cloudera

Kafka Guide

Important Notice
© 2010-2021 Cloudera, Inc. All rights reserved.

Cloudera, the Cloudera logo, and any other product or

service names or slogans contained in this document are trademarks of Cloudera and
its suppliers or licensors, and may not be copied, imitated or used, in whole or in part,
without the prior written permission of Cloudera or the applicable trademark holder. If
this documentation includes code, including but not limited to, code examples, Cloudera
makes this available to you under the terms of the Apache License, Version 2.0, including
any required notices. A copy of the Apache License Version 2.0, including any notices,
is included herein. A copy of the Apache License Version 2.0 can also be found here:
https://opensource.org/licenses/Apache-2.0

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software
Foundation. All other trademarks, registered trademarks, product names and company
names or logos mentioned in this document are the property of their respective owners.
Reference to any products, services, processes or other information, by trade name,
trademark, manufacturer, supplier or otherwise does not constitute or imply
endorsement, sponsorship or recommendation thereof by us.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this document may be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Cloudera.

Cloudera may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as expressly
provided in any written license agreement from Cloudera, the furnishing of this document
does not give you any license to these patents, trademarks copyrights, or other
intellectual property. For information about patents covering Cloudera products, see
http://tiny.cloudera.com/patents.

The information in this document is subject to change without notice. Cloudera shall
not be liable for any damages resulting from technical errors or omissions which may
be present in this document, or from use of this document.

Cloudera, Inc.

395 Page Mill Road
Palo Alto, CA 94306
info@cloudera.com
US: 1-888-789-1488
Intl: 1-650-362-0488
www.cloudera.com

Release Information

Version: CDH 6.0.x
Date: February 4, 2021

Table of Contents

€ 11 T T =1 U TP J

[Lo AV [B Y=Y o LU T =T 0 =Y oY USRS 7
BIOKEIS. ettt ettt et e ettt ettt e h ettt ea et et e a4t e ettt at e ettt e e bt e et e et e et e e at e et te e ateenateeniree s 7
Voo)\ C-1=] o L] O U U PRSRRN 7
Kafka Performance CONSIAEIAtIONS.cuiiiiiiieiieeciee et etee ettt e et e et e e s tte e st e e esbaeesaaeeentaeesnsaeesnsaeesnseeesnnees 8
OpPerating SYSTEM REOUITEIMENTS. ...uuuiiiiiiirieiee ettt ss s s e s seeesseeeeeeeeeeeeeeesesesssesssssssnnnnnns 8
SUSE LiNUX ENTEIPIISE SEIVEI (SLES).....ooeoeeeeeeeeeeeeeeee et ettt e et e e ettt e e e et e e e et e e e easa e e e e taseeeaassaseesssaeasssssaeenes 8
KEINI@I LIMILES ..ottt ettt ettt et e e st e e s et e st e et e skt e et e et e et e e st e e st e e st e st e e s bt e et eeaneeare s 8

Kafka in Cloudera Manager.......ccccieeiiieeiiieniiineieninncnnneierennserenssessnsssssnsssssnsssssnssssensd

(LG 111 T O 1T=] 31 N |

Commands fOr ClIENT INTEIACTIONS.ii i iiiiee ettt e e e et e e e ettt e e e e e e abae e e e e sbbeeeeeaaareeeeeennsaeeeeennsens 10
Y1 T o 1o U115 USRI 11
G 1 I o o YU T2 0 T=T U RRR 12
RYV X olg] o] (g1 o e IR o) o) (oS PO UUUUPNt 12
(G o0 3o [T B =1 el o] 1 o SRR 13
Protocol between CONSUMEE QNG BIOKELouoeueeeesieeeeeee ettt ettt e et e e et e e e attae e e atteeesateaesasees 13
JR0=] ool o Ta ol aTo N =l T 1 (o) KT RS 15
CONSUMEY CONFIGUITTION PrOP@ITIES.eeeeeeeeeeeeeeeeeeee e et e et e e ettt e e ettt e e e et e e e e tse e e eeatssaeetsaeeeeatseaeaaassaaeatsaaaaaatsssessnsseas 16
L= 1 g L= T PSPPI PPPPN 16
LY N O = a1 E T Yo 4o Lo (=TT o 1T RO 16

[11 T =T 0 L= U |

Y Ta Ve L O T T Yol <Y o - o Lo LRSS 18
J=to Lo [Tl o XY 1 [Y KOTSRS PPPRPPPRP 18
LY Lol 21T e [Tole kUSSR 19
B Le] o] (ol @le] ol 7 1=dUT = 14 o] o FOU PP 19
o] o) [O =1o 1 o) s BN 20
L] o (ol o o o 1= (= TP PPPRR 20
PartitioN IManageMENT..ccci ittt e ettt e e e e e e e e s bbbttt e e e e e e e e e e s bbbttt et e e e e e e s e e e braraaaeeeas 20
POItItiON REASSIGNIMENT..c..cccveveveieiiiiieieeeieeeeeteteeee ettt s s s s s s aaasassasasasasasasanans 21
AGAING PAITIEIONS. ...ttt ettt ettt et e ettt e e ettt e bt e bt e it e st e st e st e ettt e nateeaneenaneenanes 21
Cho0SING the NUMBEE Of POITItIONS.ccceceveeeeeieeeeeee e ettt e e e et e e et e e e et e e e et e e e et s e e et asaaaeasseseaaassaaestseaeeasssseesssseas 21

(000 Y11 o) L= 21

Kafka INtegration........cc.ciieeiiiieiiiicciicrrecrrec e ren e srsns e ssnnsessnnsessnnsesens 2D

Y T Tol U1 1 Y2 EEURR 23
ClieNt-BroKer SECUITEY WItH TLS........oeeeeeeeeeeee et e et e et e e et e e ettt e e ettt e e e sttt e e aasstaeeassaaasanssaaeaaassaaeassaaasssseaennnnnes 23
USING KQFKQ'S INEEI=-BIOKEE SECUITEY.......vveeeeeeeeeeeee et e et e e e e ettt e e ettt e e et e e ettt e e e et e e e e eaas e e e eassaeeatsaaeeaatsseeessseas 26
ENGDIiNG KErbDEroS AULNENTICOTION.cceeeeeeeeeeeeeeee e et e e et e e et e et e e e ettt e e e sttt e e essaaasansseaaasstaaesassaaaasssneaennsnes 27
ENQDIING ENCIYPTION Gt RESt.......vvveeeeeeeeeeeeeeee ettt e ettt e e e e ettt e e e e e e ettt eaeaeee et aasasaaaaeeesastsasasaaeeeasssssssasaaeeaaas 28
Topic Authorization With KErberos QNG SENTIY.............eeeeeeeeeeeeeee e ettt e e et e e e s e e ettt e e e sttt aeesstaaeatstaaeassaaeesassaaeasseeean 29
Managing MuUltiple Kafka VEISIONS.ii ittt st e e s et e e e sebteeeesebtaeeessnnsaeaasanns 32
Kafka Feature Support in Cloudera Manager QNG CDH.................ueeeeueeieeiieeeeeeeeeeeeeee e eette e e ettt e e e etaaaeessaaaesssaaeesasaaesasees 32
Client/Broker Compatibility ACIOSS KAFKA VBISIONS.ccveuesiesiesiietieieiesiestese et e es ettt ete e stesteaseestetessessesssessensesensens 33
UPGrading YOUI KK CIUSLEI...........ccueeeeeeeeeeeeeee ettt e et e et e e et e e ettt e e et e e ettt s e e ettt e e e aasssaeaaassaaeessaaesasssaesassseas 33
Managing Topics across Multiple Kafka CIUSLEIS.......ccuuiiii i e et esaaae e e e 34
ConSUMEr/ProduCEr COMPATIDIIITY...........cccueeeereeeeeeeeeieeeee et eete ettt e ettt e et e et e ettt e eeaaeeetseeeteeeetseeeaseeesseesesesseesesensseenses 35
TOPIC DifferencCes DETWEEN CIUSTOIS........ccccuveeeeeiiseeeeee e et e e e ee e ettt e e et e e e ettt e e e aasteaessstaaeassseaesaassaaeasssaaeastsaaeesssssaenssnes 35
Optimize Mirror Maker PrOGUCEE LOCALION.veeeeeeeeeeeeeeeee e e ettt e e e ettt e e e e e e ettt e e e e e e e e aassasaaaeeeessssssseaaaaaeas 36
Destination ClUSTEr CONFIGUITTION.cceeueieeeeeeeeee e et e et e e ettt e e et e e ettt e e et e e s aasssaeessaaasaassaaeesassaaeassaaaesssssaenssneas 36
KEIrDEIOS QNG IMIITOI IMIAKEN ...ttt e et e e e et e e ettt e e st e e et e e e et e e ettt e e sasaaesssteaesasneas 36
Setting up Mirror Maker in ClOUGEIA MONGAGET.............c..ueeeeeeeiieeeieeeeeeeeeeee et te e e s ttseeeesttaaessstaaesststaesssssaeesssseaesssssaaesans 36
Setting up an End-to-End Data Streaming PipeliNe... ..o uuiiii it 37
DAtQ STrEAMUNG PIPDOIINE...........eeeeeeeeeeeeeeeee ettt e et e e e e et e e e et e e ettt e e e e ts e s e e st e e e e ats s e e e aatsaaaaasssaaeastsseeeaasssaenssnees 37
Ingest Using KAfKa With APACHE FIUME........ccc..ooeueiiiiieieeeeeeee ettt ettt ettt ettt e e e st e snees 37
Using Kafka with Apache Spark Streaming for Stream PrOCESSING............ueeecueeeeeieeeeesieeeeeeeeeeeeeitaaessteeeesetaeaeesasaaesssseaaeas 44
DLVl o] o [F= g = 1 S T O 1 =T o U UPRSOTIPRY 45
SIMPIE ClIENT EXAMPIES.eeeeeeeeeeeeeee ettt e e e e e ettt e e e e e ettt e e e e e e esataas s s aaaeeeassasssssaaaeeeasssssssaaaaeeeaasassses 45
MoVing Kafka ClIeNts tO PrOGUCEION...........cc..ueeeeieeeeeeieeeee e et e ettt e e et e e ettt e e ettt e e e sttt e e essaaesaassaaeasssaaeassseaeaassnsaesssneas 48
GG T 4 T of SRR 50
L g (o O L X =To [T 4 L= OO T PP P PP PTPPPPP 50
VIEWING IMIEEIICS.eeeieeeee ettt ettt ettt e ettt e et e ettt e ettt e s ettt e st e e sttt e s ettt esanneeesainee e 50
Building Cloudera Manager Charts With KQfKG MELIICS...........ccc.veeeeeueeeeeeieeeeeee e ete e et e e et e e et aaeeaaaeesasaaeeases 51

Kafka AdmMiNiStratioN.....ccceveiieireireiieireieeiterreeeeseeseeseesesssssesssssassessessassassessessessessessess D

Kafka AdmMiniSTration BasSiCS.ueiiruuieiiiiee ittt ittt eetee ettt e ettt e sttt e sttt e sbt e e sbbeesbbeesabbeesabbeesabaeesbbeesabeeesneeenans 52
L2 ge) (T Moo I 1Y Lo Tq o T [=Tqa =1 ¢ SO USSP 52
[0=ToloTglo LY, [o o Lo T [=J 0 T=1 o | SO RR 52
Broker Garbage Log Collection and LOG ROTATION.............ccuueeeeeieeeeeeeeeeeeee et e ettt e ettt e e et e e e et e e et e e e etseaeeeaseaeesanees 53
Adding UsSers AS KOfKG AGMUNISTIGTOIS.ueeeeieeeeeieeeeeeeeee et e ettt e e et e e ettt e e s tteeeaattaaseasssaasasssaesassteeesassasesasseens 53
Migrating Brokers iN @ CIUSTEIuuuieiiieei ettt e e e e e e e e e et r e e e e eaeeeesesasabraaaeeaaeeeessasansnsrasaneeaaens 53
Using rsync to Copy Files from ONe BroKer t0 ANOTRNEI...............ueeeueeeeeeieeeeteeeee e ettt e e ettt e e e ttaa e e sttaaeestaaeeesassaessseaaean 54
Setting User LIMIts fOr Kafka.......oouiiii it et e e e e ee e e e s ae e e e e sbae e e e ennaeeas 54
L0 T 1= 3OO PPt 54

Kafka Administration Using COmMmMaNnd LiNE TOOIS......ccuuviiiiiiuiiiie ittt et e e et e e e siae e e s s staeee e s snaaeeeesnnes 55

Unsupported COMMAN LiN@ TOOIS................ccccuuueeeeeeeeeeeeeeeee ettt e et te e ettt e e ettt e e ettt e e e ettt eeeeatteaeesstaaestseaeesssssaessssseas 55
Notes on Kafka CLI ADMUNISEIALION....................coceimiiiiiiieieeeiee ettt ettt sttt e st ettt siteesateesaneenane 56
o] 1 e o ok PSSR 57
KO T KO- CONFIGS .ttt ettt et ettt et e ettt et e 2t e et e et e ettt e et eenateesateenateaeneenae 57
o) o Role Yo (=BT ale Y s Y [T=T SRR 57
KOFKO-CONSOIE-PIOTUCEN ...ttt et ettt ettt e et e e et e st e ettt et e et eenaneenanes 58
KOFKQ-CONSUM@I=GIOUDS.cccueveeeeeeeeeeeeee et e et e e et e e ettt e e et e e e ettt e e et e e e easse e e e aass s e e e asssa e e ssaaaaasstaaeanssaaeassanaeannseaennnnees 58
KOfKO-T@ASSIGN-PDAITITIONS. ...ttt ettt ettt ettt ettt ettt et e et e et e st e st e enee et 59
Lo 1o B o YTy (=LY F USSR 59
Enabling DEBUG or TRACE in COMMOANG [iN@ SCIIDTS........cocuvieiiiiiieeeeeeeeeee ettt ettt ettt se e en 60
Understanding the kafka-run-class BASH SCEIPL...................cccuueeeeueeeeeiiieeeeieeeeesee e eette e e ettt eeestaaaesststaeestsaaeessssaessseaeas 60

Kafka Performance TUNING......cccciieeiiieeeiiieiereecereeeerenseerensessensessnnsessnssessnnsessnnsenensO1

TUNINE BIOKEIS. cee ittt et e ettt e e e ettt e e e e aate e e e eastaeeeseasssseeesansbaeaeeanssseeasennsseeeesanssseeesannnsneesas 61
0T Y g ad o To [Tl <1 U RUSRERROt 61
ST ol T g T = 0o o 10 4 =T TSP PUPPPPPPPPPPUPN 62
MIFTOr MaKer PO OIMANCE. . i iuutii ittt ettt ettt et e sttt e sttt e s bt e e ssbt e e sbbeesabbeesabaeesabteesnbbeessseesnsseessseesnnd 62
Kafka TUNINg: HAaNdliNG Lare MESSaZES. . uuuuiiiiicuiiieeeiiiieeeeesitieeeeestteeeesesttteeeesaabaeeeesastaeeessastaeeessansaneessasssseeesanns 62
Y & O NI LT Y AT o V- EPU 63
Cluster Sizing - Network and Disk MesSage TRrOUGRPUL..............ceeeeueeeeeceeeeete e e eete e e st eeeettaaeetaaaessaaaeessnsaaesnsees 63
Choosing the Number Of PArtitions fOr 0 TOPIC.........cccuueeeeiueeeeeeeee et e et e e e tee e ettt e e e et a e e et e e eetsaaeestsaaeeeaseaeeeanees 64
Kafka Performance Broker CoNfigUIratioN........ccccuuiiiiiiiiiiie ittt et e e et e e eate e e e e eabae e e e senaneeeeeans 66
JVIM GNA GAIDAGE CONBCLION. ...ttt et e e sttt ettt et e st e st e st e s neeeseeenes 66
INEEWOIK GNU 1O TRFEAUS. ...ttt ettt et e e e e e ettt e e e e e e sttt e sesasseas s taaassesasnasbteaesssasssaseseeessnanans 66
ISR IMIONGGEMENT.......cooieeeeee ettt ettt et e ettt ettt e sttt e e ettt e sttt e e st e e s ts e e sats e e s et e e e aanneennannes 66
[T B0 L=l T T=1 (OSSPSR 67
Kafka Performance: System-Level BroKer TUNING.......ccviiiiiiiiieee ettt ettt e et e e e svae e e e s eateee e s esaraeeeeenes 67
Fil@ D@SCIIDEON LIIMIES. ... vvvveeeeeeeeeeeee ettt e e e e et e e e e e e et e e e e e e e e et e st aaeeea s aatssseaaaeeaaassasesaaaeeeesssstssneaaseeaias 67
L=y R (=T X PR 68
VirtuQl MemOIry HONAIING.c.cooeeeeieeeeee ettt e ettt e e e e e e e ettt e e e e e e ettt e e e aeeesassasssasaaaeeeasssssssasaseeeaasansnes 68
I Lt oY g e B o T [T=4 {=d TR 68
CONFiGUIING JMX EPREME@IQI POILS.........eeeeeeeeeeeeeee ettt e e e e et e ettt e e ettt e e e et e e et e e e et e e e e eassaaestsaaeeatsaaeennsseas 68
Kafka-ZooKeeper Performance TUNING......c..uvii oottt e ettt e e et te e e e s eat e e e e e sataeeeesanbeeeeesensaeeaeanns 69

KafKa RefOIONCE...ccitieirieirieirereireretreretresassesssressssesassessssessssesssssssssssssssssssnssssnssssnsss 0

IMLEEIICS RETEIENCE. .. ittt ettt ettt e st e e a bt e e sa bt e e sabeeesabeeesabeeenbeeesabeeeanbeeennbeeenns 70
Useful Shell ComMmMaNd REEIENCE.uuiii it e e et e e e s st e e e e s s ssaeeesssnaseeeesannneeeeen 145
L Lo To o =0 [} o4 0 Lo L1 o) £ S PSR U UUSE 145
[0 QN Y e ol =2 TP PUR P 145
/O ACHIVILY QNG ULIIZATION.ccvveeeeeeeeeeeee st ettt et ettt eeae ettt e e e e e e e st e ettt e e st e ettt e e asaseassaeasssessssesasasessesaseseasseeass 145

=R DA oq | o1 (o] G U Ko Lo [T UPUR RPNt 146

Network Ports, States, ANA CONNECLIONS..............ouueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesieestsasastsssssssssaas s ssasssasasasasssssssssssssssssasnssnsnnnnns 146
Lo Yol XN) f) g Lo L [ISR 146
KINEI CONFIGUIGTION.ooeeeeeieeeeee ettt e ettt e et e e ettt e e e et e e e e ats s e e et e s e e eats e e e eassaaeeatsesaeaassaaessssaaeasssasennes 146

KafKa PUBIIC APIS....cuieieireireireireieeereereseeereseeseesenssessessssssssssassassassassassassassassessassenses L7

Kafka Frequently Asked QUESEIONS.......ccccceeveeirrenirenncirenerenncerenneerensesenseesenseeness 148
2= Y of PP PPUPPPIIRE 148
L0 LI O 1 <L PSP TPUPPPRPINN 150

=Y T =] A Lol <T- T 156

Appendix: Apache License, Version 2.0.......cccccceeeeenireniiencrenciencrensresscssssssssssnsessess 157

Kafka Setup

Hardware Requirements

Kafka can function on a fairly small amount of resources, especially with some configuration tuning. Out of the box
configurations can run on little as 1 core and 1 GB memory with storage scaled based on data retention requirements.
These are the defaults for both broker and Mirror Maker in Cloudera Manager version 6.x.

