the principal instance and Kerberos realm for your environment. That is often different from
localhost@LOCALHOST.

2. Set hadoop.security.auth_to_local to match the value specified by
SOLR_AUTHENTICATION_KERBEROS_NAME_RULES in /etc/default/solr or
/opt/cloudera/parcels/CDH-*/etc/default/solr.

Cloudera Security | 175

Configuring Authentication

Note: For information on how to configure the rules, see Configuring theMapping fromKerberos
Principals to Short Names. For additional information on using Solr with HDFS, see Configuring
Solr for Use with HDFS.

3. If using applications that use the solrj library, set up the Java Authentication and Authorization Service (JAAS).

a. Create a jaas.conf file in the Solr configuration directory containing the following settings. This file and its
location must match the SOLR_AUTHENTICATION_JAAS_CONF value. Make sure that you substitute a value
for principal that matches your particular environment.

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 useTicketCache=false
 keyTab="/etc/solr/conf/solr.keytab"
 principal="solr/fully.qualified.domain.name@<YOUR-REALM>";
};

Enabling LDAP Authentication for Solr

Before continuing, make sure that you have completed the steps in Enabling Kerberos Authentication for Solr on page
175. Solr supports LDAP authentication for external Solr client including:

• Command-line tools
• curl
• Web browsers
• Solr Java clients

In some cases, Solr does not support LDAP authentication. Use Kerberos authentication instead in these cases. Solr
does not support LDAP authentication with:

• Search indexing components including the MapReduce indexer, Lily HBase indexer, or Flume.
• Solr internal requests such as those for replication or querying.
• Hadoop delegation token management requests such as GETDELEGATIONTOKEN or RENEWDELEGATIONTOKEN.

Configuring LDAP Authentication for Solr using Cloudera Manager

You can configure LDAP-based authentication using Cloudera Manager at the Solr service level.

1. Go to the Solr service.
2. Click the Configuration tab.
3. Select Scope > Solr
4. Select Category > Security
5. Select Enable LDAP.
6. Enter the LDAP URI in the LDAP URI property.
7. Configure only one of following mutually exclusive parameters:

• LDAP BaseDN: Replaces the username with a "distinguished name" (DN) of the form:
uid=userid,ldap_baseDN. Typically used for OpenLDAP server installation.

-OR-

• LDAP Domain: Replaces the username with a string username@ldap_domain. Typically used for Active
Directory server installation.

176 | Cloudera Security

Configuring Authentication

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cdh_sg_kerbprin_to_sn.html
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cdh_sg_kerbprin_to_sn.html

Configuring LDAP Authentication for Solr Using the Command Line

To enable LDAP authentication using the command line, configure the following environment variables in
/etc/default/solr:

SOLR_AUTHENTICATION_HTTP_SCHEMES=Negotiate,Basic
SOLR_AUTHENTICATION_HTTP_DELEGATION_MGMT_SCHEMES=Negotiate
SOLR_AUTHENTICATION_HTTP_BASIC_HANDLER=ldap
SOLR_AUTHENTICATION_HTTP_NEGOTIATE_HANDLER=kerberos
SOLR_AUTHENTICATION_LDAP_PROVIDER_URL=ldap://www.example.com

Specify value for only one of SOLR_AUTHENTICATION_LDAP_BASE_DN or
SOLR_AUTHENTICATION_LDAP_BIND_DOMAIN property.
SOLR_AUTHENTICATION_LDAP_BASE_DN=ou=Users,dc=example,dc=com
SOLR_AUTHENTICATION_LDAP_BIND_DOMAIN=
Required when using ‘Start TLS’ extension
SOLR_AUTHENTICATION_LDAP_ENABLE_START_TLS=false

Securing LDAP Connections

You can secure communications using LDAP-based encryption.

To avoid sending credentials over the wire in clear-text, you must configure a secure connection between both the
client and Solr, and between Solr and the LDAP server. The secure connection could use SSL or TLS.

Secure LDAP connections through SSL:

For SSL-enabled LDAP connections, specify a prefix of ldaps:// instead of ldap://. Also, the default port for
SSL-enabled LDAP connections is 636 instead of 389.

Secure LDAP connections through TLS:

TLS, the successor to the SSL protocol, is supported by most modern LDAP servers. Unlike SSL connections, TLS
connections can bemade on the same server port as non-TLS connections. You can enable xxx using ClouderaManager.

1. Go to the Solr service.
2. Click the Configuration tab.
3. Select Scope > Solr
4. Select Category > Security
5. Select Enable LDAP TLS.
6. Import the LDAP server security certificate in the Solr Trust Store file:

a. Enter the location for the Solr Trust Store File in Solr TLS/SSL Certificate Trust Store File.
b. Enter the password for the Solr Trust Store File in Solr TLS/SSL Certificate Trust Store Password.

LDAP Client Configuration

Some HTTP clients such as curl or the Apache Http Java client must be configured to use a particular scheme. For
example:

• curl tool supports using Kerberos or username/password authentication. Kerberos is activated using the
--negotiate flag and username/password based authentication is activated using the --basic and -u flags.

• Apache HttpClient library can be configured to use specific authentication scheme. For more information, see the
HTTP authentication chapter of Apache's HttpClient Tutorial.

Typically, web browsers automatically choose a preferred authentication scheme. For more information, see the HTTP
authentication topic in The Chromium Projects.

To use LDAP authentication with Solr Java clients, HttpClientConfigurer needs to configured for Solr. This can
either be done programmatically or using Java system properties.

Cloudera Security | 177

Configuring Authentication

http://en.wikipedia.org/wiki/Transport_Layer_Security
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/authentication.html
https://www.chromium.org/developers/design-documents/http-authentication
https://www.chromium.org/developers/design-documents/http-authentication

For example, programmatic initialization might appear as:

SampleSolrClient.java

import org.apache.solr.client.solrj.impl.HttpClientUtil;
import org.apache.solr.client.solrj.impl.PreemptiveBasicAuthConfigurer;
import org.apache.solr.common.params.ModifiableSolrParams;

/**
 * This method initializes the Solr client to use LDAP authentication
 * This configuration is applicable to all Solr clients.
 * @param ldapUserName LDAP user name
 * @param ldapPassword LDAP user password
 */
public static void initialize(String ldapUserName, String ldapPassword) {
 HttpClientUtil.setConfigurer(new PreemptiveBasicAuthConfigurer());
 ModifiableSolrParams params = new ModifiableSolrParams();
 params.set(HttpClientUtil.PROP_BASIC_AUTH_USER, ldapUserName);
 params.set(HttpClientUtil.PROP_BASIC_AUTH_PASS, ldapPassword);
 // Configure the JVM default parameters.
 PreemptiveBasicAuthConfigurer.setDefaultSolrParams(params);
}

For configuration using system properties, configure the following system properties:

Table 7: System properties configuration for LDAP authentication

DescriptionSystem property

Fully qualified classname of HttpClientConfigurer
implementation. For example,
org.apache.solr.client.solrj.impl.PreemptiveBasicAuthConfigurer.

solr.httpclient.configurer

Http client configuration properties file path. For example,
ldap-credentials.properties.

solr.httpclient.config

For example, the entry in ldap-credentials.propertiesmight appear as:

ldap-credentials.properties

httpBasicAuthUser=user1
httpBasicAuthPassword=passwd

Using Kerberos with Solr

The process of enabling Solr clients to authenticatewith a secure Solr is specific to the client. This section demonstrates:

• Using Kerberos and curl
• Using solrctl
• Configuring SolrJ Library Usage
• This enables technologies including:

• Command line solutions
• Java applications
• The MapReduceIndexerTool

• Configuring Flume Morphline Solr Sink Usage

Secure Solr requires that the CDH components that it interacts with are also secure. Secure Solr interacts with HDFS,
ZooKeeper and optionally HBase, MapReduce, and Flume.

178 | Cloudera Security

Configuring Authentication

Using Kerberos and curl

You can use Kerberos authenticationwith clients such ascurl. To usecurl, begin by acquiring valid Kerberos credentials
and then run the desired command. For example, you might use commands similar to the following:

$ kinit -kt username.keytab username
$ curl --negotiate -u foo:bar http://solrserver:8983/solr/

Note: Depending on the tool used to connect, additional arguments may be required. For example,
with curl, --negotiate and -u are required. The username and password specified with -u is not
actually checked because Kerberos is used. As a result, any value such as foo:bar or even just : is
acceptable. While any value can be provided for -u, note that the option is required. Omitting -u
results in a 401 Unauthorized error, even though the -u value is not actually used.

Using solrctl

If you are using solrctl to manage your deployment in an environment that requires Kerberos authentication, you
must have valid Kerberos credentials, which you can get using kinit. For more information on solrctl, see solrctl
Reference

Configuring SolrJ Library Usage

If using applications that use the solrj library, begin by establishing a Java Authentication and Authorization Service
(JAAS) configuration file.

Create a JAAS file:

• If you have already used kinit to get credentials, you can have the client use those credentials. In such a case,
modify your jaas-client.conf file to appear as follows:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=false
 useTicketCache=true
 principal="user/fully.qualified.domain.name@<YOUR-REALM>";
 };

where user/fully.qualified.domain.name@<YOUR-REALM> is replaced with your credentials.
• You want the client application to authenticate using a keytab you specify:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/path/to/keytab/user.keytab"
 storeKey=true
 useTicketCache=false
 principal="user/fully.qualified.domain.name@<YOUR-REALM>";
};

where /path/to/keytab/user.keytab is the keytab file you want to use and
user/fully.qualified.domain.name@<YOUR-REALM> is the principal in that keytab you want to use.

Use the JAAS file to enable solutions:

• Command line solutions

Set the property when invoking the program. For example, if you were using a jar, you might use:

java -Djava.security.auth.login.config=/home/user/jaas-client.conf -jar app.jar

• Java applications

Cloudera Security | 179

Configuring Authentication

Set the Java system property java.security.auth.login.config. For example, if the JAAS configuration file
is located on the filesystem as /home/user/jaas-client.conf. The Java system property
java.security.auth.login.configmust be set to point to this file. Setting a Java system property can be
done programmatically, for example using a call such as:

System.setProperty("java.security.auth.login.config", "/home/user/jaas-client.conf");

• The MapReduceIndexerTool

The MapReduceIndexerTool uses SolrJ to pass the JAAS configuration file. Using the MapReduceIndexerTool in a
secure environment requires the use of the HADOOP_OPTS variable to specify the JAAS configuration file. For
example, you might issue a command such as the following:

HADOOP_OPTS="-Djava.security.auth.login.config=/home/user/jaas.conf" \
hadoop jar MapReduceIndexerTool

• Configuring the hbase-indexer CLI

Certain hbase-indexer CLI commands such as replication-status attempt to read ZooKeeper hosts owned
by HBase. To successfully use these commands in Solr in a secure environment, specify a JAAS configuration file
with the HBase principal in the HBASE_INDEXER_OPTS environment variable. For example, you might issue a
command such as the following:

HBASE_INDEXER_OPTS="-Djava.security.auth.login.config=/home/user/hbase-jaas.conf" \
hbase-indexer replication-status

Configuring Flume Morphline Solr Sink Usage

Repeat this process on all Flume hosts:

1. If you have not created a keytab file, do so now at /etc/flume-ng/conf/flume.keytab. This file should
contain the service principal flume/<fully.qualified.domain.name>@<YOUR-REALM>. See Flume
Authentication on page 122 for more information.

2. Create a JAAS configuration file for flume at/etc/flume-ng/conf/jaas-client.conf. The file should appear
as follows:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 useTicketCache=false
 keyTab="/etc/flume-ng/conf/flume.keytab"
 principal="flume/<fully.qualified.domain.name>@<YOUR-REALM>";
};

3. Add the flume JAAS configuration to the JAVA_OPTS in /etc/flume-ng/conf/flume-env.sh. For example,
you might change:

JAVA_OPTS="-Xmx500m"

to:

JAVA_OPTS="-Xmx500m -Djava.security.auth.login.config=/etc/flume-ng/conf/jaas-client.conf"

Spark Authentication
Minimum Required Role: Security Administrator (also provided by Full Administrator)

180 | Cloudera Security

Configuring Authentication

Spark currently support two methods of authentication. Authentication can be configured using Kerberos or using a
shared secret. When using Spark on YARN, Cloudera recommends using Kerberos authentication since it is stronger
security measure.

Configuring Kerberos Authentication for Spark Using the Command Line

Important:

• If you want to enable Spark event logging on a Kerberos-enabled cluster, you will need to enable
Kerberos authentication for Spark as well, since Spark's event logs are written to HDFS.

• You can use Spark on a Kerberos-enabled cluster only in the YARN mode, not in the Standalone
mode.

• The spark-submit script's --principal and --keytab arguments do not work with
Spark-on-YARN's clientmode. Use the clustermode instead.

The following steps describe how to set up Kerberos authentication for Spark using the command line.

Create the Spark Principal and Keytab File

1. Create the spark principal and spark.keytab file:

kadmin: addprinc -randkey spark/fully.qualified.domain.name@YOUR-REALM.COM
kadmin: xst -k spark.keytab spark/fully.qualified.domain.name

2. Move the file into the Spark configuration directory and restrict its access exclusively to the spark user:

$ mv spark.keytab /etc/spark/conf/
$ chown spark /etc/spark/conf/spark.keytab
$ chmod 400 /etc/spark/conf/spark.keytab

Formore details on creating Kerberos principals and keytabs, see Step 4: Create andDeploy the Kerberos Principals
and Keytab Files on page 100.

Configure the Spark History Server to Use Kerberos

Using Cloudera Manager

If you are using Cloudera Manager, use the following steps to edit the spark-env.sh file.

1. Open the Cloudera Manager Administration Console and navigate to the Spark service.
2. Click the Configuration tab.
3. Select Scope > History Server.
4. Select Category > Advanced.
5. Edit the History Server Advanced Configuration Snippet (Safety Valve) for spark-conf/spark-env.sh property to

add the following properties:

SPARK_HISTORY_OPTS=-Dspark.history.kerberos.enabled=true \
-Dspark.history.kerberos.principal=spark/fully.qualified.domain.name@YOUR-REALM.COM \
-Dspark.history.kerberos.keytab=/etc/spark/conf/spark.keytab

6. Click Save Changes to commit the changes.

Cloudera Security | 181

Configuring Authentication

Using the Command Line

If you are using the command-line, open the Spark configuration file /etc/spark/conf/spark-env.sh file and add
the following properties:

SPARK_HISTORY_OPTS=-Dspark.history.kerberos.enabled=true \
-Dspark.history.kerberos.principal=spark/fully.qualified.domain.name@YOUR-REALM.COM \
-Dspark.history.kerberos.keytab=/etc/spark/conf/spark.keytab

Running Spark Applications on a Secure Cluster

You can submit compiled Spark applications with the spark-submit script. Specify the following additional
command-line options when running the spark-submit script on a secure cluster using the form: --option value.

DescriptionOption

The full path to the file that contains the keytab for the principal. This keytab
is copied to the node running the ApplicationMaster using the Secure

--keytab

Distributed Cache, for periodically renewing the login tickets and the delegation
tokens. For information on setting up the principal and keytab, see Configuring
a Clusterwith CustomKerberos Principals on page 70and Spark Authentication
on page 180.

Principal to be used to log in to the KDC, while running on secure HDFS.--principal

This property allows you to use the spark-submit script to impersonate
client users when submitting jobs.

--proxy-user

Configuring Spark Authentication With a Shared Secret Using Cloudera Manager

Minimum Required Role: Security Administrator (also provided by Full Administrator)

Authentication using a shared secret can be configured using the spark.authenticate configuration property. The
authentication process checks to make sure Spark has the same shared secret as the applications. If the shared secret
does not match, authentication will fail.

If you are using Spark on YARN, set the spark.authenticate parameter to true to generate a secret. This secret
will automatically be distributed to all applications communicating with Spark. For Cloudera Manager deployments,
use the following instructions:

1. Go to the Spark Service > Configuration tab.
2. In the Search field, type spark authenticate to find the Spark Authentication settings.
3. Check the checkbox for the Spark Authentication property.
4. Click Save Changes.

Configuring Spark on YARN for Long-Running Applications

For long-running applications, such as Spark Streaming jobs, towrite toHDFS, youmust configure Kerberos authentication
for Spark for Spark, and pass the Spark principal and keytab to the spark-submit script using the --principal and
--keytab parameters. The keytab is copied to the host running the ApplicationMaster, and the Kerberos login is
renewed periodically by using the principal and keytab to generate the required delegation tokens for communication
with HDFS.

To make sure the Spark keytab is delivered to the ApplicationMaster host securely, configure TLS/SSL communication
for YARN and HDFS encryption on your cluster.

Sqoop 2 Authentication
This section describes how to configure Sqoop 2 with Kerberos security in a Hadoop cluster.

182 | Cloudera Security

Configuring Authentication

Note: Sqoop 2 is being deprecated. Cloudera recommends using Sqoop 1.

Create the Sqoop 2 Principal and Keytab File

You need to create a sqoop2.keytab file for Sqoop 2. Follow these steps:

1. Create the principal and keytab file:

kadmin: addprinc -randkey sqoop2/fully.qualified.domain.name@YOUR-REALM.COM
kadmin: xst -k sqoop2.keytab sqoop2/fully.qualified.domain.name

2. Move the file into the Sqoop 2 configuration directory and restrict its access exclusively to the sqoop2 user:

$ mv sqoop2.keytab /etc/sqoop2/conf/
$ chown sqoop2 /etc/sqoop2/conf/sqoop2.keytab
$ chmod 400 /etc/sqoop2/conf/sqoop2.keytab

Formore details on creating Kerberos principals and keytabs, see Step 4: Create andDeploy the Kerberos Principals
and Keytab Files on page 100.

Configure Sqoop 2 to Use Kerberos

Edit the Sqoop 2 configuration file sqoop.properties file in the /etc/sqoop2/conf directory and add the following
properties:

org.apache.sqoop.authentication.type=KERBEROS
org.apache.sqoop.authentication.handler=org.apache.sqoop.security.KerberosAuthenticationHandler
org.apache.sqoop.authentication.kerberos.principal=sqoop2/fully.qualified.domain.name@YOUR-REALM.COM
org.apache.sqoop.authentication.kerberos.keytab=/etc/sqoop2/conf/sqoop2.keytab

ZooKeeper Authentication
This section describes how to configure ZooKeeper in CDH 5 to enable Kerberos security:

• Configuring ZooKeeper Server for Kerberos Authentication on page 183
• Configuring the ZooKeeper Client Shell to Support Kerberos Security on page 185
• Verifying the Configuration on page 185

Important:

Prior to enabling ZooKeeper to work with Kerberos security on your cluster, make sure you first review
the requirements in Configuring Hadoop Security in CDH 5.

Configuring ZooKeeper Server for Kerberos Authentication

You can configure the ZooKeeper server for Kerberos authentication in Cloudera Manager or through the command
line.

Using Cloudera Manager to Configure ZooKeeper Server for Kerberos Authentication

To set up the ZooKeeper server for Kerberos authentication in Cloudera Manager, complete the following steps:

1. In Cloudera Manager, open the ZooKeeper service.
2. Click the Configuration tab.
3. Enter Kerberos in the in the Search bar.

Cloudera Security | 183

Configuring Authentication

4. Find the Enable Kerberos Authentication property and select the check-box next to the ZooKeeper services that
you want to configure for Kerberos authentication.

Using the Command Line to Configure ZooKeeper Server for Kerberos Authentication

Follow the steps below for each ZooKeeper server in the ensemble. To maintain consistency across ZooKeeper servers
in the ensemble, use the same name for the keytab file you deploy to each server, for example, zookeeper.keytab.
Each keytab file will contain its respective host's fully-qualified domain name (FQDN).

1. Create a service principal for the ZooKeeper server using the fully-qualified domain name (FQDN) of the host on
which ZooKeeper server is running and the name of your Kerberos realm using the pattern
zookeeper/fqdn.example.com@ YOUR-REALM. This principal will be used to authenticate the ZooKeeper
server with the Hadoop cluster. Create this service principal as follows:

kadmin: addprinc -randkey zookeeper/fqdn.example.com@YOUR-REALM

2. Create a keytab file for the ZooKeeper server:

$ kadmin
kadmin: xst -k zookeeper.keytab zookeeper/fqdn.example.com@YOUR-REALM

Note: For consistency across ZooKeeper Servers, use the same name for the keytab file you
create for each subsequent ZooKeeper Server host system you configure using these steps, for
example, zookeeper.keytab.

3. Copy the zookeeper.keytab file to the ZooKeeper configuration directory on the ZooKeeper server host, using
the appropriate ZooKeeper configuration directory: /etc/zookeeper/conf/. The zookeeper.keytab file
should be owned by the zookeeper user, with owner-only read permissions.

4. Add the following lines to the ZooKeeper configuration file zoo.cfg:

authProvider.1=org.apache.zookeeper.server.auth.SASLAuthenticationProvider
jaasLoginRenew=3600000

5. Set up the Java Authentication and Authorization Service (JAAS) by creating a jaas.conf file in the ZooKeeper
configuration directorywith the settings shown below, replacing fqdn.example.comwith the ZooKeeper server's
hostname.

Server {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/etc/zookeeper/conf/zookeeper.keytab"
 storeKey=true
 useTicketCache=false
 principal="zookeeper/fqdn.example.com
 @YOUR-REALM";
};

6. Add the following setting to the java.env file located in the ZooKeeper configuration directory, creating the file
if necessary:

export JVMFLAGS="-Djava.security.auth.login.config=/etc/zookeeper/conf/jaas.conf"

7. Repeat these steps for each ZooKeeper server in the ensemble.
8. Restart the ZooKeeper server to have the configuration changes take effect. See ZooKeeper Installation for details.

184 | Cloudera Security

Configuring Authentication

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jaas/tutorials/GeneralAcnOnly.html

Configuring the ZooKeeper Client Shell to Support Kerberos Security

1. If youwant to use the ZooKeeper client shell zookeeper-clientwith Kerberos authentication, create a principal
using the syntax: zkcli@<YOUR-REALM>. This principal is used to authenticate the ZooKeeper client shell to the
ZooKeeper service. where: YOUR-REALM is the name of your Kerberos realm.

kadmin: addprinc -randkey zkcli@YOUR-REALM.COM

2. Create a keytab file for the ZooKeeper client shell.

$ kadmin
kadmin: xst -norandkey -k zkcli.keytab zkcli@YOUR-REALM.COM

Note:

Some versions of kadmin do not support the -norandkey option in the command above. If your
version does not, you can omit it from the command. Note that doing so will result in a new
password being generated every time you export a keytab, which will invalidate
previously-exported keytabs.

3. Set up JAAS in the configuration directory on the host where the ZooKeeper client shell is running. For a package
installation, the configuration directory is /etc/zookeeper/conf/. For a tar ball installation, the configuration
directory is <EXPANDED_DIR>/conf. Create a jaas.conf file containing the following settings:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/path/to/zkcli.keytab"
 storeKey=true
 useTicketCache=false
 principal="zkcli@<YOUR-REALM>";
};

4. Add the following setting to the java.env file located in the configuration directory. (Create the file if it does
not already exist.)

export JVMFLAGS="-Djava.security.auth.login.config=/etc/zookeeper/conf/jaas.conf"

Verifying the Configuration

1. Make sure that you have restarted the ZooKeeper cluster with Kerberos enabled, as described above.
2. Start the client (where the hostname is the name of a ZooKeeper server):

zookeeper-client -server hostname:port

3. Create a protected znode fromwithin the ZooKeeper CLI.Make sure that you substituteYOUR-REALM as appropriate.

create /znode1 znode1data sasl:zkcli@{{YOUR-REALM}}:cdwra

4. Verify the znode is created and the ACL is set correctly:

getAcl /znode1

The results from getAcl should show that the proper scheme and permissions were applied to the znode.

Cloudera Security | 185

Configuring Authentication

Hadoop Users in Cloudera Manager and CDH
A number of special users are created by default when installing and using CDH and Cloudera Manager. Given below
is a list of users and groups as of the latest release. Also listed are the corresponding Kerberos principals and keytab
files that should be created when you configure Kerberos security on your cluster.

Note: Cloudera Manager 5.3 introduces a new single user mode. In single user mode, the Cloudera
Manager Agent and all the processes run by services managed by Cloudera Manager are started as a
single configured user and group. See Configuring Single User Mode for more information.

Table 8: Users and Groups

NotesGroupsUnix User IDComponent
(Version)

Cloudera Manager processes such as the Cloudera
Manager Server and the monitoring roles run as this
user.

The Cloudera Manager keytab file must be named
cmf.keytab since that name is hard-coded in
Cloudera Manager.

Note: Applicable to clusters managed
by Cloudera Manager only.

cloudera-scmcloudera-scmClouderaManager
(all versions)

Accumulo processes run as this user.accumuloaccumuloApache Accumulo
(Accumulo 1.4.3
and higher)

No special users.Apache Avro

The sink that writes to HDFS as this user must have
write privileges.

flumeflumeApache Flume
(CDH 4, CDH 5)

The Master and the RegionServer processes run as
this user.

hbasehbaseApache HBase
(CDH 4, CDH 5)

The NameNode and DataNodes run as this user, and
theHDFS root directory aswell as the directories used
for edit logs should be owned by it.

hdfs, hadoophdfsHDFS (CDH 4, CDH
5)

The HiveServer2 process and the Hive Metastore
processes run as this user.

hivehiveApache Hive (CDH
4, CDH 5)

A user must be defined for Hive access to its
Metastore DB (for example, MySQL or Postgres) but
it can be any identifier and does not correspond to a
Unix uid. This is
javax.jdo.option.ConnectionUserName in
hive-site.xml.

The WebHCat service (for REST access to Hive
functionality) runs as the hive user.

hivehiveApache HCatalog
(CDH 4.2 and
higher, CDH 5)

186 | Cloudera Security

Configuring Authentication

NotesGroupsUnix User IDComponent
(Version)

The HttpFS service runs as this user. See HttpFS
Security Configuration for instructions on how to
generate the merged httpfs-http.keytab file.

httpfshttpfsHttpFS (CDH 4,
CDH 5)

Hue services run as this user.huehueHue (CDH 4, CDH
5)

The Hue Load balancer has a dependency on the
apache2 package that uses the apache user name.

apacheapacheHue Load Balancer
(ClouderaManager
5.5 and higher) Cloudera Manager does not run processes using this

user ID.

Impala services run as this user.impala, hiveimpalaImpala

Kafka brokers and mirror makers run as this user.kafkakafkaApache Kafka
(Cloudera
Distribution of
Kafka 1.2.0)

The Java KeyStore KMS service runs as this user.kmskmsJava KeyStore KMS
(CDH 5.2.1 and
higher)

The Key Trustee KMS service runs as this user.kmskmsKey Trustee KMS
(CDH 5.3 and
higher)

The Key Trustee Server service runs as this user.keytrusteekeytrusteeKey Trustee Server
(CDH 5.4 and
higher)

Kudu services run as this user.kudukuduKudu

Llama runs as this user.llamallamaLlama (CDH 5)

No special users.Apache Mahout

Without Kerberos, the JobTracker and tasks run as
this user. The LinuxTaskController binary is owned by
this user for Kerberos.

mapred, hadoopmapredMapReduce (CDH
4, CDH 5)

The Oozie service runs as this user.oozieoozieApache Oozie
(CDH 4, CDH 5)

No special users.Parquet

No special users.Apache Pig

The Solr processes run as this user.solrsolrCloudera Search
(CDH 4.3 and
higher, CDH 5)

The Spark History Server process runs as this user.sparksparkApacheSpark (CDH
5)

The Sentry service runs as this user.sentrysentryApache Sentry
(CDH 5.1 and
higher)

This user is only for the Sqoop1 Metastore, a
configuration option that is not recommended.

sqoopsqoopApache Sqoop
(CDH 4, CDH 5)

Cloudera Security | 187

Configuring Authentication

NotesGroupsUnix User IDComponent
(Version)

The Sqoop2 service runs as this user.sqoop, sqoop2sqoop2Apache Sqoop2
(CDH 4.2 and
higher, CDH 5)

No special users.Apache Whirr

Without Kerberos, all YARN services and applications
run as this user. The LinuxContainerExecutor binary
is owned by this user for Kerberos.

yarn, hadoopyarnYARN (CDH 4, CDH
5)

The ZooKeeper processes run as this user. It is not
configurable.

zookeeperzookeeperApache ZooKeeper
(CDH 4, CDH 5)

Keytabs and Keytab File Permissions

Note:

The Kerberos principal names should be of the format,
username/fully.qualified.domain.name@YOUR-REALM.COM, where the termusername refers
to the username of an existing UNIX account, such as hdfs or mapred. The table below lists the
usernames to be used for the Kerberos principal names. For example, the Kerberos principal for Apache
Flume would be flume/fully.qualified.domain.name@YOUR-REALM.COM.

For keytabs with multiple principals, Cloudera Manager merges them appropriately from individual
keytabs. If you do not use Cloudera Manager, you must merge the keytabs manually.

Table 9: Clusters Managed by Cloudera Manager

File
Permission
(octal)

Keytab File
Group

Keytab File
Owner

Filename (*.
keytab)

Kerberos
Principals

ServiceComponent (Unix
User ID)

600cloudera-scmcloudera-scmcmfcloudera-scmNACloudera Manager
(cloudera-scm)

600cloudera-scmcloudera-scmheadlamphdfscloudera-mgmt-
REPORTSMANAGER

Cloudera
Management
Service
(cloudera-scm)

600cloudera-scmcloudera-scmcmonhuecloudera-mgmt-
SERVICEMONITOR,

Cloudera
Management

cloudera-mgmt-
ACTIVITYMONITOR

Service
(cloudera-scm)

N/AN/AN/AN/AN/Acloudera-mgmt-
HOSTMONITOR

Cloudera
Management
Service
(cloudera-scm)

600cloudera-scmcloudera-scmaccumulo16accumuloaccumulo16-ACCUMULO16_MASTERApache Accumulo
(accumulo)

accumulo16-ACCUMULO16_TRACER

accumulo16-ACCUMULO16_MONITOR

accumulo16-ACCUMULO16_GC

188 | Cloudera Security

Configuring Authentication

File
Permission
(octal)

Keytab File
Group

Keytab File
Owner

Filename (*.
keytab)

Kerberos
Principals

ServiceComponent (Unix
User ID)

accumulo16-ACCUMULO16_TSERVER

600cloudera-scmcloudera-scmflumeflumeflume-AGENTFlume (flume)

600cloudera-scmcloudera-scmHTTPHTTPhbase-HBASETHRIFTSERVERHBase (hbase)

hbasehbasehbase-REGIONSERVER

hbase-HBASERESTSERVER

hbase-MASTER

600cloudera-scmcloudera-scmhdfshdfs, HTTPhdfs-NAMENODEHDFS (hdfs)

hdfs-DATANODE

hdfs-
SECONDARYNAMENODE

600cloudera-scmcloudera-scmhivehivehive-HIVESERVER2Hive (hive)

HTTPHTTPhive-WEBHCAT

hivehivehive-HIVEMETASTORE

600cloudera-scmcloudera-scmhttpfshttpfshdfs-HTTPFSHttpFS (httpfs)

600cloudera-scmcloudera-scmhuehuehue-KT_RENEWERHue (hue)

600cloudera-scmcloudera-scmimpalaimpalaimpala-STATESTOREImpala (impala)

impala-CATALOGSERVER

impala-IMPALAD

600cloudera-scmcloudera-scmkmsHTTPkms-KMSJava KeyStore KMS
(kms)

600kafkakafkakafkakafkakafka-KAFKA_BROKERApache Kafka
(kafka)

600kafkakafkakafkakafka_mirror_makerkafka-KAFKA_MIRROR_MAKERApache Kafka
(kafka)

600cloudera-scmcloudera-scmkeytrusteeHTTPkeytrustee-KMS_KEYTRUSTEEKey Trustee KMS
(kms)

600cloudera-scmcloudera-scmllamallama, HTTPimpala-LLAMALlama (llama)

600cloudera-scmcloudera-scmmapredmapred,
HTTP

mapreduce-JOBTRACKERMapReduce
(mapred)

mapreduce- TASKTRACKER

600cloudera-scmcloudera-scmoozieoozie, HTTPoozie-OOZIE_SERVEROozie (oozie)

600cloudera-scmcloudera-scmsolrsolr, HTTPsolr-SOLR_SERVERSearch (solr)

600cloudera-scmcloudera-scmsentrysentrysentry-SENTRY_SERVERSentry (sentry)

600cloudera-scmcloudera-scmsparksparkspark_on_yarn-
SPARK_YARN_HISTORY_SERVER

Spark (spark)

644cloudera-scmcloudera-scmyarnyarn, HTTPyarn-NODEMANAGERYARN (yarn)

600yarn- RESOURCEMANAGER

Cloudera Security | 189

Configuring Authentication

File
Permission
(octal)

Keytab File
Group

Keytab File
Owner

Filename (*.
keytab)

Kerberos
Principals

ServiceComponent (Unix
User ID)

600yarn-JOBHISTORY

600cloudera-scmcloudera-scmzookeeperzookeeperzookeeper-serverZooKeeper
(zookeeper)

Table 10: CDH Clusters Not Managed by Cloudera Manager

File
Permission
(octal)

Keytab File
Group

Keytab File
Owner

Filename
(*.keytab)

Kerberos
Principals

ServiceComponent (Unix
User ID)

600accumuloaccumuloaccumulo16accumuloaccumulo16-ACCUMULO16_MASTERApacheAccumulo
(accumulo)

accumulo16-ACCUMULO16_TRACER

accumulo16-ACCUMULO16_MONITOR

accumulo16-ACCUMULO16_GC

accumulo16-ACCUMULO16_TSERVER

600flumeflumeflumeflumeflume-AGENTFlume (flume)

600hbasehbaseHTTPHTTPhbase-HBASETHRIFTSERVERHBase (hbase)

hbasehbasehbase-REGIONSERVER

hbase-HBASERESTSERVER

hbase-MASTER

600hdfshdfshdfshdfs, HTTPhdfs-NAMENODEHDFS (hdfs)

hdfs-DATANODE

hdfs- SECONDARYNAMENODE

600hivehivehivehivehive-HIVESERVER2Hive (hive)

HTTPHTTPhive-WEBHCAT

hivehivehive-HIVEMETASTORE

600httpfshttpfshttpfshttpfshdfs-HTTPFSHttpFS (httpfs)

600huehuehuehuehue-KT_RENEWERHue (hue)

600impalaimpalaimpalaimpalaimpala-STATESTOREImpala (impala)

impala-CATALOGSERVER

impala-IMPALAD

600llamallamallamallama,
HTTP

impala-LLAMALlama (llama)

600kmskmskmsHTTPkms-KMSJava KeyStore
KMS (kms)

600kafkakafkakafkakafkakafka-KAFKA_BROKERApache Kafka
(kafka)

600kafkakafkakafkakafka_mirror_makerkafka-MIRROR_MAKERApache Kafka
(kafka)

190 | Cloudera Security

Configuring Authentication

File
Permission
(octal)

Keytab File
Group

Keytab File
Owner

Filename
(*.keytab)

Kerberos
Principals

ServiceComponent (Unix
User ID)

600kmskmskmsHTTPkms-KEYTRUSTEEKey Trustee KMS
(kms)

600hadoopmapredmapredmapred,
HTTP

mapreduce-JOBTRACKERMapReduce
(mapred)

mapreduce- TASKTRACKER

600oozieoozieoozieoozie,
HTTP

oozie-OOZIE_SERVEROozie (oozie)

600solrsolrsolrsolr, HTTPsolr-SOLR_SERVERSearch (solr)

600sentrysentrysentrysentrysentry-SENTRY_SERVERSentry (sentry)

600sparksparksparksparkspark_on_yarn-
SPARK_YARN_HISTORY_SERVER

Spark (spark)

644hadoopyarnyarnyarn, HTTPyarn-NODEMANAGERYARN (yarn)

600yarn- RESOURCEMANAGER

600yarn-JOBHISTORY

600zookeeperzookeeperzookeeperzookeeperzookeeper-serverZooKeeper
(zookeeper)

Configuring a Cluster-dedicated MIT KDC with Cross-Realm Trust
If you use Cloudera Manager to enable Hadoop security on your cluster, the Cloudera Manager Server will create
several principals and then generate keytabs for those principals. Cloudera Manager will then deploy the keytab files
on every host in the cluster. See Hadoop Users in Cloudera Manager and CDH on page 186 for a complete listing of the
principals created by Cloudera Manager.

Note: The following instructions illustrate an example of creating and deploying the principals and
keytab files for MIT Kerberos. (If you are using another version of Kerberos, refer to the Kerberos
documentation for the version of the operating system you are using, for instructions.)

When to use kadmin.local and kadmin

When performing the Kerberos commands in this document, you can use kadmin.local or kadmin depending on
your access and account:

• If you can log on to the KDChost directly, and have root access or a Kerberos admin account, use thekadmin.local
command.

• When accessing the KDC from a remote host, use the kadmin command.

To start kadmin.local on the KDC host:

$ sudo kadmin.local

To run kadmin from any host:

$ kadmin

Cloudera Security | 191

Configuring Authentication

Note:

• In this guide, kadmin is shown as the prompt for commands in the kadmin shell, but you can
type the same commands at the kadmin.local prompt in the kadmin.local shell.

• Running kadmin.localmay prompt you for a password because it is being run using sudo. You
should provide your Unix password. Running kadminmay prompt you for a password because
you need Kerberos admin privileges. You should provide your Kerberos admin password.

Setting up a Cluster-Dedicated KDC and Default Realm for the Hadoop Cluster

Cloudera has tested the following configuration approaches to Kerberos security for clusters managed by Cloudera
Manager. For administration teams that are just getting started with Kerberos security, we recommend starting with
these approaches to the configuration of KDC services for a number of reasons.

The number of Service Principal Names (SPNs) that are created and managed by the Cloudera Manager server for a
CDH cluster can be significant, so it is important to realize the potential impact on cluster uptime and overall operations
if you choose to manage keytabs manually instead. The Cloudera Manager server manages the creation of service
keytabs on the proper hosts based on the current configuration of the database. Manual keytab management can be
error prone and introduce delays when deploying ormoving services within the cluster, especially under time-sensitive
conditions.

Cloudera Manager creates SPNs within a KDC that it can access with the kadmin command based on configuration of
the /etc/krb5.conf file on the Cloudera Manager host. SPNs are created with the format
service-name/host.fqdn.name@EXAMPLE.COM where service-name is the relevant CDH service name such as
hue or hbase or hdfs.

If your site already has a working KDC, and any existing principals share the same name as any of the principals that
Cloudera Manager creates, the Cloudera Manager Server generates a new randomized key for those principals, and
consequently causes existing keytabs to become invalid.

This is why Cloudera recommends using a dedicated local MIT Kerberos KDC and realm for the Hadoop cluster. You
can set up a one-way cross-realm trust from the cluster-dedicated KDC and realm to your existing central MIT Kerberos
KDC, or to an existing Active Directory realm. Using this method, there is no need to create Hadoop service principals
in the centralMIT Kerberos KDC or in Active Directory, but principals (users) in the centralMIT KDC or in Active Directory
can be authenticated to Hadoop. The steps to implement this approach are as follows:

1. Install and configure a cluster-dedicatedMIT Kerberos KDC that will bemanaged by ClouderaManager for creating
and storing the service principals for your Hadoop cluster.

Note: The krb5-server package includes a logrotate policy file to rotate log files monthly.
To take advantage of this, install the logrotate package. No additional configuration is necessary.

2. See the example kdc.conf and krb5.conf files in Sample Kerberos Configuration Files on page 206 for
configuration considerations for the KDC and Kerberos clients.

3. Configure a default Kerberos realm for the cluster you want Cloudera Manager to manage and set up one-way
cross-realm trust between the cluster-dedicated KDC and either your central KDC or Active Directory. Follow the
appropriate instructions below for your deployment: Using a Cluster-Dedicated KDC with a Central MIT KDC on
page 193 or Using a Cluster-Dedicated MIT KDC with Active Directory on page 194.

Cloudera strongly recommends the method above because:

• It requires minimal configuration in Active Directory.
• It is comparatively easy to script the creation of many principals and keytabs. A principal and keytab must be

created for every daemon in the cluster, and in a large cluster this can be extremely onerous to do directly in
Active Directory.

• There is no need to involve central Active Directory administrators to get service principals created.

192 | Cloudera Security

Configuring Authentication

• It allows for incremental configuration. The Hadoop administrator can completely configure and verify the
functionality the cluster independently of integrating with Active Directory.

Using a Cluster-Dedicated KDC with a Central MIT KDC

Important: If you plan to use Oozie or the Hue Kerberos Ticket Renewer in your cluster, you must
configure your KDC to allow tickets to be renewed, and you must configure krb5.conf to request
renewable tickets. Typically, you can do this by adding the max_renewable_life setting to your
realm in kdc.conf, and by adding the renew_lifetime parameter to the libdefaults section
of krb5.conf. For more information about renewable tickets, see the Kerberos documentation. This
is demonstrated in the Sample Kerberos Configuration Files on page 206.

1. In the /var/kerberos/krb5kdc/kdc.conf file on the local dedicated KDC server host, configure the default
realm for the Hadoop cluster by substituting your Kerberos realm in the following realms property:

[realms]
 HADOOP.EXAMPLE.COM = {

2. In the /etc/krb5.conf file on all cluster hosts and all Hadoop client user hosts, configure the default realm for
the Hadoop cluster by substituting your Kerberos realm in the following realms property. Also specify the local
dedicated KDC server hostname in the /etc/krb5.conf file (for example, kdc01.example.com).

[libdefaults]
 default_realm = HADOOP.EXAMPLE.COM
[realms]
 HADOOP.EXAMPLE.COM = {
 kdc = kdc01.hadoop.example.com:88
 admin_server = kdc01.hadoop.example.com:749
 default_domain = hadoop.example.com
 }
 EXAMPLE.COM = {
 kdc = kdc01.example.com:88
 admin_server = kdc01.example.com:749
 default_domain = example.com
 }
[domain_realm]
 .hadoop.example.com = HADOOP.EXAMPLE.COM
 hadoop.example.com = HADOOP.EXAMPLE.COM
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM

3. To set up the cross-realm trust in the cluster-dedicated KDC, type the following command in the kadmin.local
or kadmin shell on the cluster-dedicated KDC host to create a krbtgt principal. Substitute your cluster-dedicated
KDC realm for HADOOP.EXAMPLE.COM, and substitute your central KDC realm for EXAMPLE.COM. Enter a trust
password when prompted. Note the password because you will need to enter the exact same password in the
central KDC in the next step.

kadmin: addprinc krbtgt/HADOOP.EXAMPLE.COM@EXAMPLE.COM

4. Each of your Hadoop client users must also place this information in their local core-site.xml file. The easiest
way to do so is by using the Cloudera Manager Admin Console to generate a client configuration file.

5. To set up the cross-realm trust in the central KDC, type the same command in the kadmin.local or kadmin
shell on the central KDC host to create the exact same krbtgt principal and password.

kadmin: addprinc krbtgt/HADOOP.EXAMPLE.COM@EXAMPLE.COM

Important: For a cross-realm trust to operate properly, both KDCs must have the same krbtgt
principal and password, and both KDCs must be configured to use the same encryption type.

Cloudera Security | 193

Configuring Authentication

http://web.mit.edu/Kerberos/krb5-1.8/

6. To properly translate principal names from the central KDC realm into the cluster-dedicated KDC realm for the
Hadoop cluster, configure the Trusted Kerberos Realms property of the HDFS service.

a. Open the Cloudera Manager Admin Console.
b. Go to the HDFS service.
c. Click the Configuration tab.
d. Select Scope > HDFS (Service Wide)
e. Select Category > Security.
f. Type Kerberos in the Search box.
g. Edit the Trusted Kerberos Realms property to add the name of your central KDC realm. If you need to use

more advanced mappings which do more than just allow principals from another domain, you may enter
them in the Additional Rules to Map Kerberos Principals to Short Names property. For more information
about name mapping rules, see Configuring the Mapping from Kerberos Principals to Short Names on page
120.

7. Each of your Hadoop client users must also place this information in their local core-site.xml file. The easiest
way to do so is by using the Cloudera Manager Admin Console to generate a client configuration file.

8. Proceed to Step 2: If You are Using AES-256 Encryption, Install the JCE Policy File on page 79. Later in this procedure,
you will restart the services to have the configuration changes in core-site.xml take effect.

Using a Cluster-Dedicated MIT KDC with Active Directory

Important: If you are using Cloudera Manager, ensure you have installed the openldap-clients
package on the Cloudera Manager Server host before you begin configuring Kerberos authentication.

On the Active Directory Server

1. On the Active Directory server host, type the following command to add the local realm trust to Active Directory:

netdom trust HADOOP.EXAMPLE.COM /Domain:EXAMPLE.COM /add /realm /passwordt:TrustPassword

2. On the Active Directory server host, type the following command to set the proper encryption type:

Windows 2003 RC2

Windows 2003 server installations do not support AES encryption for Kerberos. Therefore RC4 should be used.
Please see the Microsoft reference documentation for more information.

ktpass /MITRealmName HADOOP.EXAMPLE.COM /TrustEncryp RC4

Windows 2008

ksetup /SetEncTypeAttr HADOOP.EXAMPLE.COM <enc_type>

Where the <enc_type> parameter can be replacedwith parameter strings for AES, DES, or RC4 encryptionmodes.
For example, for AES encryption, replace <enc_type> with AES256-CTS-HMAC-SHA1-96 or
AES128-CTS-HMAC-SHA1-96 and for RC4 encryption, replace with RC4-HMAC-MD5. See theMicrosoft reference
documentation for more information.

Important: Make sure that the encryption type you specify is supported on both your version
of Windows Active Directory and your version of MIT Kerberos.

194 | Cloudera Security

Configuring Authentication

http://social.technet.microsoft.com/wiki/contents/articles/2751.kerberos-interoperability-step-by-step-guide-for-windows-server-2003.aspx
http://technet.microsoft.com/en-us/library/hh240207.aspx
http://technet.microsoft.com/en-us/library/hh240207.aspx

On the MIT KDC Server

1. In the /var/kerberos/krb5kdc/kdc.conf file on the local dedicated KDC server host, configure the default
realm for the Hadoop cluster by substituting your Kerberos realm in the following realms property:

[realms]
 HADOOP.EXAMPLE.COM = {

2. Each of your Hadoop client users must also place this information in their local core-site.xml file. The easiest
way to do so is by using the Cloudera Manager Admin Console to generate a client configuration file.

3. On the local MIT KDC server host, type the following command in the kadmin.local or kadmin shell to add the
cross-realm krbtgt principal:

kadmin: addprinc -e "<keysalt_list>" krbtgt/HADOOP.EXAMPLE.COM@EXAMPLE.COM

where the <keysalt_list> parameter specifies the types of keys and their salt to be used for encryption of the
password for this cross-realm krbtgt principal. It can be set to AES, or RC4 keytypes with a salt value of :normal.
Note that DES is deprecated and should no longer be used. You can specify multiple keysalt types using the
parameter in the command above. Make sure that at least one of the encryption types corresponds to the
encryption types found in the tickets granted by the KDC in the remote realm. For an example of the values to
use, see the examples based on the Active Directory functional domain level, below.

Examples by Active Directory Domain or Forest "Functional level"

Active Directory will, based on the Domain or Forest functional level, use encryption types supported by that
release of the Windows Server operating system. It is not possible to use AES encryption types with an AD 2003
functional level. If you notice that DES encryption types are being used when authenticating or requesting service
tickets to Active Directory then it might be necessary to enable weak encryption types in the /etc/krb5.conf.
See Sample Kerberos Configuration Files on page 206 for an example.

• Windows 2003

kadmin: addprinc -e "rc4-hmac:normal" krbtgt/HADOOP.EXAMPLE.COM@EXAMPLE.COM

• Windows 2008

kadmin: addprinc -e "aes256-cts:normal aes128-cts:normal rc4-hmac:normal"
krbtgt/HADOOP.EXAMPLE.COM@EXAMPLE.COM

Note: The cross-realm krbtgt principal that you add in this step must have at least one entry
that uses the same encryption type as the tickets that are issued by the remote KDC. If there are
no matching encryption types, principals in the local realm can successfully access the Hadoop
cluster, but principals in the remote realm are unable to.

On All Cluster Hosts

1. In the /etc/krb5.conf file on all cluster hosts and all Hadoop client user hosts, configure both Kerberos realms.
Note that default_realm should be configured as the local MIT Kerberos realm for the cluster. Your krb5.conf
may contain more configuration properties than those demonstrated below. This example is provided to clarify
configuration parameters. See Sample Kerberos Configuration Files on page 206 for more information.

[libdefaults]
 default_realm = HADOOP.EXAMPLE.COM
[realms]
 EXAMPLE.COM = {
 kdc = dc01.example.com:88
 admin_server = dc01.example.com:749
 }

Cloudera Security | 195

Configuring Authentication

 HADOOP.EXAMPLE.COM = {
 kdc = kdc01.hadoop.example.com:88
 admin_server = kdc01.hadoop.example.com:749
 }
[domain_realm]
 .hadoop.example.com = HADOOP.EXAMPLE.COM
 hadoop.example.com = HADOOP.EXAMPLE.COM
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM

2. Use one of the following methods to properly translate principal names from the Active Directory realm into the
cluster-dedicated KDC realm for the Hadoop cluster.

• Using Cloudera Manager: Configure the Trusted Kerberos realms property of the HDFS service:

1. Open the Cloudera Manager Admin Console.
2. Go to the HDFS service.
3. Click the Configuration tab.
4. Select Scope > HDFS (Service Wide)
5. Select Category > Security.
6. Type Kerberos in the Search box.
7. Edit the Trusted Kerberos Realms property to add the name of your central KDC realm. If you need to

use more advanced mappings which do more than just allow principals from another domain, you may
enter them in the Additional Rules to Map Kerberos Principals to Short Names property. For more
information about name mapping rules, see Configuring the Mapping from Kerberos Principals to Short
Names on page 120.

• Using theCommandLine:Configure thehadoop.security.auth_to_local setting in thecore-site.xml
file on all of the cluster hosts. The following example translates all principal names with the realm
EXAMPLE.COM into the first component of the principal name only. It also preserves the standard translation
for the default realm (the cluster realm).

<property>
 <name>hadoop.security.auth_to_local</name>
 <value>
 RULE:[1:$1@$0](^.*@EXAMPLE\.COM$)s/^(.*)@EXAMPLE\.COM$/$1/g
 RULE:[2:$1@$0](^.*@EXAMPLE\.COM$)s/^(.*)@EXAMPLE\.COM$/$1/g
 DEFAULT
 </value>
</property>

Integrating Hadoop Security with Active Directory

Considerations when using an Active Directory KDC
Performance:

As your cluster grows, so will the volume of Authentication Service (AS) and Ticket Granting Service (TGS) interaction
between the services on each cluster server. Consider evaluating the volume of this interaction against the Active
Directory domain controllers you have configured for the cluster before rolling this feature out to a production
environment. If cluster performance suffers, over time it might become necessary to dedicate a set of AD domain
controllers to larger deployments. Cloudera recommends you use a dedicated AD instance for every 100 nodes in your
cluster. However, note that this recommendation may not apply to high-volume clusters, or cases where the AD host
is also being used for LDAP lookups.

Network Proximity:

By default, Kerberos uses UDP for client/server communication. Often, AD services are in a different network than
project application services such as Hadoop. If the domain controllers supporting a cluster for Kerberos are not in the
same subnet, or they're separated by a firewall, consider using the udp_preference_limit = 1 setting in the

196 | Cloudera Security

Configuring Authentication

[libdefaults] section of the krb5.conf used by cluster services. Cloudera strongly recommends against using AD
domain controller (KDC) servers that are separated from the cluster by a WAN connection, as latency in this service
will significantly impact cluster performance.

Process:

Troubleshooting the cluster's operations, especially for Kerberos-enabled services, will need to includeAD administration
resources. Evaluate your organizational processes for engaging the AD administration team, and how to escalate in
case a cluster outage occurs due to issues with Kerberos authentication against AD services. In some situations it might
be necessary to enable Kerberos event logging to address desktop and KDC issues within windows environments.

Also note that if you decommission any Cloudera Manager roles or nodes, the related AD accounts will need to be
deleted manually. This is required because Cloudera Manager will not delete existing entries in Active Directory.

Important: With CDH 5.1 and higher, clusters managed by Cloudera Manager 5.1 (and higher) do not
require a local MIT KDC and are able to integrate directly with an Active Directory KDC. Cloudera
recommends you use a direct-to-AD setup. For instructions, see Enabling Kerberos Authentication
Using the Wizard on page 59.

If direct integration with AD is not currently possible, use the following instructions to configure a local MIT KDC to
trust your AD server:

1. Run an MIT Kerberos KDC and realm local to the cluster and create all service principals in this realm.
2. Set up one-way cross-realm trust from this realm to the Active Directory realm. Using this method, there is no

need to create service principals in Active Directory, but Active Directory principals (users) can be authenticated
to Hadoop. See Configuring a Local MIT Kerberos Realm to Trust Active Directory on page 197.

Configuring a Local MIT Kerberos Realm to Trust Active Directory

On the Active Directory Server

1. Add the local realm trust to Active Directory with this command:

netdom trust YOUR-LOCAL-REALM.COMPANY.COM /Domain:AD-REALM.COMPANY.COM /add /realm
/passwordt:<TrustPassword>

2. Set the proper encryption type with this command:

OnWindows 2003 RC2:

ktpass /MITRealmName YOUR-LOCAL-REALM.COMPANY.COM /TrustEncryp <enc_type>

OnWindows 2008:

ksetup /SetEncTypeAttr YOUR-LOCAL-REALM.COMPANY.COM <enc_type>

The <enc_type> parameter specifies AES, DES, or RC4 encryption. Refer to the documentation for your version of
Windows Active Directory to find the <enc_type> parameter string to use.

3. Get and verify the list of encryption types set with this command:

OnWindows 2008:

ksetup /GetEncTypeAttr YOUR-LOCAL-REALM.COMPANY.COM

Important: Make sure the encryption type you specify is supported on both your version of
Windows Active Directory and your version of MIT Kerberos.

Cloudera Security | 197

Configuring Authentication

https://support.microsoft.com/en-us/kb/262177?wa=wsignin1.0

On the MIT KDC Server

Type the following command in the kadmin.local or kadmin shell to add the cross-realm krbtgt principal. Use the same
password you used in the netdom command on the Active Directory Server.

kadmin: addprinc -e "<enc_type_list>"
krbtgt/YOUR-LOCAL-REALM.COMPANY.COM@AD-REALM.COMPANY.COM

where the <enc_type_list> parameter specifies the types of encryption this cross-realm krbtgt principal will support:
either AES, DES, or RC4 encryption. You can specify multiple encryption types using the parameter in the command
above, what's important is that at least one of the encryption types corresponds to the encryption type found in the
tickets granted by the KDC in the remote realm. For example:

kadmin: addprinc -e "rc4-hmac:normal des3-hmac-sha1:normal"
krbtgt/YOUR-LOCAL-REALM.COMPANY.COM@AD-REALM.COMPANY.COM

Note: The cross-realm krbtgt principal that you add in this step must have at least one entry that
uses the same encryption type as the tickets that are issued by the remote KDC. If no entries have the
same encryption type, then the problem you will see is that authenticating as a principal in the local
realm will allow you to successfully run Hadoop commands, but authenticating as a principal in the
remote realm will not allow you to run Hadoop commands.

On All of the Cluster Hosts

1. Verify that both Kerberos realms are configured on all of the cluster hosts. Note that the default realm and the
domain realm should remain set as the MIT Kerberos realm which is local to the cluster.

[realms]
 AD-REALM.CORP.FOO.COM = {
 kdc = ad.corp.foo.com:88
 admin_server = ad.corp.foo.com:749
 default_domain = foo.com
 }
 CLUSTER-REALM.CORP.FOO.COM = {
 kdc = cluster01.corp.foo.com:88
 admin_server = cluster01.corp.foo.com:749
 default_domain = foo.com
 }

2. To properly translate principal names from the Active Directory realm into local names within Hadoop, you must
configure the hadoop.security.auth_to_local setting in the core-site.xml file on all of the cluster
machines. The following example translates all principal names with the realm AD-REALM.CORP.FOO.COM into
the first component of the principal name only. It also preserves the standard translation for the default realm
(the cluster realm).

<property>
 <name>hadoop.security.auth_to_local</name>
 <value>
 RULE:[1:$1@$0](^.*@AD-REALM\.CORP\.FOO\.COM$)s/^(.*)@AD-REALM\.CORP\.FOO\.COM$/$1/g

 RULE:[2:$1@$0](^.*@AD-REALM\.CORP\.FOO\.COM$)s/^(.*)@AD-REALM\.CORP\.FOO\.COM$/$1/g

 DEFAULT
 </value>
</property>

For more information about name mapping rules, see Configuring the Mapping from Kerberos Principals to Short
Names on page 120.

198 | Cloudera Security

Configuring Authentication

Integrating Hadoop Security with Alternate Authentication
One of the ramifications of enabling security on a Hadoop cluster is that every user who interacts with the cluster must
have a Kerberos principal configured. For some of the services, specifically Oozie and Hadoop (for example, JobTracker
and TaskTracker), it can be convenient to run a mixed form of authentication where Kerberos authentication is used
for API or command line access while some other form of authentication (for example, SSO and LDAP) is used for
accessing Web UIs. Using an alternate authentication deployment is considered an advanced topic because only a
partial implementation is provided in this release: you will have to implement some of the code yourself.

Note: The following instructions assume you already have a Kerberos-enabled cluster.

Proceed as follows:

• Configuring the AuthenticationFilter to use Kerberos on page 199
• Creating an AltKerberosAuthenticationHandler Subclass on page 199
• Enabling Your AltKerberosAuthenticationHandler Subclass on page 199

See also the Example Implementation for Oozie on page 201.

Configuring the AuthenticationFilter to use Kerberos

First, you must do all of the steps in the Server Side Configuration section of the Hadoop Auth, Java HTTP SPNEGO
Documentation to configureAuthenticationFilter to use Kerberos. Youmust configureAuthenticationFilter
to use Kerberos before doing the steps below.

Creating an AltKerberosAuthenticationHandler Subclass

An AuthenticationHandler is installed on the server-side to handle authenticating clients and creating an
AuthenticationToken.

1. Subclass the
org.apache.hadoop.security.authentication.server.AltKerberosAuthenticationHandler class
(in the hadoop-auth package).

2. When a client sends a request, the authenticate method will be called. For browsers,
AltKerberosAuthenticationHandler will call the alternateAuthenticatemethod, which is what you
need to implement to interact with the desired authentication mechanism. For non-browsers,
AltKerberosAuthenticationHandler will follow the Kerberos SPNEGO sequence (this is provided for you).

3. The alternateAuthenticate(HttpServletRequest request, HttpServletResponse response)
method in your subclass should following these rules:

4. Return null if the authentication is still in progress; the response object can be used to interact with the client.
5. Throw an AuthenticationException if the authentication failed.
6. Return an AuthenticationToken if the authentication completed successfully.

Enabling Your AltKerberosAuthenticationHandler Subclass

You can enable the alternate authentication on Hadoop Web UIs, Oozie Web UIs, or both. You will need to include a
JAR containing your subclass on the classpath of Hadoop or Oozie. All Kerberos-related configuration properties will
still apply.

Enabling Your AltKerberosAuthenticationHandler Subclass on Hadoop Web UIs

1. Stop Hadoop by running the following command on every node in your cluster (as root):

$ for x in `cd /etc/init.d ; ls hadoop-*` ; do sudo service $x stop ; done

Cloudera Security | 199

Configuring Authentication

https://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-auth/index.html
https://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-auth/index.html

2. Set the following property in core-site.xml, where
org.my.subclass.of.AltKerberosAuthenticationHandler is the classname of your subclass:

<property>
 <name>hadoop.http.authentication.type</name>
 <value>org.my.subclass.of.AltKerberosAuthenticationHandler</value>
</property>

3. (Optional) You can also specify which user-agents you do not want to be considered as browsers by setting the
following property as required (default value is shown). Note that all Java-based programs (such as Hadoop client)
will use java as their user-agent.

<property>
 <name>hadoop.http.authentication.alt-kerberos.non-browser.user-agents</name>
 <value>java,curl,wget,perl</value>
</property>

4. Copy the JAR containing your subclass into /usr/lib/hadoop/lib/.
5. Start Hadoop by running the following command:

$ for x in `cd /etc/init.d ; ls hadoop-*` ; do sudo service $x start ; done

Enabling Your AltKerberosAuthenticationHandler Subclass on Oozie Web UI

Note:

These instructions assume you have already performed the installation and configuration steps in
Oozie Security Configuration.

1. Stop the Oozie Server:

sudo /sbin/service oozie stop

2. Set the following property in oozie-site.xml, where
org.my.subclass.of.AltKerberosAuthenticationHandler is the classname of your subclass:

<property>
 <name>oozie.authentication.type</name>
 <value>org.my.subclass.of.AltKerberosAuthenticationHandler</value>
</property>

3. (Optional) You can also specify which user-agents you do not want to be considered as browsers by setting the
following property as required (default value is shown). Note that all Java-based programs (such as Hadoop client)
will use java as their user-agent.

<property>
 <name>oozie.authentication.alt-kerberos.non-browser.user-agents</name>
 <value>java,curl,wget,perl</value>
</property>

4. Copy the JAR containing your subclass into /var/lib/oozie.
5. Start the Oozie Server:

sudo /sbin/service oozie start

200 | Cloudera Security

Configuring Authentication

Example Implementation for Oozie

Warning:

The example implementation isNOT SECURE. Its purpose is to be as simple as possible, as an example
of how to write your own AltKerberosAuthenticationHandler subclass.

It should NOT be used in a production environment

An example implementation of AltKerberosAuthenticationHandler is included (though not built by default)
with Oozie. Also included is a simple Login Server with two implementations. The first one will authenticate any user
who is using a username and password that are identical, such as foo:foo. The second one can be configured against
an LDAP server to use LDAP for authentication.

You can read comprehensive documentation on the example at Creating Custom Authentication.

Important:

If you installed Oozie from the CDH packages and are deploying oozie-login.war alongside
oozie.war, youwill also need to run the following commands after you copy the oozie-login.war
file to/usr/lib/oozie/oozie-server (if using YARNor/usr/lib/oozie/oozie-server-0.20
if using MRv1) because it does not automatically be expanded:

jar xvf oozie-login.war
mkdir oozie-login
mv META-INF oozie-login/
mv WEB-INF oozie-login/

Authenticating Kerberos Principals in Java Code
This topic provides an example of how to authenticate a Kerberos principal in a Java application using the
org.apache.hadoop.security.UserGroupInformation class.

The following code snippet authenticates the cloudera principal using the cloudera.keytab file:

// Authenticating Kerberos principal
System.out.println("Principal Authentication: ");
final String user = "cloudera@CLOUDERA.COM";
final String keyPath = "cloudera.keytab";
UserGroupInformation.loginUserFromKeytab(user, keyPath);

Using a Web Browser to Access an URL Protected by Kerberos HTTP SPNEGO
To access a URL protected by Kerberos HTTP SPNEGO, use the following instructions for the browser you are using.

To configure Mozilla Firefox:

1. Open the low level Firefox configuration page by loading the about:config page.
2. In the Search text box, enter: network.negotiate-auth.trusted-uris
3. Double-click thenetwork.negotiate-auth.trusted-uris preference and enter the hostnameor the domain

of the web server that is protected by Kerberos HTTP SPNEGO. Separate multiple domains and hostnames with
a comma.

4. Click OK.

Cloudera Security | 201

Configuring Authentication

https://archive.cloudera.com/cdh5/cdh/5/oozie/ENG_Custom_Authentication.html

To configure Internet Explorer:

Follow the instructions given below to configure Internet Explorer to access URLs protected by

Configuring the Local Intranet Domain

1. Open Internet Explorer and click the Settings "gear" icon in the top-right corner. Select Internet options.
2. Select the Security tab.
3. Select the Local Intranet zone and click the Sites button.
4. Make sure that the first two options, Include all local (intranet) sites not listed in other zones and Include all

sites that bypass the proxy server are checked.
5. Click Advanced and add the names of the domains that are protected by Kerberos HTTP SPNEGO, one at a time,

to the list of websites. For example, myhost.example.com. Click Close.
6. Click OK to save your configuration changes.

202 | Cloudera Security

Configuring Authentication

Configuring Intranet Authentication

1. Click the Settings "gear" icon in the top-right corner. Select Internet options.
2. Select the Security tab.
3. Select the Local Intranet zone and click the Custom level... button to open the Security Settings - Local Intranet

Zone dialog box.
4. Scroll down to the User Authentication options and select Automatic logon only in Intranet zone.
5. Click OK to save these changes.

Cloudera Security | 203

Configuring Authentication

Verifying Proxy Settings

You need to perform the following steps only if you have a proxy server already enabled.

1. Click the Settings "gear" icon in the top-right corner. Select Internet options.
2. Select the Connections tab and click LAN Settings.
3. Verify that the proxy server Address and Port number settings are correct.
4. Click Advanced to open the Proxy Settings dialog box.
5. Add the Kerberos-protected domains to the Exceptions field.
6. Click OK to save any changes.

204 | Cloudera Security

Configuring Authentication

To configure Google Chrome:

If you are using Windows, use the Control Panel to go to the Internet Options dialog box. Configuration changes
required are the same as those described above for Internet Explorer.

OnMacOS or Linux, add the--auth-server-whitelist parameter to thegoogle-chrome command. For example,
to run Chrome from a Linux prompt, run the google-chrome command as follows,

> google-chrome --auth-server-whitelist = "hostname/domain"

Troubleshooting Kerberos Issues
This topic describes the steps you can take to investigate problems with Kerberos authentication. It contains some
sample KDC configuration scripts that you can use to make sure your cluster was configured correctly. The following
sections also have instructions on using the Kerberos command-line tools, kinit and klist, to investigate the KDC
and cluster setup. Finally, you can use the instructions described below to enable debugging for Kerberos using either
the command-line or Cloudera Manager.

Verifying Kerberos Configuration

When you're faced with a Kerberos-related issue, first try to pinpoint the cause of failure. A Kerberized deployment
has several potential points of failure. These include the KDC itself, missing Kerberos or OS packages, incorrectmapping
of Kerberos realms, among others. For example, you could start by investigating whether the issue is with a user with
faulty credentials, or with the service that is failing to authenticate users. Another good starting point is to make sure
that the Kerberos configuration files have been configured correctly and are being deployed consistently across all
cluster hosts.

If the issue you are diagnosing is not already obvious to you, Cloudera recommends you begin with auditing your
Kerberos deployment. Use this audit to confirm that you have followed the Kerberos steps as listed in the Cloudera
Security Guide, and that your cluster has been configured correctly. Make sure you perform the following configuration
checks:

• Confirm that your /etc/hosts file conforms to Cloudera Manager's installation requirements. Verify forward
and reverse name resolution for all cluster hosts, including the KDC hosts, MIT or AD.

Cloudera Security | 205

Configuring Authentication

• Ensure the required Kerberos server and workstation packages based on the version of the OS you are using.
• Check whether the hadoop.security.auth_to_local property in core-site.xml has the propermappings

for all trusted Kerberos realms, especially the HDFS trusted realms. Do this for every service that is using Kerberos.
• Verify your Kerberos configuration using the sample krb5.conf and kdc.conf files provided below.
• Review the configuration of all the KDC, REALM, and domain hosts referenced in the krb5.conf and kdc.conf

files. The KDC host in particular, is a common point-of-failure and you may have to begin troubleshooting there.
Ensure that the REALM set in krb5.conf has the correct hostname listed for the KDC. If you are using cross-realm
authentication, see Reviewing Service Ticket Credentials in Cross Realm Deployments on page 209.

• Check whether the services using Kerberos are running and responding properly with kinit/klist.
• Attempt to authenticate to Cloudera Manager using cluster service credentials specific to the issue or affected

service. Examine the issued credentials if you are able to successfully authenticate with the service keytab.
• Use klist to list the principals present within a service keytab to ensure each service has one.
• Enabling debugging using either the command line or Cloudera Manager.

Sample Kerberos Configuration Files

/etc/krb5.conf

The/etc/krb5.conf file is the configuration a client uses to access a realm through its configured KDC. Thekrb5.conf
maps the realm to the available servers supporting those realms. It also defines the host-specific configuration rules
for how tickets are requested and granted.

[logging]
 default = FILE:/var/log/krb5libs.log
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmind.log

[libdefaults]
 default_realm = EXAMPLE.COM
 dns_lookup_realm = false
 dns_lookup_kdc = false
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = true
udp_preference_limit = 1

set udp_preference_limit = 1 when TCP only should be
used. Consider using in complex network environments when
troubleshooting or when dealing with inconsistent
client behavior or GSS (63) messages.

uncomment the following if AD cross realm auth is ONLY providing DES encrypted tickets
allow-weak-crypto = true

[realms]
 AD-REALM.EXAMPLE.COM = {
 kdc = AD1.ad-realm.example.com:88
 kdc = AD2.ad-realm.example.com:88
 admin_server = AD1.ad-realm.example.com:749
 admin_server = AD2.ad-realm.example.com:749
 default_domain = ad-realm.example.com
 }
 EXAMPLE.COM = {
 kdc = kdc1.example.com:88
 admin_server = kdc1.example.com:749
 default_domain = example.com
 }

The domain_realm is critical for mapping your host domain names to the kerberos realms
that are servicing them. Make sure the lowercase left hand portion indicates any
domains or subdomains
that will be related to the kerberos REALM on the right hand side of the expression.
 REALMs will
always be UPPERCASE. For example, if your actual DNS domain was test.com but your
kerberos REALM is
EXAMPLE.COM then you would have,

206 | Cloudera Security

Configuring Authentication

[domain_realm]
test.com = EXAMPLE.COM
#AD domains and realms are usually the same
ad-domain.example.com = AD-REALM.EXAMPLE.COM
ad-realm.example.com = AD-REALM.EXAMPLE.COM

/var/kerberos/krb5kdc

The kdc.conf file only needs to be configured on the actual cluster-dedicated KDC, and should be located at
/var/kerberos/krb5kdc. Only primary and secondary KDCs need access to this configuration file. The contents of
this file establish the configuration rules which are enforced for all client hosts in the REALM.

[kdcdefaults]
 kdc_ports = 88
 kdc_tcp_ports = 88

[realms]
 EXAMPLE.COM = {
 #master_key_type = aes256-cts
 max_renewable_life = 7d 0h 0m 0s
 acl_file = /var/kerberos/krb5kdc/kadm5.acl
 dict_file = /usr/share/dict/words
 admin_keytab = /var/kerberos/krb5kdc/kadm5.keytab
note that aes256 is ONLY supported in Active Directory in a domain / forrest operating
 at a 2008 or greater functional level.
aes256 requires that you download and deploy the JCE Policy files for your JDK release
 level to provide
strong java encryption extension levels like AES256. Make sure to match based on the
 encryption configured within AD for
cross realm auth, note that RC4 = arcfour when comparing windows and linux enctypes
 supported_enctypes = aes256-cts:normal aes128-cts:normal arcfour-hmac:normal
 default_principal_flags = +renewable, +forwardable
 }

kadm5.acl

*/admin@HADOOP.COM *
cloudera-scm@HADOOP.COM * flume/*@HADOOP.COM
cloudera-scm@HADOOP.COM * hbase/*@HADOOP.COM
cloudera-scm@HADOOP.COM * hdfs/*@HADOOP.COM
cloudera-scm@HADOOP.COM * hive/*@HADOOP.COM
cloudera-scm@HADOOP.COM * httpfs/*@HADOOP.COM
cloudera-scm@HADOOP.COM * HTTP/*@HADOOP.COM
cloudera-scm@HADOOP.COM * hue/*@HADOOP.COM
cloudera-scm@HADOOP.COM * impala/*@HADOOP.COM
cloudera-scm@HADOOP.COM * mapred/*@HADOOP.COM
cloudera-scm@HADOOP.COM * oozie/*@HADOOP.COM
cloudera-scm@HADOOP.COM * solr/*@HADOOP.COM
cloudera-scm@HADOOP.COM * sqoop/*@HADOOP.COM
cloudera-scm@HADOOP.COM * yarn/*@HADOOP.COM
cloudera-scm@HADOOP.COM * zookeeper/*@HADOOP.COM

Authenticate to Kerberos using the kinit command line tool

The kinit command line tool is used to authenticate a user, service, system, or device to a KDC. The most basic
example is a user authenticating to Kerberos with a username (principal) and password. In the following example, the
first attempt uses a wrong password, followed by a second successful attempt.

[alice@host1 ~]$ kinit alice@TEST.ORG.LAB
Password for alice@TEST.ORG.LAB: (wrong password)
kinit: Preauthentication failed while getting initial credentials

[alice@host1 ~]$ kinit alice@TEST.ORG.LAB
Password for alice@TEST.ORG.LAB: (correct password)
(note silent return on successful auth)

Cloudera Security | 207

Configuring Authentication

[alice@host1 ~]$ klist
Ticket cache: FILE:/tmp/krb5cc_10001
Default principal: alice@TEST.ORG.LAB

Valid starting Expires Service principal
03/11/14 11:55:39 03/11/14 21:54:55 krbtgt/TEST.ORG.LAB@TEST.ORG.LAB
renew until 03/18/14 11:55:39

Another method of authentication is using keytabs with the kinit command. You can verify whether authentication
was successful by using theklist command to show the credentials issued by the KDC. The following example attempts
to authenticate the hdfs service to the KDC by using the hdfs keytab file.

[root@host1 312-hdfs-DATANODE]# kinit -kt hdfs.keytab hdfs/host1.test.lab@TEST.LAB
[root@host1 312-hdfs-DATANODE]# klist
Ticket cache: FILE:/tmp/krb5cc_0
Default principal: hdfs/host1.test.lab@TEST.LAB

Valid starting Expires Service principal
03/11/14 11:18:34 03/12/14 11:18:34 krbtgt/TEST.LAB@TEST.LAB
renew until 03/18/14 11:18:34

Troubleshooting using service keytabs maintained by Cloudera Manager

Every service managed by Cloudera Manager has a keytab file that is provided at startup by the Cloudera Manager
Agent. The most recent keytab files can be examined by navigating to the path,
/var/run/cloudera-scm-agent/process, with an ls -ltr command.

As you can see in the example below, ClouderaManager service directory names have the form: ###-service-ROLE.
Therefore, if you are troubleshooting the HDFS service, the service directory may be called, 326-hdfs-NAMENODE.

[root@cehd1 ~]# cd /var/run/cloudera-scm-agent/process/
[root@cehd1 process]# ls -ltr | grep NAMENODE | tail -3
drwxr-x--x 3 hdfs hdfs 4096 Mar 3 23:43 313-hdfs-NAMENODE
drwxr-x--x 3 hdfs hdfs 4096 Mar 4 00:07 326-hdfs-NAMENODE
drwxr-x--x 3 hdfs hdfs 4096 Mar 4 00:07 328-hdfs-NAMENODE-nnRpcWait

[root@cehd1 process]# cd 326-hdfs-NAMENODE

[root@cehd1 326-hdfs-NAMENODE]# ls
cloudera_manager_agent_fencer.py dfs_hosts_allow.txt hdfs.keytab
 log4j.properties topology.py
cloudera_manager_agent_fencer_secret_key.txt dfs_hosts_exclude.txt hdfs-site.xml
 logs
cloudera-monitor.properties event-filter-rules.json
http-auth-signature-secret navigator.client.properties
core-site.xml hadoop-metrics2.properties krb5cc_494
 topology.map

If you have root access to the /var/run/cloudera-scm-agent/process path, you can use any service's keytab
file to log in as root or a sudo user to verify whether basic Kerberos authentication is working.

Once you have located a service keytab file, examine its contents using the klist command (more on this, later). The
klist command can show you the credentials stored in a keytab file. For example, to list the credentials stored in the
hdfs.keytab file, use the following command:

[root@host1 326-hdfs-DATANODE]# klist -kt hdfs.keytab

Keytab name: WRFILE:hdfs.keytab
KVNO Timestamp Principal
---- ----------------- --
 4 02/17/14 19:09:17 HTTP/host1.test.lab@TEST.LAB
 4 02/17/14 19:09:17 HTTP/host1.test.lab@TEST.LAB
 4 02/17/14 19:09:17 HTTP/host1.test.lab@TEST.LAB
 4 02/17/14 19:09:17 HTTP/host1.test.lab@TEST.LAB
 4 02/17/14 19:09:17 HTTP/host1.test.lab@TEST.LAB
 4 02/17/14 19:09:17 HTTP/host1.test.lab@TEST.LAB
 4 02/17/14 19:09:17 hdfs/host1.test.lab@TEST.LAB

208 | Cloudera Security

Configuring Authentication

 4 02/17/14 19:09:17 hdfs/host1.test.lab@TEST.LAB
 4 02/17/14 19:09:17 hdfs/host1.test.lab@TEST.LAB
 4 02/17/14 19:09:17 hdfs/host1.test.lab@TEST.LAB
 4 02/17/14 19:09:17 hdfs/host1.test.lab@TEST.LAB
 4 02/17/14 19:09:17 hdfs/host1.test.lab@TEST.LAB

Now, attempt to authenticate using the keytab file and a principal within it. In this case, we use the hdfs.keytab file
with the hdfs/host1.test.lab@TEST.LAB principal. Then use the klist command without any arguments to see
the current user session's credentials.

root@host1 312-hdfs-DATANODE]# kinit -kt hdfs.keytab hdfs/host1.test.lab@TEST.LAB
[root@host1 312-hdfs-DATANODE]# klist

Ticket cache: FILE:/tmp/krb5cc_0
Default principal: hdfs/host1.test.lab@TEST.LAB

Valid starting Expires Service principal
03/11/14 11:18:34 03/12/14 11:18:34 krbtgt/TEST.LAB@TEST.LAB
renew until 03/18/14 11:18:34

Note that Kerberos credentials have an expiry date and time. This means, to make sure Kerberos credentials are valid
uniformly over a cluster, all hosts and clients within the cluster should be using NTP and must never drift more than 5
minutes apart from each other. Kerberos session tickets have a limited lifespan, but can be renewed (as indicated in
the samplekrb5.conf andkdc.conf). CDH requires renewable tickets for cluster principals. Checkwhether renewable
tickets have been enabled by using a klist commandwith the -e (list key encryption types) and -f (list flags set) switches
when examining Kerberos sessions and credentials.

Examining Kerberos credentials with klist

So far we've only seen basic usage examples of the klist command to list the contents of a keytab file, or to examine
a user's credentials. To getmore information from theklist command, such as the encryption types being negotiated,
or the flags being set for credentials being issued by the KDC, use the klist -ef command. The output for this
command will show you the negotiated encryption types for a user or service principal. This is useful information
because you may troubleshoot errors caused (especially in cross-realm trust deployments) because an AD or MIT KDC
server may not support a particular encryption type. Look for the encryption types under the "Etype" section of the
output.

Flags indicate options supported by Kerberos that extend the features of a set of issued credentials. As discussed
previously, CDH requires renewable as well as forwardable tickets for successful authentication, especially in cross
realm environments. Look for these settings in the "Flags:" section of the klist -ef output shown below where, F
= Forwardable, and, R = renewable.

For example, if you use the klist -ef command in an ongoing user session:

[alice@host1 ~]$ klist -ef
Ticket cache: FILE:/tmp/krb5cc_10001
Default principal: alice@TEST.ORG.LAB
Valid starting Expires Service principal
03/11/14 11:55:39 03/11/14 21:54:55 krbtgt/TEST.ORG.LAB@TEST.ORG.LAB
renew until 03/18/14 11:55:39, Flags: FRIA
Etype (skey, tkt): aes256-cts-hmac-sha1-96,
 aes256-cts-hmac-sha1-96

Reviewing Service Ticket Credentials in Cross Realm Deployments

When you examine your cluster configuration, make sure you haven't violated any of following the integration rules:

• When negotiating encryption types, follow the realm with the most specific limitations on supported encryption
types.

• All realms should be known to one another through the /etc/krb5.conf file deployed on the cluster.
• When you make configuration decisions for Active Directory environments, you must evaluate the Domain

Functional Level or Forrest Functional Level that is present.

Cloudera Security | 209

Configuring Authentication

Kerberoswill typically negotiate the strongest formof encryption possible between a client and server for authentication
into the realm. However, the encryption types for TGTs may sometimes end up being negotiated downward towards
the weaker encryption types, which is not desirable. To investigate such issues, check the kvno of the cross-realm trust
principal (krbtgt) as described in the following steps. Replace CLUSTER.REALM and AD.REALM (or MIT.REALM) with
the appropriate values for your configured realm. This scenario assumes cross-realm authentication with Active
Directory.

1. Once trust has been configured (see sample files in previous section), kinit as a system user by authenticating
to the AD Kerberos realm.

2. From the command line, perform a kvno check of the local and cross-realm krbtgt entry. The local representation
of this specialREALM service principal is in the form,krbtgt/CLUSTER.REALM@CLUSTER.REALM. The cross-realm
principal is named after the trusted realm in the form, krbtgt/AD.REALM.

If the kvno check fails, this means cross-realm trust was not set up correctly. Once again review the encryption
types in use tomake sure there are no incompatibilities or unsupported encryption types being used across realms.

Enabling Debugging in Cloudera Manager for CDH Services

The following instructions are specific to a Cloudera Manager managed-HDFS service and must be modified based on
the Kerberized service you are troubleshooting.

1. Go to the Cloudera Manager Admin Console and navigate to the HDFS service.
2. Click Configuration.
3. Search for properties specific to the different role types for which you want to enable debugging. For example, if

you want to enable debugging for the HDFS NameNode, search for the NameNode Logging Threshold property
and select at least DEBUG level logging.

4. Enable Kerberos debugging by using the HDFS service's Advanced Configuration Snippet. Once again, this may be
different for each specific role type or service. For the HDFS NameNode, add the following properties to the HDFS
Service Environment Safety Valve:

HADOOP_JAAS_DEBUG=true
HADOOP_OPTS="-Dsun.security.krb5.debug=true"

5. Click Save Changes.
6. Restart the HDFS service.

The output will be seen in the process logs: stdout.log and stderr.log. These can be found in the runtime path
of the instance:/var/run/cloudera-scm-agent/process/###-service-ROLE. Once ClouderaManager services
have been restarted, the most recent instance of the ###-service-ROLE directory will have debug logs. Use ls
-ltr in the /var/run/cloudera-scm-agent/process path to determine the most current path.

Enabling Debugging for Command Line Troubleshooting

Set the following properties in your environment to produce detailed debugging output of the Kerberos authentication
process.

export HADOOP_ROOT_LOGGER=TRACE,console; export HADOOP_JAAS_DEBUG=true; export
HADOOP_OPTS="-Dsun.security.krb5.debug=true"

You can then use the following command to copy the console output to the user (with the debugging), along with all
output from STDOUT and STDERR to a file.

hadoop fs -ls / > >(tee fsls-logfile.txt) 2>&1

210 | Cloudera Security

Configuring Authentication

Troubleshooting Authentication Issues
Typically, if there are problems with security, Hadoop will display generic messages about the cause of the problem.
This topic contains solutions to potential problems you might face when configuring a secure cluster:

Common Security Problems and Their Solutions

This troubleshooting section contains sample Kerberos configuration files,krb5.conf andkdc.conf for your reference.
It also has solutions to potential problems you might face when configuring a secure cluster:

Issues with Generate Credentials

Cloudera Manager uses a command called Generate Credentials to create the accounts needed by CDH for enabling
authentication using Kerberos. The command is triggered automatically when you are using the Kerberos Wizard or
making changes to your cluster that will require new Kerberos principals.

When configuring Kerberos, if CDH services do not start, and on the Cloudera Manager Home > Status tab you see a
validation error, Role is missing Kerberos keytab, it means the Generate Credentials command failed. To see
the output of the command, go to the Home > Status tab and click the All Recent Commands tab.

Here are some common error messages:

SolutionsPossible CausesProblems

With Active Directory

Verify the KDC configuration by going to the Cloudera
Manager Admin Console and go to Administration>

TheDomainController
specified is incorrect

ldap_sasl_interactive_bind_s:

Can't contact LDAP server

(-1) Settings> Kerberos. Also check that LDAPS is enabled
for Active Directory.

or LDAPS has not been
enabled for it.

Use the Delegate Control wizard to grant permission
to the Cloudera Manager account to create other

The Active Directory
account you are using

ldap_add: Insufficient access

(50)

accounts. You can also login to Active Directory as thefor Cloudera Manager
Cloudera Manager user to check that it can create
other accounts in your Organizational Unit.

does not have
permissions to create
other accounts.

With MIT KDC

Check the kdc field for your default realm in
krb5.conf and make sure the hostname is correct.

The hostname for the
KDC server is
incorrect.

kadmin: Cannot resolve

network address for admin

server in requested realm

while initializing kadmin

interface.

Running any Hadoop command fails after enabling security.

Description:

A user must have a valid Kerberos ticket to interact with a secure Hadoop cluster. Running any Hadoop command (such
as hadoop fs -ls) will fail if you do not have a valid Kerberos ticket in your credentials cache. If you do not have a
valid ticket, you will receive an error such as:

11/01/04 12:08:12 WARN ipc.Client: Exception encountered while connecting to the server
 : javax.security.sasl.SaslException:
GSS initiate failed [Caused by GSSException: No valid credentials provided (Mechanism
level: Failed to find any Kerberos tgt)]
Bad connection to FS. command aborted. exception: Call to nn-host/10.0.0.2:8020 failed
 on local exception: java.io.IOException:

Cloudera Security | 211

Configuring Authentication

javax.security.sasl.SaslException: GSS initiate failed [Caused by GSSException: No valid
 credentials provided (Mechanism level: Failed to find any Kerberos tgt)]

Solution:

You can examine the Kerberos tickets currently in your credentials cache by running the klist command. You can
obtain a ticket by running the kinit command and either specifying a keytab file containing credentials, or entering
the password for your principal.

Using the UserGroupInformation class to authenticate Oozie

Secured CDH services mainly use Kerberos to authenticate RPC communication. RPCs are one of the primary means
of communication between nodes in a Hadoop cluster. For example, RPCs are used by the YARN NodeManager to
communicate with the ResourceManager, or by the HDFS client to communicate with the NameNode.

CDH services handle Kerberos authentication by calling the UGI loginmethod, loginUserFromKeytab(), once every
time the service starts up. Since Kerberos ticket expiration times are typically short, repeated logins are required to
keep the application secure. Long-running CDH applications have to be implemented accordingly to accommodate
these repeated logins. If an application is only going to communicate with HDFS, YARN, MRv1, and HBase, then you
only need to call the UserGroupInformation.loginUserFromKeytab()method at startup, before any actual API
activity occurs. The HDFS, YARN, MRv1 and HBase services' RPC clients have their own built-in mechanisms to
automatically re-login when a keytab's Ticket-Granting Ticket (TGT) expires. Therefore, such applications do not need
to include calls to the UGI re-login method because their RPC client layer performs the re-login task for them.

However, some applications may include other service clients that do not involve the generic Hadoop RPC framework,
such as Hive or Oozie clients. Such applications must explicitly call the
UserGroupInformation.getLoginUser().checkTGTAndReloginFromKeytab()methodbefore every attempt
to connect with a Hive or Oozie client. This is because these clients do not have the logic required for automatic
re-logins.

This is an example of an infinitely polling Oozie client application:

// App startup
UserGroupInformation.loginFromKeytab(KEYTAB_PATH, PRINCIPAL_STRING);
OozieClient client = loginUser.doAs(new PrivilegedAction<OozieClient>() {
 public OozieClient run() {
 try {
 returnnew OozieClient(OOZIE_SERVER_URI);
 } catch (Exception e) {
 e.printStackTrace();
 returnnull;
 }
 }
});

while (true && client != null) {
 // Application's long-running loop

 // Every time, complete the TGT check first
 UserGroupInformation loginUser = UserGroupInformation.getLoginUser();
 loginUser.checkTGTAndReloginFromKeytab();

 // Perform Oozie client work within the context of the login user object
 loginUser.doAs(new PrivilegedAction<Void>() {
 publicVoid run() {
 try {
 List<WorkflowJob> list = client.getJobsInfo("");
 for (WorkflowJob wfJob : list) {
 System.out.println(wfJob.getId());
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 } // End of function block
 }); // End of doAs
} // End of loop

212 | Cloudera Security

Configuring Authentication

Java is unable to read the Kerberos credentials cache created by versions of MIT Kerberos 1.8.1 or higher.

Description:

If you are running MIT Kerberos 1.8.1 or higher, the following error will occur when you attempt to interact with the
Hadoop cluster, even after successfully obtaining a Kerberos ticket using kinit:

11/01/04 12:08:12 WARN ipc.Client: Exception encountered while connecting to the server
 : javax.security.sasl.SaslException:
GSS initiate failed [Caused by GSSException: No valid credentials provided (Mechanism
level: Failed to find any Kerberos tgt)]
Bad connection to FS. command aborted. exception: Call to nn-host/10.0.0.2:8020 failed
 on local exception: java.io.IOException:
javax.security.sasl.SaslException: GSS initiate failed [Caused by GSSException: No valid
 credentials provided (Mechanism level: Failed to find any Kerberos tgt)]

Because of a change [1] in the format in which MIT Kerberos writes its credentials cache, there is a bug [2] in the
Oracle JDK 6 Update 26 and earlier that causes Java to be unable to read the Kerberos credentials cache created by
versions of MIT Kerberos 1.8.1 or higher. Kerberos 1.8.1 is the default in Ubuntu Lucid and higher releases and Debian
Squeeze and higher releases. (On RHEL and CentOS, an older version of MIT Kerberos which does not have this issue,
is the default.)

Footnotes:

[1]MIT Kerberos change: http://krbdev.mit.edu/rt/Ticket/Display.html?id=6206

[2] Report of bug in Oracle JDK 6 Update 26 and lower:
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6979329

Solution:

If you encounter this problem, you can work around it by running kinit -R after running kinit initially to obtain
credentials. Doing so will cause the ticket to be renewed, and the credentials cache rewritten in a format which Java
can read. To illustrate this:

$ klist
klist: No credentials cache found (ticket cache FILE:/tmp/krb5cc_1000)
$ hadoop fs -ls
11/01/04 13:15:51 WARN ipc.Client: Exception encountered while connecting to the server
 : javax.security.sasl.SaslException:
GSS initiate failed [Caused by GSSException: No valid credentials provided (Mechanism
level: Failed to find any Kerberos tgt)]
Bad connection to FS. command aborted. exception: Call to nn-host/10.0.0.2:8020 failed
 on local exception: java.io.IOException:
javax.security.sasl.SaslException: GSS initiate failed [Caused by GSSException: No valid
 credentials provided (Mechanism level: Failed to find any Kerberos tgt)]
$ kinit
Password for atm@YOUR-REALM.COM:
$ klist
Ticket cache: FILE:/tmp/krb5cc_1000
Default principal: atm@YOUR-REALM.COM

Valid starting Expires Service principal
01/04/11 13:19:31 01/04/11 23:19:31 krbtgt/YOUR-REALM.COM@YOUR-REALM.COM
 renew until 01/05/11 13:19:30
$ hadoop fs -ls
11/01/04 13:15:59 WARN ipc.Client: Exception encountered while connecting to the server
 : javax.security.sasl.SaslException:
GSS initiate failed [Caused by GSSException: No valid credentials provided (Mechanism
level: Failed to find any Kerberos tgt)]
Bad connection to FS. command aborted. exception: Call to nn-host/10.0.0.2:8020 failed
 on local exception: java.io.IOException:
javax.security.sasl.SaslException: GSS initiate failed [Caused by GSSException: No valid
 credentials provided (Mechanism level: Failed to find any Kerberos tgt)]
$ kinit -R
$ hadoop fs -ls
Found 6 items
drwx------ - atm atm 0 2011-01-02 16:16 /user/atm/.staging

Cloudera Security | 213

Configuring Authentication

http://krbdev.mit.edu/rt/Ticket/Display.html?id=6206
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6979329

Note:

This workaround for Problem 2 requires the initial ticket to be renewable. Note that whether or not
you can obtain renewable tickets is dependent upon a KDC-wide setting, as well as a per-principal
setting for both the principal in question and the Ticket Granting Ticket (TGT) service principal for the
realm. A non-renewable ticket will have the same values for its "valid starting" and "renew until"
times. If the initial ticket is not renewable, the following error message is displayed when attempting
to renew the ticket:

kinit: Ticket expired while renewing credentials

java.io.IOException: Incorrect permission

Description:

An error such as the following example is displayed if the user running one of the Hadoop daemons has a umask of
0002, instead of 0022:

java.io.IOException: Incorrect permission for
/var/folders/B3/B3d2vCm4F+mmWzVPB89W6E+++TI/-Tmp-/tmpYTil84/dfs/data/data1,
expected: rwxr-xr-x, while actual: rwxrwxr-x
 at org.apache.hadoop.util.DiskChecker.checkPermission(DiskChecker.java:107)
 at
org.apache.hadoop.util.DiskChecker.mkdirsWithExistsAndPermissionCheck(DiskChecker.java:144)

 at org.apache.hadoop.util.DiskChecker.checkDir(DiskChecker.java:160)
 at org.apache.hadoop.hdfs.server.datanode.DataNode.makeInstance(DataNode.java:1484)

 at
org.apache.hadoop.hdfs.server.datanode.DataNode.instantiateDataNode(DataNode.java:1432)

 at
org.apache.hadoop.hdfs.server.datanode.DataNode.instantiateDataNode(DataNode.java:1408)

 at org.apache.hadoop.hdfs.MiniDFSCluster.startDataNodes(MiniDFSCluster.java:418)

 at org.apache.hadoop.hdfs.MiniDFSCluster.<init>(MiniDFSCluster.java:279)
 at org.apache.hadoop.hdfs.MiniDFSCluster.<init>(MiniDFSCluster.java:203)
 at
org.apache.hadoop.test.MiniHadoopClusterManager.start(MiniHadoopClusterManager.java:152)

 at
org.apache.hadoop.test.MiniHadoopClusterManager.run(MiniHadoopClusterManager.java:129)
 at
org.apache.hadoop.test.MiniHadoopClusterManager.main(MiniHadoopClusterManager.java:308)

 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)

 at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
 at java.lang.reflect.Method.invoke(Method.java:597)
 at
org.apache.hadoop.util.ProgramDriver$ProgramDescription.invoke(ProgramDriver.java:68)
 at org.apache.hadoop.util.ProgramDriver.driver(ProgramDriver.java:139)
 at org.apache.hadoop.test.AllTestDriver.main(AllTestDriver.java:83)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)

 at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
 at java.lang.reflect.Method.invoke(Method.java:597)
 at org.apache.hadoop.util.RunJar.main(RunJar.java:186)

214 | Cloudera Security

Configuring Authentication

Solution:

Make sure that the umask for hdfs and mapred is 0022.

A cluster fails to run jobs after security is enabled.

Description:

A cluster that was previously configured to not use securitymay fail to run jobs for certain users on certain TaskTrackers
(MRv1) or NodeManagers (YARN) after security is enabled due to the following sequence of events:

1. A cluster is at some point in time configured without security enabled.
2. A user X runs some jobs on the cluster, which creates a local user directory on each TaskTracker or NodeManager.
3. Security is enabled on the cluster.
4. User X tries to run jobs on the cluster, and the local user directory on (potentially a subset of) the TaskTrackers

or NodeManagers is owned by the wrong user or has overly-permissive permissions.

The bug is that after step 2, the local user directory on the TaskTracker or NodeManager should be cleaned up, but
isn't.

If you're encountering this problem, youmay see errors in the TaskTracker or NodeManager logs. The following example
is for a TaskTracker on MRv1:

10/11/03 01:29:55 INFO mapred.JobClient: Task Id : attempt_201011021321_0004_m_000011_0,
 Status : FAILED
Error initializing attempt_201011021321_0004_m_000011_0:
java.io.IOException: org.apache.hadoop.util.Shell$ExitCodeException:
at org.apache.hadoop.mapred.LinuxTaskController.runCommand(LinuxTaskController.java:212)

at
org.apache.hadoop.mapred.LinuxTaskController.initializeUser(LinuxTaskController.java:442)

at
org.apache.hadoop.mapreduce.server.tasktracker.Localizer.initializeUserDirs(Localizer.java:272)

at org.apache.hadoop.mapred.TaskTracker.localizeJob(TaskTracker.java:963)
at org.apache.hadoop.mapred.TaskTracker.startNewTask(TaskTracker.java:2209)
at org.apache.hadoop.mapred.TaskTracker$TaskLauncher.run(TaskTracker.java:2174)
Caused by: org.apache.hadoop.util.Shell$ExitCodeException:
at org.apache.hadoop.util.Shell.runCommand(Shell.java:250)
at org.apache.hadoop.util.Shell.run(Shell.java:177)
at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:370)
at org.apache.hadoop.mapred.LinuxTaskController.runCommand(LinuxTaskController.java:203)

... 5 more

Solution:

Delete the mapred.local.dir or yarn.nodemanager.local-dirs directories for that user across the cluster.

The NameNode does not start and KrbException Messages (906) and (31) are displayed.

Description:

When you attempt to start the NameNode, a login failure occurs. This failure prevents the NameNode from starting
and the following KrbException messages are displayed:

Caused by: KrbException: Integrity check on decrypted field failed (31) - PREAUTH_FAILED}}

and

Caused by: KrbException: Identifier does not match expected value (906)

Cloudera Security | 215

Configuring Authentication

Note:

These KrbException error messages are displayed only if you enable debugging output. See Enabling
Debugging Output for the Sun Kerberos Classes.

Solution:

Although there are several possible problems that can cause these two KrbException error messages to display, here
are some actions you can take to solve the most likely problems:

• If you are using CentOS/Red Hat Enterprise Linux 5.6 or higher, or Ubuntu, which use AES-256 encryption by
default for tickets, you must install the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy
File on all cluster and Hadoop user machines. For information about how to verify the type of encryption used in
your cluster, see Step 3: If you are Using AES-256 Encryption, Install the JCE Policy File on page 100. Alternatively,
you can change your kdc.conf or krb5.conf to not use AES-256 by removing aes256-cts:normal from the
supported_enctypes field of the kdc.conf or krb5.conf file. Note that after changing the kdc.conf file,
you'll need to restart both the KDC and the kadmin server for those changes to take affect. You may also need to
recreate or change the password of the relevant principals, including potentially the TGT principal
(krbtgt/REALM@REALM).