Brokers

Kafka requires a fairly small amount of resources, especially with some configuration tuning. By default, Kafka, can run
on little as 1 core and 1GB memory with storage scaled based on requirements for data retention.

CPU is rarely a bottleneck because Kafka is /0 heavy, but a moderately-sized CPU with enough threads is still important
to handle concurrent connections and background tasks.

Kafka brokers tend to have a similar hardware profile to HDFS data nodes. How you build them depends on what is
important for your Kafka use cases. Use the following guidelines:

To affect performance of these features: Adjust these parameters:
Message Retention Disk size

Client Throughput (Producer & Consumer) Network capacity
Producer throughput Disk I/O

Consumer throughput Memory

A common choice for a Kafka node is as follows:

Component Memory/Java Heap CPU Disk
Broker e RAM: 64 GB 12- 24 cores e 1HDD For operating
e Recommended Java system
heap: 4 GB e 1 HDD for Zookeeper

dataLogDir (using SSDs

Set this value using the Java may provide additional

Heap Size of Broker Kafka

" . performance)
configuration property. . .
e 10- HDDs, using Raid
See Other Kafka Broker 10, for Kafka data
Properties table.
MirrorMaker 1 GB heap 1 core per 3-4 streams No disk space needed on

MirrorMaker instance.
Destination brokers should
have sufficient disk space to
store the topics being copied
over.

Set this value using the Java
Heap Size of MirrorMaker
Kafka configuration
property.

Networking requirements: Gigabit Ethernet or 10 Gigabit Ethernet. Avoid clusters that span multiple data centers.

ZooKeeper

It is common to run ZooKeeper on 3 broker nodes that are dedicated for Kafka. However, for optimal performance
Cloudera recommends the usage of dedicated Zookeeper hosts. This is especially true for larger, production
environments.

Kafka Performance Considerations

The simplest recommendation for running Kafka with maximum performance is to have dedicated hosts for the Kafka
brokers and a dedicated ZooKeeper cluster for the Kafka cluster. If that is not an option, consider these additional
guidelines for resource sharing with the Kafka cluster:

Do not run in VMs

It is common practice in modern data centers to run processes in virtual machines. This generally allows for better
sharing of resources. Kafka is sufficiently sensitive to I/O throughput that VMs interfere with the regular operation
of brokers. For this reason, it is highly recommended to not use VMs for Kafka; if you are running Kafka in a virtual
environment you will need to rely on your VM vendor for help optimizing Kafka performance.

Do not run other processes with Brokers or ZooKeeper

Due to I/0 contention with other processes, it is generally recommended to avoid running other such processes on
the same hosts as Kafka brokers.

Keep the Kafka-ZooKeeper Connection Stable

Kafka relies heavily on having a stable ZooKeeper connection. Putting an unreliable network between Kafka and
ZooKeeper will appear as if ZooKeeper is offline to Kafka. Examples of unreliable networks include:

¢ Do not put Kafka/ZooKeeper nodes on separated networks
¢ Do not put Kafka/ZooKeeper nodes on the same network with other high network loads

Operating System Requirements

SUSE Linux Enterprise Server (SLES)

Unlike CentOS, SLES limits virtual memory by default. Changing this default requires adding the following entries to
the/etc/security/limts.conf file:

* hard as unlimted
* soft as unlimted

Kernel Limits
There are three settings you must configure properly for the kernel.
¢ File Descriptors

You can set these in Cloudera Manager via Kafka > Configuration > Maximum Process File Descriptors. We
recommend a configuration of 100000 or higher.

e Max Memory Map
You must configure this in your specific kernel settings. We recommend a configuration of 32000 or higher.
* Max Socket Buffer Size

Set the buffer size larger than any Kafka send buffers that you define.

Kafka in Cloudera Manager

Kafka in Cloudera Manager

Cloudera Manager is the recommended way to administer your cluster, including administering Kafka. When you open
the Kafka service from Cloudera Manager, you see the following dashboard:

cloudera MANAGER & & reh | Support ~ admin ~

. Clusters = Hosts + Diagnostics = Audits Charts = Backup + Administration «
Kafka functions such as ST Hiegnosties | acp e

stopping and starting the cluster

Cluster 1
© KAFKA-1 “«om
List of running processes))))
Status l Instances] [Confuguratlon] Commands Charts Library Audits Quick Links «
Configuration options such as | 7 R
debugging, broker properties Health Tests Create Trigger Charts 30m 1h 2h 6h 12h 1d 7d 30d &=
@ Kafka Broker Health Active Controllers ©

Healthy KAFKA_BROKER: 3. Concerning
KAFKA_BROKER: 0. Total KAFKA_BROKER:
3. Percent healthy: 100.00%. Percent
healthy or concerning: 100.00%.

Active charts for monitoring Kafka
behaviors

controller

p
Status Summary

KAFKA_BROKER (nightlyGx-unsecure-2 gee clouder... 1

Gateway 1 None

Health monitor —— Total Messages Received Across Kafka Broke...
Kafka Broker @ 3 Good Health

Hosts & 3 Good Health “
g
\ 3
2
Health History .
> © 54504 Kafka Broker Health Show LR e e e s 0
_ J

Figure 1: Kafka Service in Cloudera Manager

Kafka Guide | 9

Kafka Clients

Kafka clients are created to read data from and write data to the Kafka system. Clients can be producers, which publish
content to Kafka topics. Clients can be subscribers, which read content from Kafka topics.

Commands for Client Interactions

Assuming you have Kafka running on your cluster, here are some commands that describe the typical steps you would
need to exercise Kafka functionality:

Create a topic

$ kafka-topics --create --zookeeper zkinfo --replication-factor 1 --partitions 1 --topic
t est

where the ZooKeeper connect string zki nf o is a comma-separated list of the Zookeeper nodes in host :

port
format.

Validate the topic was created successfully
$ kafka-topics --list --zookeeper zkinfo
Produce messages

The following command can be used to publish a message to the Kafka cluster. After the command, each typed line
is a message that is sent to Kafka. After the last message, send an EOF or stop the command with Ctrl-D.

$ kaf ka- consol e-producer --broker-list kafkainfo --topic test
My first nessage.

My second nessage.

"D

where kaf kai nf o is a comma-separated list of the Kafka brokers in host : port format. Using more than one
makes sure that the command can find a running broker.

Consume messages
The following command can be used to subscribe to a message from the Kafka cluster.
$ kaf ka- consol e- consuner --bootstrap-server kafkainfo --topic test --from beginning

The output shows the same messages that you entered during your producer.

Set a ZooKeeper root node

It’s possible to use a root node (chr oot) for all Kafka nodes in ZooKeeper by setting a value for zookeeper . chr oot
in Cloudera Manager. Append this value to the end of your ZooKeeper connect string.

Set chr oot in Cloudera Manager:
zookeeper . chr oot =/ kaf ka
Form the ZooKeeper connect string as follows:

--zookeeper zki nf o/ kaf ka

If you set chr oot and then use only the host and port in the connect string, you'll see the following exception:

I nval i dRepl i cati onFact or Exception: replication factor: 3 larger than avail abl e brokers:
0

Kafka Producers

Kafka producers are the publishers responsible for writing records to topics. Typically, this means writing a program
using the KafkaProducer API. To instantiate a producer:

Kaf kaPr oducer<String, String> producer = new
Kaf kaPr oducer <>(pr oducer Confi g);

Most of the important producer settings, and mentioned below, are in the configuration passed by this constructor.

Serialization of Keys and Values

For each producer, there are two serialization properties that must be set, key. seri al i zer (for the key) and
val ue. seri al i zer (forthe value). You can write custom code for serialization or use one of the ones already provided
by Kafka. Some of the more commonly used ones are:

e ByteArraySerializer:Binary data
e StringSerializer:String representations

Managing Record Throughput

There are several settings to control how many records a producer accumulates before actually sending the data to
the cluster. This tuning is highly dependent on the data source. Some possibilities include:

e bat ch. si ze: Combine this fixed number of records before sending data to the cluster.

e |inger. ns:Always wait at least this amount of time before sending data to the cluster; then send however many
records has accumulated in that time.

e nax. request. si ze: Putan absolute limit on data size sent. This technique prevents network congestion caused
by a single transfer request containing a large amount of data relative to the network speed.

e conpression. type: Enable compression of data being sent.

e retries:Enable the client for retries based on transient network errors. Used for reliability.

Acknowledgments

The full write path for records from a producer is to the leader partition and then to all of the follower replicas. The
producer can control which point in the path triggers an acknowledgment. Depending on the acks setting, the producer
may wait for the write to propagate all the way through the system or only wait for the earliest success point.

Valid acks values are:

¢ 0: Do not wait for any acknowledgment from the partition (fastest throughput).
e 1: Wait only for the leader partition response.
e al | : Wait for follower partitions responses to meet minimum (slowest throughput).

Partitioning

In Kafka, the partitioner determines how records map to partitions. Use the mapping to ensure the order of records
within a partition and manage the balance of messages across partitions. The default partitioner uses the entire key
to determine which partition a message corresponds to. Records with the same key are always mapped to the same
partition (assuming the number of partitions does not change for a topic). Consider writing a custom partitioner if you
have information about how your records are distributed that can produce more efficient load balancing across
partitions. A custom partitioner lets you take advantage of the other data in the record to control partitioning.

If a partitioner is not provided to the KafkaProducer, Kafka uses a default partitioner.
The ProducerRecord class is the actual object processed by the KafkaProducer. It takes the following parameters:

e Kaf ka Recor d: The key and value to be stored.
e I ntended Desti nati on: The destination topic and the specific partition (optional).

Kafka Consumers

Kafka consumers are the subscribers responsible for reading records from one or more topics and one or more partitions
of a topic. Consumers subscribing to a topic can happen manually or automatically; typically, this means writing a
program using the KafkaConsumer API.

To instantiate a consumer:

Kaf kaConsumer <String, String> kafkaConsunmer = new
Kaf kaConsuner <>(consuner Confi g) ;

The KafkaConsumer class has two generic type parameters. Just as producers can send data (the values) with keys,
the consumer can read data by keys. In this example both the keys and values are strings. If you define different types,
you need to define a deserializer to accommodate the alternate types. For deserializers you need to implement the
or g. apache. kaf ka. cormon. seri al i zati on. Deseri al i zer interface.

The most important configuration parameters that we need to specify are:

e boot strap. servers: A list of brokers to initially connect to. List 2 to 3 brokers; you don't needed to list the full
cluster.

e group.id: Every consumer belongs to a group. That way they’ll share the partitions of a topic.

e key.deserializer/val ue. deseri ali zer: Specify how to convert the Java representation to a sequence of
bytes to send data through the Kafka protocol.

Subscribing to a topic

Subscribing to a topic using the subscri be() method call:
kaf kaConsuner . subscri be(Col | ecti ons. si ngl etonLi st (topic), rebal anceLi stener);

Here we specify a list of topics that we want to consume from and a 'rebalance listener.' Rebalancing is an important
part of the consumer's life. Whenever the cluster or the consumers’ state changes, a rebalance will be issued. This will
ensure that all the partitions are assigned to a consumer.

After subscribing to a topic, the consumer polls to see if there are new records:

while (true) {
data = kaf kaConsumer. poll();
/1 do sonmething with 'data’

}

The poll returns multiple records that can be processed by the client. After processing the records the client commits
offsets synchronously, thus waiting until processing completes before continuing to poll.

The last important point is to save the progress. This can be done by the conmi t Sync() and conmi t Async() methods
respectively.

PLACEHOLDER FOR CODE SNI PPET

Auto commit is not recommended; manual commit is appropriate in the majority of use cases.

Groups and Fetching

Kafka consumers are usually assigned to a group. This happens statically by setting the gr oup. i d configuration property
in the consumer configuration. Consuming with groups will result in the consumers balancing the load in the group.
That means each consumer will have their fair share of partitions. Also it can never be more consumers than partitions
as that way there would be idling consumers.

As shown in the figure below, both consumer groups share the partitions and each partition multicasts messages to
both consumer groups. The consumers pull messages from the broker instead of the broker periodically pushing what
is available. This helps the consumer as it won’t be overloaded and it can query the broker at its own speed. Furthermore,
to avoid tight looping, it uses a so called “long-poll”. The consumer sends a fetch request to poll for data and receives
a reply only when enough data accumulates on the broker.

Kafka Cluster

Consumer Group A
Broker 1

Partition 0

Partition 3

Consumer Group B
Broker 2

Partition 2

Partition 1

Figure 2: Consumer Groups and Fetching from Partitions

Protocol between Consumer and Broker

This section details how the protocol works, what messages are going on the wire and how that contributes to the
overall behavior of the consumer. When discussing the internals of the consumers, there are a couple of basic terms
to know:

Heartbeat

When the consumer is alive and is part of the consumer group, it sends heartbeats. These are short periodic messages
that tell the brokers that the consumer is alive and everything is fine.

Session

Often one missing heartbeat is not a big deal, but how do you know if a consumer is not sending heartbeats for
long enough to indicate a problem? A session is such a time interval. If the consumer didn’t send any heartbeats
for longer than the session, the broker can consider the consumer dead and remove it from the group.

Coordinator

The special broker which manages the group on the broker side is called the coordinator. The coordinator handles
heartbeats and assigns the leader. Every group has a coordinator that organizes the startup of a consumer group
and assist whenever a consumer leaves the group.

Leader

The leader consumer is elected by the coordinator. Its job is to assign partitions to every consumer in the group at
startup or whenever a consumer leaves or joins the group. The leader holds the assignment strategy, it is decoupled
from the broker. That means consumers can reconfigure the partition assignment strategy without restarting the
brokers.

Startup Protocol

As mentioned before, the consumers are working usually in groups. So a major part of the startup process is spent
with figuring out the consumer group.

At startup, the first step is to match protocol versions. It is possible that the broker and the consumer are of different
versions (the broker is older and the consumer is newer, or vice versa). This matching is done by the APl _VERSI ONS
request.

API_VERSIONS

METADATA

\d

FIND_COORDINATOR

JOIN_GROUP

A/

SYNC_GROUP

Y

Figure 3: Startup Protocol

The next step is to collect cluster information, such as the addresses of all the brokers (prior to this point we used the
bootstrap server as a reference), partition counts, and partition leaders. This is done in the METADATA request.

After acquiring the metadata, the consumer has the information needed to join the group. By this time on the broker
side, a coordinator has been selected per consumer group. The consumers must find their coordinator with the
FI ND_COORDI NATOR request.

After finding the coordinator, the consumer(s) are ready to join the group. Every consumer in the group sends their
own member-specific metadata to the coordinator in the JO N_GROUP request. The coordinator waits until all the
consumers have sent their request, then assigns a leader for the group. At the response plus the collected metadata
are sent to the leader, so it knows about its group.

The remaining step is to assign partitions to consumers and propagate this state. Similar to the previous request, all
consumers send a SYNC_GROUP request to the coordinator; the leader provides the assignments in this request. After
it receives the sync request from each group member, the coordinator propagates this member state in the response.
By the end of this step, the consumers are ready and can start consuming.

Consumption Protocol

When consuming, the first step is to query where should the consumer start. This is done in the OFFSET_FETCHrequest.
This is not mandatory: the consumer can also provide the offset manually. After this, the consumer is free to pull data
from the broker. Data consumption happens in the FETCHrequests. These are the long-pull requests. They are answered
only when the broker has enough data; the request can be outstanding for a longer period of time.

Consumer Broker

OFFSET_FETCH

A J

FETCH
-
FETCH
L
OFFSET_COMMIT _
FETCH
-
HEARTBEAT

v

Figure 4: Consumption Protocol

From time to time, the application has to either manually or automatically save the offsets in an OFFSET_COW T
request and send heartbeats too in the HEARTBEAT requests. The first ensures that the position is saved while the
latter ensures that the coordinator knows that the consumer is alive.

Shutdown Protocol

The last step when the consumption is done is to shut down the consumer gracefully. This is done in one single step,
called the LEAVE_GROUP protocol.

Consumer Broker

LEAVE_GROUP

Figure 5: Shutdown Protocol

Rebalancing Partitions

You may notice that there are multiple points in the protocol between consumers and brokers where failures can
occur. There are points in the normal operation of the system where you need to change the consumer group
assignments. For example, to consume a new partition or to respond to a consumer going offline. The process or
responding to cluster information changing is called rebalance. It can occur in the following cases:

e A consumer leaves. It can be a software failure where the session times out or a connection stalls for too long,
but it can also be a graceful shutdown.

e Aconsumer joins. It can be a new consumer but an old one that just recovered from a software failure (automatically
or manually).

e Partition is adjusted. A partition can simply go offline because of a broker failure or a partition coming back online.
Alternatively an administrator can add or remove partitions to/from the broker. In these cases the consumers
must reassign who is consuming.

¢ The cluster is adjusted. When a broker goes offline, the partitions that are lead by this broker will be reassigned.
In turn the consumers must rebalance so that they consume from the new leader. When a broker comes back,
then eventually a preferred leader election happens which restores the original leadership. The consumers must
follow this change as well.

On the consumer side, this rebalance is propagated to the client via the Consuner Rebal anceli st ener interface. It
has two methods. The first, onPar t i t i onsRevoked, will be invoked when any partition goes offline. This call happens
before the changes would reflect in any of the consumers, so this is the chance to save offsets if manual offset commit
is used. On the other hand onPar ti t i onsAssi gned is invoked after partition reassignment. This would allow for the
programmer to detect which partitions are currently assigned to the current consumer. Complete examples can be
found in the development section.

Consumer Configuration Properties
There are some very important configurations that any user of Kafka must know:

e heartbeat.interval.ns:The interval of the heartbeats. For example, if the heartbeat interval is set to 3
seconds, the consumer sends a short heartbeat message to the broker every 3 seconds to indicate that it is alive.

e session. tinmeout. ns: The consumer tells this timeout to the coordinator. This is used to control the heartbeats
and remove the dead consumers. If it’s set to 10 seconds, the consumer can miss sending 2 heartbeats, assuming
the previous heartbeat setting. If we increase the timeout, the consumer has more room for delays but the broker
notices lagging consumers later.

e max. pol | .interval . nms:Itisaveryimportant detail: the consumers must maintain polling and should never
do long-running processing. If a consumer is taking too much time between two polls, it will be detached from
the consumer group. We can tune this configuration according to our needs. Note that if a consumer is stuck in
processing, it will be noticed later if the value is increased.

e request.timeout. ns: Generally every request has a timeout. This is an upper bound that the client waits for
the server’s response. If this timeout elapses, then retries might happen if the number of retries are not exhausted.

Retries

In Kafka retries typically happen on only for certain kinds of errors. When a retriable error is returned, the clients are
constrained by two facts: the timeout period and the backoff period.

The timeout period tells how long the consumer can retry the operation. The backoff period how often the consumer
should retry. There is no generic approach for "number of retries." Number of retries are usually controlled by timeout
periods.

Kafka Clients and ZooKeeper

The default consumer model provides the metadata for offsets in the Kafka cluster. There is a topic named
__consuner _of f set s that the Kafka Consumers write their offsets to.

Kafka Cluster

I
TopicA ~{ Kafka Conaumer |

Kafka Consumer

\J

Kafka Producer

vy

Kafka Producer £

Topic B

Y

Kafka Consumer

Kafka Producer ——

__consumer_offsets

Y
Y

Kafka Producer Kafka Consumer

Figure 6: Kafka Consumer Dependencies

In releases before version 2.0 of CDK Powered by Apache Kafka, the same metadata was located in ZooKeeper. The
new model removes the dependency and load from Zookeeper. In the old approach:

¢ The consumers save their offsets in a "consumer metadata" section of ZooKeeper.
e With most Kafka setups, there are often a large number of Kafka consumers. The resulting client load on ZooKeeper
can be significant, therefore this solution is discouraged.

Kafka Clients

Kafka Cluster

Kafka Consumer

Y
) 4

Kafka Producer Topic A

A J

Kafka Consumer

Kafka Consumer

Kafka Consumer

Kafka Producer *

Topic B

Y

Kafka Producer

Y
'

Kafka Producer

Zookeeper Cluster

Consumer Metadata |

Figure 7: Kafka Consumer Dependencies (Old Approach)

Kafka Guide | 17

Kafka Brokers

This section covers some of how a broker operates in greater detail. As we go over some of these details, we will
illustrate how these pieces can cause brokers to have issues.

Single Cluster Scenarios

The figure below shows a simplified version of a Kafka cluster in steady state. There are N brokers, two topics with
nine partitions each. The M replicated partitions are not shown for simplicity. This is going to be the baseline for
discussions in later sections.

Broker 1 (Controller) Broker 2 Broker N

Topic A
Lead Lead Lead Lead Lead Lead Lead Lead Lead
Part Part Part Part Part Part e e e Part Part Part
Al Ad A8 A2 A6 A9 A3 A5 A7

Topic B
Lead Lead Lead Lead Lead Lead Lead Lead Lead
Part Part Part Part Part Part Part Part Part
B2 B5 B9 B1 B7 B8 B3 B4 B6

Figure 8: Kafka Cluster in Steady State

Leader Positions

In the baseline example, each broker shown has three partitions per topic. In the figure above, the Kafka cluster has
well balanced leader partitions. Recall the following:

* Producer writes and consumer reads occur at the partition level
e Leader partitions are responsible for ensuring that the follower partitions keep their records in sync

In the baseline example, since the leader partitions were evenly distributed, most of the time the load to the overall
Kafka cluster will be relatively balanced.

In the example below, since a large chunk of the leaders for Topic A and Topic B are on Broker 1, a lot more of the
overall Kafka workload will occur at Broker 1. This will cause a backlog of work, which slows down the cluster throughput,
which will worsen the backlog.

Broker 1 (Controller) Broker 2 Broker N

Topic A
Lead Lead Lead Lead Lead Lead Lead
Part Part Part Part Part Part . Part
A1l Ad A8 A2 A6 A9 A5
Lead Lead
Part Part
A3 A7

Topic B
Lead Lead Lead Lead Lead Lead Lead
Part Part Part Part Part Part Part
B2 B5 B9 B1 B8 B3 B4
Lead Lead
Part Part
B7 B6

Figure 9: Kafka Cluster with Leader Partition Imbalance

Even if a cluster starts with perfectly balanced topics, failures of brokers can cause these imbalances: if leader of a
partition goes down one of the replicas will become the leader. When the original (preferred) leader comes back, it
will get back leadership only if automatic leader rebalancing is enabled; otherwise the node will become a replica and
the cluster gets imbalanced.

In-Sync Replicas
Let’s look at Topic A from the previous example with follower partitions:

e Broker 1 has six leader partitions, broker 2 has two leader partitions, and broker 3 has one leader partition.
e Assuming a replication factor of 3.
Assuming all replicas are in-sync, then any leader partition can be moved from Broker 1 to another broker without

issue. However, in the case where some of the follower partitions have not caught up, then the ability to change leaders
or have a leader election will be hampered.

Broker 1 (Controller) Broker 2 Broker N
Topic A
Lead Lead Lead : Copy :: Copy Copy : : Copy Copy
Part Part Part { Part ! Part eoe |:Pat ::Part ::Part
A1 A2 A3 CAT A2 CAT DA
Lead | : Copy :: i Copy @ : Copy : Copy : [Lead | Copy :
Part | Part :! Part : Part : : Part i Part [Part | Part :
A4 |iAs iiae ‘A4 A5 : A5 Ab
Lead Lead Copy : Copy : Copy Lead i © Copy Copy
Part Part Part i Part :: Part ;| Part i Part : Part : Part
A7 A8 A9 fA7 iiAB A9 [A7 i1 AB A9

Figure 10: Kafka Topic with Leader and Follower Partitions

Topic Configuration

We already introduced the concept of topics. When managing a Kafka cluster, configuring a topic can require some
planning. For small clusters or low record throughput, topic planning isn’t particularly tricky, but as you scale to the
large clusters and high record throughput, such planning becomes critical.

Topic Creation

To be able to use a topic, it has to be created. This can happen automatically or manually. When enabled, the Kafka
cluster creates topics on demand.

Automatic Topic Creation

Ifaut 0. creat e. topi cs. enabl eissettot rue and a client is requesting metadata about a non-existent topic, then
the broker will create a topic with the given name. In this case, its replication factor and partition count is derived from
the broker configuration. Corresponding configuration entries are def aul t . repl i cati on. f act or and

num partitions. The default value for each these properties is 1. This means the topic will not scale well and will
not be tolerant to broker failure. It is recommended to set these default value higher or even better switching off this
feature and creating topics manually with configuration suited for the use case at hand.

Manual topic creation

You can create topics from the command line with kaf ka- t opi cs tool. Specify a replication factor and partition count,
with optional configuration overrides. Alternatively, for each partition, you can specify which brokers have to hold a
copy of that partition.

Topic Properties

There are numerous properties that influence how topics are handled by the cluster. These can be set with
kaf ka- t opi cs tool on topic creation or later on with kaf ka- conf i gs. The most commonly used properties are:

e min.insync.replicas:specifies how many brokers have to replicate the records before the leader sends back
an acknowledgment to the producer (if producer property acks is set to al |). With a replication factor of 3, a
minimum in-sync replicas of 2 guarantees a higher level of durability. It is not recommended that you set this
value equal to the replication factor as it makes producing to the topic impossible if one of the brokers is temporarily
down.

e retention. bytesandretention. ns: determines when a record is considered outdated. When data stored
in one partition exceeds given limits, broker starts a cleanup to save disk space.

e segnent. byt es and segnent . ns: determines how much data is stored in the same log segment (that is, in the
same file). If any of these limits is reached, a new log segment is created.

e uncl ean. | eader. el ecti on. enabl e:ift r ue, replicas that are not in-sync may be elected as new leaders. This
only happens when there are no live replicas in-sync. As enabling this feature may result in data loss, it should be
switched on only if availability is more important than durability.

e cl eanup. pol i cy:eitherdel et e orconpact . Ifdel et e is set, old log segments will be deleted. Otherwise, only
the latest record is retained. This process is called log compaction. This is covered in greater detail in the Record
Management on page 52 section.

If you do not specify these properties, the prevailing broker level configuration will take effect. A complete list of
properties can be found in the Topic-Level Configs section of the Apache Kafka documentation.

Partition Management

Partitions are at the heart of how Kafka scales performance. Some of the administrative issues around partitions can
be some of the biggest challenges in sustaining high performance.

When creating a topic, you specify which brokers should have a copy of which partition or you specify replication factor
and number of partitions and the controller generates a replica assignment for you. If there are multiple brokers that
are assigned a partition, the first one in the list is always the preferred leader.

Whenever the leader of a partition goes down, Kafka moves leadership to another broker. Whether this is possible
depends on the current set of in-sync replicas and the value of uncl ean. | eader . el ecti on. enabl e. However, no
new Kafka broker will start to replicate the partition to reach replication factor again. This is to avoid unnecessary load
on brokers when one of them is temporarily down. Kafka will regularly try to balance leadership between brokers by
electing the preferred leader. But this balance is based on number of leaderships and not throughput.

https://kafka.apache.org/documentation/#topicconfigs

Partition Reassignment
In some cases require manual reassignment of partitions:

e If the initial distribution of partitions and leaderships creates an uneven load on brokers.
¢ |f you want to add or remove brokers from the cluster.

Use kaf ka- r eassi gn- partiti ons tool to move partitions between brokers. The typical workflow consist of the
following:

e Generate a reassignment file by specifying topics to move and which brokers to move to (by setting
--topic-to-nmove-json-fileand--broker-1list to--generatecommand).

e Optionally edit the reassignment file and verify it with the tool.
e Actually re-assigning partitions (with option - - execut e).
e Verify if the process has finished as intended (with option - - veri f y).

E,i Note: When specifying throttles for inter broker communication, make sure you use the command
with - - veri f y option to remove limitations on replication speed.

Adding Partitions

You can use kaf ka- t opi cs tool to increase the number of partitions in a given topic. However, note that adding
partitions will in most cases break the guarantee preserving the order of records with the same key, because it
changes which partition a record key is produced to. Although order of records is preserved for both the old partition
the key was produced to and the new one, it still might happen that records from the new partition are consumed
before records from the old one.

Choosing the Number of Partitions

When choosing the number of partitions for a topic, you have to consider the following:

¢ More partitions mean higher throughput.
¢ You should not have more than a few tens of thousands of partitions in a Kafka cluster.

¢ In case of an unclean shutdown of one of the brokers, the partitions it was leader for have to be led by other
brokers and moving leadership for a few thousand partitions one by one can take seconds of unavailability.

e Kafka keeps all log segment files open at all times. More partitions can mean more file handles to have open.
e More partitions can cause higher latency.

Controller

The controller is one of the brokers that has additional partition and replica management responsibilities. It will control
/ be involved whenever partition metadata or state is changed, such as when:

¢ Topics or partitions are created or deleted.
e Brokers join or leave the cluster and partition leader or replica reassignment is needed.

It also tracks the list of in sync replicas (ISRs) and maintains broker, partition, and ISR data in Zookeeper.

Controller Election

Any of the brokers can play the role of the controller, but in a healthy cluster there is exactly one controller. Normally
this is the broker that started first, but there are certain situations when a re-election is needed:

¢ If the controller is shut down or crashes.
e |f it loses connection to Zookeeper.

When a broker starts or participates in controller reelection, it will attempt to create an ephemeral node
(“/ control | er”)inZooKeeper. If it succeeds, the broker becomes the controller. If it fails, there is already a controller,
but the broker will watch the node.

If the controller loses connection to ZooKeeper or stops ZooKeeper will remove the ephemeral node and the brokers
will get a notification to start a controller election.

Every controller election will increase the “controller epoch”. The controller epoch is used to detect situations when

there are multiple active controllers: if a broker gets a message with a lower epoch than the result of the last election,
it can be safely ignored. It is also used to detect a “split brain” situation when multiple nodes believe that they are in

the controller role.

Having 0 or 2+ controllers means the cluster is in a critical state, as broker and partition state changes are blocked.
Therefore it’s important to ensure that the controller has a stable connection to ZooKeeper to avoid controller elections
as much as possible.

Kafka Integration

Kafka Security

Client-Broker Security with TLS

Kafka allows clients to connect over TLS. By default, TLS is disabled, but can be turned on as needed.

Step 1: Generating Keys and Certificates for Kafka Brokers

Generate the key and the certificate for each machine in the cluster using the Java keytool utility. See Generate TLS
Certificates.

Make sure that the common name (CN) matches the fully qualified domain name (FQDN) of your server. The client
compares the CN with the DNS domain name to ensure that it is connecting to the correct server.

Step 2: Creating Your Own Certificate Authority

You have generated a public-private key pair for each machine and a certificate to identify the machine. However, the
certificate is unsigned, so an attacker can create a certificate and pretend to be any machine. Sign certificates for each
machine in the cluster to prevent unauthorized access.

A Certificate Authority (CA) is responsible for signing certificates. A CA is similar to a government that issues passports.
A government stamps (signs) each passport so that the passport becomes difficult to forge. Similarly, the CA signs the
certificates, and the cryptography guarantees that a signed certificate is computationally difficult to forge. If the CA is
a genuine and trusted authority, the clients have high assurance that they are connecting to the authentic machines.

openssl req -new -x509 -keyout ca-key -out ca-cert -days 365

The generated CA is a public-private key pair and certificate used to sign other certificates.

Add the generated CA to the client truststores so that clients can trust this CA:

keyt ool -keystore {client.truststore.jks} -alias CARoot -inport -file {ca-cert}

E,’ Note: If you configure Kafka brokers to require client authentication by setting ssl . cli ent. aut h

to be requested or required on the Kafka brokers config, you must provide a truststore for the Kafka
brokers as well. The truststore must have all the CA certificates by which the clients keys are signed.
The keystore created in step 1 stores each machine’s own identity. In contrast, the truststore of a
client stores all the certificates that the client should trust. Importing a certificate into a truststore
means trusting all certificates that are signed by that certificate. This attribute is called the chain of
trust. It is particularly useful when deploying SSL on a large Kafka cluster. You can sign all certificates
in the cluster with a single CA, and have all machines share the same truststore that trusts the CA.
That way, all machines can authenticate all other machines.

Step 3: Signing the Certificate
Now you can sign all certificates generated by step 1 with the CA generated in step 2.

1. Create a certificate request from the keystore:
keyt ool -keystore server.keystore.jks -alias |ocal host -certreq -file cert-file

where:

e keystore: the location of the keystore

https://www.cloudera.com/documentation/enterprise/latest/topics/how_to_configure_cm_tls.html#concept_gkg_xs3_lx
https://www.cloudera.com/documentation/enterprise/latest/topics/how_to_configure_cm_tls.html#concept_gkg_xs3_lx
http://kafka.apache.org/documentation/#brokerconfigs

o cert-file: the exported, unsigned certificate of the server

2. Sign the resulting certificate with the CA (in the real world, this can be done using a real CA):

openssl x509 -req -CA ca-cert -CAkey ca-key -in cert-file -out cert-signed -days validity
- CAcreat eserial -passin pass:ca-password

where:

e ca-cert: the certificate of the CA

e ca-key: the private key of the CA

e cert-signed: the signed certificate of the server
e ca-password: the passphrase of the CA

3. Import both the certificate of the CA and the signed certificate into the keystore:

keyt ool -keystore server.keystore.jks -alias CARoot -inport -file ca-cert
keyt ool -keystore server.keystore.]ks -alias |ocal host -inport -file cert-signed

The following Bash script demonstrates the steps described above. One of the commands assumes a password of
Sanpl ePasswor d123, so either use that password or edit the command before running it.