• In the [realms] section of your kdc.conf file, in the realm corresponding to HADOOP.LOCALDOMAIN, add (or
replace if it's already present) the following variable:

supported_enctypes = des3-hmac-sha1:normal arcfour-hmac:normal des-hmac-sha1:normal
des-cbc-md5:normal des-cbc-crc:normal des-cbc-crc:v4 des-cbc-crc:afs3

• Recreate the hdfs keytab file and mapred keytab file using the -norandkey option in the xst command (for
details, see Step 4: Create and Deploy the Kerberos Principals and Keytab Files on page 100).

kadmin.local: xst -norandkey -k hdfs.keytab hdfs/fully.qualified.domain.name
HTTP/fully.qualified.domain.name
kadmin.local: xst -norandkey -k mapred.keytab mapred/fully.qualified.domain.name
HTTP/fully.qualified.domain.name

The NameNode starts but clients cannot connect to it and error message contains enctype code 18.

Description:

TheNameNode keytab file does not have an AES256 entry, but client tickets do contain an AES256 entry. TheNameNode
starts but clients cannot connect to it. The error message does not refer to "AES256", but does contain an enctype
code "18".

Solution:

Make sure the "Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy File" is installed or remove
aes256-cts:normal from thesupported_enctypes field of thekdc.conforkrb5.conf file. Formore information,
see the first suggested solution above for Problem 5.

For more information about the Kerberos encryption types, see
http://www.iana.org/assignments/kerberos-parameters/kerberos-parameters.xml.

(MRv1 Only) Jobs won't run and TaskTracker is unable to create a local mapred directory.

Description:

The TaskTracker log contains the following error message:

11/08/17 14:44:06 INFO mapred.TaskController: main : user is atm
11/08/17 14:44:06 INFO mapred.TaskController: Failed to create directory

216 | Cloudera Security

Configuring Authentication

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.iana.org/assignments/kerberos-parameters/kerberos-parameters.xml

/var/log/hadoop/cache/mapred/mapred/local1/taskTracker/atm - No such file or directory
11/08/17 14:44:06 WARN mapred.TaskTracker: Exception while localization
java.io.IOException: Job initialization failed (20)
 at
org.apache.hadoop.mapred.LinuxTaskController.initializeJob(LinuxTaskController.java:191)

 at org.apache.hadoop.mapred.TaskTracker$4.run(TaskTracker.java:1199)
 at java.security.AccessController.doPrivileged(Native Method)
 at javax.security.auth.Subject.doAs(Subject.java:396)
 at
org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1127)
 at org.apache.hadoop.mapred.TaskTracker.initializeJob(TaskTracker.java:1174)
 at org.apache.hadoop.mapred.TaskTracker.localizeJob(TaskTracker.java:1089)
 at org.apache.hadoop.mapred.TaskTracker.startNewTask(TaskTracker.java:2257)
 at org.apache.hadoop.mapred.TaskTracker$TaskLauncher.run(TaskTracker.java:2221)
Caused by: org.apache.hadoop.util.Shell$ExitCodeException:
 at org.apache.hadoop.util.Shell.runCommand(Shell.java:255)
 at org.apache.hadoop.util.Shell.run(Shell.java:182)
 at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:375)
 at
org.apache.hadoop.mapred.LinuxTaskController.initializeJob(LinuxTaskController.java:184)

 ... 8 more

Solution:

Make sure the value specified for mapred.local.dir is identical in mapred-site.xml and taskcontroller.cfg.
If the values are different, the error message above is returned.

(MRv1 Only) Jobs will not run and TaskTracker is unable to create a Hadoop logs directory.

Description:

The TaskTracker log contains an error message similar to the following :

11/08/17 14:48:23 INFO mapred.TaskController: Failed to create directory
/home/atm/src/cloudera/hadoop/build/hadoop-0.23.2-cdh3u1-SNAPSHOT/logs1/userlogs/job_201108171441_0004
 - No such file or directory
11/08/17 14:48:23 WARN mapred.TaskTracker: Exception while localization
java.io.IOException: Job initialization failed (255)
 at
org.apache.hadoop.mapred.LinuxTaskController.initializeJob(LinuxTaskController.java:191)

 at org.apache.hadoop.mapred.TaskTracker$4.run(TaskTracker.java:1199)
 at java.security.AccessController.doPrivileged(Native Method)
 at javax.security.auth.Subject.doAs(Subject.java:396)
 at
org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1127)
 at org.apache.hadoop.mapred.TaskTracker.initializeJob(TaskTracker.java:1174)
 at org.apache.hadoop.mapred.TaskTracker.localizeJob(TaskTracker.java:1089)
 at org.apache.hadoop.mapred.TaskTracker.startNewTask(TaskTracker.java:2257)
 at org.apache.hadoop.mapred.TaskTracker$TaskLauncher.run(TaskTracker.java:2221)
Caused by: org.apache.hadoop.util.Shell$ExitCodeException:
 at org.apache.hadoop.util.Shell.runCommand(Shell.java:255)
 at org.apache.hadoop.util.Shell.run(Shell.java:182)
 at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:375)
 at
org.apache.hadoop.mapred.LinuxTaskController.initializeJob(LinuxTaskController.java:184)

 ... 8 more

Solution:

In MRv1, the default value specified for hadoop.log.dir in mapred-site.xml is
/var/log/hadoop-0.20-mapreduce. The path must be owned and be writable by the mapred user. If you change
the default value specified for hadoop.log.dir, make sure the value is identical in mapred-site.xml and
taskcontroller.cfg. If the values are different, the error message above is returned.

Cloudera Security | 217

Configuring Authentication

After you enable cross-realm trust, you can run Hadoop commands in the local realm but not in the remote realm.

Description:

After you enable cross-realm trust, authenticating as a principal in the local realm will allow you to successfully run
Hadoop commands, but authenticating as a principal in the remote realmwill not allow you to run Hadoop commands.
Themost common cause of this problem is that the principals in the two realms either do not have the same encryption
type, or the cross-realm principals in the two realms do not have the same password. This issuemanifests itself because
you are able to get Ticket Granting Tickets (TGTs) from both the local and remote realms, but you are unable to get a
service ticket to allow the principals in the local and remote realms to communicate with each other.

Solution:

On the localMIT KDC server host, type the following command in the kadmin.local or kadmin shell to add the cross-realm
krbtgt principal:

kadmin: addprinc -e "<enc_type_list>"
krbtgt/YOUR-LOCAL-REALM.COMPANY.COM@AD-REALM.COMPANY.COM

where the <enc_type_list> parameter specifies the types of encryption this cross-realm krbtgt principal will support:
AES, DES, or RC4 encryption. You can specify multiple encryption types using the parameter in the command above,
what's important is that at least one of the encryption types parameters corresponds to the encryption type found in
the tickets granted by the KDC in the remote realm. For example:

kadmin: addprinc -e "aes256-cts:normal rc4-hmac:normal des3-hmac-sha1:normal"
krbtgt/YOUR-LOCAL-REALM.COMPANY.COM@AD-REALM.COMPANY.COM

(MRv1 Only) Jobs won't run and cannot access files in mapred.local.dir

Description:

The TaskTracker log contains the following error message:

WARN org.apache.hadoop.mapred.TaskTracker: Exception while localization
java.io.IOException: Job initialization failed (1)

Solution:

1. Add the mapred user to the mapred and hadoop groups on all hosts.
2. Restart all TaskTrackers.

Users are unable to obtain credentials when running Hadoop jobs or commands.

Description:

This error occurs because the ticket message is too large for the default UDP protocol. An error message similar to the
following may be displayed:

13/01/15 17:44:48 DEBUG ipc.Client: Exception encountered while connecting to the server
 : javax.security.sasl.SaslException:
GSS initiate failed [Caused by GSSException: No valid credentials provided (Mechanism
level: Fail to create credential.
(63) - No service creds)]

218 | Cloudera Security

Configuring Authentication

Solution:

Force Kerberos to use TCP instead of UDP by adding the following parameter to libdefaults in the krb5.conf file
on the client(s) where the problem is occurring.

[libdefaults]
udp_preference_limit = 1

If you choose to manage krb5.conf through Cloudera Manager, this will automatically get added to krb5.conf.

Note:

When sending a message to the KDC, the library will try using TCP before UDP if the size of the ticket
message is larger than the setting specified for the udp_preference_limit property. If the ticket
message is smaller thanudp_preference_limit setting, thenUDPwill be tried before TCP. Regardless
of the size, both protocols will be tried if the first attempt fails.

Request is a replay exceptions in the logs.

Description:

The root cause of this exception is that Kerberos uses a second-resolution timestamp to protect against replay attacks
(where an attacker can record network traffic, and play back recorded requests later to gain elevated privileges). That
is, incoming requests are cached by Kerberos for a little while, and if there are similar requests within a few seconds,
Kerberos will be able to detect them as replay attack attempts. However, if there are multiple valid Kerberos requests
coming in at the same time, these may also be misjudged as attacks for the following reasons:

• Multiple services in the cluster are using the same Kerberos principal. All secure clients that run on multiple
machines should use unique Kerberos principals for each machine. For example, rather than connecting as a
service principal myservice@EXAMPLE.COM, services should have per-host principals such as
myservice/host123.example.com@EXAMPLE.COM.

• Clocks not in sync: All hosts should run NTP so that clocks are kept in sync between clients and servers.

While having different principals for each service, and clocks in sync helps mitigate the issue, there are, however, cases
where even if all of the above are implemented, the problem still persists. In such a case, disabling the cache (and the
replay protection as a consequence), will allow parallel requests to succeed. This compromise between usability and
security can be applied by setting the KRB5RCACHETYPE environment variable to none.

Note that the KRB5RCACHETYPE is not automatically detected by Java applications. For Java-based components:

• Ensure that the cluster runs on JDK 8.
• To disable the replay cache, add -Dsun.security.krb5.rcache=none to the Java Opts/Arguments of the

targeted JVM. For example, HiveServer2 or the Sentry service.

For more information, refer the MIT KDC documentation.

Symptom: The following exception shows up in the logs for one or more of the Hadoop daemons:

2013-02-28 22:49:03,152 INFO ipc.Server (Server.java:doRead(571)) - IPC Server listener
 on 8020: readAndProcess threw exception javax.security.sasl.SaslException: GSS initiate
 failed [Caused by GSSException: Failure unspecified at GSS-API level (Mechanism l
javax.security.sasl.SaslException: GSS initiate failed [Caused by GSSException: Failure
 unspecified at GSS-API level (Mechanism level: Request is a replay (34))]
 at
com.sun.security.sasl.gsskerb.GssKrb5Server.evaluateResponse(GssKrb5Server.java:159)
 at org.apache.hadoop.ipc.Server$Connection.saslReadAndProcess(Server.java:1040)

 at org.apache.hadoop.ipc.Server$Connection.readAndProcess(Server.java:1213)
 at org.apache.hadoop.ipc.Server$Listener.doRead(Server.java:566)
 at org.apache.hadoop.ipc.Server$Listener$Reader.run(Server.java:363)
Caused by: GSSException: Failure unspecified at GSS-API level (Mechanism level: Request
 is a replay (34))

Cloudera Security | 219

Configuring Authentication

http://web.mit.edu/kerberos/krb5-latest/doc/basic/rcache_def.html

 at sun.security.jgss.krb5.Krb5Context.acceptSecContext(Krb5Context.java:741)
 at sun.security.jgss.GSSContextImpl.acceptSecContext(GSSContextImpl.java:323)
 at sun.security.jgss.GSSContextImpl.acceptSecContext(GSSContextImpl.java:267)
 at
com.sun.security.sasl.gsskerb.GssKrb5Server.evaluateResponse(GssKrb5Server.java:137)
 ... 4 more
Caused by: KrbException: Request is a replay (34)
 at sun.security.krb5.KrbApReq.authenticate(KrbApReq.java:300)
 at sun.security.krb5.KrbApReq.<init>(KrbApReq.java:134)
 at sun.security.jgss.krb5.InitSecContextToken.<init>(InitSecContextToken.java:79)

 at sun.security.jgss.krb5.Krb5Context.acceptSecContext(Krb5Context.java:724)
 ... 7 more

In addition, this problem can manifest itself as performance issues for all clients in the cluster, including dropped
connections, timeouts attempting to make RPC calls, and so on.

Cloudera Manager cluster services fail to start

Possible Causes and Solutions:

• Check that the encryption types are matched between your KDC and krb5.conf on all hosts.

Solution: If you are using AES-256, follow the instructions at Step 2: If You are Using AES-256 Encryption, Install
the JCE Policy File on page 61 to deploy the JCE policy file on all hosts.

• If the version of the JCE policy files does not match the version of Java installed on a node, then services will not
start. This is because the cryptographic signatures of the JCE policy files cannot be verified if the wrong version is
installed. For example, if a DataNode does not start, you will see the following error in the logs to show that
verification of the cryptographic signature within the JCE policy files failed.

Exception in secureMain
java.lang.ExceptionInInitializerError
at javax.crypto.KeyGenerator.nextSpi(KeyGenerator.java:324)
at javax.crypto.KeyGenerator.<init>(KeyGenerator.java:157)
.
.
.
Caused by: java.lang.SecurityException: The jurisdiction policy files are not signed by
 a trusted signer!
at javax.crypto.JarVerifier.verifyPolicySigned(JarVerifier.java:289)
at javax.crypto.JceSecurity.loadPolicies(JceSecurity.java:316)
at javax.crypto.JceSecurity.setupJurisdictionPolicies(JceSecurity.java:261)
...

Solution: Download the correct JCE policy files for the version of Java you are running:

• Java 6
• Java 7

Download and unpack the zip file. Copy the two JAR files to the $JAVA_HOME/jre/lib/security directory on each
node within the cluster.

220 | Cloudera Security

Configuring Authentication

http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html

Configuring Encryption

The goal of encryption is to ensure that only authorized users can view, use, or contribute to a data set. These security
controls add another layer of protection against potential threats by end-users, administrators, and other malicious
actors on the network. Data protection can be applied at a number of levels within Hadoop:

• OS Filesystem-level - Encryption can be applied at the Linux operating system filesystem level to cover all files in
a volume. An example of this approach is Cloudera Navigator Encrypt on page 348 (formerly Gazzang zNcrypt)
which is available for Cloudera customers licensed for Cloudera Navigator. Navigator Encrypt operates at the Linux
volume level, so it can encrypt cluster data inside and outside HDFS, such as temp/spill files, configuration files
and metadata databases (to be used only for data related to a CDH cluster). Navigator Encrypt must be used with
Cloudera Navigator Key Trustee Server on page 322 (formerly Gazzang zTrustee).

CDH components, such as Impala, MapReduce, YARN, or HBase, also have the ability to encrypt data that lives
temporarily on the local filesystem outside HDFS. To enable this feature, see Configuring Encryption for Data Spills
on page 372.

• Network-level - Encryption can be applied to encrypt data just before it gets sent across a network and to decrypt
it just after receipt. In Hadoop, this means coverage for data sent from client user interfaces as well as
service-to-service communication like remote procedure calls (RPCs). This protection uses industry-standard
protocols such as TLS/SSL.

Note: Cloudera Manager and CDH components support either TLS 1.0, TLS 1.1, or TLS 1.2, but
not SSL 3.0. References to SSL continue only because of its widespread use in technical jargon.

• HDFS-level - Encryption applied by the HDFS client software. HDFS Transparent Encryption on page 283 operates
at the HDFS folder level, allowing you to encrypt some folders and leave others unencrypted. HDFS transparent
encryption cannot encrypt any data outside HDFS. To ensure reliable key storage (so that data is not lost), use
Cloudera Navigator Key Trustee Server; the default Java keystore can be used for test purposes. For more
information, see Enabling HDFS Encryption Using Cloudera Navigator Key Trustee Server on page 290.

Unlike OS and network-level encryption, HDFS transparent encryption is end-to-end. That is, it protects data at
rest and in transit, which makes it more efficient than implementing a combination of OS-level and network-level
encryption.

TLS/SSL Certificates Overview
You can create TLS/SSL certificates to secure communications between cluster servers and clients in one of three
different ways:

• Public CA-signed certificates: Using certificates signed by a trusted public certificate authority (CA) simplifies
deployment because the default Java client already trusts most public CAs.

• Internal CA-signed certificates: Using certificates signed by your organization's internal CA can also simplify
deployment if the internal CA is already set up and used throughout your infrastructure. (If not, youmust configure
all hosts to trust the internal CA.)

• Self-signed certificates: Using self-signed certificates complicates the deployment process because you must
generate and distribute your own certificates and configure all clients of the service to trust the specific certificate
used by that service.

Regardless of the approach you choose, TLS/SSL requires certificates on each host running a service daemon role in
the cluster, and requires enabling TLS/SSL for all services in the cluster. That is, if you enable TLS/SSL for the HDFS
service on a cluster running HDFS, MapReduce, and YARN, you must also enable TLS/SSL for MapReduce and YARN.

Cloudera Security | 221

Configuring Encryption

Note: Cloudera Manager and CDH components support either TLS 1.0, TLS 1.1, or TLS 1.2, but not
SSL 3.0. References to SSL continue only because of its widespread use in technical jargon.

Creating Certificates

The following sections explain how obtain certificates from a commercial Certificate Authority and how to create
self-signed test certificates.

Using Keytool

Thekeytool utility creates andmanages certificates and cryptographic keys, and is part of the standard JDK distribution.
The keytool executable usually lives in $JAVA_HOME/bin.

keytool stores certificates and keys in a file known as a keystore .While several different keystore types are supported,
by default keytool uses the Java KeyStore (JKS) format.

Java-based services such as HDFS,MapReduce, and YARN use the JKS format by default. For this reason, it is convenient
to use keytool for managing keys and certificates for these services. In the following topics, we assume you are using
keytool.

For additional information on keytool, refer the keytool documentation.

Using OpenSSL

Hue and other Python-based services expect certificates and keys to be stored in PEM format. You can manage such
services with the openssl tool.

Obtaining a Production Certificate from a Commercial CA

Once you have decided on a certificate-provisioning strategy, and have determined which hosts require certificates,
you will typically purchase the necessary certificates from a commercial Certificate Authority (CA). The procedure for
applying for a certificate varies from one CA to another, but typically involves providing some form of proof that you
are the legitimate owner of the domain name for which you are requesting a certificate, generating a key pair, and
submitting a Certificate Signing Request (CSR) to the CA.

As noted above, you may find it convenient to use the Java keytool utility to generate your key pair and CSR, and to
manage your certificates. The CA you choosewill provide instructions for obtaining and installing a certificate; typically,
there will be separate sets of instructions for different web and application servers. The instructions for Java-based
servers (Tomcat, for example), will usually describe the following process comprising three keytool commands to
obtain a certificate:

1. keytool -genkeypair to generate a public/private key pair and create the keystore.
2. keytool -certreq to create the CSR.
3. keytool -importcert to import the signed certificate into the keystore.

For example, to generate a public/private key pair for the domain name node1.example.com, you would use a
command similar to the one shown below:

$ keytool -genkeypair -keystore node1.keystore -alias node1 \
-dname "CN=node1.example.com,O=Hadoop" -keyalg RSA \
-keysize 2048 -storepass changeme -keypass changeme

This command generates a pair of 2048-bit keys using the RSA key algorithm, one of several available. The keys are
stored in a keystore file called node1.keystore, in a keystore entry identified by by the alias node1. The keystore
password (which protects the keystore as a whole) and the key password (which protects the private key stored in the
node1 entry) are set using the -storepass and -keypass options (respectively). -keypassmust be set to the same
password value as -storepass for Cloudera Manager to access the keystore.

222 | Cloudera Security

Configuring Encryption

http://docs.oracle.com/javase/7/docs/technotes/guides/security/crypto/CryptoSpec.html#KeyManagement
http://docs.oracle.com/javase/7/docs/technotes/tools/solaris/keytool.html
https://www.openssl.org/docs/manmaster/apps/openssl.html

To create a CSR, you would use a command similar to the following:

$ keytool -certreq -keystore node1.keystore -alias node1 \
-storepass changeme -keypass changeme -file node1.csr

This command generates the CSR, and stores it in a file called node1.csr. Set -keypass to the same value as
-storepass (Cloudera Manager does not support separate values for -keypass and -storepass.)

Once you've submitted your CSR to the CA, and received the CA's reply (containing the signed certificate), you will use
the following keytool -importcert command to import the reply into your keystore:

$ keytool -importcert -keystore node1.keystore -alias node1 \
-storepass changeme -keypass changeme -trustcacerts -file node1.crt

Here we assume that the CA's reply is stored in the file node1.crt.

Important: This section describes a generic procedure using keytool to obtain a certificate from a
commercial Certificate Authority. This procedure will differ from one CA to another and Cloudera
recommends you consult your CA's documentation for more specifics.

Creating Self-Signed Test Certificates

Important: Cloudera strongly recommends against the use of self-signed certificates in production
clusters.

It is also possible to create your own test certificates. These certificates are typically self-signed; that is, they are signed
by your own private key, rather than that of an external CA. Such test certificates are useful during testing.

To generate a self-signed certificate, use keytool -genkeypair. (In addition to creating a public/private key pair,
this command wraps the public key into a self-signed certificate.)

For example, the following command creates a self-signed test certificate for the host node1.example.com, and
stores it in a keystore named node1.keystore:

$ keytool -genkeypair -keystore node1.keystore -keyalg RSA \
-alias node1 -dname "CN=node1.example.com,O=Hadoop" \
-storepass changeme -keypass changeme -validity <val_days>

Set -keypass to the same value as -storepass (Cloudera Manager does not support separate values for -keypass
and -storepass.)

By default, self-signed certificates are only valid for 90 days. To increase this period, replace <val_days> in the previous
command's -validity <val_days> parameter to specify the number of days for which the certificate should be
considered valid.

Requirements for TLS/SSL Certificates

When you enable Level 3 TLS/SSL, the Cloudera Manager Agents will be required to authenticate themselves to the
Cloudera Manager Server. This means the certificates used by the Agents must have flags set for Web Server
Authentication, aswell asWebClient Authentication. Typically, Certificate Authorities (CAs) enable only theWeb Server
Authentication flag by default. Therefore, to make sure the Agents can use the same certificates to authenticate
themselves to the Cloudera Manager Server as clients, you must include this request when you generate a
certificate-signing request (CSR) for the CA.

Use the following instructions to generate certificates with the TLS Web Client Authentication flag set.

If you are using openssl

Cloudera Security | 223

Configuring Encryption

1. Create a local copy of the default openssl.cnf file, usually found at /etc/pki/tls/openssl.cnf (this may
change according to your OS).

cp /etc/pki/tls/openssl.cnf ./myopenssl.cnf

2. Add the following section to the end of the file:

cat >> ./myopenssl.cnf <<EOF
[cloudera_req]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
extendedKeyUsage = serverAuth, clientAuth
EOF

3. Run the following command to generate a CSR:

$ openssl req -subj
'/CN=hostname.sec.cloudera.com/OU=Support/O=Cloudera/L=Denver/ST=Colorado/C=US' \
-config ./myopenssl.cnf -reqexts cloudera_req \
-out /opt/cloudera/security/x509/hostname.csr -new -newkey rsa:2048 \
-keyout /opt/cloudera/security/x509/hostname.key -passout pass:password

4. Examine the CSR to make sure the requested options are present under the X509v3 Extended Key Usage
field.

$ openssl req -text -noout -verify -in hostname.csr
...
 X509v3 Extended Key Usage:
 TLS Web Server Authentication, TLS Web Client Authentication
...

If you are using keytool

1. Add the -ext EKU=serverAuth,clientAuth option to the keytool command you use to generate the CSR.
For example:

$ keytool -certreq -alias hostname \
-keystore /opt/cloudera/security/jks/hostname-keystore.jks \
-file /opt/cloudera/security/x509/hostname.csr \
-ext EKU=serverAuth,clientAuth \
-storepass password -keypass password

2. Examine the CSR to make sure the requested options are present under the ExtendedKeyUsages section.

$ keytool -printcert -v -file hostname.csr
...
ObjectId: 2.5.29.37 Criticality=false
ExtendedKeyUsages [
 serverAuth
 clientAuth
...

Creating Java Keystores and Truststores

Typically, a keystore is used in one of two distinct ways:

• The keystore contains private keys and certificates used by TLS/SSL servers to authenticate themselves to TLS/SSL
clients. By convention, such files are referred to as keystores.

• When used as a truststore, the file contains certificates of trusted TLS/SSL servers, or of Certificate Authorities
trusted to identify servers. There are no private keys in the truststore.

224 | Cloudera Security

Configuring Encryption

Note: The foregoing assumes that certificate-based authentication is being used in one direction
only—that is, TLS/SSL servers are using certificates to authenticate themselves to clients. It is also
possible for clients to authenticate themselves to servers using certificates. (This is known as mutual
authentication.) Throughout this document, we assume that client certificates are not in use.

While all TLS/SSL clients must have access to a truststore, it is not always necessary to create and deploy truststores
across a cluster. The standard JDK distribution includes a default truststore which is pre-provisioned with the root
certificates of a number of well-known Certificate Authorities. If you do not provide a custom truststore, the Hadoop
daemons load this default truststore. Therefore, if you are using certificates issued by a CA in the default truststore,
you do not need to provide custom truststores. However, you must consider the following before you decide to use
the default truststore:

• If you choose to use the default truststore, it is your responsibility to maintain it. You may need to remove the
certificates of CAs you do not deem trustworthy, or add or update the certificates of CAs you trust. Use the
keytool utility to perform these actions.

Security Considerations for Keystores and Truststores

Note: While the strategy for certificate deployment you selectwill ultimately depend upon the security
policies you want to implement, the following guidelines may prove useful.

Because keystores contain private keys, while truststores do not, the security requirements for keystores are more
stringent. In particular:

• Hadoop TLS/SSL requires that truststores and the truststore password be stored, in plaintext, in a configuration
file that is readable by all.

• Keystore and key passwords are stored, in plaintext, in a file that is readable only by members of the appropriate
group.

These considerations should inform your choice of which keys and certificates to store in the keystores and truststores
you will deploy across your cluster.

• Keystores should contain a minimal set of keys and certificates. A reasonable strategy would be to create a unique
keystore for each host, which would contain only the keys and certificates needed by the Hadoop TLS/SSL services
running on the host. In most cases, the keystore would contain a single key/certificate entry.

Modifying Keystores: CDH services and processes must be restarted in case changes are made to a keystore.
However, this is relatively rare since keystores do not need to be updated when hosts are added or deleted from
a cluster.

• Because truststores do not contain sensitive information, it is reasonable to create a single truststore for an entire
cluster. On a production cluster, such a truststore would often contain a single CA certificate (or certificate chain),
since you would typically choose to have all certificates issued by a single CA.

•
Important: Do not use the same password for truststores and keystores/keys.

Since truststore passwords are stored in the clear in files readable by all, doing so would compromise the security
of the private keys in the keystore.

Creating Keystores

Once you have settled on a storage plan for your keys and certificates, you can use keytool to create or update the
necessary keystores and truststores. To create a new keystore with a certificate see Creating Certificates on page 222.

In many cases, you will already have created the set of keystores that you need. If you have followed the approach of
creating a separate keystore for each private key and certificate, andwant tomaintain this arrangementwhen deploying
the keystores, no additional steps are required to prepare the keystores for deployment. If you want to reorganize

Cloudera Security | 225

Configuring Encryption

your keys and certificates into a different set of keystores, you can use keytool -importkeystore to transfer
entries from one keystore to another.

Creating Truststores

The steps involved in preparing the truststores to be used in your deployment depend on whether you have decided
to use the default Java truststore, or to create custom truststores:

• If you are using the default truststore, you may need to add CA certificates (or certificate chains) to the truststore,
or delete them from the truststore.

• If you are creating custom truststores, you will need to build the truststores by importing trusted certificates into
new truststores. The trusted certificates can be CA certificates (typically downloaded from the CA's website), or
self-signed certificates that you have created. Note that Cloudera strongly recommends against using self-signed
certificates in production.

As shown in the examples below, when creating a truststore you must select a password. All truststore passwords for
a given service must be the same. In practice, this restriction rarely comes into play, since it is only relevant when you
want to create distinct custom truststores for each host.

The following sections provide examples of the steps required for several common scenarios:

Example 1: Adding a CA Certificate to the alternative Default Truststore

In this example, we assume that you have chosen to use the default Java truststore, but have obtained a certificate
from a CA not included in the truststore. (This situation can also arise if the CA that issued your certificate has an entry
in the default truststore, but the particular certificate product you purchased requires an alternate CA certificate chain.)

1. Locate the default truststore on your system. The default truststore is located in the
$JAVA_HOME/jre/lib/security/cacerts file. This contains the default CA information shippedwith the JDK.
Create an alternate default file called jssecacerts in the same location as the cacerts file. You can now safely
append CA certificates for any private or public CAs not present in the default cacerts file, while keeping the
original file intact.

The alternate file will always be read unless the javax.net.ssl.trustStore flag is set in the arguments for
the startup of the java process.

For our example, we will be following this recommendation by copying the default cacerts file into the new
jssecacerts file.

$ cp $JAVA_HOME/jre/lib/security/cacerts \
 $JAVA_HOME/jre/lib/security/jssecacerts

If you use a copy of the cacerts file, remember the default keystore password is changeit.

2. Import the CA certificate into the default truststore. Assuming that the file CA-root.cer contains the CA’s
certificate, which you have previously downloaded from the CA’s web site, the following command imports this
certificate into the alternative default truststore.

$ keytool -importcert -file CA-root.cer -alias CAcert \
-keystore /usr/java/default/jre/lib/security/jssecacerts \
-storepass changeit

When you give this command, you will be prompted to confirm that you trust the certificate. Be sure to verify
that the certificate is genuine before importing it.

Important: Test the trust relationship before you import any intermediary CA certificates. Trust should
be derived from the root CA only. Import intermediary CA certificates only if necessary.

Note that any updates you make to the default truststore must be made on all hosts in the cluster.

226 | Cloudera Security

Configuring Encryption

Example 2: Creating a Custom Truststore Containing a Single CA Certificate Chain

In this example, we demonstrate how to use keytool to create a custom truststore. We assume all certificates were
issued by a single CA, so a truststore containing the certificate chain for that CA will serve for all hosts in the cluster.

Our example certificate chain consists of a root certificate and a single intermediate certificate. We assume that you
have downloaded these and saved them in the files CA-root.cer and CA-intermediate.cer (respectively). The
steps below show the commands needed to build a custom truststore containing the root and intermediate certificates.

1. Import the root certificate and create the truststore:

$ keytool -importcert -keystore custom.truststore -alias CA-cert \
-storepass trustchangeme -file CA-root.cer

You will be prompted to confirm that the root certificate is trustworthy. Be sure to verify that the certificate is
genuine before you import it.

2. Import the intermediate certificate into the truststore created in Step 1:

$ keytool -importcert -keystore custom.truststore \
-alias CA-intermediate -storepass trustchangeme \
-file CA-intermediate.cer

Example 3: Creating a Custom Truststore Containing Self-Signed Test Certificates

Important: Cloudera strongly recommends against the use of self-signed certificates in production
clusters.

This example is particularly relevant when setting up a test cluster. We assume that you have generated a set of
self-signed test certificates for the hosts in the cluster, and want to create a single truststore that can be deployed on
all hosts. Because the certificates are self-signed, we cannot simply construct a truststore containing a single certificate
chain, as in the previous example. When a client receives a self-signed certificate from a server during the TLS/SSL
handshake, it must be able to find the server’s certificate in the truststore, since no other signing certificate exists to
establish trust. Therefore, the truststore must contain all the test certificates.

We assume that the test certificates reside in keystores named node1.keystore … node100.keystore, which
were created following the steps described in Creating Self-Signed Test Certificates.

1. Export the test certificate for node1.example.com:

$ keytool -exportcert -keystore node1.keystore -alias node1 \
-storepass changeme -file node1.cer

2. Import the test certificate into the custom truststore:

keytool -importcert -keystore custom.truststore -alias node1 \
-storepass trustchangeme -file node1.cer -noprompt

Here we specify the -noprompt option to suppress the prompt asking you to confirm that the certificate is
trustworthy. Since you created the certificate yourself, this confirmation is unnecessary.

3. Repeat Steps 1 and 2 for node2.keystore … node100.keystore.

Private Key and Certificate Reuse Across Java Keystores and OpenSSL

This topic provides a quick tutorial on exporting/importing private keys for reuse from a Java keystore to OpenSSL and
vice versa. Regardless of the procedure followed to create host private keys and certificates, sometimes it becomes
necessary to reuse those private keys and certificates by other services on the same host. For example, if you used
OpenSSL to create private keys and certificates for a service, you can reuse those keys for a Java-based service on the
same host by converting them to the Java keystore format.

Cloudera Security | 227

Configuring Encryption

The documentation for Configuring TLS Security for Cloudera Manager describes both approaches to creating private
keys, using Java keystore, and OpenSSL.

Why Reuse a Private Key?

Certificate authorities generally revoke previous generations of certificates issued to a host. Hence, a host cannot have
2 sets of CA-issued certificates and have both be valid. Once a certificate is issued to a host, it then becomes necessary
to reuse the private key that requested the certificate, and the CA-issued certificate across different services, Java-based
and otherwise.

Note: This following sections assume the default paths set up in Configuring TLS Encryption Only for
Cloudera Manager.

Conversion from Java Keystore to OpenSSL

First, use keytool to export the private key and certificate to a PKCS12 file as a transitional file format that can then
be split up into individual key and certificate files by the openssl command line. Replace cmhost and hostname in
the commands below with the actual hostname of the server that is managing the certificate and keys.

$ keytool -importkeystore -srckeystore /opt/cloudera/security/jks/hostname-keystore.jks
 \
-srcstorepass password -srckeypass password -destkeystore /tmp/hostname-keystore.p12 \

-deststoretype PKCS12 -srcalias hostname -deststorepass password -destkeypass password

Now use openssl to split the PKCS12 file created above into first, the certificate file, and then the private key file.
While the CA-issued certificate can be used as is, the command has been provided here for completeness.

$ openssl pkcs12 -in /tmp/hostname-keystore.p12 -passin pass:password -nokeys \
-out /opt/cloudera/security/x509/hostname.pem

$ openssl pkcs12 -in /tmp/hostname-keystore.p12 -passin pass:password -nocerts \
-out /opt/cloudera/security/x509/hostname.key -passout pass:password

Note that the method above generates a key with a password. For services such as Impala and Hue that accept keys
without passwords, you can use the following command:

$ openssl rsa -in /opt/cloudera/security/x509/hostname.key \
-passin pass:password -out /opt/cloudera/security/x509/hostname.pem

Conversion from OpenSSL to Java Keystore

First, convert the openssl private key and certificate files into a PKCS12 file. The PKCS12 file can then be imported
into a Java keystore file. Replace hostname in the commands below with the FQDN for the host whose certificate is
being imported.

$ openssl pkcs12 -export -in /opt/cloudera/security/x509/hostname.pem \
-inkey /opt/cloudera/security/x509/hostname.key -out /tmp/hostname.p12 \
-name hostname -passin pass:password -passout pass:password

$ keytool -importkeystore -srckeystore /tmp/hostname.p12 -srcstoretype PKCS12 \
-srcstorepass password -alias hostname -deststorepass password
-destkeypass password -destkeystore /opt/cloudera/security/jks/hostname-keystore.jks

Configuring TLS Security for Cloudera Manager
Transport Layer Security (TLS) is a security protocol designed to prevent eavesdropping, tampering, and message
forgery for network communications. It uses encryption to mitigate impact of any interception of network

228 | Cloudera Security

Configuring Encryption

communications by malicious users or processes. TLS also supports authentication of host identity prior to encryption,
to prevent spoofing.

Cloudera Manager cluster hosts can be configured for one of the three increasingly secure TLS levels shown in the
table below.

Description and configuration processLevel

Encrypted communications between a Web browser and
Cloudera Manager, and between Agents and Cloudera

Level 1 (Good)

Manager. Use this level to encrypt all connections between
a Web browser running the Cloudera Manager Admin
Console and the Cloudera Manager Server.

• Configuring TLS (Encryption Only) for Cloudera
Manager on page 230

• Level 1: Configuring TLS Encryption for Cloudera
Manager Agents on page 234

Encrypted communications (as with Level 1), plus Agents
verify authenticity of Cloudera Manager Server's TLS
certificate.

Level 2 (Better)

• Complete all Level 1 configuration processes.
• Level 2: Configuring TLS Verification of Cloudera

Manager Server by the Agents on page 235

Encrypted communications (as with Level 1) and Cloudera
Manager Server certificate presentation (as with Level 2),

Level 3 (Best)

plus eachAgent presents a certificate to ClouderaManager
Server to verify identity and prevent spoofing by untrusted
Agents running on hosts.

• Complete all Level 1 and Level 2 configuration
processes.

• Level 3: Configuring TLS Authentication of Agents to
the Cloudera Manager Server on page 237

As you can see, these TLS levels are cumulative: you must finish configuring and enabling Level 1 and Level 2 before
configuring Level 3.

Note: Cloudera recommends setting up a fully functional CDH cluster and Cloudera Manager before
configuring TLS unless you have experience configuring both clusters and TLS.

With TLS configured and enabled, Cloudera Manager continues to listen for HTTP requests on port 7180 (default) but
immediately redirects clients to port 7183 for HTTPS connectivity. For more information about how ClouderaManager,
Cloudera Management Service roles, and Cloudera Manager Agent nodes communicate using TLS/SSL for encrypted
communications over HTTPS, see TLS/SSL Communication Between Cloudera Manager and Cloudera Management
Services on page 242.

Note: For hosts running Agents, Cloudera recommends you use Java to create the keystore first and
then use OpenSSL to export the key and certificate for the Agent or Hue.

To configure your cluster for Level 3, follow the step-by-step instructions in How to Configure TLS Encryption for
Cloudera Manager on page 40.

To configure any specific individual level, following the series of steps below:

Cloudera Security | 229

Configuring Encryption

• Configuring TLS (Encryption Only) for Cloudera Manager on page 230
• Level 1: Configuring TLS Encryption for Cloudera Manager Agents on page 234
• Level 2: Configuring TLS Verification of Cloudera Manager Server by the Agents on page 235
• Level 3: Configuring TLS Authentication of Agents to the Cloudera Manager Server on page 237

See also:

• Troubleshooting TLS/SSL Issues in Cloudera Manager on page 244

Configuring TLS (Encryption Only) for Cloudera Manager

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

Important: Before you can configure TLS Level 1, 2, or 3, you must create the encryption keys and
certificates detailed below. As mentioned elsewhere, the TLS Levels 1, 2, and 3 are cumulative: each
level requires configuration of all previous levels, and all levels depend on the security mechanisms
you create by following the steps below.

Before enabling TLS security for Cloudera Manager, you must create a keystore, submit a certificate-signing request,
and install the issued certificate for the Server. You do this using the Oracle JDK keytool command-line tool. If you
are using an internal CA, append its certificate (and any required intermediate certificates) to the alternate default
truststore provided with the JDK for inherent trust. This process is described in detail in Creating Truststores on page
226.

The table below shows the paths for managing certificates in the following examples. These paths persist during any
upgrades and should be removedmanually if the host is removed fromaCDH cluster. Note that the folders and filepaths
listed here can reside anywhere on the system and must be created on every host, since each host will have its own
unique set of keys.

Set permissions on the paths such that scm-user, hue, Hadoop service users (or groups), and root users can read
the private key, certificate, and keystore and truststore files.

Table 11: Example pathnames for encryption keys and certificates

DescriptionExample Property Values

FQDN for Cloudera Manager Server host.cmhost.sec.example.com

Base location for security-related files./opt/cloudera/security

Location for openssl key/, cert/ and cacerts/ files
to be used by the Cloudera Manager Agent and Hue.

/opt/cloudera/security/x509

Location for the Java-basedkeystore/ andtruststore/
files for use by Cloudera Manager and Java-based cluster
services.

/opt/cloudera/security/jks

Location for CA certificates (root and intermediate CAs).
One PEM file per CA in the chain is required.

/opt/cloudera/security/CAcerts

230 | Cloudera Security

Configuring Encryption

http://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

Important:

• Use the Oracle JDK keytool for the steps below. You can use the Cloudera-installed Oracle JDK
or the JDK downloaded from Oracle, but be sure to use the same version of the command line
tools. If you have multiple JDKs installed on your system, set your PATH so that the Oracle JDK is
first. For example:

$ export JAVA_HOME=/usr/java/jdk1.7.0_67-cloudera
$ export PATH=$JAVA_HOME/bin:$PATH

• Set -keypass to the same value as -storepass (Cloudera Manager does not support separate
values for -keypass and -storepass.)

Step 1: Obtain Encryption Keys and Certificates for Cloudera Manager Server

After creating directories for security artifacts, create a keystore, generate a certificate-signing request (CSR), submit
the CSR to the appropriate Certificate Authority (CA), and install the certificate issued by the CA on the host, as detailed
in this first step.

Important: Cloudera recommends using certificates signed by one of the public CAs, such as Symantec
(formerly Verisign). Alternatively, you can use an internal CA if one is available. Certificates signed by
an internal CA must be explicitly trusted by the browser or other client host (this process is included
in the steps below). Self-signed certificates should never be used for production systems, but are fine
for testing or proof-of-concept configurations.

These steps include establishing trust for the internal CA's certificates, an explicit step that's not necessary for certificates
signed by a public CA. If a known public CA such as Verisign or GeoTrust is used, youmay not need to explicitly establish
trust for the issued certificates. Newer public CAsmight not be present yet in the JDK default cacerts file (see Creating
Truststores on page 226 for details on how to use the default JDK truststore, cacerts). If you have problems with the
import process (such as keytool error: java.lang.Exception: Failed to establish chain from reply),
follow the steps for trusting private CAs below.

1. Use keytool to generate a Java keystore and Certificate Signing Request (CSR) for the Cloudera Manager Server.
In the command below, replace cmhost and cmhost.sec.example.com with the FQDN for your host.

$ keytool -genkeypair -alias cmhost -keyalg RSA -keystore \
/opt/cloudera/security/jks/cmhost-keystore.jks -keysize 2048 -dname \
"CN=cmhost.sec.example.com,OU=Security,O=Example,L=Denver,ST=Colorado,C=US" \
-storepass password -keypass password

• -alias is a label that keeps track of the keys and certificate in in the keystore. Use the same -alias across
keytool commands for your system.

• -keyalg is the encryption algorithm used to generate the key. Cloudera recommends you use RSA, which
allows key lengths greater than 1024 bits for certificate requests. (Other algorithms, such as DSA, may not
be supported by somebrowsers, resulting in thejavax.net.ssl.SSLHandshakeException: no cipher
suites in common error.)

• -dname (the X.509 distinguished name associated with the alias), which makes up the subject information
for CSRs. If you don't specify the details in the command, you're prompted for values for the subject's First
and Last name (CN). Use the FQDN for the host to which agents and browsers connect.

Note: The CN entry must match the hostname of the Cloudera Manager server, or you will
get the java.io.IOException: HTTPS hostname wrong exception.

• /opt/cloudera/security/jks/cmhost-keystore.jks is an example path to the keystore where you
store the keystore file and where the Cloudera Manager Server host can access it.

Cloudera Security | 231

Configuring Encryption

• Set -keypass to the same value as -storepass (Cloudera Manager does not support separate values for
-keypass and -storepass.)

2. Generate a certificate signing request for the host (in this example, cmhost).

$ keytool -certreq -alias cmhost \
-keystore /opt/cloudera/security/jks/cmhost-keystore.jks \
-file /opt/cloudera/security/x509/cmhost.csr -storepass password \
-keypass password

3. Submit the .csr file created by the -certreq command to your Certificate Authority to obtain a server certificate.
When possible, work with certificates in the default Base64 (ASCII) format. You can easily modify Base64-encoded
files from .CER or .CRT to .PEM. The file is in ASCII format if you see the opening and closing lines as follows:

-----BEGIN CERTIFICATE-----
(the encoded certificate is represented by multiple lines of exactly 64 characters,
except
for the last line which can contain 64 characters or less.)
-----END CERTIFICATE-----

If your issued certificate is in binary (DER) format, adjust the commands according to the keytool documentation.

4. Copy the root CA certificate and any intermediate CA certificates to /opt/cloudera/security/CAcerts/.

Important: For an internal CA, you must import the root CA and intermediate CA certificates
into the alternative system JDK truststore, jssecacerts, before importing them to your Java
keystore.

a. Import the root CA certificate first, followed by any intermediate CA certificates. Substitute $JAVA_HOME in
the command below with the path for your Oracle JDK.

$ sudo cp $JAVA_HOME/jre/lib/security/cacerts $JAVA_HOME/jre/lib/security/jssecacerts

$ sudo keytool -importcert -alias RootCA -keystore $JAVA_HOME/jre/lib/security/jssecacerts
 \
-file /opt/cloudera/security/CAcerts/RootCA.cer -storepass changeit

$ sudo keytool -importcert -alias SubordinateCA -keystore \
$JAVA_HOME/jre/lib/security/jssecacerts \
-file /opt/cloudera/security/CAcerts/SubordinateCA.cer -storepass changeit

Repeat for as many intermediate CA certificates as needed. The default -storepass for the cacerts file
is changeit. After completing this step, copy the jssecacerts file created to the same path on all cluster
hosts.

b. Import the certificates (signed by your internal CA) into your Java keystore file. Import the root CA certificate
first.

$ keytool -importcert -trustcacerts -alias RootCA -keystore \
/opt/cloudera/security/jks/cmhost-keystore.jks -file \
/opt/cloudera/security/CAcerts/RootCA.cer -storepass password

$ keytool -importcert -trustcacerts -alias SubordinateCA -keystore \
/opt/cloudera/security/jks/cmhost-keystore.jks -file \
/opt/cloudera/security/CAcerts/SubordinateCA.cer -storepass password

Repeat for as many intermediate CA certificates as needed.

5. Copy the signed certificate file provided to a location where it can be used by the Cloudera Manager Agents (and
Hue if necessary).

$ cp certificate-file.cer /opt/cloudera/security/x509/cmhost.pem

232 | Cloudera Security

Configuring Encryption

Install it with the following keytool command:

$ keytool -importcert -trustcacerts -alias cmhost \
-file /opt/cloudera/security/x509/cmhost.pem \
-keystore /opt/cloudera/security/jks/cmhost-keystore.jks -storepass password

Youmust see the following response verifying that the certificate has been properly imported against its private
key.

Certificate reply was installed in keystore

Now that the Jave keystore has imported the issued certificate, Java services on the Cloudera Manager Server
host no longer need the original certificate-signing request (.CSR) and certificate files. You can access the certificate
and private key through the keystore.

However, you must export the private key from the Java keystore to make the certificate usable by Hue and the
Cloudera Manager Agent. For instructions on reusing certificates, see Private Key and Certificate Reuse Across
Java Keystores and OpenSSL on page 227.

Step 2: Enable HTTPS for the Cloudera Manager Admin Console and Specify Server Keystore Properties

1. Log into the Cloudera Manager Admin Console.
2. Select Administration > Settings.
3. Click the Security category.
4. Configure the following TLS settings:

DescriptionProperty

Enter the complete path to the keystore file. For example:

/opt/cloudera/security/jks/cmhost-keystore.jks

Path to TLS Keystore File

Enter the password for keystore: passwordKeystore Password

Check this box to enable TLS encryption for Cloudera Manager.Use TLS Encryption for
Admin Console

5. Click Save Changes to save the settings.

Step 3: Specify SSL Truststore Properties for Cloudera Management Services

When enabling TLS for the ClouderaManager UI, youmust set the Java truststore location and password in the Cloudera
Management Services configuration. If this is not done, roles such as the Host Monitor and Service Monitor will not
be able to connect to Cloudera Manager and will not start.

You can use either the default Java truststore ($JAVA_HOME/jre/lib/security/cacerts) and add trusted CA
certificates to it, or, create a custom truststore. For instructions on both approaches, see Creating Truststores on page
226. If you choose to create a custom truststore, configure the path and password for the truststore file using the
instructions as follows:

1. Open the Cloudera Manager Administration Console and go to the Cloudera Management Service.
2. Click the Configuration tab.
3. Select Scope > Cloudera Management Service (Service-Wide).
4. Select Category > Security.
5. Edit the following TLS/SSL properties according to your cluster configuration.

DescriptionProperty

Path to the client truststore file used in HTTPS communication. This truststore
contains certificates of trusted servers, or of Certificate Authorities trusted to

TLS/SSL Client Truststore File
Location

identify servers. If set, this is used to verify certificates in HTTPS communication

Cloudera Security | 233

Configuring Encryption

DescriptionProperty

with CDH services and the Cloudera Manager Server. If not set, the default Java
truststore located at $JAVA_HOME/jre/lib/security/cacerts is used to
verify certificates.

The contents of this truststore can be modified without restarting the Cloudera
Management Service roles. By default, changes to its contents are picked up
within ten seconds.

Password for the client truststore file. The password for the default cacerts
file is changeit.

TLS/SSL Client Truststore File
Password

6. Click Save Changes to commit the changes.
7. Restart the ClouderaManagement Service. For more information, see TLS/SSL Communication Between Cloudera

Manager and Cloudera Management Services on page 242.

Step 4: Restart the Cloudera Manager Server

Restart the Cloudera Manager Server by running service cloudera-scm-server restart from the Cloudera
Manager host command prompt.

You should now be able to connect to the Cloudera Manager Admin Console using an HTTPS browser connection. If a
private CA certificate or self-signed certificate is used, you must establish trust in the browser for your certificate. This
should be done for all browsers that will be used to access Cloudera Manager. By default, certificates issued by public
commercial CAs should be trusted by the browsers accessing Cloudera Manager and other Java or OpenSSL-based
services.

Formore information on establishing trust for certificates, see TLS/SSL Certificates Overview on page 221 or the relevant
JDK documentation.

Level 1: Configuring TLS Encryption for Cloudera Manager Agents

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

Prerequisite:

You must have completed the steps described at Configuring TLS Encryption Only for Cloudera Manager.

Step 1: Enable Agent Connections to Cloudera Manager to use TLS

In this step, you enable TLS properties for Cloudera Manager Agents and their connections to the Cloudera Manager
Server. To configure agents to connect to Cloudera Manager over TLS, log into the Cloudera Manager Admin Console.

Note: If you are using a private certificate authority to sign certificate requests, see information on
establishing trust for this CA in Configuring TLS (Encryption Only) for Cloudera Manager on page 230.

1. Log into the Cloudera Manager Admin Console.
2. Select Administration > Settings.
3. Click the Security category.
4. Configure the following TLS settings in the Cloudera Manager Server:

DescriptionProperty

Enable TLS encryption for Agents connecting to the
Server. The Agents will still connect to the defined agent

Use TLS Encryption for Agents

listener port for ClouderaManager (default: 7182). This
property negotiates TLS connections to the service at
this point.

234 | Cloudera Security

Configuring Encryption

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html#X509TrustManager

5. Click Save Changes.

Step 2: Enable and Configure TLS on the Agent Hosts

To enable and configure TLS, you must specify values for the TLS properties in the
/etc/cloudera-scm-agent/config.ini configuration file on all Agent hosts.

1. On theAgent host, open the/etc/cloudera-scm-agent/config.ini configuration file and edit the following
property:

DescriptionProperty

Specify 1 to enable TLS on the Agent, or 0 (zero) to disable TLS.use_tls

2. Repeat this step on every Agent host. You can copy the Agent’s config.ini file across all hosts since this file by
default does not have host specific information within it. If youmodify properties such as listening_hostname
or listening_ip address in config.ini, you must configure the file individually for each host.

Step 3: Restart the Cloudera Manager Server

Restart the Cloudera Manager Server with the following command to activate the TLS configuration settings.

$ sudo service cloudera-scm-server restart

Step 4: Restart the Cloudera Manager Agents

On every Agent host, restart the Agent:

$ sudo service cloudera-scm-agent restart

Step 5: Verify that the Server and Agents are Communicating

In the Cloudera Manager Admin Console, open the Hosts page. If the Agents heartbeat successfully, TLS encryption is
working properly.

Level 2: Configuring TLS Verification of Cloudera Manager Server by the Agents

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

Level 2 of TLS security requires that you provide a server certificate that is signed, either directly or through a chain,
by a trusted root certificate authority (CA), to the Cloudera Manager Server. You must also provide the certificate of
the CA that signed the Server certificate. For test environments, you can use a self-signed server certificate.

If the Cloudera Manager Server certificate or the associated CA certificate is missing or expired, Agents will not
communicate with the Cloudera Manager Server.

Step 1: Configure TLS encryption

If you have not done so, configure TLS encryption to use Level 2 security. For instructions, see Configuring TLS (Encryption
Only) for ClouderaManager on page 230 and Level 1: Configuring TLS Encryption for ClouderaManager Agents on page
234.

Step 2: Copy the CA certificate or Cloudera Manager Server .pem file to the Agents

1. Agents can verify the Cloudera Manager Server using either the Server certificate or the associated root CA
certificate. Do one of the following to proceed:

• Copy the Cloudera Manager Server .pem file to the Agent host

1. For verification by the Agent, copy the Server .pem file (for example, cmhost.pem) to any directory
on the Agent host. In the examples, this path is /opt/cloudera/security/x509/cmhost.pem.

2. On the Agent host, open the /etc/cloudera-scm-agent/config.ini configuration file and edit
the following properties.

Cloudera Security | 235

Configuring Encryption

DescriptionProperty

Point this property to the copied .pem file on the Agent host; in this example,
/opt/cloudera/security/x509/cmhost-cert.pem.

verify_cert_file

Set this property to 1.use_tls

OR

• Copy the CA certificates to the Agent host

1. If you have a CA-signed certificate, copy the root CA or intermediate CA certificates in PEM format to the
Agent host. In the example, the CA certificates are copied to /opt/cloudera/security/CAcerts/*.

2. On the Agent host, open the /etc/cloudera-scm-agent/config.ini configuration file and edit
the following properties.

DescriptionProperty

Point this property to the directory on the Agent host with the copied CA
certificates; in the example, /opt/cloudera/security/CAcerts/.

verify_cert_dir

Set this property to 1.use_tls

Note: When configuring the verify_cert_dir property, ensure that the
openssl-perl package is installed. The openssl-perl package comes with the
c_rehash command required to generate the Subject Name hash values that will be
linked to the certificates to make them usable. See the comments in the config.ini
file for more information.

The following example is for RHEL-compatible systems. The package name for
Debian-based systems is the same. After the package is installed, go to the CA certificate
path and run the c_rehash command. This generates symbolic links to the certificate
in that location, with "." being the current path, as follows:

$ yum -y install openssl-perl
$ cd /opt/cloudera/security/CAcerts/
$ c_rehash .
 Doing .
 w2k8-1-root.pem => 4507f087.0
 w2k8-2-intermediary.pem => 082ba6df.0
$ls -l
total 8.0K
lrwxrwxrwx 1 root root 23 Oct 6 22:44 082ba6df.0 ->
w2k8-2-intermediary.pem
lrwxrwxrwx 1 root root 15 Oct 6 22:44 4507f087.0 ->
w2k8-1-root.pem
-rw-r----- 1 root root 2.1K Oct 6 17:23 w2k8-1-root.pem
-rw-r----- 1 root root 2.8K Oct 6 17:23
w2k8-2-intermediary.pem

2. Repeat the approach you used in step 1 on every Agent host. You can copy the Agent’s config.ini file across
all hosts. However, if you modify properties such as listening_hostname or listening_ip address in
config.ini, you must configure config.ini for each host individually.

Step 3: Restart the Cloudera Manager Agents

On every Agent host, restart the Agent:

$ sudo service cloudera-scm-agent restart

236 | Cloudera Security

Configuring Encryption

Step 4: Restart the Cloudera Management Services

To restart the Cloudera Management Service from the Cloudera Manager Admin Console:

1. On the Home > Status tab, click

to the right of the service name and select Restart.
2. Click Start on the next screen to confirm. When you see a Finished status, the service has restarted.

Step 5: Verify that the Server and Agents are communicating

In the Cloudera Manager Admin Console, open the Hosts page. If the Agents heartbeat successfully, the Server and
Agents are communicating. If not, check theAgent log/var/log/cloudera-scm-agent/cloudera-scm-agent.log,
which shows errors if the connection fails.

Level 3: Configuring TLS Authentication of Agents to the Cloudera Manager Server

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

This is the highest level of TLS security supported for Cloudera Manager Server-Agent communications, and requires
you to create private keys and Certificate Signing Requests (CSR) for each cluster node. A Certificate Authority (CA)
can then sign the CSR, thus providing a server certificate for each host. Agentswill then need to authenticate themselves
to Cloudera Manager using this server certificate.

This can be completed one of two ways, depending on the approach you choose to configuring TLS on your cluster.

• Approach A - Use OpenSSL to create private keys and request CA-signed certificates for every Agent on your
cluster. Approach A is faster if you only need to enable TLS for Cloudera Manager Server-Agent communication.

• Approach B - Create a Java truststore file that contains the Agent and CA certificates, and authenticate Agents
against this truststore file. If you plan to enable TLS communication for all CDH services cluster-wide, including
Java-based components, consider using Approach B.

Steps for creating self-signed certificates are not included. Self-signed certificates are not recommended for production
environments.

Step 1: Configure TLS encryption

If you have not already done so, you must configure TLS encryption to use this third level of security. For instructions,
see Configuring TLS (Encryption Only) for Cloudera Manager on page 230 and Configuring TLS Encryption for Cloudera
Manager.

Step 2: Configure TLS Verification of Server Trust by Agents

If you have not already done so, you must configure TLS Verification of Server Trust by Agents. For instructions, see
Configuring TLS Authentication of Server to Agents.

Cloudera Security | 237

Configuring Encryption

Important:

Steps 3, 4, and 5 can be completed one of two ways, depending on the approach you choose to
configuring TLS on your cluster.

• Approach A - Use OpenSSL to create private keys and request CA-signed certificates for every
Agent on your cluster. Approach A is faster if you only need to enable TLS for Cloudera Manager
Server-Agent communication.

• Approach B - Create a Java truststore file that contains the Agent and CA certificates, and
authenticate Agents against this truststore file. If you plan to enable TLS communication for all
CDH services cluster-wide, including Java-based components, consider using Approach B.

Irrespective of the path you select, it will still be possible to reuse OpenSSL private keys and certificates
by exporting to a Java keystore and vice versa. For instructions, see Private Key and Certificate Reuse
Across Java Keystores and OpenSSL on page 227.

After choosing an approach, follow steps 3-5 for all hosts in your cluster.

Approach A: Using OpenSSL to Create Private Keys and Request Agent Certificates

If the Cloudera Manager Server is running Management Services or CDH components (and therefore, has a Cloudera
Manager Agent installed), you do not need to re-create a private key for the Server host. Follow the steps in Private
Key and Certificate Reuse Across Java Keystores and OpenSSL on page 227 to reuse the host certificate. Follow steps
3-5 for all remaining cluster hosts.

Approach A - Step 3: Generate the private key and certificate signing request for the Agent using OpenSSL.

Agents will authenticate themselves to the Cloudera Manager Server using the certificate issued in this step. However,
it's possible that the issued certificate only has the TLS Web Server Authentication flag set, and not the TLS Web Client
Authentication flag. Such certificates cannot be used by Cloudera Manager Agents to identify themselves as clients to
the Cloudera Manager Server. To make sure Agents can use the issued certificates, you must request explicitly make
this request when you generate the CSR as follows:

1. Create a local copy of the default openssl.cnf file, usually found at /etc/pki/tls/openssl.cnf (this may
change according to your OS).

cp /etc/pki/tls/openssl.cnf ./myopenssl.cnf

2. Add the following section to the end of the file:

cat >> ./myopenssl.cnf <<EOF
[cloudera_req]
basicConstraints = CA:FALSE
keyUsage = nonRepudiation, digitalSignature, keyEncipherment
extendedKeyUsage = serverAuth, clientAuth
EOF

3. Run the following command on the Agent, replacing hostnamewith your actual hostname. The -subj command
line option allows you to provide the certificate subject as a single line. If you do not specify the certificate subject
(-subj) as an argument, you will be prompted for the values of the certificate subject information. In that case,
use the host FQDN that Agents will use to connect from in the subject First and Last name (CN) question prompt.
Country (C) requires a 2 letter country code. The "/" is replaced with "," in the actual CSR and private key file.

$ openssl req -subj
'/CN=hostname.sec.cloudera.com/OU=Support/O=Cloudera/L=Denver/ST=Colorado/C=US' \
-config ./myopenssl.cnf -reqexts cloudera_req \
-out /opt/cloudera/security/x509/hostname.csr -new -newkey rsa:2048 \
-keyout /opt/cloudera/security/x509/hostname.key -passout pass:password

238 | Cloudera Security

Configuring Encryption

password provides a password to protect the private key file. Keep the password in a safe place; youmust provide
a key password file to the Agent to complete configuration.

Approach A - Step 4: Submit the certificate signing request to your CA and distribute the issued certificates.

The CSR file created (/opt/cloudera/security/x509/hostname.csr) is collected fromcluster hosts for submission
to the certificate authority (CA) for signing. In the example paths, you copy the issued CA-signed certificate file to
/opt/cloudera/security/x509 on each cluster host. For easy management and tracking of files, name the files
in the hostname.pem format, replacing hostname with the actual hostname.

Note: Certificate file extensions of .cer, .crt, and .pem are interchangeable. Rename the files so they
have a .pem extension, and can therefore be used by the Agent and Hue (or any other Python-based
component).

The CSR can be examined with the following command:

$ openssl req -text -noout -verify -in /opt/cloudera/security/x509/hostname.csr

Examine the issued certificate to make sure the requested attributes are present under the X509v3 Extended Key
Usage field.

$ openssl x509 -in /opt/cloudera/security/x509/hostname.pem -text -noout
...
 X509v3 Extended Key Usage:
 TLS Web Server Authentication
 TLS Web Client Authentication
...

If the certificate does not have both TLS Web Server Authentication and TLS Web Client Authentication
flags set, you will need to explicitly add the Agent's certificate to the Cloudera Manager Server truststore. This can be
done when you create the Cloudera Manager Server truststore in Step 9.

Approach A - Step 5 (Optional): Import the OpenSSL private key and certificate into the per-host Java keystore.

Follow the steps in Private Key and Certificate Reuse Across Java Keystores and OpenSSL on page 227 for this step.

Important: If you are using Approach A, skip to step 6 to continue.

Approach B: Creating a Java Keystore and Importing Signed Agent Certificates into it

If the Cloudera Manager Server is running Management Services or CDH components (and therefore, has a Cloudera
Manager Agent installed), you do not need to re-create a private key for the Server host. Follow the steps in Private
Key and Certificate Reuse Across Java Keystores and OpenSSL on page 227 to reuse the host certificate. Follow steps
3-5 for all remaining cluster hosts.

Approach B - Step 3: Create a Java Keystore and private key for a host

Create a Java Keystore and private key files for an Agent host as follows:

$ keytool -genkeypair -alias hostname -keyalg RSA -keystore \
/opt/cloudera/security/jks/hostname-keystore.jks -keysize 2048 -dname \
"CN=cmhost.sec.cloudera.com,OU=Support,O=Cloudera,L=Denver,ST=Colorado,C=US" \
-storepass password -keypass password

password provides a password to protect the private key file. Set -keypass to the same value as -storepass.
Cloudera Manager assumes that the same password is used to access both the key and the keystore, and therefore,
does not support separate values for -keypass and -storepass.

Cloudera Security | 239

Configuring Encryption

Note the password in a safe place; you must provide a key password file to the Agent to complete configuration.

Approach B - Step 4: Generate a certificate signing request and install the issued certificate into the Java Keystore

Agents will authenticate themselves to the Cloudera Manager Server using the certificate issued in this step. However,
it's possible that the issued certificate only has the TLS Web Server Authentication flag set, and not the TLS Web Client
Authentication flag. Such certificates cannot be used by Cloudera Manager Agents to identify themselves as clients to
the Cloudera Manager Server. To make sure Agents can use the issued certificates, you must request explicitly make
this request when you generate the CSR as follows:

1. Generate a certificate signing request (CSR) and submit it to your CA for a signed certificate. Use keytool's
extended attributes to request both serverAuth and clientAuth.

$ keytool -certreq -alias hostname \
-keystore /opt/cloudera/security/jks/hostname-keystore.jks \
-file /opt/cloudera/security/x509/hostname.csr \
-ext EKU=serverAuth,clientAuth \
-storepass password -keypass password

2. Examine the keystore to make sure the requested options are present under the ExtendedKeyUsages section.

$ keytool -list -v -keystore hostname-keystore.jks
...
ObjectId: 2.5.29.37 Criticality=false
ExtendedKeyUsages [
 serverAuth
 clientAuth
...

If the keystore still does not have both serverAuth and clientAuth attributes set, you will need to explicitly
add the Agent's certificate to the Cloudera Manager Server truststore. This can be done when you create the
Cloudera Manager Server truststore in Step 9.

3. If you are using a Private CA, first import the root CA certificate followed by the intermediary/subordinate CA
certificates into the Java keystore created previously.

 $ keytool -importcert -trustcacerts -alias RootCA -keystore \
/opt/cloudera/security/jks/hostname-keystore.jks -file \
/opt/cloudera/security/CAcerts/RootCA.cer -storepass password

Repeat the following for all subordinate/intermediary CA certificates presented.

$ keytool -importcert -trustcacerts -alias SubordinateCA -keystore \
/opt/cloudera/security/jks/hostname-keystore.jks -file \
/opt/cloudera/security/CAcerts/SubordinateCA.cer -storepass password

4. Copy the issued signed certificate file provided by your CA to the location from where it will be imported by the
Cloudera Manager Agent and possibly Hue.

$ cp certificate-file.cer /opt/cloudera/security/x509/hostname.pem

5. Import the issued certificate file into the previously created Java keystore (.jks) with the following command:

$ keytool -import -trustcacerts -alias <hostname> \
-keystore /opt/cloudera/security/jks/<hostname>-keystore.jks \
-file /opt/cloudera/security/x509/<hostname>.pem -storepass password

Approach B - Step 5: Export the private key from the Java keystore and convert it with OpenSSL for reuse by Agent

Follow the steps in Private Key and Certificate Reuse Across Java Keystores and OpenSSL on page 227.

240 | Cloudera Security

Configuring Encryption

Step 6: Create a File that Contains the Password for the Key

The Agent reads the password from a text file, not from the command line. The password file allows you to use file
permissions to protect the password. For our example the password file was created at,
/etc/cloudera-scm-agent/agentkey.pw.

Step 7: Configure the Agent with its Private Key and Certificate

1. On theAgent host, open the/etc/cloudera-scm-agent/config.ini configuration file and edit the following
properties:

DescriptionProperty

Name of the client key file.client_key_file

Name of the client key password file, agentkey.pw.client_keypw_file

Name of the client certificate file.client_cert_file

2. Repeat these steps on every Agent host.

Step 8: Verify that steps 3-7 were Completed for every Agent Host in Your Cluster

Make sure each Agent's private key and certificate that you import into the Cloudera Manager Server's truststore is
unique.

Step 9: Create a Truststore by Importing CA and Agent Certificates

Perform this step on the Cloudera Manager Server, where the new truststore is used to authenticate Agents.

Create a new truststore file (/opt/cloudera/security/jks/truststore.jks) and import the CA root and
intermediary/subordinate certificates to this truststore. The new truststore functions like a keystore, containing only
certificates and no private key.

1. Create a trusted keystore using the keytool command and import the root CA certificate to this truststore.

$ keytool -importcert -noprompt -keystore /opt/cloudera/security/jks/truststore.jks \
-alias root_CA -file root.crt -storepass password

2. Import any remaining intermediary/subordinate CA certificates into the truststore.

$ keytool -importcert -noprompt -keystore /opt/cloudera/security/jks/truststore.jks
-alias int_CA -file intermediate-CA.pem -storepass password

3.
Important: Only perform this step if your Agent certificates have not been enabled for TLS Web
Client Authentication. See Step 4 for instructions on how to examine Agent certificates.

Save the hostname.pem certificate files from all cluster hosts in a single location. Import these host certificates
(hostname.pem) into the new Cloudera Manager Server truststore.

$ keytool -keystore /opt/cloudera/security/jks/truststore.jks \
-importcert -alias hostname -file hostname.pem -storepass password

Consider creating a for loop on a list of hostnames to speed up this process.

$ for HOST in 'cat hostlist.txt'; do keytool -keystore
/opt/cloudera/security/jks/truststore.jks \
-importcert -alias $HOST -file $HOST.pem -storepass password

Step 10: Enable Agent Authentication and Configure the Cloudera Manager Server to Use the New Truststore

1. Log into the Cloudera Manager Admin Console.

Cloudera Security | 241

Configuring Encryption

2. Select Administration > Settings.
3. Click the Security category.
4. Configure the following TLS settings:

DescriptionSetting

Select this option to enable TLS authentication of Agents to the Server.UseTLSAuthenticationofAgents
to Server

Specify the full filesystem path to the truststore located on the Cloudera
Manager Server host; in the example,
/opt/cloudera/security/jks/truststore.jks

Path to Truststore

Specify the password for the truststore.Truststore Password

5. Click Save Changes to save the settings.

Step 11: Restart the Cloudera Manager Server

$ sudo service cloudera-scm-server restart

Step 12: Restart the Cloudera Manager Agents

On every Agent host, restart the Agent:

$ sudo service cloudera-scm-agent restart

Step 13: Verify that the Server and Agents Are Communicating

In ClouderaManager Admin Console, open the Hosts page. If the Agents heartbeat successfully, the Server and Agents
are communicating. If they are not, you may see an error in the Server, such as a null CA chain error. This implies
that either the truststore does not contain the Agent certificate, or the Agent is not presenting the certificate. Check
all of your settings, and check the Server log to verify that TLS and Agent validation have been enabled correctly.

TLS/SSL Communication Between Cloudera Manager and Cloudera Management Services

Both the Cloudera Manager Agent and the roles that make up the Cloudera Management Service use HTTPS to
communicate with Cloudera Manager and CDH services. This topic aims to explain how the various aspects of HTTPS
communication are handled by the Cloudera Manager Agents and the Cloudera Management Service roles.

Cloudera Manager Agents use HTTPS to communicate with HBase, HDFS, Impala, MapReduce, and YARN to collect
monitoring data.

Cloudera Manager Agent

Configuring TLS communication between the Cloudera Manager Server and Agents is outlined in Configuring TLS
Security for ClouderaManager on page 228. You can configure the certificates available for server certificate verification
using the verify_cert_dir parameter in the Agent config.ini file. See the comments in the config.ini file
for a detailed explanation of this property. You can also use the existing value for the verify_cert_file parameter.

When the Cloudera Manager Agent communicates with CDH services using HTTPS:

• If verify_cert_file or verify_cert_dir are configured in the Agent config.ini, the Agent uses these
settings to verify the server certificates. If these settings are not configured, no certificate verification occurs. If
certificate verification is performed for the ClouderaManager Server, it must also be performed for CDH daemons.

• An Agent never participates in mutual TLS authentication with any CDH service. Instead, each service has its own
authentication scheme. Most services use Kerberos authentication, but Impala uses HTTP digest.

User Impact

This depends on how you use certificates.

242 | Cloudera Security

Configuring Encryption

• If you do not need certificate verification, do not configure verify_cert_file or verify_cert_dir. However,
this leaves you vulnerable to man-in-the-middle attacks.

• If you are using a CA-signed certificate, configure the Agent accordingly. Adding new services or enabling TLS/SSL
on a service requires no changes to the Agent configuration because the CA verifies the certificates used by any
new servers brought online.

• If you are using self-signed certificates (recommended only on test clusters), the certificate for each new service
that uses HTTPS must be available to the Agent. Modify the file pointed to by verify_cert_file (Agent restart
required), or the directory pointed to by verify_cert_dir, to contain the new certificate.

Cloudera Management Services

Some Cloudera Management Service roles act as HTTPS clients when communicating with Cloudera Manager entities
and CDH services.

You can verify server certificates in two ways:

• Configure a truststore through Cloudera Manager to perform certificate verification on the certificates of the
servers with which it communicates. If this truststore is configured, it is used to verify server certificates.

OR

• If no truststore is configured through Cloudera Manager, the default Java truststore (cacerts) is used to verify
certificates.

The following table shows ClouderaManagement Service roles that act as HTTPS clients, and the corresponding Cloudera
Manager entities that communicate with them as HTTPS servers.This table does not depict the entirety of the roles'
communication, only communications over HTTPS.

Table 12: HTTPS Communication Between Cloudera Management Service Roles and Cloudera Manager Entities

Communicating HTTPS ServersRoles as HTTPS Clients

Activity Monitor • Cloudera Manager Server
• JobTracker Web Server
• Oozie server (may involve the load balancer in an HA configuration)

Host Monitor • Cloudera Manager Server

Service Monitor • Cloudera Manager Server
• NameNode(s) Web Server(s)
• Impala StateStore Web Server
• YARN ResourceManager(s) Web Server(s)
• YARN JobHistory Web Server
• Oozie server (directly, not through the load balancer)

Event Server • Cloudera Manager Server

Reports Manager • Cloudera Manager Server
• NameNode(s) Web Servers

Note: The Cloudera Navigator roles also act as HTTPS clients, but are outside the scope of this
document.

The Cloudera Management Service roles communicate using HTTPS as follows:

• If the Cloudera Management Service SSL Client Truststore File Location parameter is configured, the roles use
this truststore to verify server certificates. If this parameter is not set, the default Java truststore is used to verify

Cloudera Security | 243

Configuring Encryption

certificates. Without using safety valves, you cannot verify certificates for some Cloudera Management Service
roles but not for others. Nor can you verify certificates for only a subset of the HTTPS communication by a role.

• The Cloudera Management Service roles never participate in mutual TLS authentication with any CDH service or
with the Cloudera Manager Server. Instead, each service has its own authentication scheme: Kerberos for most
services, HTTP digest for Impala. For the Cloudera Manager Server, this authentication is session-based.

User Impact

This depends on how you use certificates:

• If you use a CA-signed certificate, configure the Cloudera Management Service SSL Client Truststore File Location
parameter to point to a truststore that contains the CA certificate. Adding a new service or enabling TLS on an
existing service requires no changes to the ClouderaManagement Service configuration because the CA certificate
verifies the certificates used by any new servers brought online. Alternatively, this CA-signed certificate can be
added to the default Java truststore.

• If you are using self-signed certificates, the certificate for each new service that uses HTTPS must be available to
the Agent.. You must modify the truststore pointed to by the Cloudera Management Service SSL Client Truststore
File Location parameter. Truststore changes are required on each host on which a Cloudera Management Service
daemon is running. Changes to the truststore do not require a role restart, and should be picked up within 10
seconds by default.

If the Cloudera Management Service SSL Client Truststore File Location is not used, the certificate must be made
available in the default Java truststore. The Cloudera Management Service role must be restarted for this change
to take effect.

Troubleshooting TLS/SSL Issues in Cloudera Manager

This topic contains instructions for diagnosing and fixing issues you might face on a TLS-enabled cluster.

Inspecting Cloudera Manager Connectivity with OpenSSL

The openssl tool can be run from the host that is running the Cloudera Manager Agent or client service that should
be inspected for connectivity issues. You should also test whether the certificate in use by the host is recognized by a
trusted CA during the TLS/SSL negotiation.

Use the following command to inspect the connection.

$ openssl s_client -connect [host.fqdn.name]:[port]

For example:

$ openssl s_client -connect test1.sec.cloudera.com:7183

A return code 0 means openssl was able to establish trust of the server through its library of trusted public CAs. If
the certificate was self-signed (recommended only on test clusters) or provided by a private CA, it might be necessary
to add the private CA or self-signed certificate to the truststore using the openssl command. Adding the path to the
root CA, -CAfile </path/to/root-ca.pem>, allows openssl to verify your self-signed or private CA-signed
certificate as follows:

$ openssl s_client -connect test1.sec.cloudera.com:7183 -CAfile \
/opt/cloudera/security/CAcerts/RootCA.pem

Note that providing only the Root CA certificate is necessary to establish trust for this test. The result from the command
is successful when you see the return code 0 as follows:

...
 Verify return code: 0 (ok)

244 | Cloudera Security

Configuring Encryption

By default, the Cloudera Manager Server writes logs to the
/etc/cloudera-scm-server/cloudera-scm-server.log file on startup. Successful start of the server process
with the certificate will show logs similar to the following:

2014-10-06 21:33:47,515 INFO WebServerImpl:org.mortbay.log: jetty-6.1.26.cloudera.2
2014-10-06 21:33:47,572 INFO WebServerImpl:org.mortbay.log: Started
SslSelectChannelConnector@0.0.0.0:7183
2014-10-06 21:33:47,573 INFO WebServerImpl:org.mortbay.log: Started
SelectChannelConnector@0.0.0.0:7180
2014-10-06 21:33:47,573 INFO WebServerImpl:com.cloudera.server.cmf.WebServerImpl: Started
 Jetty server.

Uploading Diagnostic Bundles to Cloudera Fails

By default, Cloudera Manager uses HTTPS to upload diagnostic bundles to the Cloudera Support server at
cops.cloudera.com. These uploads will fail if Cloudera Manager cannot confirm the authenticity of the Cloudera
Support server. The Support server authenticates itself to Cloudera Manager by presenting a certificate signed by a
public Certificate Authority (CA). However, if you have previously enabled Level 3 TLS Authentication for Cloudera
Manager, the Cloudera Manager truststore may not contain certificates signed by public CAs. Therefore, attempting
to verify the authenticity of the Support server's certificatewill result in an authentication failure, and diagnostic bundle
uploads will fail.

To successfully upload diagnostic bundles, you must establish trust between Cloudera Manager and the Cloudera
Support server. You can accomplish this in one of the following ways:

• Option A - Obtain the Support server's certificate and explicitly import it into your truststore.

or

• Option B - Use Java's default collection of public CA certificates, cacerts or jssecacerts, located at
[JAVA_HOME]/jre/lib/security/, as the starting point for any truststore you create for the cluster.

The following instructions assume you have the version of keytool compatible with the version of JDK your cluster
is running on.

Option A - Explicitly import the Cloudera Support server's certificate into your truststore

Use the following command to obtain the current public key/certificate information from the Cloudera Support server.

$ openssl s_client -connect cops.cloudera.com:443 | openssl x509 -text -out
/path/to/cloudera-cert.pem

Import this certificate into your Cloudera Manager truststore. Substitute the paths in the following command with the
paths to your truststore and the Support server's certificate.

$ keytool -import -keystore /path/to/cm/truststore.jks -file /path/to/cloudera-cert.pem

Once the truststore is ready, make sure Cloudera Manager is configured to point to this file. For instructions, see
Configuring Cloudera Manager Truststore Properties on page 246.

Option B - Use the default cacerts truststore to create the Cloudera Manager truststore

You can use the default collection of public CA certificates in one of the following ways:

• Copy the contents of cacerts to jssecacerts, and use jssecacerts as the Cloudera Manager truststore.
You can modify jssecacerts to include any additional private CA certificates as needed.

or

• As the first step to setting up the Cloudera Manager truststore, copy the contents of cacerts to your blank
truststore.jks file.

Cloudera Security | 245

Configuring Encryption

Copying the cacerts file into your truststore will also set the same default password (changeit) for your file. Use
the following command to change the password for your truststore. For example:

$ keytool -storepasswd -keystore /path/to/cm/truststore.jks
Enter keystore password: changeit
New keystore password: [new-password]
Re-enter new keystore password: [new-password]

Once the truststore is ready, use the instructions in the following section to make sure ClouderaManager is configured
to point to the right truststore file.

Configuring Cloudera Manager Truststore Properties

Once you have set up the Cloudera Manager truststore using either Option A or B, make sure Cloudera Manager is
configured to use this truststore. To determine trust, Cloudera Manager uses the JVM arguments,
-Djavax.net.ssl.trustStore and -Djavax.net.ssl.trustStore.password. Configure these arguments in
Cloudera Manager as follows:

1. Log into the Cloudera Manager Admin Console.
2. Select Administration > Settings.
3. Click the Security category.
4. Configure the following TLS/SSL settings:

DescriptionSetting

Specify the complete filesystempath to the truststore located on the Cloudera
Manager Server host in .jks format.

Cloudera Manager TLS/SSL
Certificate Trust Store File

Specify the password for the truststore file. This password is not required to
access the trust store. This field can be left blank.

Cloudera Manager TLS/SSL
Certificate Trust Store Password

5. Click Save Changes to save the settings.

Note: For details on the JSSE trust mechanism, see Oracle's JSSE Reference Guide.

Using Self-Signed Certificates (Level 1 TLS)

Self-signed certificates should not be used for production deployments. However, for testing and other non-production
purposes, self-signed certificates let you quickly obtain the certificates needed for Step 1: Obtain Encryption Keys and
Certificates for Cloudera Manager Server on page 231.

Replace paths, file names, aliases, and other examples in the commands below for your system.

1. Create the directory for the certificates:

$ mkdir -p /opt/cloudera/security/x509/ /opt/cloudera/security/jks/
$ cd /opt/cloudera/security/jks

Give Cloudera Manager access to the directory: chown -R cloudera-scm:cloudera-scm
/opt/cloudera/security/jks

2. Generate the key pair and self-signed certificate, and store these in the keystore (example.keystore). Set
-keypass to the same value as -storepass (ClouderaManager does not support separate values for -keypass
and -storepass.)

246 | Cloudera Security

Configuring Encryption

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefGuide.html#X509TrustManager

Note: For CN, use the FQDN of the Cloudera Manager Server host to avoid a
java.io.IOException: HTTPS hostname wrong exception.

$ keytool -genkeypair -keystore example.keystore -keyalg RSA -alias cmhost \
-dname "CN=cmhost.sec.example.com,OU=Security,O=Example,L=Denver,ST=Colorado,C=US"
-storepass password -keypass password

3. Copy the default Java truststore (cacerts) to the alternate system truststore (jssecacerts). (You can append
any self-signed certificates to jssecacerts without modifying the default cacerts file.)

$ sudo cp $JAVA_HOME/jre/lib/security/cacerts $JAVA_HOME/jre/lib/security/jssecacerts

4. Export the certificate from the keystore (example.keystore).

$ keytool -export -alias cmhost -keystore example.keystore -rfc -file selfsigned.cer

5. Copy the self-signed certificate (selfsigned.cer) to the /opt/cloudera/security/x509/ directory.

$ cp selfsigned.cer /opt/cloudera/security/x509/cmhost.pem

6. Import the public key into the alternate system truststore (jssecacerts), so that any process that runs with
Java on this machine will trust the key. The default password for the Java truststore is changeit. Do not use the
password created for the keystore in Step 2.

$ keytool -import -alias cmhost -file /opt/cloudera/security/jks/selfsigned.cer \
-keystore $JAVA_HOME/jre/lib/security/jssecacerts -storepass changeit

Important: Repeat this process on each machine in the cluster.

7. Rename the keystore (for example, from example.keystore to cmhost-keystore.jks):

$ mv /opt/cloudera/security/jks/example.keystore
/opt/cloudera/security/jks/cmhost-keystore.jks

You can also delete the certificate (it's already been added to the keystore at
/opt/cloudera/security/x509/cmhost.pem).

$ rm /opt/cloudera/security/selfsigned.cer

You now have the self-signed certificate set up complete, and can continue configuring TLS Level 1 (Step 2: Enable
HTTPS for the Cloudera Manager Admin Console and Specify Server Keystore Properties on page 233).

Configuring TLS/SSL for the Cloudera Navigator Data Management Component

Important: The following instructions assume you have a Java keystore set up on the Navigator
Metadata Server host.

To enable SSL communication between the Cloudera Navigator Metadata Server and its clients:

1. Open the Cloudera Manager Admin Console and go to the Cloudera Management Service.
2. Click the Configuration tab.
3. Select Scope > Navigator Metadata Server.

Cloudera Security | 247

Configuring Encryption

4. Select Category > Security.
5. Edit the following properties according to your cluster configuration.

DescriptionProperty

Encrypt communication between clients and Navigator Metadata Server using
Transport Layer Security (TLS) (formerly known as Secure Socket Layer (SSL)).

Enable TLS/SSL for Navigator
Metadata Server

The path to the TLS/SSL keystore file containing the server certificate and private
key used for TLS/SSL. UsedwhenNavigatorMetadata Server is acting as a TLS/SSL
server. The keystore must be in JKS format.

TLS/SSL Keystore File Location

The password for the Navigator Metadata Server JKS keystore file.TLS/SSLKeystore File Password

The password that protects the private key contained in the JKS keystore used
when Navigator Metadata Server is acting as a TLS/SSL server.

TLS/SSL Keystore Key
Password

6. Click Save Changes to commit the changes.
7. Restart the Navigator Metadata Server.
8. Restart Impala.

Note: Once you have enabled TLS/SSL, the Quick Links in ClouderaManager pointing to the Cloudera
Navigator UI will not work as they use HTTP, not HTTPS.

Configuring TLS/SSL for Publishing Cloudera Navigator Audit Events to Kafka
Use the following steps to enable encryption when publishing Cloudera Navigator Audit events to Kafka:

1. Open the Cloudera Manager Admin Console and go to the Kafka service.
2. Click the Configuration tab.
3. Select Scope > Kafka Broker.
4. Select Category > Security.
5. Edit the following properties according to your cluster configuration.

DescriptionProperty

Encrypt communication between clients and Kafka Broker using Transport Layer
Security (TLS) (formerly known as Secure Socket Layer (SSL)).

Enable TLS/SSL for Kafka
Broker

The location on disk of the truststore, in .jks format. This is used to confirm the
authenticity of TLS/SSL servers that the Kafka Brokermight connect to as a client.

Kafka Broker TLS/SSL
Certificate Trust Store File

If this field is left empty, by default, a list of well-known certificate authorities
is used to check the Navigator Audit Server's identity.

The password for the Kafka Broker TLS/SSL Certificate Trust Store File. This field
can be left blank. A password only provides optional integrity checking for the

Kafka Broker TLS/SSL
Certificate Trust Store
Password truststore file. Contents of truststores are certificates, and certificates are already

public information.

6. Click Save Changes to commit the changes.
7. Restart the Kafka service.

Configuring TLS/SSL for Cloudera Management Service Roles
To enable TLS/SSL communication between Cloudera Management Service roles, and CDH services and the Cloudera
Manager Server:

248 | Cloudera Security

Configuring Encryption

1. Open the Cloudera Manager Administration Console and go to the Cloudera Management Service.
2. Click the Configuration tab.
3. Select Scope > Cloudera Management Service (Service-Wide).
4. Select Category > Security.
5. Edit the following TLS/SSL properties according to your cluster configuration.

DescriptionProperty

Path to the client truststore file used in HTTPS communication. This truststore
contains certificates of trusted servers, or of Certificate Authorities trusted to

TLS/SSL Client Truststore File
Location

identify servers. If set, this is used to verify certificates in HTTPS communication
with CDH services and the Cloudera Manager Server. If not set, the default Java
truststore located at $JAVA_HOME/jre/lib/security/cacerts is used to
verify certificates.

The contents of this truststore can be modified without restarting the Cloudera
Management Service roles. By default, changes to its contents are picked up
within ten seconds.

Password for the client truststore file. The password for the default cacerts
file is changeit.

TLS/SSL Client Truststore File
Password

6. Click Save Changes to commit the changes.
7. Restart the ClouderaManagement Service. For more information, see TLS/SSL Communication Between Cloudera

Manager and Cloudera Management Services on page 242.

Configuring TLS/SSL Encryption for CDH Services
In addition to configuring Cloudera Manager cluster to use TLS/SSL (as detailed, starting with Configuring TLS Security
for Cloudera Manager on page 228), the various CDH services running on the cluster should also be configured to use
TLS/SSL. The process of configuring TLS/SSL varies by component, so follow the steps below as needed for your system.
Before trying to configure TLS/SSL, however, be sure your cluster meets the prerequisites.

Note: TLS/SSL for Hadoop core services—HDFS,MapReduce, and YARN—must be enabled as a group.
TLS/SSL for other components such as HBase, Hue, and Oozie can be enabled independently.

Prerequisites

• Cloudera recommends securing a cluster using Kerberos authentication before enabling encryption such as TLS/SSL
on a cluster. If you enable TLS/SSL for a cluster that does not already have Kerberos authentication configured, a
warning will be displayed.

• The following sections assume that you have created all the certificates required for TLS/SSL communication. If
not, for information on how to do this, see Creating Certificates.

• The certificates and keys to be deployed in your cluster should be organized into the appropriate set of keystores
and truststores. For more information, see Creating Java Keystores and Truststores on page 224.

Note: Cloudera Manager and CDH components support either TLS 1.0, TLS 1.1, or TLS 1.2, but not
SSL 3.0. References to SSL continue only because of its widespread use in technical jargon.

Hadoop Services as TLS/SSL Servers and Clients

Hadoop services differ in their use of TLS/SSL as follows:

• HDFS, MapReduce, and YARN daemons act as both TLS/SSL servers and clients.

Cloudera Security | 249

Configuring Encryption

• HBase daemons act as TLS/SSL servers only.
• Oozie daemons act as TLS/SSL servers only.
• Hue acts as an TLS/SSL client to all of the above.

Daemons that act as TLS/SSL servers load the keystores when starting up. When a client connects to an TLS/SSL server
daemon, the server transmits the certificate loaded at startup time to the client, which then uses its truststore to
validate the server’s certificate.

Compatible Certificate Formats for Hadoop Components

Compatible Certificate FormatComponent

Java KeystoreHDFS

Java KeystoreMapReduce

Java KeystoreYARN

PEMHue

Java KeystoreHive (for communication betweenHive clients
and HiveServer2)

Java KeystoreHBase

PEMImpala

Java KeystoreOozie

Configuring TLS/SSL for HDFS, YARN and MapReduce

Required Role: Configurator, Cluster Administrator, or Full Administrator

TLS/SSL for the core Hadoop services—HDFS, MapReduce, and YARN—must be enabled as a group. Because most
clusters run either MapReduce or YARN, not both, you will typically enable HDFS and YARN, or HDFS and MapReduce.
Enabling TLS/SSL on HDFS is required before it can be enabled on either MapReduce or YARN.

Note: If you enable TLS/SSL for HDFS, you must also enable it for MapReduce or YARN.

The steps below include enabling Kerberos authentication for HTTP Web-Consoles. Enabling TLS/SSL for the core
Hadoop services on a cluster without enabling authentication displays a warning.

Before You Begin

• Before enabling TLS/SSL, keystores containing certificates bound to the appropriate domain names will need to
be accessible on all hosts on which at least one HDFS, MapReduce, or YARN daemon role is running.

• Since HDFS, MapReduce, and YARN daemons act as TLS/SSL clients as well as TLS/SSL servers, they must have
access to truststores. In many cases, the most practical approach is to deploy truststores to all hosts in the cluster,
as it may not be desirable to determine in advance the set of hosts on which clients will run.

• Keystores for HDFS, MapReduce and YARN must be owned by the hadoop group, and have permissions 0440
(that is, readable by owner and group). Truststores must have permissions 0444 (that is, readable by all)

• Cloudera Manager supports TLS/SSL configuration for HDFS, MapReduce and YARN at the service level. For each
of these services, you must specify absolute paths to the keystore and truststore files. These settings apply to all
hosts on which daemon roles of the service in question run. Therefore, the paths you choose must be valid on all
hosts.

An implication of this is that the keystore file names for a given service must be the same on all hosts. If, for
example, you have obtained separate certificates for HDFS daemons on hosts node1.example.com and
node2.example.com, you might have chosen to store these certificates in files called hdfs-node1.keystore

250 | Cloudera Security

Configuring Encryption

and hdfs-node2.keystore (respectively). When deploying these keystores, youmust give them both the same
name on the target host — for example, hdfs.keystore.

• Multiple daemons running on a host can share a certificate. For example, in case there is a DataNode and an Oozie
server running on the same host, they can use the same certificate.

Configuring TLS/SSL for HDFS

1. Go to the HDFS service.
2. Click the Configuration tab.
3. Select Scope > HDFS (Service-Wide).
4. Select Category > Security.
5. In the Search field, type TLS/SSL to show the TLS/SSL properties (found under the Service-Wide > Security category).
6. Edit the following properties according to your cluster configuration:

DescriptionProperty

Path to the keystore file containing the server certificate and private key.Hadoop TLS/SSL Server
Keystore File Location

Password for the server keystore file.Hadoop TLS/SSL Server
Keystore File Password

Password that protects the private key contained in the server keystore.Hadoop TLS/SSL Server
Keystore Key Password

7. If you are not using the default truststore, configure TLS/SSL client truststore properties:

Important: The HDFS properties below define a cluster-wide default truststore that can be
overridden by YARN and MapReduce (see the Configuring TLS/SSL for YARN and MapReduce
section below).

DescriptionProperty

Path to the client truststore file. This truststore contains certificates of trusted
servers, or of Certificate Authorities trusted to identify servers.

Cluster-Wide Default TLS/SSL
Client Truststore Location

Password for the client truststore file.Cluster-Wide Default TLS/SSL
Client Truststore Password

8. (Optional) Cloudera recommends you enable web UI authentication for the HDFS service. Web UI authentication
uses SPNEGO. After enabling this, you cannot access the Hadoop web consoles without a valid Kerberos ticket
and proper client-side configuration. For more information, see Using a Web Browser to Access an URL Protected
by Kerberos HTTP SPNEGO on page 201.

To enable web UI authentication, enter web consoles in the Search field to bring up the Enable Authentication
for HTTPWeb-Consoles property (found under the Service-Wide>Security category). Check the property to enable
web UI authentication.

Enables authentication for HadoopHTTPweb-consoles for all roles of this service.

Note: This is effective only if security is enabled for the HDFS
service.

Enable Authentication for
HTTP Web-Consoles

9. Click Save Changes.

Cloudera Security | 251

Configuring Encryption

10. Follow the procedure described in the following Configuring TLS/SSL for YARN and MapReduce section, at the
end of which you will be instructed to restart all the affected services (HDFS, MapReduce and YARN).

Configuring TLS/SSL for YARN or MapReduce

Perform the following steps to configure TLS/SSL for the YARN or MapReduce services:

1. Go to the YARN orMapReduce service.
2. Click the Configuration tab.
3. Select Scope > service name (Service-Wide).
4. Select Category > Security.
5. Locate the <property name> property or search for it by typing its name in the Search box.
6. In the Search field, type TLS/SSL to show the TLS/SSL properties (found under the Service-Wide > Security category).
7. Edit the following properties according to your cluster configuration:

DescriptionProperty

Path to the keystore file containing the server certificate and private key.Hadoop TLS/SSL Server
Keystore File Location

Password for the server keystore file.Hadoop TLS/SSL Server
Keystore File Password

Password that protects the private key contained in the server keystore.Hadoop TLS/SSL Server
Keystore Key Password

8. Configure the following TLS/SSL client truststore properties for MRv1 or YARN only if you want to override the
cluster-wide defaults set by the HDFS properties configured above.

DescriptionProperty

Path to the client truststore file. This truststore contains certificates of trusted
servers, or of Certificate Authorities trusted to identify servers.

TLS/SSL Client Truststore File
Location

Password for the client truststore file.TLS/SSL Client Truststore File
Password

9. Cloudera recommends you enable Web UI authentication for the service in question.

Enter web consoles in the Search field to bring up the Enable Authentication for HTTP Web-Consoles property
(found under the Service-Wide>Security category). Check the property to enable web UI authentication.

Enables authentication for HadoopHTTPweb-consoles for all roles of this service.

Note: This is effective only if security is enabled for the HDFS
service.

Enable Authentication for
HTTP Web-Consoles

10. Click Save Changes to commit the changes.
11. Go to the HDFS service
12. Click the Configuration tab.
13. Type Hadoop SSL Enabled in the Search box.
14. Select the Hadoop SSL Enabled property to enable SSL communication for HDFS, MapReduce, and YARN.

DescriptionProperty

Enable TLS/SSL encryption for HDFS, MapReduce, and YARN web UIs, as well as
encrypted shuffle for MapReduce and YARN.

Hadoop TLS/SSL Enabled

252 | Cloudera Security

Configuring Encryption

15. Click Save Changes to commit the changes.
16. Restart all affected services (HDFS, MapReduce and YARN), as well as their dependent services.

Configuring TLS/SSL for HBase

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Before You Begin

• Before enabling TLS/SSL, ensure that keystores containing certificates bound to the appropriate domain names
will need to be accessible on all hosts on which at least one HBase daemon role is running.

• Keystores for HBase must be owned by the hbase group, and have permissions 0440 (that is, readable by owner
and group).

• You must specify absolute paths to the keystore and truststore files. These settings apply to all hosts on which
daemon roles of the HBase service run. Therefore, the paths you choose must be valid on all hosts.

• Cloudera Manager supports the TLS/SSL configuration for HBase at the service level. Ensure you specify absolute
paths to the keystore and truststore files. These settings apply to all hosts on which daemon roles of the service
in question run. Therefore, the paths you choose must be valid on all hosts.

An implication of this is that the keystore file names for a given service must be the same on all hosts. If, for
example, you have obtained separate certificates for HBase daemons on hosts node1.example.com and
node2.example.com, youmight have chosen to store these certificates in files called hbase-node1.keystore
and hbase-node2.keystore (respectively). When deploying these keystores, you must give them both the
same name on the target host — for example, hbase.keystore.

Configuring TLS/SSL for HBase Web UIs

The steps for configuring and enabling TLS/SSL for HBase are similar to those for HDFS, YARN and MapReduce:

1. Go to the HBase service
2. Click the Configuration tab.
3. Select Scope > HBASE (Service-Wide).
4. Select Category > Security.
5. In the Search field, type TLS/SSL to show the HBase TLS/SSL properties.
6. Edit the following TLS/SSL properties according to your cluster configuration:

Table 13: HBase TLS/SSL Properties

DescriptionProperty

Path to the keystore file containing the server certificate and private key used
for encrypted web UIs.

HBase TLS/SSL Server JKS
Keystore File Location

Password for the server keystore file used for encrypted web UIs.HBase TLS/SSL Server JKS
Keystore File Password

Password that protects the private key contained in the server keystore used
for encrypted web UIs.

HBase TLS/SSL Server JKS
Keystore Key Password

7. Check theWeb UI TLS/SSL Encryption Enabled property.

Enable TLS/SSL encryption for the HBase Master, RegionServer, Thrift Server,
and REST Server web UIs.

Web UI TLS/SSL Encryption
Enabled

8. Click Save Changes to commit the changes.
9. Restart the HBase service.

Cloudera Security | 253

Configuring Encryption

Configuring TLS/SSL for HBase REST Server

1. Go to the HBase service
2. Click the Configuration tab.
3. Select Scope > HBase REST Server.
4. Select Category > Security.
5. In the Search field, type TLS/SSL REST to show the HBase REST TLS/SSL properties.
6. Edit the following TLS/SSL properties according to your cluster configuration:

DescriptionProperty

Encrypt communication between clients and HBase REST Server
using Transport Layer Security (TLS).

Enable TLS/SSL for HBase REST Server

The path to the TLS/SSL keystore file containing the server certificate
and private key used for TLS/SSL. Used when HBase REST Server is
acting as a TLS/SSL server. The keystore must be in JKS format.file.

HBase REST Server TLS/SSL Server JKS
Keystore File Location

The password for the HBase REST Server JKS keystore file.HBase REST Server TLS/SSL Server JKS
Keystore File Password

The password that protects the private key contained in the JKS
keystore usedwhenHBase REST Server is acting as a TLS/SSL server.

HBase REST Server TLS/SSL Server JKS
Keystore Key Password

7. Click Save Changes to commit the changes.
8. Restart the HBase service.

Configuring TLS/SSL for HBase Thrift Server

1. Go to the HBase service
2. Click the Configuration tab.
3. Select Scope > HBase Thrift Server.
4. Select Category > Security.
5. In the Search field, type TLS/SSL Thrift to show the HBase Thrift TLS/SSL properties.
6. Edit the following TLS/SSL properties according to your cluster configuration:

DescriptionProperty

Encrypt communication between clients and HBase Thrift Server
over HTTP using Transport Layer Security (TLS).

Enable TLS/SSL for HBase Thrift Server over
HTTP

Path to the TLS/SSL keystore file (in JKS format) with the TLS/SSL
server certificate and private key. Used when HBase Thrift Server
over HTTP acts as a TLS/SSL server.

HBase Thrift Server over HTTP TLS/SSL
Server JKS Keystore File Location

Password for the HBase Thrift Server JKS keystore file.HBase Thrift Server over HTTP TLS/SSL
Server JKS Keystore File Password

Password that protects the private key contained in the JKS keystore
used when HBase Thrift Server over HTTP acts as a TLS/SSL server.

HBase Thrift Server over HTTP TLS/SSL
Server JKS Keystore Key Password

7. Click Save Changes to commit the changes.
8. Restart the HBase service.

Configuring TLS/SSL for Flume Thrift Source and Sink

This topic describes how to enable TLS/SSL communication between Flume's Thrift source and sink.

The following tables list the properties that must be configured to enable TLS/SSL communication between Flume's
Thrift source and sink instances.

254 | Cloudera Security

Configuring Encryption

Table 14: Thrift Source TLS/SSL Properties

DescriptionProperty

Set to true to enable TLS/SSL encryption.ssl

Path to a Java keystore file. Required for TLS/SSL.keystore

Password for the Java keystore. Required for TLS/SSL.keystore-password

The type of the Java keystore. This can be JKS or PKCS12.keystore-type

Table 15: Thrift Sink TLS/SSL Properties

DescriptionProperty

Set to true to enable TLS/SSL for this ThriftSink.

When configuring TLS/SSL, you can optionally set the following truststore,
truststore-password and truststore-type properties. If a custom

ssl

truststore is not specified, Flume will use the default Java JSSE truststore
(typically jssecacerts or cacerts in the Oracle JRE) to verify the remote
Thrift Source's TLS/SSL credentials.

(Optional) The path to a custom Java truststore file.truststore

(Optional) The password for the specified truststore.truststore-password

(Optional) The type of the Java truststore. This can be JKS or any other
supported Java truststore type.

truststore-type

Make sure you are configuring TLS/SSL for each Thrift source and sink instance. For example, to the existingflume.conf
file, for agent a1, source r1, and sink k1, you would add the following properties:

TLS/SSL properties for Thrift source s1
a1.sources.r1.ssl=true
a1.sources.r1.keystore=<path/to/keystore>
a1.sources.r1.keystore-password=<keystore password>
a1.sources.r1.keystore-type=<keystore type>

TLS/SSL properties for Thrift sink k1
a1.sinks.k1.ssl=true
a1.sinks.k1.truststore=<path/to/truststore>
a1.sinks.k1.truststore-password=<truststore password>
a1.sinks.k1.truststore-type=<truststore type>

Configure these sets of properties for more instances of the Thrift source and sink as required. You can use either
Cloudera Manager or the command line to edit the flume.conf file.

Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Open the Cloudera Manager Admin Console and go to the Flume service.
2. Click the Configuration tab.
3. Select Scope > Agent.
4. Select Category >Main.
5. Edit the Configuration File property and add the Thrift source and sink properties for each Thrift source and sink

instance as described above to the configuration file.
6. Click Save Changes to commit the changes.
7. Restart the Flume service.

Cloudera Security | 255

Configuring Encryption

Using the Command Line

Go to the /etc/flume-ng/conf/flume.conf file and add the Thrift source and sink properties for each Thrift source
and sink instance as described above.

Configuring Encrypted Communication Between HiveServer2 and Client Drivers

Starting with CDH 5.5, encryption for HiveServer2 clients has been decoupled from the authentication mechanism.
This means you can use either SASL QOP or TLS/SSL to encrypt traffic between HiveServer2 and its clients, irrespective
of whether Kerberos is being used for authentication. Previously, the JDBC client drivers only supported SASL QOP
encryption on Kerberos-authenticated connections.

SASL QOP encryption is better suited for encrypting RPC communication and may result in performance issues when
dealing with large amounts of data. Move to using TLS/SSL encryption to avoid such issues.

This topic describes how to set up encrypted communication between HiveServer2 and its JDBC/ODBC client drivers.

Configuring Encrypted Client/Server Communication Using TLS/SSL

You can use either the ClouderaManager or the command-line instructions describedbelow to enable TLS/SSL encryption
for JDBC/ODBC client connections to HiveServer2. For background information on setting up TLS/SSL truststores and
keystores, see TLS/SSL Certificates Overview on page 221.

Note: Cloudera Manager and CDH components support either TLS 1.0, TLS 1.1, or TLS 1.2, but not
SSL 3.0. References to SSL continue only because of its widespread use in technical jargon.

Using Cloudera Manager

The steps for configuring and enabling TLS/SSL for Hive are as follows:

1. Open the Cloudera Manager Admin Console and go to the Hive service.
2. Click the Configuration tab.
3. Select Scope > Hive (Service-Wide).
4. Select Category > Security.
5. In the Search field, type TLS/SSL to show the Hive properties.
6. Edit the following properties according to your cluster configuration.

Table 16: Hive TLS/SSL Properties

DescriptionProperty

Enable support for encrypted client-server communication using Transport Layer
Security (TLS) for HiveServer2 connections.

Enable TLS/SSL for
HiveServer2

Path to the TLS keystore.HiveServer2 TLS/SSL Server
JKS Keystore File Location

Password for the TLS keystore.HiveServer2 TLS/SSL Server
JKS Keystore File Password

7. Click Save Changes to commit the changes.
8. Restart the Hive service.

Using the Command Line

• To enable TLS/SSL, add the following configuration parameters to hive-site.xml :

<property>
 <name>hive.server2.use.SSL</name>
 <value>true</value>
 <description>enable/disable SSL </description>

256 | Cloudera Security

Configuring Encryption

</property>

<property>
 <name>hive.server2.keystore.path</name>
 <value>keystore-file-path</value>
 <description>path to keystore file</description>
</property>

<property>
 <name>hive.server2.keystore.password</name>
 <value>keystore-file-password</value>
 <description>keystore password</description>
</property>

• The keystoremust contain the server's certificate.

• The JDBC client must add the following properties in the connection URL when connecting to a HiveServer2 using
TLS/SSL:

;ssl=true[;sslTrustStore=<Trust-Store-Path>;trustStorePassword=<Trust-Store-password>]

• Make sure one of the following is true:

• Either: sslTrustStore points to the truststore file containing the server's certificate; for example:

jdbc:hive2://localhost:10000/default;ssl=true;\
sslTrustStore=/home/usr1/ssl/trust_store.jks;trustStorePassword=xyz

• or: the Trust Store arguments are set using the Java system properties javax.net.ssl.trustStore and
javax.net.ssl.trustStorePassword; for example:

java -Djavax.net.ssl.trustStore=/home/usr1/ssl/trust_store.jks
-Djavax.net.ssl.trustStorePassword=xyz \
 MyClass jdbc:hive2://localhost:10000/default;ssl=true

For more information on using self-signed certificates and the Trust Store, see the Oracle Java SE keytool page.

Configuring Encrypted Client/Server Communication Using SASL QOP

Traffic between the Hive JDBC or ODBC drivers and HiveServer2 can be encrypted using plain SASL QOP encryption
which allows you to preserve data integrity (using checksums to validate message integrity) and confidentiality (by
encrypting messages). This can be enabled by setting the hive.server2.thrift.sasl.qop property in
hive-site.xml. For example,

<property>
<name>hive.server2.thrift.sasl.qop</name>
<value>auth-conf</value>
<description>Sasl QOP value; one of 'auth', 'auth-int' and 'auth-conf'</description>
</property>

Valid settings for the value field are:

• auth: Authentication only (default)
• auth-int: Authentication with integrity protection
• auth-conf: Authentication with confidentiality protection

The parameter value that you specify above in the HiveServer2 configuration, shouldmatch that specified in the Beeline
client connection JDBC URL. For example:

!connect jdbc:hive2://ip-10-5-15-197.us-west-2.compute.internal:10000/default; \
principal=hive/_HOST@US-WEST-2.COMPUTE.INTERNAL;sasl.qop=auth-conf

Cloudera Security | 257

Configuring Encryption

http://docs.oracle.com/javase/6/docs/technotes/tools/windows/keytool.html

Configuring TLS/SSL for Hue

Hue as a TLS/SSL Client

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Hue acts as an TLS/SSL client when communicating with Oozie, HBase, Amazon S3, and core Hadoop services. This
means Hue may have to authenticate HDFS, MapReduce, YARN daemons, and the HBase Thrift Server, and needs their
CA certificates in its truststore.

The Hue truststore is a single PEM file and must contain the CA certificate (the root) of each TLS/SSL-enabled server
with which Hue communicates and all intermediate certificates necessary for your system.

Creating a Hue Truststore File in PEM Format

Prerequisite: Youmust have a Certificate Authority (CA) certificate for each TLS/SSL-enabled server that communicates
with Hue. See Obtaining a Production Certificate from a Commercial CA on page 222.

Server certificates are stored in JKS format andmust be converted. To create the Hue truststore, extract each certificate
from its keystore with keytool, convert to PEM format with openssl, and add to the truststore.

1. Extract the certificate from the keystore of each TLS/SSL-enabled server with which Hue communicates.

For example,hadoop-server.jks contains server certificate,foo-1.example.com, andpassword,example123.

keytool -exportcert -keystore hadoop-server.jks -alias foo-1.example.com -storepass
example123 -file foo-1.cert

2. Convert each certificate into a PEM file.

openssl x509 -inform der -in foo-1.cert > foo-1.pem

3. Concatenate all the PEM certificates into one PEM file.

cat foo-1.pem foo-2.pem foo-n.pem ... > hue_trustore.pem

Note: Ensure the final PEM truststore is deployed in a location that is accessible by the Hue
service.

Configuring Hue as a TLS/SSL Client with Cloudera Manager

1. Go to the Hue service and click the Configuration tab.
2. Filter by Scope > Hue Server and Category > Security.
3. Find the property, Hue TLS/SSL Server CA Certificate (PEM Format), or ssl_cacerts.
4. Enter the path to <hue_truststore>.pem on the host running the Hue web server.
5. Click Save Changes.
6. Select Actions > Restart to restart the Hue service.

Configuring Hue as a TLS/SSL Client at the Command Line

For unmanageddeployments only,manually setssl_cacerts inhue.ini to the path of the<hue_truststore>.pem
file:

[desktop]
Path to default Certificate Authority certificates.
ssl_cacerts=/etc/hue/<hue_truststore>.pem

258 | Cloudera Security

Configuring Encryption

Hue as a TLS/SSL Server

Hue and other Python-based services expect certificates and keys to be stored in PEM format. You can manage such
services with the openssl tool. To configure Hue to use HTTPS, generate a private key and certificate as described in
Creating Certificates on page 222 and reuse a host's existing Java keystore by converting it to the PEM format. See
Conversion from Java Keystore to OpenSSL on page 228.

Enabling TLS/SSL for the Hue Server with Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the Hue service and click Configuration.
2. Filter by Scope > Hue Server and Category > Security.
3. Edit the following TLS/SSL properties according to your cluster configuration.

DescriptionProperty

Encrypt communication between clients and Hue with TLS/SSL.Enable TLS/SSL for Hue

Path to TLS/SSL certificate on host running Hue web server.Hue TLS/SSL Server Certificate File
(PEM Format)

ssl_certificate

Path to TLS/SSL private key on host running Hue web server.Hue TLS/SSL Server Private Key
File (PEM Format

ssl_private_key

Password for private key in Hue TLS/SSL Server Certificate and Private Key
file.

Hue TLS/SSL Private Key Password

ssl_password

You can also store ssl_passwordmore securely in a script and set this parameter instead:

ssl_password_script=<your_hue_passwords_script.sh>

For more, see Storing Hue Passwords in a Script on page 261.

If more than one role group applies to this configuration, edit the value for the appropriate role group. See
Modifying Configuration Properties Using Cloudera Manager.

4. Click Save Changes.
5. Select Actions > Restart to restart the Hue service.

For more details on configuring Hue with TLS/SSL, see this blog post.

Enabling TLS/SSL for the Hue Server at the Command Line

1. Enable secure session cookies in hue.ini under [desktop]>[[session]].

[desktop]
 [[session]]
 secure=true

2. Edit the following properties in hue.ini under [desktop].

[desktop]
 ssl_certificate=/path/to/server.cert
 ssl_private_key=/path/to/server.key
 ssl_password=<private_key_password>

Cloudera Security | 259

Configuring Encryption

https://www.openssl.org
http://gethue.com/configure-hue-with-https-ssl/

You can store ssl_passwordmore securely in a script and set this parameter instead:

ssl_password_script=<your_hue_passwords_script.sh>

For more, see Storing Hue Passwords in a Script on page 261.

Enabling Hue TLS/SSL Communication with HiveServer2

In CDH 5.5.x and higher, HiveServer2 is enabled for TLS/SSL communication by default.

By providing a CA certificate, private key, and public certificate, Hue can communicate with HiveServer2 over TLS/SSL.
You can now configure the following properties in the [beeswax] section under [[ssl]] in the Hue configuration
file, hue.ini.

Choose to enable/disable TLS/SSL communication for this server.enabled

Default: false

Path to Certificate Authority certificates.cacerts

Default: /etc/hue/cacerts.pem

Choose whether Hue should validate certificates received from the server.validate

Default: true

Related Information

• Configuring Encrypted Communication Between HiveServer2 and Client Drivers on page 256

Enabling Hue TLS/SSL Communication with Impala

In CDH 5.5.x and higher, Impala is enabled for TLS/SSL communication by default.

By providing a CA certificate, private key, and public certificate, Hue can communicate with Impala over TLS/SSL. You
can configure the following properties in the[impala] section under[[ssl]] in theHue configuration file,hue.ini.

Choose to enable/disable TLS/SSL communication for this server.enabled

Default: false

Path to Certificate Authority certificates.cacerts

Default: /etc/hue/cacerts.pem

Choose whether Hue should validate certificates received from the server.validate

Default: true

Securing Database Connections using TLS/SSL

Connections vary depending on the database. Hue uses different clients to communicatewith each database internally.
Client specific options, such as secure connectivity, can be passed through the interface.

For example, for MySQL you can enable TLS/SSL communication by specifying the options configuration property
under the desktop>[[database]] section in hue.ini. Here we identify the Certificate Authority (CA) certificate:

[desktop]
 [[databases]]
 …
 options={"ssl":{"ca":"/tmp/ca-cert.pem"}}

260 | Cloudera Security

Configuring Encryption

You can also identify public and private keys, for example:

options='{"ssl": {"ca": "/tmp/newcerts2/ca.pem", "key": "/tmp/newcerts2/client-key.pem",
 "cert": "/tmp/newcerts2/client-cert.pem"}}'

Storing Hue Passwords in a Script

In CDH 5.4, Hue added the ability to store passwords in a secure script and pull passwords from stdout. On startup,
Hue runs one or more passwords scripts and grabs each password from stdout.

In hue_ini, add the suffix, _script, to any password property and set it equal to the script name. In Cloudera
Manager, set these properties in the configuration field, Hue Service Advanced Configuration Snippet (Safety Valve)
for hue_safety_valve.ini. For example:

[desktop]
ldap_username=hueservice
ldap_password_script="/var/lib/hue/<your_hue_passwords_script.sh> ldap_password"
ssl_password_script="/var/lib/hue/<your_hue_passwords_script.sh> ssl_password"

[[ldap]]
bind_password_script="/var/lib/hue/<your_hue_passwords_script.sh> bind_password"

[[database]]
password_script="/var/lib/hue/<your_hue_passwords_script.sh> database"

Store the script in a directory that only the hue user can read, write, and execute. You can have one script per password
or one script with parameters for all passwords. Here is an example of a script with parameters for multiple passwords:

#!/bin/bash

SERVICE=$1

if [[${SERVICE} == "ldap_password"]]
then
 echo "password"
fi

if [[${SERVICE} == "ssl_password"]]
then
 echo "password"
fi

if [[${SERVICE} == "bind_password"]]
then
 echo "Password1"
fi

if [[${SERVICE} == "database_password"]]
then
 echo "password"
fi

Note: The bind password parameter was added in CDH 5.4.6.

Configuring TLS/SSL for Impala

Impala supports TLS/SSL network encryption, between Impala and client programs, and between the Impala-related
daemons running on different nodes in the cluster. This feature is important when you also use other features such
as Kerberos authentication or Sentry authorization, where credentials are being transmitted back and forth.

Cloudera Security | 261

Configuring Encryption

Important:

• You can use either Cloudera Manager or the following command-line instructions to complete
this configuration.

• This information applies specifically to CDH 5.9.x. If you use an earlier version of CDH, see the
documentation for that version located at Cloudera Documentation.

Using Cloudera Manager

To configure Impala to listen for Beeswax and HiveServer2 requests on TLS/SSL-secured ports:

1. Open the Cloudera Manager Admin Console and go to the Impala service.
2. Click the Configuration tab.
3. Select Scope > Impala (Service-Wide).
4. Select Category > Security.
5. Edit the following properties:

Table 17: Impala SSL Properties

DescriptionProperty

Encrypt communication between clients (like ODBC, JDBC, and the Impala shell)
and the Impala daemon using Transport Layer Security (TLS) (formerly known
as Secure Socket Layer (SSL)).

Enable TLS/SSL for Impala
Client Services

Local path to the X509 certificate that identifies the Impala daemon to clients
during TLS/SSL connections. This file must be in PEM format.

SSL/TLS Certificate for Clients

Local path to the private key that matches the certificate specified in the
Certificate for Clients. This file must be in PEM format.

SSL/TLS Private Key for Clients

A shell command for Impala to run on startup to retrieve the password for a
password-protected private key file. The output of the command is truncated

SSL/TLS Private Key Password
for Clients

to a maximum of 1024 bytes, and any trailing whitespace (such as spaces or
newline characters) is trimmed. If the command exits with an error, Impala does
not start. If the password is incorrect, clients cannot connect to the server
regardless of whether the public key is correct.

Must be specified for TLS/SSL encryption to be enabled for communication
between internal Impala components.

SSL/TLS CA Certificate

There are three of these configuration settings, one each for “Impala Daemon”,
“Catalog Server”, and “Statestore”. Each of these Impala components has its

SSL/TLS Certificate for Impala
componentWebserver

own internal web server that powers the associated web UI with diagnostic
information. The configuration setting represents the local path to the X509
certificate that identifies the web server to clients during TLS/SSL connections.
This file must be in PEM format.

6. Click Save Changes to commit the changes.
7. Restart the Impala service.

For information on configuring TLS/SSL communication with the impala-shell interpreter, see Configuring TLS/SSL
Communication for the Impala Shell on page 263.

Using the Command Line

To enable SSL for when client applications connect to Impala, add both of the following flags to the impalad startup
options:

262 | Cloudera Security

Configuring Encryption

http://www.cloudera.com/content/support/en/documentation.html

• --ssl_server_certificate: the full path to the server certificate, on the local filesystem.
• --ssl_private_key: the full path to the server private key, on the local filesystem.

In CDH 5.5 / Impala 2.3 and higher, Impala can also use SSL for its own internal communication between the impalad,
statestored, andcatalogddaemons. Toenable this additional SSL encryption, set the--ssl_server_certificate
and --ssl_private_key flags in the startup options for impalad, catalogd, and statestored, and also add the
--ssl_client_ca_certificate flag for all three of those daemons.

Warning: Prior to CDH 5.5.2 / Impala 2.3.2, you could enable Kerberos authentication between Impala
internal components, or SSL encryption between Impala internal components, but not both at the
same time. This restriction has now been lifted. See IMPALA-2598 to see the maintenance releases
for different levels of CDH where the fix has been published.

If either of these flags are set, both must be set. In that case, Impala starts listening for Beeswax and HiveServer2
requests on SSL-secured ports only. (The port numbers stay the same; see Ports Used by Impala for details.)

Since Impala uses passphrase-less certificates in PEM format, you can reuse a host's existing Java keystore by converting
it to the PEM format. For instructions, see Conversion from Java Keystore to OpenSSL on page 228.

Configuring TLS/SSL Communication for the Impala Shell

Typically, a client programhas corresponding configuration properties in ClouderaManager to verify that it is connecting
to the right server. For example, with SSL enabled for Impala, you use the following options when starting the
impala-shell interpreter:

• --ssl: enables TLS/SSL for impala-shell.
• --ca_cert: the local pathname pointing to the third-party CA certificate, or to a copy of the server certificate

for self-signed server certificates.

If --ca_cert is not set, impala-shell enables TLS/SSL, but does not validate the server certificate. This is useful
for connecting to a known-good Impala that is only running over TLS/SSL, when a copy of the certificate is not available
(such as when debugging customer installations).

For impala-shell to successfully connect to an Impala cluster that has the minimum allowed TLS/SSL version set to
1.2 (--ssl_minimum_version=tlsv1.2), the Python version on the cluster that impala-shell runs on must be
2.7.9 or higher (or a vendor-provided Python version with the required support. Some vendors patched Python 2.7.5
versions on Red Hat Enterprise Linux 7 and derivatives).

Using TLS/SSL with Business Intelligence Tools

You can use Kerberos authentication, TLS/SSL encryption, or both to secure connections from JDBCandODBCapplications
to Impala. See Configuring Impala to Work with JDBC and Configuring Impala to Work with ODBC for details.

Prior to CDH 5.7 / Impala 2.5, the Hive JDBC driver did not support connections that use both Kerberos authentication
and SSL encryption. If your cluster is running an older release that has this restriction, to use both of these security
features with Impala through a JDBC application, use the Cloudera JDBC Connector as the JDBC driver.

Configuring TLS/SSL for Oozie

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Before You Begin

• Keystores for Oozie must be readable by the oozie user. This could be a copy of the Hadoop services' keystore
with permissions 0440 and owned by the oozie group.

• Truststores must have permissions 0444 (that is, readable by all).
• Specify absolute paths to the keystore and truststore files. These settings apply to all hosts on which daemon

roles of the Oozie service run. Therefore, the paths you choose must be valid on all hosts.
• In case there is a DataNode and an Oozie server running on the same host, they can use the same certificate.

Cloudera Security | 263

Configuring Encryption

https://issues.cloudera.org/browse/IMPALA-2598
http://www.cloudera.com/content/www/en-us/downloads.html.html

For more information on obtaining signed certificates and creating keystores, see TLS/SSL Certificates Overview on
page 221. You can also view the upstream documentation located here.

Important:

• You can use either Cloudera Manager or the following command-line instructions to complete
this configuration.

• This information applies specifically to CDH 5.9.x. If you use an earlier version of CDH, see the
documentation for that version located at Cloudera Documentation.

Using Cloudera Manager

The steps for configuring and enabling Hadoop TLS/SSL for Oozie are as follows:

1. Open the Cloudera Manager Admin Console and go to the Oozie service.
2. Click the Configuration tab.
3. Select Scope > All.
4. Select Category > All.
5. In the Search field, type TLS/SSL to show the Oozie TLS/SSL properties.
6. Edit the following TLS/SSL properties according to your cluster configuration.

Table 18: Oozie TLS/SSL Properties

DescriptionProperty

Check this field to enable TLS/SSL for Oozie.Enable TLS/SSL for Oozie

Location of the keystore file on the local file system.Oozie TLS/SSL Server Keystore
File Location

Password for the keystore.Oozie TLS/SSL Server JKS
Keystore File Password

7. Click Save Changes.
8. Restart the Oozie service.

Using the Command Line

To configure the Oozie server to use TLS/SSL:

1. Stop Oozie by running

sudo /sbin/service oozie stop

2. To enable TLS/SSL, set the MapReduce version that the Oozie server should work with using the alternatives
command.

Note: The alternatives command is only available on RHEL systems. For SLES, Ubuntu and
Debian systems, the command is update-alternatives.

For RHEL systems, to use YARN with TLS/SSL:

alternatives --set oozie-tomcat-conf /etc/oozie/tomcat-conf.https

For RHEL systems, to use MapReduce (MRv1) with TLS/SSL:

alternatives --set oozie-tomcat-conf /etc/oozie/tomcat-conf.https.mr1

264 | Cloudera Security

Configuring Encryption

https://archive.cloudera.com/cdh5/cdh/5/oozie/AG_Install.html#Setting_Up_Oozie_with_HTTPS_TLS/SSL
http://www.cloudera.com/content/support/en/documentation.html

Important:

The OOZIE_HTTPS_KEYSTORE_PASS variable must be the same as the password used when
creating the keystore file. If you used a password other than password, you'll have to change
the value of the OOZIE_HTTPS_KEYSTORE_PASS variable in this file.

3. Start Oozie by running

sudo /sbin/service oozie start

Connect to the Oozie Web UI using TLS/SSL (HTTPS)

Use https://oozie.server.hostname:11443/oozie though most browsers should automatically redirect you
if you use http://oozie.server.hostname:11000/oozie.

Additional Considerations when Configuring TLS/SSL for Oozie HA

To allow clients to talk to Oozie servers (the target servers) through the load balancer using TLS/SSL, configure the load
balancer to perform TLS/SSL pass-through. This allows clients to use the certificate provided by the target servers (so
the load balancer will not need one). Consult your load balancer's documentation on how to configure this. Make sure
to point the load balancer at the https://HOST:HTTPS_PORT addresses for your target servers. Clients can then
connect to the load balancer at https://LOAD_BALANCER_HOST:PORT.

Configuring TLS/SSL for Solr

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Before You Begin

• The Solr service must be running.
• Keystores for Solr must be readable by the solr user. This could be a copy of the Hadoop services' keystore with

permissions 0440 and owned by the solr group.
• Truststores must have permissions 0444 (that is, readable by all).
• Specify absolute paths to the keystore and truststore files. These settings apply to all hosts on which daemon

roles of the Solr service run. Therefore, the paths you choose must be valid on all hosts.
• In case there is a DataNode and a Solr server running on the same host, they can use the same certificate.

For more information on obtaining signed certificates and creating keystores, see TLS/SSL Certificates Overview on
page 221. You can also see the Enabling SSL section in the Apache Solr 4.10 Reference Guide (PDF).

Important:

• You can use either Cloudera Manager or the following command-line instructions to complete
this configuration.

• This information applies specifically to CDH 5.9.x. If you use an earlier version of CDH, see the
documentation for that version located at Cloudera Documentation.

Additional Considerations when Configuring TLS/SSL for Solr HA

To allow clients to talk to Solr servers (the target servers) through the load balancer using TLS/SSL, configure the load
balancer to perform TLS/SSL pass-through. This allows clients to use the certificate provided by the target servers (so
the load balancer will not need one). Consult your load balancer's documentation on how to configure this. Make sure
to point the load balancer at the https://HOST:HTTPS_PORT addresses for your target servers. Clients can then
connect to the load balancer at https://LOAD_BALANCER_HOST:PORT.

Cloudera Security | 265

Configuring Encryption

http://archive.apache.org/dist/lucene/solr/ref-guide/apache-solr-ref-guide-4.10.pdf
http://www.cloudera.com/content/support/en/documentation.html

Configuring TLS/SSL for Solr Using Cloudera Manager

The steps for configuring and enabling Hadoop TLS/SSL for Search are as follows:

1. Open the Cloudera Manager Admin Console and go to the Solr service.
2. Click the Configuration tab.
3. Select Scope > All.
4. Select Category > All.
5. In the Search field, type TLS/SSL to show the Solr TLS/SSL properties.
6. Edit the following properties according to your cluster configuration.

Note: These values must be the same for all hosts running the Solr role.

Table 19: Solr TLS/SSL Properties

DescriptionProperty

Check this field to enable SSL for Solr.Enable TLS/SSL for Solr

The path to the TLS/SSL keystore file containing the server certificate and private
key used for TLS/SSL. Used when Solr is acting as a TLS/SSL server. The keystore
must be in JKS format.

Solr TLS/SSL Server Keystore
File Location

Password for the Solr JKS keystore.Solr TLS/SSL Server JKS
Keystore File Password

Required in case of self-signed or internal CA signed certificates. The location
on disk of the truststore, in .jks format, used to confirm the authenticity of

Solr TLS/SSL Certificate Trust
Store File

TLS/SSL servers that Solr might connect to. This is used when Solr is the client
in a TLS/SSL connection. This truststore must contain the certificate(s) used to
sign the service(s) being connected to. If this parameter is not provided, the
default list of well-known certificate authorities is used instead.

The password for the Solr TLS/SSL Certificate Trust Store File. This password is
not required to access the truststore: this field can be left blank. This password

Solr TLS/SSL Certificate Trust
Store Password

provides optional integrity checking of the file. The contents of truststores are
certificates, and certificates are public information.

7. Click Save Changes to commit the changes.
8. Restart the service.

Additional Considerations When Using a Load Balancer TLS/SSL for Solr HA

To configure a load balancer:

1. Go to the Solr service.
2. Click the Configuration tab.
3. Select Scope > Solr.
4. Enter the hostname and port number of the load balancer in the Solr Load Balancer property in the format

hostname:port number.

266 | Cloudera Security

Configuring Encryption

Note:

When you set this property, ClouderaManager regenerates the keytabs for Solr roles. The principal
in these keytabs contains the load balancer hostname.

If there are services that depends on this Solr service, such as Hue, those services use the load
balancer to communicate with Solr.

5. Click Save Changes to commit the changes.
6. Restart Solr and any dependent services or restart the entire cluster for this configuration to take effect.

Configuring TLS/SSL for Solr Using the Command Line

To configure the Search to use TLS/SSL:

1. Use solrctl to modify the urlScheme setting to specify https. For example:

solrctl --zk myZKEnsemble:2181/solr cluster --set-property urlScheme https

2. Stop Solr by running

sudo service solr-server stop

3. Edit /etc/default/solr to include the following environment variable settings:

SOLR_SSL_ENABLED=true
SOLR_KEYSTORE_PATH=<absolute_path_to_keystore_file>
SOLR_KEYSTORE_PASSWORD=<keystore_password>

#Following required only in case of self-signed or internal CA signed certificates
SOLR_TRUSTSTORE_PATH=<absolute_path_to_truststore_file>
SOLR_TRUSTSTORE_PASSWORD=<truststore_password>

4. Start Solr by running

sudo service solr-server start

Configuring TLS/SSL for the Key-Value Store Indexer Using Cloudera Manager

The steps for configuring and enabling Hadoop TLS/SSL for the Keystore Indexer are as follows:

1. Open the Cloudera Manager Admin Console and go to the Key-Value Store Indexer.
2. Click the Configuration tab.
3. Select Scope > All.
4. Select Category > All.
5. In the Search field, type TLS/SSL to show the Solr TLS/SSL properties.
6. Edit the following TLS/SSL properties according to your cluster configuration.

Note: These values must be the same for all hosts running the Key-Value Store Indexer role.

Table 20: Key-Value Store TLS/SSL Properties

DescriptionProperty

The location on disk of the truststore, in .jks format, used to confirm the
authenticity of TLS/SSL servers that HBase Indexermight connect to. This is used

HBase Indexer TLS/SSL
Certificate Trust Store File

when HBase Indexer is the client in a TLS/SSL connection. This truststore must

Cloudera Security | 267

Configuring Encryption

DescriptionProperty

contain the certificate(s) used to sign the service(s) being connected to. If this
parameter is not provided, the default list of well-known certificate authorities
is used instead.

The password for the HBase Indexer TLS/SSL Certificate Trust Store File. This
password is not required to access the truststore: this field can be left blank.

HBase Indexer TLS/SSL
Certificate Trust Store
Password (Optional) This password provides optional integrity checking of the file. The contents of

truststores are certificates, and certificates are public information.

7. Restart the service.

Configuring TLS/SSL for the Key-Value Store Indexer Using the Command Line

For every host running Key-Value Store Indexer server, specify Solr Trust Store details using the HBASE_INDEXER_OPTS
environmental variable using following Java system properties:

• -Djavax.net.ssl.trustStore=<absolute_path_to_truststore_file>

• -Djavax.net.ssl.trustStorePassword=<truststore_password> (Optional)

Restart the Key-Value Store Indexer servers to apply these changes.

Configuring TLS/SSL for Flume Using Cloudera Manager

The steps for configuring and enabling Hadoop TLS/SSL for Flume are as follows:

1. Open the Cloudera Manager Admin Console and go to Flume.
2. Click the Configuration tab.
3. Select Scope > All.
4. Select Category > All.
5. In the Search field, type TLS/SSL to show the properties.
6. Edit the following SSL properties according to your cluster configuration.

Note: These values must be the same for all hosts running the Flume role.

Table 21: Key-Value Store SSL Properties

DescriptionProperty

The location on disk of the truststore, in .jks format, used to confirm the
authenticity of TLS/SSL servers that Flume might connect to. This is used when

FlumeTLS/SSL Certificate Trust
Store File

Flume is the client in a TLS/SSL connection. This truststore must contain the
certificate(s) used to sign the service(s) being connected to. If this parameter is
not provided, the default list of well-known certificate authorities is used instead.

The password for the Flume TLS/SSL Certificate Trust Store File. This password
is not required to access the truststore: this field can be left blank. This password

FlumeTLS/SSL Certificate Trust
Store Password (Optional)

provides optional integrity checking of the file. The contents of truststores are
certificates, and certificates are public information.

7. Click Save Changes to commit the changes.
8. Restart the service.

Configuring TLS/SSL for Flume Using the Command Line

For every host running Flume agent, specify Solr Trust Store details using the FLUME_AGENT_JAVA_OPTS environmental
variable using following Java system properties:

268 | Cloudera Security

Configuring Encryption

• -Djavax.net.ssl.trustStore=<absolute_path_to_truststore_file>

• -Djavax.net.ssl.trustStorePassword=<truststore_password> (Optional)

Restart the Flume agents to apply these changes.

Spark Encryption

Spark supports the following means of encrypting Spark data at rest, and data in transit.

Enabling Encrypted Shuffle for Spark on YARN

The following properties must be configured to enable encrypted shuffle for Spark on YARN. Spark does not support
encryption for cached data or intermediate files that spill to the local disk.

To use Cloudera Manager to configure these properties, see Enabling Spark Encryption Using Cloudera Manager on
page 270. To use the command line instead, add the properties listed here to
/etc/spark/conf/spark-defaults.conf on the host that launches Spark jobs.

DescriptionProperty

Enable encrypted communication when authentication is enabled. This
option is currently only supported by the block transfer service.

spark.shuffle.encryption.enabled

Shuffle file encryption key size in bits. The valid numbers include 128, 192,
and 256.

spark.shuffle.encryption.keySizeBits

The algorithm to generate the key used by shuffle file encryption.spark.shuffle.encryption.keygen.algorithm

Cipher transformation for shuffle file encryption. Currently only
AES/CTR/NoPadding is supported.

spark.shuffle.crypto.cipher.transformation

Comma-separated list of crypto cipher classes that implement
AES/CTR/NoPadding. A crypto cipher implementation encapsulates

spark.shuffle.crypto.cipher.classes

encryption and decryption details. The first available implementation in this
list is used.

Comma-separated list of secure random classes that implement a secure
random algorithm. Use this when generating the Initialization Vector for

spark.shuffle.crypto.secure.random.classes

crypto input/output streams. The first available implementation in this list
is used.

Enabling SASL Encryption for Spark RPCs

If you are using an external shuffle service, configure the following property in the shuffle service configuration to
disable unencrypted connections. This setting will only work for connections from services that use SASL for
authentication. Note that the external shuffle service is enabled by default in CDH 5.5 and higher.

DescriptionDefault ValueProperty

Disable unencrypted connections for the external shuffle
service.

falsespark.network.sasl.serverAlwaysEncrypt

If you are using the block transfer service, configure the following property to enable SASL encryption for Spark RPCs.
This setting is supported only when authentication using a secret key is already enabled.

DescriptionDefault ValueProperty

Enable encrypted communication for the block transfer
service.

falsespark.authenticate.enableSaslEncryption

Cloudera Security | 269

Configuring Encryption

To use Cloudera Manager to configure these properties, see Enabling Spark Encryption Using Cloudera Manager on
page 270. To use the command line instead, add the properties listed here to
/etc/spark/conf/spark-defaults.conf on the host that launches Spark jobs.

Enabling Spark Encryption Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Open the Cloudera Manager Admin Console and go to the Spark service.
2. Click the Configuration tab.
3. Select Scope > Gateway.
4. Select Category > Advanced.
5. Edit the Spark Client Advanced Configuration Snippet (Safety Valve) for spark-conf/spark-defaults.conf property

and add configuration properties for the feature you want to enable.
6. Click Save Changes to commit the changes.
7. Restart the Spark service.

Configuring TLS/SSL for HttpFS

Important:

• You can use either Cloudera Manager or the following command-line instructions to complete
this configuration.

• This information applies specifically to CDH 5.9.x. If you use an earlier version of CDH, see the
documentation for that version located at Cloudera Documentation.

Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

The steps for configuring and enabling TLS/SSL for HttpFS using Cloudera Manager are as follows:

1. Go to the HDFS service
2. Click the Configuration tab.
3. Select Scope > HttpFS.
4. Select > Security.
5. Edit the following TLS/SSL properties according to your cluster configuration:

Table 22: HttpFS TLS/SSL Properties

DescriptionProperty

Use TLS/SSL for HttpFS.Use TLS/SSL

Location of the keystore file used by the HttpFS role for TLS/SSL.

Default: /var/run/hadoop-httpfs/.keystore. Note that the default
location for the keystore file is on non-persistent disk.

HttpFS Keystore File

Password of the keystore used by the HttpFS role for TLS/SSL.

If the keystore password has a percent sign, it must be escaped. For example,
for a password that is pass%word, use pass%%word.

HttpFS Keystore Password

The location on disk of the truststore, in .jks format, used to confirm the
authenticity of TLS/SSL servers that HttpFS might connect to. This is used when
HttpFS is the client in a TLS/SSL connection.

HttpFS TLS/SSL Certificate
Trust Store File

270 | Cloudera Security

Configuring Encryption

http://www.cloudera.com/content/support/en/documentation.html

DescriptionProperty

The password for the HttpFS TLS/SSL Certificate Trust Store File. This password
is not required to access the truststore; this field can be left blank.

If the truststore password has a percent sign, it must be escaped. For example,
for a password that is pass%word, use pass%%word.

HttpFS TLS/SSL Certificate
Trust Store Password

6. Click Save Changes.
7. Restart the HDFS service.

Connect to the HttpFS Web UI using TLS/SSL (HTTPS)

Use https://<httpfs_server_hostname>:14000/webhdfs/v1/, though most browsers should automatically
redirect you if you use http://<httpfs_server_hostname>:14000/webhdfs/v1/

Using the Command Line

Configure the HttpFS Server to use TLS/SSL (HTTPS)

1. Stop HttpFS by running

sudo /sbin/service hadoop-httpfs stop

2. To enable TLS/SSL, change which configuration the HttpFS server should work with using the alternatives
command.

Note: The alternatives command is only available on RHEL systems. For SLES, Ubuntu and
Debian systems, the command is update-alternatives.

For RHEL systems, to use TLS/SSL:

alternatives --set hadoop-httpfs-tomcat-conf /etc/hadoop-httpfs/tomcat-conf.https

Important:

The HTTPFS_TLS/SSL_KEYSTORE_PASS variablemust be the same as the password usedwhen
creating the keystore file. If you used a password other than password, you'll have to change
the value of the HTTPFS_TLS/SSL_KEYSTORE_PASS variable in
/etc/hadoop-httpfs/conf/httpfs-env.sh.

3. Start HttpFS by running

sudo /sbin/service hadoop-httpfs start

Connect to the HttpFS Web UI using TLS/SSL (HTTPS)

Use https://<httpfs_server_hostname>:14000/webhdfs/v1/, though most browsers should automatically
redirect you if you use http://<httpfs_server_hostname>:14000/webhdfs/v1/

Important:

If using a Self-Signed Certificate, your browser will warn you that it cannot verify the certificate or
something similar. You will probably have to add your certificate as an exception.

Cloudera Security | 271

Configuring Encryption

Encrypted Shuffle and Encrypted Web UIs

Important:

• If you use Cloudera Manager, do not use these command-line instructions. For the Cloudera
Manager instructions, see Configuring TLS/SSL for HDFS, YARN and MapReduce on page 250.

• This information applies specifically to CDH 5.9.1. If you use a lower version of CDH, see the
documentation for that version located at Cloudera Documentation.

CDH 5 supports encryption of theMapReduce shuffle phase for bothMapReduce v1 (MRv1) andMapReduce v2 (MRv2),
also known as YARN. CDH also supports enabling TLS/SSL for the MRv1 and YARN web UIs, with optional client
authentication (also known as bi-directional HTTPS, or HTTPS with client certificates). The configuration properties
required to enable these features have been combined. In most cases, these properties are common to both MRv1
and YARN. They include:

• hadoop.ssl.enabled:

– Toggles the shuffle for MRv1 between HTTP and HTTPS.
– Toggles the MRv1 and YARN web UIs between HTTP and HTTPS.

• mapreduce.shuffle.ssl.enabled: Toggles the shuffle for YARN between HTTP and HTTPS.

By default, this property is not specified in mapred-site.xml, and YARN encrypted shuffle is controlled by the
value of hadoop.ssl.enabled. If this property is set to true, encrypted shuffle is enabled for YARN. Note that
you cannot successfully enable encrypted shuffle for YARN by only setting this property to true, if
hadoop.ssl.enabled is still set to false.

• Configuration settings for specifying keystore and truststore properties that are used by the MapReduce shuffle
service, the Reducer tasks that fetch shuffle data, and the web UIs.

• ssl.server.truststore.reload.interval: A configuration property to reload truststores across the cluster
when a node is added or removed.

Important:

When the web UIs are served over HTTPS, you must specify https:// as the protocol. There is no
redirection from http://. If you attempt to access an HTTPS resource over HTTP, your browser will
show an empty screen with no warning.

Configuring Encrypted Shuffle and Encrypted Web UIs

Configure encryption for the MapReduce shuffle, and the MRv1 and YARN web UIs, as follows:

Enable encrypted shuffle for MRv1, and encryption for the MRv1 and YARN web UIs (core-site.xml)

Set the following properties in the core-site.xml files of all nodes in the cluster.

hadoop.ssl.enabled

Default value: false

For MRv1, set this value to true to enable encryption for both the MapReduce shuffle and the web UI.

For YARN, this property enables encryption for the web UI only . Enable shuffle encryption with a property in the
mapred-site.xml file as described here.

hadoop.ssl.require.client.cert

Default value: false

When this property is set to true, client certificates are required for all shuffle operations and all browsers used
to access web UIs.

272 | Cloudera Security

Configuring Encryption

http://www.cloudera.com/content/support/en/documentation.html

Cloudera recommends that this be set to false. This is because client certificates are easily susceptible to attacks
from malicious clients or jobs. For more details, see Client Certificates on page 277.

hadoop.ssl.hostname.verifier

Default value: DEFAULT

The SSLHostnameVerifier interface present inside the hadoop-common security library checks if a hostname
matches the name stored inside the server's X.509 certificate. The value assigned to this property determines how
Hadoop verifies hostnames when it establishes new HttpsURLConnection instances. Valid values are:

• DEFAULT: The hostnamemust match either the first common name (CN) or any of the subjectAltNames (SAN).
Wildcards can occur in either the CN or the SANs. For example, a hostname, such as *.example.com, will
match all subdomains, including test.cloudera.example.com.

• DEFAULT_AND_LOCALHOST: This verifier mechanism works just like DEFAULT. However, it also allows all
hostnames of the type: localhost, localhost.example, or 127.0.0.1.

• STRICT: This verifier works just like DEFAULTwith an additional restriction for hostnames with wildcards. For
example, a hostname with a wildcard such as *.example.com, will only match subdomains at the same level.
Hence, cloudera.example.com will match, but, unlike DEFAULT, test.cloudera.example.com will be
rejected.

• STRICT_IE6: This verifier works just like STRICT, however, it will allow hostnames that match any of the
common names (CN) within the server's X.509 certificate, not just the first one.

• ALLOW_ALL: Using this verifier will essentially turn off the hostname verifier mechanism.

hadoop.ssl.keystores.factory.class

Default value: org.apache.hadoop.security.ssl.FileBasedKeyStoresFactory

The KeyStoresFactory implementation to be used. Currently, FileBasedKeyStoresFactory is the only
implementation of KeyStoresFactory.

hadoop.ssl.server.conf

Default value: ssl-server.xml

Resource file from which TLS/SSL server keystore information is extracted. Typically, it should be in the
/etc/hadoop/conf/ directory so that it can be looked up in the CLASSPATH.

hadoop.ssl.client.conf

Default value: ssl-client.xml

Resource file from which TLS/SSL client keystore information is extracted. Typically, it should be in the
/etc/hadoop/conf/ directory so that it can be looked up in the CLASSPATH.

Set the <final> field for all these properties to true as in the following sample configuration snippet:

...
 <property>
 <name>hadoop.ssl.require.client.cert</name>
 <value>false</value>
 <final>true</final>
 </property>

 <property>
 <name>hadoop.ssl.hostname.verifier</name>
 <value>DEFAULT</value>
 <final>true</final>
 </property>

 <property>
 <name>hadoop.ssl.keystores.factory.class</name>
 <value>org.apache.hadoop.security.ssl.FileBasedKeyStoresFactory</value>
 <final>true</final>
 </property>

Cloudera Security | 273

Configuring Encryption

 <property>
 <name>hadoop.ssl.server.conf</name>
 <value>ssl-server.xml</value>
 <final>true</final>
 </property>

 <property>
 <name>hadoop.ssl.client.conf</name>
 <value>ssl-client.xml</value>
 <final>true</final>
 </property>

 <property>
 <name>hadoop.ssl.enabled</name>
 <value>true</value>
 </property>
...

Enable encrypted shuffle for YARN (mapred-site.xml)

To enable encrypted shuffle for YARN, set the following property in the mapred-site.xml file on every node in the
cluster:

mapreduce.shuffle.ssl.enabled

Default value: Not specified

By default, this property is not specified in mapred-site.xml, and YARN encrypted shuffle is controlled by the
value of hadoop.ssl.enabled. If this property is set to true, encrypted shuffle is enabled for YARN. Note that
you cannot successfully enable encrypted shuffle for YARN by only setting this property to true, if
hadoop.ssl.enabled is still set to false.

Set the <final> field for this property to true as in the following configuration snippet:

...
 <property>
 <name>mapreduce.shuffle.ssl.enabled</name>
 <value>true</value>
 <final>true</final>
 </property>
...

Configure the keystore and truststore for the Shuffle server (ssl-server.xml)

Note: To run job tasks so they are prevented from reading the server keystore and gaining access to
the shuffle server certificates:

• Configure the Linux Task Controller for MRv1
• Configure the Linux Container Executor for YARN

Currently, FileBasedKeyStoresFactory is the only implementation of KeyStoresFactory. It uses properties in
the ssl-server.xml and ssl-client.xml files to configure the keystores and truststores.

The ssl-server.xml should be owned by the hdfs or mapred Hadoop system user, belong to the hadoop group,
and it should have 440 permissions. Regular users should not belong to the hadoop group.

Use the following settings to configure the keystores and truststores in the ssl-server.xml file.

DescriptionDefault ValueProperty

Keystore file typejksssl.server.keystore.type

274 | Cloudera Security

Configuring Encryption

DescriptionDefault ValueProperty

Keystore file location. The mapred user must own this
file and have exclusive read access to it.

NONEssl.server.keystore.location

Keystore file passwordNONEssl.server.keystore.password

Key passwordNONEssl.server.keystore.keypassword

Truststore file typejksssl.server.truststore.type

Truststore file location. The mapred user must own
this file and have exclusive read access to it.

NONEssl.server.truststore.location

Truststore file passwordNONEssl.server.truststore.password

Truststore reload interval, in milliseconds10000ssl.server.truststore.reload.interval

Sample ssl-server.xml

<configuration>
<!-- Server Certificate Store -->
<property>
 <name>ssl.server.keystore.type</name>
 <value>jks</value>
</property>
<property>
 <name>ssl.server.keystore.location</name>
 <value>${user.home}/keystores/server-keystore.jks</value>
</property>
<property>
 <name>ssl.server.keystore.password</name>
 <value>serverfoo</value>
</property>
<property>
 <name>ssl.server.keystore.keypassword</name>
 <value>serverfoo</value>
</property>

<!-- Server Truststore -->
<property>
 <name>ssl.server.truststore.type</name>
 <value>jks</value>
</property>
<property>
 <name>ssl.server.truststore.location</name>
 <value>${user.home}/keystores/truststore.jks</value>
</property>
<property>
 <name>ssl.server.truststore.password</name>
 <value>clientserverbar</value>
</property>
<property>
 <name>ssl.server.truststore.reload.interval</name>
 <value>10000</value>
</property>
</configuration>

Configure the keystore and truststore for the Reducer/Fetcher (ssl-client.xml)

Use the following settings to configure the keystore and truststore in the ssl-client.xml file. This file must be
owned by the mapred user for MRv1 and by the yarn user for YARN. The file permissions should be 444 (read access
for all users).

Cloudera Security | 275

Configuring Encryption

DescriptionDefault ValueProperty

Keystore file typejksssl.client.keystore.type

Keystore file location. The mapred user must
own this file and should have read access to it.

NONEssl.client.keystore.location

Keystore file passwordNONEssl.client.keystore.password

Key passwordNONEssl.client.keystore.keypassword

Truststore file typejksssl.client.truststore.type

Truststore file location. The mapred user must
own this file and should have read access to it.

NONEssl.client.truststore.location

Truststore file passwordNONEssl.client.truststore.password

Truststore reload interval, in milliseconds10000ssl.client.truststore.reload.interval

Sample ssl-client.xml

<configuration>
 <!-- Client Certificate Store -->
 <property>
 <name>ssl.client.keystore.type</name>
 <value>jks</value>
 </property>
 <property>
 <name>ssl.client.keystore.location</name>
 <value>${user.home}/keystores/client-keystore.jks</value>
 </property>
 <property>
 <name>ssl.client.keystore.password</name>
 <value>clientfoo</value>
 </property>
 <property>
 <name>ssl.client.keystore.keypassword</name>
 <value>clientfoo</value>
 </property>

 <!-- Client Truststore -->
 <property>
 <name>ssl.client.truststore.type</name>
 <value>jks</value>
 </property>
 <property>
 <name>ssl.client.truststore.location</name>
 <value>${user.home}/keystores/truststore.jks</value>
 </property>
 <property>
 <name>ssl.client.truststore.password</name>
 <value>clientserverbar</value>
 </property>
 <property>
 <name>ssl.client.truststore.reload.interval</name>
 <value>10000</value>
 </property>
</configuration>

276 | Cloudera Security

Configuring Encryption

Activating Encrypted Shuffle

Important:

Encrypted shuffle has a significant performance impact. You should benchmark this before implementing
it in production. In many cases, one or more additional cores are needed to maintain performance.

When you have made the configuration changes described in the previous section, activate Encrypted Shuffle by
re-starting all TaskTrackers in MRv1 and all NodeManagers in YARN.

Client Certificates

Client Certificates are supported but they do not guarantee that the client is a reducer task for the job. The Client
Certificate keystore file that contains the private key must be readable by all users who submit jobs to the cluster,
which means that a rogue job could read those keystore files and use the client certificates in them to establish a
secure connection with a Shuffle server. The JobToken mechanism that the Hadoop environment provides is a better
protector of the data; each job uses its own JobToken to retrieve only the shuffle data that belongs to it. Unless the
rogue job has a proper JobToken, it cannot retrieve Shuffle data from the Shuffle server.

However, if your cluster requires client certificates, ensure that browsers connecting to the web UIs are configured
with appropriately signed certificates. If your certificates are signed by a certificate authority (CA), make sure you
include the complete chain of CA certificates in the server's keystore.

Reloading Truststores

By default, each truststore reloads its configuration every 10 seconds. If you bring in a new truststore file to replace
an old one, when the truststore is reloaded, the new certificates will be override the previous ones. If a client certificate
is added to (or removed from) all the truststore files in the system, both YARN and MRv1 will pick up the new
configurationwithout requiring that the TaskTracker or NodeManager daemons are restarted. Thismechanism is useful
for adding or removing nodes from the cluster, or for adding or removing trusted clients.

The reload interval is controlled by the ssl.client.truststore.reload.interval and
ssl.server.truststore.reload.interval configuration properties in the ssl-client.xml and
ssl-server.xml files described here.

Note: The keystores are not automatically reloaded. To change a keystore for a TaskTracker in MRv1
or a NodeManager in YARN, you must restart the TaskTracker or NodeManager daemon.

Debugging

Important: Enable debugging only for troubleshooting, and only for jobs running on small amounts
of data. Debugging is very verbose and slows jobs down significantly. You may need to increase the
value for the mapred.task.timeout property to prevent jobs from failing for taking too long.

To enable TLS/SSL debugging in the reducers, set the mapred.reduce.child.java.opts property as follows. You
can do this on a per-job basis, or by means of a cluster-wide setting in mapred-site.xml.:

<configuration>
...
 <property>
 <name>mapred.reduce.child.java.opts</name>
 <value>-Xmx200m -Djavax.net.debug=all</value>
 </property>
...
</configuration>

Cloudera Security | 277

Configuring Encryption

To enable debugging for MRv1 TaskTrackers, edit hadoop-env.sh as follows:

HADOOP_TASKTRACKER_OPTS="-Djavax.net.debug=all $HADOOP_TASKTRACKER_OPTS"

To enable debugging for YARN NodeManagers for YARN, edit yarn-env.sh as follows:

YARN_OPTS="-Djavax.net.debug=all $YARN_OPTS"

Deployment Planning for Data at Rest Encryption
Before deploying encryption for data at rest, familiarize yourself with the components, concepts, and architecture for
encrypting data. See Cloudera Navigator Data Encryption Overview for more information.

For information on planning your encryption deployment, continue reading:

Data at Rest Encryption Reference Architecture

The following diagram illustrates the supported architecture for deploying Cloudera Navigator encryption for data at
rest:

To isolate Key Trustee Server from other enterprise data hub (EDH) services, you must deploy Key Trustee Server on
dedicated hosts in a separate cluster in Cloudera Manager. Deploy Key Trustee KMS on dedicated hosts in the same
cluster as the EDH services that require access to Key Trustee Server. This provides the following benefits:

• You can restart your EDH cluster without restarting Key Trustee Server, avoiding interruption to other clusters or
clients that use the same Key Trustee Server instance.

• You can manage the Key Trustee Server upgrade cycle independently of other cluster components.
• You can limit access to the Key Trustee Server hosts to authorized key administrators only, reducing the attack

surface of the system.
• Resource contention is reduced. Running Key Trustee Server and Key Trustee KMS services on dedicated hosts

prevents other cluster services from reducing available resources (such as CPU and memory) and creating
bottlenecks.

If you are using virtualmachines for the Key Trustee Server or Key Trustee KMShosts, see VirtualMachine Considerations
on page 283.

278 | Cloudera Security

Configuring Encryption

Data at Rest Encryption Requirements

Encryption comprises several components, each with its own requirements.

Data at rest encryption protection can be applied at a number of levels within Hadoop:

• OS filesystem-level
• Network-level
• HDFS-level (protects both data at rest and in transit)

For more information on the components, concepts, and architecture for encrypting data at rest, see Deployment
Planning for Data at Rest Encryption on page 278.

Product Compatibility Matrix

See Product Compatibility Matrix for Cloudera Navigator Encrypt for the individual compatibility matrices for each
Cloudera Navigator encryption component.

Entropy Requirements

Cryptographic operations require entropy to ensure randomness.

You can check the available entropy on a Linux system by running the following command:

$ cat /proc/sys/kernel/random/entropy_avail

The output displays the entropy currently available. Check the entropy several times to determine the state of the
entropy pool on the system. If the entropy is consistently low (500 or less), youmust increase it by installingrng-tools
and starting the rngd service. Run the following commands on RHEL 6-compatible systems:

$ sudo yum install rng-tools
$ sudo echo 'EXTRAOPTIONS="-r /dev/urandom"' >> /etc/sysconfig/rngd
$ sudo service rngd start
$ sudo chkconfig rngd on

For RHEL 7, run the following commands:

$ sudo yum install rng-tools
$ cp /usr/lib/systemd/system/rngd.service /etc/systemd/system/
$ sed -i -e 's/ExecStart=\/sbin\/rngd -f/ExecStart=\/sbin\/rngd -f -r \/dev\/urandom/'
 /etc/systemd/system/rngd.service
$ systemctl daemon-reload
$ systemctl start rngd
$ systemctl enable rngd

Make sure that the hosts running Key Trustee Server, Key Trustee KMS, and Navigator Encrypt have sufficient entropy
to perform cryptographic operations.

Key Trustee Server Requirements

Recommended Hardware and Supported Distributions

Key Trustee Server must be installed on a dedicated server or virtual machine (VM) that is not used for any other
purpose. The backing PostgreSQL database must be installed on the same host as the Key Trustee Server, and must
not be shared with any other services. For high availability, the active and passive Key Trustee Servers must not share
physical resources. See Resource Planning for Data at Rest Encryption on page 282 for more information.

The recommended minimum hardware specifications are as follows:

• Processor: 1 GHz 64-bit quad core
• Memory: 8 GB RAM
• Storage: 20 GB on moderate- to high-performance disk drives

For information on the supported Linux distributions, see Table 4.

Cloudera Security | 279

Configuring Encryption

https://en.wikipedia.org/wiki/Entropy_(computing)

Cloudera Manager Requirements

Installing and managing Key Trustee Server using Cloudera Manager requires Cloudera Manager 5.4.0 and higher. Key
Trustee Server does not require Cloudera Navigator Audit Server or Metadata Server.

umask Requirements

Key Trustee Server installation requires the default umask of 0022.

Network Requirements

For new Key Trustee Server installations (5.4.0 and higher) and migrated upgrades (see Migrate Apache Web Server
to CherryPy for more information), Key Trustee Server requires the following TCP ports to be opened for inbound
traffic:

• 11371

Clients connect to this port over HTTPS.

• 11381 (PostgreSQL)

The passive Key Trustee Server connects to this port for database replication.

For upgrades that are not migrated to the CherryPy web server, the pre-upgrade port settings are preserved:

• 80

Clients connect to this port over HTTP to obtain the Key Trustee Server public key.

• 443 (HTTPS)

Clients connect to this port over HTTPS.

• 5432 (PostgreSQL)

The passive Key Trustee Server connects to this port for database replication.

TLS Certificate Requirements

To ensure secure network traffic, Cloudera recommends obtaining Transport Layer Security (TLS) certificates specific
to the hostname of your Key Trustee Server. To obtain the certificate, generate a Certificate Signing Request (CSR) for
the fully qualified domain name (FQDN) of the Key Trustee Server host. The CSRmust be signed by a trusted Certificate
Authority (CA). After the certificate has been verified and signed by the CA, the Key Trustee Server TLS configuration
requires:

• The CA-signed certificate
• The private key used to generate the original CSR
• The intermediate certificate/chain file (provided by the CA)

Cloudera recommends not using self-signed certificates. If you use self-signed certificates, you must use the
--skip-ssl-checkparameterwhen registeringNavigator Encryptwith the Key Trustee Server. This skips TLS hostname
validation, which safeguards against certain network-level attacks. For more information regarding insecure mode,
see Table 28: Registration Options on page 349.

Key Trustee KMS Requirements

Recommended Hardware and Supported Distributions

The recommended minimum hardware specifications are as follows:

• Processor: 2 GHz 64-bit quad core
• Memory: 16 GB RAM
• Storage: 40 GB on moderate- to high-performance disk drives

280 | Cloudera Security

Configuring Encryption

For information on the supported Linux distributions, see Table 5.

The Key Trustee KMS workload is CPU-intensive. Cloudera recommends using machines with capabilities equivalent
to your NameNode hosts, with Intel CPUs that support AES-NI for optimum performance.

Key HSM Requirements

The following are prerequisites for installing Navigator Key HSM:

• Oracle Java Runtime Environment (JRE) 7 or higher with Java Cryptography Extension (JCE) Unlimited Strength
Jurisdiction Policy Files:

– JCE for Java SE 7
– JCE for Java SE 8

• A supported Linux distribution. See Table 6.
• A supported HSM device:

– SafeNet Luna

– HSM firmware version: 6.2.1
– HSM software version: 5.2.3-1

– SafeNet KeySecure

– HSM firmware version: 6.2.1
– HSM software version: 8.0.1

– Thales nSolo, nConnect

– HSM firmware version: 11.4.0
– Client software version: 2.28.9cam136

• Key Trustee Server 3.8 or higher

Important: You must install Key HSM on the same host as Key Trustee Server.

Root access is required to install Navigator Key HSM.

Navigator Encrypt Requirements

Operating System Requirements

• Linux kernel 2.6.19 or higher (RHEL and CentOS can use 2.6.18-92 or higher)
• For supported Linux distributions, see Table 7.

Note: Cloudera Enterprise,with the exception of ClouderaNavigator Encrypt, is supported on platforms
with Security-Enhanced Linux (SELinux) enabled and in enforcingmode. Cloudera is not responsible
for SELinux policy development, support, or enforcement. If you experience issues running Cloudera
software with SELinux enabled, contact your OS provider for assistance.

If you are using SELinux in enforcingmode, Cloudera Support can request that you disable SELinux
or change themode topermissive to rule out SELinux as a factorwhen investigating reported issues.

Supported command-line interpreters:

• sh (Bourne)
• bash (Bash)
• dash (Debian)

Cloudera Security | 281

Configuring Encryption

https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

Note: Navigator Encrypt does not support installation or use in chroot environments.

Network Requirements

For new Navigator Key Trustee Server (5.4.0 and higher) installations, Navigator Encrypt initiates TCP traffic over port
11371 (HTTPS) to the Key Trustee Server.

For upgrades and Key Trustee Server versions lower than 5.4.0, Navigator Encrypt initiates TCP traffic over ports 80
(HTTP) and 443 (HTTPS) to the Navigator Key Trustee Server.

Internet Access

Youmust have an active connection to the Internet to downloadmany package dependencies, unless you have internal
repositories or mirrors containing the dependent packages.

Maintenance Window

Data is not accessible during the encryption process. Plan for system downtime during installation and configuration.

Administrative Access

To enforce a high level of security, all Navigator Encrypt commands require administrative (root) access (including
installation and configuration). If you do not have administrative privileges on your server, contact your system
administrator before proceeding.

Package Dependencies

Navigator Encrypt requires these packages, which are resolved by your distribution packagemanager during installation:

• dkms

• keyutils

• ecryptfs-utils

• libkeytrustee

• navencrypt-kernel-module

• openssl

• lsof

• gcc

• cryptsetup

These packages may have other dependencies that are also resolved by your package manager. Installation works with
gcc, gcc3, and gcc4.

Resource Planning for Data at Rest Encryption

For production environments, you must configure high availability for Key Trustee Server and Key Trustee KMS.

For high availability, you must provision two dedicated Key Trustee Server hosts and at least two dedicated Key Trustee
KMS hosts, for a minimum of four separate hosts. Do not run multiple Key Trustee Server or Key Trustee KMS services
on the same physical host, and do not run these services on hosts with other cluster services. Doing so causes resource
contentionwith other important cluster services and defeats the purpose of high availability. See Data at Rest Encryption
Reference Architecture on page 278 for more information.

The Key Trustee KMS workload is CPU intensive. Cloudera recommends using machines with capabilities equivalent
to your NameNode hosts, with Intel CPUs that support AES-NI for optimum performance.

Make sure that each host is secured and audited. Only authorized key administrators should have access to them. Red
Hat provides security guides for RHEL:

282 | Cloudera Security

Configuring Encryption

https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni

• RHEL 6 Security Guide
• RHEL 7 Security Guide

For hardware sizing information, see Data at Rest Encryption Requirements on page 279 for recommendations for each
Cloudera Navigator encryption component.

For Cloudera Manager deployments, deploy Key Trustee Server in its own dedicated cluster. Deploy Key Trustee KMS
in each cluster that uses Key Trustee Server. See Data at Rest Encryption Reference Architecture on page 278 for more
information.

Virtual Machine Considerations

If you are using virtual machines, make sure that the resources (such as virtual disks, CPU, and memory) for each Key
Trustee Server and Key Trustee KMS host are allocated to separate physical hosts. Hosting multiple services on the
same physical host defeats the purpose of high availability, because a single machine failure can take down multiple
services.

To maintain the security of the cryptographic keys, make sure that all copies of the virtual disk (including any back-end
storage arrays, backups, snapshots, and so on) are secured and audited with the same standards you apply to the live
data.

HDFS Transparent Encryption
Data encryption is mandatory for many government, financial, and regulatory entities, worldwide, to meet privacy and
other security requirements. For example, the card payment industry has adopted the Payment Card Industry Data
Security Standard (PCI DSS) for information security. Other examples include requirements imposed by United States
government's Federal Information SecurityManagement Act (FISMA) andHealth Insurance Portability andAccountability
Act (HIPAA). Encrypting data stored in HDFS can help your organization comply with such regulations.

HDFS encryption implements transparent, end-to-end encryption of data read from and written to HDFS blocks across
your cluster. Transparentmeans that end-users are unaware of the encryption/decryption processes, and end-to-end
means that data is encrypted at-rest and in-transit.

HDFS encryption has these capabilities:

• Only HDFS clients can encrypt or decrypt data.
• Key management is external to HDFS. HDFS cannot access unencrypted data or encryption keys. Administration

of HDFS and administration of keys are separate duties encompassed by distinct user roles (HDFS administrator,
Key Administrator), thus ensuring that no single user has unrestricted access to both data and keys.

• The operating system and HDFS interact using encrypted HDFS data only, mitigating threats at the OS- and
file-system-level.

• HDFS uses the Advanced Encryption Standard-Counter mode (AES-CTR) encryption algorithm. AES-CTR supports
a 128-bit encryption key (default), or can support a 256-bit encryption key when Java Cryptography Extension
(JCE) unlimited strength JCE is installed.

• HDFS encryption has been designed to take advantage of the AES-NI instruction set, a hardware-based encryption
acceleration technique, so your cluster performance should not adversely affected by configuring encryption.
(The AES-NI instruction set can be an order of magnitude faster than software implementations of AES.) However,
you may need to update cryptography libraries on your HDFS andMapReduce client hosts to use the acceleration
mechanism. See Optimizing Performance for HDFS Transparent Encryption on page 287 for details.

Key Concepts and Architecture

Keystores and the Hadoop Key Management Server

Integrating HDFS with an external, enterprise-level keystore is the first step to deploying transparent encryption. This
is because separation of duties between a key administrator and an HDFS administrator is a very important aspect of
this feature. However,most keystores are not designed for the encrypt/decrypt request rates seen byHadoopworkloads.
This led to the development of a new service, called the Hadoop Key Management Server (KMS), which serves as a

Cloudera Security | 283

Configuring Encryption

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Security_Guide/
http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/

proxy between HDFS clients and the backing keystore. Both the keystore and Hadoop KMS must use Hadoop’s
KeyProvider API to interact with each other and with HDFS clients.

While HDFS encryption can be used with a local Java KeyStore for key management, Cloudera does not recommend
this for production environments where amore robust and secure keymanagement solution should be used. Cloudera
Navigator Key Trustee Server on page 322 is a key store for managing encryption keys and other secure deposits. To
integrate with the Navigator Key Trustee Server, Cloudera provides a custom KMS service, called the Key Trustee KMS.

The diagram below illustrates how HDFS clients and the NameNode interact with an enterprise keystore, in this case,
Navigator Key Trustee, through the Hadoop Key Management Server.

To get started with deploying the KMS and a keystore, see Enabling HDFS Encryption Using the Wizard on page 289.

For information on configuring and securing the KMS, see Configuring the KeyManagement Server (KMS) on page 298
and Securing the Key Management Server (KMS) on page 302.

Encryption Zones and Keys

HDFS transparent encryption introduces the concept of an encryption zone (EZ), which is a directory in HDFS whose
contents will be automatically encrypted on write and decrypted on read. Encryption zones always start off as empty
directories, and tools such as distcp can be used to add data to a zone. Every file and subdirectory copied to an
encryption zone will be encrypted.

Note: An encryption zone cannot be created on top of an existing directory.

Each encryption zone is associated with a key (EZ Key) specified by the key administrator when the zone is created. EZ
keys are stored on a backing keystore external to HDFS. Each file within an encryption zone has its own encryption
key, called the Data Encryption Key (DEK). These DEKs are encrypted with their respective encryption zone's EZ key,
to form an Encrypted Data Encryption Key (EDEK).

The following diagram illustrates how encryption zone keys (EZ keys), data encryption keys (DEKs), and encrypted data
encryption keys (EDEKs) are used to encrypt and decrypt files.

284 | Cloudera Security

Configuring Encryption

EDEKs are stored persistently on the NameNode as part of each file's metadata, using HDFS extended attributes. EDEKs
can be safely stored andhandled by theNameNodebecause thehdfsuser does not have access to the EDEK's encryption
keys (EZ keys). Even if HDFS is compromised (for example, by gaining unauthorized access to a superuser account), a
malicious user only gains access to the encrypted text and EDEKs. EZ keys are controlled by a separate set of permissions
on the KMS and the keystore.

An EZ key can have multiple key versions, where each key version has its own distinct key material (that is, the portion
of the key used during encryption and decryption). Key rotation is achieved by bumping up the version for an EZ key.
Per-file key rotation is then achieved by re-encrypting the file's DEK with the new version of the EZ key to create new
EDEKs. HDFS clients can identify an encryption key either by its key name, which returns the latest version of the key,
or by a specific key version.

For more information on creating and managing encryption zones, see Managing Encryption Keys and Zones on page
296.

Accessing Files Within an Encryption Zone

To encrypt a new file, the HDFS client requests a new EDEK from the NameNode. The NameNode then asks the KMS
to decrypt it with the encryption zone's EZ key. This decryption results in a DEK, which is used to encrypt the file.

Cloudera Security | 285

Configuring Encryption

http://blog.cloudera.com/blog/2014/06/why-extended-attributes-are-coming-to-hdfs/

The diagram above depicts the process of writing a new encrypted file. Note that the EDEK cache on the NameNode
is populated in the background. Since it is the responsibility of KMS to create EDEKs, using a cache avoids having to
call the KMS for each create request. The client can request new EDEKs directly from the NameNode.

To decrypt a file, the HDFS client provides the NameNode with the file's EDEK and the version number of the EZ key
that was used to generate the EDEK. The NameNode requests the KMS to decrypt the file’s EDEK with the encryption
zone's EZ key, which involves checking that the requesting client has permission to access that particular version of
the EZ key. Assuming decryption of the EDEK is successful, the client then uses this DEK to decrypt the file.

Encryption and decryption of EDEKs takes place entirely on the KMS. More importantly, the client requesting creation
or decryption of an EDEK never handles the EZ key. Only the KMS can use EZ keys to create and decrypt EDEKs as
requested. It is important to note that the KMS does not store any keys, other than temporarily in its cache. It is up to
the enterprise keystore to be the authoritative storage for keys, and to ensure that keys are never lost, as a lost key
is equivalent to introducing a security hole. For production use, Cloudera recommends you deploy two or more
redundant enterprise key stores.

Attack Vectors

MitigationIssueType of Exploit

Hardware Access Exploit

It can be mitigated by disabling swap,
using encrypted swap, or using mlock

Access to swap files of processes
containing DEKs. This exploit does not

These exploits assume the attacker has
gained physical access to hard drives

to prevent keys from being swapped
out.

expose cleartext, as it also requires
access to encrypted block files.

from cluster machines, that is,
DataNodes and NameNodes.

It can only be mitigated by restricting
physical access to the cluster
machines.

Access to encrypted block files. This
exploit does not expose cleartext, as
it also requires access to the DEKs.

Root Access Exploits

No mitigation required.Access to encrypted block files.

By itself, this does not expose
cleartext, as it also requires access to
encryption keys.

These exploits assume the attacker has
gained root shell access to cluster
machines running DataNodes and
NameNodes. Many of these exploits
cannot be addressed in HDFS, since a
malicious root user has access to the

286 | Cloudera Security

Configuring Encryption

MitigationIssueType of Exploit

No mitigation.Dump memory of client processes to
obtain DEKs, delegation tokens,
cleartext.

in-memory state of processes holding
encryption keys and cleartext. For
these exploits, the only mitigation
technique is carefully restricting and
monitoring root shell access. No mitigation required.Recording network traffic to sniff

encryption keys and encrypted data
in transit.

By itself, insufficient to read cleartext
without the EDEK encryption key.

No mitigation required.Dump memory of DataNode process
to obtain encrypted block data.

By itself, insufficient to read cleartext
without the DEK.

No mitigation required.Dumpmemory of NameNodeprocess
to obtain encrypted data encryption
keys.

By itself, insufficient to read cleartext
without the EDEK's encryption key and
encrypted block files.

HDFS Admin Exploits

No mitigation required.Access to encrypted block files.

By itself, insufficient to read cleartext
without theEDEKandEDEKencryption
key.

These exploits assume that the
attacker has compromised HDFS, but
does not have root or hdfs user shell
access.

No mitigation required.Access to encryption zone and
encrypted file metadata (including
encrypted data encryption keys), using
-fetchImage.

By itself, insufficient to read cleartext
without EDEK encryption keys.

Rogue User Exploits

This can bemitigated through periodic
key rolling policies.

A rogue user can collect keys to which
they have access, and use them later
to decrypt encrypted data.

Optimizing Performance for HDFS Transparent Encryption

Warning: To ensure that HDFS encryption functions as expected, the steps described in this section
aremandatory for production use.

CDH implements theAdvanced Encryption StandardNew Instructions (AES-NI), which provide substantial performance
improvements. To get these improvements, you need a recent version of libcrypto.so on HDFS and MapReduce
client hosts -- that is, any host fromwhich you originate HDFS orMapReduce requests. Many OS versions have an older
version of the library that does not support AES-NI. The instructions that follow tell you what you need to do for each
OS version that CDH supports.

RHEL/CentOS 6.5 or later

Cloudera Security | 287

Configuring Encryption

The installed version of libcrypto.so supports AES-NI, but you need to install the openssl-devel package on all
clients:

$ sudo yum install openssl-devel

RHEL/CentOS 6.4 or earlier 6.x versions, or SLES 11

Download and extract a newer version of libcrypto.so from a CentOS 6.5 repository and install it on all clients in
/var/lib/hadoop/extra/native/:

1. Download the latest version of the openssl package. For example:

$ wget
http://mirror.centos.org/centos/6/os/x86_64/Packages/openssl-1.0.1e-30.el6.x86_64.rpm

The libcrypto.so file in this package can be used on SLES 11 as well as RHEL/CentOS.
2. Decompress the files in the package, but do not install it:

$ rpm2cpio openssl-1.0.1e-30.el6.x86_64.rpm | cpio -idmv

3. If you are using parcels, create the /var/lib/hadoop/extra/native/ directory:

$ sudo mkdir -p /var/lib/hadoop/extra/native

4. Copy the shared library into /var/lib/hadoop/extra/native/. Name the target file libcrypto.so, with
no suffix at the end, exactly as in the command that follows.

$ sudo cp ./usr/lib64/libcrypto.so.1.0.1e /var/lib/hadoop/extra/native/libcrypto.so

RHEL/CentOS 5

In this case, you need to build libcrypto.so and copy it to all clients:

1. On one client, compile and install openssl from source:

$ wget http://www.openssl.org/source/openssl-1.0.1j.tar.gz
$ cd openssl-1.0.1j
$./config --shared --prefix=/opt/openssl-1.0.1j
$ sudo make install

2. If you are using parcels, create the /var/lib/hadoop/extra/native/ directory:

$ sudo mkdir -p /var/lib/hadoop/extra/native

3. Copy the files into /var/lib/hadoop/extra/native/:

$ sudo cp /opt/openssl-1.0.1j/lib/libcrypto.so /var/lib/hadoop/extra/native

4. Copy the files to the remaining clients using a utility such as rsync

Debian Wheezy

The installed version of libcrypto.so supports AES-NI, but you need to install the libssl-devel package on all
clients:

$ sudo apt-get install libssl-dev

Ubuntu Precise and Ubuntu Trusty

288 | Cloudera Security

Configuring Encryption

Install the libssl-devel package on all clients:

$ sudo apt-get install libssl-dev

Testing if encryption optimization works

To verify that a client host is ready to use the AES-NI instruction set optimization for HDFS encryption at rest, use the
following command:

hadoop checknative

You should see a response such as the following:

14/12/12 13:48:39 INFO bzip2.Bzip2Factory: Successfully loaded & initialized native-bzip2
library system-native14/12/12 13:48:39 INFO zlib.ZlibFactory: Successfully loaded &
initialized native-zlib library
Native library checking:
hadoop: true /usr/lib/hadoop/lib/native/libhadoop.so.1.0.0
zlib: true /lib64/libz.so.1
snappy: true /usr/lib64/libsnappy.so.1
lz4: true revision:99
bzip2: true /lib64/libbz2.so.1
openssl: true /usr/lib64/libcrypto.so

If you see true in the openssl row, Hadoop has detected the right version of libcrypto.so and optimization will
work. If you see false in this row, you do not have the right version.

Enabling HDFS Encryption Using the Wizard

To accommodate the security best practice of separation of duties, enabling HDFS encryption using the wizard requires
different Cloudera Manager user roles for different steps.

Launch the Set up HDFS Data At Rest Encryption wizard in one of the following ways:

• Cluster > Set up HDFS Data At Rest Encryption

Minimum Required Role: Key Administrator or Cluster Administrator (also provided by Full Administrator)

• Administration > Security > Set up HDFS Data At Rest Encryption

Minimum Required Role: Key Administrator or Cluster Administrator (also provided by Full Administrator)

• HDFS service > Actions > Set up HDFS Data At Rest Encryption

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

On the first page of the wizard, select the root of trust for encryption keys:

• Cloudera Navigator Key Trustee Server
• A file-based password-protected Java KeyStore

Cloudera strongly recommends using Cloudera Navigator Key Trustee Server as the root of trust for production
environments. The file-based Java KeyStore root of trust is insufficient to provide the security, scalability, and
manageability required by most production systems. More specifically, the Java KeyStore KMS does not provide:

• Scalability, so you are limited to only one KMS, which can result in bottlenecks
• High Availability (HA)
• Recoverability, so if you lose the node where the Java KeyStore is stored, then you can lose access to all the

encrypted data

Ultimately, the Java KeyStore does not satisfy the stringent security requirements of most organizations for handling
master encryption keys.

Choosing a root of trust displays a list of steps required to enable HDFS encryption using that root of trust. Each step
can be completed independently. The Status column indicates whether the step has been completed, and the Notes

Cloudera Security | 289

Configuring Encryption

https://en.wikipedia.org/wiki/Separation_of_duties

column provides additional context for the step. If your Cloudera Manager user account does not have sufficient
privileges to complete a step, the Notes column indicates the required privileges.

Available steps contain links to wizards or documentation required to complete the step. If a step is unavailable due
to insufficient privileges or a prerequisite step being incomplete, no links are present and the Notes column indicates
the reason the step is unavailable.

Continue to the section for your selected root of trust for further instructions:

Enabling HDFS Encryption Using Cloudera Navigator Key Trustee Server

Enabling HDFS encryption using Key Trustee Server as the key store involves multiple components. For an overview of
the components involved in encrypting data at rest, see Cloudera Navigator Data Encryption Overview. For guidelines
on deploying theNavigator Key Trustee Server in production environments, Resource Planning for Data at Rest Encryption
on page 282.

Before continuing, make sure the Cloudera Manager server host has access to the internal repository hosting the Key
Trustee Server software. See Setting Up an Internal Repository for more information.

After selecting Cloudera Navigator Key Trustee Server as the root of trust, the following steps are displayed:

1. Enable Kerberos

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

For more information about enabling Kerberos, see Enabling Kerberos Authentication Using the Wizard on page 59.

2. Enable TLS/SSL

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

For more information about enabling TLS, see Configuring TLS/SSL Encryption for CDH Services on page 249.

3. Add a dedicated cluster for the Key Trustee Server

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

This step creates a new cluster in Cloudera Manager for the Key Trustee Server hosts to isolate them from other
enterprise data hub (EDH) services for increased security and durability. For more information, see Data at Rest
Encryption Reference Architecture on page 278.

To complete this step:

1. Click Add a dedicated cluster for the Key Trustee Server.
2. Leave Enable High Availability checked to add two hosts to the cluster. For production environments, you must

enable high availability for Key Trustee Server. Failure to enable high availability can result in complete data loss
in the case of catastrophic failure of a standalone Key Trustee Server. Click Continue.

3. Search for new hosts to add to the cluster, or select the Currently Managed Hosts tab to add existing hosts to the
cluster. After selecting the hosts, click Continue.

4. Select the KEYTRUSTEE_SERVER parcel to install Key Trustee Server using parcels, or select None if you want to
use packages. If you do not see a parcel available, clickMore Options and add the repository URL to the Remote
Parcel Repository URLs list. After selecting a parcel or None, click Continue.

If you selectedNone, click Continue again, and skip to 4. Install Key Trustee Server binary using packages or parcels
on page 290.

5. After the KEYTRUSTEE_SERVER parcel is successfully downloaded, distributed, unpacked, and activated, click
Continue.

6. Click Continue to complete this step and return to the main page of the wizard.

4. Install Key Trustee Server binary using packages or parcels

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

290 | Cloudera Security

Configuring Encryption

Note: If you selected None on the parcel selection page in step 3. Add a dedicated cluster for the Key
Trustee Server on page 290, the step title is changed to Install Parcel for Key Trustee Server. If you
are using packages, skip this step and see Installing Key Trustee Server Using the Command Line for
package-based installation instructions. After installing Key Trustee Server using packages, continue
to 5. Install Parcel for Key Trustee KMS on page 291.

This step is completed automatically during 3. Add a dedicated cluster for the Key Trustee Server on page 290 if you
are using parcels. If the step is incomplete for any reason (such as the wizard being interrupted or a failure installing
the parcel), complete it manually:

1. Click Install Key Trustee Server binary using packages or parcels.
2. Select the KEYTRUSTEE_SERVER parcel to install Key Trustee Server, or select None if you need to install Key

Trustee Server manually using packages. If you do not see a parcel available, clickMore Options and add the
repository URL to the Remote Parcel Repository URLs list. After selecting a parcel, click Continue.

3. After the KEYTRUSTEE_SERVER parcel is successfully downloaded, distributed, unpacked, and activated, click Finish
to complete this step and return to the main page of the wizard.

5. Install Parcel for Key Trustee KMS

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

This step installs the Key Trustee KMS parcel. If you are using packages, skip this step and see Installing Key Trustee
KMS Using Packages for instructions. After installing Key Trustee KMS using packages, continue to 6. Add a Key Trustee
Server Service on page 291.

To complete this step for parcel-based installations:

1. Click Install Parcel for Key Trustee KMS.
2. Select the KEYTRUSTEE parcel to install Key Trustee KMS. If you do not see a parcel available, clickMore Options

and add the repository URL to the Remote Parcel Repository URLs list. After selecting a parcel, click Continue.
3. After the KEYTRUSTEE parcel is successfully downloaded, distributed, unpacked, and activated, click Finish to

complete this step and return to the main page of the wizard.

6. Add a Key Trustee Server Service

Minimum Required Role: Key Administrator (also provided by Full Administrator)

This step adds the Key Trustee Server service to Cloudera Manager. To complete this step:

1. Click Add a Key Trustee Server Service.
2. Click Continue.
3. On the Customize Role Assignments for Key Trustee Server page, select the hosts for the Active Key Trustee

Server and Passive Key Trustee Server roles. Make sure that the selected hosts are not used for other services
(see Resource Planning for Data at Rest Encryption on page 282 for more information), and click Continue.

4. The Entropy Considerations page provides commands to install the rng-tools package to increase available
entropy for cryptographic operations. For more information, see Entropy Requirements on page 279. After
completing these commands, click Continue.

5. The Synchronize Active and Passive Key Trustee Server Private Keys page provides instructions for generating
and copying the Active Key Trustee Server private key to the Passive Key Trustee Server. Cloudera recommends
following security best practices and transferring the private key using offline media, such as a removable USB
drive. For convenience (for example, in a development or testing environment where maximum security is not
required), you can copy the private key over the network using the provided rsync command.

After you have synchronized the private keys, run the ktadmin init command on the Passive Key Trustee Server
as described in the wizard. After the initialization is complete, check the box to indicate you have synchronized
the keys and click Continue in the wizard.

6. The Setup TLS for Key Trustee Server page provides instructions on replacing the auto-generated self-signed
certificate with a production certificate from a trusted Certificate Authority (CA). For more information, see

Cloudera Security | 291

Configuring Encryption

Managing Key Trustee Server Certificates on page 338. Click Continue to view and modify the default certificate
settings.

7. On the Review Changes page, you can view and modify the following settings:

• Database Storage Directory (db_root)

Default value: /var/lib/keytrustee/db

The directory on the local filesystem where the Key Trustee Server database is stored. Modify this value to
store the database in a different directory.

• Active Key Trustee Server TLS/SSL Server Private Key File (PEM Format) (ssl.privatekey.location)

Default value: /var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee-pk.pem

The path to the Active Key Trustee Server TLS certificate private key. Accept the default setting to use the
auto-generated private key. If you have a CA-signed certificate, change this path to the CA-signed certificate
private key file. This file must be in PEM format.

• Active Key Trustee Server TLS/SSL Server Certificate File (PEM Format) (ssl.cert.location)

Default value: /var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee.pem

The path to the Active Key Trustee Server TLS certificate. Accept the default setting to use the auto-generated
self-signed certificate. If you have a CA-signed certificate, change this to the path to the CA-signed certificate.
This file must be in PEM format.

• Active Key Trustee Server TLS/SSL Server CA Certificate (PEM Format) (ssl.cacert.location)

Default value: (none)

The path to the file containing the CA certificate and any intermediate certificates (if any intermediate
certificates exist, then they are required here) used to sign the Active Key Trustee Server certificate. If you
have a CA-signed certificate, set this value to the path to the CA certificate or certificate chain file. This file
must be in PEM format.

• Active Key Trustee Server TLS/SSL Private Key Password (ssl.privatekey.password)

Default value: (none)

The password for the Active Key Trustee Server private key file. Leave this blank if the file is not
password-protected.

• Passive Key Trustee Server TLS/SSL Server Private Key File (PEM Format) (ssl.privatekey.location)

Default value: /var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee-pk.pem

The path to the Passive Key Trustee Server TLS certificate private key. Accept the default setting to use the
auto-generated private key. If you have a CA-signed certificate, change this path to the CA-signed certificate
private key file. This file must be in PEM format.

• Passive Key Trustee Server TLS/SSL Server Certificate File (PEM Format) (ssl.cert.location)

Default value: /var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee.pem

The path to the Passive Key Trustee Server TLS certificate. Accept the default setting to use the auto-generated
self-signed certificate. If you have a CA-signed certificate, change this to the path to the CA-signed certificate.
This file must be in PEM format.

• Passive Key Trustee Server TLS/SSL Server CA Certificate (PEM Format) (ssl.cacert.location)

Default value: (none)

The path to the file containing the CA certificate and any intermediate certificates (if any intermediate
certificates exist, then they are required here) used to sign the Passive Key Trustee Server certificate. If you
have a CA-signed certificate, set this value to the path to the CA certificate or certificate chain file. This file
must be in PEM format.

292 | Cloudera Security

Configuring Encryption

https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail
https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail

• Passive Key Trustee Server TLS/SSL Private Key Password (ssl.privatekey.password)

Default value: (none)

The password for the Passive Key Trustee Server private key file. Leave this blank if the file is not
password-protected.

After reviewing the settings and making any changes, click Continue.

8. After all commands complete successfully, click Continue. If the Generate Key Trustee Server Keyring appears
stuck, make sure that the Key Trustee Server host has enough entropy. See Entropy Requirements on page 279
for more information.

9. Click Finish to complete this step and return to the main page of the wizard.

For parcel-based Key Trustee Server releases 5.8 and higher, Cloudera Manager automatically backs up Key Trustee
Server (using the ktbackup.sh script) after adding the Key Trustee Server service. It also schedules automatic backups
using cron. For package-based installations, you must manually back up Key Trustee Server and configure a cron job.

Cloudera Manager configures cron to run the backup script hourly. The latest 10 backups are retained in
/var/lib/keytrustee in cleartext. For information about using the backup script and configuring the cron job
(including how to encrypt backups), see Backing Up Key Trustee Server and Key Trustee KMS Using the ktbackup.sh
Script on page 323.

7. Add a Key Trustee KMS Service

Minimum Required Role: Key Administrator (also provided by Full Administrator)

This step adds a Key Trustee KMS service to the cluster. The Key Trustee KMS service is required to enable HDFS
encryption to use Key Trustee Server for cryptographic key management. Key Trustee KMS high availability uses
ZooKeeper to automatically configure load balancing. If you do not have a ZooKeeper service in your cluster, add one
using the instructions in Adding a Service.

To complete this step:

1. Click Add a Key Trustee KMS Service.
2. Select an existing Key Trustee Server pair or specify an external Key Trustee Server pair. If you have an existing

Key Trustee Server pair outside of Cloudera Manager control, select the External Key Trustee Server option and
specify the fully-qualified domain names (FQDNs) of the Key Trustee Server pair. Click Continue.

3. Select cluster hosts for the Key Trustee KMS service. For production environments, select at least two hosts for
high availability. If you proceed with only one host, you can enable high availability later. See Key Trustee KMS
High Availability for more information.

Make sure that the selected hosts are not used for other services (see Resource Planning for Data at Rest Encryption
on page 282 for more information), and click Continue.

4. The Entropy Considerations page provides commands to install the rng-tools package to increase available
entropy for cryptographic operations. For more information, see Entropy Requirements on page 279. After
completing these commands, click Continue.

5. The Setup Organization and Auth Secret page generates the necessary commands to create an organization in
Key Trustee Server. An organization is required to be able to register the Key Trustee KMS with Key Trustee Server.
See Managing Key Trustee Server Organizations on page 336 for more information.

Enter an organization name and click Generate Instruction. Run the displayed commands to generate an
organization and obtain the auth_secret value for the organization. Enter the secret in the auth_secret field
and click Continue.

6. The Setup Access Control List (ACL) page allows you to generate ACLs for the Key Trustee KMS or to provide your
own ACLs. To generate the recommended ACLs, enter the username and group responsible for managing
cryptographic keys and click Generate ACLs. To specify your own ACLs, select the Use Your Own kms-acls.xml
File option and enter the ACLs. For more information on the KMS Access Control List, see Configuring KMS Access
Control Lists on page 305.

Cloudera Security | 293

Configuring Encryption

After generating or specifying the ACL, click Continue.

7. The Setup TLS for Key Trustee KMS page provides high-level instructions for configuring TLS communication
between the Key Trustee KMS and the Key Trustee Server, as well as between the EDH cluster and the Key Trustee
KMS. See Configuring TLS/SSL for the KMS on page 304 for more information.

Click Continue.

8. The Review Changes page lists all of the settings configured in this step. Click the icon next to any setting for
information about that setting. Review the settings and click Continue.

9. After the First Run commands have successfully completed, click Continue.
10. The Synchronize Private Keys and HDFS Dependency page provides instructions for copying the private key from

one Key Management Server Proxy role to all other roles.

Warning: It is very important that you perform this step. Failure to do so leaves Key Trustee KMS
in a state where keys are intermittently inaccessible, depending on which Key Trustee KMS host
a client interacts with, because cryptographic key material encrypted by one Key Trustee KMS
host cannot be decrypted by another. If you are already running multiple Key Trustee KMS hosts
with different private keys, immediately back up all Key Trustee KMS hosts, and contact Cloudera
Support for assistance correcting the issue.

To determine whether the Key Trustee KMS private keys are different, compare the MD5 hash
of the private keys. On each Key Trustee KMS host, run the following command:

$ md5sum /var/lib/kms-keytrustee/keytrustee/.keytrustee/secring.gpg

If the outputs are different, contact Cloudera Support for assistance. Do not attempt to synchronize
existing keys. If you overwrite the private key and do not have a backup, any keys encrypted by
that private key are permanently inaccessible, and any data encrypted by those keys is permanently
irretrievable. If you are configuring Key Trustee KMS high availability for the first time, continue
synchronizing the private keys.

Cloudera recommends following security best practices and transferring the private key using offline media, such
as a removable USB drive. For convenience (for example, in a development or testing environmentwheremaximum
security is not required), you can copy the private key over the network using the provided rsync command.

After you have synchronized the private keys, check the box to indicate you have done so and click Continue.

11. After the Key Trustee KMS service starts, click Finish to complete this step and return to the main page of the
wizard.

For parcel-based Key Trustee KMS releases 5.8 and higher, Cloudera Manager automatically backs up Key Trustee KMS
(using the ktbackup.sh script) after adding the Key Trustee KMS service. It does not schedule automatic backups
using cron. For package-based installations, you must manually back up Key Trustee Server and configure a cron job.

The backup is stored in /var/lib/kms-keytrustee in cleartext. Formore information about using the backup script
and configuring the cron job (including how to encrypt backups), see Backing Up Key Trustee Server and Key Trustee
KMS Using the ktbackup.sh Script on page 323.

8. Restart stale services and redeploy client configuration

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

This step restarts all services which were modified while enabling HDFS encryption. To complete this step:

1. Click Restart stale services and redeploy client configuration.
2. Click Restart Stale Services.
3. Make sure that Re-deploy client configuration is checked, and click Restart Now.
4. After all commands have completed, click Finish.

294 | Cloudera Security

Configuring Encryption

9. Validate Data Encryption

Minimum Required Role: Key Administrator or Cluster Administrator (also provided by Full Administrator)

This step launches a tutorial with instructions on creating an encryption zone and putting data into it to verify that
HDFS encryption is enabled and working.

Enabling HDFS Encryption Using a Java KeyStore

Note: Cloudera strongly recommends using Cloudera Navigator Key Trustee Server as the root of
trust for production environments. The file-based Java KeyStore root of trust is insufficient to provide
the security, scalability, and manageability required by most production systems.

After selecting A file-based password-protected Java KeyStore as the root of trust, the following steps are displayed:

1. Enable Kerberos

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

For more information on enabling Kerberos, see Enabling Kerberos Authentication Using the Wizard on page 59.

2. Enable TLS/SSL

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

For more information on enabling TLS, see Configuring TLS Security for Cloudera Manager on page 228.

3. Add a Java KeyStore KMS Service

Minimum Required Role: Key Administrator (also provided by Full Administrator)

This step adds the Java KeyStore KMS service to the cluster. The Java KeyStore KMS service uses a password-protected
Java KeyStore for cryptographic key management. To complete this step:

1. Click Add a Java KeyStore KMS Service.
2. Select a cluster host for the Java KeyStore KMS service. Click Continue.
3. The Setup TLS for Java KeyStore KMS page provides high-level instructions for configuring TLS communication

between the EDH cluster and the Java KeyStore KMS. See Configuring TLS/SSL for the KMS on page 304 for more
information.

Click Continue.

4. The Review Changes page lists the Java KeyStore settings. Click the icon next to any setting for information
about that setting. Enter the location and password for the Java KeyStore and click Continue.

5. Click Continue to automatically configure the HDFS service to depend on the Java KeyStore KMS service.
6. Click Finish to complete this step and return to the main page of the wizard.

4. Restart stale services and redeploy client configuration

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

This step restarts all services which were modified while enabling HDFS encryption. To complete this step:

1. Click Restart stale services and redeploy client configuration.
2. Click Restart Stale Services.
3. Make sure that Re-deploy client configuration is checked, and click Restart Now.
4. After all commands have completed, click Finish.

5. Validate Data Encryption

Minimum Required Role: Key Administrator or Cluster Administrator (also provided by Full Administrator)

Cloudera Security | 295

Configuring Encryption

This step launches a tutorial with instructions on creating an encryption zone and putting data into it to verify that
HDFS encryption is enabled and working.

Managing Encryption Keys and Zones

Interacting with the KMS and creating encryption zones requires the use of two new CLI commands: hadoop key and
hdfs crypto. The following sections will help you get started with creating encryption keys and setting up encryption
zones.

Before continuing, make sure that your KMS ACLs have been set up according to best practices. For more information,
see Configuring KMS Access Control Lists on page 305.

Validating Hadoop Key Operations

Warning: If you are using or plan to use Cloudera Navigator Key HSM in conjunction with Cloudera
Navigator Key Trustee Server, ensure that key names begin with alphanumeric characters and do not
use special characters other than hyphen (-), period (.), or underscore (_). Using other special
characters can prevent you from migrating your keys to an HSM. See Integrating Key HSM with Key
Trustee Server on page 346 for more information.