#!/ bi n/ bash

#Step 1

keyt ool -keystore server.keystore.jks -alias |ocal host -validity 365 -genkey
#Step 2

openssl req -new -x509 -keyout ca-key -out ca-cert -days 365

keyt ool -keystore server.truststore.jks -alias CARoot -inport -file ca-cert

keyt ool -keystore client.truststore.jks -alias CARoot -inport -file ca-cert
#Step 3

keyt ool -keystore server.keystore.jks -alias |ocal host -certreq -file cert-file
openssl x509 -req -CA ca-cert -CAkey ca-key -in cert-file -out cert-signed -days 365
- CAcreateseri al -passin pass: Sanpl ePasswor d123

keyt ool -keystore server. keystore.jks -alias CARoot -inport -file ca-cert

keyt ool -keystore server.keystore.jks -alias |ocal host -inmport -file cert-signed

Step 4: Configuring Kafka Brokers

Kafka Brokers support listening for connections on multiple ports. If SSL is enabled for inter-broker communication
(see below for how to enable it), both PLAINTEXT and SSL ports are required.

To configure the listeners from Cloudera Manager, perform the following steps:

1. In Cloudera Manager, go to Kafka > Instances.
2. Go to Kafka Broker > Configurations.

3. In the Kafka Broker Advanced Configuration Snippet (Safety Valve) for Kafka Properties, enter the following
information:

| i st ener s=PLAI NTEXT: / / kaf ka- br oker - host - nane: 9092, SSL: / / kaf ka- br oker - host - nanme: 9093
adverti sed. | i st ener s=PLAI NTEXT: / / kaf ka- br oker - host - nane: 9092, SSL: / / kaf ka- br oker - host - nane; 9093

where kafka-broker-host-name is the FQDN of the broker that you selected from the Instances page in Cloudera
Manager. In the above sample configurations we used PLAINTEXT and SSL protocols for the SSL enabled brokers.

For information about other supported security protocols, see Using Kafka’s Inter-Broker Security on page 26.

4. Repeat the previous step for each broker.
The adverti sed. | i st eners configuration is needed to connect the brokers from external clients.

5. Deploy the above client configurations and rolling restart the Kafka service from Cloudera Manager.

Kafka CSD auto-generates listeners for Kafka brokers, depending on your SSL and Kerberos configuration. To enable
SSL for Kafka installations, do the following:

1. Turn on SSL for the Kafka service by turning on the ssl _enabl ed configuration for the Kafka CSD.
2. Setsecurity.inter.broker. protocol as SSL, if Kerberos is disabled; otherwise, set it as SASL_SSL.

The following SSL configurations are required on each broker. Each of these values can be set in Cloudera Manager.
Be sure to replace this example with the truststore password.

For instructions, see Changing the Configuration of a Service or Role Instance.

ssl . keystore. |l ocation=/var/privatel/ssl/kafka. server. keystore.jks
ssl . keyst or e. passwor d=Sanpl ePasswor d123

ssl . key. passwor d=Sanpl ePasswor d123

ssl.truststore. |l ocation=/var/private/ssl/server.truststore.jks
ssl . truststore. passwor d=Sanpl ePasswor d123

Other configuration settings may also be needed, depending on your requirements:

e ssl.client.aut h=none: Other options for client authentication are required, or requested, where clients
without certificates can still connect. The use of requested is discouraged, as it provides a false sense of security
and misconfigured clients can still connect.

e ssl.cipher. suites:Acipher suite is a named combination of authentication, encryption, MAC, and a key
exchange algorithm used to negotiate the security settings for a network connection using TLS or SSL network
protocol. This list is empty by default.

e ssl|.enabl ed. prot ocol s=TLSv1. 2, TLSv1. 1, TLSv1: Provide a list of SSL protocols that your brokers accept
from clients.

e ss|. keystore. type=JKS

e ssl|.truststore.type=JKS

Communication between Kafka brokers defaults to PLAI NTEXT. To enable secured communication, modify the broker
properties file by adding securi ty.inter. broker. protocol =SSL.

For a list of the supported communication protocols, see Using Kafka’s Inter-Broker Security on page 26.

E,’ Note: Due to import regulations in some countries, Oracle implementation of JCA limits the strength

of cryptographic algorithms. If you need stronger algorithms, you must obtain the JCE Unlimited
Strength Jurisdiction Policy Files and install them in the JDK/JRE as described in JCA Providers
Documentation.

After SSL is configured your broker, logs should show an endpoint for SSL communication:

wi th addresses: PLAINTEXT -> EndPoi nt (192. 168. 1. 1, 9092, PLAI NTEXT), SSL - >
EndPoi nt (192. 168. 1. 1, 9093, SSL)

You can also check the SSL communication to the broker by running the following command:

openssl s_client -debug -connect |ocal host: 9093 -tlsl

This check can indicate that the server keystore and truststore are set up properly.

E,i Note: ssl . enabl ed. prot ocol s should include TLSv1.

The output of this command should show the server certificate:

----- BEGQ N CERTI FI CATE- - - - -
{variabl e sized random byt es}

----- END CERTI FI CATE- - - - -

subj ect =/ C=US/ ST=CA/ L=Pal o Al t o/ O=or g/ QU=or g/ CN=Fr anz Kaf ka

i ssuer =/ C=US/ ST=CA/ L=Pal o Al'to
/ O=or g/ OJ=or g/ CN=kaf ka/ ermai | Addr ess=kaf ka@our - dorai n. com

If the certificate does not appear, or if there are any other error messages, your keystore is not set up properly.

Step 5: Configuring Kafka Clients

SSL is supported only for the new Kafka producer and consumer APIs. The configurations for SSL are the same for both
the producer and consumer.

If client authentication is not required in the broker, the following example shows a minimal configuration:

security. protocol =SSL
ssl.truststore.l ocation=/var/private/ssl/kafka.client.truststore.jks

ssl . truststore. passwor d=Sanpl ePasswor d123

If client authentication is required, a keystore must be created as in step 1, it needs to be signed by the CA as in step
3, and you must also configure the following properties:

ssl . keystore.l ocation=/var/private/ssl/kafka.client.keystore.jks
ssl . keyst or e. passwor d=Sanpl ePasswor d123
ssl . key. passwor d=Sanpl ePasswor d123

Other configuration settings might also be needed, depending on your requirements and the broker configuration:

e ssl.provi der (Optional). The name of the security provider used for SSL connections. Default is the default
security provider of the JVM.

e ssl.cipher. suites (Optional). Acipher suite is a named combination of authentication, encryption, MAC, and
a key exchange algorithm used to negotiate the security settings for a network connection using TLS or SSL network

protocol.

e ssl.enabl ed. protocol s=TLSv1. 2, TLSv1. 1, TLSv1. This property should list at least one of the protocols
configured on the broker side.

e ssl|.truststore.type=JKS

e ssl.keystore.type=JKS

Using Kafka’s Inter-Broker Security

Kafka can expose multiple communication endpoints, each supporting a different protocol. Supporting multiple
communication endpoints enables you to use different communication protocols for client-to-broker communications
and broker-to-broker communications. Set the Kafka inter-broker communication protocol using the
security.inter. broker. protocol property. Use this property primarily for the following scenarios:

e Enabling SSL encryption for client-broker communication but keeping broker-broker communication as PLAI NTEXT.
Because SSL has performance overhead, you might want to keep inter-broker communication as PLAI NTEXT if
your Kafka brokers are behind a firewall and not susceptible to network snooping.

¢ Migrating from a non-secure Kafka configuration to a secure Kafka configuration without requiring downtime.
Use a rolling restart and keep securi ty. i nter. broker. protocol setto a protocol that is supported by all
brokers until all brokers are updated to support the new protocol.

For example, if you have a Kafka cluster that needs to be configured to enable Kerberos without downtime, follow
these steps:

1. Setsecurity.inter. broker. protocol toPLAINTEXT.

2. Update the Kafka service configuration to enable Kerberos.

3. Perform a rolling restart.

4. Setsecurity.inter. broker. protocol toSASL_PLAI NTEXT.

Kafka 2.0 and higher supports the combinations of protocols listed here.

SSL Kerberos
PLAINTEXT No No
SSL Yes No
SASL_PLAINTEXT No Yes
SASL_SSL Yes Yes

These protocols can be defined for broker-to-client interaction and for broker-to-broker interaction. The property
security.inter.broker. protocol allowsthe broker-to-broker communication protocol to be different than the
broker-to-client protocol, allowing rolling upgrades from non-secure to secure clusters. In most cases, set
security.inter.broker. protocol tothe protocol you are using for broker-to-client communication. Set
security.inter.broker. protocol toa protocol different than the broker-to-client protocol only when you are
performing a rolling upgrade from a non-secure to a secure Kafka cluster.

Enabling Kerberos Authentication

Apache Kafka supports Kerberos authentication, but it is supported only for the new Kafka Producer and Consumer
APls.

If you already have a Kerberos server, you can add Kafka to your current configuration. If you do not have a Kerberos
server, install it before proceeding. See Enabling Kerberos Authentication for CDH.

If you already have configured the mapping from Kerberos principals to short names using the

hadoop. security. auth_to_| ocal HDFS configuration property, configure the same rules for Kafka by adding the
sasl . kerberos. principal.to.local.rul es property to the Advanced Configuration Snippet for Kafka Broker
Advanced Configuration Snippet using Cloudera Manager. Specify the rules as a comma separated list.

To enable Kerberos authentication for Kafka:

. In Cloudera Manager, navigate to Kafka > Configuration.

. Set SSL Client Authentication to none.

. Set Inter Broker Protocol to SASL_PLAI NTEXT.

. Click Save Changes.

. Restart the Kafka service (Action > Restart).

. Make sure thatl i steners = SASL_PLAI NTEXT is present in the Kafka broker logs, by default in
/var /| og/ kaf ka/ server. | og.

7. Create aj aas. conf file with either cached credentials or keytabs.

AU A WN R

To use cached Kerberos credentials, where you use ki ni t first, use this configuration.

Kaf kaCl i ent {
com sun. security. aut h. nodul e. Kr b5Logi nMbdul e requi red
useTi cket Cache=t r ue;

If you use a keytab, use this configuration. To generate keytabs, see Step 6: Get or Create a Kerberos Principal for
Each User Account).

Kaf kaCl i ent {

com sun. security. aut h. mrodul e. Kr b5Logi nMbdul e requi red
useKeyTab=t r ue

keyTab="/et c/ security/ keyt abs/ nykaf kacl i ent. keyt ab"

princi pal ="nykaf kacl i ent/cl i ents. host name. com@XAMPLE. COM';

8. Create thecl i ent. properti es file containing the following properties.

security. protocol =SASL_PLAI NTEXT
sasl . ker beros. servi ce. nane=kaf ka

9. Test with the Kafka console producer and consumer.
To obtain a Kerberos ticket-granting ticket (TGT):
$ kinit user
10 Verify that your topic exists.
This does not use security features, but it is a best practice.
$ kafka-topics --list --zookeeper zkhost:2181

1 Verify that the j aas. conf file is used by setting the environment.

$ export KAFKA_OPTS="-Dj ava.security.auth. | ogin.config=/hone/user/jaas.conf"

12 Run a Kafka console producer.

$ kaf ka- consol e-producer --broker-1ist anybroker:9092 --topic testl --producer.config
client.properties

1B Run a Kafka console consumer.

$ kaf ka- consol e- consuner --new consuner --topic testl --from begi nning --boot strap-server
anybr oker: 9092 --consumer.config client.properties

Enabling Encryption at Rest

Data encryption is increasingly recognized as an optimal method for protecting data at rest. You can encrypt Kafka
data using Cloudera Navigator Encrypt.

Perform the following steps to encrypt Kafka data that is not in active use.

1. Stop the Kafka service.

2. Archive the Kafka data to an alternate location, using TAR or another archive tool.
3. Unmount the affected drives.

4. Install and configure Navigator Encrypt.

See Installing Cloudera Navigator Encrypt.

5. Expand the TAR archive into the encrypted directories.

6.

Restart the Kafka service.

Topic Authorization with Kerberos and Sentry

Apache Sentry includes a Kafka binding you can use to enable authorization in Kafka with Sentry. For more information,
see Authorization With Apache Sentry.

Configuring Kafka to Use Sentry Authorization

The following steps describe how to configure Kafka to use Sentry authorization. These steps assume you have installed
Kafka and Sentry on your cluster.

Sentry requires that your cluster include HDFS. After you install and start Sentry with the correct configuration, you
can stop the HDFS service. For more information, see Installing and Upgrading the Sentry Service.

E,’ Note: Cloudera's distribution of Kafka can make use of LDAP-based user groups when the LDAP

directory is synchronized to Linux via tools such as SSSD. CDK does not support direct integration with
LDAP, either through direct Kafka's LDAP authentication, or via Hadoop's group mapping (when
hadoop. gr oup. mappi ng is set to LdapGroupMapping). For more information, see Configuring LDAP

Group Mappings.

To configure Sentry authentication for Kafka:

A WN R

5.
6.

. In Cloudera Manager, go to Kafka > Configuration.

. Select Enable Kerberos Authentication.

. Select a Sentry service in the Kafka service configuration.
. Add superusers.

Superusers can perform any action on any resource in the Kafka cluster. The kaf ka user is added as a superuser
by default. Superuser requests are authorized without going through Sentry, which provides enhanced performance.

Select Enable Sentry Privileges Caching to enhance performance.
Restart the Sentry services.

Authorizable Resources

Authorizable resources are resources or entities in a Kafka cluster that require special permissions for a user to be able
to perform actions on them. Kafka has four authorizable resources.

Cluster: controls who can perform cluster-level operations such as creating or deleting a topic. This resource can
only have one value, kaf ka- cl ust er, as one Kafka cluster cannot have more than one cluster resource.

Topic: controls who can perform topic-level operations such as producing and consuming topics. Its value must
match exactly the topic name in the Kafka cluster.

With CDH 5.15.0 and CDK 3.1 and later, wildcards (*) can be used to refer to any topic in the privilege.

Consumergroup: controls who can perform consumergroup-level operations such as joining or describing a
consumergroup. Its value must exactly match the gr oup. i d of a consumergroup.

With CDH 5.14.1 and later, you can use a wildcard (*) to refer to any consumer groups in the privilege. This resource
is useful when used with Spark Streaming, where a generated gr oup. i d may be needed.

Host: controls from where specific operations can be performed. Think of this as a way to achieve IP filtering in

Kafka. You can set the value of this resource to the wildcard (*), which represents all hosts.

’ Note: Only IP addresses should be specified in the host component of Kafka Sentry privileges,
El hostnames are not supported.

Authorized Actions

You can perform multiple actions on each resource. The following operations are supported by Kafka, though not all
actions are valid on all resources.

e ALL is a wildcard action, and represents all possible actions on a resource.
e read

e Wwite

e create

e delete

e alter

e describe

e clusteraction

Authorizing Privileges

Privileges define what actions are allowed on a resource. A privilege is represented as a string in Sentry. The following
rules apply to a valid privilege.

¢ Can have at most one Host resource. If you do not specify a Host resource in your privilege string, Host =* is
assumed.

e Must have exactly one non-Host resource.
e Must have exactly one action specified at the end of the privilege string.

For example, the following are valid privilege strings:

Host =*- >Topi c=nyTopi c- >act i on=ALL
Topi c=t est - >act 1 on=ALL
Granting Privileges to a Role

The following examples grant privileges to the role test, so that usersint est G oup can create a topic namedt est Topi ¢
and produce to it.

The user executing these commands must be added to the Sentry parameter sent ry. servi ce. al | ow. connect
and also be a member of a group defined in sent ry. servi ce. adni n. gr oup.

Before you can assign the test role, you must first create it. To create the t est role:
$ kafka-sentry -cr -r test

To confirm that the role was created, list the roles:

$ kafka-sentry -Ir

If Sentry privileges caching is enabled, as recommended, the new privileges you assign take some time to appear in
the system. The time is the time-to-live interval of the Sentry privileges cache, which is set using

sentry. kaf ka. cachi ng. tt1. ms. By default, this interval is 30 seconds. For test clusters, it is beneficial to have

changes appear within the system as fast as possible, therefore, Cloudera recommends that you either use a lower
time interval, or disable caching with sent ry. kaf ka. cachi ng. enabl e.

1. Allow usersint est Gr oup towritetot est Topi ¢ from| ocal host , which allows users to produce tot est Topi c.
Users need bothwri t e and descr i be permissions.

kaf ka-sentry -gpr -r test -p "Host=127.0.0. 1->Topi c=t est Topi c->acti on=write"
kaf ka-sentry -gpr -r test -p "Host=127.0.0. 1->Topi c=t est Topi c- >acti on=descri be"

2. Assign the test role to the group testGroup:

$ kafka-sentry -arg -r test -g testGoup

3. Verify that the test role is part of the group testGroup:

$ kafka-sentry -lIr -g testG oup

4, Create testTopic.

$ kafka-topics --create --zookeeper |ocal host:2181 \
--replication-factor 1\
--partitions 1 --topic testTopic

$ kafka-topics --list --zookeeper |ocal host:2181 testTopic

Now you can produce to and consume from the Kafka cluster.

1. Produce tot est Topi c.

Note that you have to pass a configuration file, pr oducer . pr operti es, with information on JAAS configuration
and other Kerberos authentication related information. See SASL Configuration for Kafka Clients.