Use hadoop key create to create a test key, and then use hadoop key list to retrieve the key list:

$ sudo -u <key_admin> hadoop key create keytrustee_test
$ hadoop key list

Creating Encryption Zones

Important: Cloudera does not currently support configuring the root directory as an encryption zone.
Nested encryption zones are also not supported.

Important: The Java Keystore KMS default Truststore (for example,
org.apache.hadoop.crypto.key.JavaKeyStoreProvider) does not support uppercase key
names.

Once a KMS has been set up and the NameNode and HDFS clients have been correctly configured, use the hadoop
key and hdfs crypto command-line tools to create encryption keys and set up new encryption zones.

• Create an encryption key for your zone as the keyadmin for the user/group (regardless of the application that
will be using the encryption zone):

$ sudo -u hdfs hadoop key create <key_name>

• Create a new empty directory and make it an encryption zone using the key created above.

$ sudo -u hdfs hadoop fs -mkdir /encryption_zone
$ sudo -u hdfs hdfs crypto -createZone -keyName <key_name> -path /encryption_zone

You can verify creation of the new encryption zone by running the -listZones command. You should see the
encryption zone along with its key listed as follows:

$ sudo -u hdfs hdfs crypto -listZones
/encryption_zone <key_name>

Warning: Do not delete an encryption key as long as it is still in use for an encryption zone. This
results in loss of access to data in that zone.

296 | Cloudera Security

Configuring Encryption

For more information and recommendations on creating encryption zones for each CDH component, see Configuring
CDH Services for HDFS Encryption on page 314.

Adding Files to an Encryption Zone

Existing data can be encrypted by coping it copied into the new encryption zones using tools like DistCp.

You can add files to an encryption zone by copying them to the encryption zone using distcp. For example:

sudo -u hdfs hadoop distcp /user/dir /encryption_zone

Important: Starting with CDH 5.7.1, you can delete files or directories that are part of an HDFS
encryption zone. For CDH 5.7.0 and lower, you will need to manually configure HDFS trash to allow
deletions. For details on how to configure trash in HDFS, see Trash Behavior with HDFS Transparent
Encryption Enabled.

DistCp Considerations

A common use case for DistCp is to replicate data between clusters for backup and disaster recovery purposes. This is
typically performed by the cluster administrator, who is an HDFS superuser. To retain this workflow when using HDFS
encryption, a new virtual path prefix has been introduced, /.reserved/raw/, that gives superusers direct access to
the underlying block data in the filesystem. This allows superusers todistcp datawithout requiring access to encryption
keys, and avoids the overhead of decrypting and re-encrypting data. It also means the source and destination data will
be byte-for-byte identical, which would not have been true if the data was being re-encrypted with a new EDEK.

Warning:

Whenusing/.reserved/raw/ todistcpencrypteddata,make sure youpreserve extendedattributes
with the -px flag. This is because encrypted attributes such as the EDEK are exposed through extended
attributes andmust be preserved to be able to decrypt the file.

This means that if the distcp is initiated at or above the encryption zone root, it will automatically
create a new encryption zone at the destination if it does not already exist. Hence, Cloudera
recommends you first create identical encryption zones on the destination cluster to avoid any potential
mishaps.

Copying data from unencrypted locations

By default, distcp compares checksums provided by the filesystem to verify that data was successfully copied to the
destination.When copying froman encrypted location, the file system checksumswill notmatch because the underlying
block data is different. This is true whether or not the destination location is encrypted or unencrypted.

In this case, you can specify the -skipcrccheck and -update flags to avoid verifying checksums. When you use
-skipcrccheck, distcp checks the file integrity by performing a file size comparison, right after the copy completes for
each file.

Deleting Encryption Zones

To remove an encryption zone, delete the encrypted directory:

Warning: This command deletes the entire directory and all of its contents. Ensure that the data is
no longer needed before running this command.

$ sudo -u hdfs hadoop fs -rm -r -skipTrash /encryption_zone

Cloudera Security | 297

Configuring Encryption

Important: The Key Trustee KMSdoes not directly execute a key deletion (for example, itmay perform
a soft delete instead, or delay the actual deletion to prevent mistakes). In these cases, errors may
occur when creating or deleting a key using the same name after it has already been deleted.

Backing Up Encryption Keys

Warning: It is very important that you regularly back up your encryption keys. Failure to do so can
result in irretrievable loss of encrypted data.

If you are using the Java KeyStore KMS, make sure you regularly back up the Java KeyStore that stores the encryption
keys. If you are using the Key Trustee KMS and Key Trustee Server, see Backing Up and Restoring Key Trustee Server
and Clients on page 323 for instructions on backing up Key Trustee Server and Key Trustee KMS.

Configuring the Key Management Server (KMS)

Hadoop Key Management Server (KMS) is a cryptographic key management server based on the Hadoop KeyProvider
API. It provides a KeyProvider implementation client that interacts with the KMS using the HTTP REST API. Both the
KMS and its client support HTTP SPNEGO Kerberos authentication and TLS/SSL-secured communication. The KMS is a
Java-based web application that uses a preconfigured Tomcat server bundled with the Hadoop distribution.

For instructions on securing the KMS, see Securing the Key Management Server (KMS) on page 302.

Cloudera provides two implementations of the Hadoop KMS:

• Java KeyStore KMS - The default Hadoop KMS included in CDH that uses a file-based Java KeyStore (JKS) for its
backing keystore. For parcel-based installations, no additional action is required to install or upgrade the KMS.
For package-based installations, you must install additional packages. For more information, see Installing and
Upgrading Java KeyStore KMS. Cloudera strongly recommends not using Java Keystore KMS in production
environments.

• Key Trustee KMS - A custom KMS that uses Cloudera Navigator Key Trustee Server for its backing keystore instead
of the file-based Java KeyStore (JKS) used by the default Hadoop KMS. Cloudera strongly recommends using Key
Trustee KMS in production environments to improve the security, durability, and scalability of your cryptographic
key management. For more information about the architecture and components involved in encrypting data at
rest for production environments, see Cloudera Navigator Data Encryption Overview and Data at Rest Encryption
Reference Architecture on page 278. For instructions on installing and upgrading Key Trustee KMS, see:

– Installing Key Trustee KMS
– Upgrading Key Trustee KMS

Configuring KMS High Availability

For Key Trustee KMS high availability, see Key Trustee KMS High Availability. Java KeyStore KMS does not support high
availability.

Configuring the KMS Using Cloudera Manager

If you are using Cloudera Manager, you can view and edit the KMS configuration by navigating to the following pages,
depending on the KMS implementation you are using:

• Key Trustee KMS service > Configuration
• Java KeyStore KMS service > Configuration

For more information on using Cloudera Manager to find and change configuration parameters, see Modifying
Configuration Properties Using Cloudera Manager.

For instructions about configuring the KMS and its clients using the command line for package-based installations,
continue reading:

298 | Cloudera Security

Configuring Encryption

Configuring the KMS Cache Using Cloudera Manager

By default, the KMS caches keys to reduce the number of interactions with the key provider. You can disable the cache
by setting the hadoop.kms.cache.enable property to false.

The cache is only used with the getCurrentKey(), getKeyVersion() and getMetadata()methods.

For the getCurrentKey()method, entries are cached for a maximum of 30000milliseconds to prevent stale keys.

For the getKeyVersion()method, entries are cached with a default inactivity timeout of 600000milliseconds (10
minutes).

You can configure the cache and its timeout values by adding the following properties to KMS service > Configuration >
Advanced > Key Management Server Proxy Advanced Configuration Snippet (Safety Valve) for kms-site.xml:

<property>
 <name>hadoop.kms.cache.enable</name>
 <value>true</value>
</property>

<property>
 <name>hadoop.kms.cache.timeout.ms</name>
 <value>600000</value>
</property>

<property>
 <name>hadoop.kms.current.key.cache.timeout.ms</name>
 <value>30000</value>
</property>

See CustomConfiguration formore information on adding customproperties using theAdvanced Configuration Snippet
(Safety Valve) feature.

Configuring the Audit Log Aggregation Interval Using the Command Line

Audit logs are generated forGET_KEY_VERSION, GET_CURRENT_KEY, DECRYPT_EEK, andGENERATE_EEKoperations.

Entries are aggregated by user, key, and operation for a configurable interval, after which the number of aggregated
operations by the user for a given key is written to the audit log.

The interval is configured in milliseconds by adding the hadoop.kms.aggregation.delay.ms property to KMS
service > Configuration > Advanced > KeyManagement Server Proxy Advanced Configuration Snippet (Safety Valve)
for kms-site.xml:

<property>
 <name>hadoop.kms.aggregation.delay.ms</name>
 <value>10000</value>
</property>

For more information about adding custom properties using the Advanced Configuration Snippet (Safety Valve)
feature, see Custom Configuration.

Configuring the Java KeyStore KMS Using the Command Line

Note: Because Key Trustee KMS is supported only in Cloudera Manager deployments, the following
command line instructions apply only to Java KeyStore KMS. For instructions about configuring Key
Trustee KMS, see Configuring the KMS Using Cloudera Manager on page 298.

For instructions about configuring the Java KeyStore KMS and its clients using the command line for package-based
installations, continue reading:

Cloudera Security | 299

Configuring Encryption

Configuring the Java KeyStore KMS KeyProvider Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.9.x. See Cloudera Documentation for information

specific to other releases.

Configure the KMS backing KeyProvider properties in the /etc/hadoop-kms/conf/kms-site.xml configuration
file:

<property>
 <name>hadoop.kms.key.provider.uri</name>
 <value>jceks://file@/${user.home}/kms.keystore</value>
</property>

<property>
 <name>hadoop.security.keystore.java-keystore-provider.password-file</name>
 <value>keystore_password_file</value>
</property>

If you do not specify the absolute path to the password file, you must include it in the Hadoop CLASSPATH.

Restart the KMS for configuration changes to take effect. See Starting and Stopping the Java KeyStore KMS Using the
Command Line on page 301 for instructions.

Configuring the Java KeyStore KMS Cache Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.9.x. See Cloudera Documentation for information

specific to other releases.

By default, the KMS caches keys to reduce the number of interactions with the key provider. You can disable the cache
by setting the hadoop.kms.cache.enable property to false.

The cache is only used with the getCurrentKey(), getKeyVersion() and getMetadata()methods.

For the getCurrentKey()method, entries are cached for a maximum of 30000milliseconds to prevent stale keys.

For the getKeyVersion()method, entries are cached with a default inactivity timeout of 600000milliseconds (10
minutes).

The cache and its timeout values are configured using the following properties in the
/etc/hadoop-kms/conf/kms-site.xml configuration file:

<property>
 <name>hadoop.kms.cache.enable</name>
 <value>true</value>
</property>

<property>
 <name>hadoop.kms.cache.timeout.ms</name>
 <value>600000</value>
</property>

<property>
 <name>hadoop.kms.current.key.cache.timeout.ms</name>
 <value>30000</value>
</property>

300 | Cloudera Security

Configuring Encryption

http://www.cloudera.com/content/support/en/documentation.html
http://www.cloudera.com/content/support/en/documentation.html

Configuring KMS Clients Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.9.x. See Cloudera Documentation for information

specific to other releases.

To configure KMS clients, set the hadoop.security.key.provider.path property in core-site.xml or
hdfs-site.xml. Specify the value in the format kms://<scheme>@<kms_hosts>:<port>/kms. Replace <scheme>
with http or https, depending onwhether you have configured TLS. Replace <kms_hosts>with a semicolon-separated
list of the KMS hosts. Replace <port> with the port number on which the KMS is running (16000 by default).

For example, for a KMS running on http://localhost:16000/kms, the KeyProvider URI is
kms://http@localhost:16000/kms. For high availability KMS (Key Trustee KMS only) running on
https://kms01.example.com:16000/kms and https://kms02.example.com:16000/kms, the KeyProvider
URI is kms://https@kms01.example.com;kms02.example.com:16000/kms.

See the following for an excerpt from core-site.xml:

 <property>
 <name>hadoop.security.key.provider.path</name>
 <value>kms://https@kms01.example.com;kms02.example.com:16000/kms</value>
 </property>

Starting and Stopping the Java KeyStore KMS Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.9.x. See Cloudera Documentation for information

specific to other releases.

To start or stop KMS use the kms.sh script. For example, to start the KMS:

$ sudo /usr/lib/hadoop-kms/sbin/kms.sh start

Running the script without parameters lists all possible parameters.

To use an init script to manage the KMS service, use your package manager to install the hadoop-kms-server
package from the CDH repository. For example, for RHEL 6:

$ sudo yum install hadoop-kms-server

After installation, use the service hadoop-kms-server command to manage the KMS service.

Configuring the Audit Log Aggregation Interval Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.9.x. See Cloudera Documentation for information

specific to other releases.

Audit logs are generated forGET_KEY_VERSION, GET_CURRENT_KEY, DECRYPT_EEK, andGENERATE_EEKoperations.

Entries are aggregated by user, key, and operation for a configurable interval, after which the number of aggregated
operations by the user for a given key is written to the audit log.

Cloudera Security | 301

Configuring Encryption

http://www.cloudera.com/content/support/en/documentation.html
http://www.cloudera.com/content/support/en/documentation.html
http://www.cloudera.com/content/support/en/documentation.html

The interval is configured in milliseconds using the hadoop.kms.aggregation.delay.ms property:

<property>
 <name>hadoop.kms.aggregation.delay.ms</name>
 <value>10000</value>
</property>

Configuring the Embedded Tomcat Server Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.9.x. See Cloudera Documentation for information

specific to other releases.

You can configure the embedded Tomcat server by using the
/etc/hadoop-kms/tomcat-conf/conf/server.xml.conf file.

The following environment variables can be set in KMS /etc/hadoop-kms/conf/kms-env.sh script and can be
used to alter the default ports and log directory:

• KMS_HTTP_PORT

• KMS_ADMIN_PORT

• KMS_LOG

Restart the KMS for the configuration changes to take effect.

Securing the Key Management Server (KMS)

Cloudera provides two implementations of the Hadoop KMS:

• Java KeyStore KMS - The default Hadoop KMS included in CDH that uses a file-based Java KeyStore (JKS) for its
backing keystore. For parcel-based installations, no additional action is required to install or upgrade the KMS.
For package-based installations, you must install additional packages. For more information, see Installing and
Upgrading Java KeyStore KMS. Cloudera strongly recommends not using Java Keystore KMS in production
environments.

• Key Trustee KMS - A custom KMS that uses Cloudera Navigator Key Trustee Server for its backing keystore instead
of the file-based Java KeyStore (JKS) used by the default Hadoop KMS. Cloudera strongly recommends using Key
Trustee KMS in production environments to improve the security, durability, and scalability of your cryptographic
key management. For more information about the architecture and components involved in encrypting data at
rest for production environments, see Cloudera Navigator Data Encryption Overview and Data at Rest Encryption
Reference Architecture on page 278. For instructions on installing and upgrading Key Trustee KMS, see:

– Installing Key Trustee KMS
– Upgrading Key Trustee KMS

This topic contains information on securing the KMS using Kerberos, TLS/SSL communication, and access control lists
(ACLs) for operations on encryption keys. Cloudera Manager instructions can be performed for both Key Trustee KMS
and Java KeyStore KMS deployments. Command-line instructions apply only to Java KeyStore KMS deployments. Key
Trustee KMS is not supported outside of Cloudera Manager. For more information, see Installing Key Trustee KMS.

Enabling Kerberos Authentication for the KMS

Enabling Kerberos Authentication for the KMS Using Cloudera Manager

Minimum Required Role: Full Administrator

To enable Kerberos for the KMS using Cloudera Manager:

1. Open the Cloudera Manager Admin Console and go to the KMS service.
2. Click Configuration.

302 | Cloudera Security

Configuring Encryption

http://www.cloudera.com/content/support/en/documentation.html

3. Set the Authentication Type property to kerberos.
4. Click Save Changes.
5. Because Cloudera Manager does not automatically create the principal and keytab file for the KMS, you must run

the Generate Credentials command manually. On the top navigation bar, go to Administration > Security >
Kerberos Credentialsand click Generate Missing Credentials.

Note: This does not create a new Kerberos principal if an existing HTTP principal exists for the
KMS host.

6. Return to the Home page by clicking the Cloudera Manager logo.
7. Click to invoke the cluster restart wizard.
8. Click Restart Stale Services.
9. Click Restart Now.
10. Click Finish.

Enabling Kerberos Authentication for the Java KeyStore KMS Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.9.x. See Cloudera Documentation for information

specific to other releases.

Configure /etc/krb5.conf with information for your KDC server. Create an HTTP principal and keytab file for the
KMS.

Configure /etc/hadoop-kms/conf/kms-site.xml with the following properties:

<property>
 <name>hadoop.kms.authentication.type</name>
 <value>kerberos</value>
</property>

<property>
 <name>hadoop.kms.authentication.kerberos.keytab</name>
 <value>${user.home}/kms.keytab</value>
</property>

<property>
 <name>hadoop.kms.authentication.kerberos.principal</name>
 <value>HTTP/localhost</value>
</property>

<property>
 <name>hadoop.kms.authentication.kerberos.name.rules</name>
 <value>DEFAULT</value>
</property>

Restart the KMS service for the configuration changes to take effect.

Configuring the Java KeyStore KMS Proxyuser Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.9.x. See Cloudera Documentation for information

specific to other releases.

Cloudera Security | 303

Configuring Encryption

http://www.cloudera.com/content/support/en/documentation.html
http://www.cloudera.com/content/support/en/documentation.html

Each proxyuser must be configured in /etc/hadoop-kms/conf/kms-site.xml using the following properties:

<property>
 <name>hadoop.kms.proxyuser.#USER#.users</name>
 <value>*</value>
</property>

<property>
 <name>hadoop.kms.proxyuser.#USER#.groups</name>
 <value>*</value>
</property>

<property>
 <name>hadoop.kms.proxyuser.#USER#.hosts</name>
 <value>*</value>
</property>

where #USER# is the username of the proxyuser to be configured.

The hadoop.kms.proxyuser.#USER#.users property indicates the users that can be impersonated. The
hadoop.kms.proxyuser.#USER#.groups property indicates the groups to which the users being impersonated
must belong. At least one of these properties must be defined. If both are defined, the configured proxyuser can
impersonate any user in the users list and any user belonging to a group listed in the groups list.

The hadoop.kms.proxyuser.#USER#.hosts property indicates the host from which the proxyuser can make
impersonation requests. "*" means there are no restrictions for the #USER# regarding users, groups, or hosts.

Configuring TLS/SSL for the KMS
Configuring TLS/SSL for the KMS Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

The steps for configuring and enabling Hadoop TLS/SSL for the KMS are as follows:

1. Go to the KMS service.
2. Click Configuration.
3. In the Search field, type TLS/SSL to show the KMS TLS/SSL properties (in the Key Management Server Default

Group > Security category).
4. Edit the following TLS/SSL properties according to your cluster configuration.

Table 23: KMS TLS/SSL Properties

DescriptionProperty

Encrypt communication between clients and Key Management Server using
Transport Layer Security (TLS) (formerly known as Secure Socket Layer (TLS/SSL)).

Enable TLS/SSL for Key
Management Server

The path to the TLS/SSL keystore file containing the server certificate and private
key used for TLS/SSL. Used when Key Management Server is acting as a TLS/SSL
server. The keystore must be in JKS format.

Key Management Server
TLS/SSL Server JKS Keystore
File Location

The password for the Key Management Server JKS keystore file.Key Management Server
TLS/SSL Server JKS Keystore
File Password

The location on disk of the truststore, in .jks format, used to confirm the
authenticity of TLS/SSL servers that KeyManagement Server Proxymight connect

KeyManagement Server Proxy
TLS/SSL Certificate Trust Store
File to. This is used when Key Management Server Proxy is the client in a TLS/SSL

connection. This truststoremust contain the certificates used to sign the services
connected to. If this parameter is not provided, the default list of well-known
certificate authorities is used instead.

304 | Cloudera Security

Configuring Encryption

DescriptionProperty

The password for the Key Management Server Proxy TLS/SSL Certificate Trust
Store File. This password is not required to access the truststore; this field can

KeyManagement Server Proxy
TLS/SSL Certificate Trust Store
Password be left blank. This password provides optional integrity checking of the file. The

contents of truststores are certificates, and certificates are public information.

5. Click Save Changes.
6. Return to the Home page by clicking the Cloudera Manager logo.
7. Click to invoke the cluster restart wizard.
8. Click Restart Stale Services.
9. Click Restart Now.
10. Click Finish.

For help troubleshooting TLS/SSL for KMS configuration issues, see Troubleshooting TLS/SSL Issues in ClouderaManager
on page 244.

Configuring TLS/SSL for the Java KeyStore KMS Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.9.x. See Cloudera Documentation for information

specific to other releases.

To configure KMS to work over HTTPS, set the following properties in the /etc/hadoop-kms/conf/kms_env.sh
script:

• KMS_SSL_KEYSTORE_FILE

• KMS_SSL_KEYSTORE_PASS

• KMS_SSL_TRUSTSTORE_FILE

• KMS_SSL_TRUSTSTORE_PASS

In the /etc/hadoop-kms/tomcat-conf/conf/ directory, replace the server.xml file with the provided
ssl-server.xml file.

Create a TLS/SSL certificate for the KMS. As the kms user, use the Java keytool command to create the TLS/SSL
certificate:

$ keytool -genkey -alias tomcat -keyalg RSA

You are asked a series of questions in an interactive prompt. It creates the keystore file, which is named .keystore and
located in the kms user home directory. The password you enter for the keystore must match the value of the
KMS_SSL_KEYSTORE_PASS environment variable set in the kms-env.sh script in the configuration directory.

The answer to "What is your first and last name?" (CN) must be the hostname of the machine where the KMS will be
running.

Note: Restart the KMS for the configuration changes to take effect.

Configuring KMS Access Control Lists

Hadoop KMS supports a range of ACLs that control access to keys and key operations on a granular basis. ACLs can be
used, for instance, to only grant users access to certain keys. Restricting HDFS superusers from access to key material
is an important design requirement. This prevents a malicious superuser from having access to all the key material and
all the encrypted data, and thus being able to decrypt everything.

Cloudera Security | 305

Configuring Encryption

http://www.cloudera.com/content/support/en/documentation.html

There are two categories of KMS ACLs:

1. KMS-wide: These ACLs specify the types of operations a user can perform. They are configured using the
hadoop.kms.acl.<OPERATION> and hadoop.kms.blacklist.<OPERATION> parameters. The operations
are as follows:

• CREATE

• DELETE

• ROLLOVER

• GET

• GET_KEYS

• GET_METADATA

• SET_KEY_MATERIAL

• GENERATE_EEK

• DECRYPT_EEK

2. Key-specific: These ACLs are set in a per-key basis. They are configured using the
default.key.acl.<OPERATION>, whitelist.key.acl.<OPERATION>, and
key.acl.<key_name>.<OPERATION> parameters. The operations and their programmatic equivalents are as
follows:

• READ - getKeyVersion, getKeyVersions, getMetadata, getKeysMetadata, getCurrentKey
• MANAGEMENT - createKey, deleteKey, rolloverNewVersion
• GENERATE_EEK - generateEncryptedKey, warmUpEncryptedKeys
• DECRYPT_EEK - decryptEncryptedKey
• ALL - All of the above

Thedefault.key.acl.<OPERATION>ACL applies to all keys forwhich anACL has not been explicitly configured.

If no ACL is configured for a specific key, and no default ACL is configured for the requested operation, access is
denied.

Note: The default ACL does not support the ALL operation qualifier.

The KMS supports bothwhitelist and blacklist ACLs. Blacklist entries overridewhitelist entries. A user or group accessing
the KMS is first checked for inclusion in the ACL for the requested operation and then checked for exclusion in the
blacklist for the operation before access is granted.

The group membership used by ACL entries relies on the configured group mapping mechanism for HDFS. By default,
group membership is determined on the local Linux system running the KMS service. If you have configured HDFS to
use LDAP for group mapping, the group membership for the ACL entries is determined using the configured LDAP
settings. For more information about LDAP-based group membership, see Configuring LDAP Group Mappings on page
384.

The ACL syntax for both blacklist and whitelist entries is as follows:

• Users only:

user1,user2,userN

Note: There are no spaces following the commas separating the users in the list.

306 | Cloudera Security

Configuring Encryption

• Groups only:

nobody group1,group2,groupN

Note: There is a space between nobody and the comma-separated group list. The nobody user,
if it exists, must not have privileges to log in to or interact with the system. If you are uncertain
about its access privileges, specify a different nonexistent user in its place.

• Users and Groups:

user1,user2,userN group1,group2,groupN

Note: The comma-separated user list is separated from the comma-separated group list by a
space.

Configuring KMS Access Control Lists Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Important: See related Known Issue and listed workaround: KMS and Key Trustee ACLs do not work
in Cloudera Manager 5.3.

The KMS installation wizard includes an option to generate the recommended ACLs. To view or edit the ACLs:

1. Go to the KMS service.
2. Click Configuration.
3. In the Search field, type acl to show the KeyManagement Server Advanced Configuration Snippet (Safety Valve)

for kms-acls.xml (in the Key Management Server Default Group category).
4. Add or edit the ACL properties according to your cluster configuration. See Recommended KMS Access Control

List on page 307 for example ACL entries.
5. Click Save Changes.
6. Return to the Home page by clicking the Cloudera Manager logo.
7. Click to invoke the cluster restart wizard.
8. Click Restart Stale Services.
9. Click Restart Now.
10. Click Finish.

Configuring Java KeyStore KMS Access Control Lists Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.9.x. See Cloudera Documentation for information

specific to other releases.

KMS ACLs are defined in the /etc/hadoop-kms/conf/kms-acls.xml configuration file. This file is hot-reloaded
when it changes. See Recommended KMS Access Control List on page 307 for recommended ACL entries.

Recommended KMS Access Control List

Cloudera recommends the following ACL definition for secure production settings. Replace keyadmin and
keyadmingroup with the user and group responsible for maintaining encryption keys.

Cloudera Security | 307

Configuring Encryption

http://www.cloudera.com/documentation/enterprise/release-notes/topics/cm_rn_known_issues.html#concept_k1p_v2s_5q
http://www.cloudera.com/documentation/enterprise/release-notes/topics/cm_rn_known_issues.html#concept_k1p_v2s_5q
http://www.cloudera.com/content/support/en/documentation.html

Note: If you are entering the ACL using ClouderaManager, omit the surrounding <configuration>
and </configuration> tags; Cloudera Manager adds this automatically.

<configuration>

<!--
 KMS ACLs control which users can perform various actions on the KMS,
 and which users and groups have access to which keys.

 This file has the following sections:
 * ACLs for KMS operations
 ** Access to specific KMS operations
 ** Blacklists for those specific operations
 * ACLs for keys
 ** Default ACLs for keys
 ** Whitelist ACLs for keys
 ** Key-specific ACLs
-->

<!--
 KMS ACLs that govern access to specific key operations. If access is not
 granted for an operation here, then the operation is forbidden, even if
 a key ACL allows it.

 The ACL value should be either a username or a username and group name
 separated by whitespace.

 A value of "*" (for the username or groupname) indicates that
 all users are granted access to that operation. Any operation for which
 there is no ACL or an empty (zero-length) ACL is treated as having an
 ACL with a value of "*". To disallow all users, add an ACL with a
 value of " ", a single space.

 Note: This convention applies only to the KMS-level ACLs beginning with
 'hadoop.kms.acl'.
-->

<property>
 <name>hadoop.kms.acl.CREATE</name>
 <value>keyadmin keyadmingroup</value>
 <description>
 ACL for create-key operations.
 If the user is not in the GET ACL, the key material is not returned
 as part of the response.
 </description>
</property>

<property>
 <name>hadoop.kms.acl.DELETE</name>
 <value>keyadmin keyadmingroup</value>
 <description>
 ACL for delete-key operations.
 </description>
</property>

<property>
 <name>hadoop.kms.acl.ROLLOVER</name>
 <value>keyadmin keyadmingroup</value>
 <description>
 ACL for rollover-key operations.
 If the user does is not in the GET ACL, the key material is not returned
 as part of the response.
 </description>
</property>

<property>
 <name>hadoop.kms.acl.GET</name>
 <value></value>
 <description>
 ACL for get-key-version and get-current-key operations.
 </description>

308 | Cloudera Security

Configuring Encryption

</property>

<property>
 <name>hadoop.kms.acl.GET_KEYS</name>
 <value>keyadmin keyadmingroup</value>
 <description>
 ACL for get-keys operations.
 </description>
</property>

<property>
 <name>hadoop.kms.acl.SET_KEY_MATERIAL</name>
 <value></value>
 <description>
 Complementary ACL for CREATE and ROLLOVER operations to allow the client
 to provide the key material when creating or rolling a key.
 </description>
</property>

<property>
 <name>hadoop.kms.acl.GENERATE_EEK</name>
 <value>hdfs supergroup</value>
 <description>
 ACL for generateEncryptedKey CryptoExtension operations.
 </description>
</property>

<!--
 KMS blacklists to prevent access to operations. These settings override the
 permissions granted by the KMS ACLs above.

 The blacklist value should be either a username or a username and group name
 separated by whitespace.

 A blank value indicates that no user is blacklisted from the operation. A
 value of "*" (for either the username or groupname) indicates that all users
 are blacklisted from the operation. Any operation for which there is no
 blacklist will be treated as having a blacklist with an empty value.
-->

<!--
 In this template the hdfs user is blacklisted for everything except
 GET_METADATA, GET_KEYS, and GENERATE_EEK. The GET and SET_KEY_MATERIAL
 operations are blacklisted for all users since Hadoop users should not
 need to perform those operations, and access to the key material should
 be as restricted as possible.
-->

<property>
 <name>hadoop.kms.blacklist.CREATE</name>
 <value>hdfs supergroup</value>
</property>

<property>
 <name>hadoop.kms.blacklist.DELETE</name>
 <value>hdfs supergroup</value>
</property>

<property>
 <name>hadoop.kms.blacklist.ROLLOVER</name>
 <value>hdfs supergroup</value>
</property>

<property>
 <name>hadoop.kms.blacklist.GET</name>
 <value>*</value>
</property>

<property>
 <name>hadoop.kms.blacklist.GET_KEYS</name>
 <value></value>
</property>

Cloudera Security | 309

Configuring Encryption

<property>
 <name>hadoop.kms.blacklist.SET_KEY_MATERIAL</name>
 <value>*</value>
</property>

<property>
 <name>hadoop.kms.blacklist.DECRYPT_EEK</name>
 <value>hdfs supergroup</value>
</property>

<property>
 <name>keytrustee.kms.acl.UNDELETE</name>
 <value></value>
 <description>
 ACL that grants access to the UNDELETE operation on all keys.
 Only used by Key Trustee KMS.
 </description>
</property>

<property>
 <name>keytrustee.kms.acl.PURGE</name>
 <value></value>
 <description>
 ACL that grants access to the PURGE operation on all keys.
 Only used by Key Trustee KMS.
 </description>
</property>

<!--
 Default key ACLs that govern access to key operations for key-operation pairs
 that do not have a specific key ACL already. Specific key ACLs will override
 the default key ACLs

 The ACL value should be either a username or a username and group name
 separated by whitespace.

 An empty value for an ACL indicates that no user is granted access to that
 operation. A value of "*" (for the username or groupname) indicates that
 all users are granted access to that operation. Any operation for which
 there is no ACL will be treated as having an ACL with an empty value.
-->

<property>
 <name>default.key.acl.MANAGEMENT</name>
 <value></value>
 <description>
 Default ACL that grants access to the MANAGEMENT operation on all keys.
 </description>
</property>

<property>
 <name>default.key.acl.GENERATE_EEK</name>
 <value></value>
 <description>
 Default ACL that grants access to the GENERATE_EEK operation on all keys.
 </description>
</property>

<property>
 <name>default.key.acl.DECRYPT_EEK</name>
 <value></value>
 <description>
 Default ACL that grants access to the DECRYPT_EEK operation on all keys.
 </description>
</property>

<property>
 <name>default.key.acl.READ</name>
 <value></value>
 <description>
 Default ACL that grants access to the READ operation on all keys.
 </description>
</property>

310 | Cloudera Security

Configuring Encryption

<!--
 Whitelist key ACLs that grant access to specific key operations. Any
 permissions granted here will be added to whatever permissions are granted
 by the specific key ACL or the default key ACL. Note that these whitelist
 ACLs grant access to operations on specific keys. If the operations
 themselves are not allowed because of the KMS ACLs/blacklists, then the
 operation will not be permitted, regardless of the whitelist settings.

 The ACL value should be either a username or a username and group name
 separated by whitespace.

 An empty value for an ACL indicates that no user is granted access to that
 operation. A value of "*" (for the username or groupname) indicates that
 all users are granted access to that operation. Any operation for which
 there is no ACL will be treated as having an ACL with an empty value.
-->

<property>
 <name>whitelist.key.acl.MANAGEMENT</name>
 <value>keyadmin keyadmingroup</value>
 <description>
 Whitelist ACL for MANAGEMENT operations for all keys.
 </description>
</property>

<property>
 <name>whitelist.key.acl.READ</name>
 <value>hdfs supergroup</value>
 <description>
 Whitelist ACL for READ operations for all keys.
 </description>
</property>

<property>
 <name>whitelist.key.acl.GENERATE_EEK</name>
 <value>hdfs supergroup</value>
 <description>
 Whitelist ACL for GENERATE_EEK operations for all keys.
 </description>
</property>

<property>
 <name>whitelist.key.acl.DECRYPT_EEK</name>
 <value>keyadmin keyadmingroup</value>
 <description>
 Whitelist ACL for DECRYPT_EEK operations for all keys.
 </description>
</property>

<!--
 Key ACLs that grant access to specific key operations. Any permissions
 granted here are added to whatever permissions are granted by the whitelists.
 The key ACL name should be key.acl.<keyname>.<OPERATION>.

 The ACL value should be either a username or a username and group name
 separated by whitespace.

 An empty value for an ACL indicates that no user is granted access to that
 operation. A value of "*" (for the username or groupname) indicates that
 all users are granted access to that operation. Any key operation for which
 there is no ACL will default to the default ACL for the operation.

 Normally adding users or groups for a specific key and DECRYPT_EEK is
 sufficient to allow access to data protected with HDFS data at rest
 encryption.
-->

<!--
 The following ACLs are required for proper functioning of services.
 CM does not create keys or encryption zones, however our best practices
 recommend encryption zones on certain directories. Below we assume that
 the user has followed our recommended naming scheme and named the keys

Cloudera Security | 311

Configuring Encryption

 according to our best practices: "hive-key" for the hive service,
 "hbase-key" for the hbase service, etc. If the key names are different,
 none of this will work out of the box, and you will need to edit these
 ACLs to match your key names.
-->

<property>
 <name>key.acl.hive-key.DECRYPT_EEK</name>
 <value>hive hive</value>
 <description>
 Gives the hive user and the hive group access to the key named "hive-key".
 This allows the hive service to read and write files in /user/hive/.
 Also note that the impala user ought to be a member of the hive group
 in order to enjoy this same access.
 </description>
</property>

<property>
 <name>key.acl.hive-key.READ</name>
 <value>hive hive</value>
 <description>
 Required because hive compares key strengths when joining tables.
 </description>
</property>

<property>
 <name>key.acl.hbase-key.DECRYPT_EEK</name>
 <value>hbase hbase</value>
 <description>
 Gives the hbase user and hbase group access to the key named "hbase-key".
 This allows the hbase service to read and write files in /hbase.
 </description>
</property>

<property>
 <name>key.acl.solr-key.DECRYPT_EEK</name>
 <value>solr solr</value>
 <description>
 Gives the solr user and solr group access to the key named "solr-key".
 This allows the solr service to read and write files in /solr.
 </description>
</property>

<property>
 <name>key.acl.mapred-key.DECRYPT_EEK</name>
 <value>mapred,yarn hadoop</value>
 <description>
 Gives the mapred user and mapred group access to the key named "mapred-key".
 This allows mapreduce to read and write files in /user/history.
 This is required by YARN.
 </description>
</property>

<property>
 <name>key.acl.hue-key.DECRYPT_EEK</name>
 <value>oozie,hue oozie,hue</value>
 <description>
 Gives the appropriate users and groups access to the key named "hue-key".
 This allows hue and oozie to read and write files in /user/hue.
 Oozie is required here because it will attempt to access workflows in
 /user/hue/oozie/workspaces.
 </description>
</property>

<!-- This example is required if there are encryption zones on user’s home
 directories. -->
<!--
<property>
 <name>key.acl.username-key.DECRYPT_EEK</name>
 <value>username username,hive,hbase,solr,oozie,hue,yarn</value>
 <description>

312 | Cloudera Security

Configuring Encryption

 Designed to be placed on a key that protects the EZ /user/username,
 and assumes that the key name is also "username-key", this shows that
 a number of services may want to reach in to access data. Remove
 those are are not needed for your use-case.
 </description>
</property>
-->

</configuration>

Configuring Java KeyStore KMS Delegation Tokens Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.9.x. See Cloudera Documentation for information

specific to other releases.

Configure KMS delegation token secret manager using the following properties:

 <property>
 <name>hadoop.kms.authentication.delegation-token.update-interval.sec</name>
 <value>86400</value>
 <description>
 How often the master key is rotated, in seconds. Default value 1 day.
 </description>
 </property>

 <property>
 <name>hadoop.kms.authentication.delegation-token.max-lifetime.sec</name>
 <value>604800</value>
 <description>
 Maximum lifetime of a delegation token, in seconds. Default value 7 days.
 </description>
 </property>

 <property>
 <name>hadoop.kms.authentication.delegation-token.renew-interval.sec</name>
 <value>86400</value>
 <description>
 Renewal interval of a delegation token, in seconds. Default value 1 day.
 </description>
 </property>

 <property>
 <name>hadoop.kms.authentication.delegation-token.removal-scan-interval.sec</name>
 <value>3600</value>
 <description>
 Scan interval to remove expired delegation tokens.
 </description>
 </property>

Migrating Keys from a Java KeyStore to Cloudera Navigator Key Trustee Server

You can migrate keys from an existing Java KeyStore (JKS) to Key Trustee Server to improve security, durability, and
scalability. If you are using the Java KeyStore KMS service, and want to use Key Trustee Server as the backing key store
for HDFS Transparent Encryption on page 283, use the following procedure.

This procedure assumes that the Java KeyStore (JKS) is on the same host as the new Key Trustee KMS service.

1. Stop the Java KeyStore KMS service.
2. Add and configure the Key Trustee KMS service, and configure HDFS to use it for its KMS Service setting. For more

information about how to install Key Trustee KMS, see Installing Key Trustee KMS. Restart the HDFS service and
redeploy client configuration for this to take effect: Home > Cluster-wide > Deploy Client Configuration

Cloudera Security | 313

Configuring Encryption

http://www.cloudera.com/content/support/en/documentation.html

3. Add the following to the Key Management Server Proxy Advanced Configuration Snippet (Safety Valve) for
kms-site.xml (Key Trustee KMS Service > Configuration > Category > Advanced):

<property>
 <name>hadoop.kms.key.provider.uri</name>

<value>keytrustee://file@/var/lib/kms-keytrustee/keytrustee/.keytrustee/,jceks://file@/path/to/kms.keystore</value>

 <description>URI of the backing KeyProvider for the KMS</description>
</property>

<property>
 <name>hadoop.security.keystore.java-keystore-provider.password-file</name>
 <value>/tmp/password.txt</value>
 <description>Java KeyStore password file</description>
</property>

If the Java KeyStore is not password protected, omit the
hadoop.security.keystore.java-keystore-provider.password-file property.

4. Click Save Changes and restart the Key Trustee KMS service. If the Java KeyStore is not password protected, skip
to step 7.

5. Create the file
/var/lib/keytrustee-kms/tomcat-deployment/webapps/kms/WEB-INF/classes/tmp/password.txt

and add the Java KeyStore password to it.
6. Change the ownership of

/var/lib/keytrustee-kms/tomcat-deployment/webapps/kms/WEB-INF/classes/tmp/password.txt

to kms:kms:

$ sudo chown kms:kms
/var/lib/keytrustee-kms/tomcat-deployment/webapps/kms/WEB-INF/classes/tmp/password.txt

7. From the host running the Key Trustee KMS service, if you have not configured Kerberos and TLS/SSL, run the
following command:

$ curl -L -d "trusteeOp=migrate"
"http://kms01.example.com:16000/kms/v1/trustee/key/migrate?user.name=username&trusteeOp=migrate"

If you have configured Kerberos and TLS/SSL, use the following command instead:

$ curl --negotiate -u : -L -d "trusteeOp=migrate"
"https://kms01.example.com:16000/kms/v1/trustee/key/migrate?user.name=username&trusteeOp=migrate"
 --cacert /path/to/kms/cert

8. Monitor/var/log/kms-keytrustee/kms.logand/var/log/kms-keytrustee/kms-catalina.<date>.log
to verify that the migration is successful. You can also run sudo -u <key_admin> hadoop key list to verify
that the keys are listed.

9. After you have verified that the migration is successful, remove the safety valve entry used in step 3 and restart
the Key Trustee KMS service.

Configuring CDH Services for HDFS Encryption

The following topics contain recommendations for setting up HDFS Transparent Encryption on page 283 with various
CDH services.

Important: HDFS encryption does not support file transfer (reading, writing files) between zones
through WebHDFS. For web-based file transfer between encryption zones managed by HDFS, use
HttpFS with a load balancer instead.

314 | Cloudera Security

Configuring Encryption

Important: Encrypting /tmp using HDFS encryption is not supported.

Hive

HDFS encryption has been designed so that files cannot be moved from one encryption zone to another or from
encryption zones to unencrypted directories. Therefore, the landing zone for datawhen using the LOAD DATA INPATH
command must always be inside the destination encryption zone.

To use HDFS encryption with Hive, ensure you are using one of the following configurations:

Single Encryption Zone

With this configuration, you can use HDFS encryption by having all Hive data inside the same encryption zone. In
Cloudera Manager, configure the Hive Scratch Directory (hive.exec.scratchdir) to be inside the encryption zone.

Recommended HDFS Path: /user/hive

To use the auto-generated KMS ACLs, make sure you name the encryption key hive-key.

For example, to configure a single encryption zone for the entire Hive warehouse, you can rename /user/hive to
/user/hive-old, create an encryption zone at /user/hive, and then distcp all the data from /user/hive-old

to /user/hive.

In Cloudera Manager, configure the Hive Scratch Directory (hive.exec.scratchdir) to be inside the encryption
zone by setting it to /user/hive/tmp, ensuring that permissions are 1777 on /user/hive/tmp.

Multiple Encryption Zones

With this configuration, you can use encrypted databases or tables with different encryption keys. To read data from
read-only encrypted tables, users must have access to a temporary directory that is encrypted at least as strongly as
the table.

For example:

1. Configure two encrypted tables, ezTbl1 and ezTbl2.
2. Create two new encryption zones, /data/ezTbl1 and /data/ezTbl2.
3. Load data to the tables in Hive using LOAD statements.

For more information, see Changed Behavior after HDFS Encryption is Enabled on page 315.

Other Encrypted Directories

• LOCALSCRATCHDIR: The MapJoin optimization in Hive writes HDFS tables to a local directory and then uploads
them to the distributed cache. To ensure these files are encrypted, either disable MapJoin by setting
hive.auto.convert.join to false, or encrypt the local Hive Scratch directory
(hive.exec.local.scratchdir) using Cloudera Navigator Encrypt.

• DOWNLOADED_RESOURCES_DIR: JARs that are added to a user session and stored in HDFS are downloaded to
hive.downloaded.resources.dir on the HiveServer2 local filesystem. To encrypt these JAR files, configure
Cloudera Navigator Encrypt to encrypt the directory specified by hive.downloaded.resources.dir.

• NodeManager Local Directory List: Hive stores JARs and MapJoin files in the distributed cache. To use MapJoin
or encrypt JARs and other resource files, the yarn.nodemanager.local-dirs YARN configuration property
must be configured to a set of encrypted local directories on all nodes.

Changed Behavior after HDFS Encryption is Enabled

• Loading data from one encryption zone to another results in a copy of the data. Distcp is used to speed up the
process if the size of the files being copied is higher than the value specified by HIVE_EXEC_COPYFILE_MAXSIZE.
The minimum size limit for HIVE_EXEC_COPYFILE_MAXSIZE is 32 MB, which you can modify by changing the
value for the hive.exec.copyfile.maxsize configuration property.

Cloudera Security | 315

Configuring Encryption

• When loading data to encrypted tables, Cloudera strongly recommends using a landing zone inside the same
encryption zone as the table.

– Example 1: Loading unencrypted data to an encrypted table - Use one of the following methods:

– If you are loading new unencrypted data to an encrypted table, use the LOAD DATA ... statement.
Because the source data is not inside the encryption zone, the LOAD statement results in a copy. For this
reason, Cloudera recommends landing data that you need to encrypt inside the destination encryption
zone. You can use distcp to speed up the copying process if your data is inside HDFS.

– If the data to be loaded is already inside a Hive table, you can create a new table with a LOCATION inside
an encryption zone as follows:

CREATE TABLE encrypted_table [STORED AS] LOCATION ... AS SELECT * FROM <unencrypted_table>

The location specified in the CREATE TABLE statement must be inside an encryption zone. Creating a
table pointing LOCATION to an unencrypted directory does not encrypt your source data. Youmust copy
your data to an encryption zone, and then point LOCATION to that zone.

– Example 2: Loading encrypted data to an encrypted table - If the data is already encrypted, use the CREATE
TABLE statement pointingLOCATION to the encrypted source directory containing the data. This is the fastest
way to create encrypted tables.

CREATE TABLE encrypted_table [STORED AS] LOCATION ... AS SELECT * FROM
<encrypted_source_directory>

• Users reading data from encrypted tables that are read-only must have access to a temporary directory which is
encrypted with at least as strong encryption as the table.

• Temporary data is now written to a directory named .hive-staging in each table or partition
• Previously, an INSERT OVERWRITE on a partitioned table inherited permissions for new data from the existing

partition directory. With encryption enabled, permissions are inherited from the table.

KMS ACL Configuration for Hive

When Hive joins tables, it compares the encryption key strength for each table. For this operation to succeed, you
must configure the KMS ACLs to allow the hive user and group READ access to the Hive key:

<property>
 <name>key.acl.hive-key.READ</name>
 <value>hive hive</value>
</property>

If you have restricted access to the GET_METADATA operation, you must grant permission for it to the hive user or
group:

<property>
 <name>hadoop.kms.acl.GET_METADATA</name>
 <value>hive hive</value>
</property>

If you have disabled HiveServer2 Impersonation on page 141 (for example, to use Apache Sentry), you must configure
the KMS ACLs to grant DECRYPT_EEK permissions to the hive user, as well as any user accessing data in the Hive
warehouse.

Cloudera recommends creating a group containing all Hive users, and granting DECRYPT_EEK access to that group.

For example, suppose user jdoe (homedirectory /user/jdoe) is a Hive user and amember of the group hive-users.
The encryption zone (EZ) key for /user/jdoe is named jdoe-key, and the EZ key for /user/hive is hive-key. The
following ACL example demonstrates the required permissions:

<property>
 <name>key.acl.hive-key.DECRYPT_EEK</name>

316 | Cloudera Security

Configuring Encryption

 <value>hive hive-users</value>
</property>

<property>
 <name>key.acl.jdoe-key.DECRYPT_EEK</name>
 <value>jdoe,hive</value>
</property>

If you have enabled HiveServer2 impersonation, data is accessed by the user submitting the query or job, and the user
account (jdoe in this example) may still need to access data in their home directory. In this scenario, the required
permissions are as follows:

<property>
 <name>key.acl.hive-key.DECRYPT_EEK</name>
 <value>nobody hive-users</value>
</property>

<property>
 <name>key.acl.jdoe-key.DECRYPT_EEK</name>
 <value>jdoe</value>
</property>

Impala

Recommendations

• If HDFS encryption is enabled, configure Impala to encrypt data spilled to local disk.

• In releases lower than Impala 2.2.0 / CDH 5.4.0, Impala does not support the LOAD DATA statement when the
source and destination are in different encryption zones. If you are running an affected release and need to use
LOAD DATA with HDFS encryption enabled, copy the data to the table's encryption zone prior to running the
statement.

• Use Cloudera Navigator to lock down the local directory where Impala UDFs are copied during execution. By
default, Impala copies UDFs into /tmp, and you can configure this location through the --local_library_dir
startup flag for the impalad daemon.

• Limit the rename operations for internal tables once encryption zones are set up. Impala cannot do an ALTER
TABLE RENAME operation to move an internal table from one database to another, if the root directories for
those databases are in different encryption zones. If the encryption zone covers a table directory but not the
parent directory associated with the database, Impala cannot do an ALTER TABLE RENAME operation to rename
an internal table, even within the same database.

• Avoid structuring partitioned tables where different partitions reside in different encryption zones, or where any
partitions reside in an encryption zone that is different from the root directory for the table. Impala cannot do an
INSERT operation into any partition that is not in the same encryption zone as the root directory of the overall
table.

• If the data files for a table or partition are in a different encryption zone than the HDFS trashcan, use the PURGE
keyword at the end of the DROP TABLE or ALTER TABLE DROP PARTITION statement to delete the HDFS data
files immediately. Otherwise, the data files are left behind if they cannot be moved to the trashcan because of
differing encryption zones. This syntax is available in Impala 2.3 / CDH 5.5 and higher.

Steps

Start every impalad process with the --disk_spill_encryption=true flag set. This encrypts all spilled data using
AES-256-CFB. Set this flag by selecting theDisk Spill Encryption checkbox in the Impala configuration (Impala service >
Configuration > Category > Security).

Cloudera Security | 317

Configuring Encryption

Important: Impala does not selectively encrypt data based on whether the source data is already
encrypted in HDFS. This results in at most 15 percent performance degradation when data is spilled.

KMS ACL Configuration for Impala

Cloudera recommendsmaking the impala user amember of the hive group, and following the ACL recommendations
in KMS ACL Configuration for Hive on page 316.

HBase

Recommendations

Make /hbase an encryption zone. Do not create encryption zones as subdirectories under /hbase, because HBase
may need to rename files across those subdirectories.When you create the encryption zone, name the key hbase-key
to take advantage of auto-generated KMS ACLs.

Steps

On a cluster without HBase currently installed, create the /hbase directory and make that an encryption zone.

On a cluster with HBase already installed, perform the following steps:

1. Stop the HBase service.
2. Move data from the /hbase directory to /hbase-tmp.
3. Create an empty /hbase directory and make it an encryption zone.
4. Distcp all data from /hbase-tmp to /hbase, preserving user-group permissions and extended attributes.
5. Start the HBase service and verify that it is working as expected.
6. Remove the /hbase-tmp directory.

KMS ACL Configuration for HBase

In the KMS ACLs, grant the hbase user and group DECRYPT_EEK permission for the HBase key:

<property>
 <name>key.acl.hbase-key.DECRYPT_EEK</name>
 <value>hbase hbase</value>
 </description>
</property>

Search

Recommendations

Make /solr an encryption zone. When you create the encryption zone, name the key solr-key to take advantage
of auto-generated KMS ACLs.

Steps

On a cluster without Solr currently installed, create the /solr directory and make that an encryption zone.

On a cluster with Solr already installed:

1. Create an empty /solr-tmp directory.
2. Make /solr-tmp an encryption zone.
3. DistCp all data from /solr into /solr-tmp.
4. Remove /solr, and rename /solr-tmp to /solr.

318 | Cloudera Security

Configuring Encryption

KMS ACL Configuration for Search

In the KMS ACLs, grant the solr user and group DECRYPT_EEK permission for the Solr key:

<property>
 <name>key.acl.solr-key.DECRYPT_EEK</name>
 <value>solr solr</value>
 </description>
</property>

Sqoop

Recommendations

• For Hive support: Ensure that you are using Sqoop with the --target-dir parameter set to a directory that is
inside the Hive encryption zone. For more details, see Hive on page 315.

• For append/incremental support:Make sure that the sqoop.test.import.rootDir property points to the
same encryption zone as the --target-dir argument.

• For HCatalog support: No special configuration is required.

Hue

Recommendations

Make /user/hue an encryption zone becauseOozieworkflows and other Hue-specific data are stored there by default.
When you create the encryption zone, name the key hue-key to take advantage of auto-generated KMS ACLs.

Steps

On a cluster without Hue currently installed, create the /user/hue directory and make it an encryption zone.

On a cluster with Hue already installed:

1. Create an empty /user/hue-tmp directory.
2. Make /user/hue-tmp an encryption zone.
3. DistCp all data from /user/hue into /user/hue-tmp.
4. Remove /user/hue and rename /user/hue-tmp to /user/hue.

KMS ACL Configuration for Hue

In the KMS ACLs, grant the hue and oozie users and groups DECRYPT_EEK permission for the Hue key:

<property>
 <name>key.acl.hue-key.DECRYPT_EEK</name>
 <value>oozie,hue oozie,hue</value>
</property>

Spark

Recommendations

• By default, application event logs are stored at /user/spark/applicationHistory, which can be made into
an encryption zone.

• Spark also optionally caches its JAR file at /user/spark/share/lib (by default), but encrypting this directory
is not required.

• Spark does not encrypt shuffle data. To do so, configure the Spark local directory,spark.local.dir (in Standalone
mode), to reside on an encrypted disk. For YARN mode, make the corresponding YARN configuration changes.

Cloudera Security | 319

Configuring Encryption

KMS ACL Configuration for Spark

In the KMS ACLs, grant DECRYPT_EEK permission for the Spark key to the spark user and any groups that can submit
Spark jobs:

<property>
 <name>key.acl.spark-key.DECRYPT_EEK</name>
 <value>spark spark-users</value>
</property>

MapReduce and YARN
MapReduce v1

Recommendations

MRv1 stores both history and logs on local disks by default. Even if you do configure history to be stored on HDFS, the
files are not renamed. Hence, no special configuration is required.

MapReduce v2 (YARN)

Recommendations

Make /user/history a single encryption zone, because history files are moved between the intermediate and
done directories, and HDFS encryption does not allow moving encrypted files across encryption zones. When you
create the encryption zone, name the key mapred-key to take advantage of auto-generated KMS ACLs.

Steps

On a cluster with MRv2 (YARN) installed, create the /user/history directory and make that an encryption zone.

If /user/history already exists and is not empty:

1. Create an empty /user/history-tmp directory.
2. Make /user/history-tmp an encryption zone.
3. DistCp all data from /user/history into /user/history-tmp.
4. Remove /user/history and rename /user/history-tmp to /user/history.

KMS ACL Configuration for MapReduce

In the KMS ACLs, grant DECRYPT_EEK permission for the MapReduce key to the mapred and yarn users and the
hadoop group:

<property>
 <name>key.acl.mapred-key.DECRYPT_EEK</name>
 <value>mapred,yarn hadoop</value>
 </description>
</property>

Troubleshooting HDFS Encryption

This topic contains HDFS Encryption-specific troubleshooting information in the form of issues you might face when
encrypting HDFS files/directories and their workarounds.

KMS server jute buffer exception

Description
You see the following error when the KMS (for example, as a ZooKeeper client) jute buffer size is insufficient to hold
all the tokens:

2017-01-31 21:23:56,416 WARN org.apache.zookeeper.ClientCnxn: Session 0x259f5fb3c1000fb
 for server example.cloudera.com/10.172.0.1:2181, unexpected error, closing socket

320 | Cloudera Security

Configuring Encryption

connection and attempting reconnect
java.io.IOException: Packet len4196356 is out of range!

Solution
Increase the jute buffer size and restart the KMS. In Cloudera Manager, go to the KMS Configuration page, and in the
Additional Java Configuration Options for KMS (kms_java_opts) field, enter
-Djute.maxbuffer=<number_of_bytes>. Restart the KMS.

Retrieval of encryption keys fails

Description
You see the following error when trying to list encryption keys

user1@example-sles-4:~> hadoop key list
Cannot list keys for KeyProvider: KMSClientProvider[https:
//example-sles-2.example.com:16000/kms/v1/]: Retrieval of all keys failed.

Solution
Make sure your truststore has been updated with the relevant certificate(s), such as the Key Trustee server certificate.

DistCp between unencrypted and encrypted locations fails

Description
By default, DistCp compares checksums provided by the filesystem to verify that data was successfully copied to the
destination. However, when copying between unencrypted and encrypted locations, the filesystem checksums will
not match since the underlying block data is different.

Solution
Specify the -skipcrccheck and -update distcp flags to avoid verifying checksums.

(CDH 5.6 and lower) Cannot move encrypted files to trash

Note: Starting with CDH 5.7, you can delete files or directories that are part of an HDFS encryption
zone. For details, see Trash Behavior with HDFS Transparent Encryption Enabled.

Description

In CDH 5.6 and lower, with HDFS encryption enabled, you cannot move encrypted files or directories to the trash
directory.

Solution

To remove encrypted files/directories, use the following commandwith the -skipTrash flag specified to bypass trash.

rm -r -skipTrash /testdir

NameNode - KMS communication fails after long periods of inactivity

Description

Encrypted files and encryption zones cannot be created if a long period of time (by default, 20 hours) has passed since
the last time the KMS and NameNode communicated.

Cloudera Security | 321

Configuring Encryption

Solution

Important: Upgrading your cluster to the latest CDH 5 release will fix this problem. For instructions,
see Upgrading from an Earlier CDH 5 Release to the Latest Release.

For lower CDH 5 releases, there are two possible workarounds to this issue :

• You can increase the KMS authentication token validity period to a very high number. Since the default value is
10 hours, this bug will only be encountered after 20 hours of no communication between the NameNode and the
KMS. Add the following property to the kms-site.xmlSafety Valve:

<property>
<name>hadoop.kms.authentication.token.validity</name>
<value>SOME VERY HIGH NUMBER</value>
</property>

• You can switch the KMS signature secret provider to the string secret provider by adding the following property
to the kms-site.xml Safety Valve:

<property>
<name>hadoop.kms.authentication.signature.secret</name>
<value>SOME VERY SECRET STRING</value>
</property>

HDFS Trash Behaviour with Transparent Encryption Enabled

The Hadoop trash feature helps prevent accidental deletion of files and directories. When you delete a file in HDFS,
the file is not immediately expelled from HDFS. Deleted files are first moved to the
/user/<username>/.Trash/Current directory, with their original filesystem path being preserved. After a
user-configurable period of time (fs.trash.interval), a process knownas trash checkpointing renames theCurrent
directory to the current timestamp, that is, /user/<username>/.Trash/<timestamp>. The checkpointing process
also checks the rest of the .Trash directory for any existing timestamp directories and removes them from HDFS
permanently. You can restore files and directories in the trash simply bymoving them to a location outside the .Trash
directory.

Trash Behaviour with HDFS Transparent Encryption Enabled

Starting with CDH 5.7, you can delete files or directories that are part of an HDFS encryption zone. As is evident from
the procedure described above, moving and renaming files or directories is an important part of trash handling in
HDFS. However, currently HDFS transparent encryption only supports renames within an encryption zone. To
accommodate this, HDFS creates a local .Trash directory every time a new encryption zone is created. For example,
when you create an encryption zone, enc_zone, HDFS will also create the /enc_zone/.Trash/ subdirectory. Files
deleted from enc_zone are moved to /enc_zone/.Trash/<username>/Current/. After the checkpoint, the
Current directory is renamed to the current timestamp, /enc_zone/.Trash/<username>/<timestamp>.

If you delete the entire encryption zone, it will be moved to the .Trash directory under the user's home directory,
/users/<username>/.Trash/Current/enc_zone. Trash checkpointing will occur only after the entire zone has
beenmoved to /users/<username>/.Trash. However, if the user's home directory is already part of an encryption
zone, then attempting to delete an encryption zone will fail because you cannot move or rename directories across
encryption zones.

Cloudera Navigator Key Trustee Server
Cloudera Navigator Key Trustee Server is an enterprise-grade virtual safe-deposit box that stores and manages
cryptographic keys and other security artifacts. With Navigator Key Trustee Server, encryption keys are separated from
the encrypted data, ensuring that sensitive data is still protected in the event that unauthorized users gain access to
the storage media.

322 | Cloudera Security

Configuring Encryption

Key Trustee Server protects these keys and other critical security objects from unauthorized access while enabling
compliance with strict data security regulations. For added security, Key Trustee Server can integrate with a hardware
security module (HSM). See Cloudera Navigator Key HSM on page 341 for more information.

In conjunction with the Key Trustee KMS, Navigator Key Trustee Server can serve as a backing key store for HDFS
Transparent Encryption on page 283, providing enhanced security and scalability over the file-based Java KeyStore used
by the default Hadoop Key Management Server.

Cloudera Navigator Encrypt on page 348 also uses Key Trustee Server for key storage and management.

For instructions on installing Key Trustee Server, see Installing Cloudera Navigator Key Trustee Server.

For instructions on configuring Key Trustee Server, continue reading:

Backing Up and Restoring Key Trustee Server and Clients

Key Trustee Server high availability applies to read operations only. If either Key Trustee Server fails, the client
automatically retries fetching keys from the functioning server. New write operations (for example, creating new
encryption keys) are not allowed unless both Key Trustee Servers are operational.

If a Key Trustee Server fails catastrophically, you must restore it from backup to a new host with the same hostname
and IP address as the failed host. Cloudera does not support PostgreSQL promotion to convert a passive Key Trustee
Server to an active Key Trustee Server.

Cloudera strongly recommends regularly backing up Key Trustee Server databases and configuration files. Because
these backups contain encryption keys and encrypted deposits, you must ensure that your backup repository is as
secure as the Key Trustee Server.

You must also back up client configuration files and keys for Key Trustee Server clients, such as Key Trusteee KMS and
Navigator Encrypt clients.

Note: In an HA configuration, the backup need only be performed on one of the hosts for Key Trustee
Server and the Key Trustee KMS. For Key Trustee Server, run the backup on the active server. For Key
Trustee KMS, you can run the backup on any instance.

Backing Up Key Trustee Server and Key Trustee KMS Using Cloudera Manager

Cloudera Manager versions 5.8 and higher, when used with Key Trustee Server and Key Trustee KMS versions 5.7 and
higher, allow for backups of the KT Server and KT KMS configurations.

The actions executed in this procedure are equivalent to running the ktbackup.sh script on the node in question
(see BackingUp Key Trustee Server and Key Trustee KMSUsing the ktbackup.sh Script on page 323 for additional details.

In addition, when using the HDFS Encryption Wizard in Cloudera Manager 5.8 or higher to install and configure Key
Trustee Server and Key Trustee KMS versions 5.7 and higher, a cron job is automatically set up to back up the Key
Trustee Server on an ongoing basis. See Initializing Standalone Key Trustee Server on page 333 for more detail.

To back up the KT Server or KT KMS service configuration using Cloudera Manager:

1. Select the KT Server or KMS service configuration that you wish to back up.
2. For a KT Server backup, select Create Backup on Active Server (or Create Backup on Passive Server) from the

Actions menu. For a KMS backup, select Create Backup.

A successfully completed backup of the KT Server is indicated by the message “Command Create Backup on Active
Server finished successfully on service keytrustee_server”.

Backing Up Key Trustee Server and Key Trustee KMS Using the ktbackup.sh Script

Key Trustee Server releases 5.7 and higher include a script, ktbackup.sh, to simplify and automate backing up Key
Trustee Server. Key Trustee KMS releases 5.7 and higher include the same script for backing up Key Trustee KMS.

Cloudera Security | 323

Configuring Encryption

When run on a Key Trustee Server host, the script creates a tarball containing the Key Trustee Server private GPG keys
and the PostgreSQL database. When run on a Key Trustee KMS host, the script creates a tarball containing the Key
Trustee KMS private GPG keys and configuration file.

To preserve the security of the backup, you must specify a GPG recipient. Because this recipient is the only entity that
can decrypt the backup, the recipient must be someone authorized to access the Key Trustee Server database, such
as a key administrator.

Creating and Importing a GPG Key for Encrypting and Decrypting Backups

If the key administrator responsible for backing up and restoring Key Trustee Server and Key Trustee KMS does not
already have a GPG key pair, they can create one using the gpg --gen-key command. The following example
demonstrates this procedure:

Note: By default, gpg --gen-key fails at the password prompt if you have logged in to your user
account with the su command. You must log in to the SSH session with the user account for which
you want to generate the GPG key pair.

[john.doe@backup-host ~]$ gpg --gen-key
gpg (GnuPG) 2.0.14; Copyright (C) 2009 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Please select what kind of key you want:
 (1) RSA and RSA (default)
 (2) DSA and Elgamal
 (3) DSA (sign only)
 (4) RSA (sign only)
Your selection? 1
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048)
Requested keysize is 2048 bits
Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
Key is valid for? (0)
Key does not expire at all
Is this correct? (y/N) y

GnuPG needs to construct a user ID to identify your key.

Real name: John Doe
Email address: john.doe@example.com
Comment: Key Trustee Backup
You selected this USER-ID:
 "John Doe (Key Trustee Backup) <john.doe@example.com>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O
You need a Passphrase to protect your secret key.

can't connect to `/home/john.doe/.gnupg/S.gpg-agent': No such file or directory
gpg-agent[10638]: directory `/home/john.doe/.gnupg/private-keys-v1.d' created
We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
gpg: /home/john.doe/.gnupg/trustdb.gpg: trustdb created
gpg: key 0936CB67 marked as ultimately trusted
public and secret key created and signed.

gpg: checking the trustdb

324 | Cloudera Security

Configuring Encryption

gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
pub 2048R/0936CB67 2016-02-10
 Key fingerprint = CE57 FDED 3AFE E67D 2041 9EBF E64B 7D00 0936 CB67
uid John Doe (Key Trustee Backup) <john.doe@example.com>
sub 2048R/52A6FC5C 2016-02-10

After the GPG key pair is generated, you can export the public key:

[john.doe@backup-host ~]$ gpg --armor --output /path/to/johndoe.pub --export 'John Doe'

Copy the public key (johndoe.pub in this example) to the Key Trustee Server or Key Trustee KMS host, and import it
into the service account keyring (keytrustee for Key Trustee Server and kms for Key Trustee KMS):

• On the Key Trustee Server host:

$ sudo -u keytrustee gpg --import /path/to/johndoe.pub

• On the Key Trustee KMS host:

$ sudo -u kms gpg --import /path/to/johndoe.pub

Running the ktbackup.sh Script

You must run ktbackup.sh as the service account. The location of the script depends on the service and installation
method. See the following table for the script location and default service account for package- and parcel-based
installations for Key Trustee Server and Key Trustee KMS.

Table 24: Backup Script Locations

Package-Based InstallationParcel-Based InstallationService AccountService

/usr/bin/ktbackup.sh/opt/cloudera/parcels/KEYTRUSTEE_SERVER/bin/ktbackup.shkeytrusteeKey Trustee Server

/usr/share/keytrustee-keyprovider/bin/ktbackup.sh/opt/cloudera/parcels/KEYTRUSTEE/bin/ktbackup.shkmsKey Trustee KMS

The following table lists the command options for ktbackup.sh.

Table 25: Command Options for ktbackup.sh

DescriptionCommand Option

Specifies the Key Trustee configuration directory. Defaults
to /var/lib/keytrustee/.keytrustee for

-c, --confdir=CONFDIR

parcel-based Key Trustee Server. For Key Trustee KMS and
package-based Key Trustee Server, you must specify this
option.

Specifies the Key Trustee Server database port. Defaults
to11381 for parcel-based installations. For package-based

--database-port=PORT

Key Trustee Server installations, you must specify this
option.

Specifies the GPG recipient. The backup is encrypted with
the public key of the specified recipient. The GPG recipient

--gpg-recipient=GPG_RECIPIENT

public key must be imported into the service account
keyring before running the script. See Creating and
Importing a GPG Key for Encrypting and Decrypting
Backups on page 324 for more information.

Cloudera Security | 325

Configuring Encryption

DescriptionCommand Option

Outputs an unencrypted tarball. To preserve the security
of the cryptographic keys, do not use this option in
production environments.

--cleartext

Specifies the output directory for the tarball. Defaults to
/var/lib/keytrustee for parcel-based Key Trustee

--output=DIR

Server. For Key Trustee KMS and package-based Key
Trustee Server, you must specify this option.

Deletes backups older than the last n backups from the
directory specified by the --output paramter. For

--roll=n

example, if you have 10 backups, specifying --roll=10
creates a new backup (11 backups total) and then delete
the oldest backup. Specifying --roll=1 creates a new
backup and then deletes all other backups.

Note: This option works for Key Trustee
Server only.

Suppresses console logmessages and, if successful, returns
only the backup tarball file path. This is useful for
automating backups.

-q, --quiet

Outputs additional log messages to the console for
debugging.

--verbose

The following examples demonstrate the command usage for different scenarios:

• To back up a parcel-based Key Trustee Server, specifying the GPG recipient by name:

$ sudo -u keytrustee /opt/cloudera/parcels/KEYTRUSTEE_SERVER/bin/ktbackup.sh
--gpg-recipient='John Doe'

• To back up a parcel-based Key Trustee KMS, specifying the GPG recipient by email:

$ sudo -u kms /opt/cloudera/parcels/KEYTRUSTEE/bin/ktbackup.sh -c
/var/lib/kms-keytrustee/keytrustee/.keytrustee --output=/var/lib/kms-keytrustee
--gpg-recipient=john.doe@example.com

• To back up a package-based Key Trustee Server with the database running on a nondefault port (12345 in this
example):

$ sudo -u keytrustee ktbackup.sh --database-port=12345
--gpg-recipient=john.doe@example.com

• To back up a package-based Key Trustee KMS, specifying the GPG recipient by email:

$ sudo -u kms /usr/share/keytrustee-keyprovider/bin/ktbackup.sh -c
/var/lib/kms-keytrustee/keytrustee/.keytrustee --output=/var/lib/kms-keytrustee
--gpg-recipient=john.doe@example.com

Automating Backups Using cron

You can schedule automatic backups of Key Trustee Server or Key Trustee KMS using the cron scheduling utility.

Create a crontab entry using the following commands:

326 | Cloudera Security

Configuring Encryption

• For Key Trustee Server:

1. Edit the crontab by running the following command:

$ sudo -u keytrustee crontab -e

2. Add the following entry to run the backup script every 30minutes. This example is for a parcel-based installation
of Key Trustee Server. See the Backup Script Locations table for the package-based script location.

*/30 * * * * /opt/cloudera/parcels/KEYTRUSTEE_SERVER/bin/ktbackup.sh --gpg-recipient='John
 Doe' --quiet --output=/tmp/backups --roll=10

Runman 5 crontab to see thecrontabmanpage for details on usingcron to schedule backups at different
intervals.

• For Key Trustee KMS:

1. Edit the crontab by running the following command:

$ sudo -u kms crontab -e

2. Add the following entry to run the backup script every 30minutes. This example is for a parcel-based installation
of Key Trustee KMS. See the Backup Script Locations table for the package-based script location.

*/30 * * * * /opt/cloudera/parcels/KEYTRUSTEE/bin/ktbackup.sh --gpg-recipient='John Doe'
 --quiet --output=/tmp/backups --roll=10

Runman 5 crontab to see thecrontabmanpage for details on usingcron to schedule backups at different
intervals.

Backing Up Key Trustee Server Manually

Use this procedure for both parcel-based and package-based installations.

If you have deployed Cloudera Navigator Key Trustee Server High Availability, perform these steps on both the active
and passive Key Trustee Servers. The following procedure references the default database port and location; if you
modified these settings during installation, replace the database and port with your values.

1. Back up the Key Trustee Server database:

• For Key Trustee Server 3.8:

$ su - postgres
$ pg_dump -c -p 5432 keytrustee | zip --encrypt keytrustee-db.zip -

• For Key Trustee Server 5.4 and higher:

$ su - keytrustee
$ pg_dump -c -p 11381 keytrustee | zip --encrypt keytrustee-db.zip -

The --encrypt option prompts you to create a password used to encrypt the zip file. This password is required
to decrypt the file.

For parcel-based installations, you must set environment variables after switching to the keytrustee user:

$ su - keytrustee
$ export PATH=$PATH:/opt/cloudera/parcels/KEYTRUSTEE_SERVER/PG_DB/opt/postgres/9.3/bin
$ export
LD_LIBRARY_PATH=/opt/cloudera/parcels/KEYTRUSTEE_SERVER/PG_DB/opt/postgres/9.3/lib
$ pg_dump -c -p 11381 keytrustee | zip --encrypt keytrustee-db.zip -

Cloudera Security | 327

Configuring Encryption

2. Back up the Key Trustee Server configuration directory (/var/lib/keytrustee/.keytrustee):

$ zip -r --encrypt keytrustee-conf.zip /var/lib/keytrustee/.keytrustee

The --encrypt option prompts you to create a password used to encrypt the zip file. This password is required
to decrypt the file.

3. Move the backup files (keytrustee-db.zip and keytrustee-conf.zip) to a secure location.

Backing Up Key Trustee Server Clients

Cryptographic keys stored in Key Trustee Server are encrypted by clients before they are sent to Key Trustee Server.
The primary clients for Key Trustee Server are Key Trustee KMS and Navigator Encrypt. Cloudera strongly recommends
backing up regularly the configuration files and GPG keys for Key Trustee Server clients. See Backing Up Key Trustee
Server and Key Trustee KMS Using the ktbackup.sh Script on page 323 for instructions on backing up Key Trustee KMS
using the provided backup script.

Warning: Failure to back up these files can result in irretrievable data loss. For example, encryption
zone keys used for HDFS Transparent Encryption on page 283 are encrypted by the KMS before being
stored in Key Trustee Server. A catastrophic failure of the KMS with no backup causes all HDFS data
stored in encryption zones to become permanently irretrievable.

To prevent permanent data loss, regularly back up the following directories on each client that stores objects in Key
Trustee Server:

Table 26: Key Trustee Server Client Configuration Directories

Directories to Back UpKey Trustee Server Client

/var/lib/kms-keytrusteeKey Trustee KMS

/etc/navencryptNavigator Encrypt

Restoring Key Trustee Server

When restoring the Key Trustee Server database from backup, keep in mind that any keys or deposits created after
the backup are not restored. If you are using Key Trustee Server high availability, you can restore the Active Key Trustee
Server from the Passive Key Trustee Server. This restores all keys that were successfully written to the Passive Key
Trustee Server before the failure.

The procedure to restore Key Trustee Server is different for parcel-based than for package-based installations. For
more information about parcels, see Parcels.

Restoring Key Trustee Server in Parcel-Based Installations

Note: These instructions apply to Key Trustee Servers deployed using parcels. For package-based
deployments, skip to the Restoring Key Trustee Server in Package-Based Installations on page 329
section.

If you have deployed Cloudera Navigator Key Trustee Server High Availability, perform these steps on both the active
and passive Key Trustee Servers. The following procedures assume the default database port and location; if you
modified these settings during installation, replace the database and port with your custom values.

If the Key Trustee Server host has failed completely, remove the host from the cluster and add a newhost using Cloudera
Manager:

1. Remove the failed host from the cluster. See Deleting Hosts for instructions.
2. Add a new host with the same hostname and IP address as the failed host to the cluster. See Adding a Host to the

Cluster for instructions.

328 | Cloudera Security

Configuring Encryption

Important: Make sure that the replacement host uses the same operating system version as the
failed host.

3. Install Key Trustee Server on the new host. See Installing Cloudera Navigator Key Trustee Server for instructions.
Make sure to install the same Key Trustee Server version as the failed host.

After you have provisioned a new host and installed Key Trustee Server (or if you are restoring the database or
configuration on the original host), restore the database and configuration directory. If your backups were created
using the ktbackup.sh script, skip to Restoring Key Trustee Server and Key Trustee KMS from ktbackup.sh Backups
on page 330. If you need to restore the Active Key Trustee Server from the Passive Key Trustee Server, skip to Restoring
Active Key Trustee Server from Passive Key Trustee Server on page 332.

If your backups were created manually using the pg_dump command, do the following:

1. Copy or move the backup files (keytrustee-db.zip and keytrustee-conf.zip) to the Key Trustee Server host.
2. Start the PostgreSQL server:

$ sudo ktadmin db --start --pg-rootdir /var/lib/keytrustee/db --background

3. Restore the Key Trustee Server database:

$ su - keytrustee
$ export PATH=$PATH:/opt/cloudera/parcels/KEYTRUSTEE_SERVER/PG_DB/opt/postgres/9.3/bin
$ export
LD_LIBRARY_PATH=/opt/cloudera/parcels/KEYTRUSTEE_SERVER/PG_DB/opt/postgres/9.3/lib
$ unzip -p /path/to/keytrustee-db.zip | psql -p 11381 -d keytrustee

If the zip file is encrypted, you are prompted for the password to decrypt the file.

4. Restore the Key Trustee Server configuration directory:

$ su - keytrustee
$ cd /var/lib/keytrustee
$ unzip /path/to/keytrustee-conf.zip

If the zip file is encrypted, you are prompted for the password to decrypt the file.

5. Stop the PostgreSQL server:

$ sudo ktadmin db --stop --pg-rootdir /var/lib/keytrustee/db

6. Start the Key Trustee Server service in Cloudera Manager (Key Trustee Server service > Actions > Start).
7. Restart the Key Trustee KMS service in Cloudera Manager (Key Trustee KMS service > Actions > Restart).
8. Remove the backup files (keytrustee-db.zip and keytrustee-conf.zip) from the Key Trustee Server host.

Restoring Key Trustee Server in Package-Based Installations

If you have deployed Cloudera Navigator Key Trustee Server High Availability, perform these steps on both the active
and passive Key Trustee Servers. The following procedures assume the default database port and location; if you
modified these settings during installation, replace the database and port with your custom values.

If the Key Trustee Server host has failed completely, provision a new host with the same hostname and IP address as
the failed host, and re-install Key Trustee Server. See Installing Cloudera Navigator Key Trustee Server for instructions.

Important: Make sure to install the same operating system and Key Trustee Server versions as the
failed host.

After you have provisioned a new host and installed Key Trustee Server (or if you are restoring the database or
configuration on the original host), restore the database and configuration directory. If your backups were created
using the ktbackup.sh script, skip to Restoring Key Trustee Server and Key Trustee KMS from ktbackup.sh Backups

Cloudera Security | 329

Configuring Encryption

on page 330. If you need to restore the Active Key Trustee Server from the Passive Key Trustee Server, skip to Restoring
Active Key Trustee Server from Passive Key Trustee Server on page 332.

If your backups were created manually using the pg_dump command, do the following:

1. Copy or move the backup files (keytrustee-db.zip and keytrustee-conf.zip) to the Key Trustee Server host.
2. Change the file ownership on the backup files to keytrustee:keytrustee:

$ sudo chown keytrustee:keytrustee /path/to/keytrustee*.zip

3. Restore the Key Trustee Server database:

$ su - keytrustee
$ unzip -p /path/to/keytrustee-db.zip | psql -p 11381 -d keytrustee

If the zip file is encrypted, you are prompted for the password to decrypt the file.

4. Restore the Key Trustee Server configuration directory:

$ cd /var/lib/keytrustee
$ unzip /path/to/keytrustee-conf.zip

If the zip file is encrypted, you are prompted for the password to decrypt the file.

5. Start the Key Trustee Server service:

• RHEL 6-compatible: $ sudo service keytrusteed start
• RHEL 7-compatible: $ sudo systemctl start keytrusteed

6. Remove the backup files (keytrustee-db.zip and keytrustee-conf.zip) from the Key Trustee Server host.

Restoring Key Trustee Server and Key Trustee KMS from ktbackup.sh Backups

After installing Key Trustee Server or Key Trustee KMS on a newhost after a failure, or if you need to restore accidentally
deleted keys on the same host, use the following procedure to restore Key Trustee Server or Key Trustee KMS from
backups generated by the ktbackup.sh script.

1. Decrypt the backup tarball using the private key of the GPG recipient specified in the backup command by running
the following command as the GPG recipient user account. The GPG recipient private key must be available on
the Key Trustee Server or Key Trustee KMS host on which you run this command.

$ gpg -d -o /path/to/decrypted/backup.tar /path/to/encrypted/tarball

2. Verify the decrypted tarball using the tar tvf /path/to/decrypted/backup.tar command. For example:

$ tar tvf kts_bak_kts01_example_com_2016-02-10_11-14-37.tar
drwx------ keytrustee/keytrustee 0 2016-02-09 16:43 var/lib/keytrustee/.keytrustee/
-rw------- keytrustee/keytrustee 434 2016-02-09 16:43
var/lib/keytrustee/.keytrustee/keytrustee.conf
-rw------- keytrustee/keytrustee 1280 2016-02-09 16:43
var/lib/keytrustee/.keytrustee/trustdb.gpg
-rw------- keytrustee/keytrustee 4845 2016-02-09 16:43
var/lib/keytrustee/.keytrustee/secring.gpg
-rw------- keytrustee/keytrustee 600 2016-02-09 16:43
var/lib/keytrustee/.keytrustee/random_seed
drwx------ keytrustee/keytrustee 0 2016-02-09 16:40
var/lib/keytrustee/.keytrustee/.ssl/
-rw------- keytrustee/keytrustee 1708 2016-02-09 16:40
var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee-pk.pem
-rw------- keytrustee/keytrustee 1277 2016-02-09 16:40
var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee.pem
-rw------- keytrustee/keytrustee 2263 2016-02-09 16:43
var/lib/keytrustee/.keytrustee/pubring.gpg
-rw-r--r-- keytrustee/keytrustee 457 2016-02-09 16:43
var/lib/keytrustee/.keytrustee/logging.conf
-rw------- keytrustee/keytrustee 2263 2016-02-09 16:43

330 | Cloudera Security

Configuring Encryption

var/lib/keytrustee/.keytrustee/pubring.gpg~
-rw------- keytrustee/keytrustee 157 2016-02-09 16:40
var/lib/keytrustee/.keytrustee/gpg.conf
-rw-r--r-- keytrustee/keytrustee 47752 2016-02-10 11:14
var/lib/keytrustee/kts_bak_kts01_example_com_2016-02-10_11-14-37.sql

3. Restore the files to their original locations, using this command for both Key Trustee Server and Key Trustee KMS
backups:

$ tar xvf /path/to/decrypted/backup.tar -C /

4. (Key Trustee Server Only) Drop and re-create the keytrustee PostgreSQL database, and restore the database
from the backup.

• For parcel-based installations:

$ su - keytrustee
$ source /opt/cloudera/parcels/KEYTRUSTEE_SERVER/meta/keytrustee_env.sh
$ /opt/cloudera/parcels/KEYTRUSTEE_SERVER/PG_DB/opt/postgres/9.3/bin/psql -p 11381
psql (9.3.6)
Type "help" for help.

keytrustee=# \list
 List of databases
 Name | Owner | Encoding | Collate | Ctype | Access privileges
------------+------------+----------+-------------+-------------+---------------------------

 keytrustee | keytrustee | UTF8 | en_US.UTF-8 | en_US.UTF-8 |
 postgres | keytrustee | UTF8 | en_US.UTF-8 | en_US.UTF-8 |
 template0 | keytrustee | UTF8 | en_US.UTF-8 | en_US.UTF-8 | =c/keytrustee
 +
 | | | | |
keytrustee=CTc/keytrustee
 template1 | keytrustee | UTF8 | en_US.UTF-8 | en_US.UTF-8 | =c/keytrustee
 +
 | | | | |
keytrustee=CTc/keytrustee
(4 rows)

keytrustee=# \c postgres;
You are now connected to database "postgres" as user "keytrustee".
postgres=# drop database keytrustee;
DROP DATABASE
postgres=# create database keytrustee;
CREATE DATABASE
postgres=# \q
$ sudo -u keytrustee
/opt/cloudera/parcels/KEYTRUSTEE_SERVER/PG_DB/opt/postgres/9.3/bin/psql -p 11381 -f
/var/lib/keytrustee/kts_bak_kts01_example_com_2016-02-10_11-14-37.sql

• For package-based installations:

$ su - keytrustee
$ psql -p 11381
psql (9.3.6)
Type "help" for help.

keytrustee=# \list
 List of databases
 Name | Owner | Encoding | Collate | Ctype | Access privileges
------------+------------+----------+-------------+-------------+---------------------------

 keytrustee | keytrustee | UTF8 | en_US.UTF-8 | en_US.UTF-8 |
 postgres | keytrustee | UTF8 | en_US.UTF-8 | en_US.UTF-8 |
 template0 | keytrustee | UTF8 | en_US.UTF-8 | en_US.UTF-8 | =c/keytrustee
 +
 | | | | |
keytrustee=CTc/keytrustee
 template1 | keytrustee | UTF8 | en_US.UTF-8 | en_US.UTF-8 | =c/keytrustee

Cloudera Security | 331

Configuring Encryption

 +
 | | | | |
keytrustee=CTc/keytrustee
(4 rows)

keytrustee=# \c postgres;
You are now connected to database "postgres" as user "keytrustee".
postgres=# drop database keytrustee;
DROP DATABASE
postgres=# create database keytrustee;
CREATE DATABASE
postgres=# \q
$ sudo -u keytrustee psql -p 11381 -f
/var/lib/keytrustee/kts_bak_kts01_example_com_2016-02-10_11-14-37.sql

5. Restart Key Trustee Server.

• Using Cloudera Manager: Key Trustee Server service > Actions > Restart
• Using the Command Line: Run the following command on the Key Trustee Server hosts:

$ sudo service keytrusteed restart #RHEL 6-compatible
$ sudo systemctl restart keytrusteed #RHEL 7-compatible

6. Restart the Key Trustee KMS service in Cloudera Manager (Key Trustee KMS service > Actions > Restart).

Restoring Active Key Trustee Server from Passive Key Trustee Server

If the Active Key Trustee Server fails, and you do not have a backup, you can restore it from the Passive Key Trustee
Server using the following procedure. You can also use this procedure if you need to restore keys that were successfully
written to the Passive Key Trustee Server, but are not included in the most recent backup.

The following procedure assumes you have installed Key Trustee Server on the replacement host and (if you are using
ClouderaManager) added the Key Trustee Server service. For instructions on installing Key Trustee Server, see Installing
Cloudera Navigator Key Trustee Server

1. Copy the Key Trustee Server database from the Passive Key Trustee Server host to the new Active Key Trustee
Server host. Run the following command on the Passive Key Trustee Server host:

$ sudo rsync --exclude recovery.conf -a /var/lib/keytrustee/db
root@kts01.example.com:/var/lib/keytrustee/

Replace kts01.example.com with the hostname of the new Active Key Trustee Server.

2. Make sure that the recovery.conf file did not get copied to the Active Key Trustee Server (for example, if there
was a typo in your rsync command). Run the following command on the Active Key Trustee Server host:

$ sudo ls -l /var/lib/keytrustee/db/recovery.conf

If the file exists on the Active Key Trustee Server host, delete it. Make sure you are on the Active Key Trustee
Server host before deleting the file. Do not delete the recovery.conf file on the Passive Key Trustee Server
host.

3. Copy the configuration directory from the Passive Key Trustee Server host to the new Active Key Trustee Server
host. Run the following command on the Passive Key Trustee Server host:

$ sudo rsync --exclude .ssl --exclude '*.pid' -a /var/lib/keytrustee/.keytrustee
root@kts01.example.com:/var/lib/keytrustee/

Replace kts01.example.com with the hostname of the new Active Key Trustee Server.

332 | Cloudera Security

Configuring Encryption

4. Create the logs directory and make sure it is owned by the keytrustee user and group:

$ sudo mkdir /var/lib/keytrustee/logs
$ sudo chown keytrustee:keytrustee /var/lib/keytrustee/logs

5. (ClouderaManager only)Generate the Key Trustee Server keyring:Key Trustee Server service >Actions >Generate
Key Trustee Server Keyring

6. Set up the database on the Active Key Trustee Server host.

• Using Cloudera Manager: Key Trustee Server service > Actions > Set Up Key Trustee Server Database
• Using the Command Line:

$ sudo ktadmin --confdir /var/lib/keytrustee db --port 11381 --pg-rootdir
/var/lib/keytrustee/db --bootstrap --slave kts02.example.com

Replace kts02.example.com with the hostname of the Passive Key Trustee Server.

7. Start the database.

• Using Cloudera Manager: Key Trustee Server service > Instances > Active Database > Actions > Start this
Active Database

• Using the Command Line: Run the following command on the Active Key Trustee Server host:

$ sudo ktadmin --confdir /var/lib/keytrustee db --port 11381 --pg-rootdir
/var/lib/keytrustee/db --bootstrap --slave kts02.example.com

Replace kts02.example.com with the hostname of the Passive Key Trustee Server.

8. Enable synchronous replication.

• Using Cloudera Manager: Key Trustee Server service > Actions > Setup Enable Synchronous Replication in
HA mode

• Using the Command Line: Run the following command on the Active Key Trustee Server host:

$ sudo ktadmin --confdir /var/lib/keytrustee enable-synchronous-replication

9. Restart the Active Key Trustee Server.

• Using Cloudera Manager: Key Trustee Server service > Actions > Restart
• Using the Command Line: Run the following command on the Active Key Trustee Server host:

$ sudo service keytrusteed restart #RHEL 6-compatible
$ sudo systemctl restart keytrusteed #RHEL 7-compatible

10. Restart the Key Trustee KMS service in Cloudera Manager (Key Trustee KMS service > Actions > Restart).

Initializing Standalone Key Trustee Server

If you are configuring high availability Key Trustee Server, skip this step and proceed to Cloudera Navigator Key Trustee
Server High Availability. Cloudera strongly recommends configuring high availability for Key Trustee Server.

Initializing Standalone Key Trustee Server Using Cloudera Manager

Important: If you are using SSH software other than OpenSSH, the initialization fails. To prevent this,
pre-create the SSH key before continuing:

$ sudo -u keytrustee ssh-keygen -t rsa -f /var/lib/keytrustee/.ssh/id_rsa

Cloudera Security | 333

Configuring Encryption

For new installations, use the Set up HDFS Data At Rest Encryptionwizard and follow the instructions in Enabling HDFS
Encryption Using theWizard on page 289. When prompted, deselect the Enable High Availability option to proceed in
standalone mode.

To set up Key Trustee Server manually, add the Key Trustee Server service to your cluster, following the instructions
in Adding a Service.When customizing role assignments, assign only the Active Key Trustee Server and Active Database
roles.

Important: Youmust assign the Key Trustee Server and Database roles to the same host. Key Trustee
Server does not support running the database on a different host.

For parcel-based Key Trustee Server releases 5.8 and higher, Cloudera Manager automatically backs up Key Trustee
Server (using the ktbackup.sh script) after adding the Key Trustee Server service. It also schedules automatic backups
using cron. For package-based installations, you must manually back up Key Trustee Server and configure a cron job.

Cloudera Manager configures cron to run the backup script hourly. The latest 10 backups are retained in
/var/lib/keytrustee in cleartext. For information about using the backup script and configuring the cron job
(including how to encrypt backups), see Backing Up Key Trustee Server and Key Trustee KMS Using the ktbackup.sh
Script on page 323.

Initializing Standalone Key Trustee Server Using the Command Line

To initialize a standalone Key Trustee Server, run the following commands on the Key Trustee Server:

Important: For Key Trustee Server 5.4.0 and higher, the ktadmin init-master command is
deprecated. Use the ktadmin init command instead. If you are using SSH software other than
OpenSSH, the initialization fails. To prevent this, pre-create the SSH key before continuing:

$ sudo -u keytrustee ssh-keygen -t rsa /var/lib/keytrustee/.ssh/id_rsa

$ sudo ktadmin init --external-address keytrustee.example.com
$ sudo ktadmin db --bootstrap --port 11381 --pg-rootdir /var/lib/keytrustee/db
For RHEL/CentOS 7, use 'sudo systemctl [stop|start] <service_name>' instead of 'sudo
 service <service_name> [stop|start]' ##
$ sudo service keytrustee-db stop
$ sudo service keytrustee-db start
$ sudo service keytrusteed start
$ sudo chkconfig keytrustee-db on
$ sudo chkconfig keytrusteed on

Replace keytrustee.example.comwith the fully qualified domain name (FQDN) of the Key Trustee Server. Cloudera
recommends using the default /var/lib/keytrustee/db directory for the PostgreSQL database.

To use a different port for the database, modify the ktadmin init and ktadmin db commands as follows:

$ sudo ktadmin init --external-address keytrustee.example.com --db-connect
postgresql://localhost:<port>/keytrustee?host=/tmp
$ sudo ktadmin db --bootstrap --port <port> --pg-rootdir /var/lib/keytrustee/db

If you specify a database directory other than /var/lib/keytrustee/db, create or edit the
/etc/sysconfig/keytrustee-db file and add the following line:

ARGS="--pg-rootdir /path/to/db"

The ktadmin init command initializes the Key Trustee configuration directory
(/var/lib/keytrustee/.keytrustee by default) and generates a self-signed certificate that Key Trustee Server
uses for HTTPS communication.

The ktadmin db --bootstrap command initializes the database in the directory specified by the --pg-rootdir
parameter.

334 | Cloudera Security

Configuring Encryption

The sudo service keytrustee-db stop and sudo service keytrustee-db start commands restart the
Key Trustee Server database.

The sudo service keytrusteed start command starts Key Trustee Server.

Note: The/etc/init.d/postgresql script does notworkwhen the PostgreSQL database is started
by Key Trustee Server, and cannot be used to monitor the status of the database. Use
/etc/init.d/keytrustee-db instead.

(Optional) Replace Self-Signed Certificate with CA-Signed Certificate

Important: Key Trustee Server certificates must be issued to the fully qualified domain name (FQDN)
of the Key Trustee Server host. If you are using CA-signed certificates, ensure that the generated
certificates use the FQDN, and not the short name.

If you have a CA-signed certificate for Key Trustee Server, see Managing Key Trustee Server Certificates on page 338
for instructions on how to replace the self-signed certificate.

Configuring a Mail Transfer Agent for Key Trustee Server

The Key Trustee Server requires a mail transfer agent (MTA) to send email. Cloudera recommends Postfix, but you can
use any MTA that meets your needs.

To configure Postfix for local delivery, run the following commands:

export
KEYTRUSTEE_SERVER_PK="/var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee-pk.pem"
export
KEYTRUSTEE_SERVER_CERT="/var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee.pem"
export
KEYTRUSTEE_SERVER_CA="/var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee-ca.pem"
export KEYTRUSTEE_SERVER_HOSTNAME="$(hostname -f)" # or adjust as required
postconf -e 'mailbox_command ='
postconf -e 'smtpd_sasl_local_domain ='
postconf -e 'smtpd_sasl_auth_enable = yes'
postconf -e 'smtpd_sasl_security_options = noanonymous'
postconf -e 'broken_sasl_auth_clients = yes'
postconf -e 'smtpd_recipient_restrictions =
permit_sasl_authenticated,permit_mynetworks,reject_unauth_destination'
postconf -e 'inet_interfaces = localhost'
postconf -e 'smtp_tls_security_level = may'
postconf -e 'smtpd_tls_security_level = may'

Start the Postfix service and ensure that it starts at boot:

$ service postfix restart
$ sudo chkconfig --level 235 postfix on

For information on installing Postfix or configuring a relay host, see the Postfix documentation.

Verifying Cloudera Navigator Key Trustee Server Operations

Verify that the installation was successful by running the following command on all Key Trustee Servers.

curl -k https://keytrustee.example.com:11371/?a=fingerprint

Replace keytrustee.example.comwith the fully qualified domain name (FQDN) of each Key Trustee Server you are
validating. This command outputs a fingerprint similar to the following:

4096R/4EDC46882386C827E20DEEA2D850ACA33BEDB0D1

Cloudera Security | 335

Configuring Encryption

http://www.postfix.org/documentation.html

If high availability is enabled, the output should be identical for all Key Trustee Servers.

Managing Key Trustee Server Organizations

Organizations allow you to configure Key Trustee for use in amulti-tenant environment. Using thekeytrustee-orgtool
utility, you can create organizations and administrators for multiple organizations. Organization administrators can
then approve or deny the registration of clients, depending on the registration method.

The keytrustee-orgtool Utility

keytrustee-orgtool is a command-line utility for administering organizations. Thekeytrustee-orgtool command
must be run as the root user.

The following table explains the variouskeytrustee-orgtool commands andparameters. Runkeytrustee-orgtool
--help to view this information at the command line.

Table 27: Usage for keytrustee-orgtool

DescriptionUsageOperation

Adds a new organization and
administrators for the organization.

keytrustee-orgtool add [-h]

–n name –c contacts

Add

Lists current organizations, including
the authorization secret, all

keytrustee-orgtool listList

administrators, the organization
creation date, and the organization
expiration date.

Disables a client that has already been
activated by the organization
administrator.

keytrustee-orgtool

disable-client [-h]

-–fingerprint fingerprint

Disable client

Enables a client that has requested
activation but has not yet been

keytrustee-orgtool

enable-client [-h]

–-fingerprint fingerprint

Enable client

approved by the organization
administrator.

Sets the authorization code to a new
string, or to blank to allow automatic
approvals without the code.

keytrustee-orgtool set-auth

[-h] –n name –s secret

Set authorization Code

Create Organizations

Each new Key Trustee tenant needs its own organization. You can create new organizations using the
keytrustee-orgtool add command. For example, to create a new organization for the Disaster Recovery group
and add two administrators, Finn and Jake:

$ keytrustee-orgtool add -n disaster-recov -c finn@example.com,jake@example.com

When adding organizations:

• Do not use spaces or special characters in the organization name. Use hyphens or underscores instead.
• Do not use spaces between email addresses (when adding multiple administrators to an organization). Use a

comma to separate email addresses, without any space (as shown in the example above).

Each contact email address added when creating the organization receives a notification email, as detailed below.

336 | Cloudera Security

Configuring Encryption

Once an organization exists, use the keytrustee-orgtool add command to add new administrators to the
organization. For example, to add an administrator to the disaster-recov organization:

keytrustee-orgtool add -n disaster-recov -c marceline@example.com

Note: You cannot remove contacts from an organization with the keytrustee-orgtool utility.

List Organizations

After creating an organization, verify its existence with the keytrustee-orgtool list command. This command
lists details for all existing organizations. The following is the entry for the disaster-recov organization created in
the example:

"disaster-recov": {
 "auth_secret": "/qFiICsyYqMLhdTznNY3Nw==",
 "contacts": [
 "finn@example.com",
 "jake@example.com"
],
 "creation": "2013-12-02T09:55:21",
 "expiration": "9999-12-31T15:59:59",
 "key_info": null,
 "name": "disaster-recov",
 "state": 0,
 "uuid": "xY3Z8xCwMuKZMiTYJa0mZOdhMVdxhyCUOc6vSNc9I8X"
 }

Change the Authorization Code

When an organization is created, an authorization code is automatically generated. When you run the
keytrustee-orgtool list command, the code is displayed in the auth_secret field. To register with a Key
Trustee Server, the client must have the authorization code along with the organization name. To set a new
auth_secret, run the following command:

$ keytrustee-orgtool set-auth -n disaster-recov -s ThisISAs3cr3t!