$ kaf ka- consol e-producer --broker-Iist |ocal host:9092 \
--topic testTopic --producer.config producer. properties
This is a nessage
This is anot her nessage

2. Grant the cr eat e privilege to the test role.

$ kafka-sentry -gpr -r test -p
"Host =127. 0. 0. 1- >Cl ust er =kaf ka- cl ust er- >act i on=cr eat e"

3. Allow usersint est Gr oup to describe t est Topi ¢c from | ocal host, which the user creates and uses.

$ kafka-sentry -gpr -r test -p
"Host =127. 0. 0. 1- >Topi c=t est Topi c- >act i on=descri be"

4. Grant the describe privilege to the test role.

$ kafka-sentry -gpr -r test -p
"Host =127. 0. 0. 1- >Consuner gr oup=t est consuner gr oup- >act i on=descri be"

5. Allow users int est Gr oup to read from a consumer group, t est consuner gr oup, that it will start and join.

$ kafka-sentry -gpr -r test -p
"Host =127. 0. 0. 1- >Consuner gr oup=t est consuner gr oup- >act i on=r ead"

6. Allow usersint est G- oup to read from t est Topi c from | ocal host and to consume fromt est Topi c.

$ kafka-sentry -gpr -r test -p
"Host =127. 0. 0. 1- >Topi c=t est Topi c- >act i on=r ead"

7. Consume fromt est Topi c.

Note that you have to pass a configuration file, consuner . pr operti es, with information on JAAS configuration
and other Kerberos authentication related information. The configuration file must also specify gr oup. i d as
t est consuner gr oup.

kaf ka- consol e-consumer --new consuner --topic testTopic \
--from begi nni ng --boot strap-server anybroker-host: 9092 \
--consuner.config consumer. properties

http://kafka.apache.org/documentation.html#security_sasl_clientconfig

This is a message
This is anot her nessage

Troubleshooting Kafka with Sentry
If Kafka requests are failing due to authorization, the following steps can provide insight into the error:

e Make sure you have run ki ni t as a user who has privileges to perform an operation.

¢ Identify which broker is hosting the leader of the partition you are trying to produce to or consume from, as this
leader is going to authorize your request against Sentry. One easy way of debugging is to just have one Kafka
broker. Change log level of the Kafka broker by adding the following entry to the Kafka Broker in Logging Advanced
Configuration Snippet (Safety Valve) and restart the broker:

| og4j . | ogger. or g. apache. sent r y=DEBUG

Setting just Sentry to DEBUG mode avoids the debug output from undesired dependencies, such as Jetty.

e Run the Kafka client or Kafka CLI with the required arguments and capture the Kafka log, which should be similar
to:

/var /| og/ kaf ka/ kaf ka- br oker - host - nare. | og

¢ Look for the following information in the filtered logs:

Groups that the Kafka client user or CLI is running as.
Required privileges for the operation.

Retrieved privileges from Sentry.

Required and retrieved privileges comparison result.

This log information can provide insight into which privilege is not assigned to a user, causing a particular operation
to fail.

Managing Multiple Kafka Versions

Kafka Feature Support in Cloudera Manager and CDH

Using the latest features of Kafka sometimes requires a newer version of Cloudera Manager and/or CDH that supports
the feature. For the purpose of understanding upgrades, the table below includes several earlier versions where Kafka
was known as CDK Powered by Apache Kafka (CDK in the table).

Table 1: Kafka and CM/CDH Supported Versions Matrix

Minimum Supported Version
CDH Kafka Apache Kafka Cloudera COH . . .
Version Version Manager [No'Security) | (withiSentry] Kafka Feature Notes
CDH 6.0.0 1.0.1 CM 6.0.0 CDH 6.0.0 CDH 6.0.0
CDK 3.1.0 1.0.1 CM 5.13.0 CDH 5.13.0 CDH 5.13.0 | Sentry-HA supported
CDK 3.0.0 0.11.0 CM 5.13.0 CDH 5.13.0 CDH 5.13.0 | Sentry-HA not supported
CDK 2.2 0.10.2 CM 5.9.0 CDH5.4.0 CDH 5.9.0
CDK 2.1 0.10.0 CM 5.9.0 CDH5.4.0 CDH 5.9.0 Sentry Authorization
CDK 2.0 0.9.0 CM5.5.3 CDH5.4.0 CDH5.4.0 Enhanced Security

Client/Broker Compatibility Across Kafka Versions

Maintaining compatibility across different Kafka clients and brokers is a common issue. Mismatches among client and
broker versions can occur as part of any of the following scenarios:

e Upgrading your Kafka cluster without upgrading your Kafka clients.

e Using a third-party application that produces to or consumes from your Kafka cluster.

¢ Having a client program communicating with two or more Kafka clusters (such as consuming from one cluster and
producing to a different cluster).

e Using Flume or Spark as a Kafka consumer.

In these cases, it is important to understand client/broker compatibility across Kafka versions. Here are general rules
that apply:

* Newer Kafka brokers can talk to older Kafka clients. The reverse is not true: older Kafka brokers cannot talk to
newer Kafka clients.

e Changes in either the major part or the minor part of the upstream version major.minor determines whether the
client and broker are compatible. Differences among the maintenance versions are not considered when determining
compatibility.

As a result, the general pattern for upgrading Kafka from version A to version B is:

1. Change Kafka ser ver . properti es to refer to version A.

2. Upgrade the brokers to version B and restart the cluster.

3. Upgrade the clients to version B.

4. After all the clients are upgraded, change the properties from the first step to version B and restart the cluster.

Upgrading your Kafka Cluster

At some point, you will want to upgrade your Kafka cluster. Or in some cases, when you upgrade to a newer CDH
distribution, then Kafka will be upgraded along with the full CDH upgrade. In either case, you may wish to read the
sections below before upgrading.

General Upgrade Information

Previously, Cloudera distributed Kafka as a parcel (CDK) separate from CDH. Installation of the separate Kafka required
Cloudera Manager 5.4 or higher. For a list of available parcels and packages, see CDK Powered By Apache Kafka®
Version and Packaging Information Kafka bundled along with CDH.

As of CDH 6, Cloudera distributes Kafka bundled along with CDH. Kafka is in the parcel itself. Installation requires
Cloudera Manager 6.0 or higher. For installation instructions for Kafka using Cloudera Manager, see Cloudera Installation
Guide.

Cloudera recommends that you deploy Kafka on dedicated hosts that are not used for other cluster roles.

o Important: You cannot install an old Kafka parcel on a new CDH 6.x cluster.

Upgrading Kafka from CDH 6.0.0 to other CDH 6 versions
To ensure there is no downtime during an upgrade, these instructions describe performing a rolling upgrade.

Before upgrading, ensure that you seti nt er. br oker. prot ocol . versi on and | og. nessage. f or mat . ver si on
to the current Kafka version (see Table 1: Kafka and CM/CDH Supported Versions Matrix on page 32), and then unset
them after the upgrade. This is a good practice because the newer broker versions can write log entries that the older
brokers cannot read. If you need to rollback to the older version, and you have not set

i nter. broker. protocol .versionandl og. nessage. f or mat . ver si on, data loss can occur.

From Cloudera Manager on the cluster to upgrade:

1. Explicitly set the Kafka protocol version to match what's being used currently among the brokers and clients.

Update server . properti es on all brokers as follows:

a. Choose the Kafka service.
b. Click Configuration.

c. Use the Search field to find the Kafka Broker Advanced Configuration Snippet (Safety Valve) configuration
property.
d. Add the following properties to the safety valve:

i nter.broker.protocol.version = current_Kafka_version
| og. nessage. format. versi on = current _Kaf ka_versi on

Make sure you enter full Kafka version numbers with three values, such as 0.10.0. Otherwise, you'll see an
error similar to the following:

2018-06- 14 14:25: 47,818 FATAL kafka. Kaf ka$:

java.lang. |11 egal Argunent Exception: Version "0.10° is not a valid version
at kaf ka. api . Api Ver si on$$anonf un$appl y$1. appl y(Api Ver si on. scal a: 72)
at kaf ka. api . Api Ver si on$$anonf un$appl y$1. appl y(Api Ver si on. scal a: 72)
at scal a.coll ection. MapLi ke$cl ass. get O El se(MapLi ke. scal a: 128)

e. Save your changes. The information is automatically copied to each broker.
2. Upgrade CDH. See Upgrading CDH.
Do not restart the Kafka service, select Activate Only and click OK.
3. Perform a rolling restart.

Select Rolling Restart or Restart based on the downtime that you can afford.

At this point, the brokers are running in compatibility mode with older clients. It can run in this mode indefinitely. If
you do upgrade clients, after all clients are upgraded, remove the Safety Valve properties and restart the cluster.

Upstream Upgrade Instructions

The table below links to the upstream Apache Kafka documentation for detailed upgrade instructions. It is recommended
that you read the instructions for your specific upgrade to identify any additional steps that apply to your specific
upgrade path.

Table 2: Version-Specific Upgrade Instructions

Upstream Kafka

CDH Kafka Version Version Detailed Upstream Instructions

CDH 6.0.0 1.0.1 Upgrading from 0.8.x through 0.11.0.x to 1.0.0
Kafka 3.1.0 1.0.1 Upgrading from 0.8.x through 0.11.0.x to 1.0.0
Kafka 3.0.0 0.11.0 Upgrading from 0.8.x through 0.10.2.x t0 0.11.0.0
Kafka 2.2 0.10.2 Upgrading from 0.8.x through 0.10.1.x t0 0.10.2.0
Kafka 2.1 0.10.0 Upgrading from 0.8.x through 0.9.x.to 0.10.0.0
Kafka 2.0 0.9.0 Upgrading from 0.8.0 through 0.8.2.x t0 0.9.0.0

Managing Topics across Multiple Kafka Clusters

You may have more than one Kafka cluster to support:

http://kafka.apache.org/documentation/#upgrade_1_0_0
http://kafka.apache.org/documentation/#upgrade_1_0_0
http://kafka.apache.org/documentation/#upgrade_11_0_0
http://kafka.apache.org/documentation/#upgrade_10_2_0
http://kafka.apache.org/documentation/#upgrade_10
http://kafka.apache.org/documentation/#upgrade_9

Kafka Integration

e Geographic distribution
e Disaster recovery
e Organizational requirements

You can distribute messages across multiple clusters. It can be handy to have a copy of one or more topics from other
Kafka clusters available to a client on one cluster. Mirror Maker is a tool that comes bundled with Kafka to help automate
the process of mirroring or publishing messages from one cluster to another. "Mirroring" occurs between clusters
where "replication" distributes message within a cluster.

Source Cluster

Broker 1
Partition A1

Partition C2

Pym— Destination Cluster

Mirror Maker

Broker 2
Partition A3 ———

Partition C1

Partition B2

Y, Topic E

Broker 3
Partition A2
Partition C3

Partition B1

Figure 11: Mirror Maker Makes Topics Available on Multiple Clusters

While the diagram shows copying to one topic, Mirror Maker’s main mode of operation is running continuously, copying
one or more topics from the source cluster to the destination cluster.

Keep in mind the following design notes when configuring Mirror Maker:

e Mirror Maker runs as a single process.
e Mirror Maker can run with multiple consumers that read from multiple partitions in the source cluster.
e Mirror Maker uses a single producer to copy messages to the matching topic in the destination cluster.

Consumer/Producer Compatibility

The Mirror Maker consumer needs to be client compatible with the source cluster. The Mirror Maker producer needs
to be client compatible with the destination cluster.

See Client/Broker Compatibility Across Kafka Versions on page 33 for more details about what it means to be
"compatible."

Topic Differences between Clusters

Because messages are copied from the source cluster to the destination cluster—potentially through many consumers
funneling into a single producer—there is no guarantee of having identical offsets or timestamps between the two
clusters. In addition, as these copies occur over the network, there can be some mismatching due to retries or dropped
messages.

Kafka Guide | 35

Optimize Mirror Maker Producer Location

Because Mirror Maker uses a single producer and since producers typically have more difficulty with high latency
and/or unreliable connections, it is better to have the producer run “closer” to the destination cluster, meaning in the
same data center or on the same rack.

Destination Cluster Configuration

Before starting Mirror Maker, make sure that the destination cluster is configured correctly:

e Make sure there is sufficient disk space to copy the topic from the source cluster to the destination cluster.

¢ Make sure the topic exists in the destination cluster or use the kaf ka- conf i gs command to set the property
aut o. create. topi cs. enabl e=t r ue. See Kafka Administration Using Command Line Tools on page 55.

Kerberos and Mirror Maker

As mentioned earlier, Mirror Maker runs as a single process. The resulting consumers and producers rely on a single
configuration setup. Mirror Maker requires that the source cluster and the destination cluster belong to the same
Kerberos realm.

Setting up Mirror Maker in Cloudera Manager
Where Cloudera Manager is managing the destination cluster:

1. In Cloudera Manager, select the Kafka service.

. Choose Action > Add Role Instances.

. Under Kafka Mirror Maker, click Select hosts.

. Select the host where Mirror Maker will run and click Continue.

. Fill in the Destination Broker List and Source Broker List with your source and destination Kafka clusters.

v b WN

Use host name, IP address, or fully qualified domain name.
6. Fill out the Topic Whitelist.
The whitelist is required.

7. Fill out the TLS/SSL sections if security needs to be enabled.
8. Start the Mirror Maker instance.

Settings to Avoid Data Loss

The Avoid Data Loss option from earlier releases has been removed in favor of automatically setting the following
properties. Also note that MirrorMaker starts correctly if you enter the numeric values in the configuration snippet
(rather than using "max integer" forr et ri es and "max long" for max. bl ock. ns).

Producer settings

e acks=all
e retries=2147483647
e max. bl ock. n8=9223372036854775807

Consumer setting
e auto.conmt.enabl e=fal se
MirrorMaker setting

e abort.on.send.failure=true

Setting up an End-to-End Data Streaming Pipeline

Data Streaming Pipeline

The data streaming pipeline as shown here is the most common usage of Kafka.

Data

Source

Data
Source

Data
Source

Figure 12: Data Streaming Pipeline Architecture

Streaming
Message
Service

Stream
Processing

Ingestion Service

Long
Term
Data

Storage

Long
Term
Results
Storage

Some things to note about the data streaming pipeline model:

e Most systems have multiple data sources sending data over the Internet, such as per store or per device.
¢ The ingestion service usually saves older data to some form of long-term data storage.
e The stream processing service can perform near real-time computation on the data extracted from the message

Reports

> Monitoring

y Other
Workflows

service, such as processing transactions, detecting fraud, or alerting systems.

e The results of stream processing can be sent directly to another service (such as for reporting) or can be streamed

back into Kafka for one or more other services to do further real time processing.

The following sections show how other components in CDH map into the data streaming model.

Ingest Using Kafka with Apache Flume

Apache Flume is commonly used to collect Kafka topics into a long-term data store.

Kafka Integration

Data
Source

Data
Source

Stream
Processing

Reports

—> Monitoring

Data
Source

Figure 13:

Other
Workflows

Lon
HDFS, 9
Term
HBase,
Results
or Solr
Storage

Collecting Kafka Topics using Flume

4

Note: Do not configure a Kafka source to send data to a Kafka sink. If you do, the Kafka source sets
the topic in the event header, overriding the sink configuration and creating an infinite loop, sending
messages back and forth between the source and sink. If you need to use both a Kafka source and a
sink, use an interceptor to modify the event header and set a different topic.

For information on configuring Kafka to securely communicate with Flume, see Configuring Flume Security with Kafka.

The follo

Sources

wing sections describe how to configure Kafka sub-components for directing topics to long-term storage:

Use the Kafka source to stream data in Kafka topics to Hadoop. The Kafka source can be combined with any Flume
sink, making it easy to write Kafka data to HDFS, HBase, and Solr.

The follo

ierl.
ierl.
ierl.

— -+

ierl.
ierl.
ierl.
ierl.
ierl.
ierl.
ierl.
ierl.

— — o~ o~ o~ o~ —+

ierl.
ierl.
ierl.

— —~+ —

ierl.
ierl.
ierl.
ierl.
ierl.
ierl.

— o+ —+ -+

38 | Kafka Guide

wing Flume configuration example uses a Kafka source to send data to an HDFS sink:

sources = sourcel

channel s = channel 1

sinks = sinkl

sour ces. sourcel.type = org.apache. fl une. sour ce. kaf ka. Kaf kaSour ce
sour ces. sour cel. zookeeper Connect = zk01. exanpl e. com 2181
sour ces. sourcel.topi c = webl ogs

sources. sourcel. groupld = flune

sour ces. sourcel. channel s = channel 1

sources. sourcel.interceptors =il

sources. sourcel.interceptors.il.type = tinestanp

sour ces. sour cel. kaf ka. consuner. ti neout.ns = 100
channel s. channel 1. type = nenory

channel s. channel 1. capacity = 10000

channel s. channel 1. transacti onCapacity

Si
Si
Si
Si
Si
Si

nks.
nks.
nks.
nks.
nks.
nks.

Si
Si
Si
Si
Si
Si

nk1.
nk1.
nk1.
nk1.
nk1.
nk1.

type
hdf s
hdf s
hdf s
hdf s
hdf s

1000
= hdfs

.path = /tnp/kaf ka/ %t opi c}/ %y- %m %
.rolllnterval =5

.roll Size 0

.rol | Count 0

.fileType Dat aSt r eam

tierl. sinks.sinkl. channel =

channel 1

For higher throughput, configure multiple Kafka sources to read from the same topic. If you configure all the sources
with the same grouplD, and the topic contains multiple partitions, each source reads data from a different set of

partitions, improving the ingest rate.