Run the keytrustee-orgtool list command again, and confirm the updated auth_secret field:

"disaster-recov": {
 "auth_secret": "ThisISAs3cr3t!",
 "contacts": [
 "finn@example.com",
 "jake@example.com"
],
 "creation": "2013-12-02T09:55:21",
 "expiration": "9999-12-31T15:59:59",
 "key_info": null,
 "name": "disaster-recov",
 "state": 0,
 "uuid": "xY3Z8xCwMuKZMiTYJa0mZOdhMVdxhyCUOc6vSNc9I8X"
 }

If you do not want to use an authorization code, set the auth_secret field to an empty string:

$ keytrustee-orgtool set-auth -n disaster-recov -s ""

Cloudera recommends requiring an authorization code.

Cloudera Security | 337

Configuring Encryption

Notification Email and GPG Keys

Whenever an administrator is added to an organization, the Key Trustee Server sends an automated email message
(subject: “KeyTrustee Contact Registration”) to the newly added administrator:

Hello, this is an automated message from your Cloudera keytrustee Server.

Welcome to Cloudera keytrustee! You have been listed as an administrator contact
for keytrustee services at your organization [test-org]. As an administrator,
you may be contacted to authorize the activation of new keytrustee clients.

We recommend that you register a GPG public key for secure administration of
your clients. To do so, visit the link below and follow the instructions.

https://keytrustee01.example.com:11371/?q=CnRV6u0nbm7zB07BQEpXCXsN0QJFBz684uC0lcHMoWL

This link will expire in 12 hours, at Thu Sep 3 00:08:25 2015 UTC.

Cloudera recommends that an organization's administrators:

• Register the GPG public key by following the link contained in the notification email. Registering the GPG public
key is optional, but if you choose to register your public key:

– Complete the process within 12 hours, before the link expires.
– Upload the entire key, including the BEGIN and END strings, as shown here:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.2.1 (GNU/Linux)
Comment: For info see http://www.gnupg.org

mQGiBDkHP3URBACkWGsYh43pkXU9wj/X1G67K8/DSrl85r7dNtHNfLL/ewil10k2
q8saWJn26QZPsDVqdUJMOdHfJ6kQTAt9NzQbgcVrxLYNfgeBsvkHF/POtnYcZRgL
tZ6syBBWs8JB4xt5V09iJSGAMPUQE8Jpdn2aRXPApdoDw179LM8Rq6r+gwCg5ZZa
. . .
-----END PGP PUBLIC KEY BLOCK-----

• Import the Key Trustee Server’s public GPG key to verify that the server is the sender.

The organization's administrators are notified by email when new clients are registered to the Key Trustee Server using
themail transfer agent (as discussed in Configuring aMail Transfer Agent for Key Trustee Server on page 335). However,
if the server does not have access to email, you can use a local system mail address, such as username@hostname,
where hostname is the system hostname and username is a valid system user. If you use a local system email address,
be sure to regularly monitor the email box.

Managing Key Trustee Server Certificates

Transport Layer Security (TLS) certificates are used to secure communication with Key Trustee Server. By default, Key
Trustee Server generates self-signed certificates when it is first initialized. Cloudera strongly recommends using
certificates signed by a trusted Certificate Authority (CA).

Generating a New Certificate

1. Generate a new certificate signing request (CSR):

$ openssl req -new -key keytrustee_private_key.pem -out new.csr

Replace keytrustee_private_key.pem with the filename of the private key. You can reuse the existing private key
or generate a new private key in accordance with your company policies. For existing auto-generated self-signed
certificates, the private key file is located at
/var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee-pk.pem.

2. Generate a new certificate from the CSR:

338 | Cloudera Security

Configuring Encryption

For a CA-signed certificate, submit the CSR to the CA, and they will provide a signed certificate.•
• To generate a new self-signed certificate, run the following command:

$ openssl x509 -req -days 365 -in new.csr -signkey keytrustee_private_key.pem \
-out new_keytrustee_certificate.pem

Replacing Key Trustee Server Certificates

Use the following procedure if you need to replace an existing certificate for the Key Trustee Server. For example, you
can use this procedure to replace the auto-generated self-signed certificate with a CA-signed certificate, or to replace
an expired certificate.

Note: Key Trustee Server supports password-protected private keys, but not password-protected
certificates.

1. After Generating a New Certificate on page 338, back up the original certificate and key files:

$ sudo cp -r /var/lib/keytrustee/.keytrustee/.ssl /var/lib/keytrustee/.keytrustee/.ssl.bak

2. (CA-Signed Certificates Only) Provide either the root or intermediate CA certificate:

Important: If you have separate root CA and intermediate CA certificate files, then you must
concatenate them into a single file. If you need to convert from a JKS with combined certificate
and private key file to a PEM file and separate private key file, refer to Conversion from Java
Keystore to OpenSSL on page 228.

$ sudo mv /path/to/rootca.pem
/var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee-ca.pem

3. Make sure that the certificate and key files are owned by the keytrustee user and group, with file permissions
set to 600:

$ sudo chown keytrustee:keytrustee /path/to/new/certificate.pem
/path/to/new/private_key.pem
$ sudo chmod 600 /path/to/new/certificate.pem /path/to/new/private_key.pem

4. Update the Key Trustee Server configuration with the location of the new certificate and key files:

• Using Cloudera Manager:

1. Go to the Key Trustee Server service.
2. Click the Configuration tab.
3. Select Category > Security.
4. Edit the following properties to specify the location of the new certificate and key files. If the private

keys are not password protected, leave the password fields empty.

• Active Key Trustee Server TLS/SSL Server Private Key File (PEM Format)
• Active Key Trustee Server TLS/SSL Server Certificate File (PEM Format)
• Active Key Trustee Server TLS/SSL Private Key Password
• Passive Key Trustee Server TLS/SSL Server Private Key File (PEM Format)
• Passive Key Trustee Server TLS/SSL Server Certificate File (PEM Format)
• Passive Key Trustee Server TLS/SSL Private Key Password

5. Click Save Changes to commit the changes.

• Using the command line:

Cloudera Security | 339

Configuring Encryption

1. Edit/var/lib/keytrustee/.keytrustee/keytrustee.conf on the active and passive Key Trustee
Server hosts and modify the SSL_CERTIFICATE and SSL_PRIVATE_KEY parameters as follows:

 "SSL_CERTIFICATE": "/path/to/new/certificate.pem",
 "SSL_PRIVATE_KEY": "/path/to/new/private_key.pem"

If the private key is password protected, add the following entry:

 "SSL_PRIVATE_KEY_PASSWORD_SCRIPT": "/path/to/password_script [arguments]"

Replace /path/to/password_script [arguments] with the path to a script (and any necessary command
arguments) that returns the password for the private key file. If you do not want to create a script, you
can use a simple command, such as echo -n password. For example:

 "SSL_PRIVATE_KEY_PASSWORD_SCRIPT": "/bin/echo -n password"

Keep in mind that this method can expose the private key password in plain text to anyone who can
view the /var/lib/keytrustee/.keytrustee/keytrustee.conf file.

5. Restart Key Trustee Server:

• Using Cloudera Manager: Restart the Key Trustee Server service (Key Trustee Server service > Actions >
Restart).

• Using the Command Line: Restart the Key Trustee Server daemon:

– RHEL 6-compatible: $ sudo service keytrusteed restart
– RHEL 7-compatible: $ sudo systemctl restart keytrusteed

6. If you are using the Key Trustee KMS service in Cloudera Manager for HDFS Transparent Encryption on page 283,
update the Java KeyStore (JKS) used on the Key Trustee KMS host:

a. Download the new certificate to the Key Trustee KMS host:

$ echo -n | openssl s_client -connect keytrustee01.example.com:11371 \
| sed -ne '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p' > /tmp/keytrustee_certificate.pem

b. Delete the existing keystore entry for keytrustee01.example.com:

$ keytool -delete -alias key_trustee_alias_name -keystore /path/to/truststore -v

c. Add the new keystore entry for keytrustee01.example.com:

$ keytool -import -trustcacerts -alias keytrustee01.example.com \
-file /tmp/keytrustee_certificate.pem -keystore /path/to/truststore

d. Restart the Key Trustee KMS service in Cloudera Manager.

7. If you are using Key HSM, update the Key Trustee Server and Key HSM configuration:

a. Run the keyhsm trust command, using the path to the new certificate:

$ sudo keyhsm trust /path/to/new/key_trustee_server/cert

b. Run the ktadmin keyhsm command, using the --client-certfile and --client-keyfile options to
specify the location of the new certificate file and private key:

$ sudo ktadmin keyhsm --server https://keyhsm01.example.com:9090 --client-certfile
/path/to/new/key_trustee_server/cert --client-keyfile
/path/to/new/key_trustee_server/private_key

340 | Cloudera Security

Configuring Encryption

Cloudera Navigator Key HSM
Cloudera Navigator Key HSM allows Cloudera Navigator Key Trustee Server to seamlessly integrate with a hardware
security module (HSM). Key HSM enables Key Trustee Server to use an HSM as a root of trust for cryptographic keys,
taking advantage of Key Trustee Server’s policy-based key and security asset management capabilities while at the
same time satisfying existing, internal security requirements regarding treatment of cryptographic materials.

For instructions on installing Key HSM, see Installing Cloudera Navigator Key HSM.

For instructions on configuring Key HSM, continue reading:

Initializing Navigator Key HSM

Before initializing Navigator Key HSM, verify that the HSM is properly configured and accessible from the Key HSM
host, and that the HSM client libraries are installed on the Key HSM host:

• SafeNet Luna

Install the SafeNet Luna client. No additional configuration is needed.

• SafeNet KeySecure

Extract the KeySecure client tarball in the Key HSM library directory
(/usr/share/keytrustee-server-keyhsm/).

• Thales

Install the Thales client service. CopynCipherKM.jar,jcetools.jar, andrsaprivenc.jar from the installation
media (usually located in opt/nfast/java/classes relative to the installation media mount point) to the Key
HSM library directory (/usr/share/keytrustee-server-keyhsm/).

See your HSMproduct documentation formore information on installing and configuring your HSM and client libraries.

Note: When using an HSM with Key Trustee Server and Navigator Encrypt, encrypting many block
devices may exceed the capacity of the HSM. A key is created in the HSM for each encrypted block
device, so be sure that your HSM can support your encryption requirements.

To initialize Key HSM, use the service keyhsm setup command in conjunction with the name of the target HSM
distribution:

$ sudo service keyhsm setup [keysecure|thales|luna]

For all HSM distributions, this first prompts for the IP address and port number that Key HSM listens on.

Important: If you have implemented Key Trustee Server high availability, initialize Key HSM on each
Key Trustee Server.

Cloudera recommends using the loopback address (127.0.0.1) for the listener IP address and 9090 as the port
number:

-- Configuring keyHsm General Setup --
Cloudera Recommends to use 127.0.0.1 as the listener port for Key HSM
Please enter Key HSM SSL listener IP address: [127.0.0.1]127.0.0.1
Will attempt to setup listener on 127.0.0.1
Please enter Key HSM SSL listener PORT number: 9090

validate Port: :[Successful]

Cloudera Security | 341

Configuring Encryption

If the setup utility successfully validates the listener IP address and port, you are prompted for additional information
specific to your HSM. For HSM-specific instructions, continue to the HSM-Specific Setup for Cloudera Navigator Key
HSM on page 342 section for your HSM.

The Key HSM keystore defaults to a strong, randomly-generated password. However, you can change the keystore
password in the application.properties file:

keyhsm.keystore.password.set=yes

Then, run the service keyhsm setup commandwith the name of the HSM towhich the keystore password applies.
You will be prompted to enter the new keystore password, which must be a minimum of six characters in length:

$ sudo service keyhsm setup [keysecure|thales|luna]

After initial setup, the configuration is stored in the
/usr/share/keytrustee-server-keyhsm/application.properties file, which contains human-readable
configuration information for the Navigator Key HSM server.

Important: The truststore file created during Key HSM initialization must be stored at
/usr/share/keytrustee-server-keyhsm/. There is no way to change the default location.

HSM-Specific Setup for Cloudera Navigator Key HSM

SafeNet KeySecure

Note: KeySecure was previously named DataSecure, but the Key HSM configuration process is the
same for both.

Prerequisites

Before setting up SafeNet KeySecure, be sure to:

• Set the protocol to NAE-XML
• Set Allow Key and Policy Configuration Operations to enabled
• Set Password Authentication to required
• Disable Client Certificate Authentication
• Set KeySecure Crypto Operations to activated

For additional details about SafeNet KeySecure settings, see the SafeNet KeySecure product documentation.

After entering the Key HSM listener IP address and port, the HSM setup for SafeNet KeySecure prompts for login
credentials, the IP address of the KeySecure HSM, and the port number:

-- Ingrian HSM Credential Configuration --
Please enter HSM login USERNAME: keyhsm
Please enter HSM login PASSWORD: ******

Please enter HSM IP Address or Hostname: 172.19.1.135
Please enter HSM Port number: 9020

If the connection is successful, the following message is displayed:

Valid address: :[Successful]

The KeySecure setup utility then prompts you whether to use SSL:

Use SSL? [Y/n] Y

342 | Cloudera Security

Configuring Encryption

If you choose to use SSL, Key HSM attempts to resolve the server certificate, and prompts you to trust the certificate:

 [0] Version: 3
 SerialNumber: 0
 IssuerDN: C=US,ST=TX,L=Austin,O=ACME,OU=Dev,
CN=172.19.1.135,E=webadmin@example.com
 Start Date: Thu Jan 29 09:55:57 EST 2015
 Final Date: Sat Jan 30 09:55:57 EST 2016
 SubjectDN: C=US,ST=TX,L=Austin,O=ACME,OU=Dev,
CN=172.19.1.135,E=webadmin@example.com
 Public Key: RSA Public Key
 modulus: abe4a8dcef92e145984309bd466b33b35562c7f875
 1d1c406b1140e0584890272090424eb347647ba04b
 34757cacc79652791427d0d8580a652c106bd26945
 384b30b8107f8e15d2deba8a4e868bf17bb0207383
 7cffef0ef16d5b5da5cfb4d3625c0affbda6320daf
 7c6b6d8adfcb563960fcd1207c059300feb6513408
 79dd2d929a5b986517531be93f113c8db780c92ddf
 30f5c8bf2b0bea60359b67be306c520358cc0c3fc3
 65500d8abeeac99e53cc2b369b2031174e72e6fca1
 f9a4639e09240ed6d4a73073885868e814839b09d5
 6aa98a5a1e230b46cdb4818321f546ac15567c5968
 33be47ef156a73e537fd09605482790714f4a276e5
 f126f935
 public exponent: 10001

 Signature Algorithm: SHA256WithRSAEncryption
 Signature: 235168c68567b27a30b14ab443388039ff12357f
 99ba439c6214e4529120d6ccb4a9b95ab25f81b4
 7deb9354608df45525184e75e80eb0948eae3e15
 c25c1d58c4f86cb9616dc5c68dfe35f718a0b6b5
 56f520317eb5b96b30cd9d027a0e42f60de6dd24
 5598d1fcea262b405266f484143a74274922884e
 362192c4f6417643da2df6dd1a538d6d5921e78e
 20a14e29ca1bb82b57c02000fa4907bd9f3c890a
 bdae380c0b4dc68710deeaef41576c0f767879a7
 90f30a4b64a6afb3a1ace0f3ced17ae142ee6f18
 5eff64e8b710606b28563dd99e8367a0d3cbab33
 2e59c03cadce3a5f4e0aaa9d9165e96d062018f3
 6a7e8e3075c40a95d61ebc8db43d77e7
 Extensions:
 critical(false) BasicConstraints: isCa(true)
 critical(false) NetscapeCertType: 0xc0

Trust this server? [y/N] Y

Trusted server: :[Successful]

Thales HSM

By default, the Thales HSM client process listens on ports 9000 and 9001. The Cloudera Manager agent also listens on
port 9000. To prevent a port conflict, youmust change the Thales client ports. Cloudera recommends using ports 11500
and 11501.

To change the Thales client ports, run the following commands:

$ sudo /opt/nfast/bin/config-serverstartup --enable-tcp --enable-privileged-tcp
--port=11500 --privport=11501
$ sudo /opt/nfast/sbin/init.d-ncipher restart

To configure Key HSM to use the modified port, edit the /usr/share/keytrustee-server-keyhsm/start.sh
file and add the -DNFAST_SERVER_PORT=11500 Java system property. For example:

java -classpath "*:/usr/safenet/lunaclient/jsp/lib/*:/opt/nfast/java/classes/*"
-Djava.library.path=/usr/safenet/lunaclient/jsp/lib/ -DNFAST_SERVER_PORT=11500
com.cloudera.app.run.Program $@

Cloudera Security | 343

Configuring Encryption

Before completing the Thales HSM setup, run the nfkminfo command to verify that the Thales HSM is properly
configured:

$ sudo /opt/nfast/bin/nfkminfo
 World generation 2
 state 0x17270000 Initialised Usable Recovery !PINRecovery !ExistingClient
 RTC NVRAM FTO !AlwaysUseStrongPrimes SEEDebug

If state reports !Usable instead of Usable, configure the Thales HSM before continuing. See the Thales product
documentation for instructions.

After entering the Key HSM listener IP address and port, the HSM setup for Thales prompts for the OCS card password:

Please enter the OCS Card Password (input suppressed):

Configuration saved in 'application.properties' file
Configuration stored in: 'application.properties'. (Note: You can also use service keyHsm
 settings to quickly view your current configuration)

Luna HSM

Important: If you have implemented Key Trustee Server high availability, ensure that the Luna client
on each Key Trustee Server is configured with access to the same partition. See the Luna product
documentation for instructions on configuring the Luna client.

Before completing the Luna HSM setup, run the vtl verify command (usually located at
/usr/safenet/lunaclient/bin/vtl) to verify that the Luna HSM is properly configured.

After entering the Key HSM listener IP address and port, the HSM setup for Luna prompts for the slot number and
password:

-- Configuring SafeNet Luna HSM --
Please enter SafeNetHSM Slot Number: 1
Please enter SafeNet HSM password (input suppressed):
Configuration stored in: 'application.properties'. (Note: You can also use service keyHsm
 settings to quickly view your current configuration)
Configuration saved in 'application.properties' file

See the Luna product documentation for instructions on configuring your Luna HSM if you do not know what values
to enter here.

Validating Key HSM Settings

After the setup completes, the Key HSM configuration is stored in
/usr/share/keytrustee-server-keyhsm/application.properties.

You can view these settings using the service keyhsm settings command:

$ sudo service keyhsm settings

 # keyHsm Server Configuration information:
 keyhsm.management.address : 172.19.1.2
 keyhsm.server.port : 9090
 keyhsm.management.port : 9899
 keyhsm.service.port : 19791
 keyhsm.hardware : ncipher

 # Module OCS Password
 thales.ocs_password :
 GIqhXDuZsj1Oet137Lb+f+tqkYvKYDm/8StefpNqZWwlB+LfSYlB4eHd
 endtYJio8qLjjbT+e7j2th5xf8O9t8FwfVguuyFW+6wdD
 uNGvse1LY/itCwqF0ScMlB1Mnz4010xqC6ylPW7l+0JjjkkqqM5gJJbl8lsQFFaIGVM/pY=

344 | Cloudera Security

Configuring Encryption

These settings can be manually configured by modifying the application.properties file, with the exception of
any passwords. These are encrypted by design, and can only be changed by re-running the setup utility.

Verifying Key HSM Connectivity to HSM

To verify Hardware Security Module (HSM) operations using Key HSM, run the following command on the Key Trustee
Server host (which should also be the Key HSM host as described in Installing Cloudera Navigator Key HSM):

$ curl -k https://keytrustee01.example.com:11371/test_hsm

If Key HSM operations to the HSM are successful, the command returns output similar to the following:

"Sample Key TEST_HELLO_DEPOSIT2016-06-03-072718 has been created"

You must run this command from the Key Trustee Server host. If you run it from a different host, the command returns
an HTTP 403 error code.

If the command returns an HTTP 405 error code, restart Key Trustee Server and try again.

Note: If you are using the test_hsm script to verify that the Key Hardware Security Module (Key
HSM) has successfully integratedwith the Key Trustee Server, or to verify that the KeyHSM is connected
to HSM, and the Key Trustee Server private key file is password-protected, then the verification may
fail. This can occur even if the integration is successful or connected.

If this occurs, then create a key through Hadoop for the test.

Creating a Key Store with CA-Signed Certificate

Required Files

Before proceeding, ensure that you have the following three PEM files:

• Certificate Authority (CA) PEM file
• Signed PEM certificate
• Private key PEM file

The following example usesssl-cert-keyhsm-ca.pem,ssl-cert-keyhsm.pem, andssl-cert-keyhsm-pk.pem,
respectively, to represent these files.

Create the Key Store

The following command accepts the ssl-cert-keyhsm.pem and ssl-cert-keyhsm-pk.pem files and converts
them to a .p12 file:

$ openssl pkcs12 -export -in ssl-cert-keyhsm.pem -inkey ssl-cert-keyhsm-pk.pem -out
mycert.p12 -name alias -CAfile ssl-cert-keyhsm-ca.pem -caname root -chain

Important: The certificate CNmust match the fully qualified domain name (FQDN) of the Key Trustee
Server.

Managing the Navigator Key HSM Service

Use the keyhsm service for all basic server operations:

$ sudo service keyhsm
keyHsm service usage:
 setup <hsm name> - setup a new connection to an HSM
 trust <path> - add a trusted client certificate

Cloudera Security | 345

Configuring Encryption

 validate - validate that keyHSM is properly configured
 settings - display the current server configuration
 start - start the keyHSM proxy server
 status - show the current keyHSM server status
 shutdown - force keyHSM server to shut down
 reload - reload the server (without shutdown)

The reload command causes the application to restart internal services without ending the process itself. If you want
to stop and start the process, use the restart command.

Logging and Audits

The Navigator Key HSM logs contain all log and audit information, and by default are stored in the /var/log/keyhsm
directory.

You can configure the maximum log size (in bytes) and maximum number of log files to retain by adding or editing the
following entries in /usr/share/keytrustee-server-keyhsm/application.properties:

keyhsm.log.size = 100000000
keyhsm.roll.size = 3

The values used in this example are the default values, and are used if these parameters are not set.

To enable debug logging, add the debug parameter to the start command:

$ sudo service keyhsm start debug

Note: You cannot start KeyHSM in debugmodeusing thesystemctl commandonRHEL 7-compatible
OS. You must use the service command.

This enables debug logging until the service is restarted without the debug parameter.

Integrating Key HSM with Key Trustee Server

Using a hardware security module with Navigator Key Trustee Server requires Key HSM. This service functions as a
driver to support interactions between Navigator Key Trustee Server and the hardware security module, and it must
be installed on the same host system as Key Trustee Server. The steps below assume that both Key HSM and Key
Trustee Server are set up and running. See Installing Cloudera Navigator Key HSM for details. Integrating Key HSM and
Key Trustee Server involves the following steps:

1. Check Existing Key Names (for existing Key Trustee Server users only)
2. Establish Trust from Key HSM to Key Trustee Server
3. Integrate Key HSM and Key Trustee Server

Check Existing Key Names

During the process detailed below, you are prompted to migrate any existing keys from the Key Trustee Server to the
HSM.

Warning: Migration fails if any existing keys do not adhere to the constraints.

Successful migration depends on the existing keys conforming to the following constraints:

• Key names can begin with alpha-numeric characters only
• Key names can include only these special characters:

– Hyphen -
– Period .

346 | Cloudera Security

Configuring Encryption

– Underscore _

If any existing key names in Key Trustee Server do not meet the requirements listed above, the migration fails. To
prepare for migration, check your key names and do the following if any of them are non-conforming:

• Decrypt any data using the non-conforming key
• Create a new key, named per the requirements
• Re-encrypt the data using the new key

After this, the migration from Key Trustee Server to the HSM will succeed during the process below.

Important: Keys are not available during migration, so you should perform these tasks during a
maintenance window.

Establish Trust from Key HSM to Key Trustee Server

This step assumes that Key Trustee Server has a certificate for TLS (wire) encryption as detailed inManaging Key Trustee
Server Certificates on page 338. Before you can run the commands in the steps below, Key HSM service must explicitly
trust the Key Trustee Server certificate (presented during TLS handshake). To establish this trust, run the following
command:

$ sudo keyhsm trust /path/to/key_trustee_server/cert

The /path/to/key_trustee_server/cert in this command (and in the commands below) depends on whether
the Key Trustee Server uses the default certificate (created by default during install), or uses a custom certificate
(obtained from a commercial or internal CA). The two alternate paths are shown in the table below. The custom path
is a common example but may differ from that shown.

CustomDefault

/etc/pki/cloudera/certs/cert-file.crt/var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee.pem

/etc/pki/cloudera/private/private-key.key/var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee-pk.pem

Note: The system requires TLS and Kerberos authentication throughout the system for security
reasons. Connections attempted over SSL (1 through 3) and connections from untrusted clients are
immediately terminated to prevent POODLE (Padding Oracle On Downgraded Legacy Encyryption)
exploits. See the Cloudera Security Bulletin for more information.

Integrate Key HSM and Key Trustee Server

The steps below assume that both Key HSM and the Key Trustee Server are on the same host system, as detailed in
Installing Cloudera Navigator Key HSM. These steps invoke commands on the Key HSM service and the Key Trustee
Server, and they must be run on the host—they cannot be run remotely from another host.

1. Ensure the Key HSM service is running:

$ sudo service keyhsm start

2. Establish trust from Key Trustee Server to Key HSM specifying the path to the private key and certificate (Key
Trustee Server is a client to Key HSM). This example shows how to use the --client-certfile and
--client-keyfile options to specify the path to non-default certificate and key:

$ sudo ktadmin keyhsm --server https://keyhsm01.example.com:9090 \
--client-certfile /etc/pki/cloudera/certs/mycert.crt \
--client-keyfile /etc/pki/cloudera/certs/mykey.key --trust

Cloudera Security | 347

Configuring Encryption

http://en.wikipedia.org/wiki/POODLE
https://www.cloudera.com/documentation/other/security-bulletins/topics/csb_all_product_issues.html#concept_ckc_4j5_1q

For a password-protected Key Trustee Server private key, add the --passphrase argument to the command
and enter the password when prompted:

$ sudo ktadmin keyhsm --passphrase \
--server https://keyhsm01.example.com:9090 \
--client-certfile /etc/pki/cloudera/certs/mycert.crt \
--client-keyfile /etc/pki/cloudera/certs/mykey.key --trust

Note: The preceding commands also create a certificate file for the Key HSM that is used by the
Key Trustee Server. This certificate file is stored in
/var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keyhsm.pem.

3. Restart Key Trustee Server:

• Using Cloudera Manager: Restart the Key Trustee Server service (Key Trustee Server service > Actions >
Restart).

• Using the Command Line: Restart the Key Trustee Server daemon:

– RHEL 6-compatible: $ sudo service keytrusteed restart
– RHEL 7-compatible: $ sudo systemctl restart keytrusteed

4. Verify connectivity between the Key HSM service and the HSM:

$ curl -k https://keytrustee01.example.com:11371/test_hsm

Important: You must perform the connection verification between Key HSM and the HSM for
all Key Trustee Server hosts.

Successful connection and test of operations returns output like the following:

"Sample Key TEST_HELLO_DEPOSIT2016-06-03-072718 has been created"

Note: If you are using the test_hsm script to verify that the Key Hardware SecurityModule (Key
HSM) has successfully integrated with the Key Trustee Server, or to verify that the Key HSM is
connected to HSM, and the Key Trustee Server private key file is password-protected, then the
verification may fail. This can occur even if the integration is successful or connected.

If this occurs, then create a key through Hadoop for the test.

See Verifying Key HSM Connectivity to HSM on page 345 for more information about the validation process.

Cloudera Navigator Encrypt
ClouderaNavigator Encrypt transparently encrypts and secures data at restwithout requiring changes to your applications
and ensures there is minimal performance lag in the encryption or decryption process. Advanced key management
with Cloudera Navigator Key Trustee Server on page 322 and process-based access controls in Navigator Encrypt enable
organizations to meet compliance regulations and ensure unauthorized parties or malicious actors never gain access
to encrypted data.

For instructions on installing Navigator Encrypt, see Installing Cloudera Navigator Encrypt.

For instructions on configuring Navigator Encrypt, continue reading:

348 | Cloudera Security

Configuring Encryption

Registering Cloudera Navigator Encrypt with Key Trustee Server

Prerequisites

Functioning Navigator Key Trustee Server

After Installing Cloudera Navigator Encrypt on a host, you must register the host with Navigator Key Trustee Server. If
you have not yet installed Navigator Key Trustee Server, see Installing Cloudera Navigator Key Trustee Server for
instructions.

Key Trustee Server Organization

To register with Key Trustee Server, you must have an existing organization. See Managing Key Trustee Server
Organizations on page 336 for information on creating and viewing organizations on a Key Trustee Server.

Master Password

TheMaster Key is the primary Navigator Encrypt administrator access code and is configured by the Navigator Encrypt
administrator during installation. The Master Key can take any one of three different forms:

• If you choose a passphrase (single), it must be between 15 and 32 characters long.
• If you choose passphrase (dual), both must be between 15 and 32 characters long.
• If you choose the RSA option, enter a path to the RSA key file, and if it has RSA passphrase, enter it for this private

key.

Warning: It is extremely important that you keep your master password secret and safe. In the event
that you lose your master password, you will never be able to recover it, leaving your encrypted data
irretrievably locked away.

Registering with Key Trustee Server

After Installing Cloudera Navigator Encrypt on a host, you must register the host with Navigator Key Trustee Server to
be able to encrypt and decrypt data. The following section lists the command options for registering your Navigator
Encrypt client.

Note: Do not run Navigator Encrypt commands with the screen utility.

If the TLS certificate is signed by an internal CA that is not publicly recognized, then you must add the root certificate
to the host certificate truststore of each Navigator Encrypt client. For details, see

Example command:

$ sudo navencrypt register --server=https://keytrustee01.example.com:11371
--passive-server=https://keytrustee02.example.com:11371 --org=your_keytrustee_org
--auth=org_auth_token

Table 28: Registration Options

ExplanationCommand Option

User-defined unique name for this client to be used for
administration and reports. You can verify your client name

--clientname=my_client_name

in the /etc/navencrypt/keytrustee/clientname
file.

Target Active Key Trustee Server for key storage. Replace
keytrustee01.example.com:11371with the hostname and

--server=https://keytrustee01.example.com:11371

Cloudera Security | 349

Configuring Encryption

ExplanationCommand Option

port of the Active Key Trustee Server. The default port is
11371.

Target Passive Key Trustee Server for key storage. Replace
keytrustee02.example.com:11371with the hostname and

--passive-server=https://keytrustee02.example.com:11371

port of the Passive Key Trustee Server. The default port is
11371.

Key Trustee organization name configured by the Key
Trustee Server administrator

--org=your_keytrustee_org

Organization authorization token, a pre-shared secret by
the Navigator Key Trustee Server administrator

--auth=org_auth_token

Skip SSL certificate verification. Use with self-signed
certificates on the Navigator Key Trustee Server

--skip-ssl-check

Add trustees for retrieval of the master key--trustee

Configure voting policy for trustees--votes

Master Key will be uploaded without encrypting it with
your local GPG Navigator Key Trustee

--recoverable

Key Trustee Server scheme that Navigator Encrypt uses
for public key operations. Specify "http" or "https".

--scheme "<scheme>"

Key Trustee Server port that Navigator Encrypt uses for
public key operations.

--port

Registering with Previous Versions of Key Trustee Server

By default, new installations of Navigator Key Trustee Server 5.4.0 use a single HTTPS port for key storage and public
key operations. Previous versions and upgrades use separate ports for key storage and public key operations. For
backward compatibility, Navigator Encrypt 3.7.0 introduces the--scheme and--port parameters for thenavencrypt
register command.

For example, to register a version 3.7.0 Navigator Encrypt client with a version 3.8.0 Key Trustee Server using HTTPS
over port 443 for key storage and HTTP over port 80 for public key operations, run the following command:

$ sudo navencrypt register --server=https://keytrustee.example.com:443
--org=key_trustee_org --auth=auth_token --scheme "http" --port 80

Navigator Encrypt versions lower than 3.7.0 do not support the --scheme and --port parameters. For these versions
of Navigator Encrypt, youmust ensure that the Key Trustee Server is configured to use port 443 (HTTPS) for key storage
and port 80 (HTTP) for public key operations.

Navigator Encrypt versions lower than 3.8.0 do not support the --passive-server parameter.

Updating Key Trustee Server Ports

The navencrypt register command does not provide the ability to change the ports for existing registrations. If
the Key Trustee Server ports are changed, youmust update /etc/navencrypt/keytrustee/ztrustee.confwith
the new port and scheme parameters (HKP_PORT and HKP_SCHEME, respectively).

For example, see the following ztrustee.conf excerpt from a registered client that has been upgraded to Navigator
Encrypt 3.7.0:

{
 "LOCAL_FINGERPRINT": "2048R/182AAA838DC300AC334258D8E7F299BFB68A6F6F",
 "REMOTES": {

350 | Cloudera Security

Configuring Encryption

 "kts01.example.com": {
 "REMOTE_FINGERPRINT":
"4096R/AF6400E12DC149799CA8CE6BF1604C34D830DE20",
 "REMOTE_SERVER": "https://kts01.example.com",
 "DEFAULT": true,
 "SSL_INSECURE": false,
 "PROTOCOL": "json-encrypt"
 }
 }
}

In this example, the Key Trustee Server (keytrustee.example.com) is using the default configuration of port 443
(HTTPS) for key storage and port 80 (HTTP) for public key operations.

If the Key Trustee Server is then updated to use port 11371 (HTTPS) for both key storage and public key operations,
you must update ztrustee.conf as follows (changes in bold):

{
 "LOCAL_FINGERPRINT": "2048R/182AAA838DC300AC334258D8E7F299BFB68A6F6F",
 "REMOTES": {
 "kts01.example.com": {
 "REMOTE_FINGERPRINT":
"4096R/AF6400E12DC149799CA8CE6BF1604C34D830DE20",
 "REMOTE_SERVER": "https://kts01.example.com:11371",

"HKP_PORT": 11371,
"HKP_SCHEME": "https",

 "DEFAULT": true,
 "SSL_INSECURE": false,
 "PROTOCOL": "json-encrypt"
 }
 }
}

Updating Navigator Encrypt for High Availability Key Trustee Server

If you registered a Navigator Encrypt client with a standalone Key Trustee Server, and then configured high availability
for Key Trustee Server, you can edit /etc/navencrypt/keytrustee/ztrustee.conf to enable the client to take
advantage of the high availability features. The following example shows the contents of ztrustee.conf after adding
the required REMOTE_SERVERS entry (changes in bold):

{
 "LOCAL_FINGERPRINT": "2048R/182AAA838DC300AC334258D8E7F299BFB68A6F6F",
 "REMOTES": {
 "kts01.example.com": {
 "REMOTE_FINGERPRINT":
"4096R/AF6400E12DC149799CA8CE6BF1604C34D830DE20",
 "REMOTE_SERVER": "https://kts01.example.com:11371",
 "HKP_PORT": 11371,
 "HKP_SCHEME": "https",
 "DEFAULT": true,

"REMOTE_SERVERS": ["https://kts01.example.com:11371",
"https://kts02.example.com:11371"],
 "SSL_INSECURE": true,
 "PROTOCOL": "json-encrypt"
 }
 }
}

Configuration Files

The installer creates the /etc/navencrypt directory. All configuration settings are saved in this directory. Do not
delete any file from /etc/navencrypt. These files provide the necessary information for the Navigator Encrypt
application to function properly.

Cloudera Security | 351

Configuring Encryption

Warning: Perform backups of encrypted data, mount-points, and Navigator Encrypt configuration
directories on a regular basis. To do this, ensure you have a backup of /etc/navencrypt. Failure to
backup this directory will make your backed up encrypted data unrecoverable in the event of data
loss.

Change Master Key by UUID

It is possible to re-use a previously used Master Key by its UUID. For example, if you currently have a Master key with
a single passphrase, you can see the corresponding Navigator Key Trustee UUID in the /etc/navencrypt/control
file:

$ cat /etc/navencrypt/control
{
 "app": {
 "name": "navencrypt",
 "version": "3.5"
 },
 "keys": {
 "master": {
 "type": "single-passphrase",
 "uuid": "qMAKRMdk4HVbhfzR79cp9w92YBmNHJ5nSLhfd8ZVo6L"
 },
 "targets": []
 }
}

Note: If the control file is accidentally deleted, you can restore it using the navencrypt control
--restore-control-file command.

You can copy theUUID (qMAKRMdk4HVbhfzR79cp9w92YBmNHJ5nSLhfd8ZVo6L in this example) and runnavencrypt
key --change with option --new-master-key-uuid to change a Master Key by using its UUID only:

$ sudo navencrypt key --change
--new-master-key-uuid=qMAKRMdk4HVbhfzR79cp9w92YBmNHJ5nSLhfd8ZVo6L
>> Type your OLD Master key
Type MASTER passphrase 1:
Type MASTER passphrase 2:
Verifying Master Key against Navigator Key Trustee (wait a moment)...
OK
Changing Master key (wait a moment)...
 * Setting up EXISTING MASTER key...
 * Uploading CONTROL content...
 * Re-encrypting local keys...
Master key successfully changed.

Note: The navencrypt key command fails if no volumes are encrypted or the kernel module is not
loaded.

Preparing for Encryption Using Cloudera Navigator Encrypt

Before you can encrypt data, you must prepare a storage repository to hold the encrypted data and a mount point
through which to access the encrypted data. The storage repository and mount point must exist before encrypting
data using the navencrypt-move command.

Data stored and retrieved from the repository is encrypted and decrypted transparently.

Cloudera Navigator Encrypt does not support:

• Encrypting a directory that contains or is contained within a mount point for another service (including Navigator
Encrypt and NFS). See Encrypting Data on page 359 for more information.

352 | Cloudera Security

Configuring Encryption

• Encrypting immutable files or directories containing immutable files.
• Installation or use inchroot environments, including creatingchroot environmentswithin an encrypted directory.
• Encrypting HDFS data files.

Navigator Encrypt Commands

Note: Do not run Navigator Encrypt commands with the screen utility.

The following table lists the commands used to encrypt data:

Table 29: Navigator Encrypt Commands

DescriptionCommand

Manage, update, and verify your data.navencrypt

Prepare your system for encryption by creating
mount-points and specifying storage.

navencrypt-prepare

Remove a mountpoint that is no longer in use.navencrypt-prepare --undo

Encrypt/decrypt your data to/from the encrypted
filesystem.

navencrypt-move

Generate process profile information in JSON format.navencrypt-profile

Build or rebuild the Navigator Encrypt kernel module.navencrypt-module-setup

Preparing for Encryption

Note: When using an HSM with Key Trustee Server and Navigator Encrypt, encrypting many block
devices may exceed the capacity of the HSM. A key is created in the HSM for each encrypted block
device, so be sure that your HSM can support your encryption requirements.

To get an in-depth look at the details behind the navencrypt-prepare command, or to use a unique configuration,
use the interactive prompt by executing navencrypt-preparewith no options. This launches an interactive console
that guides you through the following operations:

• Creating internal encryption keys
• Registering internal keys in Navigator Key Trustee
• Registering mount point in /etc/navencrypt/ztab
• Mounting current mount point
• Establishing encryption method (dm-crypt for devices, ecryptfs for directories)

Using the console, you can choose how youwant your data stored and accessed. Navigator Encrypt offers two different
types of encryption:

• Block-level encryption with dm-crypt: Protect your data by encrypting the entire device. This option enables full
disk encryption and is optimized for some system configurations. Block-level encryption can be used with logical
devices such as a loop device.

• File-level encryption with ecryptfs: Protect your data bymounting an encrypted filesystem on top of an existing
one. Enables transparent access to encrypted data without modifying your storage.

Note: As of August 2015, Filesystem-level encryption using eCryptfs is deprecated. For new
installations, use block-level encryption. For existing installations using eCryptfs, see Migrating
eCryptfs-Encrypted Data to dm-crypt on page 360 for instructions on migrating data encrypted
using eCryptfs to use dm-crypt.

Cloudera Security | 353

Configuring Encryption

See Block-Level Encryption with dm-crypt on page 354 and Filesystem-Level Encryption with eCryptfs on page 357 for
more information.

To prepare for encryption, you must set a location to store the encrypted data and a mount point through which to
access the data. The storage location and mount point must be created before encrypting data.

Note: If you are performing a file system check as part of your preparation work, then note that the
crypto device must bemapped and active. Also, be aware that if you execute fsck in force mode (-f)
, there is a risk of data loss. If the force operation fails, it could cause file system corruption at the
device header.

In the following example, we will use the directory /navencrypt/encrypted-storage for the encrypted storage
and /navencrypt/mount-point for the mount point. If you have specific space/partition requirements, you can
select a different directory, although Cloudera highly recommends that you place the encrypted directory on the same
partition as the data you are planning to encrypt.

The syntax for the prepare command is as follows:

$ sudo navencrypt-prepare <data_storage_directory> <mount_point>

When specifying the storage path and themount point path, do not use a trailing / in the path names. Both directories
must exist prior to running the navencrypt-prepare command. They are not automatically created.

To create the encrypted partition, create the mount point and storage directories, and then use the
navencrypt-prepare utility:

$ sudo mkdir -p /navencrypt/encrypted-storage /navencrypt/mount-point
$ sudo navencrypt-prepare /navencrypt/encrypted-storage /navencrypt/mount-point

For RHEL 7, run the following command after the navencrypt-prepare command completes:

$ sudo systemctl start navencrypt-mount

To demonstrate the difference between the two directories, this example uses different directories for the encrypted
storage and the mount point. It is also possible to store and access the data using the same directory.

To see the effects of these commands, run df -h. This command displays the partition information about your system.
You should see an ecryptfs partition located at /navencrypt/encrypted-storage, and mounted at
/navencrypt/mount-point.

After you have successfully prepared a client for encryption, you can encrypt and decrypt data using the commands
described in Encrypting and Decrypting Data Using Cloudera Navigator Encrypt on page 358.

Block-Level Encryption with dm-crypt

Note: For best performance, Cloudera strongly recommends using block encryption with dm-crypt.
See Migrating eCryptfs-Encrypted Data to dm-crypt on page 360 for instructions on migrating data
encrypted using eCryptfs to use dm-crypt.

When choosing block-level encryption during the interactive console, you must specify two parameters:

1. The first parameter is the block device that you want to store the encrypted file system in. Because this device
stores all of the encrypted data, it must be as large as or larger than the target data. The device must exist and
be empty. Supported storage devices are:

• Physical block devices (for example, a disk device)
• Virtual block devices (for example, a block device created by LVM)
• Loop devices (see Block-Level Encryption with a Loop Device on page 355 for instructions on creating a loop

device)

354 | Cloudera Security

Configuring Encryption

https://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux)

2. The second parameter is the mount point for the encrypted file system. This is the location where you can access
the encrypted data stored in the first parameter. The mount point must already exist. It is not created by the
navencrypt-prepare command.

The entire device in the first parameter is used for encrypted data.

Note: Do not manually unmount the encryption mount point (for example, using umount). If you do
so, you must manually close the dm-crypt device using the following procedure:

1. Run dmsetup table to list the dm-crypt devices.
2. Run cryptsetup luksClose <device_name> to close the device for the unmounted mount

point.

After choosing these two parameters and following the interactive console (discussed further in Preparing for Encryption
on page 353), you are ready to encrypt your data. The following example shows successful output from a
navencrypt-prepare command using dm-crypt for block-level encryption:

$ sudo /usr/sbin/navencrypt-prepare /dev/sda1 /mnt/dm_encrypted
Type MASTER passphrase:
Encryption Type: dmCrypt (LUKS)
Cipher: aes
Key Size: 256
Random Interface: /dev/urandom
Filesystem: ext4
Verifying MASTER key against Navigator Key Trustee (wait a moment) ... OK
Generation Encryption Keys with /dev/urandom ... OK
Preparing dmCrypt device (--use-urandom) ... OK
Creating ext4 filesystem ... OK
Registering Encryption Keys (wait a moment) ... OK
Mounting /dev/sda1 ... OK

Block-Level Encryption with a Loop Device

A block-level encrypted device can be a physical device or a storage space treated as a device. See Migrating
eCryptfs-Encrypted Data to dm-crypt on page 360 for instructions on migrating data encrypted using eCryptfs to use
dm-crypt with a loop device.

To configure a loop device, use the dd command to create a storage space:

Warning: The space for the loop device is pre-allocated. After the loop device is created, the size
cannot be changed. Make sure you are allocating enough storage for the current encrypted data as
well as any future data.

If your disks are mounted individually with a filesystem on each disk, and your storage needs exceed
the capacity of a single disk, you can create a loop device on each disk for which you want to allocate
space for encrypted data. If you have consolidated storage (for example, using LVM), you can create
a single loop device or multiple devices.

$ sudo dd if=/dev/zero of=/dmcrypt/storage bs=1G count=500

The dd command above creates a 500 GB file. Modify the bs and count values to generate the required file size.

After generating the file, run losetup -f to view unused loop devices. Use the available loop device with the
navencrypt-prepare -d command, demonstrated below.

Specifically for loop devices, the -d parameter enables Navigator Encrypt to manage the loop device association. You
no longer need to use the losetup command to associate the file with the loop device, and the loop device is

Cloudera Security | 355

Configuring Encryption

automatically prepared at boot. For RHEL 7-compatible OS, you must run the following commands to ensure that a
loop device is available at boot:

$ sudo bash -c 'echo "loop" > /etc/modules-load.d/loop.conf'
$ sudo bash -c 'echo "options loop max_loop=8" > /etc/modprobe.d/loop_options.conf'

Warning: Loop devices are not created by Navigator Encrypt. Instead, Navigator Encrypt assigns a
datastore to a loop device when the navencrypt-prepare --datastore option is used. So, it is
up to the system administrator to create persistent /dev/loopX devices, which are required to prepare
a virtual block device. If the loop device being prepared is not persistent, then Navigator Encrypt will
not mount the device upon a reboot.

The data storage directory name (/dmcrypt/storage in the previous example) must contain only alphanumeric
characters, spaces, hyphens (-), or underscores (_). Other special characters are not supported.

The following example shows the output from a successful command:

$ losetup -f
/dev/loop0
$ sudo navencrypt-prepare -d /dmcrypt/storage /dev/loop0 /dmcrypt/mountpoint
Type MASTER passphrase:

Encryption Type: dmCrypt (LUKS)
Cipher: aes
Key Size: 256
Random Interface: OpenSSL
Filesystem: ext4
Options:

Verifying MASTER key against KeyTrustee (wait a moment) ... OK
Generation Encryption Keys with OpenSSL ... OK
Assigning '/dev/loop0'->'/dmcrypt/storage' ... OK
Preparing dmCrypt device ... OK
Creating ext4 filesystem ... OK
Registering Encryption Keys (wait a moment) ... OK
Mounting /dev/loop0 ... OK

For upgraded Navigator Encrypt clients that already use loop devices, you can enable Navigator Encrypt to manage
the loop device file association (instead of configuring the system to run the losetup command at boot) by adding
the nav_datastore option to the entry in /etc/navencrypt/ztab. For example:

<target mount-dir> <source device> <type> <options>
/dmcrypt/mountpoint /dev/loop0 luks
key=keytrustee,nav_datastore='/dmcrypt/storage'

Important: Use caution when editing the /etc/navencrypt/ztab file. Entries are tab-separated
(not space-separated). The ztab file must not contain empty lines.

After you have created the loop device, continuewith the instructions in Block-Level Encryption with dm-crypt on page
354.

356 | Cloudera Security

Configuring Encryption

Filesystem-Level Encryption with eCryptfs

Note: As of August 2015, Filesystem-level encryption using eCryptfs is deprecated. For best
performance, Cloudera strongly recommends using Block-Level Encryptionwith dm-crypt on page 354
where possible. See Migrating eCryptfs-Encrypted Data to dm-crypt on page 360 for instructions on
migrating data encrypted using eCryptfs to use dm-crypt.

RHEL 7 does not support eCryptfs. For new installations on RHEL 7, youmust use Block-Level Encryption
with dm-crypt on page 354. If you are planning on upgrading to RHEL 7 and are currently using eCryptfs,
migrate to dm-crypt before upgrading.

When choosing file-level encryption during the interactive console, you must specify two parameters:

1. The first parameter is the storage directory you want to store the encrypted file system in. Because this directory
will hold all of the encrypted data, it must be as large as or larger than the target data.

2. The second parameter is the mount point for the encrypted file system. This is the location where you can access
the encrypted data stored in the location identified by the first parameter.

While the data is technically stored at the location identified by the first parameter, you can only access the data from
the mount point identified by the second parameter. Consider this when choosing where to mount your data.

After choosing these two parameters and following the interactive console (discussed further in Preparing for Encryption
on page 353), you are ready to encrypt your data.

Undo Operation

Navigator Encrypt 3.5 and higher supports a new command option, navencrypt-prepare --undo. This command
reverses the operations from the regular navencrypt-prepare command by removing the device from Navigator
Encrypt control and removing registered encryption keys.

The only parameter of the undo operation is the storage device used to store the encrypted file system (not the mount
point). Here is an example showing navencrypt-prepare and navencrypt-prepare --undo operations:

$ sudo navencrypt-prepare /path/to/storage /path/to/mountpoint
Type MASTER passphrase:

Encryption Type: eCryptfs
Cipher: aes
Key Size: 256
Random Interface: OpenSSL
Filesystem: ext4
Options:

Verifying MASTER key against Navigator Key Trustee (wait a moment) ... OK
Generation Encryption Keys with OpenSSL ... OK
Registering Encryption Keys (wait a moment) ... OK
Mounting /path/to/mountpoint ... OK
$ sudo navencrypt-prepare --undo /path/to/storage
Type MASTER passphrase:
Verifying MASTER key against Navigator Key Trustee (wait a moment) ... OK
Umounting /path/to/mountpoint ... OK

Pass-through Mount Options for navencrypt-prepare

Navigator Encrypt 3.5 and higher provides the ability to specify options to pass to the mount command that is executed
during /etc/init.d/navencrypt-mount start (systemctl start navencrypt-mount on RHEL 7). These
options are specified with the -o option when preparing a mountpoint with the navencrypt-prepare command.

The following shows an example navencrypt-prepare command output when passing mount options with the -o
option:

$ sudo navencrypt-prepare -o discard,resize /mnt/t2 /mnt/t2
Type MASTER passphrase:

Cloudera Security | 357

Configuring Encryption

Encryption Type: eCryptfs
Cipher: aes
Key Size: 256
Random Interface: OpenSSL
Filesystem: ext4
Options: discard,resize

Verifying MASTER key against Navigator Key Trustee(wait a moment) ... OK
Generation Encryption Keys with OpenSSL ... OK
Registering Encryption Keys (wait a moment) ... OK
Mounting /mnt/t2 ... OK

You can verify the results by viewing the /etc/navencrypt/ztab file:

$ cat /etc/navencrypt/ztab
/mnt/t2 /mnt/t2 ecryptfs key=keytrustee,cipher=aes,keysize=256,discard,resize

Options can be added or removed to existing mount points prepared with versions of Navigator Encrypt prior to 3.5
by editing the /etc/navencrypt/ztab file and adding the comma-separated options (no spaces) to the end of each
line as seen in the previous example above.

Important: Use caution when editing the /etc/navencrypt/ztab file. Entries are tab-separated
(not space-separated). The ztab file must not contain empty lines.

To see the mounted filesystems and options, run mount:

$ mount
/mnt/t2 on /mnt/t2 type ecryptfs
(rw,ecryptfs_sig=6de3db1e87077adb,ecryptfs_unlink_sigs,noauto,\
ecryptfs_cipher=aes,ecryptfs_key_bytes=32,discard,resize)

Pass-through mount options work for both dm-crypt and eCryptfs. For a list of available mount options, see the man
pages for cryptsetup and ecryptfs respectively.

Encrypting and Decrypting Data Using Cloudera Navigator Encrypt

Warning: Before encrypting or decrypting any data, stop all processes (for example,MySQL,MongoDB,
PostgreSQL, and so on) that have access to the target data. Failure to do so could lead to data
corruption.

After the encrypted file system is created and initialized, it is ready to hold data. All encryption and decryption
functionality is performed with a single command: navencrypt-move.

Do not manually create directories or files under a Cloudera Navigator Encrypt mount point; use only the
navencrypt-move command to encrypt and decrypt data. See Preparing for Encryption Using Cloudera Navigator
Encrypt on page 352 for more information about mount points.

After encrypting a file or directory, all data written and read through the mount point is transparently encrypted and
decrypted.

Before You Begin

Navigator Encrypt does not support encrypting data in certain environments, including the following:

• Do not attempt to encrypt a directory that contains or is contained within a mount point for another service
(including Navigator Encrypt and NFS). For example:

– If your encryptionmount point is/var/lib/navencrypt/mount, donot attempt to encrypt/var,/var/lib,
/var/lib/navencrypt, /var/lib/navencrypt/mount, or anything under
/var/lib/navencrypt/mount/.

358 | Cloudera Security

Configuring Encryption

– If you have mounted an NFS filesystem at /mnt/home, do not attempt to encrypt /mnt, /mnt/home, or
anything under /mnt/home.

• Do not attempt to encrypt immutable files or directories containing immutable files.
• Do not use Navigator Encrypt within a chroot environment, or create a chroot environmentwithin an encrypted

directory.
• If your Key Trustee Server is managed by Cloudera Manager, do not encrypt the Cloudera Manager database with

Navigator Encrypt; doing so prevents Cloudera Manager from starting.

Encrypting Data

Do not manually create directories or files under a Navigator Encrypt mount point; use only the navencrypt-move
command to encrypt data.

Here is an example command to encrypt data, with an explanation for each option:

$ sudo navencrypt-move encrypt @<category> <directory_or_file_to_encrypt>
<encrypted_mount_point>

Important: Do not run navencrypt-move commands simultaneously in multiple terminals. Doing
so results in failure to encrypt or decrypt all of the specified data. No data is lost, as the source data
is not removed, but you must re-run the failed operations sequentially.

Table 30: navencrypt-move Command Options

ExplanationCommand Option

Main command interface for all actions that require
moving data either to or from the encrypted file system.

navencrypt-move

For more information see the navencrypt-move man
page (man navencrypt-move).

Identifies the cryptographic operation, in this case,
encrypting data. The decrypt option is described later in
Decrypting Data on page 360.

encrypt

Note: By default, all Navigator Encrypt
encryption commands require free space
equal to twice the size of the encrypted
data. If your environment does not have
enough free space, add--per-file to the
end of the command. This moves each file
individually. Per-file encryption only
requires free space equal to twice the size
of the largest individual file, but is a slower
operation.

The access category that is applied to the data being
encrypted. Encrypted data is protected by process-based

@<category>

access controls that restrict access to only the processes
that you allow. You can use any naming convention you
want (the@ symbol is required), but Cloudera recommends
keeping it simple and memorable. For example, you can
use a name referencing the data type being encrypted,
such as @mysql for a MySQL deployment. See Listing

Cloudera Security | 359

Configuring Encryption

ExplanationCommand Option

Categories on page 369 for instructions on viewing existing
categories.

The data that you want to encrypt. This can be a single file
or an entire directory. Navigator Encrypt starts after the

<directory_or_file_to_encrypt>

system boots, so do not encrypt required system files and
directories (such as the root partition, /var, and so on).
Some examples of recommended data directories to
encrypt are /var/lib/mysql/data, /db/data, and so
on.

Where you want to store the data. This is the path to the
mount point specified during the navencrypt-prepare
command.

<encrypted_mount_point>

When a file is encrypted, a symbolic link (symlink) is created which points to a mount point @<category> directory.
The navencrypt-move command moves all specified data to the encrypted filesystem and replaces it with a symlink
to the mount point for that encrypted filesystem.

Encrypting a directory is similar to encrypting a file. The following command encrypts a directory:

$ sudo /usr/sbin/navencrypt-move encrypt @mycategory /path/to/directory_to_encrypt/
/path/to/mount

In this command, a directory is specified instead of a filename, and a symlink is created for that particular directory.
To see the effects of this command, run:

$ ls -l <directory_to_encrypt>
$ du -h <encrypted_storage_directory>

The output demonstrates the new filesystem layout. Everything that was in the target directory is now securely stored
in the encrypted filesystem.

Decrypting Data

The decryption command requires only the path to the original data, which is now a symbolic link, as an argument.
The following example demonstrates how to decrypt a file using the navencrypt-move command:

$ sudo /usr/sbin/navencrypt-move decrypt /path/to/encrypted/directory_or_file

Important: Do not run navencrypt-move commands simultaneously in multiple terminals. Doing
so results in failure to encrypt or decrypt all of the specified data. No data is lost, as the source data
is not removed, but you must re-run the failed operations sequentially.

As with encryption, you can specify a directory instead of a file:

$ sudo /usr/sbin/navencrypt-move decrypt /path/to/encrypted/directory

Migrating eCryptfs-Encrypted Data to dm-crypt

As of August 2015, Filesystem-level encryption using eCryptfs is deprecated. Use this procedure tomigrate to dm-crypt.

RHEL 7 does not support eCryptfs. For new installations on RHEL 7, youmust use Block-Level Encryption with dm-crypt
on page 354. If you are planning on upgrading to RHEL 7 and are currently using eCryptfs, migrate to dm-crypt before
upgrading.

360 | Cloudera Security

Configuring Encryption

Warning: Before encrypting or decrypting any data, stop all processes (for example,MySQL,MongoDB,
PostgreSQL, and so on) that have access to the target data. Failure to do so could lead to data
corruption.

1. Prepare an empty block device. This can be a physical block device (such as an unused disk) or a virtual block
device (for example, a logical block device created by LVM, or a loop device). For instructions on creating a loop
device, see Block-Level Encryption with a Loop Device on page 355.

2. Stop any services which depend on the encrypted data to be moved.
3. Prepare a block-level encrypted mount point. See Preparing for Encryption Using Cloudera Navigator Encrypt on

page 352 for details about the procedure.
4. Add ACL rules for the new encrypted mount point that match the ACL rules for the mount point you are migrating

from. To view existing ACL rules, run sudo navencrypt acl --print.
5. Add an ACL rule for your preferred shell (for example, /bin/bash) to enable command-line utilities such as mv

and cp:

$ sudo navencrypt acl --add --rule="ALLOW @category * /bin/bash"

6. Copy the encrypted data from the eCryptfs mount point to the dm-crypt mount point:

$ sudo cp -rp /ecryptfs/mountpoint/path/to/data /dmcrypt/mountpoint/path/to/data

7. Update any symbolic links referencing the encrypted data. The following example demonstrates updating a
symbolic link for a PostgreSQL database that was originally encrypted using eCryptfs, but has been migrated to
dm-crypt:

$ sudo ls -l /var/lib/db/data/base/16385
lrwxrwxrwx 1 root root 72 Jul 22 15:33 /var/lib/db/data/base/16385 ->
/ecryptfs/mountpoint/postgres/var/lib/db/data/base/16385
$ sudo ln -sif /dmcrypt/mountpoint/postgres/var/lib/db/data/base/16385
/var/lib/db/data/base/16385
$ sudo ls -l /var/lib/db/data/base/16385
lrwxrwxrwx 1 root root 72 Jul 22 15:33 /var/lib/db/data/base/16385 ->
/dmcrypt/mountpoint/postgres/var/lib/db/data/base/16385

8. Remove the ACL rule enabling command-line utilities:

$ sudo navencrypt acl --del --rule="ALLOW @category * /bin/bash"

9. Restart any services which depend on the encrypted data.
10. Verify that the data was successfully copied, then delete the original eCryptfs-encrypted data. Do not delete any

data until you are certain that you no longer need the original data.

a. Stop the navencrypt-mount service:

$ sudo service navencrypt-mount stop

b. Remove the original mountpoint directory and the storage directory with the original encrypted data.
c. Edit /etc/navencrypt/ztab and remove entries for the original encrypted directory where eCryptfs is

listed as the <type>.

Important: Use caution when editing the /etc/navencrypt/ztab file. Entries are
tab-separated (not space-separated). The ztab file must not contain empty lines.

d. Start the navencrypt-mount service:

$ sudo service navencrypt-mount start

Cloudera Security | 361

Configuring Encryption

https://en.wikipedia.org/wiki/Logical_Volume_Manager_(Linux)

Navigator Encrypt Access Control List

Managing the Access Control List

Cloudera Navigator Encrypt manages file system permissions with an access control list (ACL). This ACL is a security
access control created by Cloudera that enables a predefined Linux process to access a file or directory managed by
Navigator Encrypt.

The ACL uses rules to control process access to files. The rules specify whether a Linux process has access permissions
to read from or write to a specific Navigator Encrypt path.

A rule is defined in the following order:

TYPE @CATEGORY PATH PROCESS PARAMETERS

The following table defines the ACL rule components:

Table 31: ACL Rule Components

DescriptionComponent

Specifies whether to allow or deny a process. It can have
either of the following values: ALLOW or DENY.

TYPE

This is a user-defined shorthand, or container, for the
encrypted dataset that the process will have access to.

@CATEGORY

For example, if you are encrypting the directory
/var/lib/mysql, you could use the category @mysql
to indicate that this rule is granting access to a process on
the MySQL data. See Listing Categories on page 369 for
instructions on viewing existing categories.

Specifies the rights permissions of a specific path. For
example: *, www/*.htaccess. Omit the leading slash (/).

PATH

Specifies the process or command name for the rule.PROCESS

Tells the process the parent-child process to be executed:PARAMETERS

--shell defines the script for Navigator Encrypt to allow
for executable process. Supported shells are
/usr/bin/bash, /bin/bash, /usr/bin/dash, and
/bin/bash.

--children defines for Navigator Encrypt which child
processes to allow that are executed by a process/script.

Example: --shell=/bin/bash,
--children=/bin/df,/bin/ls

All rules are stored in an encrypted policy file together with a set of process signatures that are used by Navigator
Encrypt to authenticate each Linux process. This file is encrypted with the Navigator Encrypt key you defined during
installation.

Cloudera recommends using permissivemode to assist with the initial ACL rule creation for your environment. In
permissivemode, Navigator Encrypt allows full access to the encrypted data by all processes, but logs them in dmesg
as action="denied"messages. Consult these messages to identify required ACL rules. To set Navigator Encrypt to
permissive mode, use the following command:

$ sudo /usr/sbin/navencrypt set --mode=permissive

To view the current mode, run navencrypt status -d. For more information on access modes, see Access Modes.

362 | Cloudera Security

Configuring Encryption

deny2allow

After you generate the action="denied"messages, use the navencrypt deny2allow command to show which
ACL rules are required, based on the action="denied"messages in dmesg. To show which ACL rules are required,
perform the following steps:

1. Save the dmesg content to a file:

$ sudo dmesg > /tmp/dmesg.txt

2. Use the dmesg.txt file content as input to the deny2allow command to analyze the action="denied"
messages and display a list of required ACL rules based on the action="denied"messages. Here is an example
command and output:

$ sudo /usr/sbin/navencrypt deny2allow /tmp/dmesg.txt
ALLOW @mysql employees/* /usr/sbin/mysqld
ALLOW @mysql * /bin/bash
ALLOW @mysql * /bin/ls

If you need to clear the dmesg log and start fresh, run dmesg -c.

If a rule is displayed in the output from the command, it does not automatically mean the ACL rule must be added.
You must determine which rules are actually needed. For example, the rule for ls would not typically be added as an
ACL rule.

After the initial ACL rules are created, disable permissivemode with the following command:

$ sudo /usr/sbin/navencrypt set --mode=enforcing

Adding ACL Rules

Rules can be added one at a time using the command line or by specifying a policy file containing multiple rules. The
following example shows how to add a single rule using the navencrypt acl --add command:

$ sudo /usr/sbin/navencrypt acl --add --rule="ALLOW @mysql * /usr/sbin/mysqld"

See Listing Categories on page 369 for instructions on viewing existing categories.

The following example shows how to add multiple rules using a policy file:

$ sudo /usr/sbin/navencrypt acl --add --file=/mnt/private/acl_rules

The contents of the policy file should contain one rule per line. For example:

ALLOW @mysql * /usr/sbin/mysqld
ALLOW @log * /usr/sbin/mysqld
ALLOW @apache * /usr/lib/apache2/mpm-prefork/apache2

Navigator Encrypt releases 3.10 and higher support comments in the policy file. Comments begin with the hash (#)
symbol. You can use comments to annotate the policy file, or to temporarily disable a rule for testing. For example:

Cloudera Navigator Encrypt policy file
Allow mysqld to access all database files
ALLOW @mysql * /usr/sbin/mysqld
Allow mysqld to write logs
ALLOW @log * /usr/sbin/mysqld
ALLOW @apache * /usr/lib/apache2/mpm-prefork/apache2

Using a policy file is the fastest way to add multiple rules because it only requires the security key one time.

Cloudera Security | 363

Configuring Encryption

It is also possible to overwrite the entire current rules set with the option --overwrite. When this command is
executed, all current rules are replaced by the ones specified in the file that contains the new set of rules. Cloudera
recommends to save a copy of your current set of rules by printing it with the option --print.

Here is an example command using the --overwrite option:

$ sudo /usr/sbin/navencrypt acl --overwrite --file=/mnt/private/acl_rules

Adding ACL Rules by Profile

If your environment requires more granular controls on the processes that can access the data, you can add extra
controls by using profiles. Profiles set requirements on a process other than just having the correct fingerprint. They
can include such things as process owner and group, required open files, and the current working directory. To see
more about adding rules by profile, see ACL Profile Rules on page 365.

Deleting ACL Rules

Rules can be deleted in one of two ways:

1. Manually specifying the rule to delete using the command line.
2. Specifying the line number of the rule to delete.

The following example shows how to delete a rule by passing it as a parameter:

$ sudo /usr/sbin/navencrypt acl --del --rule="ALLOW @mysql * /usr/sbin/mysqld "

If you remove a MySQL ALLOW rule, the MySQL cache must be cleaned by executing the FLUSH TABLES;MySQL
statement. Otherwise, it will still be possible to view data from encrypted table.

The following example shows how to delete a rule by specifying a line number:

$ sudo /usr/sbin/navencrypt acl --del --line 3

It is also possible to delete multiple ACL rules in a single command:

$ sudo /usr/sbin/navencrypt acl --del --line=1,3

See Printing ACL Rules on page 364 for information on determining line numbers.

Deleting ACL Rules by Profile

See ACL Profile Rules on page 365 for instructions on deleting rules by profile.

Printing ACL Rules

You can print the current Access Control List using the following command:

$ sudo /usr/sbin/navencrypt acl --print

Save the ACL to a file with the --file option:

$ sudo /usr/sbin/navencrypt acl --print --file=policy-backup

To display additional information about the organization of the policy file, use the --list option:

$ sudo /usr/sbin/navencrypt acl --list

Universal ACL Rules

Universal ACLs will allow or deny a process access to all files or directories encrypted with Navigator Encrypt.

364 | Cloudera Security

Configuring Encryption

The rule ALLOW @* * /process allows the designated process to access anything from all encrypted categories.

The rule ALLOW @data * * allows all processes access to any path under the @data category.

The rule ALLOW @* * * allows all processes access to all encrypted categories. Cloudera does not recommend using
this rule. Use it only in test environments.

Here is an example adding a universal ACL rule and then displaying it:

$ sudo /usr/sbin/navencrypt acl --add --rule="ALLOW @* * /usr/sbin/mysqld"
Type MASTER passphrase:
1 rule(s) were added
navencrypt acl --listType MASTER passphrase:
- Type Category Path Profile Process
1 ALLOW @* * /usr/sbin/mysqld

Enabling Shell Scripts to Be Detected by ACL

All of the previous rules work for binary files. There may be times a script, such as a shell script, must be allowed to
access the encrypted directory.

You can add the script as a rule by indicating the executable binary process of this script using the --shell option,
for example:

ALLOW @scripts * /root/script.sh --shell=/bin/bash

The --shell option identifies which executable process is used to execute the script. Supported shells are
/usr/bin/bash, /bin/bash, /usr/bin/dash, and /bin/bash

If the script is altered, it will no longer be trusted by the ACL because the fingerprint has changed. If you edit the script
you must invoke the update option to update the ACL with the new fingerprint.

In some cases, it may be necessary to grant permissions to sub-processes invoked by scripts. For example, it may be
necessary to grant permissions to /bin/bash that also allow running the /bin/df command to allow the system
administrator to check disk capacity through a script run using a crontab entry. By using the --children option,
you can specify these permissions. For example:

ALLOW @scripts * /root/script.sh --shell=/bin/bash --children=/bin/df

The --children option tells Navigator Encrypt to allow the /bin/df binary process if it is executed by
/root/script.sh.

To allow more than one sub-process, identify them with the --children option as comma-separated values. For
example:

ALLOW @scripts * /root/script.sh --shell=/bin/bash --children=/bin/df,/bin/ls

To add shell-children sub-processes, execute the navencrypt acl --add command, for example:

$ sudo /usr/sbin/navencrypt acl --add --rule="ALLOW @mysql * /usr/bin/mysqld_safe \
--shell=/bin/bash --children=/bin/df,/bin/ls"

ACL Profile Rules

If your environment requires more granular controls on the processes that can access the data, you can add extra
controls by using profiles. Profiles set requirements on a process other than just having the correct fingerprint. They
can include such things as process owner and group, required open files, and the current working directory.

A profile is generated by using the following command:

$ usr/sbin/navencrypt-profile --pid=<pid>

Cloudera Security | 365

Configuring Encryption

The output, by default, will be displayed on the screen. You can redirect the output to a file using the > or >> redirect
operators. You can then edit the JSON output in the file to remove lines you do notwant. By default, the profile includes
the UID, the short name of the binary or script (identified as comm), and the full command line of the running process
(including any parameters passed). You can generate information by using one of these flags:

• -c, --with-cwd

Output the current working directory

• -e, --with-egid

Output the egid

• -g, --with-gid

Output the gid

• -u, --with-euid

Output the euid

Example output from the navencrypt-profile command:

{
"uid":"0",
"comm":"NetworkManager",
"cmdline":"NetworkManager –pid-file=/var/run/NetwrkManager/NetworkManager.pid",
"gid":"0"
"cwd":"/",
"fd0":"/dev/null",
"fd1":"/dev/null",
"fd2":"/dev/null"
}

Some distributions do not support euid and guid. Make sure that your profile file is correct by executing the following
command to verify the expected IDs:

$ ps -p <pid_of_process> -o euid,egid

If cmdline parameters are variable, such as appending a process start timestamp to a filename, then the process
profilewill notmatch on subsequent restarts of the process because the current profilewill have an updated timestamp
and access will be denied by the ACL. You can mark those parameters as variable inside the profile file. For example,
if the cmdline of a process is something like this:

"cmdline":"NetworkManager –pid-file=/var/run/NetworkManager/NetworkManager.pid \
-logfile=/var/log/NetworkManager/log-20130808152300.log"

Where log-20130505122300.log is a variable cmdline parameter, before adding the process profile to the ACL,
edit the process profile file and use ## to specify that a particular parameter is variable:

"cmdline":"NetworkManager –pid-file=/var/run/NetworkManager/NetworkManager.pid
-logfile=##"

With the above configuration, the ACL will allow any value for the -logfile cmdline parameter.

To enable a profile in the ACL, use the additional parameter --profile-file=<filename> when adding the rule
to the ACL:

$ sudo /usr/sbin/navencrypt acl --add --rule="ALLOW @mysql * /usr/sbin/mysqld" \
–-profile-file=/path/to/profile/file

366 | Cloudera Security

Configuring Encryption

To display the profile portion of the rules, use the --all parameter with navencrypt acl --list:

$ sudo /usr/sbin/navencrypt acl --list --all
Type MASTER passphrase:
- Type Category Path Profile Process
1 ALLOW @mysql * YES /usr/sbin/mysqld
PROFILE:
{"uid":"120","comm":"mysqld","cmdline":"mysqld"}

Maintaining Cloudera Navigator Encrypt

Manually Backing Up Navigator Encrypt

It is recommended that you back up Navigator Encrypt configuration directory after installation, and again after any
configuration updates.

1. To manually back up the Navigator Encrypt configuration directory (/etc/navencrypt):

$ zip -r --encrypt nav-encrypt-conf.zip /etc/navencrypt

The --encrypt option prompts you to create a password used to encrypt the zip file. This password is also
required to decrypt the file. Ensure that you protect the password by storing it in a secure location.

2. Move the backup file (nav-encrypt-conf.zip) to a secure location.

Warning: Failure to back up the configuration directory makes your backed-up encrypted data
unrecoverable in the event of data loss.

Validating Navigator Encrypt Configuration

To validate the Navigator Encrypt deployment, run the following command:

$ sudo navencrypt status --integrity

This command verifies that:

• The mount encryption key (MEK) exists for each mount point.
• Each mount point in /etc/navencrypt/ztab has a corresponding entry in the control file

(/etc/navencrypt/control).
• Each mount point directory exists.
• For loop devices, the file used for encrypted storage exists.

The output is similar to the following:

$ sudo navencrypt status --integrity
Checking MEKs integrity

 Mountpoint: /dev/loop0
 MEK file exist: [YES]
 Mountpoint: /dev/loop1
 MEK file exist: [YES]

Checking Ztab Mountpoints integrity

 Mountpoint: /dev/loop0
 ztab vs control correspondence: [YES]
 Mountpoint directory exists: [YES]
 Mountpoint: /dev/loop1
 ztab vs control correspondence: [YES]
 Mountpoint directory exists: [YES]

Checking Datastore backend files

Cloudera Security | 367

Configuring Encryption

 Datastore: '/root/my_storage_test'
 Backend file exist: [YES]

Restoring Mount Encryption Keys (MEKs) and Control File

Navigator Encrypt deposits its mount encryption keys (MEKs) and control file (/etc/navencrypt/control) in
Cloudera Navigator Key Trustee Server. If these files are accidentally deleted, they can be restored from Key Trustee
Server using the following commands:

• To restore MEKs:

$ sudo navencrypt key --restore-keys

• To restore the control file:

$ sudo navencrypt control --restore-control-file

Access Modes

Navigator Encrypt provides three different access modes:

• Enforcing is the default mode in which Navigator Encrypt validates access from all processes against the ACL. To
protect your data, enforcing mode must be enabled.

• Permissivemode causes action="denied"messages to be logged in dmesg. It does not prevent access to the
encrypted data. This mode is a dry-run feature to run and build ACL rules.

• Adminmode, as well as permissive mode, does not prevent access to the encrypted data. It allows any process
to access the information because the ACL rules are not validated against the process. Admin mode does not
cause action="denied"messages to be logged in dmesg.

To view the current access mode, run the following command:

$ sudo /usr/sbin/navencrypt status -d

Note: The navencrypt status command reports that the navencryptmodule is not running if
no volumes are encrypted or the kernel module is not loaded.

To change the access mode, use the following command:

$ sudo /usr/sbin/navencrypt set --mode={enforcing|permissive|admin}

You cannot change the Navigator Encrypt access mode unless the Navigator Encrypt module is running. To view the
status of the Navigator Encrypt module, run navencrypt status --module.

To start the Navigator Encrypt module there must be at least one active mount-point. To verify the mount-points
status, run the following command:

$ sudo /etc/init.d/navencrypt-mount status

For RHEL 7, use systemctl instead:

$ sudo systemctl status navencrypt-mount

Changing and Verifying the Master Key

You can perform two operations with the navencrypt key command: change and verify.

368 | Cloudera Security

Configuring Encryption

You can verify a key against the Navigator Encrypt module, the Navigator Key Trustee server, or both. For example:

$ sudo /usr/sbin/navencrypt key --verify
$ sudo /usr/sbin/navencrypt key --verify --only-module
$ sudo /usr/sbin/navencrypt key --verify --only-keytrustee

Note: The navencrypt key command fails if no volumes are encrypted or the kernel module is not
loaded.

The master key can be changed in the event that another key-type authentication mechanism or a new master key is
required. Valid master key types are single-passphrase, dual-passphrase, and RSA key files. To change the master key
type, issue the following command and follow the interactive console:

$ sudo /usr/sbin/navencrypt key –-change

You can use the --trustees, --votes, and --recoverable options for the new key as described in Table 28:
Registration Options on page 349.

Listing Categories

To list the existing categories for each mount point, run the command navencrypt-move --list-categories.
For example:

$ sudo navencrypt-move --list-categories
Navigator Encrypt Categories found per Mountpoint:

 /dmcrypt-storage
 @mysql
 @keytabs

 /home/jdoe/secrets
 @moms_recipes
 @world_domination_plan

Updating ACL Fingerprints

All rules reference a process fingerprint (a SHA256 digest) that is used to authenticate the process into the file system.
If the filesystem detects a fingerprint that is different from the one stored in the ACL, the Linux process is denied access
and treated as an untrusted process.

Occasionally this process fingerprint must be updated, such as when software is upgraded. When the fingerprint must
be updated, the Navigator Encrypt administrator re-authenticates the process on the ACL by executing the command
navencrypt acl --update.

The following example demonstrates how to determine when a process fingerprint has been changed and must be
updated:

$ sudo /usr/sbin/navencrypt acl --list
Type MASTER passphrase:
- Type Category Path Profile Process
1 !! ALLOW @mysql * /usr/sbin/mysqld
2 ALLOW @log * /usr/sbin/mysqld
3 !! ALLOW @apache * /usr/lib/apache2/mpm-prefork/

In the example above, the double exclamation (!!) characters indicate that a process fingerprint has changed and
must be updated. Similarly, double E (EE) characters indicate a process read error. This error can be caused by a process
that does not exist or that has permission issues.

Cloudera Security | 369

Configuring Encryption

Note:

For RHEL-compatible OSes, the prelink applicationmay also be responsible for ACL fingerprint issues.
Prelinking is intended to speed up a system by reducing the time a program needs to begin. Cloudera
highly recommends disabling any automated prelink jobs, which are enabled by default in some
systems. As an alternative, Cloudera recommends that you integrate a manual prelink run into your
existing change control policies to ensure minimal downtime for applications accessing encrypted
data.

To disable prelinking, modify the /etc/sysconfig/prelink file and change PRELINKING=yes to
PRELINKING=no. Then, run the/etc/cron.daily/prelink script as root. Once finished, automatic
prelinking is disabled.

For more information about how prelinking affects your system, see prelink.

Managing Mount Points

The /etc/init.d/navencrypt-mount command mounts all mount points that were registered with the
navencrypt-prepare command and are listed in the /etc/navencrypt/ztab file. The possible operations are:

• start

• stop

• status

• restart

For RHEL 7, use systemctl [start|stop|status|restart] navencrypt-mount.

Note: Do not manually unmount the encryption mount point (for example, using umount). If you do
so, you must manually close the dm-crypt device using the following procedure:

1. Run dmsetup table to list the dm-crypt devices.
2. Run cryptsetup luksClose <device_name> to close the device for the unmounted mount

point.

When executing the stop operation, the encrypted mount point is unmounted, and your data becomes inaccessible.

The following example shows how to execute navencrypt-mount status with some inactive mount points:

$ sudo /etc/init.d/navencrypt-mount status

The following example shows how to execute the navencrypt-mount stop command:

$ sudo /etc/init.d/navencrypt-mount stop

The following example shows how to execute the navencrypt-mount start command:

$ sudo /etc/init.d/navencrypt-mount start

Here is an example command used to manually mount a directory:

$ sudo /usr/sbin/mount.navencrypt /path/to_encrypted_data/ /path/to/mountpoint

This command can be executed only if the navencrypt-prepare command was previously executed.

Navigator Encrypt Kernel Module Setup

If the kernel headers were not installed on your host, or if the wrong version of the kernel headers were installed, the
Navigator Encrypt module was not built at installation time. To avoid reinstalling the system, install the correct headers
and execute the navencrypt-module-setup command. This attempts to build the module and install it.

370 | Cloudera Security

Configuring Encryption

http://en.wikipedia.org/wiki/Prelink

This method is also an efficient way to install any new Navigator Encrypt module feature or fix without otherwise
modifying your current Navigator Encrypt environment.

Navigator Encrypt Configuration Directory Structure

The file and directory structure of /etc/navencrypt is as follows:

$ tree /etc/navencrypt/
/etc/navencrypt/
 control -> /etc/navencrypt/jSpi9SM65xUIIhrau1Nn8ZXmQhrrQ9e363EUz8HKiRs
 jSpi9SM65xUIIhrau1Nn8ZXmQhrrQ9e363EUz8HKiRs
 rules
 ztab
locust
 keytrustee
 clientname
 deposits
 dev.loop0
 media.31E5-79B9locustlocust[system ~]# . /etc/*release[system ~]# . /etc/*release

 mnt.a
 mnt.encrypted
 mnt.tomount
 pubring.gpg
 pubring.gpg~
 random_seed
 secring.gpg
 trustdb.gpg
 ztrustee.conf

The following files and folders are part of the created file structure:

• control

File that saves information about the mount points and corresponding Navigator Key Trustee keys. If this file is
accidentally deleted, you can restore it using thenavencrypt control --restore-control-file command.

• rules

File that contains the ACL rules. It is encrypted with the user-provided master key.

• ztab

File that contains information about all the mount points and their encryption type.

Important: Use cautionwhenediting the/etc/navencrypt/ztab file. Entries are tab-separated
(not space-separated). The ztab file must not contain empty lines.

• keytrustee

Directory where Navigator Key Trustee GPG keys are stored. These are generated during navencrypt register
operations.

• keytrustee/deposits

Directory where the Navigator Encrypt mount encryption keys (MEKs) are saved. These are encrypted with the
user-provided master key. If these are accidentally deleted, you can can restore them from Key Trustee Server
using the navencrypt key --restore-keys command.

Every mount point has an internal randomly-generated encryption passphrase.

Cloudera Security | 371

Configuring Encryption

Collecting Navigator Encrypt Environment Information

When troubleshooting problems with Navigator Encrypt, it is helpful to gather information about the installation and
environment. Navigator Encrypt provides a command to facilitate this:

$ sudo navencrypt-collect

This command collects and outputs to the console the following information:

• Information about the system on which Navigator Encrypt is installed
• Entries from /etc/navencrypt/ztab

• The contents of the keytrustee.conf file
• Recent entries from the Navigator Encrypt log file
• Configured software repositories
• Checksums of all /usr/src/navencrypt* and /usr/sbin/navencrypt* files

You can use this information to compare Navigator Encrypt installations and to provide to Cloudera Support for
troubleshooting. The navencrypt-collect command only outputs this information on the console, and does not
generate any files or upload to Cloudera.

To save the information to a file, use the redirect operator (>). For example:

$ sudo navencrypt-collect > navencrypt.info

Upgrading Navigator Encrypt Hosts

See Best Practices for Upgrading Navigator Encrypt Hosts for considerations when upgrading operating systems (OS)
and kernels on hosts that have Navigator Encrypt installed.

Configuring Encryption for Data Spills
Some CDH services can encrypt data that lives temporarily on the local filesystem outside HDFS. This usually includes
data that may spill to disk when operations are too memory intensive and the service exceeds its allotted memory
limit on a host. You can enable on-disk spill encryption for the following services.

MapReduce v2 (YARN)

MapReduce v2 allows you to encrypt intermediate files generated during encrypted shuffle and in case of data spills
during the map and reduce stages. Enable this by setting the following properties in mapred-site.xml.

Enable or disable encryption for intermediate MapReduce
spills.

Default: false

mapreduce.job.encrypted-intermediate-data

The key length used to encrypt data spilled to disk.

Default: 128

mapreduce.job.encrypted-intermediate-data-key-size-bits

The buffer size in Kb for the stream written to disk after
encryption.

Default: 128

mapreduce.job.encrypted-intermediate-data.buffer.kb

Note: Enabling encryption for intermediate data spills will restrict the number of attempts for a job
to 1.

372 | Cloudera Security

Configuring Encryption

HBase

HBase does not write data outside HDFS, and does not require spill encryption.

Impala

Impala allows certain memory-intensive operations to be able to write temporary data to disk in case these operations
approach theirmemory limit on a host. For details, read SQLOperations that Spill to Disk. To enable disk spill encryption
in Impala:

1. Go to the Cloudera Manager Admin Console.
2. Click the Configuration tab.
3. Select Scope > Impala Daemon.
4. Select Category > Security.
5. Check the checkbox for the Disk Spill Encryption property.
6. Click Save Changes to commit the changes.

Hive

Hive jobs occasionally write data temporarily to local directories. If you enable HDFS encryption, you must ensure that
the following intermediate local directories are also protected:

• LOCALSCRATCHDIR: The MapJoin optimization in Hive writes HDFS tables to a local directory and then uploads
them to the distributed cache. To ensure these files are encrypted, either disable MapJoin by setting
hive.auto.convert.join to false, or encrypt the local Hive Scratch directory
(hive.exec.local.scratchdir) using Cloudera Navigator Encrypt.

• DOWNLOADED_RESOURCES_DIR: JARs that are added to a user session and stored in HDFS are downloaded to
hive.downloaded.resources.dir on the HiveServer2 local filesystem. To encrypt these JAR files, configure
Cloudera Navigator Encrypt to encrypt the directory specified by hive.downloaded.resources.dir.

• NodeManager Local Directory List: Hive stores JARs and MapJoin files in the distributed cache. To use MapJoin
or encrypt JARs and other resource files, the yarn.nodemanager.local-dirs YARN configuration property
must be configured to a set of encrypted local directories on all nodes.

For more information on Hive behavior with HDFS encryption enabled, see Using HDFS Encryption with Hive.

Flume

Flume supports on-disk encryption for log files written by the Flume file channels. See Configuring Encrypted On-disk
File Channels for Flume on page 373.

Configuring Encrypted On-disk File Channels for Flume

Flume supports on-disk encryption of data on the local disk. To implement this:

• Generate an encryption key to use for the Flume Encrypted File Channel
• Configure on-disk encryption by setting parameters in the flume.conf file

Important:

Flume on-disk encryption operates with a maximum strength of 128-bit AES encryption unless the
JCE unlimited encryption cryptography policy files are installed. Please see this Oracle document for
information about enabling strong cryptography:
http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html

Consult your security organization for guidance on the acceptable strength of your encryption keys.
Cloudera has tested with AES-128, AES-192, and AES-256.

Cloudera Security | 373

Configuring Encryption

http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html

Generating Encryption Keys

Use the keytool program included with the Oracle JDK to create the AES encryption keys for use with Flume.

The command to generate a 128-bit key that uses the same password as the key store password is:

keytool -genseckey -alias key-1 -keyalg AES -keysize 128 -validity 9000 \
-keystore test.keystore -storetype jceks \
-storepass keyStorePassword

The command to generate a 128-bit key that uses a different password from that used by the key store is:

keytool -genseckey -alias key-0 -keypass keyPassword -keyalg AES \
-keysize 128 -validity 9000 -keystore test.keystore \
-storetype jceks -storepass keyStorePassword

The key store and password files can be stored anywhere on the file system; both files should have flume as the owner
and 0600 permissions.

Please note that -keysize controls the strength of the AES encryption key, in bits; 128, 192, and 256 are the allowed
values.

Configuration

Flume on-disk encryption is enabled by setting parameters in the /etc/flume-ng/conf/flume.conf file.

Basic Configuration

The first example is a basic configuration with an alias called key-0 that uses the same password as the key store:

agent.channels.ch-0.type = file
agent.channels.ch-0.capacity = 10000
agent.channels.ch-0.encryption.cipherProvider = AESCTRNOPADDING
agent.channels.ch-0.encryption.activeKey = key-0
agent.channels.ch-0.encryption.keyProvider = JCEKSFILE
agent.channels.ch-0.encryption.keyProvider.keyStoreFile = /path/to/my.keystore
agent.channels.ch-0.encryption.keyProvider.keyStorePasswordFile =
/path/to/my.keystore.password
agent.channels.ch-0.encryption.keyProvider.keys = key-0

In the next example, key-0 uses its own password which may be different from the key store password:

agent.channels.ch-0.type = file
agent.channels.ch-0.capacity = 10000
agent.channels.ch-0.encryption.cipherProvider = AESCTRNOPADDING
agent.channels.ch-0.encryption.activeKey = key-0
agent.channels.ch-0.encryption.keyProvider = JCEKSFILE
agent.channels.ch-0.encryption.keyProvider.keyStoreFile = /path/to/my.keystore
agent.channels.ch-0.encryption.keyProvider.keyStorePasswordFile =
/path/to/my.keystore.password
agent.channels.ch-0.encryption.keyProvider.keys = key-0
agent.channels.ch-0.encryption.keyProvider.keys.key-0.passwordFile =
/path/to/key-0.password

Changing Encryption Keys Over Time

To modify the key, modify the configuration as shown below. This example shows how to change the configuration to
use key-1 instead of key-0:

agent.channels.ch-0.type = file
agent.channels.ch-0.capacity = 10000
agent.channels.ch-0.encryption.cipherProvider = AESCTRNOPADDING
agent.channels.ch-0.encryption.activeKey = key-1
agent.channels.ch-0.encryption.keyProvider = JCEKSFILE
agent.channels.ch-0.encryption.keyProvider.keyStoreFile = /path/to/my.keystore
agent.channels.ch-0.encryption.keyProvider.keyStorePasswordFile =

374 | Cloudera Security

Configuring Encryption

/path/to/my.keystore.password
agent.channels.ch-0.encryption.keyProvider.keys = key-0 key-1

The same scenario except that key-0 and key-1 have their own passwords is shown here:

agent.channels.ch-0.type = file
agent.channels.ch-0.capacity = 10000
agent.channels.ch-0.encryption.cipherProvider = AESCTRNOPADDING
agent.channels.ch-0.encryption.activeKey = key-1
agent.channels.ch-0.encryption.keyProvider = JCEKSFILE
agent.channels.ch-0.encryption.keyProvider.keyStoreFile = /path/to/my.keystore
agent.channels.ch-0.encryption.keyProvider.keyStorePasswordFile =
/path/to/my.keystore.password
agent.channels.ch-0.encryption.keyProvider.keys = key-0 key-1
agent.channels.ch-0.encryption.keyProvider.keys.key-0.passwordFile =
/path/to/key-0.password
agent.channels.ch-0.encryption.keyProvider.keys.key-1.passwordFile =
/path/to/key-1.password

Troubleshooting

If the unlimited strength JCE policy files are not installed, an error similar to the following is printed in the flume.log:

07 Sep 2012 23:22:42,232 ERROR [lifecycleSupervisor-1-0]
(org.apache.flume.channel.file.encryption.AESCTRNoPaddingProvider.getCipher:137) - Unable
 to load key using transformation: AES/CTR/NoPadding; Warning: Maximum allowed key length
 = 128 with the available JCE security policy files. Have you installed the JCE unlimited
 strength jurisdiction policy files?
java.security.InvalidKeyException: Illegal key size
at javax.crypto.Cipher.a(DashoA13*..)
at javax.crypto.Cipher.a(DashoA13*..)
at javax.crypto.Cipher.a(DashoA13*..)
at javax.crypto.Cipher.init(DashoA13*..)
at javax.crypto.Cipher.init(DashoA13*..)
at
org.apache.flume.channel.file.encryption.AESCTRNoPaddingProvider.getCipher(AESCTRNoPaddingProvider.java:120)
at
org.apache.flume.channel.file.encryption.AESCTRNoPaddingProvider.access$200(AESCTRNoPaddingProvider.java:35)
at
org.apache.flume.channel.file.encryption.AESCTRNoPaddingProvider$AESCTRNoPaddingDecryptor.<init>(AESCTRNoPaddingProvider.java:94)
at
org.apache.flume.channel.file.encryption.AESCTRNoPaddingProvider$AESCTRNoPaddingDecryptor.<init>(AESCTRNoPaddingProvider.java:91)
at
org.apache.flume.channel.file.encryption.AESCTRNoPaddingProvider$DecryptorBuilder.build(AESCTRNoPaddingProvider.java:66)
at
org.apache.flume.channel.file.encryption.AESCTRNoPaddingProvider$DecryptorBuilder.build(AESCTRNoPaddingProvider.java:62)
at
org.apache.flume.channel.file.encryption.CipherProviderFactory.getDecrypter(CipherProviderFactory.java:47)
at org.apache.flume.channel.file.LogFileV3$SequentialReader.<init>(LogFileV3.java:257)
at
org.apache.flume.channel.file.LogFileFactory.getSequentialReader(LogFileFactory.java:110)
at org.apache.flume.channel.file.ReplayHandler.replayLog(ReplayHandler.java:258)
at org.apache.flume.channel.file.Log.replay(Log.java:339)
at org.apache.flume.channel.file.FileChannel.start(FileChannel.java:260)
at
org.apache.flume.lifecycle.LifecycleSupervisor$MonitorRunnable.run(LifecycleSupervisor.java:236)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:441)
at java.util.concurrent.FutureTask$Sync.innerRunAndReset(FutureTask.java:317)
at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:150)
at
java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$101(ScheduledThreadPoolExecutor.java:98)
at
java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.runPeriodic(ScheduledThreadPoolExecutor.java:180)
at
java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:204)
at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908)
at java.lang.Thread.run(Thread.java:662)

Cloudera Security | 375

Configuring Encryption

Configuring Encrypted HDFS Data Transport
This topic describes how to configure encrypted HDFS data transport using both, ClouderaManager, and the command
line.

You must enable Kerberos before configuring encrypted HDFS data transport. See Configuring Authentication on page
49 for instructions.

Using Cloudera Manager

Minimum Required Role: Full Administrator

To enable encryption of data transferred betweenDataNodes and clients, and amongDataNodes, perform the following
steps:

1. Enable Hadoop security using Kerberos.
2. Select the HDFS service.
3. Click the Configuration tab.
4. Select Scope > HDFS (Service Wide).
5. Select Category > Security.
6. Configure the following properties: (You can type the property name in the Search box to locate the property.)

DescriptionProperty

Check this field to enable wire encryption.Enable Data Transfer
Encryption

Optionally configure the algorithm used to encrypt data.Data Transfer Encryption
Algorithm

Select privacy.Hadoop RPC Protection

7. Click Save Changes.
8. Restart the HDFS service.

Using the Command Line

Important:

• You can use either Cloudera Manager or the following command-line instructions to complete
this configuration.

• This information applies specifically to CDH 5.9.x. If you use an earlier version of CDH, see the
documentation for that version located at Cloudera Documentation.

To enable encrypted data transport using the command line, perform the following steps:

1. Enable Kerberos authentication, following these instructions.
2. Set the optional RPC encryption by setting hadoop.rpc.protection to "privacy" in the core-site.xml file

in both client and server configurations.

Note:

If RPC encryption is not enabled, transmission of other HDFS data is also insecure.

3. Set dfs.encrypt.data.transfer to true in the hdfs-site.xml file on all server systems.
4. Restart all daemons.

376 | Cloudera Security

Configuring Encryption

http://www.cloudera.com/content/support/en/documentation.html

Configuring Encrypted HBase Data Transport
This topic describes how to configure encrypted HBase data transport using ClouderaManager and the command line.

Configuring Encrypted HBase Data Transport Using Cloudera Manager

Minimum Required Role: Full Administrator

To enable encryption of data transferred between HBase masters and RegionServers and between RegionServers and
clients:

1. Enable Hadoop security using Kerberos.
2. Configure Kerberos authentication for HBase.
3. Select the HBase service.
4. Click the Configuration tab.
5. Select Scope > HBase (Service Wide).
6. Select Category > Security.
7. Search for the HBase Transport Security property and select one of the following:

DescriptionProperty

Enables simple authentication using Kerberos.authentication

Checks the integrity of data received to ensure it was not corrupted in transit.
Selecting integrity also enables authentication.

integrity

Ensures privacy by encrypting the data in transit using TLS/SSL encryption.
Selecting privacy also enables authentication and integrity.

privacy

8. Click Save Changes.
9. Restart the HBase service.

Configuring Encrypted HBase Data Transport Using the Command Line

Important:

• You can use either Cloudera Manager or the following command-line instructions to complete
this configuration.

• This information applies specifically to CDH 5.9.x. If you use an earlier version of CDH, see the
documentation for that version located at Cloudera Documentation.

1. Enable Hadoop Security using Kerberos.
2. Enable HBase security using Kerberos.
3. Enable RPC encryption by setting hbase.rpc.protection in the hbase-site.xml file to one of the following:

DescriptionProperty

Enables simple authentication using Kerberos.authentication

Checks the integrity of data received to ensure it was not corrupted in transit.
Selecting integrity also enables authentication.

integrity

Ensures privacy by encrypting the data in transit using TLS/SSL encryption.
Selecting privacy also enables authentication and integrity.

privacy

4. Restart all daemons.

Cloudera Security | 377

Configuring Encryption

http://www.cloudera.com/content/support/en/documentation.html

Configuring Authorization

Authorization is concerned with who or what has access or control over a given resource or service. Since Hadoop
merges together the capabilities of multiple varied, and previously separate IT systems as an enterprise data hub that
stores andworks on all datawithin an organization, it requiresmultiple authorization controls with varying granularities.
In such cases, Hadoop management tools simplify setup and maintenance by:

• Tying all users to groups, which can be specified in existing LDAP or AD directories.
• Providing role-based access control for similar interaction methods, like batch and interactive SQL queries. For

example, Apache Sentry permissions apply to Hive (HiveServer2) and Impala.

CDH currently provides the following forms of access control:

• Traditional POSIX-style permissions for directories and files, where each directory and file is assigned a single
owner and group. Each assignment has a basic set of permissions available; file permissions are simply read, write,
and execute, and directories have an additional permission to determine access to child directories.

• Extended Access Control Lists (ACLs) for HDFS that provide fine-grained control of permissions for HDFS files by
allowing you to set different permissions for specific named users or named groups.

• Apache HBase uses ACLs to authorize various operations (READ, WRITE, CREATE, ADMIN) by column, column
family, and column family qualifier. HBase ACLs are granted and revoked to both users and groups.

• Role-based access control with Apache Sentry. As of ClouderaManager 5.1.x, Sentry permissions can be configured
using either policy files or the database-backed Sentry service.

– The Sentry service is the preferred way to set up Sentry permissions. See The Sentry Service on page 393 for
more information.

– For the policy file approach to configuring Sentry, see Sentry Policy File Authorization on page 431.

Important: Cloudera does not support Apache Ranger or Hive's native authorization frameworks
for configuring access control in Hive. Use Cloudera-supported Apache Sentry instead.

Cloudera Manager User Roles
Access to Cloudera Manager features is controlled by user accounts. For more information about user accounts, see
Cloudera Manager User Accounts. Among the properties of a user account is the user role, which determines the
Cloudera Manager features visible to the user and the actions the user can perform. All the tasks in the Cloudera
Manager documentation indicate which role is required to perform the task.

Note: The full set of roles are available with Cloudera Enterprise; Cloudera Express supports only the
Read-Only and Full Administrator roles. When a Cloudera Enterprise Data Hub Edition trial license
expires, only userswith Read-Only and Full Administrator roles are allowed to log in. A Full Administrator
must change the role of any other user to Read-Only or Full Administrator before that user can log
in.

User Roles

A Cloudera Manager user account can be assigned one of the following roles with associated permissions:

• Auditor

– View configuration and monitoring information in Cloudera Manager.
– View audit events.

• Read-Only

378 | Cloudera Security

Configuring Authorization

View configuration and monitoring information in Cloudera Manager.–
– View service and monitoring information.
– View events and logs.
– View replication jobs and snapshot policies.
– View YARN applications and Impala queries.

The Read-Only role does not allow the user to:

• Add services or take any actions that affect the state of the cluster.
• Use the HDFS file browser.
• Use the HBase table browser.
• Use the Solr Collection Statistics browser.

• Limited Operator

– View configuration and monitoring information in Cloudera Manager.
– View service and monitoring information.
– Decommission hosts (except hosts running Cloudera Management Service roles).
– Perform the same tasks as the Read-Only role.

The Limited Operator role does not allow the user to add services or take any other actions that affect the state
of the cluster.

• Operator

– View configuration and monitoring information in Cloudera Manager.
– View service and monitoring information.
– Stop, start, and restart clusters, services (except the Cloudera Management Service), and roles.
– Decommission and recommission hosts (except hosts running Cloudera Management Service roles).
– Decommission and recommission roles (except Cloudera Management Service roles).
– Start, stop, and restart KMS.
– Perform the same tasks as the Read-Only role.

The Operator role does not allow the user to add services, roles, or hosts, or take any other actions that affect
the state of the cluster.

• Configurator

– View configuration and monitoring information in Cloudera Manager.
– Perform all Operator operations.
– Configure services (except the Cloudera Management Service).
– Enter and exit maintenance mode.
– Manage dashboards (including Cloudera Management Service dashboards).
– Start, stop, and restart KMS
– Perform the same tasks as the Read-Only role.

• Cluster Administrator - View all data and perform all actions except the following:

– Administer Cloudera Navigator.
– View replication schedules and snapshot policies.
– View audit events.
– Manage user accounts and configuration of external authentication.
– Manage Full Administrator accounts.
– Configure HDFS encryption, administer Key Trustee Server, and manage encryption keys.
– Use the HDFS file browser, the HBase table browser, and the Solr Collection browser.
– View the Directory Usage Report
– View the HBase Statistics Page
– Perform the same tasks as the Read-Only role.

Cloudera Security | 379

Configuring Authorization

• BDR Administrator

– View configuration and monitoring information in Cloudera Manager.
– View service and monitoring information.
– Perform replication and define snapshot operations.
– Use the HDFS file browser, the HBase table browser, and the Solr Collection browser.
– View the Directory Usage Report
– View the HBase Table Statistics Page
– Perform the same tasks as the Read-Only role.

• Navigator Administrator

– View configuration and monitoring information in Cloudera Manager.
– View service and monitoring information.
– Administer Cloudera Navigator.
– View audit events.
– Use the HDFS file browser, the HBase table browser, and the Solr Collection browser.
– Perform the same tasks as the Read-Only role.

• User Administrator

– View configuration and monitoring information in Cloudera Manager.
– View service and monitoring information.
– Manage user accounts and configuration of external authentication.
– Use the HDFS file browser, the HBase table browser, and the Solr Collection browser.
– Perform the same tasks as the Read-Only role.

• Key Administrator

– View configuration and monitoring information in Cloudera Manager.
– Configure HDFS encryption, administer Key Trustee Server, and manage encryption keys.
– Start, stop, and restart KMS
– Configure KMS ACLs
– Use the HDFS file browser, the HBase table browser, and the Solr Collection browser.
– Perform the same tasks as the Read-Only role.

• Full Administrator - Full Administrators have permissions to view all data and do all actions, including reconfiguring
and restarting services, and administering other users.

Determining the Role of the Currently Logged in User

1. Click the logged-in username at the far right of the top navigation bar. The role displays under the username. For
example:

Removing the Full Administrator User Role

Minimum Required Role: User Administrator (also provided by Full Administrator)

In some organizations, security policies may prohibit the use of the Full Administrator role. The Full Administrator role
is created during Cloudera Manager installation, but you can remove it as long as you have at least one remaining user
account with User Administrator privileges.

To remove the Full Administrator user role, perform the following steps.

380 | Cloudera Security

Configuring Authorization

1. Add at least one user account with User Administrator privileges, or ensure that at least one such user account
already exists.

2. Ensure that there is only a single user account with Full Administrator privileges.
3. While logged in as the single remaining Full Administrator user, select your own user account and either delete

it or assign it a new user role.

Warning: After you delete the last Full Administrator account, you will be logged out immediately
and will not be able to log in unless you have access to another user account. Also, it will no longer
be possible to create or assign Full Administrators.

A consequence of removing the Full Administrator role is that some tasks may require collaboration between two or
more users with different user roles. For example:

• If the machine that the Cloudera Navigator roles are running on needs to be replaced, the Cluster Administrator
will want to move all the roles running on that machine to a different machine. The Cluster Administrator can
move any non-Navigator roles by deleting and re-adding them, but would need a Navigator Administrator to
perform the stop, delete, add, and start actions for the Cloudera Navigator roles.

• In order to take HDFS snapshots, snapshots must be enabled on the cluster by a Cluster Administrator, but the
snapshots themselves must be taken by a BDR Administrator.

Cloudera Navigator Data Management Component User Roles
User roles determine the Cloudera Navigator features visible to the user and the actions the user can perform.

The menus displayed in the upper right indicate the user's access to Cloudera Navigator features, as determined by
the roles associated with the user's LDAP or Active Directory groups. For example, a user that belongs to a group with
the Full Administrator role sees the Search, Audits, Analytics, Policies, and Administration tabs. A user that belongs
to a group with the Policy Administrator role sees only the Search, Analytics (metadata), and Policies tabs.

User Roles

A Cloudera Navigator user account can be assigned one of the following user roles with associated permissions:

• Auditing Viewer - View audit events and audit analytics and create audit reports.
• Full Administrator - Full access, including role assignments to groups.
• Lineage Viewer - Search for entities, view metadata, and view lineage and metadata analytics.
• Metadata Administrator - Search for entities, view metadata, view lineage, view metadata analytics, edit custom

metadata, edit managed metadata.
• CustomMetadata Administrator - Search for entities, view metadata, view metadata analytics, and edit custom

metadata.
• Policy Administrator - Search for entities, view metadata, edit metadata and metadata policies, configure and

perform command actions, and view metadata analytics.
• Policy Viewer - View metadata policies.
• User Administrator - Administer role assignments to groups.

Determining the Roles of the Logged-in User

To display the Cloudera Navigator user roles for the logged-in user:

1. In the upper right, select username >My Roles. The Roles pop-up window displays all roles assigned to the LDAP
or Active Directory groups to which the current user belongs.

2. Click Close to dismiss the window.

Cloudera Security | 381

Configuring Authorization

HDFS Extended ACLs
HDFS supports POSIX Access Control Lists (ACLs), as well as the traditional POSIX permissionsmodel already supported.
ACLs control access of HDFS files by providing a way to set different permissions for specific named users or named
groups. They enhance the traditional permissions model by allowing users to define access control for arbitrary
combinations of users and groups instead of a single owner/user or a single group.

Enabling HDFS Access Control Lists

By default, HDFS access control lists (ACLs) are disabled on a cluster. You can enable them using either Cloudera
Manager or the command line.

Default ACLs are applied only to a directory (not to files), and have no direct effect on permission checks. Rather, they
define the ACL that newly-created child files and directories receive automatically.

Important: Ensure that all users and groups resolve on the NameNode for ACLs to work as expected.

Enabling HDFS ACLs Using Cloudera Manager

1. Go to the Cloudera Manager Admin Console and navigate to the HDFS service.
2. Click the Configuration tab.
3. Select Scope > Service_name (Service-Wide)
4. Select Category > Security
5. Locate the Enable Access Control Lists property and select its checkbox to enable HDFS ACLs.
6. Click Save Changes to commit the changes.

Enabling HDFS ACLs Using the Command Line

To enable ACLs using the command line, set the dfs.namenode.acls.enabled property to true in theNameNode's
hdfs-site.xml.

<property>
<name>dfs.namenode.acls.enabled</name>
<value>true</value>
</property>

Commands

To set and get file access control lists (ACLs), use the file system shell commands, setfacl and getfacl.

getfacl

hdfs dfs -getfacl [-R] <path>

<!-- COMMAND OPTIONS
<path>: Path to the file or directory for which ACLs should be listed.
-R: Use this option to recursively list ACLs for all files and directories.
-->

Examples:

<!-- To list all ACLs for the file located at /user/hdfs/file -->
hdfs dfs -getfacl /user/hdfs/file

<!-- To recursively list ACLs for /user/hdfs/file -->
hdfs dfs -getfacl -R /user/hdfs/file

382 | Cloudera Security

Configuring Authorization

setfacl

hdfs dfs -setfacl [-R] [-b|-k -m|-x <acl_spec> <path>]|[--set <acl_spec> <path>]

<!-- COMMAND OPTIONS
<path>: Path to the file or directory for which ACLs should be set.
-R: Use this option to recursively list ACLs for all files and directories.
-b: Revoke all permissions except the base ACLs for user, groups and others.
-k: Remove the default ACL.
-m: Add new permissions to the ACL with this option. Does not affect existing permissions.
-x: Remove only the ACL specified.
<acl_spec>: Comma-separated list of ACL permissions.
--set: Use this option to completely replace the existing ACL for the path specified.
 Previous ACL entries will no longer apply.
-->

Examples:

<!-- To give user ben read & write permission over /user/hdfs/file -->
hdfs dfs -setfacl -m user:ben:rw- /user/hdfs/file

<!-- To remove user alice's ACL entry for /user/hdfs/file -->
hdfs dfs -setfacl -x user:alice /user/hdfs/file

<!-- To give user hadoop read & write access, and group or others read-only access -->
hdfs dfs -setfacl --set user::rw-,user:hadoop:rw-,group::r--,other::r-- /user/hdfs/file

For more information on using HDFS ACLs, see the HDFS Permissions Guide on the Apache website.

HDFS Extended ACL Example

This example demonstrates how a user ("alice"), shares folder accesswith colleagues fromanother team ("hadoopdev"),
so that the hadoopdev team can collaborate on the content of that folder; this is accomplished by updating the default
extended ACL of that directory:

1. Make the files and sub-directories created within the content directory readable by team "hadoopdev":

$ hdfs dfs -setfacl -m group:hadoopdev:r-x /project

2. Set the default ACL setting for the parent directory:

$ hdfs dfs -setfacl -m default:group:hadoopdev:r-x /project

3. Create a sub-directory for the content you wish to share:

$ hdfs dfs -mkdir /project/dev

4. Inspect the new sub-directory ACLs to verify that HDFS has applied the new default values:

$ hdfs dfs -getfacl -R /project

file: /project
owner: alice
group: appdev
user::rwx
group::r-x
other::r-x
default:user::rwx
default:group::r-x
default:group:hadoopdev:r-x
default:mask::r-x
default:other::r-x

file: /project/dev
owner: alice
group: appdev

Cloudera Security | 383

Configuring Authorization

http://hadoop.apache.org/docs/r2.6.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#ACLs_Access_Control_Lists

user::rwx
group::r-x
group:hadoopdev:r-x
mask::r-x
other::r-x
default:user::rwx
default:group::r-x
default:group:hadoopdev:r-x
default:mask::r-x
default:other::r-x

Note: At the time it is created, the default ACL is copied from the parent directory to the child directory.
Subsequent changes to the parent directory default ACL do not change the ACLs of the existing child
directories.

Configuring LDAP Group Mappings

Important:

• Cloudera strongly recommends against using Hadoop's LdapGroupsMapping provider.
LdapGroupsMapping should only be used in cases where OS-level integration is not possible.
Production clusters require an identity provider that works well with all applications, not just
Hadoop. Hence, often the preferred mechanism is to use tools such as SSSD, VAS or Centrify to
replicate LDAP groups.

• Cloudera does not support the use of Winbind in production environments. Winbind uses an
inefficient approach to user/groupmapping, whichmay lead to lowperformance or cluster failures
as the size of the cluster, and the number of users and groups increases.

Irrespective of the mechanism used, user/group mappings must be applied consistently across all
cluster hosts for ease with maintenance.

When configuring LDAP for groupmappings in Hadoop, youmust create the users and groups for your Hadoop services
in LDAP. When using the default shell-based group mapping provider
(org.apache.hadoop.security.ShellBasedUnixGroupsMapping), the requisite user and group relationships
already exist because they are created during the installation procedure. When you switch to LDAP as the group
mapping provider, you must re-create these relationships within LDAP.

Note that if you have modified the System User or System Group setting within Cloudera Manager for any service,
you must use those custom values to provision the users and groups in LDAP.

The table below lists users and their group members for CDH services:

Note: Cloudera Manager 5.3 introduces a new single user mode. In single user mode, the Cloudera
Manager Agent and all the processes run by services managed by Cloudera Manager are started as a
single configured user and group. See Configuring Single User Mode for more information.

384 | Cloudera Security

Configuring Authorization

Table 32: Users and Groups

NotesGroupsUnix User IDComponent
(Version)

Cloudera Manager processes such as the Cloudera
Manager Server and the monitoring roles run as this
user.

The Cloudera Manager keytab file must be named
cmf.keytab since that name is hard-coded in
Cloudera Manager.

Note: Applicable to clusters managed
by Cloudera Manager only.

cloudera-scmcloudera-scmClouderaManager
(all versions)

Accumulo processes run as this user.accumuloaccumuloApache Accumulo
(Accumulo 1.4.3
and higher)

No special users.Apache Avro

The sink that writes to HDFS as this user must have
write privileges.

flumeflumeApache Flume
(CDH 4, CDH 5)

The Master and the RegionServer processes run as
this user.

hbasehbaseApache HBase
(CDH 4, CDH 5)

The NameNode and DataNodes run as this user, and
theHDFS root directory aswell as the directories used
for edit logs should be owned by it.

hdfs, hadoophdfsHDFS (CDH 4, CDH
5)

The HiveServer2 process and the Hive Metastore
processes run as this user.

hivehiveApache Hive (CDH
4, CDH 5)

A user must be defined for Hive access to its
Metastore DB (for example, MySQL or Postgres) but
it can be any identifier and does not correspond to a
Unix uid. This is
javax.jdo.option.ConnectionUserName in
hive-site.xml.

The WebHCat service (for REST access to Hive
functionality) runs as the hive user.

hivehiveApache HCatalog
(CDH 4.2 and
higher, CDH 5)

The HttpFS service runs as this user. See HttpFS
Security Configuration for instructions on how to
generate the merged httpfs-http.keytab file.

httpfshttpfsHttpFS (CDH 4,
CDH 5)

Hue services run as this user.huehueHue (CDH 4, CDH
5)

The Hue Load balancer has a dependency on the
apache2 package that uses the apache user name.

apacheapacheHue Load Balancer
(ClouderaManager
5.5 and higher) Cloudera Manager does not run processes using this

user ID.

Impala services run as this user.impala, hiveimpalaImpala

Cloudera Security | 385

Configuring Authorization

NotesGroupsUnix User IDComponent
(Version)

Kafka brokers and mirror makers run as this user.kafkakafkaApache Kafka
(Cloudera
Distribution of
Kafka 1.2.0)

The Java KeyStore KMS service runs as this user.kmskmsJava KeyStore KMS
(CDH 5.2.1 and
higher)

The Key Trustee KMS service runs as this user.kmskmsKey Trustee KMS
(CDH 5.3 and
higher)

The Key Trustee Server service runs as this user.keytrusteekeytrusteeKey Trustee Server
(CDH 5.4 and
higher)

Kudu services run as this user.kudukuduKudu

Llama runs as this user.llamallamaLlama (CDH 5)

No special users.Apache Mahout

Without Kerberos, the JobTracker and tasks run as
this user. The LinuxTaskController binary is owned by
this user for Kerberos.

mapred, hadoopmapredMapReduce (CDH
4, CDH 5)

The Oozie service runs as this user.oozieoozieApache Oozie
(CDH 4, CDH 5)

No special users.Parquet

No special users.Apache Pig

The Solr processes run as this user.solrsolrCloudera Search
(CDH 4.3 and
higher, CDH 5)

The Spark History Server process runs as this user.sparksparkApacheSpark (CDH
5)

The Sentry service runs as this user.sentrysentryApache Sentry
(CDH 5.1 and
higher)

This user is only for the Sqoop1 Metastore, a
configuration option that is not recommended.

sqoopsqoopApache Sqoop
(CDH 4, CDH 5)

The Sqoop2 service runs as this user.sqoop, sqoop2sqoop2Apache Sqoop2
(CDH 4.2 and
higher, CDH 5)

No special users.Apache Whirr

Without Kerberos, all YARN services and applications
run as this user. The LinuxContainerExecutor binary
is owned by this user for Kerberos.

yarn, hadoopyarnYARN (CDH 4, CDH
5)

The ZooKeeper processes run as this user. It is not
configurable.

zookeeperzookeeperApache ZooKeeper
(CDH 4, CDH 5)

386 | Cloudera Security

Configuring Authorization

Important:

• You can use either Cloudera Manager or the following command-line instructions to complete
this configuration.

• This information applies specifically to CDH 5.9.x. If you use an earlier version of CDH, see the
documentation for that version located at Cloudera Documentation.

Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Make the following changes to the HDFS service's security configuration:

1. Open the Cloudera Manager Admin Console and go to the HDFS service.
2. Click the Configuration tab.
3. Select Scope > HDFS (Service Wide)
4. Select Category > Security.
5. Modify the following configuration properties using values from the table below:

ValueConfiguration Property

org.apache.hadoop.security.LdapGroupsMappingHadoop User Group Mapping Implementation

ldap://<server>Hadoop User Group Mapping LDAP URL

Administrator@example.comHadoop User Group Mapping LDAP Bind User

***Hadoop User Group Mapping LDAP Bind User
Password

dc=example,dc=comHadoop User Group Mapping Search Base

Although the above changes are sufficient to configure group mappings for Active Directory, some changes to the
remaining default configurations might be required for OpenLDAP.

Using the Command Line

Add the following properties to the core-site.xml on the NameNode:

<property>
<name>hadoop.security.group.mapping</name>
<value>org.apache.hadoop.security.LdapGroupsMapping</value>
</property>

<property>
<name>hadoop.security.group.mapping.ldap.url</name>
<value>ldap://server</value>
</property>

<property>
<name>hadoop.security.group.mapping.ldap.bind.user</name>
<value>Administrator@example.com</value>
</property>

<property>
<name>hadoop.security.group.mapping.ldap.bind.password</name>
<value>****</value>
</property>

<property>
<name>hadoop.security.group.mapping.ldap.base</name>
<value>dc=example,dc=com</value>
</property>

Cloudera Security | 387

Configuring Authorization

http://www.cloudera.com/content/support/en/documentation.html

<property>
<name>hadoop.security.group.mapping.ldap.search.filter.user</name>
<value>(&(objectClass=user)(sAMAccountName={0}))</value>
</property>

<property>
<name>hadoop.security.group.mapping.ldap.search.filter.group</name>
<value>(objectClass=group)</value>
</property>

<property>
<name>hadoop.security.group.mapping.ldap.search.attr.member</name>
<value>member</value>
</property>

<property>
<name>hadoop.security.group.mapping.ldap.search.attr.group.name</name>
<value>cn</value>
</property>

Note: In addition:

• If you are using Sentry with Hive, you will also need to add these properties on the HiveServer2
node.

• If you are using Sentry with Impala, add these properties on all hosts

See Users and Groups in Sentry for more information.

Authorization With Apache Sentry
Apache Sentry is a granular, role-based authorization module for Hadoop. Sentry provides the ability to control and
enforce precise levels of privileges on data for authenticated users and applications on a Hadoop cluster. Sentry
currently works out of the box with Apache Hive, Hive Metastore/HCatalog, Apache Solr, Impala, and HDFS (limited
to Hive table data).

Sentry is designed to be a pluggable authorization engine for Hadoop components. It allows you to define authorization
rules to validate a user or application’s access requests for Hadoop resources. Sentry is highly modular and can support
authorization for a wide variety of data models in Hadoop.

Architecture Overview

Sentry Components

There are three components involved in the authorization process:

• Sentry Server

The Sentry RPC server manages the authorization metadata. It supports interfaces to securely retrieve and
manipulate the metadata.

• Data Engine

388 | Cloudera Security

Configuring Authorization

This is a data processing application, such as Hive or Impala, that needs to authorize access to data or metadata
resources. The data engine loads the Sentry plugin and all client requests for accessing resources are intercepted
and routed to the Sentry plugin for validation.

• Sentry Plugin

The Sentry plugin runs in the data engine. It offers interfaces to manipulate authorization metadata stored in the
Sentry Server, and includes the authorization policy engine that evaluates access requests using the authorization
metadata retrieved from the server.

Key Concepts

• Authentication - Verifying credentials to reliably identify a user
• Authorization - Limiting the user’s access to a given resource
• User - Individual identified by underlying authentication system
• Group - A set of users, maintained by the authentication system
• Privilege - An instruction or rule that allows access to an object
• Role - A set of privileges; a template to combine multiple access rules
• Authorization models - Defines the objects to be subject to authorization rules and the granularity of actions

allowed. For example, in the SQL model, the objects can be databases or tables, and the actions are SELECT,
INSERT, and CREATE. For the Search model, the objects are indexes, configs, collections, documents; the access
modes include query and update.

User Identity and Group Mapping

Sentry relies on underlying authentication systems, such as Kerberos or LDAP, to identify the user. It also uses the
group mapping mechanism configured in Hadoop to ensure that Sentry sees the same group mapping as other
components of the Hadoop ecosystem.

Consider a sample organization with users Alice and Bob who belong to an Active Directory (AD) group called
finance-department. Bob also belongs to a group called finance-managers. In Sentry, you first create roles and
then grant privileges to these roles. For example, you can create a role called Analyst and grant SELECT on tables
Customer and Sales to this role.

The next step is to join these authentication entities (users and groups) to authorization entities (roles). This can be
done by granting the Analyst role to the finance-department group. Now Bob and Alice who are members of the
finance-department group get SELECT privilege to the Customer and Sales tables.

Role-Based Access Control

Role-based access control (RBAC) is a powerful mechanism to manage authorization for a large set of users and data
objects in a typical enterprise. New data objects get added or removed, users join, move, or leave organisations all the
time. RBAC makes managing this a lot easier. Hence, as an extension of the sample organization discussed previously,
if a new employee Carol joins the Finance Department, all you need to do is add her to the finance-department
group in AD. This will give Carol access to data from the Sales and Customer tables.

Unified Authorization

Another important aspect of Sentry is the unified authorization. The access control rules once defined, work across
multiple data access tools. For example, being granted the Analyst role in the previous example will allow Bob, Alice,
and others in the finance-department group to access table data from SQL engines such as Hive and Impala, as
well as using MapReduce, Pig applications or metadata access using HCatalog.

Cloudera Security | 389

Configuring Authorization

Sentry Integration with the Hadoop Ecosystem

As illustrated above, Apache Sentry works withmultiple Hadoop components. At the heart, you have the Sentry Server
which stores authorization metadata and provides APIs for tools to retrieve and modify this metadata securely.

Note that the Sentry Server only facilitates the metadata. The actual authorization decision is made by a policy engine
that runs in data processing applications such as Hive or Impala. Each component loads the Sentry plugin, which includes
the service client for dealing with the Sentry service and the policy engine to validate the authorization request.

Hive and Sentry

Consider an example where Hive gets a request to access an object in a certain mode by a client. If Bob submits the
following Hive query:

select * from production.sales

Hive will identify that user Bob is requesting SELECT access to the Sales table. At this point Hive will ask the Sentry
plugin to validate Bob’s access request. The plugin will retrieve Bob’s privileges related to the Sales table and the policy
engine will determine if the request is valid.

390 | Cloudera Security

Configuring Authorization

Hiveworkswith both the Sentry service and policy files. Cloudera recommends you use the Sentry service,whichmakes
it easier to manage user privileges. For more details and instructions, see The Sentry Service on page 393 or Sentry
Policy File Authorization on page 431.

Impala and Sentry

Authorization processing in Impala is similar to that in Hive. The main difference is caching of privileges. Impala’s
Catalog server manages caching schema metadata and propagating it to all Impala server nodes. This Catalog server
caches Sentry metadata as well. As a result, authorization validation in Impala happens locally and much faster.

For detailed documentation, see Enabling Sentry Authorization for Impala on page 453.

Cloudera Security | 391

Configuring Authorization

Sentry-HDFS Synchronization

Sentry-HDFS authorization is focused on Hive warehouse data - that is, any data that is part of a table in Hive or Impala.
The real objective of this integration is to expand the same authorization checks to Hivewarehouse data being accessed
from any other components such as Pig, MapReduce or Spark. At this point, this feature does not replace HDFS ACLs.
Tables that are not associated with Sentry will retain their old ACLs.

The mapping of Sentry privileges to HDFS ACL permissions is as follows:

• SELECT privilege -> Read access on the file.
• INSERT privilege -> Write access on the file.
• ALL privilege -> Read and Write access on the file.

The NameNode loads a Sentry plugin that caches Sentry privileges as well Hive metadata. This helps HDFS to keep file
permissions and Hive tables privileges in sync. The Sentry plugin periodically polls Sentry to keep themetadata changes
in sync.

For example, if Bob runs a Pig job that is reading from the Sales table data files, Pig will try to get the file handle from
HDFS. At that point the Sentry plugin on the NameNode will figure out that the file is part of Hive data and overlay
Sentry privileges on top of the file ACLs. As a result, HDFS will enforce the same privileges for this Pig client that Hive
would apply for a SQL query.

For HDFS-Sentry synchronization towork, youmust use the Sentry service, not policy file authorization. See Synchronizing
HDFS ACLs and Sentry Permissions on page 424, for more details.

Search and Sentry

Sentry can apply restrictions to various Search tasks including accessing data and creating collections. These restrictions
are consistently applied, regardless of the way users attempt to complete actions. For example, restricting access to
data in a collection restricts that access whether queries come from the command line, from a browser, or through
the admin console.

With Search, Sentry restrictions can be stored in the database-backed Sentry service or in a policy file (for example,
sentry-provider.ini) which is stored in an HDFS location such as
hdfs://ha-nn-uri/user/solr/sentry/sentry-provider.ini.

Sentry with Search does not support multiple policy files for multiple databases. If you choose to use policy files rather
than database-backed Sentry service, youmust use a separate policy file for each Sentry-enabled service. For example,
if Hive and Search were using policy file authorization, using a combined Hive and Search policy file would result in an
invalid configuration and failed authorization on both services.

Search works with both the Sentry service and policy files. Cloudera recommends you use the Sentry service, which
makes it easier to manage user privileges. For more details and instructions, see The Sentry Service on page 393 or
Sentry Policy File Authorization on page 431.

For detailed documentation, see Configuring Sentry Authorization for Cloudera Search on page 464.

392 | Cloudera Security

Configuring Authorization

Authorization Administration

The Sentry Server supports APIs to securely manipulate roles and privileges. Both Hive and Impala support SQL
statements tomanage privileges natively. Sentry assumes that HiveServer2 and Impala run as superusers, usually called
hive and impala. To initiate top-level permissions for Sentry, an admin must login as a superuser. You can use either
Beeline or the Impala shell to execute the following sample statement:

GRANT ROLE Analyst TO GROUP finance_managers

Disabling Hive CLI

To execute Hive queries, you must use Beeline. Hive CLI is not supported with Sentry and therefore its access to the
Hive Metastore must be disabled. This is especially necessary if the Hive metastore has sensitive metadata. To do this,
set the Hive Metastore Access Control and Proxy User Groups Override property for the Hive service in Cloudera
Manager. For example, to give the hive user permission to impersonate only members of the hive and hue groups,
set the property to: hive, hue

If other user groups require access to the Hive Metastore, they can be added to the comma-separated list as needed.
For example, setting this property to hive, hue blocks the Spark shell from accessing the metastore.

Using Hue to Manage Sentry Permissions

Hue supports a Security app tomanage Sentry authorization. This allows users to explore and change table permissions.
Here is a video blog that demonstrates its functionality.

The Sentry Service

Important: This is the documentation for the Sentry service introduced in CDH 5.1. If you want to
use Sentry's previous policy file approach to secure your data, see Sentry Policy File Authorization on
page 431.

The Sentry service is a RPC server that stores the authorization metadata in an underlying relational database and
provides RPC interfaces to retrieve and manipulate privileges. It supports secure access to services using Kerberos.
The service serves authorization metadata from the database backed storage; it does not handle actual privilege
validation. TheHive, Impala, and Solr services are clients of this service andwill enforce Sentry privilegeswhen configured
to use Sentry.

The motivation behind introducing a new Sentry service is to make it easier to handle user privileges than the existing
policy file approach. Providing a service instead of a file allows you to use themore traditionalGRANT/REVOKE statements
to modify privileges.

The rest of this topic will walk you through the prerequisites for Sentry, basic terminology, and the Sentry privilege
model.

For more information on installing, upgrading and configuring the Sentry service, see:

Prerequisites

• CDH 5.1.x (or higher) managed by Cloudera Manager 5.1.x (or higher). See the Cloudera Manager Administration
Guide and #unique_215 for instructions.

• HiveServer2 and the Hive Metastore running with strong authentication. For HiveServer2, strong authentication
is either Kerberos or LDAP. For the HiveMetastore, only Kerberos is considered strong authentication (to override,
see Securing the Hive Metastore on page 417).

• Impala 1.4.0 (or higher) runningwith strong authentication.With Impala, either Kerberos or LDAP can be configured
to achieve strong authentication.

• Cloudera Search for CDH 5.1.0 or higher. Solr supports using Sentry beginningwith CDH5.1.0. Different functionality
is added at different releases:

– Sentry with policy files is added in CDH 5.1.0.

Cloudera Security | 393

Configuring Authorization

http://gethue.com/apache-sentry-made-easy-with-the-new-hue-security-app/

– Sentry with config support is added in CDH 5.5.0.
– Sentry with database-backed Sentry service is added with CDH 5.8.0.

• Implement Kerberos authentication on your cluster. For instructions, see Enabling Kerberos Authentication Using
the Wizard on page 59.

Terminology

• An object is an entity protected by Sentry's authorization rules. The objects supported in the current release are
server, database, table, URI, collection, and config.

• A role is a collection of rules for accessing a given object.
• A privilege is granted to a role to govern access to an object.With CDH 5.5, Sentry allows you to assign the SELECT

privilege to columns (only for Hive and Impala). Supported privileges are:

Table 33: Valid privilege types and the objects they apply to

ObjectPrivilege

SERVER, TABLE, DB, URI, COLLECTION, CONFIGALL

DB, TABLEINSERT

DB, TABLE, COLUMNSELECT

Note: In Beeline, you can also grant SELECT and INSERT on SERVER.

• A user is an entity that is permitted by the authentication subsystem to access the service. This entity can be a
Kerberos principal, an LDAP userid, or an artifact of some other supported pluggable authentication system.

• A group connects the authentication system with the authorization system. It is a collection of one or more users
who have been granted one or more authorization roles. Sentry allows a set of roles to be configured for a group.

• A configured group provider determines a user’s affiliationwith a group. The current release supports HDFS-backed
groups and locally configured groups.

Privilege Model

Sentry uses a role-based privilege model with the following characteristics.

• Allows any user to execute show function, desc function, and show locks.
• Allows the user to see only those tables, databases, collections, configs for which this user has privileges.
• Requires a user to have the necessary privileges on the URI to execute HiveQL operations that take in a location.

Examples of such operations include LOAD, IMPORT, and EXPORT.
• Privileges granted on URIs are recursively applied to all subdirectories. That is, privileges only need to be granted

on the parent directory.
• CDH 5.5 introduces column-level access control for tables in Hive and Impala. Previously, Sentry supported privilege

granularity only down to a table. Hence, if you wanted to restrict access to a column of sensitive data, the
workaround would be to first create view for a subset of columns, and then grant privileges on that view. To
reduce the administrative overhead associatedwith such an approach, Sentry now allows you to assign the SELECT
privilege on a subset of columns in a table.

Important:

• When Sentry is enabled, you must use Beeline to execute Hive queries. Hive CLI is not supported
with Sentry and must be disabled.

• When Sentry is enabled, a user with no privileges on a database will not be allowed to connect
to HiveServer2. This is because the use <database> command is now executed as part of the
connection to HiveServer2, which is why the connection fails. See HIVE-4256.

394 | Cloudera Security

Configuring Authorization

https://issues.apache.org/jira/browse/HIVE-4256

User to Group Mapping

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

You can configure Sentry to use Hadoop groups. By default, Sentry looks up groups locally, but it can be configured to
look up Hadoop groups using LDAP (for Active Directory). User/group information for Sentry, Hive and Impala must
be made available for lookup on the following hosts:

• Sentry - Groups are looked up on the host the Sentry Server runs on.
• Hive - Groups are looked up on the hosts running HiveServer2 and the Hive Metastore.
• Impala - Groups are looked up on the Catalog Server and on all of the Impala daemon hosts.

Group mappings in Sentry can be summarized as in the figure below.

The Sentry service only uses HadoopUserGroup mappings. See Configuring LDAP Group Mappings on page 384 for
details on configuring LDAP group mappings in Hadoop.

Authorization Privilege Model for Hive and Impala

Privileges can be granted on different objects in the Hive warehouse. Any privilege that can be granted is associated
with a level in the object hierarchy. If a privilege is granted on a container object in the hierarchy, the base object
automatically inherits it. For instance, if a user has ALL privileges on the database scope, then (s)he has ALL privileges
on all of the base objects contained within that scope.

Important:

Note that because of this object hierarchy, it is possible for a user to read data from a database that
the user does not have access to. For example, you have two roles:

• role1 - full access to database1 and database2
• role2 - full access to database1, no access to database2

A user with role1 can create a view in database1 based on a table in database2. Because role2 has
access to database1, a user with role2 can read the data in that view from database2.

Cloudera Security | 395

Configuring Authorization

Object Hierarchy

Server
 URI
 Database
 Table
 Partition
 Columns
 View

Table 34: Valid privilege types and objects they apply to

ObjectPrivilege

DB, TABLEINSERT

DB, TABLE, VIEW, COLUMNSELECT

SERVER, TABLE, DB, URIALL

Note that when you grant ALL on a URI, those permissions extend into the subdirectories in that path. For example, if
a role has ALL on the following URI:

• hdfs://host:port/directory_A/directory_B

That role will also have ALL on these directories:

• hdfs://host:port/directory_A/directory_B/directory_C

• hdfs://host:port/directory_A/directory_B/directory_C/directory_D

• hdfs://host:port/directory_A/directory_B/directory_E

URI permissions do not affect HDFS ACL's.

Table 35: Privilege hierarchy

Privileges on container
object that implies
privileges on the base
object

Container object that
contains the base object

Granular privileges on
object

Base Object

ALLSERVERALLDATABASE

ALLDATABASEINSERTTABLE

ALLDATABASESELECTTABLE

ALLDATABASESELECTCOLUMN

ALLDATABASESELECTVIEW

Table 36: Privilege table for Hive & Impala operations

URIPrivileges RequiredScopeOperation

ALLSERVERCREATE DATABASE

ALLDATABASEDROP DATABASE

ALLDATABASECREATE TABLE

ALLTABLEDROP TABLE

ALLDATABASE; SELECT on TABLE;CREATE VIEW

396 | Cloudera Security

Configuring Authorization

URIPrivileges RequiredScopeOperation

-This operation is allowed if you
have column-levelSELECT access
to the columns being used.

ALLVIEW/TABLEALTER VIEW

-This operation is allowed if you
have column-levelSELECT access
to the columns being used.

ALLVIEW/TABLEDROP VIEW

ALLTABLEALTER TABLE .. ADD COLUMNS

ALLTABLEALTER TABLE .. REPLACE
COLUMNS

ALLTABLEALTER TABLE .. CHANGE column

ALLTABLEALTER TABLE .. RENAME

ALLTABLEALTER TABLE .. SET
TBLPROPERTIES

ALLTABLEALTER TABLE .. SET FILEFORMAT

URIALLTABLEALTER TABLE .. SET LOCATION

ALLTABLEALTER TABLE .. ADD PARTITION

URIALLTABLEALTER TABLE .. ADD PARTITION
location

ALLTABLEALTER TABLE .. DROP PARTITION

ALLTABLEALTER TABLE .. PARTITION SET
FILEFORMAT

SELECTTABLESHOW CREATE TABLE

SELECT/INSERTTABLESHOW PARTITIONS

SELECT/INSERTTABLESHOW TABLES

-Output includes all the tables for
which the user has table-level
privileges and all the tables for
which the user has some
column-level privileges.

SELECT/INSERTTABLESHOW GRANT ROLE

-Output includes an additional
field for any column-level
privileges.

SELECT/INSERTTABLEDESCRIBE TABLE

-Output shows all columns if the
user has table level-privileges or
SELECT privilege on at least one
table column

URIINSERTTABLELOAD DATA

Cloudera Security | 397

Configuring Authorization

URIPrivileges RequiredScopeOperation

SELECTVIEW/TABLE; COLUMNSELECT

-You can grant the SELECT
privilege on a view to give users
access to specific columns of a
table they do not otherwise have
access to.

-See Column-level Authorization
onpage419 for details on allowed
column-level operations.

INSERTTABLEINSERT OVERWRITE TABLE

ALLDATABASE; SELECT on TABLECREATE TABLE .. AS SELECT

-This operation is allowed if you
have column-levelSELECT access
to the columns being used.

AnyUSE <dbName>

ALLSERVERCREATE FUNCTION

ALLTABLEALTER TABLE .. SET
SERDEPROPERTIES

ALLTABLEALTER TABLE .. PARTITION SET
SERDEPROPERTIES

Table 37: Privilege table for Hive-only operations

URIPrivileges RequiredScopeOperation

URIINSERTTABLEINSERT OVERWRITE DIRECTORY

SELECT + INSERTTABLEAnalyze TABLE

URIALLDATABASEIMPORT TABLE

URISELECTTABLEEXPORT TABLE

ALLTABLEALTER TABLE TOUCH

ALLTABLEALTER TABLE TOUCH PARTITION

ALLTABLEALTER TABLE .. CLUSTERED BY
SORTED BY

ALLTABLEALTER TABLE .. ENABLE/DISABLE

ALLTABLEALTER TABLE .. PARTITION
ENABLE/DISABLE

ALLTABLEALTER TABLE .. PARTITION..
RENAME TO PARTITION

ALLTABLEMSCK REPAIR TABLE

ALLDATABASEALTER DATABASE

SELECT/INSERTDATABASEDESCRIBE DATABASE

SELECT/INSERTTABLESHOW COLUMNS

398 | Cloudera Security

Configuring Authorization

URIPrivileges RequiredScopeOperation

-Output for this operation filters
columns to which the user does
not have explicit SELECT access

ALLTABLECREATE INDEX

ALLTABLEDROP INDEX

SELECT/INSERTTABLESHOW INDEXES

Allowedonly for Sentry admin
users

GRANT PRIVILEGE

Allowedonly for Sentry admin
users

REVOKE PRIVILEGE

Allowedonly for Sentry admin
users

SHOW GRANT

SELECT/INSERTTABLESHOW TBLPROPERTIES

SELECT/INSERTTABLEDESCRIBE TABLE .. PARTITION

Not AllowedADD ARCHIVE[S]

Not AllowedADD FILE[S]

Not AllowedADD JAR[S]

Not AllowedDELETE JAR[S]

Not AllowedDFS

Not AllowedLIST JAR[S]

SELECTVIEWSHOW CREATE VIEW

Table 38: Privilege table for Impala-only operations

URIPrivileges RequiredScopeOperation

INSERTTABLE; COLUMNEXPLAIN INSERT

SELECTTABLE; COLUMNEXPLAIN SELECT

ALLSERVERINVALIDATE METADATA

SELECT/INSERTTABLEINVALIDATE METADATA <table
name>

SELECT/INSERTTABLEREFRESH <table name> or
REFRESH <table name>
PARTITION (<partition_spec>)

ALLSERVERDROP FUNCTION

ALLTABLECOMPUTE STATS

SELECTVIEW / TABLE(S)SHOW CREATE VIEW

Authorization Privilege Model for Solr

The tables below refer to the request handlers defined in the generated solrconfig.xml.secure. If you are not
using this configuration file, the below may not apply.

Cloudera Security | 399

Configuring Authorization

admin is a special collection in Sentry used to represent administrative actions. A non-administrative request may only
require privileges on the collection or config onwhich the request is being performed. This is called either collection1
or config1 in these tables. An administrative request may require privileges on both the admin collection and
collection1. This is denoted as admin, collection1 in the tables below.

Note: If no privileges are granted, no access is possible. For example, accessing the Solr Admin UI
requires the QUERY privilege. If no users are granted the QUERY privilege, no access to the Solr Admin
UI is possible.

Table 39: Privilege table for non-administrative request handlers

Collections that Require PrivilegeRequired Collection PrivilegeRequest Handler

collection1QUERYselect

collection1QUERYquery

collection1QUERYget

collection1QUERYbrowse

collection1QUERYtvrh

collection1QUERYclustering

collection1QUERYterms

collection1QUERYelevate

collection1QUERYanalysis/field

collection1QUERYanalysis/document

collection1UPDATEupdate

collection1UPDATEupdate/json

collection1UPDATEupdate/csv

Table 40: Privilege table for collections admin actions

Collections that Require PrivilegeRequired Collection PrivilegeCollection Action

admin, collection1UPDATEcreate

admin, collection1UPDATEdelete

admin, collection1UPDATEreload

admin, collection1

Note: collection1
here refers to the name
of the alias, not the
underlying collection(s).
For example,
http://YOUR-HOST:8983/

solr/admin/collections?action=

CREATEALIAS&name=collection1

&collections=underlyingCollection

UPDATEcreateAlias

400 | Cloudera Security

Configuring Authorization

Collections that Require PrivilegeRequired Collection PrivilegeCollection Action

admin, collection1

Note: collection1
here refers to the name
of the alias, not the
underlying collection(s).
For example,
http://YOUR-HOST:8983/

solr/admin/collections?action=

DELETEALIAS&name=collection1

UPDATEdeleteAlias

admin, collection1UPDATEsyncShard

admin, collection1UPDATEsplitShard

admin, collection1UPDATEdeleteShard

Table 41: Privilege table for core admin actions

Collections that Require PrivilegeRequired Collection PrivilegeCollection Action

admin, collection1UPDATEcreate

admin, collection1UPDATErename

admin, collection1UPDATEload

admin, collection1UPDATEunload

admin, collection1UPDATEstatus

adminUPDATEpersist

admin, collection1UPDATEreload

admin, collection1UPDATEswap

admin, collection1UPDATEmergeIndexes

admin, collection1UPDATEsplit

admin, collection1UPDATEprepRecover

admin, collection1UPDATErequestRecover

admin, collection1UPDATErequestSyncShard

admin, collection1UPDATErequestApplyUpdates

Table 42: Privilege table for Info and AdminHandlers

Collections that Require PrivilegeRequired Collection PrivilegeRequest Handler

adminQUERYLukeRequestHandler

adminQUERYSystemInfoHandler

adminQUERYSolrInfoMBeanHandler

adminQUERYPluginInfoHandler

adminQUERYThreadDumpHandler

Cloudera Security | 401

Configuring Authorization

Collections that Require PrivilegeRequired Collection PrivilegeRequest Handler

adminQUERYPropertiesRequestHandler

adminQUERY, UPDATE (or *)LoginHandler

adminQUERYShowFileRequestHandler

Table 43: Privilege table for Config Admin actions

Configs that Require
Privilege

Required Config
Privilege

Collections that
Require Privilege

Required Collection
Privilege

Config Action

config1*adminUPDATECREATE

config1*adminUPDATEDELETE

Installing and Upgrading the Sentry Service

This topic describes how to install and upgrade the Sentry service. If you are migrating from Sentry policy files to the
database-backed Sentry service, see Migrating from Sentry Policy Files to the Sentry Service on page 405.

Adding the Sentry Service

Use one of the following sections to add/install the Sentry service:

Adding the Sentry Service Using Cloudera Manager

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

1. On the Home > Status tab, click

to the right of the cluster name and select Add a Service. A list of service types display. You can add one type of
service at a time.

2. Select the Sentry service and click Continue.
3. Customize role assignments for Sentry. The wizard evaluates the hardware configurations of the available hosts

and selects the best hosts for each role. If you are happy with the preselected hosts, click Continue and move to
the next step. Otherwise, you can change the hosts that are assigned to the roles. The View By Host button allows
you to view a list of hosts.

To change the host for a role, click the hostname under the role. A window appears with a list of hosts to choose
from. Note that you can only select one host for the Sentry Server. You can search for a host in the Search field
or you can filter the list by entering a range of hosts in the Search field. You can search for hosts in the following
ways:

• Range of hostnames (without the domain portion)

Matching HostsRange Definition

10.1.1.1, 10.1.1.2, 10.1.1.3, 10.1.1.410.1.1.[1-4]

host1.company.com, host2.company.com, host3.company.comhost[1-3].company.com

host07.company.com, host08.company.com, host09.company.com,
host10.company.com

host[07-10].company.com

• IP addresses
• Rack name

Click Search to filter the list and click a hostname to select the host. Click OK to close the window. The hostname
that you selected appears under the role.

402 | Cloudera Security

Configuring Authorization

Click Continue to move to the next page in the wizard.

4. Configure database settings. You can use either an embedded or a custom database.

a. Choose the database type:

• Leave the default setting of Use Embedded Database to have Cloudera Manager create and configure
required databases. Make a note of the auto-generated passwords.

• Select Use Custom Databases to specify external databases.

1. Enter the database host, database type, database name, username, and password for the database
that you created when you set up the database. See the Creating Databases documentation for
Sentry Server database requirements.

b. Click Test Connection to confirm that Cloudera Manager can communicate with the database using the
information you have supplied. If the test succeeds in all cases, click Continue. Otherwise check and correct
the information you have provided for the database and then try the test again. (For some servers, if you are
using the embedded database, you will see a message saying the database will be created at a later step in
the installation process.) The Review Changes page displays.

5. Click Continue then click Finish. You are returned to the Home page.
6. Verify the new service is started properly by checking the health status for the new service. If the Health Status

is Good, then the service started properly.
7. To use the Sentry service, begin by enabling Hive Impala, and Search for the service.

Installing Sentry Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.9.x. See Cloudera Documentation for information

specific to other releases.

Use the following the instructions, depending on your operating system, to install the latest version of Sentry.

Important: Configuration files

• If you install a newer version of a package that is already on the system, configuration files that
you have modified will remain intact.

• If you uninstall a package, the packagemanager renames any configuration files you havemodified
from <file> to <file>.rpmsave. If you then re-install the package (probably to install a new
version) the packagemanager creates a new <file>with applicable defaults. You are responsible
for applying any changes captured in the original configuration file to the new configuration file.
In the case of Ubuntu and Debian upgrades, you will be prompted if you have made changes to
a file for which there is a new version. For details, see Automatic handling of configuration files
by dpkg.

CommandOS

$ sudo yum install sentryRHEL

$ sudo zypper install sentrySLES

$ sudo apt-get update;
$ sudo apt-get install sentry

Ubuntu or Debian

Starting the Sentry Service

Cloudera Security | 403

Configuring Authorization

http://www.cloudera.com/content/support/en/documentation.html
http://www.debian.org/doc/debian-policy/ap-pkg-conffiles.html
http://www.debian.org/doc/debian-policy/ap-pkg-conffiles.html

Perform the following steps to start the Sentry service on your cluster.

1. Set the SENTRY_HOME and HADOOP_HOME parameters.
2. Create the Sentry database schema using the Sentry schematool. Sentry, by default, does not initialize the schema.

The schematool is a built-inway for you to deploy the backend schema required by the Sentry service. For example,
the following command uses the schematool to initialize the schema for a MySQL database.

bin/sentry --command schema-tool --conffile <sentry-site.xml> --dbType mysql --initSchema

Alternatively, you can set the sentry.verify.schema.version configuration property to false. However,
this is not recommended.

3. Start the Sentry service.

bin/sentry --command service --conffile <sentry-site.xml>

Upgrading the Sentry Service

Use one of the following sections to upgrade the Sentry service:

Upgrading the Sentry Service Using Cloudera Manager

If you have a cluster managed by Cloudera Manager, go to Upgrading CDH and Managed Services Using Cloudera
Manager and follow the instructions depending on the version of CDH you are upgrading to. If you are upgrading from
CDH 5.1, you will notice an extra step in the procedure to upgrade the Sentry database schema.

Upgrading the Sentry Service Using the Command Line

1. Stop the Sentry service by identifying the PID of the Sentry Service and use the kill command to end the process:

ps -ef | grep sentry
kill -9 <PID>

Replace <PID> with the PID of the Sentry Service.
2. Remove the previous version of Sentry.

CommandOS

$ sudo yum remove sentryRHEL

$ sudo zypper remove sentrySLES

$ sudo apt-get remove sentryUbuntu or Debian

3. Install the new version of Sentry.

CommandOS

$ sudo yum install sentryRHEL

$ sudo zypper install sentrySLES

$ sudo apt-get update;
$ sudo apt-get install sentry

Ubuntu or Debian

4. (From CDH 5.1 to CDH 5.x) Upgrade Sentry Database Schema

Use the Sentry schematool to upgrade the database schema as follows:

bin/sentry --command schema-tool --conffile <sentry-site.xml> --dbType <db-type>
--upgradeSchema

Where <db-type> should be either mysql, postgres or oracle.

404 | Cloudera Security

Configuring Authorization

5. Start the Sentry Service

a. Set the SENTRY_HOME and HADOOP_HOME parameters.
b. Run the following command:

bin/sentry --command service --conffile <sentry-site.xml>

Migrating from Sentry Policy Files to the Sentry Service

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

The following steps describe how you can upgrade from Sentry's policy file-based approach to the newdatabase-backed
Sentry service.

1. If you haven't already done so, upgrade your cluster to the latest version of CDH and Cloudera Manager. Refer
the Cloudera Manager Administration Guide for instructions.

2. Disable the existing Sentry policy file for any Hive, Impala, or Solr services on the cluster. To do this:

a. Go to the Hive, Impala, or Solr service.
b. Click the Configuration tab.
c. Select Scope > Service Name (Service-Wide).
d. Select Category > Policy File Based Sentry.
e. Clear Enable Sentry Authorization using Policy Files. Cloudera Manager throws a validation error if you

attempt to configure the Sentry service while this property is checked.
f. Repeat for any remaining Hive, Impala, or Solr services.

3. Add the new Sentry service to your cluster. For instructions, see Adding the Sentry Service on page 402.
4. To begin using the Sentry service, see Enabling the Sentry Service Using Cloudera Manager on page 405 and

Configuring Impala as a Client for the Sentry Service on page 413.
5. (Optional) Use command line tools to migrate existing policy file grants.

• If you want to migrate existing Sentry configurations for Solr, use the solrctl sentry
--convert-policy-file command, described in solrctl Reference.

• For Hive and Impala, use the command-line interface Beeline to issue grants to the Sentry service to match
the contents of your old policy file(s). For more details on the Sentry service and examples on using
Grant/Revoke statements to match your policy file, see Hive SQL Syntax for Use with Sentry on page 419.

6. Restart the affected services as described in Restarting Services and Instances after Configuration Changes to
apply the changes.

Configuring the Sentry Service

This topic describes how to enable the Sentry service for Hive and Impala, and configuring the Hive metastore to
communicate with the Sentry service.

Enabling the Sentry Service Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Before Enabling the Sentry Service

• Ensure you satisfy all the Prerequisites on page 393 for the Sentry service.
• Setting Hive Warehouse Directory Permissions

Important: If you are going to enable HDFS/Sentry synchronization, you do not need to perform
the following step to explicitly set permissions for the Hive warehouse directory. With
synchronization enabled, all Hive databases and tableswill automatically be ownedbyhive:hive,
and Sentry permissions on tables are translated to HDFS ACLs for the underlying table files.

Cloudera Security | 405

Configuring Authorization

The Hive warehouse directory (/user/hive/warehouse or any path you specify as
hive.metastore.warehouse.dir in your hive-site.xml) must be owned by the Hive user and group.

– Using the default Hive warehouse directory - Permissions on the warehouse directory must be set as follows
(see following Note for caveats):

– 771 on the directory itself (by default, /user/hive/warehouse)
– 771 on all subdirectories (for example, /user/hive/warehouse/mysubdir)
– All files and subdirectories should be owned by hive:hive

For example:

$ sudo -u hdfs hdfs dfs -chmod -R 771 /user/hive/warehouse
$ sudo -u hdfs hdfs dfs -chown -R hive:hive /user/hive/warehouse

If you have enabled Kerberos on your cluster, you must kinit as the hdfs user before you set permissions.
For example:

sudo -u hdfs kinit -kt <hdfs.keytab> hdfs
sudo -u hdfs hdfs dfs -chmod -R 771 /user/hive/warehouse
$ sudo -u hdfs hdfs dfs -chown -R hive:hive /user/hive/warehouse

– Using a non-default Hive warehouse: If you would like to use a different directory as the Hive warehouse,
update thehive.metastore.warehouse.dirproperty, andmake sure you set the requiredpermissions
on the new directory. For example, if the new warehouse directory is /data, set the permissions as follows:

$ hdfs dfs -chown hive:hive /data
$ hdfs dfs -chmod 771 /data

Note that when you update the default Hive warehouse, previously created tables will not be moved over
automatically. Therefore, tables created before the update will remain at
/user/hive/warehouse/<old_table>. However, after the update, any new tables created in the default
location will be found at /data/<new_table>.

For Sentry/HDFS sync to work as expected, add the newwarehouse URL to the list of Sentry Synchronization
Path Prefixes.

Note:

• If you set hive.warehouse.subdir.inherit.perms to true in hive-site.xml, the
permissions on the subdirectories will be set when you set permissions on the warehouse
directory.

• If a user has access to any object in the warehouse, that user will be able to execute use
default. This ensures that use default commands issued by legacy applications work
when Sentry is enabled.

• The instructions described above formodifying permissions on the Hivewarehouse directory
override the recommendations in the Hive section of the CDH 5 Installation Guide.

• Disable impersonation for HiveServer2 in the Cloudera Manager Admin Console. Impersonation in HiveServer2
allows users to execute queries and access HDFS files as the connected user rather than the super userwho started
the HiveServer2 daemon. This enforces an access control policy at the file level using HDFS file permissions or
ACLs. Keeping impersonation enabled means Sentry does not have end-to-end control over the authorization
process. While Sentry can enforce access control policies on tables and views in the Hive warehouse, it has no
control over permissions on the underlying table files in HDFS. Hence, even if users do not have the Sentry privileges
required to access a table in the warehouse, as long as they have permission to access the corresponding table
file in HDFS, any jobs or queries submitted will bypass Sentry authorization checks and execute successfully. Use
the following instructions to disable impersonation:

406 | Cloudera Security

Configuring Authorization

1. Go to the Hive service.
2. Click the Configuration tab.
3. Select Scope > HiveServer2.
4. Select Category >Main.
5. Uncheck the HiveServer2 Enable Impersonation checkbox.
6. Click Save Changes to commit the changes.

• If you are using MapReduce, enable the Hive user to submit MapReduce jobs.

1. Open the Cloudera Manager Admin Console and go to the MapReduce service.
2. Click the Configuration tab.
3. Select Scope > TaskTracker.
4. Select Category > Security.
5. Set theMinimum User ID for Job Submission property to zero (the default is 1000).
6. Click Save Changes to commit the changes.
7. Repeat steps 1-6 for every TaskTracker role group for the MapReduce service that is associated with Hive.
8. Restart the MapReduce service.

• If you are using YARN, enable the Hive user to submit YARN jobs.

1. Open the Cloudera Manager Admin Console and go to the YARN service.
2. Click the Configuration tab.
3. Select Scope > NodeManager.
4. Select Category > Security.
5. Ensure the Allowed System Users property includes the hive user. If not, add hive.
6. Click Save Changes to commit the changes.
7. Repeat steps 1-6 for every NodeManager role group for the YARN service that is associated with Hive.
8. Restart the YARN service.

• Block the external applications from accessing the Hive metastore:

1. In the Cloudera Manager Admin Console, select the Hive service.
2. On the Hive service page, click the Configuration tab.
3. In the searchwell on the right half of the Configuration page, search for Hive Metastore Access Control

and Proxy User Groups Override to locate the hadoop.proxyuser.hive.groups parameter and
click the plus sign.

4. Enter hive into the text box and click the plus sign again.
5. Enter hue into the text box.
6. Click Save Changes.

Setting this parameter blocks access to the Hive metastore for non-service users. This effectively disables Hive
CLI, Spark, and Sqoop applications from interacting with the Hive service. These application will still run, but after
setting this parameter as described here, they will no longer be able to access the Hive metastore and all Hive
queries will fail. Users running these tools must be part of the hive or hue groups to access the Hive service. To
allow greater access, additional user groups must be added to the proxy list.

Important: Ensure you have unchecked the Enable Sentry Authorization using Policy Files
configuration property for both Hive and Impala under the Policy File Based Sentry category before
you proceed.

Enabling the Sentry Service for Hive

1. Go to the Hive service.
2. Click the Configuration tab.
3. Select Scope > Hive (Service-Wide).

Cloudera Security | 407

Configuring Authorization

4. Select Category >Main.
5. Locate the Sentry Service property and select Sentry.
6. Click Save Changes to commit the changes.
7. Restart the Hive service.

Enabling Sentry on Hive service places several HiveServer2 properties on a restricted list properties that cannot be
modified at runtime by clients. See HiveServer2 Restricted Properties on page 416.

Enabling the Sentry Service for Impala

1. Enable the Sentry service for Hive (as instructed above).
2. Go to the Impala service.
3. Click the Configuration tab.
4. Select Scope > Impala (Service-Wide).
5. Select Category >Main.
6. Locate the Sentry Service property and select Sentry.
7. Click Save Changes to commit the changes.
8. Restart Impala.

Enabling the Sentry Service for Solr
Enable the Sentry service as follows:

1. Go to the Solr service.
2. Click the Configuration tab.
3. Select Scope > Solr (Service-Wide).
4. Select Category >Main.
5. Locate the Sentry Service property and select Sentry.
6. Click Save Changes to commit the changes.
7. Restart Solr.

After enabling Sentry for Solr, youmaywant to configure authorization as described in Configuring Sentry Authorization
for Cloudera Search on page 464.

Enabling the Sentry Service for Hue

Hue uses a Security app to make it easier to interact with Sentry. When you set up Hue to manage Sentry permissions,
make sure that users and groups are set up correctly. Every Hue user connecting to Sentry must have an equivalent
OS-level user account on all hosts so that Sentry can authenticate Hue users. Each OS-level user should also be part of
an OS-level group with the same name as the corresponding user's group in Hue.

For more information on using the Security app, see the related blog post.

Enable the Sentry service as follows:

1. Enable the Sentry service for Hive and Impala (as instructed above).
2. Go to the Hue service.
3. Click the Configuration tab.
4. Select Scope > Hue (Service-Wide).
5. Select Category >Main.
6. Locate the Sentry Service property and select Sentry.
7. Click Save Changes to commit the changes.
8. Restart Hue.

Add the Hive and Hue Groups to Sentry's Admin Groups

1. Go to the Sentry service.
2. Click the Configuration tab.

408 | Cloudera Security

Configuring Authorization

http://gethue.com/apache-sentry-made-easy-with-the-new-hue-security-app/

3. Select Scope > Sentry (Service-Wide).
4. Select Category >Main.
5. Locate the Admin Groups property and add the hive and hue groups to the list. If an end user is in one of these

admin groups, that user has administrative privileges on the Sentry Server.
6. Click Save Changes to commit the changes.

Enabling the Sentry Service Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.9.x. See Cloudera Documentation for information

specific to other releases.

Before Enabling the Sentry Service

• Setting Hive Warehouse Directory Permissions

Important: If you are going to enable HDFS/Sentry synchronization, you do not need to perform
the following step to explicitly set permissions for the Hive warehouse directory. With
synchronization enabled, all Hive databases and tableswill automatically be ownedbyhive:hive,
and Sentry permissions on tables are translated to HDFS ACLs for the underlying table files.

The Hive warehouse directory (/user/hive/warehouse or any path you specify as
hive.metastore.warehouse.dir in your hive-site.xml) must be owned by the Hive user and group.

– Using the default Hive warehouse directory - Permissions on the warehouse directory must be set as follows
(see following Note for caveats):

– 771 on the directory itself (by default, /user/hive/warehouse)
– 771 on all subdirectories (for example, /user/hive/warehouse/mysubdir)
– All files and subdirectories should be owned by hive:hive

For example:

$ sudo -u hdfs hdfs dfs -chmod -R 771 /user/hive/warehouse
$ sudo -u hdfs hdfs dfs -chown -R hive:hive /user/hive/warehouse

If you have enabled Kerberos on your cluster, you must kinit as the hdfs user before you set permissions.
For example:

sudo -u hdfs kinit -kt <hdfs.keytab> hdfs
sudo -u hdfs hdfs dfs -chmod -R 771 /user/hive/warehouse
$ sudo -u hdfs hdfs dfs -chown -R hive:hive /user/hive/warehouse

– Using a non-default Hive warehouse: If you would like to use a different directory as the Hive warehouse,
update thehive.metastore.warehouse.dirproperty, andmake sure you set the requiredpermissions
on the new directory. For example, if the new warehouse directory is /data, set the permissions as follows:

$ hdfs dfs -chown hive:hive /data
$ hdfs dfs -chmod 771 /data

Note that when you update the default Hive warehouse, previously created tables will not be moved over
automatically. Therefore, tables created before the update will remain at
/user/hive/warehouse/<old_table>. However, after the update, any new tables created in the default
location will be found at /data/<new_table>.

For Sentry/HDFS sync to work as expected, add the newwarehouse URL to the list of Sentry Synchronization
Path Prefixes.

Cloudera Security | 409

Configuring Authorization

http://www.cloudera.com/content/support/en/documentation.html

Note:

• If you set hive.warehouse.subdir.inherit.perms to true in hive-site.xml, the
permissions on the subdirectories will be set when you set permissions on the warehouse
directory.

• If a user has access to any object in the warehouse, that user will be able to execute use
default. This ensures that use default commands issued by legacy applications work
when Sentry is enabled.

• The instructions described above formodifying permissions on the Hivewarehouse directory
override the recommendations in the Hive section of the CDH 5 Installation Guide.

• HiveServer2 impersonationmust be turned off. Impersonation in HiveServer2 allows users to execute queries and
access HDFS files as the connected user rather than the super user who started the HiveServer2 daemon. This
enforces an access control policy at the file level using HDFS file permissions or ACLs. Keeping impersonation
enabledmeans Sentry does not have end-to-end control over the authorization process.While Sentry can enforce
access control policies on tables and views in the Hive warehouse, it has no control over permissions on the
underlying table files in HDFS. Hence, even if users do not have the Sentry privileges required to access a table in
the warehouse, as long as they have permission to access the corresponding table file in HDFS, any jobs or queries
submitted will bypass Sentry authorization checks and execute successfully.

• If you are using MapReduce, you must enable the Hive user to submit MapReduce jobs. You can ensure that this
is true by setting the minimum user ID for job submission to 0. Edit the taskcontroller.cfg file and set
min.user.id=0.

If you are using YARN, you must enable the Hive user to submit YARN jobs, add the user hive to the
allowed.system.users configuration property. Edit the container-executor.cfg file and add hive to the
allowed.system.users property. For example,

allowed.system.users = nobody,impala,hive,hbase

Important: You must restart the cluster and HiveServer2 after changing these values.

• Block the Hive CLI user from accessing the Hive metastore by setting the following property in the cluster's
core-site.xml file:

<property>
 <name>hadoop.proxyuser.hive.groups</name>
 <value>hive,hue</value>
 <description>Sets groups from which the hive user can impersonate other
users.</description>
</property>

Setting this parameter blocks access to the Hive metastore for the user running the Hive CLI if they are not part
of the hive or the hue groups. The Hive CLI can still run, but after setting this parameter as described here, the
hive user can impersonate only members of the hive or the hue groups. If you are using Sqoop, the Sqoop user
must also have access to the Hive metastore.

• Add the hive, impala and hue groups to Sentry's sentry.service.admin.group in the sentry-site.xml
file. If an end user is in one of these admin groups, that user has administrative privileges on the Sentry Server.

<property>
 <name>sentry.service.admin.group</name>
 <value>hive,impala,hue</value>
 </property>

410 | Cloudera Security

Configuring Authorization

Configuring the Sentry Server

Configure the following properties in sentry-site.xml on the Sentry Server host.

<property>
 <name>sentry.verify.schema.version</name>
 <value> </value>
 <description>
 value: true, false
 true Sentry store will verify the schema version in backed DB with expected version
 in jar.
 The service won't start if there's a mismatch
 </description>
 </property>

 <property>
 <name>sentry.service.server-max-threads</name>
 <value> </value>
 <description> Number of threads 500 Max worker threads to serve client
requests</description>
 </property>

 <property>
 <name>sentry.service.server-min-threads</name>
 <value> </value>
 <description>Number of threads 10 Min worker threads to serve client
requests</description>
 </property>

 <property>
 <name>sentry.service.allow.connect</name>
 <value> </value>
 <description>comma separated list of users - List of users that are allowed to
connect to the service (eg Hive, Impala) </description>
 </property>

 <property>
 <name>sentry.store.jdbc.url</name>
 <value> </value>
 <description>JDBC connection URL for the backed DB</description>
 </property>

 <property>
 <name>sentry.store.jdbc.user</name>
 <value>sentry</value>
 <description>Userid for connecting to backend db </description>
 </property>

 <property>
 <name>sentry.store.jdbc.password</name>
 <value>Sentry</value>
 <description>Sentry password for backend JDBC user </description>
 </property>

 <property>
 <name>sentry.service.server.keytab</name>
 <value></value>
 <description>Keytab for service principal</description>
 </property>

 <property>
 <name>sentry.service.server.rpcport</name>
 <value>8038</value>
 <description> TCP port number for service</description>
 </property>

 <property>
 <name>sentry.service.server.rpcaddress</name>
 <value>0.0.0.0</value>
 <description> TCP interface for service to bind to</description>
 </property>

 <property>
 <name>sentry.store.jdbc.driver</name>

Cloudera Security | 411

Configuring Authorization

 <value>org.apache.derby.jdbc.EmbeddedDriver</value>
 <description>Backend JDBC driver - org.apache.derby.jdbc.EmbeddedDriver (only when
 dbtype = derby) JDBC Driver class for the backed DB</description>
 </property>

 <property>
 <name>sentry.service.admin.group</name>
 <value> </value>
 <description>Comma separates list of groups. List of groups allowed to make policy
 updates</description>
 </property>

 <property>
 <name>sentry.store.group.mapping</name>
 <value>org.apache.sentry.provider.common.HadoopGroupMappingService</value>
 <description>
 Group mapping class for Sentry service. org.apache.sentry.provider.file.LocalGroupMapping
 service can be used for local group mapping. </description>
 </property>

 <property>
 <name>sentry.store.group.mapping.resource</name>
 <value> </value>
 <description> Policy file for group mapping. Policy file path for local group mapping,
 when sentry.store.group.mapping is set to LocalGroupMapping Service class.</description>

 </property>

 <property>
 <name>sentry.service.security.mode</name>
 <value>kerberos</value>
 <description>Options: kerberos, none. Authentication mode for Sentry service.
Currently supports Kerberos and trusted mode </description>
 </property>

 <property>
 <name>sentry.service.server.principal</name>
 <value> </value>
 <description>Service Kerberos principal</description>
 </property>

Configuring HiveServer2 for the Sentry Service

Configure the following properties in sentry-site.xml on the HiveServer2 host.

<property>
 <name>hive.sentry.server</name>
 <value>server1</value>
</property>
<property>
 <name>sentry.service.server.principal</name>
 <value>sentry/_HOST@EXAMPLE.COM</value>
</property>
<property>
 <name>sentry.service.security.mode</name>
 <value>kerberos</value>
</property>
<property>
 <name>sentry.hive.provider.backend</name>
 <value>org.apache.sentry.provider.db.SimpleDBProviderBackend</value>
</property>
<property>
 <name>sentry.service.client.server.rpc-address</name>
 <value>example.cloudera.com</value>
</property>
<property>
 <name>sentry.service.client.server.rpc-port</name>
 <value>8038</value>
</property>
<property>
 <name>hive.sentry.provider</name>

412 | Cloudera Security

Configuring Authorization

<value>org.apache.sentry.provider.file.HadoopGroupResourceAuthorizationProvider</value>
</property>
<property>
 <name>hive.sentry.failure.hooks</name>
 <value>com.cloudera.navigator.audit.hive.HiveSentryOnFailureHook</value>
</property>

Add the following properties to hive-site.xml to allow the Hive service to communicate with the Sentry service.

<property>
 <name>hive.security.authorization.task.factory</name>
 <value>org.apache.sentry.binding.hive.SentryHiveAuthorizationTaskFactoryImpl</value>
</property>
<property>
 <name>hive.server2.session.hook</name>
 <value>org.apache.sentry.binding.hive.HiveAuthzBindingSessionHook</value>
</property>
<property>
 <name>hive.sentry.conf.url</name>
 <value>file:///{{PATH/TO/DIR}}/sentry-site.xml</value>
</property>

Enabling Sentry on Hive service places several HiveServer2 properties on a restricted list properties that cannot be
modified at runtime by clients. See HiveServer2 Restricted Properties on page 416.

Configuring the Hive Metastore for the Sentry Service

Add the following properties to hive-site.xml to allow the Hivemetastore to communicate with the Sentry service.

<property>
<name>hive.metastore.filter.hook</name>
<value>org.apache.sentry.binding.metastore.SentryMetaStoreFilterHook</value>
</property>

<property>
 <name>hive.metastore.pre.event.listeners</name>
 <value>org.apache.sentry.binding.metastore.MetastoreAuthzBinding</value>
 <description>list of comma separated listeners for metastore events.</description>
</property>

<property>
 <name>hive.metastore.event.listeners</name>
 <value>org.apache.sentry.binding.metastore.SentryMetastorePostEventListener</value>

 <description>list of comma separated listeners for metastore, post
events.</description>
</property>

Configuring Impala as a Client for the Sentry Service

Set the following configuration properties in ../impala-conf/sentry-site.xml on the Catalog Server.

<property>
 <name>sentry.service.client.server.rpc-port</name>
 <value>8038</value>
</property>
<property>
 <name>sentry.service.client.server.rpc-address</name>
 <value>hostname</value>
</property>
<property>
 <name>sentry.service.client.server.rpc-connection-timeout</name>
 <value>200000</value>
</property>
<property>
 <name>sentry.service.security.mode</name>
 <value>kerberos</value>
</property>

Cloudera Security | 413

Configuring Authorization

Youmust also add the following configuration properties to Impala's/etc/default/impala file. Formore information
, see Configuring Impala Startup Options through the Command Line.

• On the catalogd and the impalad.

--sentry_config=<absolute path to sentry service configuration file>

• On the impalad.

--server_name=<server name>

If the --authorization_policy_file flag is set, Impala will use the policy file-based approach. Otherwise,
the database-backed approach will be used to implement authorization.

Enabling Solr as a Client for the Sentry Service Using the Command Line

You can enable Sentry using ClouderaManager or bymanuallymodifying files. Formore information on enabling Sentry
using Cloudera Manager, see Configuring Sentry Policy File Authorization Using Cloudera Manager on page 445 and
Enabling Sentry Policy File Authorization for Solr on page 449.

Sentry is enabled with addition of two properties to /etc/default/solr or
/opt/cloudera/parcels/CDH-*/etc/default/solr.

• In a Cloudera Manager deployment, required properties are added automatically when you click Enable Sentry
Authorization in the Solr configuration page in Cloudera Manager.

• If you are using configs, you must configure the proper config=myConfig permissions as described in Using
Roles and Privileges with Sentry on page 464.

• In a deployment not managed by Cloudera Manager, you must make these changes yourself. The variable
SOLR_AUTHORIZATION_SENTRY_SITE specifies the path to sentry-site.xml. The variable
SOLR_AUTHORIZATION_SUPERUSER specifies the first part of SOLR_KERBEROS_PRINCIPAL. This is solr for
the majority of users, as solr is the default. Settings are of the form:

SOLR_AUTHORIZATION_SENTRY_SITE=/location/to/sentry-site.xml
SOLR_AUTHORIZATION_SUPERUSER=solr

To enable Sentry collection-level authorization checking on a new collection, the instancedir for the collection must
use amodified version of solrconfig.xmlwith Sentry integration. Each collection has a separate solrconfig.xml
file,meaning you candefine different behavior for each collection. The commandsolrctl instancedir --generate
generates two versions of solrconfig.xml: the standard solrconfig.xml without Sentry configuration and the
Sentry-integrated version named solrconfig.xml.secure. To use the Sentry-integrated version, overwrite
solrconfig.xml with solrconfig.xml.secure before creating the instancedir.

To enforce Sentry authorization, you must also modify solrconfig.xml as follows (after overwriting it with
solrconfig.xml.secure):

Change this line:

<updateRequestProcessorChain name="updateIndexAuthorization">

to this:

<updateRequestProcessorChain name="updateIndexAuthorization" default="true">

You can enable Sentry on an existing collection. The process varies depending on whether you are using a config or
instancedir.

Enabling Sentry on Collections using configs

If you have a collection that is using a non-secured config, you can enable Sentry security on that collection bymodifying
the collection to use a secure config. The config in use must not be immutable, otherwise it cannot be changed. To
update an existing non-immutable config:

414 | Cloudera Security

Configuring Authorization

1. Delete the existing config using the solrctl config --delete command. For example:

solrctl config --delete myManaged

2. Create a new non-immutable config using the solrctl config --create command. Use a sentry-enabled
template such as managedTemplateSecure. The new config must have the same name as the config being
replaced. For example:

solrctl config --create myManaged managedTemplateSecure -p immutable=false

3. Reload the collection using to solrctl collection --reload command.

solrctl collection --reload myCollection

For a list of all available config templates, see Included Immutable Config Templates.

Enabling Sentry on Collections using instancedirs

If you have a collection that is using a non-secured instancedir configuration, you can enable Sentry security on that
collection bymodifying the settings that are stored in instancedir. For example, youmight have an existing collection
namedfoo and a standard solrconfig.xml. By default, collections are stored in instancedirs that use the collection's
name, which is foo in this case.

If your collection uses an unmodified solrconfig.xml file, you can enable Sentry by replacing the existing
solrconfig.xml file. If your collection uses a solrconfig.xml that contains modifications you want to preserve,
you can attempt to use a difftool to find an integrate changes in to the secure template.

To enable Sentry on an existing collection without preserving customizations

Warning: Running the following commands replaces your existing solrconfig.xml file. Any
customizations to this file will be lost.

1. Generate a new instancedir:

solrctl instancedir --generate foosecure

2. Download the existing instancedir from ZooKeeper into subdirectory foo:

solrctl instancedir --get foo foo

3. Replace the existing solrconfig.xml with the Sentry-enabled one:

cp foosecure/conf/solrconfig.xml.secure foo/conf/solrconfig.xml

4. Edit solrconfig.xml as follows:

Change this line:

<updateRequestProcessorChain name="updateIndexAuthorization">

to this:

<updateRequestProcessorChain name="updateIndexAuthorization" default="true">

5. Update the instancedir in ZooKeeper:

solrctl instancedir --update foo foo

Cloudera Security | 415

Configuring Authorization

6. Reload the collection:

solrctl collection --reload foo

To enable Sentry on an existing collection and preserve customizations

Generate a new instancedir, compare the differences between the default solrconfig.xml and
solrconfig.xml.secure files, and then add the elements that are unique to solrconfig.xml.secure to the file
that your environment is using.

1. Generate a new instancedir:

solrctl instancedir --generate foo

2. Compare the solrconfig.xml and solrconfig.xml.secure:

diff foo/conf/solrconfig.xml foo/conf/solrconfig.xml.secure

3. Add the elements that are unique to solrconfig.xml.secure to your existing solrconfig.xml file. You
might complete this process by manually editing your existing solrconfig.xml file or by using a merge tool.

Note: If you have modified or specified additional request handlers, consider that Sentry:

• Supports protecting additional query request handlers by adding a search component, which
should be shown in the diff.

• Supports protecting additional update request handlers with Sentry by adding an
updateRequestProcessorChain, which should be shown in the diff.

• Does not support protecting modified or specified additional "special" request handlers like
analysis handlers or admin handlers.

4. Edit solrconfig.xml as follows:

Change this line:

<updateRequestProcessorChain name="updateIndexAuthorization">

to this:

<updateRequestProcessorChain name="updateIndexAuthorization" default="true">

5. Reload the collection:

solrctl collection --reload foo

After enabling Sentry for Solr, youmaywant to configure authorization as described in Configuring Sentry Authorization
for Cloudera Search on page 464.

HiveServer2 Restricted Properties

Enabling Sentry on Hive service places several HiveServer2 properties on a restricted list properties that cannot be
modified at runtimeby clients. This list is denoted by thehive.conf.restricted.listproperty and these properties
are only configurable on the server side. The list includes:

hive.enable.spark.execution.engine
hive.semantic.analyzer.hook
hive.exec.pre.hooks
hive.exec.scratchdir
hive.exec.local.scratchdir
hive.metastore.uris,

416 | Cloudera Security

Configuring Authorization

javax.jdo.option.ConnectionURL
hadoop.bin.path
hive.session.id
hive.aux.jars.path
hive.stats.dbconnectionstring
hive.scratch.dir.permission
hive.security.command.whitelist
hive.security.authorization.task.factory
hive.entity.capture.transform
hive.access.conf.url
hive.sentry.conf.url
hive.access.subject.name
hive.sentry.subject.name
hive.sentry.active.role.set

Configuring Pig and HCatalog for the Sentry Service

Once you have the Sentry service up and running, and Hive has been configured to use the Sentry service, there are
some configuration changes you must make to your cluster to allow Pig, MapReduce (using HCatLoader, HCatStorer)
and WebHCat queries to access Sentry-secured data stored in Hive.

Since the Hive warehouse directory is owned by hive:hive, with its permissions set to 771, with these settings, other
user requests such as commands coming through Pig jobs, WebHCat queries, and MapReduce jobs, may fail. To give
these users access, perform the following configuration changes:

• Use HDFS ACLs to define permissions on a specific directory or file of HDFS. This directory/file is generally mapped
to a database, table, partition, or a data file.

• Users running these jobs should have the required permissions in Sentry to add new metadata or read metadata
from the Hive Metastore Server. For instructions on how to set up the required permissions, see Hive SQL Syntax
for Use with Sentry on page 419. You can use HiveServer2's command line interface, Beeline to update the Sentry
database with the user privileges.

Examples:

• A user who is using Pig HCatLoader will require read permissions on a specific table or partition. In such a case,
you can GRANT read access to the user in Sentry and set the ACL to read and run, on the file being accessed.

• A user who is using Pig HCatStorer will require ALL permissions on a specific table. In this case, you GRANT ALL
access to the user in Sentry and set the ACL to write and run on the table being used.

Securing the Hive Metastore

It's important that the Hive metastore be secured. If you want to override the Kerberos prerequisite for the Hive
metastore, set thesentry.hive.testing.mode property totrue to allow Sentry toworkwithweaker authentication
mechanisms. Add the following property to the HiveServer2 and Hive metastore's sentry-site.xml:

<property>
 <name>sentry.hive.testing.mode</name>
 <value>true</value>
</property>

Impala does not require this flag to be set.

Warning: Cloudera strongly recommends against enabling this property in production. Use Sentry's
testing mode only in test environments.

You can also set the property in Cloudera Manager. Go to the Hive service and open the Configuration tab. Search for
the Hive Service Advanced Configuration Snippet (Safety Valve) for sentry-site.xml. Click the plus sign (+) to add a
new property with the following values:

• Name: sentry.hive.testing.mode
• Value: true

Cloudera Security | 417

Configuring Authorization

You can turn on Hive metastore security using the instructions in Cloudera Security. To secure the Hive metastore; see
Hive Metastore Server Security Configuration on page 143.

Using User-Defined Functions with HiveServer2

The ADD JAR command does notwork with HiveServer2 and the Beeline client when Beeline runs on a different host.
As an alternative to ADD JAR, Hive's auxiliary paths functionality should be used. There are some differences in the
procedures for creating permanent functions and temporary functionswhen Sentry is enabled. For detailed instructions,
see:

• User-Defined Functions (UDFs) with HiveServer2 Using Cloudera Manager

OR

• User-Defined Functions (UDFs) with HiveServer2 Using the Command Line

.

Sentry Debugging and Failure Scenarios

This topic describes how Sentry deals with conflicting policies, how to debug Sentry authorization request failures and
howdifferent CDH components respondwhen the Sentry service fails. Before debugging, ensure you have read through
the CDH Release Notes and the list of Known Issues for Sentry.

Resolving Policy Conflicts

Sentry treats all policies independently. Hence, for any operation, if Sentry can find a policy that allows it, that operation
will be allowed. Consider an example with a table, test_db.test_tbl, whose HDFS directory is located at
hdfs://user/hive/warehouse/test_db.db/test_tbl, and grant the following conflicting privileges to a user
with the role, test_role. That is, you are granting ALL privilege to the role test_role on the URI, but only the
SELECT privilege on the table itself.

GRANT ALL ON URI 'hdfs:///user/hive/warehouse/test_db.db/test_tbl' to role test_role;
USE test_db;
GRANT SELECT ON TABLE test_tbl to role test_role;

With these privileges, all users with the role test_role will be able to carry out the EXPORT TABLE operation even
though they should only have SELECT privileges on test_db.test_tbl:

EXPORT TABLE <another-table-user-can-read> TO
'hdfs:///user/hive/warehouse/test_db.db/test_tbl'

Debugging Failed Sentry Authorization Requests

Sentry logs all facts that lead up to authorization decisions at the debug level. If you do not understand why Sentry is
denying access, the best way to debug is to temporarily turn on debug logging:

• In ClouderaManager, add log4j.logger.org.apache.sentry=DEBUG to the logging settings for your service
through the corresponding Logging Safety Valve field for Impala or HiveServer2.

• On systems not managed by Cloudera Manager, add log4j.logger.org.apache.sentry=DEBUG to the
log4j.properties file on each host in the cluster, in the appropriate configuration directory for each service.

Specifically, look for exceptions and messages such as:

FilePermission server..., RequestPermission server...., result [true|false]

which indicate each evaluation Sentrymakes. TheFilePermission is from the policy file, whileRequestPermission
is the privilege required for the query. A RequestPermission will iterate over all appropriate FilePermission
settings until a match is found. If no matching privilege is found, Sentry returns false indicating “Access Denied” .

Sentry Service Failure Scenarios

If the Sentry service fails and you attempt to access the Hive warehouse, Hive, Impala and HDFS will behave as follows:

• Hive: Queries to the Hive warehouse will fail with an authentication error.

418 | Cloudera Security

Configuring Authorization

http://www.cloudera.com/documentation/enterprise/release-notes/topics/cdh_rn_sentry_ki.html

• Impala: The Impala Catalog server caches Sentry privileges. If Sentry goes down, Impala queries will continue to
work and will be authorized against this cached copy of the metadata. However, authorization DDLs such as
CREATE ROLE or GRANT ROLE will fail.

• HDFS/Sentry Synchronized Permissions:Affected HDFS files will continue to use a cached copy of the synchronized
ACLs for a configurable period of time, after which they will fall back to the Hive System User and the Hive System
Group (for example, hive:hive). The timeout value can be modified by adding the
sentry.authorization-provider.cache-stale-threshold.msparameter to thehdfs-site.xml Safety
Valve in Cloudera Manager. The default timeout value is 60 seconds, but you can increase this value from several
minutes to a few hours, as needed to accommodate large clusters.

Hive SQL Syntax for Use with Sentry

Sentry permissions can be configured through GRANT and REVOKE statements issued either interactively or
programmatically through the HiveServer2 SQL command line interface, Beeline (documentation available here). The
syntax described below is very similar to the GRANT and REVOKE commands that are available in well-established
relational database systems.

In HUE, the Sentry Admin that creates roles and grants privileges must belong to a group that has ALL privileges on the
server. For example, you can create a role for the group that contains the hive or impala user, and grant ALL ON SERVER
.. WITH GRANT OPTION to that role:

CREATE ROLE <admin role>;
GRANT ALL ON SERVER <server1> TO ROLE <admin role> WITH GRANT OPTION;
GRANT ROLE <admin role> TO GROUP <hive>;

Important:

• When Sentry is enabled, you must use Beeline to execute Hive queries. Hive CLI is not supported
with Sentry and must be disabled. See Disabling Hive CLI for information on how to disable the
Hive CLI.

• There are somedifferences in syntax betweenHive and the corresponding Impala SQL statements.
For Impala syntax, see SQL Statements.

• No privilege is required to drop a function. Any user can drop a function.

Sentry supports column-level authorization with the SELECT privilege. Information about column-level authorization
is in the Column-level Authorization on page 419 section of this page.

See the sections below for details about the supported statements and privileges:

Column-level Authorization

Sentry allows you to assign the SELECT privilege on a subset of columns in a table.

The following command grants a role the SELECT privilege on a column:

GRANT SELECT <column name> ON TABLE <table name> TO ROLE <role name>;

The following command can be used to revoke the SELECT privilege on a column:

REVOKE SELECT <column name> ON TABLE <table name> FROM ROLE <role name>;

Any new columns added to a table will be inaccessible by default, until explicitly granted access.

Actions allowed for users with SELECT privilege on a column:

Users whose roles have been granted the SELECT privilege on columns only, can perform operations which explicitly
refer to those columns. Some examples are:

Cloudera Security | 419

Configuring Authorization

https://cwiki.apache.org/confluence/display/Hive/HiveServer2+Clients#HiveServer2Clients-Beeline%E2%80%93NewCommandLineShell

•SELECT <column name> FROM TABLE <table name>;

In this case, Sentry will first check to see if the user has the required privileges to access the table. It will then
further check to see whether the user has the SELECT privilege to access the column(s).

•SELECT COUNT <column name> FROM TABLE <table name>;

Users are also allowed to use the COUNT function to return the number of values in the column.
•SELECT <column name> FROM TABLE <table name> WHERE <column name> <operator> GROUP BY
<column name>;

The above command will work as long as you refer only to columns to which you already have access.
• To list the column(s) to which the current user has SELECT access:

SHOW COLUMNS (FROM|IN) <table name> [(FROM|IN) <database name>];

Exceptions:

• If a user has SELECT access to all columns in a table, the following command will work. Note that this is an
exception, not the norm. In all other cases, SELECT on all columns does not allow you to perform table-level
operations.

SELECT * FROM TABLE <table name>;

Limitations:

• Column-level privileges can only be applied to tables, not partitions or views.
• HDFS-Sentry Sync:With HDFS-Sentry sync enabled, even if a user has been granted access to all columns of a

table, they will not have access to the corresponding HDFS data files. This is because Sentry does not consider
SELECT on all columns equivalent to explicitly being granted SELECT on the table.

• Column-level access control for access from Spark SQL is not supported by the HDFS-Sentry plug-in.

CREATE ROLE Statement

The CREATE ROLE statement creates a role to which privileges can be granted. Privileges can be granted to roles,
which can then be assigned to users. A user that has been assigned a role will only be able to exercise the privileges
of that role.

Only users that have administrative privileges can create or drop roles. By default, the hive, impala and hue users
have admin privileges in Sentry.

CREATE ROLE <role name>;

Note that role names are case-insensitive.

DROP ROLE Statement

The DROP ROLE statement can be used to remove a role from the database. Once dropped, the role will be revoked
for all users to whom it was previously assigned. Queries that are already executing will not be affected. However,
since Hive checks user privileges before executing each query, active user sessions in which the role has already been
enabled will be affected.

DROP ROLE <role name>;

GRANT ROLE Statement

The GRANT ROLE statement can be used to grant roles to groups. Only Sentry admin users can grant roles to a group.

GRANT ROLE <role name> [, <role name>]
 TO GROUP <group name> [,GROUP <group name>]

420 | Cloudera Security

Configuring Authorization

Sentry only allows you to grant roles to groups that have alphanumeric characters and underscores (_) in the group
name. If the group name contains a non-alphanumeric character that is not an underscore, you can put the group
name in backticks (`) to execute the command. For example, Sentry will return an error for the following command:

GRANT ROLE test TO GROUP test-group;

To grant a role to this group, put the group name in backticks:

GRANT ROLE test TO GROUP `test-group`;

The following command, which contains an underscore, is also acceptable:

GRANT ROLE test TO GROUP test_group;

Operating system group names must be in lowercase letters. Although group names are case-insensitive to Sentry,
Sentry modifies capital letters within group names to be lowercase. For example, Sentry will change TestGroup to
testgroup. It is not possible to disable this normalization. Therefore, group information within the environmentmust
be in lowercase letters.

REVOKE ROLE Statement

The REVOKE ROLE statement can be used to revoke roles from groups. Only Sentry admin users can revoke the role
from a group.

REVOKE ROLE <role name> [, <role name>]
 FROM GROUP <group name> [,GROUP <group name>]

GRANT <Privilege> Statement

Use the GRANT <Privilege> statement to grant privileges on an object to a role. The statement uses the following
syntax:

GRANT
<privilege> [, <privilege>]

 ON <object type> <object name>
 TO ROLE <role name> [,ROLE <role name>]

You can grant the SELECT privilege on specific columns of a table. For example:

GRANT SELECT <column name> ON TABLE <table name> TO ROLE <role name>;

GRANT <Privilege> ON URIs (HDFS and S3A)

If the GRANT for Sentry URI does not specify the complete scheme, or the URI mentioned in Hive DDL statements does
not have a scheme, Sentry automatically completes the URI by applying the default scheme based on the HDFS
configuration provided in the fs.defaultFS property. Using the same HDFS configuration, Sentry can also
auto-complete URIs in case the URI is missing a scheme and an authority component.

When a user attempts to access a URI, Sentry will check to see if the user has the required privileges. During the
authorization check, if the URI is incomplete, Sentry will complete the URI using the default HDFS scheme. Note that
Sentry does not check URI schemes for completion when they are being used to grant privileges. This is because users
can GRANT privileges on URIs that do not have a complete scheme or do not already exist on the filesystem.

For example, in CDH5.8 and later, the followingCREATE EXTERNAL TABLE statementworks even though the statement
does not include the URI scheme.

GRANT ALL ON URI 'hdfs://namenode:XXX/path/to/table' TO ROLE <role name>;
CREATE EXTERNAL TABLE foo LOCATION 'namenode:XXX/path/to/table' TO ROLE <role name>;

Cloudera Security | 421

Configuring Authorization

Similarly, the following CREATE EXTERNAL TABLE statement works even though it is missing scheme and authority
components.

GRANT ALL ON URI 'hdfs://namenode:XXX/path/to/table' TO ROLE <role name>;
CREATE EXTERNAL TABLE foo LOCATION
 '/path/to/table'

Since Sentry supports both HDFS and Amazon S3, in CDH 5.8 and later, Cloudera recommends that you specify the
fully qualified URI in GRANT statements to avoid confusion. If the underlying storage is a mix of S3 and HDFS, the risk
of granting the wrong privileges increases. The following are examples of fully qualified URIs:

• HDFS: hdfs://host:port/path/to/hdfs/table
• S3: s3a://host:port/path/to/s3/table

REVOKE <Privilege> Statement

You can use the REVOKE <Privilege> statement to revoke previously-granted privileges that a role has on an object.

REVOKE
<privilege> [, <privilege>]

 ON <object type> <object name>
 FROM ROLE <role name> [,ROLE <role name>]

For example, you can revoke previously-granted SELECT privileges on specific columns of a table with the following
statement:

REVOKE SELECT <column name> ON TABLE <table name> FROM ROLE <role name>;

GRANT <Privilege> ... WITH GRANT OPTION

You can delegate granting and revoking privileges to other roles. For example, a role that is granted a privilege WITH
GRANT OPTION can GRANT/REVOKE the same privilege to/from other roles. Hence, if a role has the ALL privilege on
a database and the WITH GRANT OPTION set, users granted that role can execute GRANT/REVOKE statements only
for that database or child tables of the database.

GRANT
<privilege>

 ON <object type> <object name>
 TO ROLE <role name>
 WITH GRANT OPTION

Only a role with GRANT option on a specific privilege or its parent privilege can revoke that privilege from other roles.
Once the following statement is executed, all privileges with and without grant option are revoked.

REVOKE
<privilege>

 ON <object type> <object name>
 FROM ROLE <role name>

Hive does not currently support revoking only the WITH GRANT OPTION from a privilege previously granted to a role.
To remove the WITH GRANT OPTION, revoke the privilege and grant it again without the WITH GRANT OPTION flag.

SET ROLE Statement

Sentry enforces restrictions on queries based on the roles and privileges that the user has. A user can have multiple
roles and a role can have multiple privileges.

The SET ROLE command enforces restrictions at the role level, not at the user level. When you use the SET ROLE
command to make a role active, the role becomes current for the session. If a role is not current for the session, it is
inactive and the user does not have the privileges assigned to that role. A user can only use the SET ROLE command
for roles that have been granted to the user.

To list the roles that are current for the user, use the SHOW CURRENT ROLES command. By default, all roles that are
assigned to the user are current.

422 | Cloudera Security

Configuring Authorization

You can use the following SET ROLE commands:

SET ROLE NONE

Makes all roles for the user inactive. When no role is current, the user does not have any privileges and cannot
execute a query.

SET ROLE ALL

Makes all roles that have been granted to the user active. All privileges assigned to those roles are applied. When
the user executes a query, the query is filtered based on those privileges.

SET ROLE role name

Makes a single role active. The privileges assigned to that role are applied. When the user executes a query, the
query is filtered based on the privileges assigned to that role.

SHOW Statement

• To list the database(s) for which the current user has database, table, or column-level access:

SHOW DATABASES;

• To list the table(s) for which the current user has table or column-level access:

SHOW TABLES;

• To list the column(s) to which the current user has SELECT access:

SHOW COLUMNS (FROM|IN) <table name> [(FROM|IN) <database name>];

• To list all the roles in the system (only for sentry admin users):

SHOW ROLES;

• To list all the roles in effect for the current user session:

SHOW CURRENT ROLES;

• To list all the roles assigned to the given group name (only allowed for Sentry admin users and others users that
are part of the group specified by group name):

SHOW ROLE GRANT GROUP group name;

• The SHOW statement can also be used to list the privileges that have been granted to a role or all the grants given
to a role for a particular object.

To list all the grants for the given <role name> (only allowed for Sentry admin users and other users that have
been granted the role specified by <role name>). The following commandwill also list any column-level privileges:

SHOW GRANT ROLE <role name>;

• To list all the grants for a role on the given <object name> (only allowed for Sentry admin users and other users
that have been granted the role specified by<role name>). The following commandwill also list any column-level
privileges:

SHOW GRANT ROLE <role name> on <object type> <object name>;

Cloudera Security | 423

Configuring Authorization

Example: Using Grant/Revoke Statements to Match an Existing Policy File

Note: In the following example(s), server1 refers to an alias Sentry uses for the associated Hive
service. It does not refer to any physical server. This alias can be modified using the
hive.sentry.server property in hive-site.xml. If you are using ClouderaManager, modify the Hive
property, Server Name for Sentry Authorization, in the Service-Wide > Advanced category.

Here is a sample policy file:

[groups]
Assigns each Hadoop group to its set of roles
manager = analyst_role, junior_analyst_role
analyst = analyst_role
jranalyst = junior_analyst_role
customers_admin = customers_admin_role
admin = admin_role

[roles] # The URIs below define a landing skid which
the user can use to import or export data from the system.
Since the server runs as the user "hive" files in that directory
must either have the group hive and read/write set or
be world read/write.
analyst_role = server=server1->db=analyst1, \
 server=server1->db=jranalyst1->table=*->action=select
 server=server1->uri=hdfs://ha-nn-uri/landing/analyst1
junior_analyst_role = server=server1->db=jranalyst1, \
 server=server1->uri=hdfs://ha-nn-uri/landing/jranalyst1

Implies everything on server1.
admin_role = server=server1

The following sections show how you can use the new GRANT statements to assign privileges to roles (and assign roles
to groups) to match the sample policy file above.

Grant privileges to analyst_role:

CREATE ROLE analyst_role;
GRANT ALL ON DATABASE analyst1 TO ROLE analyst_role;
GRANT SELECT ON DATABASE jranalyst1 TO ROLE analyst_role;
GRANT ALL ON URI 'hdfs://ha-nn-uri/landing/analyst1' \
TO ROLE analyst_role;

Grant privileges to junior_analyst_role:

CREATE ROLE junior_analyst_role;
GRANT ALL ON DATABASE jranalyst1 TO ROLE junior_analyst_role;
GRANT ALL ON URI 'hdfs://ha-nn-uri/landing/jranalyst1' \
TO ROLE junior_analyst_role;

Grant privileges to admin_role:

CREATE ROLE admin_role;
GRANT ALL ON SERVER server1 TO ROLE admin_role;

Grant roles to groups:

GRANT ROLE admin_role TO GROUP admin;
GRANT ROLE analyst_role TO GROUP analyst;
GRANT ROLE jranalyst_role TO GROUP jranalyst;

Synchronizing HDFS ACLs and Sentry Permissions

The HDFS-Sentry plugin allows you to configure synchronization of Sentry privileges with HDFS ACLs for specific HDFS
directories.