The following table describes parameters that the Kafka source supports. Required properties are listed in bold.

Property Name

Default Value

Description

type

Must be set to or g. apache.
fl unme. sour ce. kaf ka.
Kaf kaSour ce.

zookeeper Connect

The URI of the ZooKeeper server or
quorum used by Kafka. This can be a
single host (for example, zk01.
exanpl e. com 2181)ora
comma-separated list of hosts in a
ZooKeeper quorum (for example,
zk01. exanpl e.

com 2181, zk02. exanpl e.
com 2181, zk03. exanpl e.
com 2181).

topic

The Kafka topic from which this source
reads messages. Flume supports only
one topic per source.

groupl D

flume

The unique identifier of the Kafka
consumer group. Set the same grouplID
in all sources to indicate that they
belong to the same consumer group.

bat chSi ze

1000

The maximum number of messages
that can be written to a channel in a
single batch.

batchDurationM I lis

1000

The maximum time (in ms) before a
batch is written to the channel. The
batch is written when the batchSize
limit or batchDurationMillis limit is
reached, whichever comes first.

Other properties supported by the
Kafka consumer

Used to configure the Kafka consumer
used by the Kafka source. You can use
any consumer properties supported
by Kafka. Prepend the consumer
property name with the prefix kaf ka.
(for example,

kaf ka. f et ch. mi n. byt es). See the
Apache Kafka documentation topic
Consumer Configs for the full list of
Kafka consumer properties.

Source Tuning Notes

The Kafka source overrides two Kafka consumer parameters:

http://kafka.apache.org/documentation.html#consumerconfigs

1. auto. conmi t . enabl e is set to f al se by the source, committing every batch. For improved performance, set
this parameter to t r ue using the kaf ka. aut 0. commi t . enabl e setting. Note that this change can lead to data
loss if the source goes down before committing.

2. consuner. tinmeout. ns is set to 10, so when Flume polls Kafka for new data, it waits no more than 10 ms for
the data to be available. Setting this parameter to a higher value can reduce CPU utilization due to less frequent
polling, but the trade-off is that it introduces latency in writing batches to the channel.

Kafka Sinks

Use the Kafka sink to send data to Kafka from a Flume source. You can use the Kafka sink in addition to Flume sinks,
such as HBase or HDFS.

The following Flume configuration example uses a Kafka sink with an exec source:

tierl.sources = sourcel
tierl.channel s = channel 1
tierl.sinks = sinkl

tierl.sources.sourcel.type = exec
tierl. sources.sourcel. command = /usr/bin/vimstat 1
tierl.sources. sourcel. channels = channel 1

tierl. channel s. channel 1.type = nmenory
tierl. channel s. channel 1. capacity = 10000
tierl. channel s. channel 1. transacti onCapacity = 1000

tierl.sinks.sinkl.type = org. apache. fl une. si nk. kaf ka. Kaf kaSi nk
tierl.sinks.sinkl.topic = sinkl

tierl.sinks.sinkl. brokerList = kafkaOl. exanpl e. com 9092, kaf ka02. exanpl e. com 9092
tierl.sinks.sinkl.channel = channel 1

tierl.sinks.sinkl. batchSize = 20

The following table describes parameters the Kafka sink supports. Required properties are listed in bold.

Property Name Default Value Description

type Must be set to or g. apache.
fl une. si nk. kaf ka. Kaf kaSi nk.

br oker Li st The brokers the Kafka sink uses to
discover topic partitions, formatted as
a comma-separated list of
hostname:port entries. You do not
need to specify the entire list of
brokers, but you specify at least two
for high availability.

t opi c default-flume-topic The Kafka topic to which messages are
published by default. If the event
header contains a topic field, the event
is published to the designated topic,
overriding the configured topic.

bat chSi ze 100 The number of messages to process
in a single batch. Specifying a larger
batchSize can improve throughput and
increase latency.

request . required. acks 0 The number of replicas that must
acknowledge a message before it is
written successfully. Possible values
are:

Property Name Default Value Description

0 do not wait foran
acknowledgment

1 wait for the
leader to
acknowledge only

-1 wait for all
replicas to
acknowledge

To avoid potential loss of data in case
of a leader failure, set this to - 1.

Other properties supported by the Used to configure the Kafka producer
Kafka producer used by the Kafka sink. You can use
any producer properties supported by
Kafka. Prepend the producer property
name with the prefix kaf ka (for
example,

kaf ka. conpr essi on. codec). See
the Apache Kafka documentation topic
Producer Configs for the full list of
Kafka producer properties.

The Kafka sink uses the t opi ¢ and key properties from the FlumeEvent headers to determine where to send events
in Kafka. If the header contains thet opi ¢ property, that event is sent to the designated topic, overriding the configured
topic. If the header contains the key property, that key is used to partition events within the topic. Events with the
same key are sent to the same partition. If the key parameter is not specified, events are distributed randomly to
partitions. Use these properties to control the topics and partitions to which events are sent through the Flume source
or interceptor.

Kafka Channels

CDH includes a Kafka channel to Flume in addition to the existing memory and file channels. You can use the Kafka
channel:

¢ To write to Hadoop directly from Kafka without using a source.
e To write to Kafka directly from Flume sources without additional buffering.
¢ Asa reliable and highly available channel for any source/sink combination.

The following Flume configuration uses a Kafka channel with an exec source and HDFS sink:

tierl. sources = sourcel
erl.channels = channel 1
erl.sinks = sinkl

— —+

—

i erl sources.sourcel.type = exec)
erl. sources. sourcel. command = /usr/bin/vnstat 1
er 1. sources. sourcel. channel s = channel 1

— —+

—

i er 1. channel s. channel 1. type = org. apache. f | une. channel . kaf ka. Kaf kaChanne
i er 1. channel s. channel 1. capacity = 10000

i er 1. channel s. channel 1. zookeeper Connect = zk01. exanpl e. com 2181

i er 1. channel s. channel 1. par seAsFl unreEvent = fal se

i er 1. channel s. channel 1. topi ¢ = channel 2

i er 1. channel s. channel 1. consuner. group.id = channel 2-grp

i erl. channel s. channel 1. auto. offset.reset = earliest

tierl. channel s. channel 1. kaf ka. boot strap. servers =

— o~~~ —~+

http://kafka.apache.org/documentation.html#producerconfigs

kaf ka02. exanpl e. com 9092, kaf ka03. exanpl e. com 9092
tierl. channel s. channel 1. transacti onCapacity = 1000
tierl. channel s. channel 1. kaf ka. consunmer . max. partition. fetch. byt es=2097152

tierl.sinks.sinkl.type = hdfs

tierl. sinks.sinkl. hdfs.path = /tnp/kaf ka/ channel
tierl.sinks.sinkl. hdfs.rollInterval =5
tierl.sinks.sinkl. hdfs.rollSize =0
tierl.sinks.sinkl. hdfs.roll Count = 0O
tierl.sinks.sinkl. hdfs.fileType = DataStream
tierl. sinks.sinkl.channel = channel 1l

The following table describes parameters the Kafka channel supports. Required properties are listed in bold.

Property Name Default Value Description

type Must be set to or g. apache.
fl ume. channel . kaf ka.
Kaf kaChannel .

br oker Li st The brokers the Kafka channel uses to
discover topic partitions, formatted as
a comma-separated list of
hostname:port entries. You do not
need to specify the entire list of
brokers, but you should specify at least
two for high availability.

zookeeper Connect The URI of the ZooKeeper server or
quorum used by Kafka. This can be a
single host (for example,

zk01. exanpl e. com 2181) or a
comma-separated list of hosts in a
ZooKeeper quorum (for example,
zk01. exanpl e.

com 2181, zk02. exanpl e.
com 2181, zk03. exanpl e.

com 2181).
topic flume-channel The Kafka topic the channel will use.
groupl D flume The unique identifier of the Kafka

consumer group the channel uses to
register with Kafka.

par seAsFl uneEvent true Set to true if a Flume source is writing
to the channel and expects
AvroDataums with the FlumeEvent
schema (or g. apache. f | une.
sour ce. avr 0. Avr oFl uneEvent)
in the channel. Set to false if other
producers are writing to the topic that
the channel is using.

aut 0. of f set . reset latest What to do when there is no initial
offset in Kafka or if the current offset
does not exist on the server (for
example, because the data is deleted).

e earliest:automatically reset
the offset to the earliest offset

Kafka Integration

e | at est : automatically reset the
offset to the latest offset

e none: throw exception to the
consumer if no previous offset is
found for the consumer's group

e anything else: throw exception to
the consumer.

kaf ka. consuner . ti meout . ns 100 Polling interval when writing to the
sink.
consuner . max. partition. fetch. bytes| 1048576 The maximum amount of data

per-partition the server will return.

Other properties supported by the Used to configure the Kafka producer.
Kafka producer You can use any producer properties
supported by Kafka. Prepend the
producer property name with the
prefix kaf ka. (for example,

kaf ka. conpr essi on. codec). See
the Apache Kafka documentation topic
Producer Configs for the full list of
Kafka producer properties.

CDH Flume Kafka Compatibility

The section Client/Broker Compatibility Across Kafka Versions on page 33 covered the basics of Kafka client/broker
compatibility. Flume has an embedded Kafka client which it uses to talk to Kafka clusters. Since the generally accepted
practice is to have the broker running the same or newer version as the client, a CDH Flume version requires being
matched to a minimum Kafka version. This is illustrated in the table below.

Table 3: Flume Embedded Client and Kafka Compatibility

CDH 6.0.0 1.0.1 CDH 6.0.0
CDH 5.14.x 0.10.2-kafka-2.2.0 Kafka 2.2
CDH 5.13.x 0.9.0-kafka-2.0.2 Kafka 2.0
CDH 5.12.x 0.9.0-kafka-2.0.2 Kafka 2.0
CDH 5.11.x 0.9.0-kafka-2.0.2 Kafka 2.0
CDH 5.10.x 0.9.0-kafka-2.0.2 Kafka 2.0
CDH 5.9.x 0.9.0-kafka-2.0.2 Kafka 2.0
CDH 5.8.x 0.9.0-kafka-2.0.0 Kafka 2.0
CDH 5.7.x 0.9.0-kafka-2.0.0 Kafka 2.0

Securing Flume with Kafka

When using Flume with a secured Kafka service, you can use Cloudera Manager to generate security related Flume
agent configuration.

Kafka Guide | 43

http://kafka.apache.org/documentation.html#producerconfigs

Kafka Integration

In Cloudera Manager, on the Flume Configuration page, select the Kafka service you want to connect to. This generates
the following files:

e flume. keyt ab
e jaas.conf

It also generates security protocol and Kerberos service name properties for the Flume agent configuration. If TLS/SSL
is also configured for Kafka brokers, the setting also adds SSL truststore properties to the beginning of the Flume agent
configuration.

Review the deployed agent configuration and if the defaults do not match your environment (such as the truststore
password), you can override the settings by adding the same property to the agent configuration.

Using Kafka with Apache Spark Streaming for Stream Processing

44 | Kafka Guide

For real-time stream computation, Apache Spark is the tool of choice in CDH.

Data
Source Reports
Data Spark N
Source Streaming Monitoring
Data Ingestion Service Other

Source : Workflows

Long
Term
Data

Storage

Figure 14: Data Streaming Pipeline with Spark

CDH Spark/Kafka Compatibility

The section Client/Broker Compatibility Across Kafka Versions on page 33 covered the basics of Kafka client/broker
compatibility. Spark maintains two embedded Kafka clients and can be configured to use either one. This table in the
Apache Spark documentation illustrates the two clients that are available.

For information on how to configure Spark Streaming to receive data from Kafka, refer to the Kafka version you are
using in the following table.

CDH 6.0 |spark-streaming-kafka-0-10| 0.10.0 Kafka 2.1 Spark 2.2 + Kafka 0.10 | Stable

CDH 6.0 |spark-streaming-kafka-0-8 | 0.8.2.1 Kafka 2.0 Spark 2.2 + Kafka 0.8 Deprecated

Spark 2.2 | spark-streaming-kafka-0-10| 0.10.0 Kafka 2.1 Spark 2.2 + Kafka 0.10 | Experimental

Spark 2.2 |spark-streaming-kafka-0-8 | 0.8.2.1 Kafka 2.0 Spark 2.2 + Kafka 0.8 Stable

https://spark.apache.org/docs/2.3.1/streaming-kafka-integration.html
https://spark.apache.org/docs/2.2.0/streaming-kafka-0-10-integration.html
https://spark.apache.org/docs/2.2.0/streaming-kafka-0-8-integration.html
https://spark.apache.org/docs/2.2.0/streaming-kafka-0-10-integration.html
https://spark.apache.org/docs/2.2.0/streaming-kafka-0-8-integration.html

Kafka Integration

Spark 2.1 | spark-streaming-kafka-0-10| 0.10.0 Kafka 2.1 Spark 2.1 + Kafka 0.10 | Experimental

Spark 2.1 |spark-streaming-kafka-0-8 | 0.8.2.1 Kafka 2.0 Spark 2.1 + Kafka 0.8 Stable

Spark 2.0 |spark-streaming-kafka-0-8 | 0.8.2.? Kafka 2.0 Spark 2.0 + Kafka Stable

Validating Kafka Integration with Spark Streaming
To validate your Kafka integration with Spark Streaming, run the Kaf kaWor dCount example in Spark.

If you installed Spark using parcels, use the following command:

[opt/cl ouder al/ parcel s/ COH | i b/ spar k/ bi n/ run- exanpl e streamn ng. Kaf kawor dCount zkQuor um
group topics nuniThreads

If you installed Spark using packages, use the following command:

/usr/1ib/spark/bin/run-exanpl e streamn ng. Kaf kawr dCount zkQuorum group topi cs nunThr eads

Replace the variables as follows:

e zkQuorum: ZooKeeper quorum URI used by Kafka For example:

zk01. exanpl e. com 2181, zk02. exanpl e. com 2181, zk03. exanpl e. com 2181

e group: Consumer group used by the application.
® topics: Kafka topic containing the data for the application.

e numThreads: Number of consumer threads reading the data. If this is higher than the number of partitions in the
Kafka topic, some threads will be idle.

E’; Note: If multiple applications use the same group and topic, each application receives a subset of
the data.

Securing Spark with Kafka

Using Spark Streaming with a Kafka service that’s already secured requires configuration changes on the Spark side.
You can find a nice description of the required changes in the spar k- dst r eam secur e- kaf ka- app sample project
on GitHub.

Developing Kafka Clients

Previously, examples were provided for producing messages to and consuming messages from a Kafka cluster using
the command line. For most cases, running Kafka producers and consumers using shell scripts and Kafka’s command
line scripts cannot be used in practice. In those cases, native Kafka client development is the generally accepted option.

Simple Client Examples

Let’s start with a simple working example of a producer/consumer program. This section includes the following code
examples:

Kafka Guide | 45

https://spark.apache.org/docs/2.1.0/streaming-kafka-0-10-integration.html
https://spark.apache.org/docs/2.1.0/streaming-kafka-0-8-integration.html
https://spark.apache.org/docs/2.0.0/streaming-kafka-integration.html
https://github.com/gaborgsomogyi/spark-dstream-secure-kafka-app

pom.xml

<proj ect xm ns="http://mven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0.0
http:// maven. apache. or g/ maven-v4_0_0. xsd" >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>com cl ouder a. kaf kaexanpl es</ gr oupl d>
<artifactl d>kaf ka- exanpl es</artifactld>
<packagi ng>j ar </ packagi ng>
<versi on>1. 0</ ver si on>
<nane>kaf kadev</ nane>
<url >http://maven. apache. org</url >
<repositories>
<repository>
<i d>cl ouder a</i d>
<url >https://repository.cloudera.confartifactory/cl oudera-repos/</url>
</repository>
</repositories>
<dependenci es>
<dependency>
<gr oupl d>or g. apache. kaf ka</ gr oupl d>
<artifactld>kaf ka-clients</artifactld>
<version>1. 0. 1- cdh6. 0. 0</ ver si on>
<scope>conpi | e</ scope>
</ dependency>
</ dependenci es>

<bui | d>
<pl ugi ns>
<pl ugi n>

<gr oupl d>or g. apache. naven. pl ugi ns</ gr oupl d>
<artifactld>maven-conpil er-plugin</artifactld>
<versi on>3. 7. 0</ ver si on>
<configurati on>
<sour ce>1. 8</ sour ce>
<t arget >1. 8</target>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ proj ect >

SimpleProducer.java

The example includes Java properties for setting up the client identified in the comments; the functional parts of the
code are in bol d. This code is compatible with versions as old as the 0.9.0-kafka-2.0.0 version of Kafka.

package com cl ouder a. kaf kaexanpl es

i mport java.util.Date;
i mport java.util.Properties

i mport org.apache. kaf ka. cl i ents. producer. Kaf kaPr oducer;

i mport org. apache. kaf ka. cli ents. producer. Producer Confi g;

i mport org.apache. kaf ka. cli ents. producer. Producer Record;

i mport org. apache. kaf ka. cormon. seri alization. StringSerializer;

public class SinpleProducer {
public static void main(String[] args) {
/1 Cenerate total consecutive events starting with ufold
Il ong total = Long. parseLong(args[O0]);
Il ong ufold = Math. round(Mat h. randon{) * | nteger. MAX_VALUE)

/1 Set up client Java properties

Properties props = new Properties();

props. set Property(Producer Confi g. BOOTSTRAP_SERVERS CONFI G
"host 1: 9092, host 2: 9092, host 3: 9092") ;

props. set Property(Producer Confi g. KEY_SERI ALI ZER CLASS_CONFI G,
StringSerializer.class.getNanme());

props. set Property(Producer Config. VALUE SERI ALI ZER _CLASS_CONFI G
StringSerializer.class.getNane());

props. set Property(Producer Config. ACKS_CONFIG "1");

Kaf kaProducer<String, String> producer = new Kaf kaProducer <>(props);

for (longi =0; i <total; i++) {

String key = Long.toString(ufol d++);
long runtime = new Date().getTine();
doubl e latitude = (Math.random() * (2 * 85.05112878)) - 85.05112878;
doubl e | ongi tude = (Math.randon() * 360.0) - 180.0;
String msg = runtime + "," + latitude + "," + |ongitude;
try {

Producer Record<String, String> data = new

Producer Record<String, String>("ufo_sightings", key, nsg);

producer. send(dat a) ;

Il ong wait = Math.round(Math. random() * 25);

Thr ead. sl eep(wai t);
} catch (Exception e) {

e.printStackTrace();

} finally {
producer . cl ose();

SimpleConsumer.java

Note that this consumer is designed as an infinite loop. In normal operation of Kafka, all the producers could be idle
while consumers are likely to be still running.