424 | Cloudera Security

Configuring Authorization

Introduction

The integration of Sentry and HDFS permissions automatically keeps HDFS ACLs in sync with the privileges configured
with Sentry. This feature offers the easiest way to share data between Hive, Impala and other components such as
MapReduce, Spark, and Pig, while setting permissions for that datawith just one set of rules through Sentry. It maintains
the ability of Hive and Impala to set permissions on views, in addition to tables, while access to data outside of Hive
and Impala (for example, reading files off HDFS) requires table permissions. HDFS permissions for some or all of the
files that are part of tables defined in the Hive Metastore will now be controlled by Sentry.

This consists of three components:

• An HDFS NameNode plugin
• A Sentry-Hive Metastore plugin
• A Sentry Service plugin

With synchronization enabled, Sentrywill translate permissions ondatabases and tables to the appropriate corresponding
HDFS ACL on the underlying files in HDFS. For example, if a user group is assigned to a Sentry role that has SELECT
permissions on a particular table, that user group will also have read access to the HDFS files that are part of that table.
When you list those files in HDFS, this permission will be listed as an HDFS ACL. Or if a user group is assigned to a Sentry
role that has SELECT permissions on a database, that user group will also have read access to the HDFS files that are
part of that database. When you list those files in HDFS, those permissions will also be listed as an HDFS ACL.

Note that when Sentry was enabled, the hive user/group was given ownership of all files/directories in the Hive
warehouse (/user/hive/warehouse). Hence, the resulting synchronized Sentry permissions will reflect this fact. If
you skipped that step, Sentry permissionswill be based on the existingHivewarehouseACLs. Sentrywill not automatically
grant ownership to thehive user.

The mapping of Sentry privileges to HDFS ACLs is as follows:

• SELECT privilege -> Read access on the file.
• INSERT privilege -> Write access on the file.
• ALL privilege -> Read and Write access on the file.

Note that you must explicitly specify the path prefix to the Hive warehouse (default: user/hive/warehouse) and
any other directories that must be managed by Sentry. This procedure is described in the Enabling the HDFS-Sentry
Plugin Using Cloudera Manager on page 427 section below.

Cloudera Security | 425

Configuring Authorization

Important:

• With synchronization enabled, your ability to set HDFS permissions for those files is disabled.
Permissions for those particular files can be set only through Sentry, andwhen examined through
HDFS these permissions appear as HDFS ACLs. A configurable set of users, such as hive and
impala, will have full access to the files automatically. This ensures that a key requirement of
using Sentry with Hive and Impala — giving these processes full access to regulate permissions
on underlying data files — is met automatically.

• Tables and databases that are not associated with Sentry, that is, have no user with Sentry
privileges to access them, will retain their old ACLs.

• Synchronized privileges are not persisted to HDFS. This means that when this feature is disabled,
HDFS privileges will return to their original values.

• Setting HDFS ACLs on Sentry-managed paths will not affect the original HDFS ACLs. That is, if you
set an ACL for a Hive object that also falls under the Sentry-managed path prefixes, no action will
be taken. If the path does not point to a Hive object managed by Sentry, HDFS ACLs will be set
as expected.

Removing HDFC ACLs from paths will work the same way. If you attempt to remove an ACL
associated with a Hive object managed by Sentry, no action will be taken. In all other cases, the
ACL will be removed as is expected behavior.

• With HDFS-Sentry sync enabled, if the NameNode plugin is unable to communicate with the
Sentry Service, affected HDFS files will continue to use a cached copy of the synchronized ACLs
for a configurable period of time, after which they will fall back to the Hive System User and the
Hive System Group (for example, hive:hive). The timeout value can be modified by adding the
sentry.authorization-provider.cache-stale-threshold.ms parameter to the
hdfs-site.xml Safety Valve in Cloudera Manager. The default timeout value is 60 seconds,
but you can increase this value from several minutes to a few hours, as needed to accommodate
large clusters.

• Column-level access control for access from Spark SQL is not supported by the HDFS-Sentry
plug-in.

Prompting HDFS ACL Changes

URIs do not have an impact on the HDFS-Sentry plugin. Therefore, you cannot manage all of your HDFS ACLs with the
HDFS-Sentry plugin and you must continue to use standard HDFS ACLs for data outside of Hive.

HDFS ACL changes are triggered on:

• Hive DATABASE object LOCATION (HDFS) when a role is granted to the object
• Hive TABLE object LOCATION (HDFS) when a role is granted to the object

HDFS ACL changes are not triggered by:

• Hive URI LOCATION (HDFS) when a role is granted to a URI
• Hive SERVER object when a role is granted to the object. HDFS ACLs are not updated if a role is assigned to the

SERVER. The privileges are inherited by child objects in standard Sentry interactions, but the plugin does not trickle
the privileges down.

• Permissions granted on views. Views are not synchronized as objects in the HDFS file system.

Prerequisites

• CDH 5.3.0 or higher
• (Strongly Recommended) Implement Kerberos authentication on your cluster.

The following conditions must be also be true when enabling Sentry-HDFS synchronization. Failure to comply with any
of these will result in validation errors.

426 | Cloudera Security

Configuring Authorization

• You must use the Sentry service, not policy file-based authorization.
• Enabling HDFS Extended Access Control Lists (ACLs) is required.
• There must be at least one Sentry service dependent on HDFS.
• The Sentry service must have at least one Sentry Server role.
• The Sentry service must have at least one dependent Hive service.
• The Hive service must have at least one Hive metastore role.

Enabling the HDFS-Sentry Plugin Using Cloudera Manager

1. Go to the HDFS service.
2. Click the Configuration tab.
3. Select Scope > HDFS (Service-Wide).
4. Type Check HDFS Permissions in the Search box.
5. Select Check HDFS Permissions.
6. Select Enable Sentry Synchronization.
7. Locate the Sentry Synchronization Path Prefixes property or search for it by typing its name in the Search box.
8. Edit the Sentry Synchronization Path Prefixes property to list HDFS path prefixes where Sentry permissions should

be enforced. Multiple HDFS path prefixes can be specified. By default, this property points to
/user/hive/warehouse and must always be non-empty. If you are using a non-default location for the Hive
warehouse, make sure you add it to the list of path prefixes. HDFS privilege synchronization will not occur for
tables and databases located outside the HDFS regions listed here.

Important: Sentry will only manage paths that store Hive objects. If a path is listed under the
Sentry Synchronization Path Prefixes, but there is no Hive object there, Sentry will not manage
permissions for that path.

9. Click Save Changes.
10. Restart the cluster. Note that itmay take an additional twominutes after cluster restart for privilege synchronization

to take effect.

Enabling the HDFS-Sentry Plugin Using the Command Line

Important:

• You can use either Cloudera Manager or the following command-line instructions to complete
this configuration.

• This information applies specifically to CDH 5.9.x. If you use an earlier version of CDH, see the
documentation for that version located at Cloudera Documentation.

To enable the Sentry plugins on an unmanaged cluster, you must explicitly allow the hdfs user to interact with Sentry,
and install the plugin packages as described in the following sections.

Allowing the hdfs user to connect with Sentry

For an unmanaged cluster, add hdfs to the sentry.service.allow.connect property in sentry-site.xml.

<property>
 <name>sentry.service.allow.connect</name>
 <value>impala,hive,hue,hdfs</value>
</property>

Cloudera Security | 427

Configuring Authorization

http://www.cloudera.com/content/support/en/documentation.html

Installing the HDFS-Sentry Plugin

Note: Install Cloudera Repository

Before using the instructions on this page to install the package, install the Cloudera yum, zypper/YaST
or apt repository, and install or upgrade CDH 5 and make sure it is functioning correctly. For
instructions, see Installing the Latest CDH 5 Release.

Use the following the instructions, depending on your operating system, to install the sentry-hdfs-plugin package.
The package must be installed (at a minimum) on the following hosts:

• The host running the NameNode and Secondary NameNode
• The host running the Hive Metastore
• The host running the Sentry Service

CommandOS

$ sudo yum install sentry-hdfs-pluginRHEL-compatible

$ sudo zypper install sentry-hdfs-pluginSLES

$ sudo apt-get install sentry-hdfs-pluginUbuntu or Debian

Configuring the HDFS NameNode Plugin

Add the following properties to the hdfs-site.xml file on the NameNode host.

<property>
<name>dfs.namenode.acls.enabled</name>
<value>true</value>
</property>

<property>
<name>dfs.namenode.authorization.provider.class</name>
<value>org.apache.sentry.hdfs.SentryAuthorizationProvider</value>
</property>

<property>
<name>dfs.permissions</name>
<value>true</value>
</property>

<!-- Comma-separated list of HDFS path prefixes where Sentry permissions should be
enforced. -->
<!-- Privilege synchronization will occur only for tables located in HDFS regions
specified here. -->
<property>
<name>sentry.authorization-provider.hdfs-path-prefixes</name>
<value>/user/hive/warehouse</value>
</property>

<property>
<name>sentry.hdfs.service.security.mode</name>
<value>kerberos</value>
</property>

<property>
<name>sentry.hdfs.service.server.principal</name>
<value> SENTRY_SERVER_PRINCIPAL (for eg : sentry/_HOST@VPC.CLOUDERA.COM)</value>
</property>

<property>
<name>sentry.hdfs.service.client.server.rpc-port</name>
<value>SENTRY_SERVER_PORT</value>
</property>

<property>
<name>sentry.hdfs.service.client.server.rpc-address</name>

428 | Cloudera Security

Configuring Authorization

<value>SENTRY_SERVER_HOST</value>
</property>

Configuring the Hive Metastore Plugin

Add the following properties to hive-site.xml on the Hive Metastore Server host.

<property>
<name>sentry.metastore.plugins</name>
<value>org.apache.sentry.hdfs.MetastorePlugin</value>
</property>

<property>
<name>sentry.hdfs.service.client.server.rpc-port</name>
<value> SENTRY_SERVER_PORT </value>
</property>

<property>
<name>sentry.hdfs.service.client.server.rpc-address</name>
<value> SENTRY_SERVER_HOSTNAME </value>
</property>

<property>
<name>sentry.hdfs.service.client.server.rpc-connection-timeout</name>
<value>200000</value>
</property>

<property>
<name>sentry.hdfs.service.security.mode</name>
<value>kerberos</value>
</property>

<property>
<name>sentry.hdfs.service.server.principal</name>
<value> SENTRY_SERVER_PRINCIPAL (for eg : sentry/_HOST@VPC.CLOUDERA.COM)</value>
</property>

Configuring the Sentry Service Plugin

Add the following properties to the sentry-site.xml file on the NameNode host.

<property>
<name>sentry.service.processor.factories</name>
<value>org.apache.sentry.provider.db.service.thrift.SentryPolicyStoreProcessorFactory,
org.apache.sentry.hdfs.SentryHDFSServiceProcessorFactory</value>
</property>

<property>
<name>sentry.policy.store.plugins</name>
<value>org.apache.sentry.hdfs.SentryPlugin</value>
</property>

Important: Once all the configuration changes are complete, restart your cluster. Note that it may
take an additional two minutes after cluster restart for privilege synchronization to take effect.

Testing the Sentry Synchronization Plugins

The following tasks will help you ensure that Sentry-HDFS synchronization has been enabled and configured correctly:

For a folder that has been enabled for the plugin, such as the Hive warehouse, try accessing the files in that folder
outside Hive and Impala. For this, you should know what tables and databases those HDFS files belong to and the
Sentry permissions on those tables. Attempt to view or modify the Sentry permissions settings over those tables using
one of the following tools:

• (Recommended) Hue's Security application
• HiveServer2 CLI
• Impala CLI

Cloudera Security | 429

Configuring Authorization

• Access the tables and databases directly in HDFS. For example:

– List files inside the folder and verify that the file permissions shown in HDFS (including ACLs) match what was
configured in Sentry.

– Run a MapReduce, Pig or Spark job that accesses those files. Pick any tool besides HiveServer2 and Impala

Using the Sentry Web Server

The Sentry webserver can be used to view reportedmetrics which can prove useful for debugging. To enable the Sentry
webserver for reporting metrics and secure it using Kerberos authentication, perform the following steps:

1. Go to the Sentry service in Cloudera Manager.
2. Click the Configuration tab.
3. Select Scope > Sentry (Service-Wide).
4. Select Category > Advanced.
5. Locate the Sentry Service Advanced Configuration Snippet (Safety Valve) for sentry-site.xml property and add

the following properties:

a. To enable the Sentry webserver:

<!-- Enable the Sentry web server -->
<property>
<name>sentry.service.web.enable</name>
<value>true</value>
</property>

b. Metrics for the Sentry service can now be reported using either JMX or console. To obtain themetrics in JSON
format, you can use the Sentry Web Server which by default, listens on port 51000. To enable reporting of
metrics:

<!-- Port on which the Sentry web server listens -->
<property>
<name>sentry.service.web.port</name>
<value>51000</value>
</property>

<!-- Tool being used to report metrics; jmx or console -->
<property>
<name>sentry.service.reporter</name>
<value>jmx</value>
</property>

c. Kerberos authentication must be enabled for the Sentry web server to restrict who can access the debug
webpage for the Sentry service. To enable:

<!-- Set Kerberos authentication properties -->
<property>
<name>sentry.service.web.authentication.type</name>
<value>KERBEROS</value>
</property>

<property>
<name>sentry.service.web.authentication.kerberos.principal</name>
<value>HTTP/<fully.qualified.domain.name>@YOUR-REALM</value>
</property>

<property>
<name>sentry.service.web.authentication.kerberos.keytab</name>
<value>/path/to/keytab/file</value>
</property>

<!-- Define comma-separated list of users allowed to connect to the web server -->
<property>
<name>sentry.service.web.authentication.allow.connect.users</name>
<value>user_a,user_b</value>
</property>

430 | Cloudera Security

Configuring Authorization

6. Click Save Changes to commit the changes.

Sentry Policy File Authorization

Important: This is the documentation for configuring Sentry using the policy file approach. Cloudera
recommends you use the database-backed Sentry service introduced in CDH 5.1 to secure your data.
See The Sentry Service on page 393 for more information.

Sentry enables role-based, fine-grained authorization for HiveServer2, Impala, and Cloudera Search.

The following topics provide instructions on how to install, upgrade, and configure policy file authorization.

Prerequisites

Sentry depends on an underlying authentication framework to reliably identify the requesting user. It requires:

• CDH 4.3.0 or higher.
• HiveServer2 and the Hive Metastore running with strong authentication. For HiveServer2, strong authentication

is either Kerberos or LDAP. For the HiveMetastore, only Kerberos is considered strong authentication (to override,
see Securing the Hive Metastore on page 453).

• Impala 1.2.1 (or higher) runningwith strong authentication.With Impala, either Kerberos or LDAP can be configured
to achieve strong authentication. Auditing of authentication failures is supported only with CDH 4.4.0 and Impala
1.2.1 or higher.

• Cloudera Search for CDH 5.1.0 or higher. Solr supports using Sentry beginningwith CDH5.1.0. Different functionality
is added at different releases:

– Sentry with policy files is added in CDH 5.1.0.
– Sentry with config support is added in CDH 5.5.0.
– Sentry with database-backed Sentry service is added with CDH 5.8.0.

• Kerberos authentication on your cluster. Kerberos prevent a user from bypassing the authorization system and
gaining direct access to the underlying data.

Terminology

• An object is an entity protected by Sentry's authorization rules. The objects supported in the current release are
server, database, table, URI, collection, and config.

• A role is a collection of rules for accessing a given object.
• A privilege is granted to a role to govern access to an object.With CDH 5.5, Sentry allows you to assign the SELECT

privilege to columns (only for Hive and Impala). Supported privileges are:

Table 44: Valid privilege types and the objects they apply to

ObjectPrivilege

SERVER, TABLE, DB, URI, COLLECTION, CONFIGALL

DB, TABLEINSERT

DB, TABLE, COLUMNSELECT

Note: In Beeline, you can also grant SELECT and INSERT on SERVER.

• A user is an entity that is permitted by the authentication subsystem to access the service. This entity can be a
Kerberos principal, an LDAP userid, or an artifact of some other supported pluggable authentication system.

• A group connects the authentication system with the authorization system. It is a collection of one or more users
who have been granted one or more authorization roles. Sentry allows a set of roles to be configured for a group.

Cloudera Security | 431

Configuring Authorization

• A configured group provider determines a user’s affiliationwith a group. The current release supports HDFS-backed
groups and locally configured groups.

Privilege Model

Sentry uses a role-based privilege model with the following characteristics.

• Allows any user to execute show function, desc function, and show locks.
• Allows the user to see only those tables, databases, collections, configs for which this user has privileges.
• Requires a user to have the necessary privileges on the URI to execute HiveQL operations that take in a location.

Examples of such operations include LOAD, IMPORT, and EXPORT.
• Privileges granted on URIs are recursively applied to all subdirectories. That is, privileges only need to be granted

on the parent directory.
• CDH 5.5 introduces column-level access control for tables in Hive and Impala. Previously, Sentry supported privilege

granularity only down to a table. Hence, if you wanted to restrict access to a column of sensitive data, the
workaround would be to first create view for a subset of columns, and then grant privileges on that view. To
reduce the administrative overhead associatedwith such an approach, Sentry now allows you to assign the SELECT
privilege on a subset of columns in a table.

Important:

• When Sentry is enabled, you must use Beeline to execute Hive queries. Hive CLI is not supported
with Sentry and must be disabled.

• When Sentry is enabled, a user with no privileges on a database will not be allowed to connect
to HiveServer2. This is because the use <database> command is now executed as part of the
connection to HiveServer2, which is why the connection fails. See HIVE-4256.

For more information, see Authorization Privilege Model for Hive and Impala on page 438 and Authorization Privilege
Model for Solr on page 442.

Granting Privileges

Note: In the following example(s), server1 refers to an alias Sentry uses for the associated Hive
service. It does not refer to any physical server. This alias can be modified using the
hive.sentry.server property in hive-site.xml. If you are using ClouderaManager, modify the Hive
property, Server Name for Sentry Authorization, in the Service-Wide > Advanced category.

For example, a rule for the Select privilege on table customers from database sales is formulated as follows:

server=server1->db=sales->table=customer->action=Select

To assign the Select privilege to the sales_read role on the Id column from the customers table, the rule would
be as follows:

sales_read = server=server1->db=sales->table=customers->column=Id->action=select

Each object must be specified as a hierarchy of the containing objects, from server to table, followed by the privilege
granted for that object. A role can containmultiple such rules, separated by commas. For example, a rolemight contain
the Select privilege for the customer and items tables in the sales database, and the Insert privilege for the
sales_insights table in the reports database. You would specify this as follows:

sales_reporting = \
server=server1->db=sales->table=customer->action=Select, \
server=server1->db=sales->table=items->action=Select, \
server=server1->db=reports->table=sales_insights->action=Insert

432 | Cloudera Security

Configuring Authorization

https://issues.apache.org/jira/browse/HIVE-4256

User to Group Mapping

You can configure Sentry to use either Hadoop groups or groups defined in the policy file. By default, Sentry looks up
groups locally, but it can be configured to look up Hadoop groups using LDAP (for Active Directory). User/group
information for Sentry, Hive and Impala must be made available for lookup on the following hosts:

• Sentry - Groups are looked up on the host the Sentry Server runs on.
• Hive - Groups are looked up on the hosts running HiveServer2 and the Hive Metastore.
• Impala - Groups are looked up on the Catalog Server and on all of the Impala daemon hosts.

Group mappings in Sentry can be summarized as in the figure below:

Important: You can use either Hadoop groups or local groups, but not both at the same time. Local
groups are traditionally used for a quick proof-of-concept, while Hadoop groups are more commonly
used in production. Refer Configuring LDAP Group Mappings on page 384 for details on configuring
LDAP group mappings in Hadoop.

Policy File

The sections that follow contain notes on creating and maintaining the policy file, and using URIs to load external data
and JARs.

Warning: An invalid policy file will be ignored while logging an exception. This will lead to a situation
where users will lose access to all Sentry-protected data, since default Sentry behavior is deny unless
a user has been explicitly granted access. (Note that if only the per-DB policy file is invalid, it will
invalidate only the policies in that file.)

Cloudera Security | 433

Configuring Authorization

Storing the Policy File

Considerations for storing the policy file(s) in HDFS include:

1. Replication count - Because the file is read for each query in Hive and read once every five minutes by all Impala
daemons, you should increase this value; since it is a small file, setting the replication count equal to the number
of client nodes in the cluster is reasonable.

2. Updating the file - Updates to the file are reflected immediately, so you should write them to a temporary copy
of the file first, and then replace the existing file with the temporary one after all the updates are complete. This
avoids race conditions caused by reads on an incomplete file.

Defining Roles

Keep in mind that role definitions are not cumulative; the definition that is further down in the file replaces the older
one. For example, the following results in role1 having privilege2, not privilege1 and privilege2.

role1 = privilege1
role1 = privilege2

Role names are scoped to a specific file. For example, if you give role1 the ALL privilege on db1 in the global policy
file and give role1 ALL on db2 in the per-db db2 policy file, the user will be given both privileges.

URIs

Any command which references a URI such as CREATE TABLE EXTERNAL, LOAD, IMPORT, EXPORT, and more, in
addition to CREATE TEMPORARY FUNCTION requires the URI privilege. This is an important security control because
without this users could simply create an external table over an existing table they do not have access to and bypass
Sentry.

URIs must start with either hdfs:// or file://. If a URI starts with anything else, it will cause an exception and the
policy file will be invalid.

When defining URIs for HDFS, you must also specify the NameNode. For example:

data_read = server=server1->uri=file:///path/to/dir,\
server=server1->uri=hdfs://namenode:port/path/to/dir

Important: Because the NameNode host and port must be specified, Cloudera strongly recommends
you use High Availability (HA). This ensures that the URI will remain constant even if the NameNode
changes.

Loading Data

Data can be loaded using a landing skid, either in HDFS or using a local/NFS directory where HiveServer2/Impala run.
The following privileges can be used to grant a role access to a loading skid:

• Load data from a local/NFS directory:

server=server1->uri=file:///path/to/nfs/local/to/nfs

• Load data from HDFS (MapReduce, Pig, and so on):

server=server1->uri=hdfs://ha-nn-uri/data/landing-skid

In addition to the privilege in Sentry, the hive or impala user will require the appropriate file permissions to access
the data being loaded. Groups can be used for this purpose. For example, create a group hive-users, and add the
hive and impala users along with the users who will be loading data, to this group.

434 | Cloudera Security

Configuring Authorization

The exampleusermod andgroupadd commands below are only applicable to locally defined groups on theNameNode,
JobTracker, and ResourceManager. If you use another system for group management, equivalent changes should be
made in your group management system.

$ groupadd hive-users
$ usermod -G someuser,hive-users someuser
$ usermod -G hive,hive-users hive

External Tables

External tables require the ALL@database privilege in addition to the URI privilege. When data is being inserted
through the EXTERNAL TABLE statement, or is referenced from an HDFS location outside the normal Hive database
directories, the user needs appropriate permissions on the URIs corresponding to those HDFS locations. This means
that the URI location must either be owned by the hive:hive user OR the hive/impala users must be members of
the group that owns the directory.

You can configure access to the directory using a URI as follows:

[roles]
someuser_home_dir_role = server=server1->uri=hdfs://ha-nn-uri/user/someuser

You should now be able to create an external table:

CREATE EXTERNAL TABLE ...
LOCATION 'hdfs://ha-nn-uri/user/someuser/mytable';

Sample Sentry Configuration Files

This section provides a sample configuration.

Note: In the following example(s), server1 refers to an alias Sentry uses for the associated Hive
service. It does not refer to any physical server. This alias can be modified using the
hive.sentry.server property in hive-site.xml. If you are using ClouderaManager, modify the Hive
property, Server Name for Sentry Authorization, in the Service-Wide > Advanced category.

Policy Files

The following is an example of a policy file with a per-DB policy file. In this example, the first policy file,
sentry-provider.ini would exist in HDFS; hdfs://ha-nn-uri/etc/sentry/sentry-provider.inimight
be an appropriate location. The per-DB policy file is for the customer's database. It is located at
hdfs://ha-nn-uri/etc/sentry/customers.ini.

sentry-provider.ini

[databases]
Defines the location of the per DB policy file for the customers DB/schema
customers = hdfs://ha-nn-uri/etc/sentry/customers.ini

[groups]
Assigns each Hadoop group to its set of roles
manager = analyst_role, junior_analyst_role
analyst = analyst_role
jranalyst = junior_analyst_role
customers_admin = customers_admin_role
admin = admin_role

[roles]
The uris below define a define a landing skid which
the user can use to import or export data from the system.
Since the server runs as the user "hive" files in that directory
must either have the group hive and read/write set or
be world read/write.

Cloudera Security | 435

Configuring Authorization

analyst_role = server=server1->db=analyst1, \
 server=server1->db=jranalyst1->table=*->action=select
 server=server1->uri=hdfs://ha-nn-uri/landing/analyst1
junior_analyst_role = server=server1->db=jranalyst1, \
 server=server1->uri=hdfs://ha-nn-uri/landing/jranalyst1

Implies everything on server1 -> customers. Privileges for
customers can be defined in the global policy file even though
customers has its only policy file. Note that the Privileges from
both the global policy file and the per-DB policy file
are merged. There is no overriding.
customers_admin_role = server=server1->db=customers

Implies everything on server1.
admin_role = server=server1

customers.ini

[groups]
manager = customers_insert_role, customers_select_role
analyst = customers_select_role

[roles]
customers_insert_role = server=server1->db=customers->table=*->action=insert
customers_select_role = server=server1->db=customers->table=*->action=select

Important: Sentry does not support using the view keyword in policy files. If you want to define a
role against a view, use the keyword table instead. For example, to define the role analyst_role
against the view col_test_view:

[roles]
analyst_role =
server=server1->db=default->table=col_test_view->action=select

Sentry Configuration File

The following is an example of a sentry-site.xml file.

Important: If you are using Cloudera Manager 4.6 (or lower), make sure you do not store
sentry-site.xml in /etc/hive/conf ; that directory is regenerated whenever the Hive client
configurations are redeployed. Instead, use a directory such as /etc/sentry to store the sentry
file.

If you are using Cloudera Manager 4.7 (or higher), Cloudera Manager will create and deploy
sentry-site.xml for you.See The Sentry Service on page 393 formore details on configuring Sentry
with Cloudera Manager.

sentry-site.xml

<configuration>
 <property>
 <name>hive.sentry.provider</name>

<value>org.apache.sentry.provider.file.HadoopGroupResourceAuthorizationProvider</value>

 </property>

 <property>
 <name>hive.sentry.provider.resource</name>
 <value>/path/to/authz-provider.ini</value>
 <!--
 If the hdfs-site.xml points to HDFS, the path will be in HDFS;

436 | Cloudera Security

Configuring Authorization

 alternatively you could specify a full path, e.g.:
 hdfs://namenode:port/path/to/authz-provider.ini
 file:///path/to/authz-provider.ini
 -->
 </property>

 <property>
 <name>sentry.hive.server</name>
 <value>server1</value>
 </property>
</configuration>

Accessing Sentry-Secured Data Outside Hive/Impala

When Sentry is enabled, the hive user owns all data within the Hive warehouse. However, unlike traditional database
systems the enterprise data hub allows for multiple engines to execute over the same dataset.

Note: Cloudera strongly recommends you use Hive/Impala SQL queries to access data secured by
Sentry, as opposed to accessing the data files directly.

However, there are scenarios where fully vetted and reviewed jobs will also need to access the data stored in the Hive
warehouse. A typical scenario would be a secured MapReduce transformation job that is executed automatically as
an application user. In such cases it's important to know that the user executing this job will also have full access to
the data in the Hive warehouse.

Scenario One: Authorizing Jobs

Problem

A reviewed, vetted, and automated job requires access to the Hive warehouse and cannot use Hive/Impala to access
the data.

Solution

Create a group which contains hive, impala, and the user executing the automated job. For example, if the etl user
is executing the automated job, you can create a group called hive-users which contains the hive, impala, and
etl users.

The exampleusermod and groupadd commands beloware only applicable to locally defined groups on theNameNode,
JobTracker, and ResourceManager. If you use another system for group management, equivalent changes should be
made in your group management system.

$ groupadd hive-users
$ usermod -G hive,impala,hive-users hive
$ usermod -G hive,impala,hive-users impala
$ usermod -G etl,hive-users etl

Once you have added users to the hive-users group, change directory permissions in the HDFS:

$ hadoop fs -chgrp -R hive:hive-users /user/hive/warehouse
$ hadoop fs -chmod -R 770 /user/hive/warehouse

Scenario Two: Authorizing Group Access to Databases

Problem

One group of users, grp1 should have full access to the database, db1, outside of Sentry. The database, db1 should
not be accessible to any other groups, outside of Sentry. Sentry should be used for all other authorization needs.

Solution

Cloudera Security | 437

Configuring Authorization

Place the hive and impala users in grp1.

$ usermod -G hive,impala,grp1 hive
$ usermod -G hive,impala,grp1 impala

Then change group ownerships of all directories and files in db1 to grp1, and modify directory permissions in the
HDFS. This example is only applicable to local groups on a single host.

$ hadoop fs -chgrp -R hive:grp1 /user/hive/warehouse/db1.db
$ hadoop fs -chmod -R 770 /user/hive/warehouse/db1.db

Debugging Failed Sentry Authorization Requests

Sentry logs all facts that lead up to authorization decisions at the debug level. If you do not understand why Sentry is
denying access, the best way to debug is to temporarily turn on debug logging:

• In ClouderaManager, add log4j.logger.org.apache.sentry=DEBUG to the logging settings for your service
through the corresponding Logging Safety Valve field for the Impala, Hive Server 2, or Solr Server services.

• On systems not managed by Cloudera Manager, add log4j.logger.org.apache.sentry=DEBUG to the
log4j.properties file on each host in the cluster, in the appropriate configuration directory for each service.

Specifically, look for exceptions and messages such as:

FilePermission server..., RequestPermission server...., result [true|false]

which indicate each evaluation Sentrymakes. TheFilePermission is from the policy file, whileRequestPermission
is the privilege required for the query. A RequestPermission will iterate over all appropriate FilePermission
settings until a match is found. If no matching privilege is found, Sentry returns false indicating “Access Denied” .

Authorization Privilege Model for Hive and Impala

Privileges can be granted on different objects in the Hive warehouse. Any privilege that can be granted is associated
with a level in the object hierarchy. If a privilege is granted on a container object in the hierarchy, the base object
automatically inherits it. For instance, if a user has ALL privileges on the database scope, then (s)he has ALL privileges
on all of the base objects contained within that scope.

Object Hierarchy in Hive

Server
 URI
 Database
 Table
 Partition
 Columns
 View

Table 45: Valid privilege types and objects they apply to

ObjectPrivilege

DB, TABLEINSERT

DB, TABLE, VIEW, COLUMNSELECT

SERVER, TABLE, DB, URIALL

438 | Cloudera Security

Configuring Authorization

Table 46: Privilege hierarchy

Privileges on container
object that implies
privileges on the base
object

Container object that
contains the base object

Granular privileges on
object

Base Object

ALLSERVERALLDATABASE

ALLDATABASEINSERTTABLE

ALLDATABASESELECTTABLE

ALLDATABASESELECTCOLUMN

ALLDATABASESELECTVIEW

Table 47: Privilege table for Hive & Impala operations

URIPrivileges RequiredScopeOperation

ALLSERVERCREATE DATABASE

ALLDATABASEDROP DATABASE

ALLDATABASECREATE TABLE

ALLTABLEDROP TABLE

ALLDATABASE; SELECT on TABLE;CREATE VIEW

-This operation is allowed if you
have column-levelSELECT access
to the columns being used.

ALLVIEW/TABLEALTER VIEW

-This operation is allowed if you
have column-levelSELECT access
to the columns being used.

ALLVIEW/TABLEDROP VIEW

ALLTABLEALTER TABLE .. ADD COLUMNS

ALLTABLEALTER TABLE .. REPLACE
COLUMNS

ALLTABLEALTER TABLE .. CHANGE column

ALLTABLEALTER TABLE .. RENAME

ALLTABLEALTER TABLE .. SET
TBLPROPERTIES

ALLTABLEALTER TABLE .. SET FILEFORMAT

URIALLTABLEALTER TABLE .. SET LOCATION

ALLTABLEALTER TABLE .. ADD PARTITION

URIALLTABLEALTER TABLE .. ADD PARTITION
location

ALLTABLEALTER TABLE .. DROP PARTITION

Cloudera Security | 439

Configuring Authorization

URIPrivileges RequiredScopeOperation

ALLTABLEALTER TABLE .. PARTITION SET
FILEFORMAT

SELECT/INSERTTABLESHOW CREATE TABLE

SELECT/INSERTTABLESHOW PARTITIONS

SELECT/INSERTTABLESHOW TABLES

-Output includes all the tables for
which the user has table-level
privileges and all the tables for
which the user has some
column-level privileges.

SELECT/INSERTTABLESHOW GRANT ROLE

-Output includes an additional
field for any column-level
privileges.

SELECT/INSERTTABLEDESCRIBE TABLE

-Output shows all columns if the
user has table level-privileges or
SELECT privilege on at least one
table column

URIINSERTTABLELOAD DATA

SELECTVIEW/TABLE; COLUMNSELECT

-You can grant the SELECT
privilege on a view to give users
access to specific columns of a
table they do not otherwise have
access to.

-See Column-level Authorization
onpage419 for details on allowed
column-level operations.

INSERTTABLEINSERT OVERWRITE TABLE

ALLDATABASE; SELECT on TABLECREATE TABLE .. AS SELECT

-This operation is allowed if you
have column-levelSELECT access
to the columns being used.

AnyUSE <dbName>

ALLSERVERCREATE FUNCTION

ALLTABLEALTER TABLE .. SET
SERDEPROPERTIES

ALLTABLEALTER TABLE .. PARTITION SET
SERDEPROPERTIES

Hive-Only Operations

URIINSERTTABLEINSERT OVERWRITE DIRECTORY

440 | Cloudera Security

Configuring Authorization

URIPrivileges RequiredScopeOperation

SELECT + INSERTTABLEAnalyze TABLE

URIALLDATABASEIMPORT TABLE

URISELECTTABLEEXPORT TABLE

ALLTABLEALTER TABLE TOUCH

ALLTABLEALTER TABLE TOUCH PARTITION

ALLTABLEALTER TABLE .. CLUSTERED BY
SORTED BY

ALLTABLEALTER TABLE .. ENABLE/DISABLE

ALLTABLEALTER TABLE .. PARTITION
ENABLE/DISABLE

ALLTABLEALTER TABLE .. PARTITION..
RENAME TO PARTITION

ALLTABLEMSCK REPAIR TABLE

ALLDATABASEALTER DATABASE

SELECT/INSERTDATABASEDESCRIBE DATABASE

SELECT/INSERTTABLESHOW COLUMNS

-Output for this operation filters
columns to which the user does
not have explicit SELECT access

ALLTABLECREATE INDEX

ALLTABLEDROP INDEX

SELECT/INSERTTABLESHOW INDEXES

Allowedonly for Sentry admin
users

GRANT PRIVILEGE

Allowedonly for Sentry admin
users

REVOKE PRIVILEGE

Allowedonly for Sentry admin
users

SHOW GRANT

SELECT/INSERTTABLESHOW TBLPROPERTIES

SELECT/INSERTTABLEDESCRIBE TABLE .. PARTITION

Not AllowedADD ARCHIVE[S]

Not AllowedADD FILE[S]

Not AllowedADD JAR[S]

Not AllowedDELETE JAR[S]

Not AllowedDFS

Not AllowedLIST JAR[S]

Impala-Only Operations

SELECTTABLE; COLUMNEXPLAIN SELECT

Cloudera Security | 441

Configuring Authorization

URIPrivileges RequiredScopeOperation

INSERTTABLE; COLUMNEXPLAIN INSERT

ALLSERVERINVALIDATE METADATA

SELECT/INSERTTABLEINVALIDATE METADATA <table
name>

SELECT/INSERTTABLEREFRESH <table name> or
REFRESH <table name>
PARTITION (<partition_spec>)

ALLSERVERDROP FUNCTION

ALLTABLECOMPUTE STATS

Authorization Privilege Model for Solr

The tables below refer to the request handlers defined in the generated solrconfig.xml.secure template.

The admin collection is a special collection in sentry used to represent administrative actions. A non-administrative
request may only require privileges on the collection or config on which the request is being performed. This is called
eithercollection1 orconfig1 in this appendix. An administrative requestmay require privileges on both theadmin
collection and collection1. This is denoted as admin, collection1 in the tables below.

Note: If no privileges are granted, no access is possible. For example, accessing the Solr Admin UI
requires the QUERY privilege. If no users are granted the QUERY privilege, no access to the Solr Admin
UI is possible.

Table 48: Privilege table for non-administrative request handlers

Collections that Require PrivilegeRequired Collection PrivilegeRequest Handler

collection1QUERYselect

collection1QUERYquery

collection1QUERYget

collection1QUERYbrowse

collection1QUERYtvrh

collection1QUERYclustering

collection1QUERYterms

collection1QUERYelevate

collection1QUERYanalysis/field

collection1QUERYanalysis/document

collection1UPDATEupdate

collection1UPDATEupdate/json

collection1UPDATEupdate/csv

Table 49: Privilege table for collections admin actions

Collections that Require PrivilegeRequired Collection PrivilegeCollection Action

admin, collection1UPDATEcreate

442 | Cloudera Security

Configuring Authorization

Collections that Require PrivilegeRequired Collection PrivilegeCollection Action

admin, collection1UPDATEdelete

admin, collection1UPDATEreload

admin, collection1

Note: collection1
here refers to the name
of the alias, not the
underlying collection(s).
For example,
http://YOUR-HOST:8983/

solr/admin/collections?action=

CREATEALIAS&name=collection1

&collections=underlyingCollection

UPDATEcreateAlias

admin, collection1

Note: collection1
here refers to the name
of the alias, not the
underlying collection(s).
For example,
http://YOUR-HOST:8983/

solr/admin/collections?action=

DELETEALIAS&name=collection1

UPDATEdeleteAlias

admin, collection1UPDATEsyncShard

admin, collection1UPDATEsplitShard

admin, collection1UPDATEdeleteShard

Table 50: Privilege table for core admin actions

Collections that Require PrivilegeRequired Collection PrivilegeCollection Action

admin, collection1UPDATEcreate

admin, collection1UPDATErename

admin, collection1UPDATEload

admin, collection1UPDATEunload

admin, collection1UPDATEstatus

adminUPDATEpersist

admin, collection1UPDATEreload

admin, collection1UPDATEswap

admin, collection1UPDATEmergeIndexes

admin, collection1UPDATEsplit

admin, collection1UPDATEprepRecover

admin, collection1UPDATErequestRecover

Cloudera Security | 443

Configuring Authorization

Collections that Require PrivilegeRequired Collection PrivilegeCollection Action

admin, collection1UPDATErequestSyncShard

admin, collection1UPDATErequestApplyUpdates

Table 51: Privilege table for Info and AdminHandlers

Collections that Require PrivilegeRequired Collection PrivilegeRequest Handler

adminQUERYLukeRequestHandler

adminQUERYSystemInfoHandler

adminQUERYSolrInfoMBeanHandler

adminQUERYPluginInfoHandler

adminQUERYThreadDumpHandler

adminQUERYPropertiesRequestHandler

adminQUERY, UPDATE (or *)LoginHandler

adminQUERYShowFileRequestHandler

Table 52: Privilege table for Config Admin actions

Configs that Require
Privilege

Required Config
Privilege

Collections that
Require Privilege

Required Collection
Privilege

Config Action

config1*adminUPDATECREATE

config1*adminUPDATEDELETE

Installing and Upgrading Sentry for Policy File Authorization

Sentry stores the configuration as well as privilege policies in files. The sentry-site.xml file contains configuration
options such as group association provider, privilege policy file location. The policy file contains
the privileges and groups. It has a .ini file format and can be stored on a local file system or HDFS.

Sentry is plugged into Hive as session hooks, which you configure in hive-site.xml. The sentry package must be
installed. It contains the required JAR files. You must also configure properties in the Sentry Configuration File on page
436.

Important:

Install the Cloudera yum, zypper/YaST or apt repository before using the following commands. For
instructions, see Installing the Latest CDH 5 Release.

Installing Sentry

Use the following the instructions, depending on your operating system, to install the latest version of Sentry.

444 | Cloudera Security

Configuring Authorization

Important: Configuration files

• If you install a newer version of a package that is already on the system, configuration files that
you have modified will remain intact.

• If you uninstall a package, the packagemanager renames any configuration files you havemodified
from <file> to <file>.rpmsave. If you then re-install the package (probably to install a new
version) the packagemanager creates a new <file>with applicable defaults. You are responsible
for applying any changes captured in the original configuration file to the new configuration file.
In the case of Ubuntu and Debian upgrades, you will be prompted if you have made changes to
a file for which there is a new version. For details, see Automatic handling of configuration files
by dpkg.

CommandOS

$ sudo yum install sentryRHEL

$ sudo zypper install sentrySLES

$ sudo apt-get update;
$ sudo apt-get install sentry

Ubuntu or Debian

Upgrading Sentry

If you are upgrading fromCDH 5.x to the latest CDH release, see Installing Sentry on page 444 to install the latest version.

Configuring Sentry Policy File Authorization Using Cloudera Manager

This topic describes how to configure Sentry policy files and enable policy file authorization for CDH services using
Cloudera Manager.

Configuring User to Group Mappings

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Hadoop Groups

1. Go to the Hive service.
2. Click the Configuration tab.
3. Select Scope > Hive (Service-Wide).
4. Select Category > Policy File Based Sentry.
5. Locate the Sentry User to Group Mapping Class property or search for it by typing its name in the Search box.
6. Set the Sentry User to Group Mapping Class property to

org.apache.sentry.provider.file.HadoopGroupResourceAuthorizationProvider.
7. Click Save Changes.
8. Restart the Hive service.

Local Groups

Note: You can use either Hadoop groups or local groups, but not both at the same time. Use local
groups if you want to do a quick proof-of-concept. For production, use Hadoop groups.

1. Define local groups in the [users] section of the Policy File on page 433. For example:

[users]
user1 = group1, group2, group3
user2 = group2, group3

2. Modify Sentry configuration as follows:

Cloudera Security | 445

Configuring Authorization

http://www.debian.org/doc/debian-policy/ap-pkg-conffiles.html
http://www.debian.org/doc/debian-policy/ap-pkg-conffiles.html

Go to the Hive service.a.
b. Click the Configuration tab.
c. Select Scope > Hive (Service-Wide).
d. Select Category > Policy File Based Sentry.
e. Locate the Sentry User to Group Mapping Class property or search for it by typing its name in the Search

box.
f. Set the Sentry User to Group Mapping Class property to

org.apache.sentry.provider.file.LocalGroupResourceAuthorizationProvider.
g. Click Save Changes.
h. Restart the Hive service.

Enabling URIs for Per-DB Policy Files

The ADD JAR command does notwork with HiveServer2 and the Beeline client when Beeline runs on a different host.
As an alternative to ADD JAR, Hive's auxiliary paths functionality should be used as described in the following steps.

Important: Enabling URIs in per-DB policy files introduces a security risk by allowing the owner of
the db-level policy file to grant himself/herself load privileges to anything the hive user has read
permissions for in HDFS (including data in other databases controlled by different db-level policy files).

Add the following string to the Java configuration options for HiveServer2 during startup.

-Dsentry.allow.uri.db.policyfile=true

Using User-Defined Functions with HiveServer2

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

The ADD JAR command does notwork with HiveServer2 and the Beeline client when Beeline runs on a different host.
As an alternative to ADD JAR, Hive's auxiliary paths functionality should be used. There are some differences in the
procedures for creating permanent functions and temporary functions. For detailed instructions, see User-Defined
Functions (UDFs) with HiveServer2 Using Cloudera Manager.

Enabling Policy File Authorization for Hive

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Ensure the Prerequisites on page 431 have been satisfied.
2. Setting Hive Warehouse Directory Permissions

Important: If you are going to enable HDFS/Sentry synchronization, you do not need to perform
the following step to explicitly set permissions for the Hive warehouse directory. With
synchronization enabled, all Hive databases and tableswill automatically be ownedbyhive:hive,
and Sentry permissions on tables are translated to HDFS ACLs for the underlying table files.

The Hive warehouse directory (/user/hive/warehouse or any path you specify as
hive.metastore.warehouse.dir in your hive-site.xml) must be owned by the Hive user and group.

• Using the default Hive warehouse directory - Permissions on the warehouse directory must be set as follows
(see following Note for caveats):

– 771 on the directory itself (by default, /user/hive/warehouse)
– 771 on all subdirectories (for example, /user/hive/warehouse/mysubdir)
– All files and subdirectories should be owned by hive:hive

For example:

$ sudo -u hdfs hdfs dfs -chmod -R 771 /user/hive/warehouse
$ sudo -u hdfs hdfs dfs -chown -R hive:hive /user/hive/warehouse

446 | Cloudera Security

Configuring Authorization

If you have enabled Kerberos on your cluster, you must kinit as the hdfs user before you set permissions.
For example:

sudo -u hdfs kinit -kt <hdfs.keytab> hdfs
sudo -u hdfs hdfs dfs -chmod -R 771 /user/hive/warehouse
$ sudo -u hdfs hdfs dfs -chown -R hive:hive /user/hive/warehouse

• Using a non-default Hive warehouse: If you would like to use a different directory as the Hive warehouse,
update thehive.metastore.warehouse.dirproperty, andmake sure you set the requiredpermissions
on the new directory. For example, if the new warehouse directory is /data, set the permissions as follows:

$ hdfs dfs -chown hive:hive /data
$ hdfs dfs -chmod 771 /data

Note that when you update the default Hive warehouse, previously created tables will not be moved over
automatically. Therefore, tables created before the update will remain at
/user/hive/warehouse/<old_table>. However, after the update, any new tables created in the default
location will be found at /data/<new_table>.

For Sentry/HDFS sync to work as expected, add the newwarehouse URL to the list of Sentry Synchronization
Path Prefixes.

Note:

• If you set hive.warehouse.subdir.inherit.perms to true in hive-site.xml, the
permissions on the subdirectories will be set when you set permissions on the warehouse
directory.

• If a user has access to any object in the warehouse, that user will be able to execute use
default. This ensures that use default commands issued by legacy applications work
when Sentry is enabled.

• The instructions described above formodifying permissions on the Hivewarehouse directory
override the recommendations in the Hive section of the CDH 5 Installation Guide.

3. Disable impersonation for HiveServer2:

a. Go to the Hive service.
b. Click the Configuration tab.
c. Select Scope > HiveServer2.
d. Select Category > All.
e. Locate the HiveServer2 Enable Impersonation property or search for it by typing its name in the Search box.
f. Under the HiveServer2 role group, clear the HiveServer2 Enable Impersonation property.
g. Click Save Changes to commit the changes.

4. Create the Sentry policy file, sentry-provider.ini, as an HDFS file.
5. Enable the Hive user to submit MapReduce jobs.

a. Go to the MapReduce service.
b. Click the Configuration tab.
c. Select Scope > TaskTracker.
d. Select Category > Security.
e. Locate theMinimum User ID for Job Submission property or search for it by typing its name in the Search

box.
f. Set theMinimum User ID for Job Submission property to 0 (the default is 1000).
g. Click Save Changes to commit the changes.
h. Repeat steps 5.a-5.d for every TaskTracker role group for theMapReduce service that is associated with Hive,

if more than one exists.

Cloudera Security | 447

Configuring Authorization

i. Restart the MapReduce service.

6. Enable the Hive user to submit YARN jobs.

a. Go to the YARN service.
b. Click the Configuration tab.
c. Select Scope > NodeManager.
d. Select Category > Security.
e. Ensure the Allowed System Users property includes the hive user. If not, add hive.
f. Click Save Changes to commit the changes.
g. Repeat steps 6.a-6.d for every NodeManager role group for the YARN service that is associated with Hive, if

more than one exists.
h. Restart the YARN service.

7. Go to the Hive service.
8. Click the Configuration tab.
9. Select Scope > Hive (Service-Wide).
10. Select Category > Policy File Based Sentry.
11. Select Enable Sentry Authorization Using Policy Files.
12. Click Save Changes to commit the changes.
13. Add the Hive user group to Sentry's admin groups.

a. Go to the Sentry service.
b. Click the Configuration tab.
c. Select Scope > Sentry (Service-Wide).
d. Select Category >Main.
e. Locate the Admin Groups property and add the hive group to the list. If an end user is in one of these admin

groups, that user has administrative privileges on the Sentry Server.
f. Click Save Changes to commit the changes.

14. Restart the cluster and HiveServer2 after changing these values, whether you use Cloudera Manager or not.

Configuring Group Access to the Hive Metastore

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

You can configure the Hive Metastore to reject connections from users not listed in the Hive group proxy list (in HDFS).
If you do not configure this override, the Hive Metastore will use the value in the core-site HDFS configuration. To
configure the Hive group proxy list:

1. Go to the Hive service.
2. Click the Configuration tab.
3. Select Scope > Hive (Service-Wide).
4. Select Category > Proxy.
5. In the Hive Metastore Access Control and Proxy User Groups Override property, specify a list of groups whose

users are allowed to access the Hive Metastore. If you do not specify "*" (wildcard), you will be warned if the
groups do not include hive and impala (if the Impala service is configured) in the list of groups.

6. Click Save Changes.
7. Restart the Hive service.

Enabling Policy File Authorization for Impala

For a cluster managed by ClouderaManager, perform the following steps to enable policy file authorization for Impala.

1. Enable Sentry's policy file based authorization for Hive. For details, see Enabling Policy File Authorization for Hive
on page 446.

2. Go to the Cloudera Manager Admin Console and go to the Impala service.
3. Click the Configuration tab.

448 | Cloudera Security

Configuring Authorization

4. Select Scope > Impala (Service-Wide).
5. Select Category > Policy File-Based Sentry.
6. Select Enable Sentry Authorization Using Policy Files.
7. Click Save Changes to commit the changes.
8. Restart the Impala service.
9. Add the Impala user group to Sentry's admin groups.

a. Go to the Sentry service.
b. Click the Configuration tab.
c. Select Scope > Sentry (Service-Wide).
d. Select Category >Main.
e. Locate the Admin Groups property and add the impala group to the list. If an end user is in one of these

admin groups, that user has administrative privileges on the Sentry Server.
f. Click Save Changes to commit the changes.

For more details, see Starting the impalad Daemon with Sentry Authorization Enabled on page 454.

Enabling Sentry Policy File Authorization for Solr

Minimum Required Role: Full Administrator

1. Ensure the following requirements are satisfied:

• Cloudera Search 1.1.1 or higher or CDH 5 or higher.
• A secure Hadoop cluster.

2. Create the policy file sentry-provider.ini as an HDFS file. When you create the policy file
sentry-provider.ini follow the instructions in the Policy File section in Solr Authentication on page 174. The
file must be owned by owned by the solr user in the solr group, with perms=600. By default ClouderaManager
assumes the policy file is in the HDFS location /user/solr/sentry. To configure the location:

a. Go to the Solr service.
b. Click the Configuration tab.
c. Select Scope > SOLR (Service-Wide).
d. Select Category > Policy File Based Sentry.
e. Locate the Sentry Global Policy File property.
f. Modify the path in the Sentry Global Policy File property.
g. Select Enable Sentry Authorization.
h. Click Save Changes.

3. Restart the Solr service.

For more details, see Configuring Sentry Authorization for Cloudera Search on page 464.

Configuring Sentry to Enable BDR Replication

Cloudera recommends the following steps when configuring Sentry and data replication is enabled.

• Group membership should be managed outside of Sentry (as OS and LDAP groups are typically managed) and
replication for them also should be handled outside of Cloudera Manager.

• In Cloudera Manager, set up HDFS replication for the Sentry files of the databases that are being replicated
(separately using Hive replication).

• On the source cluster:

– Use a separate Sentry policy file for every database
– Avoid placing any group or role info (except for server admin info) in the global Sentry policy file (to avoid

manual replication/merging with the global file on the target cluster)
– To avoid manual fix up of URI privileges, ensure that the URIs for the data are the same on both the source

and target cluster

Cloudera Security | 449

Configuring Authorization

• On the target cluster:

– In the global Sentry policy file, manually add the DB name - DB filemapping entries for the databases being
replicated

– Manually copy the server admin info from the global Sentry policy file on the source to the policy on the
target cluster

– For the databases being replicated, avoid adding more privileges (adding tables specific to target cluster may
sometimes require adding extra privileges to allow access to those tables). If any target cluster specific
privileges absolutely need to be added for a database, add them to the global Sentry policy file on the target
cluster since the per database files would be overwritten periodically with source versions during scheduled
replication.

Configuring Sentry Policy File Authorization Using the Command Line

This topic describes how to configure Sentry policy files and enable policy file authorization for unmanaged CDH services
using the command line.

Configuring User to Group Mappings

Hadoop Groups

Set the hive.sentry.provider property in sentry-site.xml.

<property>
<name>hive.sentry.provider</name>
<value>org.apache.sentry.provider.file.HadoopGroupResourceAuthorizationProvider</value>
</property>

Local Groups

1. Define local groups in the [users] section of the Policy File on page 433. For example:

[users]
user1 = group1, group2, group3
user2 = group2, group3

2. Modify Sentry configuration as follows:

In sentry-site.xml, set hive.sentry.provider as follows:

<property>
<name>hive.sentry.provider</name>
<value>org.apache.sentry.provider.file.LocalGroupResourceAuthorizationProvider</value>
</property>

Enabling URIs for Per-DB Policy Files

The ADD JAR command does notwork with HiveServer2 and the Beeline client when Beeline runs on a different host.
As an alternative to ADD JAR, Hive's auxiliary paths functionality should be used as described in the following steps.

Important: Enabling URIs in per-DB policy files introduces a security risk by allowing the owner of
the db-level policy file to grant himself/herself load privileges to anything the hive user has read
permissions for in HDFS (including data in other databases controlled by different db-level policy files).

Add the following string to the Java configuration options for HiveServer2 during startup.

-Dsentry.allow.uri.db.policyfile=true

450 | Cloudera Security

Configuring Authorization

Using User-Defined Functions with HiveServer2

The ADD JAR command does not work with HiveServer2 and the Beeline client when Beeline runs on a different host.
As an alternative to ADD JAR, Hive's auxiliary paths functionality should be used as described in the following steps.
There are some differences in the procedures for creating permanent functions and temporary functions. For detailed
instructions, see User-Defined Functions (UDFs) with HiveServer2 Using the Command Line.

Enabling Policy File Authorization for Hive

Prerequisites
In addition to the Prerequisites on page 431 above, make sure that the following are true:

• Setting Hive Warehouse Directory Permissions

Important: If you are going to enable HDFS/Sentry synchronization, you do not need to perform
the following step to explicitly set permissions for the Hive warehouse directory. With
synchronization enabled, all Hive databases and tableswill automatically be ownedbyhive:hive,
and Sentry permissions on tables are translated to HDFS ACLs for the underlying table files.

The Hive warehouse directory (/user/hive/warehouse or any path you specify as
hive.metastore.warehouse.dir in your hive-site.xml) must be owned by the Hive user and group.

– Using the default Hive warehouse directory - Permissions on the warehouse directory must be set as follows
(see following Note for caveats):

– 771 on the directory itself (by default, /user/hive/warehouse)
– 771 on all subdirectories (for example, /user/hive/warehouse/mysubdir)
– All files and subdirectories should be owned by hive:hive

For example:

$ sudo -u hdfs hdfs dfs -chmod -R 771 /user/hive/warehouse
$ sudo -u hdfs hdfs dfs -chown -R hive:hive /user/hive/warehouse

If you have enabled Kerberos on your cluster, you must kinit as the hdfs user before you set permissions.
For example:

sudo -u hdfs kinit -kt <hdfs.keytab> hdfs
sudo -u hdfs hdfs dfs -chmod -R 771 /user/hive/warehouse
$ sudo -u hdfs hdfs dfs -chown -R hive:hive /user/hive/warehouse

– Using a non-default Hive warehouse: If you would like to use a different directory as the Hive warehouse,
update thehive.metastore.warehouse.dirproperty, andmake sure you set the requiredpermissions
on the new directory. For example, if the new warehouse directory is /data, set the permissions as follows:

$ hdfs dfs -chown hive:hive /data
$ hdfs dfs -chmod 771 /data

Note that when you update the default Hive warehouse, previously created tables will not be moved over
automatically. Therefore, tables created before the update will remain at
/user/hive/warehouse/<old_table>. However, after the update, any new tables created in the default
location will be found at /data/<new_table>.

For Sentry/HDFS sync to work as expected, add the newwarehouse URL to the list of Sentry Synchronization
Path Prefixes.

Cloudera Security | 451

Configuring Authorization

Note:

• If you set hive.warehouse.subdir.inherit.perms to true in hive-site.xml, the
permissions on the subdirectories will be set when you set permissions on the warehouse
directory.

• If a user has access to any object in the warehouse, that user will be able to execute use
default. This ensures that use default commands issued by legacy applications work
when Sentry is enabled.

• The instructions described above formodifying permissions on the Hivewarehouse directory
override the recommendations in the Hive section of the CDH 5 Installation Guide.

• HiveServer2 impersonation must be turned off.
• The Hive user must be able to submit MapReduce jobs. You can ensure that this is true by setting the minimum

user ID for job submission to 0. Edit the taskcontroller.cfg file and set min.user.id=0.

To enable the Hive user to submit YARN jobs, add the user hive to the allowed.system.users configuration
property. Edit the container-executor.cfg file and add hive to the allowed.system.users property. For
example,

allowed.system.users = nobody,impala,hive,hbase

Important:

• You must restart the cluster and HiveServer2 after changing this value, whether you use
Cloudera Manager or not.

• These instructions override the instructions under Configuring MRv1 Security on page 112
• These instructions override the instructions under Configuring YARN Security on page 114

• Add the Hive, Impala, and Hue groups to Sentry's admin groups. If an end user is in one of these admin groups,
that user has administrative privileges on the Sentry Server.

<property>
 <name>sentry.service.admin.group</name>
 <value>hive,impala,hue</value>
 </property>

Configuration Changes Required

To enable Sentry, add the following properties to hive-site.xml:

<property>
<name>hive.server2.session.hook</name>
<value>org.apache.sentry.binding.hive.HiveAuthzBindingSessionHook</value>
</property>

<property>
<name>hive.sentry.conf.url</name>
<value></value>
<description>sentry-site.xml file location</description>
</property>

<property>
<name>hive.metastore.client.impl</name>
<value>org.apache.sentry.binding.metastore.SentryHiveMetaStoreClient</value>
<description>Sets custom Hive Metastore client which Sentry uses to filter out
metadata.</description>
</property>

452 | Cloudera Security

Configuring Authorization

Securing the Hive Metastore

It's important that the Hive metastore be secured. If you want to override the Kerberos prerequisite for the Hive
metastore, set thesentry.hive.testing.mode property totrue to allow Sentry toworkwithweaker authentication
mechanisms. Add the following property to the HiveServer2 and Hive metastore's sentry-site.xml:

<property>
 <name>sentry.hive.testing.mode</name>
 <value>true</value>
</property>

Impala does not require this flag to be set.

Warning: Cloudera strongly recommends against enabling this property in production. Use Sentry's
testing mode only in test environments.

You can turn on Hive metastore security using the instructions in Cloudera Security. To secure the Hive metastore; see
Hive Metastore Server Security Configuration on page 143.

Enabling Policy File Authorization for Impala

First, enable Sentry's policy file based authorization for Hive. For details, see Enabling Policy File Authorization for Hive
on page 451.

See Enabling Sentry Authorization for Impala on page 453 for details on configuring Impala to work with Sentry policy
files.

Enabling Sentry in Cloudera Search

See Enabling Solr as a Client for the Sentry Service Using the Command Line on page 414 for details on enabling Sentry
for Solr.

See Using Solr with the Sentry Service on page 466 for details on securing Solr data.

Enabling Sentry Authorization for Impala

Authorization determines which users are allowed to access which resources, and what operations they are allowed
to perform. In Impala 1.1 and higher, you use the Sentry open source project for authorization. Sentry adds a fine-grained
authorization framework for Hadoop. By default (when authorization is not enabled), Impala does all read and write
operations with the privileges of the impala user, which is suitable for a development/test environment but not for
a secure production environment. When authorization is enabled, Impala uses the OS user ID of the user who runs
impala-shell or other client program, and associates various privileges with each user.

Note: Sentry is typically used in conjunction with Kerberos authentication, which defines which hosts
are allowed to connect to each server. Using the combination of Sentry and Kerberos preventsmalicious
users from being able to connect by creating a named account on an untrustedmachine. See Enabling
Kerberos Authentication for Impala on page 164 for details about Kerberos authentication.

The Sentry Privilege Model

Privileges can be granted on different objects in the schema. Any privilege that can be granted is associated with a
level in the object hierarchy. If a privilege is granted on a container object in the hierarchy, the child object automatically
inherits it. This is the same privilege model as Hive and other database systems such as MySQL.

The object hierarchy for Impala covers Server, URI, Database, Table, and Column. (The Table privileges apply to views
as well; anywhere you specify a table name, you can specify a view name instead.) Column-level authorization is
available in CDH 5.5 / Impala 2.3 and higher, as described in Column-level Authorization on page 419. Previously, you
constructed views to query specific columns and assigned privileges based on the views rather than the base tables.

A restricted set of privileges determines what you can do with each object:

Cloudera Security | 453

Configuring Authorization

SELECT privilege

Lets you read data from a table or view, for example with the SELECT statement, the INSERT...SELECT syntax,
or CREATE TABLE...LIKE. Also required to issue the DESCRIBE statement or the EXPLAIN statement for a query
against a particular table. Only objects for which a user has this privilege are shown in the output for SHOW
DATABASES and SHOW TABLES statements. The REFRESH statement and INVALIDATE METADATA statements
only access metadata for tables for which the user has this privilege.

INSERT privilege

Lets you write data to a table. Applies to the INSERT and LOAD DATA statements.

ALL privilege

Lets you create or modify the object. Required to run DDL statements such as CREATE TABLE, ALTER TABLE, or
DROP TABLE for a table, CREATE DATABASE or DROP DATABASE for a database, or CREATE VIEW, ALTER VIEW,
or DROP VIEW for a view. Also required for the URI of the “location” parameter for the CREATE EXTERNAL TABLE
and LOAD DATA statements.

Privileges can be specified for a table or view before that object actually exists. If you do not have sufficient privilege
to perform an operation, the error message does not disclose if the object exists or not.

Originally, privileges were encoded in a policy file, stored in HDFS. This mode of operation is still an option, but the
emphasis of privilege management is moving towards being SQL-based. Although currently Impala does not have
GRANT or REVOKE statements, Impala can make use of privileges assigned through GRANT and REVOKE statements
done through Hive. The mode of operation with GRANT and REVOKE statements instead of the policy file requires that
a special Sentry service be enabled; this service stores, retrieves, and manipulates privilege information stored inside
the metastore database.

Starting the impalad Daemon with Sentry Authorization Enabled

To run the impalad daemon with authorization enabled, you add one or more options to the IMPALA_SERVER_ARGS
declaration in the /etc/default/impala configuration file:

• The -server_name option turns on Sentry authorization for Impala. The authorization rules refer to a symbolic
server name, and you specify the name to use as the argument to the -server_name option.

• If you specify just -server_name, Impala uses the Sentry service for authorization, relying on the results of GRANT
and REVOKE statements issued through Hive. (This mode of operation is available in Impala 1.4.0 and higher.)
Prior to Impala 1.4.0, or if you want to continue storing privilege rules in the policy file, also specify the
-authorization_policy_file option as in the following item.

• Specifying the-authorization_policy_fileoption in addition to-server_namemakes Impala read privilege
information from a policy file, rather than from the metastore database. The argument to the
-authorization_policy_file option specifies the HDFS path to the policy file that defines the privileges on
different schema objects.

For example, you might adapt your /etc/default/impala configuration to contain lines like the following. To use
the Sentry service rather than the policy file:

IMPALA_SERVER_ARGS=" \
-server_name=server1 \
...

Or to use the policy file, as in releases prior to Impala 1.4:

IMPALA_SERVER_ARGS=" \
-authorization_policy_file=/user/hive/warehouse/auth-policy.ini \
-server_name=server1 \
...

The preceding examples set up a symbolic name of server1 to refer to the current instance of Impala. This symbolic
name is used in the following ways:

• In an environment managed by Cloudera Manager, the server name is specified through Impala (Service-Wide) >
Category > Advanced > Sentry Service and Hive > Service-Wide > Advanced > Sentry Service. The values must

454 | Cloudera Security

Configuring Authorization

be the same for both, so that Impala and Hive can share the privilege rules. Restart the Impala and Hive services
after setting or changing this value.

• In an environment not managed by Cloudera Manager, you specify this value for the sentry.hive.server
property in thesentry-site.xml configuration file for Hive, aswell as in the-server_name option forimpalad.

If the impalad daemon is not already running, start it as described in Starting Impala. If it is already running,
restart it with the command sudo /etc/init.d/impala-server restart. Run the appropriate commands
on all the nodes where impalad normally runs.

• If you use the mode of operation using the policy file, the rules in the [roles] section of the policy file refer to
this same server1 name. For example, the following rule sets up a role report_generator that lets users with
that role query any table in a database named reporting_db on a nodewhere the impalad daemonwas started
up with the -server_name=server1 option:

[roles]
report_generator = server=server1->db=reporting_db->table=*->action=SELECT

When impalad is started with one or both of the -server_name=server1 and -authorization_policy_file
options, Impala authorization is enabled. If Impala detects any errors or inconsistencies in the authorization settings
or the policy file, the daemon refuses to start.

Using Impala with the Sentry Service (CDH 5.1 or higher only)

When you use the Sentry service rather than the policy file, you set up privileges through GRANT and REVOKE statement
in either Impala or Hive, then both components use those same privileges automatically. (Impala added the GRANT
and REVOKE statements in Impala 2.0.0 / CDH 5.2.0.)

Hive already had GRANT and REVOKE statements prior to CDH 5.1, but those statements were not production-ready.
CDH 5.1 is the first release where those statements use the Sentry framework and are considered GA level. If you used
the Hive GRANT and REVOKE statements prior to CDH 5.1, you must set up these privileges with the CDH 5.1 versions
of GRANT and REVOKE to take advantage of Sentry authorization.

For information about using the updated Hive GRANT and REVOKE statements, see Sentry service topic in the CDH 5
Security Guide.

Using Impala with the Sentry Policy File

The policy file is a file that you put in a designated location in HDFS, and is read during the startup of the impalad
daemonwhen you specify both the -server_name and -authorization_policy_file startup options. It controls
which objects (databases, tables, and HDFS directory paths) can be accessed by the user who connects to impalad,
and what operations that user can perform on the objects.

Note:

In CDH5 and higher, Cloudera recommendsmanaging privileges through SQL statements, as described
in Using Impalawith the Sentry Service (CDH 5.1 or higher only) on page 455. If you are still using policy
files, plan to migrate to the new approach some time in the future.

The location of the policy file is listed in the auth-site.xml configuration file. To minimize overhead, the security
information from this file is cached by each impalad daemon and refreshed automatically, with a default interval of
5 minutes. After making a substantial change to security policies, restart all Impala daemons to pick up the changes
immediately.

Policy File Location and Format

The policy file uses the familiar .ini format, divided into the major sections [groups] and [roles]. There is also
an optional[databases] section,which allows you to specify a specific policy file for a particular database, as explained
in Using Multiple Policy Files for Different Databases on page 459. Another optional section, [users], allows you to

Cloudera Security | 455

Configuring Authorization

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_sg_sentry_service.html

override the OS-level mapping of users to groups; that is an advanced technique primarily for testing and debugging,
and is beyond the scope of this document.

In the [groups] section, you define various categories of users and select which roles are associated with each
category. The group and usernames correspond to Linux groups and users on the server where the impalad daemon
runs.

The group and usernames in the [groups] section correspond to Linux groups and users on the server where the
impalad daemon runs. When you access Impala through the impalad interpreter, for purposes of authorization, the
user is the logged-in Linux user and the groups are the Linux groups that user is a member of. When you access Impala
through the ODBC or JDBC interfaces, the user and password specified through the connection string are used as login
credentials for the Linux server, and authorization is based on that usernameand the associated Linux groupmembership.

In the [roles] section, you a set of roles. For each role, you specify precisely the set of privileges is available. That
is, which objects users with that role can access, and what operations they can perform on those objects. This is the
lowest-level category of security information; the other sections in the policy file map the privileges to higher-level
divisions of groups and users. In the [groups] section, you specify which roles are associated with which groups. The
group and usernames correspond to Linux groups and users on the server where the impalad daemon runs. The
privileges are specified using patterns like:

server=server_name->db=database_name->table=table_name->action=SELECT
server=server_name->db=database_name->table=table_name->action=CREATE
server=server_name->db=database_name->table=table_name->action=ALL

For the server_name value, substitute the same symbolic name you specify with the impalad -server_name option.
You can use * wildcard characters at each level of the privilege specification to allow access to all such objects. For
example:

server=impala-host.example.com->db=default->table=t1->action=SELECT
server=impala-host.example.com->db=*->table=*->action=CREATE
server=impala-host.example.com->db=*->table=audit_log->action=SELECT
server=impala-host.example.com->db=default->table=t1->action=*

When authorization is enabled, Impala uses the policy file as a whitelist, representing every privilege available to any
user on any object. That is, only operations specified for the appropriate combination of object, role, group, and user
are allowed; all other operations are not allowed. If a group or role is defined multiple times in the policy file, the last
definition takes precedence.

To understand the notion of whitelisting, set up aminimal policy file that does not provide any privileges for any object.
When you connect to an Impala node where this policy file is in effect, you get no results for SHOW DATABASES, and
an error when you issue any SHOW TABLES, USE database_name, DESCRIBE table_name, SELECT, and or other
statements that expect to access databases or tables, even if the corresponding databases and tables exist.

The contents of the policy file are cached, to avoid a performance penalty for each query. The policy file is re-checked
by each impalad node every 5 minutes. When you make a non-time-sensitive change such as adding new privileges
or new users, you can let the change take effect automatically a few minutes later. If you remove or reduce privileges,
and want the change to take effect immediately, restart the impalad daemon on all nodes, again specifying the
-server_name and -authorization_policy_file options so that the rules from the updated policy file are
applied.

Examples of Policy File Rules for Security Scenarios

The following examples show rules that might go in the policy file to deal with various authorization-related scenarios.
For illustration purposes, this section shows several very small policy fileswith only a few rules each. In your environment,
typically you would definemany roles to cover all the scenarios involving your own databases, tables, and applications,
and a smaller number of groups, whose members are given the privileges from one or more roles.

A User with No Privileges

If a user has no privileges at all, that user cannot access any schema objects in the system. The error messages do not
disclose the names or existence of objects that the user is not authorized to read.

456 | Cloudera Security

Configuring Authorization

This is the experience you want a user to have if they somehow log into a system where they are not an authorized
Impala user. In a real deployment with a filled-in policy file, a user might have no privileges because they are not a
member of any of the relevant groups mentioned in the policy file.

Examples of Privileges for Administrative Users

When an administrative user has broad access to tables or databases, the associated rules in the [roles] section
typically use wildcards and/or inheritance. For example, in the following sample policy file, db=* refers to all databases
and db=*->table=* refers to all tables in all databases.

Omitting the rightmost portion of a rule means that the privileges apply to all the objects that could be specified there.
For example, in the following sample policy file, the all_databases role has all privileges for all tables in all databases,
while the one_database role has all privileges for all tables in one specific database. The all_databases role does
not grant privileges on URIs, so a group with that role could not issue a CREATE TABLE statement with a LOCATION
clause. The entire_server role has all privileges on both databases and URIs within the server.

[groups]
supergroup = all_databases

[roles]
read_all_tables = server=server1->db=*->table=*->action=SELECT
all_tables = server=server1->db=*->table=*
all_databases = server=server1->db=*
one_database = server=server1->db=test_db
entire_server = server=server1

A User with Privileges for Specific Databases and Tables

If a user has privileges for specific tables in specific databases, the user can access those things but nothing else. They
can see the tables and their parent databases in the output ofSHOW TABLES andSHOW DATABASES,USE the appropriate
databases, and perform the relevant actions (SELECT and/or INSERT) based on the table privileges. To actually create
a table requires the ALL privilege at the database level, so you might define separate roles for the user that sets up a
schema and other users or applications that perform day-to-day operations on the tables.

The following sample policy file shows some of the syntax that is appropriate as the policy file grows, such as the #
comment syntax, \ continuation syntax, and comma separation for roles assigned to groups or privileges assigned to
roles.

[groups]
cloudera = training_sysadmin, instructor
visitor = student

[roles]
training_sysadmin = server=server1->db=training, \
server=server1->db=instructor_private, \
server=server1->db=lesson_development
instructor = server=server1->db=training->table=*->action=*, \
server=server1->db=instructor_private->table=*->action=*, \
server=server1->db=lesson_development->table=lesson*
This particular course is all about queries, so the students can SELECT but not INSERT
 or CREATE/DROP.
student = server=server1->db=training->table=lesson_*->action=SELECT

Privileges for Working with External Data Files

When data is being inserted through the LOAD DATA statement, or is referenced from an HDFS location outside the
normal Impala database directories, the user also needs appropriate permissions on the URIs corresponding to those
HDFS locations.

In this sample policy file:

• The external_table role lets us insert into and query the Impala table, external_table.sample.
• The staging_dir role lets us specify the HDFS path /user/cloudera/external_data with the LOAD DATA

statement. Remember, when Impala queries or loads data files, it operates on all the files in that directory, not
just a single file, so any Impala LOCATION parameters refer to a directory rather than an individual file.

Cloudera Security | 457

Configuring Authorization

• We included the IP address and port of the Hadoop name node in the HDFS URI of the staging_dir rule. We
found those details in /etc/hadoop/conf/core-site.xml, under the fs.default.name element. That is
what we use in any roles that specify URIs (that is, the locations of directories in HDFS).

• We start this example after the table external_table.sample is already created. In the policy file for the
example,we have already taken away theexternal_table_admin role from thecloudera group, and replaced
it with the lesser-privileged external_table role.

• We assign privileges to a subdirectory underneath /user/cloudera in HDFS, because such privileges also apply
to any subdirectories underneath. If we had assigned privileges to the parent directory /user/cloudera, it would
be too likely to mess up other files by specifying a wrong location by mistake.

• The cloudera under the [groups] section refers to the cloudera group. (In the demoVMused for this example,
there is a cloudera user that is a member of a cloudera group.)

Policy file:

[groups]
cloudera = external_table, staging_dir

[roles]
external_table_admin = server=server1->db=external_table
external_table = server=server1->db=external_table->table=sample->action=*
staging_dir =
server=server1->uri=hdfs://127.0.0.1:8020/user/cloudera/external_data->action=*

impala-shell session:

[localhost:21000] > use external_table;
Query: use external_table
[localhost:21000] > show tables;
Query: show tables
Query finished, fetching results ...
+--------+
| name |
+--------+
| sample |
+--------+
Returned 1 row(s) in 0.02s

[localhost:21000] > select * from sample;
Query: select * from sample
Query finished, fetching results ...
+-----+
| x |
+-----+
| 1 |
| 5 |
| 150 |
+-----+
Returned 3 row(s) in 1.04s

[localhost:21000] > load data inpath '/user/cloudera/external_data' into table sample;
Query: load data inpath '/user/cloudera/external_data' into table sample
Query finished, fetching results ...
+--+
| summary |
+--+
| Loaded 1 file(s). Total files in destination location: 2 |
+--+
Returned 1 row(s) in 0.26s
[localhost:21000] > select * from sample;
Query: select * from sample
Query finished, fetching results ...
+-------+
| x |
+-------+
| 2 |
| 4 |
| 6 |
| 8 |

458 | Cloudera Security

Configuring Authorization

| 64738 |
| 49152 |
| 1 |
| 5 |
| 150 |
+-------+
Returned 9 row(s) in 0.22s

[localhost:21000] > load data inpath '/user/cloudera/unauthorized_data' into table
sample;
Query: load data inpath '/user/cloudera/unauthorized_data' into table sample
ERROR: AuthorizationException: User 'cloudera' does not have privileges to access:
hdfs://127.0.0.1:8020/user/cloudera/unauthorized_data

Separating Administrator Responsibility from Read and Write Privileges

Remember that to create a database requires full privilege on that database, while day-to-day operations on tables
within that database can be performed with lower levels of privilege on specific table. Thus, you might set up separate
roles for each database or application: an administrative one that could create or drop the database, and a user-level
one that can access only the relevant tables.

For example, this policy file divides responsibilities between users in 3 different groups:

• Members of the supergroup group have the training_sysadmin role and so can set up a database named
training.

• Members of the cloudera group have the instructor role and so can create, insert into, and query any tables
in the training database, but cannot create or drop the database itself.

• Members of the visitor group have the student role and so can query those tables in the training database.

[groups]
supergroup = training_sysadmin
cloudera = instructor
visitor = student

[roles]
training_sysadmin = server=server1->db=training
instructor = server=server1->db=training->table=*->action=*
student = server=server1->db=training->table=*->action=SELECT

Using Multiple Policy Files for Different Databases

For an Impala cluster with many databases being accessed by many users and applications, it might be cumbersome
to update the security policy file for each privilege change or each new database, table, or view. You can allow security
to be managed separately for individual databases, by setting up a separate policy file for each database:

• Add the optional [databases] section to the main policy file.
• Add entries in the [databases] section for each database that has its own policy file.
• For each listed database, specify the HDFS path of the appropriate policy file.

For example:

[databases]
Defines the location of the per-DB policy files for the 'customers' and 'sales'
databases.
customers = hdfs://ha-nn-uri/etc/access/customers.ini
sales = hdfs://ha-nn-uri/etc/access/sales.ini

To enable URIs in per-DB policy files, add the following string in the ClouderaManager field Impala Service Environment
Advanced Configuration Snippet (Safety Valve):

JAVA_TOOL_OPTIONS="-Dsentry.allow.uri.db.policyfile=true"

Cloudera Security | 459

Configuring Authorization

Important: Enabling URIs in per-DB policy files introduces a security risk by allowing the owner of
the db-level policy file to grant himself/herself load privileges to anything the impala user has read
permissions for in HDFS (including data in other databases controlled by different db-level policy files).

Setting Up Schema Objects for a Secure Impala Deployment

Remember that in your role definitions, you specify privileges at the level of individual databases and tables, or all
databases or all tables within a database. To simplify the structure of these rules, plan ahead of time how to name
your schema objects so that data with different authorization requirements is divided into separate databases.

If you are adding security on top of an existing Impala deployment, remember that you can rename tables or even
move them between databases using the ALTER TABLE statement. In Impala, creating new databases is a relatively
inexpensive operation, basically just creating a new directory in HDFS.

You can also plan the security scheme and set up the policy file before the actual schema objects named in the policy
file exist. Because the authorization capability is based on whitelisting, a user can only create a new database or table
if the required privilege is already in the policy file: either by listing the exact name of the object being created, or a *
wildcard to match all the applicable objects within the appropriate container.

Privilege Model and Object Hierarchy

Privileges can be granted on different objects in the schema. Any privilege that can be granted is associated with a
level in the object hierarchy. If a privilege is granted on a container object in the hierarchy, the child object automatically
inherits it. This is the same privilege model as Hive and other database systems such as MySQL.

The kinds of objects in the schema hierarchy are:

Server
URI
Database
 Table

The server name is specified by the -server_name option when impalad starts. Specify the same name for all
impalad nodes in the cluster.

URIs represent the HDFS paths you specify as part of statements such as CREATE EXTERNAL TABLE and LOAD DATA.
Typically, you specify what look like UNIX paths, but these locations can also be prefixed with hdfs:// to make clear
that they are really URIs. To set privileges for a URI, specify the name of a directory, and the privilege applies to all the
files in that directory and any directories underneath it.

In CDH 5.5 / Impala 2.3 and higher, you can specify privileges for individual columns, as described in Column-level
Authorization on page 419. Formerly, to specify read privileges at this level, you created a view that queried specific
columns and/or partitions from a base table, and gave SELECT privilege on the view but not the underlying table.

URIs must start with either hdfs:// or file://. If a URI starts with anything else, it will cause an exception and the
policy file will be invalid. When defining URIs for HDFS, you must also specify the NameNode. For example:

data_read = server=server1->uri=file:///path/to/dir, \
server=server1->uri=hdfs://namenode:port/path/to/dir

Warning:

Because theNameNode host and portmust be specified, Cloudera strongly recommends you use High
Availability (HA). This ensures that the URI will remain constant even if the NameNode changes.

data_read = server=server1->uri=file:///path/to/dir,\
server=server1->uri=hdfs://ha-nn-uri/path/to/dir

460 | Cloudera Security

Configuring Authorization

Table 53: Valid privilege types and objects they apply to

ObjectPrivilege

DB, TABLEINSERT

DB, TABLE, VIEW, COLUMNSELECT

SERVER, TABLE, DB, URIALL

Note:

Although this document refers to the ALL privilege, currently if you use the policy file mode, you do
not use the actual keyword ALL in the policy file. When you code role entries in the policy file:

• To specify the ALL privilege for a server, use a role like server=server_name.
• To specify the ALL privilege for a database, use a role like

server=server_name->db=database_name.
• To specify the ALL privilege for a table, use a role like

server=server_name->db=database_name->table=table_name->action=*.

URIPrivileges RequiredScopeOperation

ALLSERVERCREATE DATABASE

ALLDATABASEDROP DATABASE

ALLDATABASECREATE TABLE

ALLTABLEDROP TABLE

ALLDATABASE; SELECT on TABLE;CREATE VIEW

-This operation is allowed if you
have column-levelSELECT access
to the columns being used.

ALLVIEW/TABLEALTER VIEW

-This operation is allowed if you
have column-levelSELECT access
to the columns being used.

ALLVIEW/TABLEDROP VIEW

ALLTABLEALTER TABLE .. ADD COLUMNS

ALLTABLEALTER TABLE .. REPLACE
COLUMNS

ALLTABLEALTER TABLE .. CHANGE column

ALLTABLEALTER TABLE .. RENAME

ALLTABLEALTER TABLE .. SET
TBLPROPERTIES

ALLTABLEALTER TABLE .. SET FILEFORMAT

URIALLTABLEALTER TABLE .. SET LOCATION

ALLTABLEALTER TABLE .. ADD PARTITION

Cloudera Security | 461

Configuring Authorization

URIPrivileges RequiredScopeOperation

URIALLTABLEALTER TABLE .. ADD PARTITION
location

ALLTABLEALTER TABLE .. DROP PARTITION

ALLTABLEALTER TABLE .. PARTITION SET
FILEFORMAT

SELECT/INSERTTABLESHOW CREATE TABLE

SELECT/INSERTTABLESHOW PARTITIONS

SELECT/INSERTTABLESHOW TABLES

-Output includes all the tables for
which the user has table-level
privileges and all the tables for
which the user has some
column-level privileges.

SELECT/INSERTTABLESHOW GRANT ROLE

-Output includes an additional
field for any column-level
privileges.

SELECT/INSERTTABLEDESCRIBE TABLE

-Output shows all columns if the
user has table level-privileges or
SELECT privilege on at least one
table column

URIINSERTTABLELOAD DATA

SELECTVIEW/TABLE; COLUMNSELECT

-You can grant the SELECT
privilege on a view to give users
access to specific columns of a
table they do not otherwise have
access to.

-See Column-level Authorization
onpage419 for details on allowed
column-level operations.

INSERTTABLEINSERT OVERWRITE TABLE

ALLDATABASE; SELECT on TABLECREATE TABLE .. AS SELECT

-This operation is allowed if you
have column-levelSELECT access
to the columns being used.

AnyUSE <dbName>

ALLSERVERCREATE FUNCTION

ALLTABLEALTER TABLE .. SET
SERDEPROPERTIES

462 | Cloudera Security

Configuring Authorization

URIPrivileges RequiredScopeOperation

ALLTABLEALTER TABLE .. PARTITION SET
SERDEPROPERTIES

SELECTTABLE; COLUMNEXPLAIN SELECT

INSERTTABLE; COLUMNEXPLAIN INSERT

ALLSERVERINVALIDATE METADATA

SELECT/INSERTTABLEINVALIDATE METADATA <table
name>

SELECT/INSERTTABLEREFRESH <table name> or
REFRESH <table name>
PARTITION (<partition_spec>)

ALLSERVERDROP FUNCTION

ALLTABLECOMPUTE STATS

Debugging Failed Sentry Authorization Requests

Sentry logs all facts that lead up to authorization decisions at the debug level. If you do not understand why Sentry is
denying access, the best way to debug is to temporarily turn on debug logging:

• In ClouderaManager, add log4j.logger.org.apache.sentry=DEBUG to the logging settings for your service
through the corresponding Logging Safety Valve field for the Impala, Hive Server 2, or Solr Server services.

• On systems not managed by Cloudera Manager, add log4j.logger.org.apache.sentry=DEBUG to the
log4j.properties file on each host in the cluster, in the appropriate configuration directory for each service.

Specifically, look for exceptions and messages such as:

FilePermission server..., RequestPermission server...., result [true|false]

which indicate each evaluation Sentrymakes. TheFilePermission is from the policy file, whileRequestPermission
is the privilege required for the query. A RequestPermission will iterate over all appropriate FilePermission
settings until a match is found. If no matching privilege is found, Sentry returns false indicating “Access Denied” .

Managing Sentry for Impala through Cloudera Manager

To enable the Sentry service for Impala and Hive, set Hive/Impala > Service-Wide > Sentry Service parameter to the
Sentry service. Then restart Impala and Hive. Simply adding Sentry service as a dependency and restarting enables
Impala and Hive to use the Sentry service.

To set the server name to use when granting server level privileges, set the Hive > Service-Wide > Advanced > Server
Name for Sentry Authorization parameter. When using Sentry with the Hive Metastore, you can specify the list of
users that are allowed to bypass Sentry Authorization in HiveMetastore usingHive > Service-Wide > Security > Bypass
Sentry Authorization Users. These are usually service users that already ensure all activity has been authorized.

Note: The Hive/Impala > Service-Wide > Policy File Based Sentry tab contains parameters only
relevant to configuring Sentry using policy files. In particular, make sure that Enable Sentry
Authorization using Policy Files parameter is unchecked when using the Sentry service. Cloudera
Manager throws a validation error if you attempt to configure the Sentry service and policy file at the
same time.

The DEFAULT Database in a Secure Deployment

Because of the extra emphasis on granular access controls in a secure deployment, you should move any important
or sensitive information out of the DEFAULT database into a named database whose privileges are specified in the

Cloudera Security | 463

Configuring Authorization

policy file. Sometimes you might need to give privileges on the DEFAULT database for administrative reasons; for
example, as a place you can reliably specify with a USE statement when preparing to drop a database.

Configuring Sentry Authorization for Cloudera Search

Sentry enables role-based, fine-grained authorization for Cloudera Search. Sentry can apply a range of restrictions to
various tasks, such as accessing data,managing configurations through config objects, or creating collections. Restrictions
are consistently applied, regardless of the way users attempt to complete actions. For example, restricting access to
data in a collection restricts that access whether queries come from the command line, a browser, Hue, or through
the admin console. For additional information on Sentry, see Authorization With Apache Sentry on page 388.

• You can use either Cloudera Manager or the following command-line instructions to complete this configuration.
• This information applies specifically to CDH 5.9.x. If you use an earlier version of CDH, see the documentation for

that version located at Cloudera Documentation.

Follow the instructions below to configure Sentry for Solr.

Note: Sentry for Search depends on Kerberos authentication. For additional information on using
Kerberos with Search, see Solr Authentication on page 174.

Setting Sentry Admins for Solr

If you are using the Sentry service (instead of a Sentry policy file), policies for Solr can be managed using the solrctl
sentry command. To use this functionality, you must first designate a Sentry admin.

In Cloudera Manager:

1. Navigate to the Sentry service configuration page (Sentry service > Configuration).
2. In the Admin Groups field, add the name of a group to which you want to grant Sentry admin rights.
3. In the Allowed Connecting Users field, add the users to which you want to grant Sentry admin rights. These users

must be members of at least one of the groups specified in the Admin Groups field.
4. Click Save Changes.
5. Restart the Sentry service (Sentry service > Actions > Restart).

If you are using the Sentry service without Cloudera Manager:

1. Edit sentry-site.xml file as follows:

a. Add the Sentry admin group to the comma-separated list of groups in the sentry.service.admin.group
property.

b. Add the Sentry admin users to the comma-separated list of users in the sentry.service.allow.connect
property.

2. Restart the Sentry service:

bin/sentry --command service --conffile /path/to/sentry-site.xml

Using Roles and Privileges with Sentry

Sentry uses a role-based privilege model. A role is a set of rules for accessing a given Solr collection or Solr config.
Access to each collection is governed by three privileges: Query, Update, and *. Thewildcard (*) indicates all privileges.
In contrast, access to each config is governed by a single privilege *, meaning all privileges. Specifying * as the name
of the config or collection grants the specified privilege to all instances of configs or collections, respectively. The
following sample syntax applies to both native Sentry privileges and file-based privileges, though native Sentry privileges
are set throughsolrctl sentry commands as shown inUsing Solrwith the Sentry Service on page 466 and file-based
privileges are set through policy files as shown in Using Solr with a Policy File on page 467.

464 | Cloudera Security

Configuring Authorization

http://www.cloudera.com/content/support/en/documentation.html

• A rule for the Query privilege on collection called logs would be formulated as follows:

collection=logs->action=Query

• A rule for the * privilege, meaning all privileges, on the config called myConfig would be formulated as follows:

config=myConfig->action=*

No action implies * and * is the only valid action. Because config objects only support *, the following config
privilege is invalid:

config=myConfig->action=Update

• A rule granting all configs the Query privilege would be formulated as follows:

config=*->action=Query

• For example, granting all configs the Query privilege would be formulated as follows:

config=*->action=Query

config objects cannot be combined with collection objects in a single privilege. For example, the following
combinations are illegal:

•config=myConfig->collection=myCollection->action=*

•collection=myCollection->config=myConfig

You may specify these privileges separately. For example:

myRole = collection=myCollection->action=QUERY, config=myConfig->action=*

A role can contain multiple such rules, separated by commas. For example the engineer_rolemight contain the
Query privilege for hive_logs and hbase_logs collections, and the Update privilege for the current_bugs
collection. You would specify this as follows:

engineer_role = collection=hive_logs->action=Query, collection=hbase_logs->action=Query,
 collection=current_bugs->action=Update

Using Users and Groups with Sentry

• A user is an entity that is permitted by the Kerberos authentication system to access the Search service.
• A group connects the authentication system with the authorization system. It is a set of one or more users who

have been granted one or more authorization roles. Sentry allows a set of roles to be configured for a group.
• A configured group provider determines a user’s affiliationwith a group. The current release supports HDFS-backed

groups and locally configured groups. For example,

dev_ops = dev_role, ops_role

Here the group dev_ops is granted the roles dev_role and ops_role. The members of this group can complete
searches that are allowed by these roles.

User to Group Mapping

You can configure Sentry to use either Hadoop groups or groups defined in the policy file.

Cloudera Security | 465

Configuring Authorization

Important: You can not use both Hadoop groups or local groups at the same time. Use local groups
if you want to do a quick proof-of-concept. For production, use Hadoop groups.

To configure Hadoop groups:

Set the sentry.provider property in sentry-site.xml to
org.apache.sentry.provider.file.HadoopGroupResourceAuthorizationProvider.

By default, this uses local shell groups. See the Group Mapping section of the HDFS Permissions Guide for more
information.

In this case, Sentry uses theHadoop configuration described in Configuring LDAPGroupMappings on page 384. Cloudera
Manager automatically uses this configuration. In a deployment not managed by Cloudera Manager, manually set
these configuration parameters parameters in the hadoop-conf file that is passed to Solr.

OR

To configure local groups:

1. Define local groups in a [users] section of the Sentry Policy file. For example:

[users]
user1 = group1, group2, group3
user2 = group2, group3

2. In sentry-site.xml, set search.sentry.provider as follows:

<property>
 <name>sentry.provider</name>
 <value>org.apache.sentry.provider.file.LocalGroupResourceAuthorizationProvider</value>

 </property>

Sample Sentry Configuration

This section provides sample configurations.

Using Solr with the Sentry Service

In CDH5.8, Cloudera Search adds support for storing permissions in the Sentry service. You can enable storing permissions
in the Sentry service by Enabling the Sentry Service for Solr on page 408. If you have already configured Sentry's policy
file-based approach, you can migrate existing authorization settings as described in Migrating from Sentry Policy Files
to the Sentry Service on page 405. solrctl has been extended to support:

• Migrating existing policy files to the Sentry service
• Managing managing permissions in the Sentry service

The following is an example of the commands used to configure Sentry for Solr using solrctl using the Sentry option.
These commands should be run on the Sentry Server host or a host with a Sentry Gateway role.

These sample commands that follow illustrate establishing two different roles, each of which have different access
requirements. The process of creating roles, adding roles to groups, and granting privileges to roles is a typical workflow
used to provide different groups varied degrees of access to resources. For reference information, see solrctl Reference.

Begin by creating roles. The following command creates ops_role and dev_ops_role:

solrctl sentry --create-role ops_role
solrctl sentry --create-role dev_ops_role

466 | Cloudera Security

Configuring Authorization

https://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html#Group_Mapping

Next, add existing Hadoop groups to the roles you created. The following command adds ops_role to the existing
ops_group Hadoop group and adds dev_ops_role to the existing dev_ops_group Hadoop group:

solrctl sentry --add-role-group ops_role ops_group
solrctl sentry --add-role-group dev_ops_role dev_ops_group

Finally, add privileges to collections and configs to roles. The following command adds the QUERY privilege to ops_role
for the logs collection and all privileges (meaning QUERY and UPDATE) to the dev_ops_role for all (*) collections:

solrctl sentry --grant-privilege ops_role 'collection=logs->action=Query'
solrctl sentry --grant-privilege dev_ops_role 'collection=*->action=*'

Using Solr with a Policy File

Use separate policy files for each Sentry-enabled service. Using one file for multiple services results in each service
failing on the other services' entries. For example, with a combined Hive and Search file, Search would fail on Hive
entries and Hive would fail on Search entries.

Sentry with Search does not support multiple policy files. Other implementations of Sentry such as Sentry for Hive do
support different policy files for different databases, but Sentry for Search has no such support for multiple policies.

The following is an example of a Search policy file. The This location must be readable by Solr.

sentry-provider.ini

[groups]
Assigns each Hadoop group to its set of roles
engineer = engineer_role
ops = ops_role
dev_ops = engineer_role, ops_role
hbase_admin = hbase_admin_role

[roles]
The following grants all access to source_code.
"collection = source_code" can also be used as syntactic
sugar for "collection = source_code->action=*"
engineer_role = collection = source_code->action=*

The following imply more restricted access.
ops_role = collection = hive_logs->action=Query
dev_ops_role = collection = hbase_logs->action=Query

#give hbase_admin_role the ability to create/delete/modify the hbase_logs collection
#as well as to update the config for the hbase_logs collection, called hbase_logs_config.
hbase_admin_role = collection=admin->action=*, collection=hbase_logs->action=*,
config=hbase_logs_config->action=*

Sentry Configuration File

Sentry can store configuration as well as privilege policies in files. The sentry-site.xml file contains configuration
options such as privilege policy file location. The policy files contains the privileges and groups. It has a .ini file format
and should be stored on HDFS.

The following is an example of a sentry-site.xml file.

sentry-site.xml

<configuration>
 <property>
 <name>hive.sentry.provider</name>

<value>org.apache.sentry.provider.file.HadoopGroupResourceAuthorizationProvider</value>

 </property>

 <property>
 <name>sentry.solr.provider.resource</name>
 <value>/path/to/authz-provider.ini</value>

Cloudera Security | 467

Configuring Authorization

 <!--
 If the HDFS configuration files (core-site.xml, hdfs-site.xml)
 pointed to by SOLR_HDFS_CONFIG in /etc/default/solr
 point to HDFS, the path will be in HDFS;
 alternatively you could specify a full path,
 e.g.:hdfs://namenode:port/path/to/authz-provider.ini
 -->
 </property>

Using Policy Files with Sentry

This section contains notes on creating and maintaining the policy file.

Storing the Policy File

Considerations for storing the policy file(s) include:

1. Replication count - Because Sentry reads the file for each query, you should increase this. 10 is a reasonable value.
2. Updating the file - Updates to the file are only reflected when the Solr process is restarted.

Defining Roles

Keep in mind that role definitions are not cumulative. The newer definition replaces the older one. For example,
consider the following definition:

role1 = privilege1
role1 = privilege2

This definition results in role1 having privilege2, not privilege1 and privilege2.

Providing Document-Level Security Using Sentry

For role-based access control of a collection, an administrator modifies a Sentry role so it has query, update, or
administrative access.

Collection-level authorization is useful when the access control requirements for the documents in the collection are
the same, but users may want to restrict access to a subset of documents in a collection. This finer-grained restriction
can be achieved by defining separate collections for each subset, but this is difficult to manage, requires duplicate
documents for each collection, and requires that these documents be kept synchronized.

Document-level access control solves this issue by associating authorization tokenswith each document in the collection.
This enables granting Sentry roles access to sets of documents in a collection.

Document-Level Security Model

Document-level security depends on a chain of relationships between users, groups, roles, and documents.

• Users are assigned to groups.
• Groups are assigned to roles.
• Roles are stored as "authorization tokens" in a specified field in the documents.

Document-level security supports restricting which documents can be viewed by which users. Access is provided by
adding roles as "authorization tokens" to a specified document field. Conversely, access is implicitly denied by omitting
roles from the specified field. In other words, in a document-level security enabled environment, a user might submit
a query that matches a document; if the user is not part of a group that has a role has been granted access to the
document, the result is not returned.

For example, Alice might belong to the administrators group. The administrators group may belong to the doc-mgmt
role. A document could be ingested and the doc-mgmt role could be added at ingest time. In such a case, if Alice
submitted a query that matched the document, Search would return the document, since Alice is then allowed to see
any document with the "doc-mgmt" authorization token.