The example includes Java properties for setting up the client identified in the comments; the functional parts of the
code are in bol d. This code is compatible with versions as old as the 0.9.0-kafka-2.0.0 version of Kafka.

package com cl ouder a. kaf kaexanpl es;

i mport java.util.Arrays;
i mport java.util.Properties;

i mport org.apache. kaf ka. cli ents. consuner. Consuner Confi g;

i mport org. apache. kaf ka. cl i ents. consuner. Consuner Recor d;

i mport org. apache. kaf ka. cl i ents. consuner. Consuner Recor ds;

i mport org. apache. kaf ka. cl i ents. consumer . Kaf kaConsurer ;

i mport org.apache. kaf ka. cormon. seri ali zati on. Stri ngDeseri alizer;

public class SinpleConsuner {
public static void main(String[] args) ({

/1 Set up client Java properties

Properties props = new Properties();

props. set Property(Consumer Confi g. BOOTSTRAP_SERVERS CONFI G,
"host 1: 9092, host 2: 9092, host 3: 9092") ;

/1 Just a user-defined string to identify the consuner group

props. put (Consuner Confi g. GROUP_I D CONFI G, "test");

/1 Enable auto offset commit

props. put (Consuner Confi g. ENABLE_AUTO COMM T_CONFI G, "true");

props. put (Consurer Confi g. AUTO COW T_| NTERVAL_MS_CONFI G, "1000");

props. set Property(ConsurrerConfl g. KEY_DESERI ALT ZER_CLASS_CONFI G,
StringDeserializer.class.getNane()):

props. set Property(Consuner Confi g. VALUE_ DESERI ALI ZER CLASS_CONFI G
StringDeserializer.class.getNane());

Kaf kaConsuner<String, String> consuner = new Kaf kaConsumer <>(props);

/1 List of topics to subscribe to
consuner. subscri be(Arrays. asLi st ("ufo_sightings"));

while (true) {
try {
Consuner Records<String, String> records = consuner. poll (100);
for (ConsumerRecord<String, String> record : records) {
Systemout. printf (" O fset %\ n”, record.offset());
System out . printf("Key %s\n", record. key());
System out . printf ("Val ue %\ n”, record.value());

}
} catch (Exception e) {
e.printStackTrace();

} finally {
consumer . cl ose();

}

Moving Kafka Clients to Production

Now that you’ve seen the basic examples of a producer and consumer, prototyping your own designs shouldn’t be too
difficult. However, your code will likely undergo several iterations that improve on scalability, debuggability, robustness,
and maintainability.

This section presents recommendations in the form of code snippets that illustrate some of the important ways to use
the producer and consumer APIs.

Reuse your Producer/Consumer object

In these examples, the consumer constructor should be called once and the pol | () method called within a loop. If
this object is not reused, then a new connection to the broker is opened with each new Kaf kaConsumner object created.

Recommended

Kaf kaConsuner<String, String> consuner = new Kaf kaConsuner <>(props);

while (true) {
Consuner Records<String, String> records = consuner. poll (100);

Not Recommended

while (true)
Kaf kaConsuner<String, String> consuner = new Kaf kaConsuner <>(props);
Consuner Records<String, String> records = consuner. poll (100);

}

Similarly, it is recommended that you use one Kaf kaConsumer and/or Kaf kaPr oducer object per thread. Creating
more objects opens multiple ports per broker connection. Overusing ephemeral ports can cause performance issues.

In addition, Cloudera recommends to set and use a fixed cl i ent . i d for producers and consumers when they are
connecting to the brokers. If this is not done, Kafka will assign a new client id every time a new connection is established,
which can severely increase resource utilization (memory) on the broker side.

Each KafkaConsumer object requires calling poll() frequently

As explained in the Apache Kafka documentation topic New Consumer Configs, any consumer connected to a partition
will time out if pol | () is not called within the period defined by max. pol | . i nterval . ns.

In the example below, the call to nyDat aPr ocess. doSt uf f (r ecor ds) can cause pol | () to be called infrequently.
This could be due to a combination of reasons:

e Being a blocking method call.
¢ Doing work on a remote machine.

http://kafka.apache.org/documentation/#newconsumerconfigs

¢ Having highly variable processing time.
¢ Saving to storage that has highly variable I/0 throughput.

In such cases, consider having another thread or process doing the actual work and making the handoff as lightweight
as possible.

Example: pol | () gets KafkaException due to session timeout

while (true) {
Kaf kaConsumer <String, String> consunmer = new Kaf kaConsumner <>(props);
Consuner Records<String, String> records = consuner. poll (100);
/1 the call below should return quickly in all cases
myDat aPr ocess. doSt uf f (records);

Catch all exceptions from poll()

Fromthe pol | () Javadoc page, you can see that the pol | () method throws several exceptions. If the catch statements
(bol d in the example) are not complete, then any uncaught exception will end up in the finally statement calling
Kaf kaConsuner #cl ose() . This will not be the desired behavior in many cases.

while (true) {

try {
Consuner Records<String, String> records = consuner. poll (100);

} catch (Exception e) {
e.printStackTrace();

} finally {
consuner. cl ose();

}

Callback#onCompletion() should always exit without errors

The interface or g. apache. kaf ka. cl i ent s. producer. Cal | back (Javadoc) is used to define a class that can be
used upon completion of a Kaf kaPr oducer #send() call. It allows for tracking, clean up, or other administrative code
to be called. An example of unintended usage is to call Kaf kaPr oducer #send() within the

Cal | back#onConpl et i on() method, essentially mimicking a retry. Because the onConpl et i on() method is always
expected to return cleanly and the send() method makes no such guarantees, calling send() within the callback
could end up hanging the code in case of network or broker issues.

Check your API usage against the latest API

The documentation for the latest upstream release of Apache Kafka indicates if there have been any changes to how
the APIs are used (set up, r ead, wr i t e). Reviewing the latest information could help avoid upgrade-related changes
to your producer or consumer.

Some examples from past versions include:

Old Class or Package New Class or Package

kaf ka. producer . Producer Confi g java.util.Properties

kaf ka. j avaapi .* kaf ka. api .*

kaf ka. pr oducer . KeyedMessage kaf ka. cl i ents. producer. Producer Record

Hidden Dependency on Network Availability

Network dependency is one of the more subtle issues. Given the consumer dependencies on Sentry and Zookeeper,
having a combination of frequent or prolonged DNS or network outages can also cause various session timeouts to
occur. Such timeouts will force partition rebalancing on the brokers, which will worsen general Kafka reliability.

Should these issues be common in your network, you may need to have a less straightforward design that can handle
such reliability issues outside of the Kafka client.

https://kafka.apache.org/10/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html#poll-long-
https://kafka.apache.org/10/javadoc/org/apache/kafka/clients/producer/Callback.html

Read the Details Carefully in the Apache Kafka Javadoc
The following pages have additional details about Kafka client programming:

e KafkaConsumer Javadoc

e KafkaProducer Javadoc

These Javadoc pages are quite dense with information. They assume you have sufficient background in reliable
computing, networking, multithreading, and distributed systems to use the APIs correctly. While the previous sections
point out many caveats in using the client APIs, the Javadoc (and ultimately the source code) provides a more detailed
explanation.

Kafka Metrics

Kafka uses Yammer metrics to record internal performance measurements. The metrics are exposed via Java
Management Extensions (JMX) and can be read with a JMX console.

Metrics Categories

There are metrics available in the various components of Kafka. In addition, there are some metrics specific to how
Cloudera Manager and Kafka interact. This table has pointers to both the Apache Kafka metrics names and the Cloudera
Manager metric names.

Table 4: Metrics by Category

Category Cloudera Manager Metrics Doc Apache Kafka Metrics Doc

Cloudera Manager Base Metrics on page 70

Kafka Service

Broker Broker Metrics on page 71 Broker

Broker Topic Metrics on page 139

Replica Metrics on page 144

Common Client
Producer/Consumer Client-to-Broker
Producer Producer

Producer Sender

Consumer Consumer Group

Consumer Fetch

Mirror Maker Mirror Maker Metrics on page 143 Same as Producer or Consumer tables

Viewing Metrics
Cloudera Manager records most of these metrics and makes them available via Chart Builder.

Because Cloudera Manager cannot track metrics on any clients (that is, producer or consumer), you may wish to use
an alternative JMX console program to check metrics. There are several JMX console options:

e The JDK comes with the j consol e utility.
¢ VisualVM has a MBeans plugin.

https://kafka.apache.org/10/javadoc/index.html?org/apache/kafka/clients/consumer/KafkaConsumer.html
https://kafka.apache.org/10/javadoc/org/apache/kafka/clients/producer/KafkaProducer.html
https://kafka.apache.org/documentation/#monitoring
https://kafka.apache.org/documentation/#selector_monitoring
https://kafka.apache.org/documentation/#common_node_monitoring
https://kafka.apache.org/documentation/#producer_monitoring
https://kafka.apache.org/documentation/#producer_sender_monitoring
https://kafka.apache.org/documentation/#new_consumer_group_monitoring
https://kafka.apache.org/documentation/#new_consumer_fetch_monitoring
https://docs.oracle.com/javase/9/management/using-jconsole.htm
https://visualvm.github.io/

Building Cloudera Manager Charts with Kafka Metrics

The Charts edit menu looks like a small pencil icon in the Charts page of the Cloudera Manager console. From there,
choose Add from Chart Builder and enter a query for the appropriate metric.

SELECT
metric

VWHERE
filter

Some specific examples of queries for Cloudera Metrics are:

Controllers across all brokers

This chart shows the active controller across all brokers. It is useful for checking active controller status (should be
one at any given time, transitions should be fast).

SELECT

kaf ka_acti ve_controller
VWHERE

r ol eType=KAFKA BROKER

Network idle rate

>Chart showing the network processor idle rate across all brokers. If idle time is always zero, then probably the
num net wor k. t hr eads property may need to be increased.

SELECT

kaf ka_net wor k_processor_avg_idle_rate
VWHERE

r ol eType=KAFKA BROKER

Partitions per broker
Chart showing the number of partitions per broker. It is useful for detecting partition imbalances early.

SELECT

kaf ka_partitions
VWHERE

r ol eType=KAFKA BROKER

Partition activity

Chart tracking partition activity on a single broker.

SELECT

kaf ka_partitions, kafka_under_replicated_partitions
VWHERE

host nane=host 1. domai n. com

Mirror Maker activity

Chart for tracking Mirror Maker behavior. Since Mirror Maker has one or more consumers and a single producer,
most consumer or metrics should be usable with this query.

SELECT

producer or consuner netric
VWHERE

rol eType=KAFKA_M RROR_MAKER

Kafka Administration

This section describes managing a Kafka cluster in production, including:

Kafka Administration Basics

Broker Log Management

Kafka brokers save their data as log segments in a directory. The logs are rotated depending on the size and time
settings.

The most common log retention settings to adjust for your cluster are shown below. These are accessible in Cloudera
Manager via the Kafka > Configuration tab.

e | og. di rs: The location for the Kafka data (that is, topic directories and log segments).

e | og.retention.{ns| nm nutes| hours}:The retention period for the entire log. Any older log segments are
removed.

e | 0g.retention. byt es: The retention size for the entire log.

There are many more variables available for fine-tuning broker log management. For more detailed information, look
at the relevant variables in the Apache Kafka documentation topic Broker Configs.

e |og.dirs

e |og.flush.*

e |og.retention.*
e log.roll.*

e | 0g.segnent.*

Record Management
There are two pieces to record management, log segments and log cleaner.

As part of the general data storage, Kafka rolls logs periodically based on size or time limits. Once either limit is hit, a
new log segment is created with the all new data being placed there, while older log segments should generally no
longer change. This helps limit the risk of data loss or corruption to a single segment instead of the entire log.

e |og.roll.{ns| hours}:The time period for each log segment. Once the current segment is older than this
value, it goes through log segment rotation.

e | 0og. segnent . byt es: The maximum size for a single log segment.

There is an alternative to simply removing log segments for a partition. There is another feature based on the log
cleaner. When the log cleaner is enabled, individual records in older log segments can be managed differently:

e | og. cl eaner. enabl e: This is a global setting in Kafka to enable the log cleaner.

e cl eanup. pol i cy:Thisis a per-topic property that is usually set at topic creation time. There are two valid values
for this property, del et e and conpact .

e | 0g. cl eaner. nmi n.conpaction. | ag. ns: This is the retention period for the “head” of the log. Only records
outside of this retention period will be compacted by the log cleaner.

The conpact policy, also called log compaction, assumes that the "most recent Kafka record is important." Some
examples include tracking a current email address or tracking a current mailing address. With log compaction, older
records with the same key are removed from a log segment and the latest one is kept. This effectively removes some
offsets from the partition.

http://kafka.apache.org/documentation/#brokerconfigs

Broker Garbage Log Collection and Log Rotation

Both broker JVM garbage collection and JVM garbage log rotation is enabled by default in the Kafka version delivered
with CDH. Garbage collection logs are written in the agent process directory by default.

Example path:

/run/ cl ouder a- scm agent / process/ 99- kaf ka- KAFKA_BROKER/ kaf kaSer ver - gc. | og

Changing the default directory of garbage collection logs is currently not supported. However, you can configure
properties related garbage log rotation with the Kafka Broker Environment Advanced Configuration Snippet (Safety
Valve) property.

1. In Cloudera Manager, go to the Kafka service and click Configuration.
2. Find the Kafka Broker Environment Advanced Configuration Snippet (Safety Valve) property.
3. Add the following line to the property:

Modify the values of as required.

KAFKA GC LOG _OPTS="- XX: +UseCGCLogFi | eRot ati on - XX: Nunber O GCLogFi | es=10
- XX: GCLogFi | eSi ze=100M'
The flags used are as follows:

e +UseGCLogFi | eRot ati on: Enables garbage log rotation.
e - XX: Nunber Of GCLogFi | es: Specifies the number of files to use when rotating logs.
e - XX: GCLogFi | eSi ze: Specifies the size when the log will be rotated.

4. Click on Save Changes.
5. Restart the Kafka service to apply the changes.

Adding Users as Kafka Administrators

In some cases, additional users besides the kaf ka account need administrator access. This can be done in Cloudera
Manager by going to Kafka > Configuration > Super users.

Migrating Brokers in a Cluster

Brokers can be moved to a new host in a Kafka cluster. This might be needed in the case of catastrophic hardware
failure. Make sure the following are true before starting:

e Make sure the cluster is healthy.
e Make sure all replicas are in sync.
e Perform the migration when there is minimal load on the cluster.

Brokers need to be moved one-by-one. There are two techniques available:
Using kaf ka- r eassi gn-partitions tool

This method involves more manual work to modify JSON, but does not require manual edits to configuration files.
For more information, see kafka-reassign-partitions on page 59.

Modify the broker IDs in net a. properti es
This technique involves less manual work, but requires modifying an internal configuration file.
1. Start up the new broker as a member of the old cluster.
This creates files in the data directory.

2. Stop both the new broker and the old broker that it is replacing.

3. Change br oker . i d of the new broker to the br oker . i d of the old one both in Cloudera Manager and in
data directory/ neta. properties.
4. (Optional) Run r sync to copy files from one broker to another.

See Using rsync to Copy Files from One Broker to Another on page 54.

5. Start up the new broker.
It re-replicates data from the other nodes.
Note that data intensive administration operations such as rebalancing partitions, adding a broker, removing a broker,
or bootstrapping a new machine can cause significant additional load on the cluster.
To avoid performance degradation of business workloads, you can limit the resources that these background processes
can consume by specifying the - t hr ot t | eparameter when running kaf ka- r eassi gn-partiti ons.
Using rsync to Copy Files from One Broker to Another

You can run r sync command to copy over all data from an old broker to a new broker, preserving modification times
and permissions. Using r sync allows you to avoid having to re-replicate the data from the leader. You have to ensure
that the disk structures match between the two brokers, or you have to verify the net a. properti es file between
the source and destination brokers (because there is one net a. pr oper ti es file for each data directory).

Run the following command on destination broker:

rsync -avz
src_broker:src_data_dir
dest _data_dir

If you plan to change the broker ID, edit dest _dat a_di r/ met a. properti es.

Setting User Limits for Kafka

Kafka opens many files at the same time. The default setting of 1024 for the maximum number of open files on most
Unix-like systems is insufficient. Any significant load can result in failures and cause error messages such as
java.io. | OException...(Too many open fil es) to be logged in the Kafka or HDFS log files. You might also
notice errors such as this:

ERROR Error in acceptor (kafka.network.Acceptor)
java.io.| CException: Too many open files

Cloudera recommends setting the value to a relatively high starting point, such as 32,768.
You can monitor the number of file descriptors in use on the Kafka Broker dashboard. In Cloudera Manager:

1. Go to the Kafka service.
2. Select a Kafka Broker.
3. Open Charts Library > Process Resources and scroll down to the File Descriptors chart.