Similarly, Bob might belong to the guests group. The guests group may belong to the public-browser role. If Bob tried
the same query as Alice, but the document did not have the public-browser role, Search would not return the result
because Bob does not belong to a group that is associated with a role that has access.

468 | Cloudera Security

Configuring Authorization

Note that collection-level authorization rules still apply, if enabled. Even if Alice is able to view a document given
document-level authorization rules, if she is not allowed to query the collection, the query will fail.

Roles are typically added to documents when those documents are ingested, either using the standard Solr APIs or, if
using morphlines, the setValuesmorphline command.

Enabling Document-Level Security

Cloudera Search supports document-level security in Search for CDH 5.1 and higher. Document-level security requires
collection-level security. Configuring collection-level security is described earlier in this topic.

Document-level security is disabled by default, so the first step in using document-level security is to enable the feature
by modifying the solrconfig.xml.secure file. Remember to copy this file to solrconfig.xml, as described in
Enabling Solr as a Client for the Sentry Service Using the Command Line on page 414.

To enable document-level security, change solrconfig.xml.secure. The default file contents are as follows:

<searchComponent name="queryDocAuthorization">
 <!-- Set to true to enabled document-level authorization -->

 <bool name="enabled">false</bool>

 <!-- Field where the auth tokens are stored in the document -->
 <str name="sentryAuthField">sentry_auth</str>

 <!-- Auth token defined to allow any role to access the document.
 Uncomment to enable. -->

 <!--<str name="allRolesToken">*</str>-->

</searchComponent>

• The enabled Boolean determines whether document-level authorization is enabled. To enable document level
security, change this setting to true.

• The sentryAuthField string specifies the name of the field that is used for storing authorization information.
You can use the default setting of sentry_auth or you can specify some other string to be used for assigning
values during ingest.

Note: This field must exist as an explicit or dynamic field in the schema for the collection you
are creating with document-level security. sentry_auth exists in the default schema.xml,
which is automatically generated and can be found in the same directory as solrconfig.xml.

for the collection you are creating with document-level security. Schema.xml is in the generated
configuration in the same directory as the solrconfig.xml

• The allRolesToken string represents a special token defined to allow any role access to the document. By
default, this feature is disabled. To enable this feature, uncomment the specification and specify the token. This
token should be different from the name of any sentry role to avoid collision. By default it is "*". This feature is
useful when first configuring document level security or it can be useful in granting all roles access to a document
when the set of roles may change. See Best Practices on page 469 for additional information.

Best Practices

Using allRolesToken

You may want to grant every user that belongs to a role access to certain documents. One way to accomplish this is
to specify all known roles in the document, but this requires updating or re-indexing the document if you add a new
role. Alternatively, an allUser role, specified in the Sentry .ini file, could contain all valid groups, but this role would
need to be updated every time a new group was added to the system. Instead, specifying allRolesToken allows any
user that belongs to a valid role to access the document. This access requires no updating as the system evolves.

Cloudera Security | 469

Configuring Authorization

http://kitesdk.org/docs/current/kite-morphlines/morphlinesReferenceGuide.html#/setValues

In addition, allRolesTokenmay be useful for transitioning a deployment to use document-level security. Instead of
having to define all the roles upfront, all the documents can be specified with allRolesToken and later modified as
the roles are defined.

Consequences of Document-Level Authorization Only Affecting Queries

Document-level security does not prevent users from modifying documents or performing other update operations
on the collection. Update operations are only governed by collection-level authorization.

Document-level security can be used to prevent documents being returned in query results. If users are not granted
access to a document, those documents are not returned even if that user submits a query that matches those
documents. This does not have affect attempted updates.

Consequently, it is possible for a user to not have access to a set of documents based on document-level security, but
to still be able to modify the documents using their collection-level authorization update rights. This means that a user
can delete all documents in the collection. Similarly, a user might modify all documents, adding their authorization
token to each one. After such a modification, the user could access any document using querying. Therefore, if you
are restricting access using document-level security, consider granting collection-level update rights only to those users
you trust and assume they will be able to access every document in the collection.

Limitations on Query Size

By default queries support up to 1024 Boolean clauses. As a result, queries containing more that 1024 clauses may
cause errors. Because authorization information is added by Sentry as part of a query, using document-level security
can increase the number of clauses. In the case where users belong to many roles, even simple queries can become
quite large. If a query is too large, an error of the following form occurs:

org.apache.lucene.search.BooleanQuery$TooManyClauses: maxClauseCount is set to 1024

To change the supported number of clauses, edit the maxBooleanClauses setting in solrconfig.xml. For example,
to allow 2048 clauses, you would edit the setting so it appears as follows:

<maxBooleanClauses>2048</maxBooleanClauses>

For maxBooleanClauses to be applied as expected, make any change to this value to all collections and then restart
the service. Youmustmake this change to all collections because this optionmodifies a global Lucene property, affecting
all Solr cores. If different solrconfig.xml files have different values for this property, the effective value is determined
per host, based on the first Solr core to be initialized.

Enabling Secure Impersonation

Secure impersonation allows a user to make requests as another user in a secure way. The user who has been granted
impersonation rights receives the same access as the user being impersonated.

Configure custom security impersonation settings using the Solr Service Environment Advanced Configuration Snippet
(Safety Valve). For example, to allow the following impersonations:

• User hue can make requests as any user from any host.
• User foo can make requests as any member of group bar, from host1 or host2.

Enter the following values into the Solr Service Environment Advanced Configuration Snippet (Safety Valve):

SOLR_SECURITY_ALLOWED_PROXYUSERS=hue,foo
SOLR_SECURITY_PROXYUSER_hue_HOSTS=*
SOLR_SECURITY_PROXYUSER_hue_GROUPS=*
SOLR_SECURITY_PROXYUSER_foo_HOSTS=host1,host2
SOLR_SECURITY_PROXYUSER_foo_GROUPS=bar

SOLR_SECURITY_ALLOWED_PROXYUSERS lists all of the users allowed to impersonate. For a user x in
SOLR_SECURITY_ALLOWED_PROXYUSERS, SOLR_SECURITY_PROXYUSER_x_HOSTS list the hosts x is allowed to
connect from to impersonate, and SOLR_SECURITY_PROXYUSERS_x_GROUPS lists the groups that the users is allowed

470 | Cloudera Security

Configuring Authorization

to impersonate members of. Both GROUPS and HOSTS support the wildcard * and both GROUPS and HOSTSmust be
defined for a specific user.

Note: ClouderaManager has its ownmanagement of secure impersonation for Hue. To add additional
users for Secure Impersonation, use the environment variable safety value for Solr to set the
environment variables as above. Be sure to include hue in SOLR_SECURITY_ALLOWED_PROXYUSERS
if you want to use secure impersonation for hue.

Configuring HBase Authorization
After configuring HBase authentication (as detailed in HBase Configuration), you must define rules on resources that
is allowed to access. HBase rules can be defined for individual tables, columns, and cells within a table. Cell-level
authorization is fully supported since CDH 5.2.

Important: In a cluster managed by Cloudera Manager, HBase authorization is disabled by default.
You have to enable HBase authorization (as detailed in Enable HBase Authorization on page 473) to
use any kind of authorization method.

Understanding HBase Access Levels

HBase access levels are granted independently of each other and allow for different types of operations at a given
scope.

• Read (R) - can read data at the given scope
• Write (W) - can write data at the given scope
• Execute (X) - can execute coprocessor endpoints at the given scope
• Create (C) - can create tables or drop tables (even those they did not create) at the given scope
• Admin (A) - can perform cluster operations such as balancing the cluster or assigning regions at the given scope

The possible scopes are:

• Superuser - superusers can perform any operation available in HBase, to any resource. The user who runs HBase
on your cluster is a superuser, as are any principals assigned to the configuration property hbase.superuser in
hbase-site.xml on the HMaster.

• Global - permissions granted at global scope allow the admin to operate on all tables of the cluster.
• Namespace - permissions granted at namespace scope apply to all tables within a given namespace.
• Table - permissions granted at table scope apply to data or metadata within a given table.
• ColumnFamily - permissions granted at ColumnFamily scope apply to cells within that ColumnFamily.
• Cell - permissions granted at Cell scope apply to that exact cell coordinate. This allows for policy evolution along

with data. To change an ACL on a specific cell, write an updated cell with new ACL to the precise coordinates of
the original. If you have a multi-versioned schema and want to update ACLs on all visible versions, you'll need to
write new cells for all visible versions. The application has complete control over policy evolution. The exception
is append and increment processing. Appends and increments can carry an ACL in the operation. If one is
included in the operation, then it will be applied to the result of the append or increment. Otherwise, the ACL
of the existing cell being appended to or incremented is preserved.

The combination of access levels and scopes creates a matrix of possible access levels that can be granted to a user.
In a production environment, it is useful to think of access levels in terms of what is needed to do a specific job. The
following list describes appropriate access levels for some common types of HBase users. It is important not to grant
more access than is required for a given user to perform their required tasks.

• Superusers - In a production system, only the HBase user should have superuser access. In a development
environment, an administrator might need superuser access to quickly control and manage the cluster. However,
this type of administrator should usually be a Global Admin rather than a superuser.

Cloudera Security | 471

Configuring Authorization

• Global Admins - A global admin can perform tasks and access every table in HBase. In a typical production
environment, an admin should not have Read or Write permissions to data within tables.

– A global adminwith Admin permissions can perform cluster-wide operations on the cluster, such as balancing,
assigning or unassigning regions, or calling an explicit major compaction. This is an operations role.

– A global adminwith Create permissions can create or drop any tablewithin HBase. This ismore of a DBA-type
role.

In a production environment, it is likely that different users will have only one of Admin and Create permissions.

Warning:

In the current implementation, a Global Adminwith Admin permission can grant himself Read
and Write permissions on a table and gain access to that table's data. For this reason, only grant
Global Admin permissions to trusted user who actually need them.

Also be aware that a Global Admin with Create permission can perform a Put operation on
the ACL table, simulating a grant or revoke and circumventing the authorization check for
Global Admin permissions. This issue (but not the first one) is fixed in CDH 5.3 and higher, as
well as CDH 5.2.1. It is not fixed in CDH 4.x or CDH 5.1.x.

Due to these issues, be cautious with granting Global Admin privileges.

• NamespaceAdmin - a namespace adminwith Create permissions can create or drop tableswithin that namespace,
and take and restore snapshots. A namespace admin with Admin permissions can perform operations such as
splits or major compactions on tables within that namespace. Prior to CDH 5.4, only global admins could create
namespaces. In CDH 5.4, any user with Namespace Create privileges can create namespaces.

• Table Admins - A table admin can perform administrative operations only on that table. A table adminwith Create
permissions can create snapshots from that table or restore that table from a snapshot. A table admin with Admin
permissions can perform operations such as splits or major compactions on that table.

• Users - Users can read or write data, or both. Users can also execute coprocessor endpoints, if given Executable
permissions.

Important:

If you are using Kerberos principal names when setting ACLs for users, Hadoop uses only the first part
(short) of the Kerberos principal when converting it to the username. Hence, for the principal
ann/fully.qualified.domain.name@YOUR-REALM.COM, HBase ACLs should only be set for user
ann.

Table 54: Real-World Example of Access Levels

This table shows some typical job descriptions at a hypothetical company and the permissions they might require to
get their jobs done using HBase.

DescriptionPermissionsScopeJob Title

Manages the cluster and
gives access to Junior
Administrators.

Admin, CreateGlobalSenior Administrator

Creates tables and gives
access to Table
Administrators.

CreateGlobalJunior Administrator

Maintains a table from an
operations point of view.

AdminTableTable Administrator

472 | Cloudera Security

Configuring Authorization

DescriptionPermissionsScopeJob Title

Creates reports from HBase
data.

ReadTableData Analyst

Puts data into HBase and
uses HBase data to perform
operations.

Read, WriteTableWeb Application

Further Reading

• Access Control Matrix
• Security - Apache HBase Reference Guide

Enable HBase Authorization

HBase authorization is built on top of the Coprocessors framework, specifically AccessController Coprocessor.

Note: Once the Access Controller coprocessor is enabled, any user who uses the HBase shell will be
subject to access control. Access control will also be in effect for native (Java API) client access to
HBase.

Enable HBase Authorization Using Cloudera Manager

1. Go to Clusters and select the HBase cluster.
2. Select Configuration.
3. Search for HBase Secure Authorization and select it.
4. Search forHBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml and enter the following

into it to enable hbase.security.exec.permission.checks. Without this option, all users will continue to
have access to execute endpoint coprocessors. This option is not enabled when you enable HBase Secure
Authorization for backward compatibility.

<property>
 <name>hbase.security.exec.permission.checks</name>
 <value>true</value>
</property>

5. Optionally, search for and configure HBase Coprocessor Master Classes and HBase Coprocessor Region Classes.

Enable HBase Authorization Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 5.9.x. See Cloudera Documentation for information

specific to other releases.

To enable HBase authorization, add the following properties to the hbase-site.xml file on every HBase server host
(Master or RegionServer):

<property>
 <name>hbase.security.authorization</name>
 <value>true</value>
</property>
<property>
 <name>hbase.security.exec.permission.checks</name>
 <value>true</value>
</property>

Cloudera Security | 473

Configuring Authorization

http://hbase.apache.org/book/appendix_acl_matrix.html
http://hbase.apache.org/book/security.html
http://www.cloudera.com/content/support/en/documentation.html

<property>
 <name>hbase.coprocessor.master.classes</name>
 <value>org.apache.hadoop.hbase.security.access.AccessController</value>
</property>
<property>
 <name>hbase.coprocessor.region.classes</name>

<value>org.apache.hadoop.hbase.security.token.TokenProvider,org.apache.hadoop.hbase.security.access.AccessController</value>
</property>

Configure Access Control Lists for Authorization

Now that HBase has the security coprocessor enabled, you can set ACLs using the HBase shell. Start the HBase shell
as usual.

Important:

The host running the shell must be configured with a keytab file as described in Configuring Kerberos
Authentication for HBase.

The commands that control ACLs take the following form. Group names are prefixed with the @ symbol.

hbase> grant <user> <permissions> [@<namespace> [<table>[<column family>[<column
qualifier>]]]] # grants permissions

hbase> revoke <user> [@<namespace> [<table> [<column family> [<column qualifier>]
]] # revokes permissions

hbase> user_permission <table>
 # displays existing permissions

In the above commands, fields encased in <> are variables, and fields in [] are optional. The permissions variable
must consist of zero or more character from the set "RWCA".

• R denotes read permissions, which is required to perform Get, Scan, or Exists calls in a given scope.
• W denotes write permissions, which is required to perform Put, Delete, LockRow, UnlockRow,

IncrementColumnValue, CheckAndDelete, CheckAndPut, Flush, or Compact in a given scope.
• X denotes execute permissions, which is required to execute coprocessor endpoints.
• C denotes create permissions, which is required to perform Create, Alter, or Drop in a given scope.
• A denotes admin permissions, which is required to perform Enable, Disable, Snapshot, Restore, Clone,

Split, MajorCompact, Grant, Revoke, and Shutdown in a given scope.

Access Control List Example Commands

grant 'user1', 'RWC'
grant 'user2', 'RW', 'tableA'
grant 'user3', 'C', '@my_namespace'

Be sure to review the information in Understanding HBase Access Levels on page 471 to understand the implications
of the different access levels.

474 | Cloudera Security

Configuring Authorization

Sensitive Data Redaction

Data redaction is the suppression of sensitive data, such as any personally identifiable information (PII). PII can be used
on its own orwith other information to identify or locate a single person, or to identify an individual in context. Enabling
redaction allows you to transform PII to a pattern that does not contain any identifiable information. For example, you
could replace all Social Security numbers (SSN) like 123-45-6789 with an unintelligible pattern like XXX-XX-XXXX,
or replace only part of the SSN (XXX-XX-6789).

Although encryption techniques are available to protect Hadoop data, the underlying problem with using encryption
is that an administrator who has complete access to the cluster also has access to unencrypted sensitive user data.
Even users with appropriate ACLs on the data could have access to logs and queries where sensitive data might have
leaked.

Data redaction provides compliance with industry regulations such as PCI and HIPAA, which require that access to PII
be restricted to only those users whose jobs require such access. PII or other sensitive data must not be available
through any other channels to users like cluster administrators or data analysts. This is because redaction only applies
to any incidental leaks of data. For example, if a user already has the required permissions to access PII through queries,
then query results will not be redacted.

Password Redaction
Starting with Cloudera Manager and CDH 5.5, passwords are no longer accessible in cleartext through the Cloudera
Manager Admin Console or in the configuration files stored on disk. For components that use core Hadoop such as
HDFS, HBase, and Hive, Cloudera Manager Server uses Hadoop's CredentialProvider interface to encrypt and
store passwords inside a secure creds.jceks keystore file. For components that do not use core Hadoop, such as
Hue and Impala, instead of the password, Cloudera Manager Server uses a password_script =
/path/to/script/that/will/emit/password.sh parameter that, when run, writes the password to stdout.
Passwords contained within Cloudera Manager and Cloudera Navigator properties have been redacted internally in
Cloudera Manager.

However, the database password contained in Cloudera Manager Server's
/etc/cloudera-scm-server/db.properties file has not been redacted. The db.properties file is managed
by customers and is populatedmanually when the ClouderaManager Server database is being set up for the first time.
Since this occurs before the ClouderaManager Server has even started, encrypting the contents of this file is a completely
different challenge as compared to that of redacting configuration files.

Password redaction (not including log and query redaction) is enabled by default for deployments with Cloudera
Manager 5.5 (or higher) managing CDH 5.5 (or higher). There are no user-visible controls to enable or disable this
feature. It is expected to work out of the box. The primary places where you will encounter the effects of password
redaction are:

• In the Cloudera Manager Admin Console, on the Processes page for a given role instance, passwords in the linked
configuration files have been replaced by *******.

• On the Cloudera Manager Server and Agent hosts, all configuration files in the
/var/run/cloudera-scm-agent/process directory will have their passwords replaced by *******.

• In the Cloudera Manager Admin Console, Advanced Configuration Snippet parameters will be redacted to block
sensitive information such as passwords or secret keys. Users who have the permission to edit the parameter will
still see the sensitive words, but read-only users without edit privileges will only see the redacted version.

Redaction of Advanced Configuration Snippet parameters is based on detecting keywords explicitly defined as
sensitive in the contents of these parameters. That is, parameters containing the keywords password, key, aws,
or secret, will be redacted for users who do not have the required edit privileges. Default values for sensitive fields
are not redacted since defaults are published in the public documentation. Default passwords pose a security risk
and should not be used in production.

Cloudera Security | 475

Sensitive Data Redaction

A limitation of this feature is that the list of keywords used to determine sensitive information is currently limited
to those listed above and is not configurable using the Cloudera Manager Admin Console.

Cloudera Manager API Redaction
Cloudera Manager API does not have redaction enabled by default. You can configure redaction of the sensitive items
by specifying a JVM parameter for Cloudera Manager. When you set this parameter, API calls to Cloudera Manager
for configuration data do not include the sensitive information. Formore information, see Redacting Sensitive Information
from the Exported Configuration.

Log and Query Redaction - Scope and Rules
Data redaction in CDH targets sensitive SQL data and log files. You can enable or disable redaction for the whole cluster
with a simple HDFS service-wide configuration change. Redaction is implemented with the assumption that sensitive
information resides in the data itself, not the metadata. If you enable redaction for a file, only sensitive data inside the
file is redacted. Metadata such as the name of the file or file owner is not redacted.

When data redaction is enabled, the following data is redacted:

• Logs in HDFS and any dependent cluster services. Log redaction is not available in Isilon-based clusters.
• Audit data sent to Cloudera Navigator
• SQL query strings displayed by Hue, Hive, and Impala.

Redaction Rules

Redaction is based on pattern matching. Use regular expressions to define redaction rules that search for patterns of
sensitive information such as Social Security numbers, credit card numbers, and dates.

Use Cloudera Manager to create redaction rules that have the following components:

• Search - A regular expression matched against the data. If the expression matches any part of the data, the match
is replaced by the contents of the replace string. For example, to redact credit card numbers, your regular expression
is \d{4}[^\w]\d{4}[^\w]\d{4}[^\w]\d{4}.

• Replace - The string used to replace the redacted data. For example, to replace any matched credit card digits
with Xs, the Replace string value would be XXXX-XXXX-XXXX-XXXX.

• Trigger - An optional field that specifies a simple string to be searched for in the data. The redactor searches for
matches to the search regular expression only if the string is found. If no trigger is specified, redaction occurs
when the Search regular expression is matched. Using the Trigger field improves performance: simple string
matching is faster than regular expression matching.

The following redaction rules are preconfigured (not enabled) in Cloudera Manager. The order in which the rules are
specified is relevant. For example, in the list of rules below, credit card numbers are redacted first, followed by SSNs,
email addresses, and finally, hostnames.

Replace ExpressionSearch ExpressionRedaction Rule

XXXX-XXXX-XXXX-XXXX\d{4}[^\w]\d{4}[^\w]\d{4}[^\w]\d{4}Credit Card numbers (with
separator)

XXX-XX-XXXX\d{3}[^\w]\d{2}[^\w]\d{4}Social Security numbers
(with separator)

email@redacted.host\b([A-Za-z0-9]|[A-Za-z0-9][A-Za-z0-9\-\._]
 \

Email addresses

*[A-Za-z0-9])@(([A-Za-z0-9]|[A-Za-z]
 \
[A-Za-z0-9\-]*[A-Za-z0-9])\.)+([A-Za-z0-9]
 \
|[A-Za-z0-9][A-Za-z0-9\-]*[A-Za-z0-9])\b

476 | Cloudera Security

Sensitive Data Redaction

Replace ExpressionSearch ExpressionRedaction Rule

HOSTNAME.REDACTED\b(([A-Za-z]|[A-Za-z][A-Za-z0-9\-]
 \

Hostnames

*[A-Za-z0-9])\.)+([A-Za-z0-9]
 \
|[A-Za-z0-9][A-Za-z0-9\-]*[A-Za-z0-9])\b

Enabling Log and Query Redaction Using Cloudera Manager
Cloudera recommends using the new layout in Cloudera Manager, instead of the classic layout, to enable redaction.
The new layout allows you to add preconfigured redaction rules and test your rules inline. To enable log and query
redaction in Cloudera Manager:

1. Go to the HDFS service.
2. Click the Configuration tab.
3. In the Search box, type redaction to bring up the following redaction properties.

DescriptionProperty

Check this checkbox to enable log and query redaction for the cluster.Enable Log andQuery Redaction

List of rules for redacting sensitive information from log files and query strings.
Choose a preconfigured rule or add a custom rule.

Test your rules by entering sample text into the Test Redaction Rules text box
and click Test Redaction. If no rules match, the text you entered is returned
unchanged.

Log and Query Redaction Policy

4. Optionally, enter a reason for the configuration changes.
5. Click Save Changes to commit the changes.
6. Restart the cluster.

Configuring the Cloudera Navigator Data Management Component to Redact PII

Warning: Cloudera strongly recommends you use the cluster-wide log and query redaction feature
described in the previous section. The Cloudera Navigator configuration described as follows will not
redact Navigator data for all CDH components.

You can specify credit card number patterns and other PII to be masked in audit events, in the properties of entities
displayed in lineage diagrams, and in information retrieved from the Audit Server database and the Metadata Server
persistent storage. Redacting data other than credit card numbers is not supported out-of-the-box with this Cloudera
Navigator property. You may use a different regular expression to redact Social Security numbers or other PII. Masking
is not applied to audit events and lineage entities that existed before the mask was enabled.

Minimum Required Role: Navigator Administrator (also provided by Full Administrator)

1. Do one of the following:

• Select Clusters > Cloudera Management Service > Cloudera Management Service.
• On the Home > Status tab, in Cloudera Management Service table, click the Cloudera Management Service

link.

2. Click the Configuration tab.
3. Expand the Navigator Audit Server Default Group category.
4. Click the Advanced category.

Cloudera Security | 477

Sensitive Data Redaction

5. Configure the PII Masking Regular Expression property with a regular expression that matches the credit card
number formats to be masked. The default expression is:

(4[0-9]{12}(?:[0-9]{3})?)|(5[1-5][0-9]{14})|(3[47][0-9]{13})
|(3(?:0[0-5]|[68][0-9])[0-9]{11})|(6(?:011|5[0-9]{2})[0-9]{12})|((?:2131|1800|35\\d{3})\\d{11})

which is constructed from the following subexpressions:

• Visa - (4[0-9]{12}(?:[0-9]{3})?)
• MasterCard - (5[1-5][0-9]{14})
• American Express - (3[47][0-9]{13})
• Diners Club - (3(?:0[0-5]|[68][0-9])[0-9]{11})
• Discover - (6(?:011|5[0-9]{2})[0-9]{12})
• JCB - ((?:2131|1800|35\\d{3})\\d{11})

If the property is left blank, PII information is not masked.
6. Click Save Changes to commit the changes.

478 | Cloudera Security

Sensitive Data Redaction

Securing Connections to Amazon S3

Hadoop's hadoop-aws connector allows certain CDH components such as Impala and Spark to integrate with Amazon
Web Services (AWS). CDH in particular, supports only AWS S3's third generation s3a filesystem scheme, which was
introduced as an improvement over the native S3 filesystem with its support for larger files and better performance.

You can configure your AWS credentials using the following properties to give CDH services access to S3.

<property>
 <name>fs.s3a.access.key</name>
 <value>your_access_key</value>
</property>

<property>
 <name>fs.s3a.secret.key</name>
 <value>your_secret_key</value>
</property>

You should note that the AWS credentials listed above are used to determine who has read/write access to AWS data.
Therefore, it is imperative that you do not share these credentials with other cluster users or services. You should also
make sure that these credentials do not appear in cleartext in any configuration files, log files, or UIs. One way to
protect your AWS credentials is to run Hadoop jobs using a separate set of temporary credentials which expire after
a configurable period of time. Thus, you do not need to worry about your access key and secret key persisting in the
Hadoop configuration and log files months after you have accessed S3, because those credentials will have expired.

Using Temporary Credentials to Connect to Amazon S3
AWS provides a Security Token Service (STS) that issues temporary credentials to access AWS services such as S3. The
temporary credentials consists of an access key, a secret key (like regular AWS credentials), and a session token.

Important: CDH does not currently provide a way to request temporary credentials. This will have
to be done separately by the user. For information on how to obtain temporary credentials from
Amazon STS, see the AWS Identity and Access Management Guide.

To connect to S3 using temporary credentials, provide the credential provider and session token along with the
temporary AWS credentials as command-line arguments when you submit a job.

-Dfs.s3a.access.key=your_temp_access_key
-Dfs.s3a.secret.key=your_temp_secret_key
-Dfs.s3a.session.token=your_session_token_from_AmazonSTSyour_session_token_from_AmazonSTS
-Dfs.s3a.aws.credentials.provider=org.apache.hadoop.fs.s3a.TemporaryAWSCredentialsProvider

Related Information

• Accessing Data Stored in Amazon S3 through Spark
• Configuring MapReduce To Read/Write With Amazon Web Services
• Configuring Oozie to Enable MapReduce Jobs To Read/Write from Amazon S3

Connecting to Amazon S3 Using TLS
Thebooleanparameterfs.s3a.connection.ssl.enabled incore-site.xml controlswhether thehadoop-aws
connector uses TLS when communicating with Amazon S3. Because this parameter is set to true by default, you do
not need to configure anything to enable TLS. If you are not using TLS on Amazon S3, the connector will automatically
fall back to a plaintext connection.

Cloudera Security | 479

Securing Connections to Amazon S3

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

The root Certificate Authority (CA) certificate that signed the Amazon S3 certificate is trusted by default. If you are
using custom truststores, make sure that the configured truststore for each service trusts the root CA certificate.

To import the root CA certificate into your custom truststore, run the following command:

$ $JAVA_HOME/bin/keytool -importkeystore -srckeystore $JAVA_HOME/jre/lib/security/cacerts
 -destkeystore /path/to/custom/truststore -srcalias baltimorecybertrustca

If you do not have the $JAVA_HOME variable set, replace it with the path to the Oracle JDK (for example,
/usr/java/jdk1.7.0_67-cloudera/). When prompted, enter the password for the destination and source
truststores. The default password for the Oracle JDK cacerts truststore is changeit.

The truststore configurations for each service that accesses S3 are as follows:

hadoop-aws Connector

All components that can use Amazon S3 storage rely on the hadoop-aws connector, which uses the built-in Java
truststore ($JAVA_HOME/jre/lib/security/cacerts). To override this truststore, create a truststore named
jssecacerts in the same directory ($JAVA_HOME/jre/lib/security/jssecacerts) on all cluster nodes. If you
are using the jssecacerts truststore, make sure that it includes the root CA certificate that signed the Amazon S3
certificate.

Hive/Beeline CLI

The Hive and Beeline command line interfaces (CLI) rely on the HiveServer2 truststore. To view ormodify the truststore
configuration:

1. Go to the Hive service in the Cloudera Manager Admin Interface.
2. Select the Configuration tab.
3. Select Scope > HIVE-1 (Service-Wide).
4. Select Category > Security.
5. Locate the HiveServer2 TLS/SSL Certificate Trust Store File and HiveServer2 TLS/SSL Certificate Trust Store

Password properties or search for them by typing Trust in the Search box.

Impala Shell

The Impala shell uses the hadoop-aws connector truststore. To override it, create the
$JAVA_HOME/jre/lib/security/jssecacerts file, as described in hadoop-aws Connector on page 480.

Hue S3 File Browser

For instructions on enabling the S3 file browser in Hue, see How to Enable S3 Cloud Storage. The S3 file browser uses
TLS if it is enabled, and the S3 File Browser trusts the S3 certificate by default. No additional configuration is necessary.

Impala Query Editor (Hue)

The Impala query editor in Hue uses the hadoop-aws connector truststore. To override it, create the
$JAVA_HOME/jre/lib/security/jssecacerts file, as described in hadoop-aws Connector on page 480.

Hive Query Editor (Hue)

TheHive query editor in Hue uses the HiveServer2 truststore. For instructions on viewing andmodifying the HiveServer2
truststore, see Hive/Beeline CLI on page 480.

Enabling Server-Side Encryption for Data At-Rest on Amazon S3
Server-side encryption for Amazon S3 (s3a filesystem) protects data at-rest. To enable server-side encryption:

1. Go to the Cloudera Manager Admin Console and navigate to the HDFS service.

480 | Cloudera Security

Securing Connections to Amazon S3

2. Click the Configuration tab.
3. Select Scope > HDFS (Service-Wide).
4. Select Category > Advanced.
5. Locate the Cluster-wide Advanced Configuration Snippet (Safety Valve) for core-site.xml property and add the

following property:

<property>
 <name>fs.s3a.server-side-encryption-algorithm</name>
 <value>AES256</value>
 <description>Specify a server-side encryption algorithm for S3A.
 The default is NULL, and the only other currently allowable value is AES256.
 </description>
</property>

6. Click Save Changes to commit the changes.
7. Restart the HDFS service.

Cloudera Security | 481

Securing Connections to Amazon S3

Overview of Impala Security

Impala includes a fine-grained authorization framework for Hadoop, based on the Sentry open source project. Sentry
authorization was added in Impala 1.1.0. Together with the Kerberos authentication framework, Sentry takes Hadoop
security to a new level needed for the requirements of highly regulated industries such as healthcare, financial services,
and government. Impala also includes an auditing capability; Impala generates the audit data, the Cloudera Navigator
product consolidates the audit data from all nodes in the cluster, and Cloudera Manager lets you filter, visualize, and
produce reports. The auditing feature was added in Impala 1.1.1.

The Impala security features have several objectives. At the most basic level, security prevents accidents or mistakes
that could disrupt application processing, delete or corrupt data, or reveal data to unauthorized users. More advanced
security features and practices can harden the system against malicious users trying to gain unauthorized access or
perform other disallowed operations. The auditing feature provides a way to confirm that no unauthorized access
occurred, and detect whether any such attemptsweremade. This is a critical set of features for production deployments
in large organizations that handle important or sensitive data. It sets the stage for multi-tenancy, where multiple
applications run concurrently and are prevented from interfering with each other.

The material in this section presumes that you are already familiar with administering secure Linux systems. That is,
you should know the general security practices for Linux andHadoop, and their associated commands and configuration
files. For example, you should know how to create Linux users and groups, manage Linux group membership, set Linux
and HDFS file permissions and ownership, and designate the default permissions and ownership for new files. You
should be familiar with the configuration of the nodes in your Hadoop cluster, and know how to apply configuration
changes or run a set of commands across all the nodes.

The security features are divided into these broad categories:

authorization

Which users are allowed to access which resources, andwhat operations are they allowed to perform? Impala relies
on the open source Sentry project for authorization. By default (when authorization is not enabled), Impala does
all read and write operations with the privileges of the impala user, which is suitable for a development/test
environment but not for a secure production environment. When authorization is enabled, Impala uses the OS user
ID of the user who runs impala-shell or other client program, and associates various privileges with each user.
See Enabling Sentry Authorization for Impala on page 453 for details about setting up and managing authorization.

authentication

How does Impala verify the identity of the user to confirm that they really are allowed to exercise the privileges
assigned to that user? Impala relies on the Kerberos subsystem for authentication. See Enabling Kerberos
Authentication for Impala on page 164 for details about setting up and managing authentication.

auditing

What operations were attempted, and did they succeed or not? This feature provides a way to look back and
diagnose whether attempts were made to perform unauthorized operations. You use this information to track
down suspicious activity, and to see where changes are needed in authorization policies. The audit data produced
by this feature is collected by the Cloudera Manager product and then presented in a user-friendly form by the
Cloudera Manager product. See Auditing Impala Operations for details about setting up and managing auditing.

These other topics in the Security Guide cover how Impala integrates with security frameworks such as Kerberos, LDAP,
and Sentry:

• Impala Authentication on page 164
• Enabling Sentry Authorization for Impala on page 453

Security Guidelines for Impala
The following are the major steps to harden a cluster running Impala against accidents and mistakes, or malicious
attackers trying to access sensitive data:

482 | Cloudera Security

Overview of Impala Security

• Secure the root account. The root user can tamper with the impalad daemon, read and write the data files in
HDFS, log into other user accounts, and access other system services that are beyond the control of Impala.

• Restrict membership in the sudoers list (in the /etc/sudoers file). The users who can run the sudo command
can do many of the same things as the root user.

• Ensure the Hadoop ownership and permissions for Impala data files are restricted.

• Ensure the Hadoop ownership and permissions for Impala log files are restricted.

• Ensure that the Impala web UI (available by default on port 25000 on each Impala node) is password-protected.
See Impala Web User Interface for Debugging for details.

• Create a policy file that specifies which Impala privileges are available to users in particular Hadoop groups (which
by defaultmap to LinuxOS groups). Create the associated Linux groups using the groupadd command if necessary.

• The Impala authorization featuremakes use of theHDFS file ownership and permissionsmechanism; for background
information, see the CDH HDFS Permissions Guide. Set up users and assign them to groups at the OS level,
corresponding to the different categories of users with different access levels for various databases, tables, and
HDFS locations (URIs). Create the associated Linux users using the useradd command if necessary, and add them
to the appropriate groups with the usermod command.

• Design your databases, tables, and views with database and table structure to allow policy rules to specify simple,
consistent rules. For example, if all tables related to an application are inside a single database, you can assign
privileges for that database and use the * wildcard for the table name. If you are creating views with different
privileges than the underlying base tables, you might put the views in a separate database so that you can use
the * wildcard for the database containing the base tables, while specifying the precise names of the individual
views. (For specifying table or database names, you either specify the exact name or * to mean all the databases
on a server, or all the tables and views in a database.)

• Enable authorization by running the impalad daemons with the -server_name and
-authorization_policy_file options on all nodes. (The authorization feature does not apply to the
statestored daemon, which has no access to schema objects or data files.)

• Set up authentication using Kerberos, to make sure users really are who they say they are.

Securing Impala Data and Log Files
One aspect of security is to protect files from unauthorized access at the filesystem level. For example, if you store
sensitive data in HDFS, you specify permissions on the associated files and directories in HDFS to restrict read andwrite
permissions to the appropriate users and groups.

If you issue queries containing sensitive values in the WHERE clause, such as financial account numbers, those values
are stored in Impala log files in the Linux filesystem and you must secure those files also. For the locations of Impala
log files, see Using Impala Logging.

All Impala read and write operations are performed under the filesystem privileges of the impala user. The impala
user must be able to read all directories and data files that you query, and write into all the directories and data files
for INSERT and LOAD DATA statements. At a minimum, make sure the impala user is in the hive group so that it
can access files and directories shared between Impala and Hive. See User Account Requirements for more details.

Setting file permissions is necessary for Impala to function correctly, but is not an effective security practice by itself:

• The way to ensure that only authorized users can submit requests for databases and tables they are allowed to
access is to set up Sentry authorization, as explained in Enabling Sentry Authorization for Impala on page 453.With
authorization enabled, the checking of the user ID and group is done by Impala, and unauthorized access is blocked
by Impala itself. The actual low-level read and write requests are still done by the impala user, so you must have
appropriate file and directory permissions for that user ID.

Cloudera Security | 483

Overview of Impala Security

https://archive.cloudera.com/cdh/3/hadoop/hdfs_permissions_guide.html

• You must also set up Kerberos authentication, as described in Enabling Kerberos Authentication for Impala on
page 164, so that users can only connect from trusted hosts. With Kerberos enabled, if someone connects a new
host to the network and creates user IDs that match your privileged IDs, they will be blocked from connecting to
Impala at all from that host.

Installation Considerations for Impala Security
Impala 1.1 comes set up with all the software and settings needed to enable security when you run the impalad
daemon with the new security-related options (-server_name and -authorization_policy_file). You do not
need to change any environment variables or install any additional JAR files. In a clustermanaged by ClouderaManager,
you do not need to change any settings in Cloudera Manager.

Securing the Hive Metastore Database
It is important to secure theHivemetastore, so that users cannot access the names or other information about databases
and tables the through the Hive client or by querying the metastore database. Do this by turning on Hive metastore
security, using the instructions in the CDH 5 Security Guide for securing different Hive components:

• Secure the Hive Metastore.
• In addition, allow access to the metastore only from the HiveServer2 server, and then disable local access to the

HiveServer2 server.

Securing the Impala Web User Interface
The instructions in this section presume you are familiar with the .htpasswdmechanism commonly used to
password-protect pages on web servers.

Password-protect the ImpalawebUI that listens on port 25000 by default. Set up a.htpasswd file in the$IMPALA_HOME
directory, or start both the impalad and statestored daemons with the --webserver_password_file option
to specify a different location (including the filename).

This file should only be readable by the Impala process and machine administrators, because it contains (hashed)
versions of passwords. The username / password pairs are not derived from Unix usernames, Kerberos users, or any
other system. Thedomain field in the password filemustmatch the domain supplied to Impala by the new command-line
option --webserver_authentication_domain. The default is mydomain.com.

Impala also supports using HTTPS for secure web traffic. To do so, set --webserver_certificate_file to refer
to a valid .pem TLS/SSL certificate file. Impala will automatically start using HTTPS once the TLS/SSL certificate has
been read and validated. A .pem file is basically a private key, followed by a signed TLS/SSL certificate; make sure to
concatenate both parts when constructing the .pem file.

If Impala cannot find or parse the .pem file, it prints an error message and quits.

Note:

If the private key is encrypted using a passphrase, Impalawill ask for that passphrase on startup, which
is not useful for a large cluster. In that case, remove the passphrase and make the .pem file readable
only by Impala and administrators.

When you turn on TLS/SSL for the Impala web UI, the associated URLs change from http:// prefixes
to https://. Adjust any bookmarks or application code that refers to those URLs.

484 | Cloudera Security

Overview of Impala Security

http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_sg_hive_security.html
http://en.wikipedia.org/wiki/.htpasswd

Configuring Secure Access for Impala Web Servers

Cloudera Manager supports two methods of authentication for secure access to the Impala Catalog Server, Daemon,
and StateStoreweb servers: password-based authentication and TLS/SSL certificate authentication.

Authentication for the three types of daemons can be configured independently.

Configuring Password Authentication

1. Navigate to Clusters > Impala Service > Configuration.
2. Search for "password" using the Search box in the Configuration tab. This should display the password-related

properties (Username and Password properties) for the Impala Daemon, StateStore, and Catalog Server. If there
are multiple role groups configured for Impala Daemon instances, the search should display all of them.

3. Enter a username and password into these fields.
4. Click Save Changes, and restart the Impala service.

Now when you access theWeb UI for the Impala Daemon, StateStore, or Catalog Server, you are asked to log in before
access is granted.

Configuring TLS/SSL Certificate Authentication

1. Create or obtain an TLS/SSL certificate.
2. Place the certificate, in .pem format, on the hosts where the Impala Catalog Server and StateStore are running,

and on each host where an Impala Daemon is running. It can be placed in any location (path) you choose. If all
the Impala Daemons are members of the same role group, then the .pem file must have the same path on every
host.

3. Navigate to Clusters > Impala Service > Configuration.
4. Search for "certificate" using the Search box in the Configuration tab. This should display the certificate file location

properties for the Impala Catalog Server, Impala Daemon, and StateStore. If there are multiple role groups
configured for Impala Daemon instances, the search should display all of them.

5. In the property fields, enter the full path name to the certificate file.
6. Click Save Changes, and restart the Impala service.

Important: If Cloudera Manager cannot find the .pem file on the host for a specific role instance,
that role will fail to start.

When you access the Web UI for the Impala Catalog Server, Impala Daemon, and StateStore, https will be used.

Cloudera Security | 485

Overview of Impala Security

Miscellaneous Topics

This section comprisesmiscellaneous security guide topics that youmay find useful once you have secured your cluster
with authentication, encryption and authorization techniques.

Jsvc, Task Controller and Container Executor Programs
This section contains information about the following Hadoop security programs:

MRv1 and YARN: The jsvc Program

The jsvc program is part of the bigtop-jsvc package and installed in either /usr/lib/bigtop-utils/jsvc or
/usr/libexec/bigtop-utils/jsvc depending on the particular Linux flavor.

jsvc (more info) is used to start the DataNode listening on low port numbers. Its entry point is the
SecureDataNodeStarter class, which implements the Daemon interface that jsvc expects. jsvc is run as root,
and calls the SecureDataNodeStarter.init(...)method while running as root. Once the
SecureDataNodeStarter class has finished initializing, jsvc sets the effective UID to be the hdfs user, and then
calls SecureDataNodeStarter.start(...). SecureDataNodeStarter then calls the regular DataNode entry
point, passing in a reference to the privileged resources it previously obtained.

MRv1 Only: The Linux TaskController Program

A setuid binary called task-controller is part of the hadoop-0.20-mapreduce package and is installed in either
/usr/lib/hadoop-0.20-mapreduce/sbin/Linux-amd64-64/task-controller or
/usr/lib/hadoop-0.20-mapreduce/sbin/Linux-i386-32/task-controller.

This task-controller program, which is used on MRv1 only, allows the TaskTracker to run tasks under the Unix
account of the user who submitted the job in the first place. It is a setuid binary that must have a very specific set of
permissions and ownership to function correctly. In particular, it must:

1. Be owned by root
2. Be owned by a group that contains only the user running the MapReduce daemons
3. Be setuid
4. Be group readable and executable

This corresponds to the ownership root:mapred and the permissions 4754.

Here is the output of ls on a correctly-configured Task-controller:

-rwsr-xr-- 1 root mapred 30888 Mar 18 13:03 task-controller

The TaskTracker will check for this configuration on start up, and fail to start if the Task-controller is not configured
correctly.

YARN Only: The Linux Container Executor Program

A setuid binary called container-executor is part of the hadoop-yarn package and is installed in
/usr/lib/hadoop-yarn/bin/container-executor.

Thiscontainer-executorprogram,which is used on YARNonly and supported onGNU/Linux only, runs the containers
as the user who submitted the application. It requires all user accounts to be created on the cluster hosts where the
containers are launched. It uses a setuid executable that is included in the Hadoop distribution. The NodeManager
uses this executable to launch and kill containers. The setuid executable switches to the user who has submitted the
application and launches or kills the containers. For maximum security, this executor sets up restricted permissions
and user/group ownership of local files and directories used by the containers such as the shared objects, jars,

486 | Cloudera Security

Miscellaneous Topics

http://commons.apache.org/daemon/jsvc.html

intermediate files, and log files. As a result, only the application owner and NodeManager can access any of the local
files/directories including those localized as part of the distributed cache.

Parcel Deployments

In a parcel deployment the container-executor file is located inside the parcel at
/opt/cloudera/parcels/CDH/lib/hadoop-yarn/bin/container-executor. For the/usr/libmount point,
setuid should not be a problem. However, the parcel could easily be located on a different mount point. If you are
using a parcel, make sure the mount point for the parcel directory is without the nosuid option.

The container-executor programmust have a very specific set of permissions and ownership to function correctly.
In particular, it must:

1. Be owned by root
2. Be owned by a group that contains only the user running the YARN daemons
3. Be setuid
4. Be group readable and executable. This corresponds to the ownership root:yarn and the permissions 6050.

---Sr-s--- 1 root yarn 91886 2012-04-01 19:54 container-executor

Important: Configuration changes to the Linux container executor could result in local NodeManager
directories (such as usercache) being left with incorrect permissions. To avoid this, when making
changes using either Cloudera Manager or the command line, first manually remove the existing
NodeManager local directories from all configured local directories
(yarn.nodemanager.local-dirs), and let the NodeManager recreate the directory structure.

Task-controller and Container-executor Error Codes

When you set up a secure cluster for the first time and debug problems with it, the task-controller or
container-executormay encounter errors. These programs communicate these errors to the TaskTracker or
NodeManager daemon via numeric error codes whichwill appear in the TaskTracker or NodeManager logs respectively
(/var/log/hadoop-mapreduce or /var/log/hadoop-yarn). The following sections list the possible numeric
error codes with descriptions of what they mean:

• MRv1 ONLY: Task-controller Error Codes on page 487
• YARN ONLY: Container-executor Error Codes on page 489

MRv1 ONLY: Task-controller Error Codes

The following table applies to the task-controller in MRv1.

DescriptionNameNumeric
Code

INVALID_ARGUMENT_NUMBER1 • Incorrect number of arguments provided for
the given task-controller command

• Failure to initialize the job localizer

The user passed to the task-controller does not
exist.

INVALID_USER_NAME2

The task-controller does not recognize the
command it was asked to execute.

INVALID_COMMAND_PROVIDED3

The user passed to the task-controllerwas the super
user.

SUPER_USER_NOT_ALLOWED_TO_RUN_TASKS4

Cloudera Security | 487

Miscellaneous Topics

DescriptionNameNumeric
Code

The passed TaskTracker root does not match the
configured TaskTracker root (mapred.local.dir),
or does not exist.

INVALID_TT_ROOT5

Either could not read the local groups database, or
could not set UID or GID

SETUID_OPER_FAILED6

The task-controller could not execute the task
launcher script.

UNABLE_TO_EXECUTE_TASK_SCRIPT7

The task-controller could not kill the task it was
passed.

UNABLE_TO_KILL_TASK8

The PID passed to the task-controller was negative
or 0.

INVALID_TASK_PID9

The task-controller could not resolve the path of
the task launcher script file.

ERROR_RESOLVING_FILE_PATH10

The path to the task launcher script file contains
relative components (for example, "..").

RELATIVE_PATH_COMPONENTS_IN_FILE_PATH11

The task-controller did not have permission to stat
a file it needed to check the ownership of.

UNABLE_TO_STAT_FILE12

A file which the task-controller must change the
ownership of has the wrong the ownership.

FILE_NOT_OWNED_BY_TASKTRACKER13

The mapred.local.dir is not configured, could
not be read by the task-controller, or could not have
its ownership secured.

PREPARE_ATTEMPT_DIRECTORIES_FAILED14

The task-controller could not get, stat, or secure
the job directory or job working working directory.

INITIALIZE_JOB_FAILED15

The task-controller could not find or could not
change the ownership of the task log directory to
the passed user.

PREPARE_TASK_LOGS_FAILED16

The hadoop.log.dir is not configured.INVALID_TT_LOG_DIR17

The task-controller could not determine the job
directory path or the task launcher script path.

OUT_OF_MEMORY18

Could not get a unique value for, stat, or the local
distributed cache directory.

INITIALIZE_DISTCACHEFILE_FAILED19

Could not get, stat, or secure the per-user task
tracker directory.

INITIALIZE_USER_FAILED20

The task-controller could not concatenate two
paths, most likely because it ran out of memory.

UNABLE_TO_BUILD_PATH21

The task-controller binary does not have the correct
permissions set. See Information about Other
Hadoop Security Programs.

INVALID_TASKCONTROLLER_PERMISSIONS22

488 | Cloudera Security

Miscellaneous Topics

DescriptionNameNumeric
Code

The task-controller could not find or could not
change the ownership of the job log directory to
the passed user.

PREPARE_JOB_LOGS_FAILED23

The taskcontroller.cfg file is missing, malformed, or
has incorrect permissions.

INVALID_CONFIG_FILE24

There are several causes for this error. Some
common causes are:

Unknown Error255

• There are user accounts on your cluster that
have a user ID less than the value specified for
the min.user.id property in the
taskcontroller.cfg file. The default value
is 1000 which is appropriate on Ubuntu
systems, but may not be valid for your
operating system. For information about
setting min.user.id in the
taskcontroller.cfg file, see this step.

• Jobs do not run and the TaskTracker is unable
to create a Hadoop logs directory. For more
information, see (MRv1 Only) Jobs will not run
and TaskTracker is unable to create a Hadoop
logs directory. on page 217.

• This error is often caused by previous errors;
look earlier in the log file for possible causes.

YARN ONLY: Container-executor Error Codes

The codes in the table apply to the container-executor in YARN, but are used by the LinuxContainerExecutor only.

DescriptionNameNumeric
Code

INVALID_ARGUMENT_NUMBER1 • Incorrect number of arguments provided for
the given task-controller command

• Failure to initialize the container localizer

The user passed to the task-controller does not
exist.

INVALID_USER_NAME2

The container-executor does not recognize the
command it was asked to run.

INVALID_COMMAND_PROVIDED3

The passed NodeManager root does not match the
configured NodeManager root

INVALID_NM_ROOT5

(yarn.nodemanager.local-dirs), or does not
exist.

Either could not read the local groups database, or
could not set UID or GID

SETUID_OPER_FAILED6

The container-executor could not run the container
launcher script.

UNABLE_TO_EXECUTE_CONTAINER_SCRIPT7

Cloudera Security | 489

Miscellaneous Topics

DescriptionNameNumeric
Code

The container-executor could not signal the
container it was passed.

UNABLE_TO_SIGNAL_CONTAINER8

The PID passed to the container-executor was
negative or 0.

INVALID_CONTAINER_PID9

The container-executor couldn't allocate enough
memory while reading the container-executor.cfg

OUT_OF_MEMORY18

file, or while getting the paths for the container
launcher script or credentials files.

Couldn't get, stat, or secure the per-user
NodeManager directory.

INITIALIZE_USER_FAILED20

The container-executor couldn't concatenate two
paths, most likely because it ran out of memory.

UNABLE_TO_BUILD_PATH21

The container-executor binary does not have the
correct permissions set. See Information about
Other Hadoop Security Programs.

INVALID_CONTAINER_EXEC_PERMISSIONS22

The container-executor.cfg file is missing,
malformed, or has incorrect permissions.

INVALID_CONFIG_FILE24

Could not set the session ID of the forked container.SETSID_OPER_FAILED25

Failed to write the value of the PID of the launched
container to the PID file of the container.

WRITE_PIDFILE_FAILED26

This error has several possible causes. Some
common causes are:

Unknown Error255

• User accounts on your cluster have a user ID
less than the value specified for the
min.user.id property in the
container-executor.cfg file. The default
value is 1000 which is appropriate on Ubuntu
systems, but may not be valid for your
operating system. For information about
setting min.user.id in the
container-executor.cfg file, see this step.

• This error is often caused by previous errors;
look earlier in the log file for possible causes.

The following exit status codes apply to all containers in YARN. These exit status codes are part of the YARN framework
and are in addition to application specific exit codes that can be set:

DescriptionNameNumeric
Code

Container has finished succesfully.SUCCESS0

Initial value of the container exit code. A container
that does not have a COMPLETED state will always
return this status.

INVALID-1000

490 | Cloudera Security

Miscellaneous Topics

DescriptionNameNumeric
Code

Containers killed by the framework, either due to
being released by the application or being 'lost' due
to node failures, for example.

ABORTED-100

Container exited due to local disks issues in the
NodeManager node. This occurs when the number

DISKS_FAILED-101

of good nodemanager-local-directories or
nodemanager-log-directories drops below the
health threshold.

Containers preempted by the framework. This does
not count towards a container failure in most
applications.

PREEMPTED-102

Container terminated because of exceeding
allocated virtual memory limit.

KILLED_EXCEEDED_VMEM-103

Container terminated because of exceeding
allocated physical memory limit.

KILLED_EXCEEDED_PMEM-104

Container was terminated on request of the
application master.

KILLED_BY_APPMASTER-105

Containerwas terminated by the resourcemanager.KILLED_BY_RESOURCEMANAGER-106

Container was terminated after the application
finished.

KILLED_AFTER_APP_COMPLETION-107

Sqoop, Pig, and Whirr Security Support Status
Here is a summary of the status of security in the other CDH 5 components:

• Sqoop 1 and Pig support security with no configuration required.
• Whirr does not support security in CDH 5.

Setting Up a Gateway Node to Restrict Cluster Access
Use the instructions that follow to set up and use a Hadoop cluster that is entirely firewalled off from outside access;
the only exception will be one node which will act as a gateway. Client machines can access the cluster through the
gateway using the REST API.

HttpFS will be used to allow REST access to HDFS, and Oozie will allow REST access for submitting and monitoring jobs.

Installing and Configuring the Firewall and Gateway

Follow these steps:

1. Choose a cluster node to be the gateway machine.
2. Install and configure the Oozie server by following the standard directions starting here: Installing Oozie.
3. Install HttpFS.
4. Start the Oozie server:

$ sudo service oozie start

Cloudera Security | 491

Miscellaneous Topics

5. Start the HttpFS server:

$ sudo service hadoop-httpfs start

6. Configure firewalls.

Block all access from outside the cluster.

• The gateway node should have ports 11000 (oozie) and 14000 (hadoop-httpfs) open.
• Optionally, to maintain access to the Web UIs for the cluster's JobTrackers and NameNode, open their HTTP

ports: see Ports Used by Components of CDH 5.

7. Optionally configure authentication in simple mode (default) or using Kerberos. See HttpFS Authentication on
page 144 to configure Kerberos for HttpFS and Oozie Authentication on page 171 to configure Kerberos for Oozie.

8. Optionally encrypt communication using HTTPS for Oozie by following these directions.

Accessing HDFS

With the Hadoop client:

All of the standard hadoop fs commands will work; just make sure to specify -fs webhdfs://HOSTNAME:14000.
For example (where GATEWAYHOST is the hostname of the gateway machine):

$ hadoop fs -fs webhdfs://GATEWAYHOST:14000 -cat /user/me/myfile.txt
Hello World!

Without the Hadoop client:

You can run all of the standard hadoop fs commands by using the WebHDFS REST API and any program that can
do GET , PUT, POST, and DELETE requests; for example:

$ curl "http://GATEWAYHOST:14000/webhdfs/v1/user/me/myfile.txt?op=OPEN&user.name=me"
Hello World!

Important: The user.name parameter is valid only if security is disabled. In a secure cluster, you must
a initiate a valid Kerberos session.

In general, the command will look like this:

$ curl "http://GATEWAYHOST/webhdfs/v1/PATH?[user.name=USER&]op=…"

You can find a full explanation of the commands in the WebHDFS REST API documentation.

Submitting and Monitoring Jobs

The Oozie REST API supports the direct submission of jobs for MapReduce, Pig, and Hive; Oozie automatically creates
a workflow with a single action. For any other action types, or to execute anything more complicated than a single job,
you must create an actual workflow. Required files (JAR files, input data) must already exist on HDFS; if they do not,
you can use HttpFS to upload the files.

With the Oozie client:

All of the standard Oozie commands will work. You can find a full explanation of the commands in the documentation
for the command-line utilities.

Without the Oozie client:

You can run all of the standard Oozie commands by using the REST API and any program that can do GET, PUT, and
POST requests. You can find a full explanation of the commands in the Oozie Web Services API documentation.

492 | Cloudera Security

Miscellaneous Topics

https://archive.cloudera.com/cdh5/cdh/5/hadoop/hadoop-project-dist/hadoop-hdfs/WebHDFS.html
https://archive.cloudera.com/cdh5/cdh/5/oozie/DG_CommandLineTool.html
https://archive.cloudera.com/cdh5/cdh/5/oozie/WebServicesAPI.html

Logging a Security Support Case
Before you log a support case, ensure you have either part or all of the following information to help Support investigate
your case:

Kerberos Issues

• For Kerberos issues, your krb5.conf and kdc.conf files are valuable for support to be able to understand your
configuration.

• If you are having trouble with client access to the cluster, provide the output for klist -ef after kiniting as the
user account on the client host in question. Additionally, confirm that your ticket is renewable by running kinit
-R after successfully kiniting.

• Specify if you are authenticating (kiniting) with a user outside of the Hadoop cluster's realm (such as Active
Directory, or another MIT Kerberos realm).

• If using AES-256 encryption, ensure you have the Unlimited Strength JCE Policy Files deployed on all cluster and
client nodes.

TLS/SSL Issues

• Specify whether you are using a private/commercial CA for your certificates, or if they are self-signed. Note that
Cloudera strongly recommends against using self-signed certificates in production clusters.

• Clarify what services you are attempting to setup TLS/SSL for in your description.
• When troubleshooting TLS/SSL trust issues, provide the output of the following openssl command:

openssl s_client -connect host.fqdn.name:port

LDAP Issues

• Specify the LDAP service in use (Active Directory, OpenLDAP, one of Oracle Directory Server offerings, OpenDJ,
etc)

• Provide a screenshot of the LDAP configuration screen you are working with if you are troubleshooting setup
issues.

• Be prepared to troubleshoot using the ldapsearch command (requires the openldap-clients package) on
the host where LDAP authentication or authorization issues are being seen.

Using Antivirus Software on CDH Hosts
If you use antivirus software on your servers, consider configuring it to skip scans on certain types of Hadoop-specific
resources. It can take a long time to scan large files or directories with a large number of files. In addition, if your
antivirus software locks files or directories as it scans them, those resourceswill be unavailable to your Hadoop processes
during the scan, and can cause latency or unavailability of resources in your cluster. Consider skipping scans on the
following types of resources:

• Scratch directories used by services such as Impala
• Log directories used by various Hadoop services
• Data directories which can grow to petabytes in size

The specific directory names and locations depend on the services your cluster uses and your configuration. In general,
avoid scanning very large directories and filesystems. Instead, limit write access to these locations using security
mechanisms such as access controls at the level of the operating system, HDFS, or at the service level.

Cloudera Security | 493

Miscellaneous Topics

Appendix: Apache License, Version 2.0

SPDX short identifier: Apache-2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through
9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of
fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

"Object" form shall mean any form resulting frommechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole,
an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or
additions to thatWork or DerivativeWorks thereof, that is intentionally submitted to Licensor for inclusion in theWork
by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of
discussing and improving theWork, but excluding communication that is conspicuouslymarked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whoma Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare DerivativeWorks of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license tomake, havemade,
use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims

494 | Cloudera

Appendix: Apache License, Version 2.0

licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated
within theWork constitutes direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and
2. You must cause any modified files to carry prominent notices stating that You changed the files; and
3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,

and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part
of the Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along
with the DerivativeWorks; or, within a display generated by the DerivativeWorks, if andwherever such third-party
notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify
the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be
construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as
a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an "AS IS" BASIS,WITHOUTWARRANTIES OR CONDITIONSOF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required
by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable
to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure ormalfunction, or any and all other commercial damages or losses), even
if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

Cloudera | 495

Appendix: Apache License, Version 2.0

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
"[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class name and description of
purpose be included on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

496 | Cloudera

Appendix: Apache License, Version 2.0

	Table of Contents
	About this Guide
	Security Overview for an Enterprise Data Hub
	Security Requirements
	Securing a Hadoop Cluster in Stages
	Hadoop Security Architecture
	Overview of Authentication Mechanisms for an Enterprise Data Hub
	Basic Kerberos Concepts
	Kerberos Principals
	Kerberos Keytabs
	Delegation Tokens

	Types of Kerberos Deployments
	Local MIT KDC
	Local MIT KDC with Active Directory Integration
	Direct to Active Directory

	TLS/SSL Requirements for Secure Distribution of Kerberos Keytabs
	Configuring Kerberos Authentication on a Cluster
	Authentication Mechanisms used by Hadoop Projects

	Overview of Data Protection Mechanisms for an Enterprise Data Hub
	Protecting Data At-Rest
	Encryption Options Available with Hadoop
	Data Redaction with Hadoop

	Password Redaction
	Protecting Data In-Transit
	SSL/TLS Certificates Overview
	TLS Encryption Levels for Cloudera Manager
	TLS/SSL Encryption for CDH Components

	Data Protection within Hadoop Projects

	Overview of Authorization Mechanisms for an Enterprise Data Hub
	Authorization Mechanisms in Hadoop
	POSIX Permissions
	Access Control Lists
	Role-Based Access Control with Apache Sentry
	Architecture Overview
	Sentry Integration with the Hadoop Ecosystem
	Hive and Sentry
	Impala and Sentry
	Sentry-HDFS Synchronization
	Search and Sentry
	Authorization Administration

	Integration with Authentication Mechanisms for Identity Management
	Authorization within Hadoop Projects

	Overview of Data Management Mechanisms for an Enterprise Data Hub
	Cloudera Navigator
	Auditing
	Metadata Management
	Lineage

	Integration within an EDH
	Auditing in Hadoop Projects

	How to Configure TLS Encryption for Cloudera Manager
	Generate TLS Certificates
	Generate the Cloudera Manager Server Certificate
	Generate the Cloudera Manager Agent Certificates

	Configuring TLS Encryption for the Cloudera Manager Admin Console
	Step 1: Enable HTTPS for the Cloudera Manager Admin Console
	Step 2: Specify SSL Truststore Properties for Cloudera Management Services
	Step 3: Restart Cloudera Manager and Services

	Configuring TLS Encryption for Cloudera Manager Agents
	Step 1: Enable TLS Encryption for Agents in Cloudera Manager
	Step 2: Enable TLS on Cloudera Manager Agent Hosts
	Step 3: Restart Cloudera Manager Server and Agents
	Step 4: Verify that the Cloudera Manager Server and Agents are Communicating

	Enabling Server Certificate Verification on Cloudera Manager Agents
	Configuring Agent Certificate Authentication
	Step 1: Export the Private Key to a File
	Step 2: Create a Password File
	Step 3: Configure the Agent to Use Private Keys and Certificates
	Step 4: Enable Agent Certificate Authentication
	Step 5: Restart Cloudera Manager Server and Agents
	Step 6: Verify that Cloudera Manager Server and Agents are Communicating

	Configuring Authentication
	Configuring Authentication in Cloudera Manager
	Cloudera Manager User Accounts
	User Authentication
	User Roles
	Determining the Role of the Currently Logged in User
	Changing the Logged-In Internal User Password
	Adding an Internal User Account
	Assigning User Roles
	Changing an Internal User Account Password
	Deleting Internal User Accounts
	Viewing User Sessions

	Configuring External Authentication for Cloudera Manager
	Configuring Authentication Using Active Directory
	Configuring Authentication Using an OpenLDAP-compatible Server
	Configuring Authentication Using an External Program
	Configuring Authentication Using SAML
	Preparing Files
	Configuring Cloudera Manager
	Configuring the IDP
	Verifying Authentication and Authorization

	Kerberos Concepts - Principals, Keytabs and Delegation Tokens
	Kerberos Principals
	Kerberos Keytabs
	Delegation Tokens

	Enabling Kerberos Authentication Using the Wizard
	Step 1: Install Cloudera Manager and CDH
	Overview of the User Accounts and Groups in CDH and Cloudera Manager to Support Security

	Step 2: If You are Using AES-256 Encryption, Install the JCE Policy File
	Step 3: Get or Create a Kerberos Principal for the Cloudera Manager Server
	Creating the Cloudera Manager Principal

	Step 4: Enabling Kerberos Using the Wizard
	Before you Begin Using the Wizard
	KDC Information
	KRB5 Configuration
	Import KDC Account Manager Credentials
	(Optional) Configuring Custom Kerberos Principals
	Configure HDFS DataNode Ports
	Enabling Kerberos
	Congratulations

	Step 5: Create the HDFS Superuser
	Step 6: Get or Create a Kerberos Principal for Each User Account
	Step 7: Prepare the Cluster for Each User
	Step 8: Verify that Kerberos Security is Working
	Step 9: (Optional) Enable Authentication for HTTP Web Consoles for Hadoop Roles

	Enabling Kerberos Authentication for Single User Mode or Non-Default Users
	Configuring a Cluster with Custom Kerberos Principals
	Managing Kerberos Credentials Using Cloudera Manager
	Managing Active Directory Account Properties
	Viewing and Regenerating Kerberos Credentials Using Cloudera Manager (MIT and AD)
	Running the Security Inspector

	Using a Custom Kerberos Keytab Retrieval Script
	Mapping Kerberos Principals to Short Names
	Moving Kerberos Principals to Another OU Within Active Directory
	Using Auth-to-Local Rules to Isolate Cluster Users
	Enabling Kerberos Authentication Without the Wizard
	Step 1: Install Cloudera Manager and CDH
	Step 2: If You are Using AES-256 Encryption, Install the JCE Policy File
	Step 3: Get or Create a Kerberos Principal for the Cloudera Manager Server
	Creating the Cloudera Manager Principal

	Step 4: Import KDC Account Manager Credentials
	Step 5: Configure the Kerberos Default Realm in the Cloudera Manager Admin Console
	Step 6: Stop All Services
	Step 7: Enable Hadoop Security
	Step 8: Wait for the Generate Credentials Command to Finish
	Step 9: Enable Hue to Work with Hadoop Security using Cloudera Manager
	Step 10: (Flume Only) Use Substitution Variables for the Kerberos Principal and Keytab
	Step 11: Start All Services
	Step 12: Deploy Client Configurations
	Step 13: Create the HDFS Superuser Principal
	Step 14: Get or Create a Kerberos Principal for Each User Account
	Step 15: Prepare the Cluster for Each User
	Step 16: Verify that Kerberos Security is Working
	Step 17: (Optional) Enable Authentication for HTTP Web Consoles for Hadoop Roles

	Configuring Authentication in the Cloudera Navigator Data Management Component
	Configuring External Authentication for the Cloudera Navigator Data Management Component
	Configuring Cloudera Navigator Authentication Using Active Directory
	Configuring Cloudera Navigator Authentication Using an OpenLDAP-compatible Server
	Configuring Cloudera Navigator Authentication Using SAML
	Preparing Files
	Configuring Cloudera Navigator
	Configuring the IDP
	Verifying Authentication and Authorization

	Managing Users and Groups for the Cloudera Navigator Data Management Component
	Assigning Cloudera Navigator User Roles to LDAP or Active Directory Groups

	Configuring Authentication in CDH Using the Command Line
	Enabling Kerberos Authentication for Hadoop Using the Command Line
	Step 1: Install CDH 5
	Step 2: Verify User Accounts and Groups in CDH 5 Due to Security
	Step 2a (MRv1 only): Verify User Accounts and Groups in MRv1
	MRv1: Directory Ownership in the Local File System
	MRv1: Directory Ownership on HDFS
	Step 2b (YARN only): Verify User Accounts and Groups in YARN
	YARN: Directory Ownership in the Local Filesystem
	YARN: Directory Ownership on HDFS

	Step 3: If you are Using AES-256 Encryption, Install the JCE Policy File
	Step 4: Create and Deploy the Kerberos Principals and Keytab Files
	When to Use kadmin.local and kadmin
	To create the Kerberos principals
	To create the Kerberos keytab files
	To deploy the Kerberos keytab files

	Step 5: Shut Down the Cluster
	Step 6: Enable Hadoop Security
	Step 7: Configure Secure HDFS
	To configure secure HDFS
	To enable TLS/SSL for HDFS

	Optional Step 8: Configuring Security for HDFS High Availability
	Optional Step 9: Configure secure WebHDFS
	Optional Step 10: Configuring a secure HDFS NFS Gateway
	Step 11: Set Variables for Secure DataNodes
	Step 12: Start up the NameNode
	Information about the kinit Command

	Step 12: Start up a DataNode
	Step 14: Set the Sticky Bit on HDFS Directories
	Step 15: Start up the Secondary NameNode (if used)
	Step 16: Configure Either MRv1 Security or YARN Security
	Configuring MRv1 Security
	Step 1: Configure Secure MRv1
	Step 2: Start up the JobTracker
	Step 3: Start up a TaskTracker
	Step 4: Try Running a Map/Reduce Job

	Configuring YARN Security
	Step 1: Configure Secure YARN
	Step 2: Start the ResourceManager
	Step 3: Start the NodeManager
	Step 4: Start the MapReduce Job History Server
	Step 5: Try Running a Map/Reduce YARN Job
	Step 6: (Optional) Configure YARN for Long-running Applications

	FUSE Kerberos Configuration
	Using kadmin to Create Kerberos Keytab Files
	To create the Kerberos keytab files

	Configuring the Mapping from Kerberos Principals to Short Names
	Mapping Rule Syntax
	Principal Translation
	Acceptance Filter
	Short Name Substitution
	Converting Principal Names to Lowercase
	Example Rules
	Default Rule
	Testing Mapping Rules

	Enabling Debugging Output for the Sun Kerberos Classes

	Flume Authentication
	Configuring Flume's Security Properties
	Writing as a single user for all HDFS sinks in a given Flume agent
	Writing as different users across multiple HDFS sinks in a single Flume agent
	Limitations

	Configuring Kerberos for Flume Thrift Source and Sink Using Cloudera Manager
	Configuring Kerberos for Flume Thrift Source and Sink Using the Command Line
	Flume Account Requirements
	Testing the Flume HDFS Sink Configuration
	Writing to a Secure HBase Cluster

	HBase Authentication
	Configuring Kerberos Authentication for HBase
	Configuring Kerberos Authentication for HBase Using Cloudera Manager
	Configure HBase Servers to Authenticate with a Secure HDFS Cluster Using Cloudera Manager
	Configure HBase Servers and Clients to Authenticate with a Secure ZooKeeper
	Configure HBase REST Server for Kerberos Authentication

	Configuring Kerberos Authentication for HBase Using the Command Line
	Configure HBase Servers to Authenticate with a Secure HDFS Cluster Using the Command Line
	Enable HBase Authentication
	Configure HBase Kerberos Principals
	Configure HBase Servers and Clients to Authenticate with a Secure ZooKeeper
	Configure HBase JVMs (all Masters, RegionServers, and clients) to Use JAAS
	Configure the HBase Servers (Masters and RegionServers) to Use Authentication to Connect to ZooKeeper
	Configure Authentication for the HBase REST and Thrift Gateways
	Configure doAs Impersonation for the HBase Thrift Gateway
	Start HBase

	Configuring Secure HBase Replication
	Configuring the HBase Client TGT Renewal Period

	HCatalog Authentication
	Before You Start
	Step 1: Create the HTTP keytab file
	Step 2: Configure WebHCat to Use Security
	Step 3: Create Proxy Users
	Step 4: Verify the Configuration

	Hive Authentication
	HiveServer2 Security Configuration
	Enabling Kerberos Authentication for HiveServer2
	Using LDAP Username/Password Authentication with HiveServer2
	Configuring LDAPS Authentication with HiveServer2
	Pluggable Authentication
	Trusted Delegation with HiveServer2
	HiveServer2 Impersonation
	Securing the Hive Metastore
	Disabling the Hive Security Configuration

	Hive Metastore Server Security Configuration
	Using Hive to Run Queries on a Secure HBase Server

	HttpFS Authentication
	Configuring the HttpFS Server to Support Kerberos Security
	Using curl to access an URL Protected by Kerberos HTTP SPNEGO

	Hue Authentication
	Enabling LDAP Authentication with HiveServer2 and Impala
	Securing Sessions
	Session Timeout
	Idle Session Timeout
	Secure Login
	Secure Cookies

	Allowed HTTP Methods
	Restricting the Cipher List
	URL Redirect Whitelist
	Oozie Permissions
	Configuring Kerberos Authentication for Hue
	Integrating Hue with LDAP
	Importing LDAP Users and Groups
	Synchronizing LDAP Users and Groups
	Configuring Hue for Authentication against Multiple LDAP/Active Directory Servers
	LDAPS/StartTLS support
	Troubleshooting LDAP Authentication Failures in Hue
	Hue Configuration for Common Deployment Scenarios
	Enabling LDAP Debugging in Hue

	Configuring Hue for SAML
	Summary Steps for Configuring Hue with SAML
	Detailed Steps for Configuring Hue with SAML
	Prerequisite
	Step 1: Install swig and openssl packages
	Step 2: Install xmlsec1 and xmlsec1-openssl packages
	Step 3: Install djangosaml and pysaml2 libraries
	Step 4: Copy Metadata from the SAML Server into an XML File
	Step 5: Configure Hue and Restart the Hue Server
	Step 6: Configure SAML

	Troubleshooting
	SAML SSL Error
	SAML Decrypt Error

	Impala Authentication
	Enabling Kerberos Authentication for Impala
	Requirements for Using Impala with Kerberos
	Configuring Impala to Support Kerberos Security
	Enabling Kerberos for Impala

	Enabling Kerberos for Impala with a Proxy Server
	Enabling Impala Delegation for Kerberos Users
	Using TLS/SSL with Business Intelligence Tools
	Enabling Access to Internal Impala APIs for Kerberos Users
	Mapping Kerberos Principals to Short Names for Impala

	Enabling LDAP Authentication for Impala
	Requirements for Using Impala with LDAP
	Kerberos Authentication for Connections Between Impala Components

	Server-Side LDAP Setup
	Support for Custom Bind Strings
	Secure LDAP Connections
	LDAP Authentication for impala-shell Interpreter
	Enabling LDAP for Impala in Hue
	Enabling Impala Delegation for LDAP Users
	LDAP Restrictions for Impala

	Using Multiple Authentication Methods with Impala
	Configuring Impala Delegation for Hue and BI Tools
	Enabling Delegation in Cloudera Manager

	Llama Authentication
	Configuring Llama to Support Kerberos Security

	Oozie Authentication
	Configuring Kerberos Authentication for the Oozie Server
	Configuring Oozie HA with Kerberos

	Solr Authentication
	Enabling Kerberos Authentication for Solr
	Enabling LDAP Authentication for Solr
	Configuring LDAP Authentication for Solr using Cloudera Manager
	Configuring LDAP Authentication for Solr Using the Command Line
	Securing LDAP Connections
	LDAP Client Configuration

	Using Kerberos with Solr

	Spark Authentication
	Configuring Kerberos Authentication for Spark Using the Command Line
	Create the Spark Principal and Keytab File
	Configure the Spark History Server to Use Kerberos
	Running Spark Applications on a Secure Cluster

	Configuring Spark Authentication With a Shared Secret Using Cloudera Manager
	Configuring Spark on YARN for Long-Running Applications

	Sqoop 2 Authentication
	Create the Sqoop 2 Principal and Keytab File
	Configure Sqoop 2 to Use Kerberos

	ZooKeeper Authentication
	Configuring ZooKeeper Server for Kerberos Authentication
	Configuring the ZooKeeper Client Shell to Support Kerberos Security
	Verifying the Configuration

	Hadoop Users in Cloudera Manager and CDH
	Configuring a Cluster-dedicated MIT KDC with Cross-Realm Trust
	When to use kadmin.local and kadmin
	Setting up a Cluster-Dedicated KDC and Default Realm for the Hadoop Cluster
	Using a Cluster-Dedicated KDC with a Central MIT KDC
	Using a Cluster-Dedicated MIT KDC with Active Directory

	Integrating Hadoop Security with Active Directory
	Configuring a Local MIT Kerberos Realm to Trust Active Directory
	On the Active Directory Server
	On the MIT KDC Server
	On All of the Cluster Hosts

	Integrating Hadoop Security with Alternate Authentication
	Configuring the AuthenticationFilter to use Kerberos
	Creating an AltKerberosAuthenticationHandler Subclass
	Enabling Your AltKerberosAuthenticationHandler Subclass
	Enabling Your AltKerberosAuthenticationHandler Subclass on Hadoop Web UIs
	Enabling Your AltKerberosAuthenticationHandler Subclass on Oozie Web UI

	Example Implementation for Oozie

	Authenticating Kerberos Principals in Java Code
	Using a Web Browser to Access an URL Protected by Kerberos HTTP SPNEGO
	Troubleshooting Kerberos Issues
	Verifying Kerberos Configuration
	Sample Kerberos Configuration Files

	Authenticate to Kerberos using the kinit command line tool
	Troubleshooting using service keytabs maintained by Cloudera Manager
	Examining Kerberos credentials with klist
	Reviewing Service Ticket Credentials in Cross Realm Deployments
	Enabling Debugging in Cloudera Manager for CDH Services
	Enabling Debugging for Command Line Troubleshooting

	Troubleshooting Authentication Issues
	Common Security Problems and Their Solutions
	Issues with Generate Credentials
	Running any Hadoop command fails after enabling security.
	Using the UserGroupInformation class to authenticate Oozie
	Java is unable to read the Kerberos credentials cache created by versions of MIT Kerberos 1.8.1 or higher.
	java.io.IOException: Incorrect permission
	A cluster fails to run jobs after security is enabled.
	The NameNode does not start and KrbException Messages (906) and (31) are displayed.
	The NameNode starts but clients cannot connect to it and error message contains enctype code 18.
	(MRv1 Only) Jobs won't run and TaskTracker is unable to create a local mapred directory.
	(MRv1 Only) Jobs will not run and TaskTracker is unable to create a Hadoop logs directory.
	After you enable cross-realm trust, you can run Hadoop commands in the local realm but not in the remote realm.
	(MRv1 Only) Jobs won't run and cannot access files in mapred.local.dir
	Users are unable to obtain credentials when running Hadoop jobs or commands.
	Request is a replay exceptions in the logs.
	Cloudera Manager cluster services fail to start

	Configuring Encryption
	TLS/SSL Certificates Overview
	Creating Certificates
	Using Keytool
	Using OpenSSL
	Obtaining a Production Certificate from a Commercial CA
	Creating Self-Signed Test Certificates
	Requirements for TLS/SSL Certificates

	Creating Java Keystores and Truststores
	Security Considerations for Keystores and Truststores
	Creating Keystores
	Creating Truststores

	Private Key and Certificate Reuse Across Java Keystores and OpenSSL
	Conversion from Java Keystore to OpenSSL
	Conversion from OpenSSL to Java Keystore

	Configuring TLS Security for Cloudera Manager
	Configuring TLS (Encryption Only) for Cloudera Manager
	Step 1: Obtain Encryption Keys and Certificates for Cloudera Manager Server
	Step 2: Enable HTTPS for the Cloudera Manager Admin Console and Specify Server Keystore Properties
	Step 3: Specify SSL Truststore Properties for Cloudera Management Services
	Step 4: Restart the Cloudera Manager Server

	Level 1: Configuring TLS Encryption for Cloudera Manager Agents
	Step 1: Enable Agent Connections to Cloudera Manager to use TLS
	Step 2: Enable and Configure TLS on the Agent Hosts
	Step 3: Restart the Cloudera Manager Server
	Step 4: Restart the Cloudera Manager Agents
	Step 5: Verify that the Server and Agents are Communicating

	Level 2: Configuring TLS Verification of Cloudera Manager Server by the Agents
	Step 1: Configure TLS encryption
	Step 2: Copy the CA certificate or Cloudera Manager Server .pem file to the Agents
	Step 3: Restart the Cloudera Manager Agents
	Step 4: Restart the Cloudera Management Services
	Step 5: Verify that the Server and Agents are communicating

	Level 3: Configuring TLS Authentication of Agents to the Cloudera Manager Server
	Step 1: Configure TLS encryption
	Step 2: Configure TLS Verification of Server Trust by Agents
	Approach A: Using OpenSSL to Create Private Keys and Request Agent Certificates
	Approach B: Creating a Java Keystore and Importing Signed Agent Certificates into it
	Step 6: Create a File that Contains the Password for the Key
	Step 7: Configure the Agent with its Private Key and Certificate
	Step 8: Verify that steps 3-7 were Completed for every Agent Host in Your Cluster
	Step 9: Create a Truststore by Importing CA and Agent Certificates
	Step 10: Enable Agent Authentication and Configure the Cloudera Manager Server to Use the New Truststore
	Step 11: Restart the Cloudera Manager Server
	Step 12: Restart the Cloudera Manager Agents
	Step 13: Verify that the Server and Agents Are Communicating

	TLS/SSL Communication Between Cloudera Manager and Cloudera Management Services
	Cloudera Manager Agent
	Cloudera Management Services

	Troubleshooting TLS/SSL Issues in Cloudera Manager
	Inspecting Cloudera Manager Connectivity with OpenSSL
	Uploading Diagnostic Bundles to Cloudera Fails

	Using Self-Signed Certificates (Level 1 TLS)

	Configuring TLS/SSL for the Cloudera Navigator Data Management Component
	Configuring TLS/SSL for Publishing Cloudera Navigator Audit Events to Kafka
	Configuring TLS/SSL for Cloudera Management Service Roles
	Configuring TLS/SSL Encryption for CDH Services
	Prerequisites
	Hadoop Services as TLS/SSL Servers and Clients
	Compatible Certificate Formats for Hadoop Components
	Configuring TLS/SSL for HDFS, YARN and MapReduce
	Configuring TLS/SSL for HBase
	Configuring TLS/SSL for HBase Web UIs
	Configuring TLS/SSL for HBase REST Server
	Configuring TLS/SSL for HBase Thrift Server

	Configuring TLS/SSL for Flume Thrift Source and Sink
	Using Cloudera Manager
	Using the Command Line

	Configuring Encrypted Communication Between HiveServer2 and Client Drivers
	Configuring Encrypted Client/Server Communication Using TLS/SSL
	Using Cloudera Manager
	Using the Command Line

	Configuring Encrypted Client/Server Communication Using SASL QOP

	Configuring TLS/SSL for Hue
	Hue as a TLS/SSL Client
	Hue as a TLS/SSL Server
	Enabling Hue TLS/SSL Communication with HiveServer2
	Enabling Hue TLS/SSL Communication with Impala
	Securing Database Connections using TLS/SSL
	Storing Hue Passwords in a Script

	Configuring TLS/SSL for Impala
	Using Cloudera Manager
	Using the Command Line
	Using TLS/SSL with Business Intelligence Tools

	Configuring TLS/SSL for Oozie
	Using Cloudera Manager
	Using the Command Line
	Additional Considerations when Configuring TLS/SSL for Oozie HA

	Configuring TLS/SSL for Solr
	Configuring TLS/SSL for Solr Using Cloudera Manager
	Additional Considerations When Using a Load Balancer TLS/SSL for Solr HA

	Configuring TLS/SSL for Solr Using the Command Line
	Configuring TLS/SSL for the Key-Value Store Indexer Using Cloudera Manager
	Configuring TLS/SSL for the Key-Value Store Indexer Using the Command Line
	Configuring TLS/SSL for Flume Using Cloudera Manager
	Configuring TLS/SSL for Flume Using the Command Line

	Spark Encryption
	Enabling Encrypted Shuffle for Spark on YARN
	Enabling SASL Encryption for Spark RPCs
	Enabling Spark Encryption Using Cloudera Manager

	Configuring TLS/SSL for HttpFS
	Using Cloudera Manager
	Using the Command Line

	Encrypted Shuffle and Encrypted Web UIs
	Configuring Encrypted Shuffle and Encrypted Web UIs
	Activating Encrypted Shuffle
	Client Certificates
	Reloading Truststores
	Debugging

	Deployment Planning for Data at Rest Encryption
	Data at Rest Encryption Reference Architecture
	Data at Rest Encryption Requirements
	Product Compatibility Matrix
	Entropy Requirements
	Key Trustee Server Requirements
	Key Trustee KMS Requirements
	Key HSM Requirements
	Navigator Encrypt Requirements

	Resource Planning for Data at Rest Encryption
	Virtual Machine Considerations

	HDFS Transparent Encryption
	Key Concepts and Architecture
	Keystores and the Hadoop Key Management Server
	Encryption Zones and Keys
	Accessing Files Within an Encryption Zone

	Attack Vectors
	Optimizing Performance for HDFS Transparent Encryption
	Enabling HDFS Encryption Using the Wizard
	Enabling HDFS Encryption Using Cloudera Navigator Key Trustee Server
	Enabling HDFS Encryption Using a Java KeyStore

	Managing Encryption Keys and Zones
	Validating Hadoop Key Operations
	Creating Encryption Zones
	Adding Files to an Encryption Zone
	DistCp Considerations

	Deleting Encryption Zones
	Backing Up Encryption Keys

	Configuring the Key Management Server (KMS)
	Configuring KMS High Availability
	Configuring the KMS Using Cloudera Manager
	Configuring the KMS Cache Using Cloudera Manager
	Configuring the Audit Log Aggregation Interval Using the Command Line

	Configuring the Java KeyStore KMS Using the Command Line
	Configuring the Java KeyStore KMS KeyProvider Using the Command Line
	Configuring the Java KeyStore KMS Cache Using the Command Line
	Configuring KMS Clients Using the Command Line
	Starting and Stopping the Java KeyStore KMS Using the Command Line
	Configuring the Audit Log Aggregation Interval Using the Command Line
	Configuring the Embedded Tomcat Server Using the Command Line

	Securing the Key Management Server (KMS)
	Enabling Kerberos Authentication for the KMS
	Enabling Kerberos Authentication for the KMS Using Cloudera Manager
	Enabling Kerberos Authentication for the Java KeyStore KMS Using the Command Line

	Configuring the Java KeyStore KMS Proxyuser Using the Command Line
	Configuring TLS/SSL for the KMS
	Configuring TLS/SSL for the KMS Using Cloudera Manager
	Configuring TLS/SSL for the Java KeyStore KMS Using the Command Line

	Configuring KMS Access Control Lists
	Configuring KMS Access Control Lists Using Cloudera Manager
	Configuring Java KeyStore KMS Access Control Lists Using the Command Line
	Recommended KMS Access Control List

	Configuring Java KeyStore KMS Delegation Tokens Using the Command Line

	Migrating Keys from a Java KeyStore to Cloudera Navigator Key Trustee Server
	Configuring CDH Services for HDFS Encryption
	Hive
	Other Encrypted Directories
	Changed Behavior after HDFS Encryption is Enabled
	KMS ACL Configuration for Hive

	Impala
	KMS ACL Configuration for Impala

	HBase
	KMS ACL Configuration for HBase

	Search
	KMS ACL Configuration for Search

	Sqoop
	Hue
	KMS ACL Configuration for Hue

	Spark
	KMS ACL Configuration for Spark

	MapReduce and YARN
	MapReduce v1
	MapReduce v2 (YARN)
	KMS ACL Configuration for MapReduce

	Troubleshooting HDFS Encryption
	KMS server jute buffer exception
	Retrieval of encryption keys fails
	DistCp between unencrypted and encrypted locations fails
	(CDH 5.6 and lower) Cannot move encrypted files to trash
	NameNode - KMS communication fails after long periods of inactivity
	HDFS Trash Behaviour with Transparent Encryption Enabled

	Cloudera Navigator Key Trustee Server
	Backing Up and Restoring Key Trustee Server and Clients
	Backing Up Key Trustee Server and Key Trustee KMS Using Cloudera Manager
	Backing Up Key Trustee Server and Key Trustee KMS Using the ktbackup.sh Script
	Backing Up Key Trustee Server Manually
	Backing Up Key Trustee Server Clients
	Restoring Key Trustee Server
	Restoring Key Trustee Server in Parcel-Based Installations
	Restoring Key Trustee Server in Package-Based Installations
	Restoring Key Trustee Server and Key Trustee KMS from ktbackup.sh Backups
	Restoring Active Key Trustee Server from Passive Key Trustee Server

	Initializing Standalone Key Trustee Server
	Initializing Standalone Key Trustee Server Using Cloudera Manager
	Initializing Standalone Key Trustee Server Using the Command Line

	Configuring a Mail Transfer Agent for Key Trustee Server
	Verifying Cloudera Navigator Key Trustee Server Operations
	Managing Key Trustee Server Organizations
	Managing Key Trustee Server Certificates
	Generating a New Certificate
	Replacing Key Trustee Server Certificates

	Cloudera Navigator Key HSM
	Initializing Navigator Key HSM
	HSM-Specific Setup for Cloudera Navigator Key HSM
	Validating Key HSM Settings
	Verifying Key HSM Connectivity to HSM

	Creating a Key Store with CA-Signed Certificate
	Managing the Navigator Key HSM Service
	Logging and Audits

	Integrating Key HSM with Key Trustee Server
	Check Existing Key Names
	Establish Trust from Key HSM to Key Trustee Server
	Integrate Key HSM and Key Trustee Server

	Cloudera Navigator Encrypt
	Registering Cloudera Navigator Encrypt with Key Trustee Server
	Prerequisites
	Registering with Key Trustee Server

	Preparing for Encryption Using Cloudera Navigator Encrypt
	Navigator Encrypt Commands
	Preparing for Encryption
	Block-Level Encryption with dm-crypt
	Block-Level Encryption with a Loop Device

	Filesystem-Level Encryption with eCryptfs
	Undo Operation
	Pass-through Mount Options for navencrypt-prepare

	Encrypting and Decrypting Data Using Cloudera Navigator Encrypt
	Before You Begin
	Encrypting Data
	Decrypting Data

	Migrating eCryptfs-Encrypted Data to dm-crypt
	Navigator Encrypt Access Control List
	Managing the Access Control List
	ACL Profile Rules

	Maintaining Cloudera Navigator Encrypt
	Manually Backing Up Navigator Encrypt
	Validating Navigator Encrypt Configuration
	Restoring Mount Encryption Keys (MEKs) and Control File
	Access Modes
	Changing and Verifying the Master Key
	Listing Categories
	Updating ACL Fingerprints
	Managing Mount Points
	Navigator Encrypt Kernel Module Setup
	Navigator Encrypt Configuration Directory Structure
	Collecting Navigator Encrypt Environment Information
	Upgrading Navigator Encrypt Hosts

	Configuring Encryption for Data Spills
	MapReduce v2 (YARN)
	HBase
	Impala
	Hive
	Flume
	Configuring Encrypted On-disk File Channels for Flume
	Generating Encryption Keys
	Configuration
	Changing Encryption Keys Over Time
	Troubleshooting

	Configuring Encrypted HDFS Data Transport
	Using Cloudera Manager
	Using the Command Line

	Configuring Encrypted HBase Data Transport
	Configuring Encrypted HBase Data Transport Using Cloudera Manager
	Configuring Encrypted HBase Data Transport Using the Command Line

	Configuring Authorization
	Cloudera Manager User Roles
	User Roles
	Determining the Role of the Currently Logged in User
	Removing the Full Administrator User Role

	Cloudera Navigator Data Management Component User Roles
	User Roles
	Determining the Roles of the Logged-in User

	HDFS Extended ACLs
	Enabling HDFS Access Control Lists
	Enabling HDFS ACLs Using Cloudera Manager
	Enabling HDFS ACLs Using the Command Line

	Commands
	HDFS Extended ACL Example

	Configuring LDAP Group Mappings
	Using Cloudera Manager
	Using the Command Line

	Authorization With Apache Sentry
	Architecture Overview
	Sentry Integration with the Hadoop Ecosystem
	Hive and Sentry
	Impala and Sentry
	Sentry-HDFS Synchronization
	Search and Sentry
	Authorization Administration

	The Sentry Service
	Prerequisites
	Terminology
	Privilege Model
	User to Group Mapping
	Authorization Privilege Model for Hive and Impala
	Object Hierarchy

	Authorization Privilege Model for Solr
	Installing and Upgrading the Sentry Service
	Adding the Sentry Service
	Upgrading the Sentry Service

	Migrating from Sentry Policy Files to the Sentry Service
	Configuring the Sentry Service
	Enabling the Sentry Service Using Cloudera Manager
	Enabling the Sentry Service Using the Command Line
	Before Enabling the Sentry Service
	Configuring the Sentry Server
	Configuring HiveServer2 for the Sentry Service
	Configuring the Hive Metastore for the Sentry Service
	Configuring Impala as a Client for the Sentry Service
	Enabling Solr as a Client for the Sentry Service Using the Command Line
	Enabling Sentry on Collections using configs
	Enabling Sentry on Collections using instancedirs

	HiveServer2 Restricted Properties
	Configuring Pig and HCatalog for the Sentry Service
	Securing the Hive Metastore
	Using User-Defined Functions with HiveServer2

	Sentry Debugging and Failure Scenarios
	Resolving Policy Conflicts
	Debugging Failed Sentry Authorization Requests
	Sentry Service Failure Scenarios

	Hive SQL Syntax for Use with Sentry
	Column-level Authorization
	CREATE ROLE Statement
	DROP ROLE Statement
	GRANT ROLE Statement
	REVOKE ROLE Statement
	GRANT <Privilege> Statement
	GRANT <Privilege> ON URIs (HDFS and S3A)
	REVOKE <Privilege> Statement
	GRANT <Privilege> ... WITH GRANT OPTION
	SET ROLE Statement
	SHOW Statement
	Example: Using Grant/Revoke Statements to Match an Existing Policy File

	Synchronizing HDFS ACLs and Sentry Permissions
	Prompting HDFS ACL Changes
	Prerequisites
	Enabling the HDFS-Sentry Plugin Using Cloudera Manager
	Enabling the HDFS-Sentry Plugin Using the Command Line
	Installing the HDFS-Sentry Plugin
	Configuring the HDFS NameNode Plugin
	Configuring the Hive Metastore Plugin
	Configuring the Sentry Service Plugin

	Testing the Sentry Synchronization Plugins

	Using the Sentry Web Server

	Sentry Policy File Authorization
	Prerequisites
	Terminology
	Privilege Model
	User to Group Mapping
	Policy File
	Sample Sentry Configuration Files
	Accessing Sentry-Secured Data Outside Hive/Impala
	Scenario One: Authorizing Jobs
	Scenario Two: Authorizing Group Access to Databases

	Debugging Failed Sentry Authorization Requests
	Authorization Privilege Model for Hive and Impala
	Object Hierarchy in Hive

	Authorization Privilege Model for Solr
	Installing and Upgrading Sentry for Policy File Authorization
	Installing Sentry
	Upgrading Sentry

	Configuring Sentry Policy File Authorization Using Cloudera Manager
	Configuring User to Group Mappings
	Enabling URIs for Per-DB Policy Files
	Using User-Defined Functions with HiveServer2
	Enabling Policy File Authorization for Hive
	Configuring Group Access to the Hive Metastore
	Enabling Policy File Authorization for Impala
	Enabling Sentry Policy File Authorization for Solr
	Configuring Sentry to Enable BDR Replication

	Configuring Sentry Policy File Authorization Using the Command Line
	Configuring User to Group Mappings
	Enabling URIs for Per-DB Policy Files
	Using User-Defined Functions with HiveServer2
	Enabling Policy File Authorization for Hive
	Securing the Hive Metastore
	Enabling Policy File Authorization for Impala
	Enabling Sentry in Cloudera Search

	Enabling Sentry Authorization for Impala
	The Sentry Privilege Model
	Starting the impalad Daemon with Sentry Authorization Enabled
	Using Impala with the Sentry Service (CDH 5.1 or higher only)
	Using Impala with the Sentry Policy File
	Policy File Location and Format
	Examples of Policy File Rules for Security Scenarios
	Using Multiple Policy Files for Different Databases

	Setting Up Schema Objects for a Secure Impala Deployment
	Privilege Model and Object Hierarchy
	Debugging Failed Sentry Authorization Requests
	Managing Sentry for Impala through Cloudera Manager
	The DEFAULT Database in a Secure Deployment

	Configuring Sentry Authorization for Cloudera Search
	Setting Sentry Admins for Solr
	Using Roles and Privileges with Sentry
	Using Users and Groups with Sentry
	User to Group Mapping

	Sample Sentry Configuration
	Using Solr with the Sentry Service
	Using Solr with a Policy File
	Sentry Configuration File

	Using Policy Files with Sentry
	Storing the Policy File
	Defining Roles

	Providing Document-Level Security Using Sentry
	Enabling Secure Impersonation

	Configuring HBase Authorization
	Understanding HBase Access Levels
	Enable HBase Authorization
	Configure Access Control Lists for Authorization

	Sensitive Data Redaction
	Password Redaction
	Cloudera Manager API Redaction
	Log and Query Redaction - Scope and Rules
	Enabling Log and Query Redaction Using Cloudera Manager
	Configuring the Cloudera Navigator Data Management Component to Redact PII

	Securing Connections to Amazon S3
	Using Temporary Credentials to Connect to Amazon S3
	Connecting to Amazon S3 Using TLS
	hadoop-aws Connector
	Hive/Beeline CLI
	Impala Shell
	Hue S3 File Browser
	Impala Query Editor (Hue)
	Hive Query Editor (Hue)

	Enabling Server-Side Encryption for Data At-Rest on Amazon S3

	Overview of Impala Security
	Security Guidelines for Impala
	Securing Impala Data and Log Files
	Installation Considerations for Impala Security
	Securing the Hive Metastore Database
	Securing the Impala Web User Interface

	Miscellaneous Topics
	Jsvc, Task Controller and Container Executor Programs
	MRv1 and YARN: The jsvc Program
	MRv1 Only: The Linux TaskController Program
	YARN Only: The Linux Container Executor Program
	Task-controller and Container-executor Error Codes
	MRv1 ONLY: Task-controller Error Codes
	YARN ONLY: Container-executor Error Codes

	Sqoop, Pig, and Whirr Security Support Status
	Setting Up a Gateway Node to Restrict Cluster Access
	Installing and Configuring the Firewall and Gateway
	Accessing HDFS
	Submitting and Monitoring Jobs

	Logging a Security Support Case
	Kerberos Issues
	TLS/SSL Issues
	LDAP Issues

	Using Antivirus Software on CDH Hosts

	Appendix: Apache License, Version 2.0