See Viewing Charts for Cluster, Service, Role, and Host Instances.

Quotas

For a quick video introduction to quotas, see Quotas.

In CDK 2.0 Powered by Apache Kafka and higher, Kafka can enforce quotas on produce and fetch requests. Producers
and consumers can use very high volumes of data. This can monopolize broker resources, cause network saturation,
and generally deny service to other clients and the brokers themselves. Quotas protect against these issues and are
important for large, multi-tenant clusters where a small set of clients using high volumes of data can degrade the user
experience.

https://youtu.be/zMAwFoPdcmM

Quotas are byte-rate thresholds, defined per client ID. A client ID logically identifies an application making a request.
A single client ID can span multiple producer and consumer instances. The quota is applied for all instances as a single
entity. For example, if a client ID has a produce quota of 10 MB/s, that quota is shared across all instances with that
same ID.

When running Kafka as a service, quotas can enforce API limits. By default, each unique client ID receives a fixed quota
in bytes per second, as configured by the cluster (quot a. pr oducer . def aul t, quot a. consuner . def aul t). This
quota is defined on a per-broker basis. Each client can publish or fetch a maximum of X bytes per second per broker
before it gets throttled.

The broker does not return an error when a client exceeds its quota, but instead attempts to slow the client down.
The broker computes the amount of delay needed to bring a client under its quota and delays the response for that
amount of time. This approach keeps the quota violation transparent to clients (outside of client-side metrics). This
also prevents clients from having to implement special backoff and retry behavior.

Setting Quotas

You can override the default quota for client IDs that need a higher or lower quota. The mechanism is similar to per-topic
log configuration overrides. Write your client ID overrides to ZooKeeper under / confi g/ cl i ent s. All brokers read
the overrides, which are effective immediately. You can change quotas without having to do a rolling restart of the
entire cluster.

By default, each client ID receives an unlimited quota. The following configuration sets the default quota per producer
and consumer client ID to 10 MB/s.

quot a. pr oducer . def aul t =10485760
quot a. consuner . def aul t =10485760

To set quotas using Cloudera Manager, open the Kafka Configuration page and search for Quota. Use the fields provided
to set the Default Consumer Quota or Default Producer Quota. For more information, see Modifying Configuration
Properties Using Cloudera Manager.

Kafka Administration Using Command Line Tools

In some situations, it is convenient to use the command line tools available in Kafka to administer your cluster. However,
itisimportant to note that not all tools available for Kafka are supported by Cloudera. Moreover, certain administration
tasks can be carried more easily and conveniently using Cloudera Manager. Therefore, before you continue, make sure
to review Unsupported Command Line Tools on page 55 and Notes on Kafka CLI Administration on page 56.

E,i Note: Output examples in this document are cleaned and formatted for easier readability.

Unsupported Command Line Tools

The following tools can be found as part of the Kafka distribution, but their use is generally discouraged for various
reasons as documented here.

Tool Notes

connect - di stri buted Kafka Connect is currently not supported.

connect - st andal one

kaf ka- acl s Cloudera recommends using Sentry to manage ACLs
instead of this tool.

kaf ka- br oker - api - ver si ons Primarily useful for Client-to-Broker protocol related
development.

http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cm_mc_mod_configs.html
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cm_mc_mod_configs.html

Tool Notes

kaf ka- confi gs Use Cloudera Manager to adjust any broker or security
properties instead of the kaf ka- conf i gs tool. This tool
should only be used to modify topic properties.

kaf ka- del et e-records Do not use with CDH.

kaf ka-1 o0g-dirs For querying log directory message. You can use the
Cloudera Manager console instead: Kafka > Instances >
Active Controller > Log Files > Role Log File

kaf ka- m rror-naker Use Cloudera Manager to create any CDH Mirror Maker
instance.
kaf ka- preferred-replica-el ection This tool causes leadership for each partition to be

transferred back to the 'preferred replica'. It can be used
to balance leadership among the servers.

Itisrecommended to use kaf ka- r eassi gn- partiti ons
instead of kaf ka- preferred-replica-el ection.

kaf ka- r epl ay-1 og- pr oducer Can be used to “rename” a topic.

kaf ka-replica-verification Validates that all replicas for a set of topics have the same
data. This tool is a “heavy duty” version of the ISR column
of kaf ka- t opi cs tool.

kaf ka-server-start Use Cloudera Manager to manage any Kafka host.

kaf ka- server-stop

kaf ka- si npl e- consuner - shel | Deprecated in Apache Kafka.
kaf ka- st reans- appl i cati on-reset Kafka Streams is currently not supported.
kaf ka-veri fi abl e- consumer These scripts are intended for system testing.

kaf ka-veri fi abl e- producer

zookeeper-security-mgration Use Cloudera Manager to manage any Zookeeper host.
zookeeper -server-start

zookeeper - server - st op

zookeeper - shel | Limit usage of this script to reading information from
Zookeeper.

Notes on Kafka CLI Administration
Here are some additional points to be aware of regarding Kafka administration:

e Use Cloudera Manager to start and stop Kafka and Zookeeper services. Do not use the kaf ka- server-start,
kaf ka- server - st op, zookeeper - server - st art, or zookeeper - server - st op commands.

e For a parcel installation, all Kafka command line tools are located in
/ opt/ cl ouder a/ par cel s/ KAFKA/ | i b/ kaf ka/ bi n/ . For a package installation, all such tools can be found in
lusr/bin/.

e Ensure that the JAVA HOVE environment variable is set to your JDK installation directory before using the
command-line tools. For example:

export JAVA HOVE=/usr/javaljdkl. 8.0_144-cl oudera

¢ Using any Zookeeper command manually can be very difficult to get right when it comes to interaction with Kafka.
Cloudera recommends that you avoid doing any write operations or ACL modifications in Zookeeper.

kafka-topics

Use the kaf ka- t opi cs tool to generate a snapshot of topics in the Kafka cluster.

kaf ka-topi cs --zookeeper zkhost --describe

Topic: topic-al PartitionCount: 3 Repl i cati onFactor: 3 Confi gs:
Topic: topic-al Partition: 0O Leader: 64 Replicas: 64,62, 63
Isr: 64,62, 63
Topic: topic-al Partition: 1 Leader: 62 Replicas: 62,63, 64
Isr: 62,63, 64
Topic: topic-al Partition: 2 Leader: 63 Replicas: 63,64, 62
Isr: 63,64, 62
Topi c: topic-a2 PartitionCount:1 ReplicationFactor: 3 Confi gs:
Topic: topic-a2 Partition: O Leader: 64 Replicas: 64,62, 63
Isr: 64,62,63

The output lists each topic and basic partition information. Note the following about the output:

e Partition count: The more partitions, the higher the possible parallelism among consumers and producers.
e Replication factor: Shows 1 for no redundancy and higher for more redundancy.
e Replicas and in-sync replicas (ISR): Shows which broker ID’s have the partitions and which replicas are current.

There are situations where this tool shows an invalid value for the leader broker ID or the number of ISRs is fewer than
the number of replicas. In those cases, there may be something wrong with those specific topics.

It is possible to change topic configuration properties using this tool. Increasing the partition count, the replication
factor or both is not recommended.

kafka-configs

The kaf ka- conf i gs tool allows you to set and unset properties to topics. Cloudera recommends that you use Cloudera
Manager instead of this tool to change properties on brokers, because this tool bypasses any Cloudera Manager safety
checks.

Setting a topic property:

kaf ka- confi gs --zookeeper zkhost --entity-type topics --entity-nane topic --alter
--add-confi g property=val ue

Checking a topic property:

$ kafka-configs --zookeeper zkhost --entity-type
topics --entity-nane topic --describe

Unsetting a topic property:

$ kaf ka-configs --zookeeper zkhost --entity-type
topics --entity-nane topic --alter --delete-config property

The Apache Kafka documentation includes a complete list of topic properties.

kafka-console-consumer

The kaf ka- consol e- consuner tool can be useful in a couple of ways:

http://kafka.apache.org/10/documentation.html#topicconfigs

e Acting as an independent consumer of particular topics. This can be useful to compare results against a consumer
program that you’ve written.

¢ To test general topic consumption without the need to write any consumer code.

Examples of usage:

$ kaf ka- consol e-consuner --bootstrap-server <broker1>, <broker2>... --topic <topic>
--from begi nni ng

<record-earliest-of fset>

<record-earliest-offset+1>

Note the following about the tool:

e This tool prints all records and keeps outputting as more records are written to the topic.
e Ifthe kaf ka- consol e- consuner tool is given no flags, it displays the full help message.

¢ In older versions of Kafka, it may have been necessary to use the - - new consuner flag. As of Apache Kafka
version 0.10.2, this is no longer necessary.

kafka-console-producer

This tool is used to write messages to a topic. It is typically not as useful as the console consumer, but it can be useful
when the messages are in a text based format. In general, the usage will be something like:

cat file | kafka-consol e-producer args

kafka-consumer-groups

The basic usage of the kaf ka- consuner - gr oups tool is:

kaf ka- consuner - gr oups --boot strap-server brokerl, broker2... --describe --group GROUP_ID

This tool is primarily useful for debugging consumer offset issues. The output from the tool shows the log and consumer
offsets for each partition connected to the consumer group corresponding to GROUP_I D. You can see at a glance which
consumers are current with their partition and which ones are behind. From there, you can determine which partitions
(and likely the corresponding brokers) are slow.

Beyond this debugging usage, there are other more advanced options to this tool:

e --execute --reset-offsets SCENARI O _OPTI ON: Resets the offsets for a consumer group to a particular
value based on the SCENARIO_OPTION flag given.

Valid flags for SCENARIO_OPTION are:

— --to-datetine
— --by-period
— --to-earliest
— --to-latest
— --shift-by

- --fromfile
— --to-current

You will likely want to set the - - t opi ¢ flag to restrict this change to a specific topic or a specific set of partitions
within that topic.

This tool can be used to reset all offsets on all topics. This is something you probably won’t ever want to do. It is highly
recommended that you use this command carefully.

kafka-reassign-partitions
This tool allows a great deal of control over partitions in a Kafka cluster. You can do either or both of the following:

e Change the ordering of the partition assignment list. This is usually done to control leader imbalances between
brokers.

e Move replicas from one broker to another. The most common usage of this is after adding new brokers to the
cluster.

To reassign partitions:

1. Create a list of topics you want to move.

topi cs-to-nmove. json
{"topics": [{"topic": "fool"},
{"topic": "foo2"}],
"version":1

2. Usethe- - gener at e optionin kaf ka-reassi gn-partiti ons to list the distribution of partitions and replicas
on your current brokers, followed by a list of suggested locations for partitions on your new broker.

$ kafka-reassign-partitions --zookeeper |ocal host: 2181
--topics-to-nmove-json-file topics-to-nove.json
--broker-list "4"

--generate

Current partition replica assignment

{"version": 1,

"partitions":[{"topic":"fool","partition":2,"replicas":[1, 2]},
{"topic":"fool", "partition":0,"replicas":[3,1]},
{"topic":"foo2","partition":2,"replicas":[1,2]},
{"topic":"foo2","partition":0,"replicas":[3,2]},
{"topic":"fool","partition":1,"replicas":[2,3]},
{"topic":"foo2","partition":1,"replicas":[2,3]}]

}

{"version": 1,

"partitions":[{"topic":"fool","partition":3,"replicas":[4]},
{"topic":"fool","partition":1,"replicas":[4]},
{"topic":"foo2","partition":2,"replicas":[4]}]

3. Revise the suggested list if required, and then save it as a JSON file.

4. Usethe- - execut e optioninkaf ka-reassi gn- parti ti ons to start the redistribution process, which can take
several hours in some cases.

kaf ka-reassi gn-partitions --zookeeper |ocal host:2181 --reassignnent-json-file
expand- cl ust er-reassi gnnent.j son --execute

5. Use the --verify option in kaf ka- r eassi gn- parti ti onsto check the status of your partitions.
There are several caveats to using this command:

¢ It is highly recommended that you minimize the volume of replica changes. Say, instead of moving ten replicas
with a single command, move two at a time in order to keep the cluster healthy.

e |tis not possible to use this command to make an out-of-sync replica into the leader partition.
e Given the earlier restrictions, it is best to use this command only when all brokers and topics are healthy.

kafka-*-perf-test

The kaf ka- *- per f - t est tool can be used in several ways. In general, it is expected that these tools should be used
on a test or development cluster.

e Measuring read and/or write throughput.

e Stress testing the cluster based on specific parameters (such as message size).

¢ Load testing for the purpose of evaluating specific metrics or determining the impact of cluster configuration
changes.

The kaf ka- pr oducer - per f - t est script can either create a randomly generated byte record:

kaf ka- producer-perf-test --topic TOPIC --record-size SIZE | N BYTES

or randomly read from a set of provided records:

kaf ka- producer-perf-test --topic TOPIC --payl oad-deliniter DELIM TER --payl oad-file
I NPUT_FI LE

where the INPUT_FILE is a concatenated set of pre-generated messages separated by DELIMITER. This script keeps
producing messages or limited based on the - - num r ecor ds flag.

The kaf ka- consuner - per f - t est is:

kaf ka- consuner-perf-test --broker-list hostl:portl, host2:port2,... --zookeeper
zkl: portl, zk2: port2,... --topic TOPIC

The flags of most interest for this command are:

e --group gid:Ifyourun more than one instance of this test, you will want to set different ids for each instance.
e --numfetch-threads: Defaults to 1. Increase if higher throughput testing is needed.
e --froml at est : To start consuming from the latest offset. May be needed for certain types of testing.

Enabling DEBUG or TRACE in command line scripts

In some cases, you may find it useful to produce extra debugging output from the Kafka client APIl. The DEBUG (shown
below) or TRACE levels can be set by replacing the setting in the log4j properties file as follows:

cp /etc/ kafkal/ conf/tool s-10g4j.properties /var/tnp
sed -i -e 's/WARN DEBUG g' /var/tnp/tools-10g4j.properties

export KAFKA OPTS="-Dl og4j.configuration=file:/var/tnp/tools-1o0g4j.properties"

Understanding the kafka-run-class Bash Script

Almost all the provided Kafka tools eventually call the kaf ka- r un- cl ass script. This script is generally not called
directly. However, if you are proficient with bash and want to understand certain features available in all Kafka scripts
as well as some potential debugging scenarios, familiarity with the kaf ka- r un- cl ass script can prove highly beneficial.

For example, there are some useful environment variables that affect all the command line scripts:

e KAFKA DEBUGallows a Java debugger to attach to the JVM launched by the particular script. Setting KAFKA_DEBUG
also allows some further debugging customization:

— JAVA DEBUG _PORT sets the JVM debugging port.
— JAVA DEBUG OPTS can be used to override the default debugging arguments being passed to the JVM.

e KAFKA HEAP_OPTS can be used to pass memory setting arguments to the JVM.
e KAFKA JVM PERFORMANCE_OPTS can be used to pass garbage collection flags to the JVM.

Kafka Performance Tuning

Performance tuning involves two important metrics:

e Latency measures how long it takes to process one event.
e Throughput measures how many events arrive within a specific amount of time.

Most systems are optimized for either latency or throughput. Kafka is balanced for both. A well-tuned Kafka system
has just enough brokers to handle topic throughput, given the latency required to process information as it is received.

Tuning your producers, brokers, and consumers to send, process, and receive the largest possible batches within a
manageable amount of time results in the best balance of latency and throughput for your Kafka cluster.

The following sections introduce the concepts you'll need to be able to balance your Kafka workload and then provide
practical tuning configuration to address specific circumstances.

For a quick video introduction to tuning Kafka, see Tuning Your Apache Kafka Cluster.

There are a few concepts described here that will help you focus your tuning efforts. Additional topics in this section
provide practical tuning guidelines:

Tuning Brokers

Topics are divided into partitions. Each partition has a leader. Topics that are properly configured for reliability will
consist of a leader partition and 2 or more follower partitions. When the leaders are not balanced properly, one might
be overworked, compared to others.

Depending on your system and how critical your data is, you want to be sure that you have sufficient replication sets
to preserve your data. For each topic, Cloudera recommends starting with one partition per physical storage disk and
one consumer per partition.

Tuning Producers

Kafka uses an asynchronous publish/subscribe model. When your producer calls send() , the result returned is a future.
The future provides methods to let you check the status of the information in process. When the batch is ready, the
producer sends it to the broker. The Kafka broker waits for an event, receives the result, and then responds that the
transaction is complete.

If you do not use a future, you could get just one record, wait for the result, and then send a response. Latency is very
low, but so is throughput. If each transaction takes 5 ms, throughput is 200 events per second — slower than the
expected 100,000 events per second.

When you use Pr oducer . send(), you fill up buffers on the producer. When a buffer is full, the producer sends the
buffer to the Kafka broker and begins to refill the buffer.

Two parameters are particularly important for latency and throughput: bat ch si ze and | i nger ti ne.

Batch Size

bat ch. si ze measures batch size in total bytes instead of the number of messages. It controls how many bytes of
data to collect before sending messages to the Kafka broker. Set this as high as possible, without exceeding available
memory. The default value is 16384.

If you increase the size of your buffer, it might never get full. The Producer sends the information eventually, based
on other triggers, such as linger time in milliseconds. Although you can impair memory usage by setting the buffer
batch size too high, this does not impact latency.

https://youtu.be/6hFhf6LgEps

If your producer is sending all the time, you are probably getting the best throughput possible. If the producer is often
idle, you might not be writing enough data to warrant the current allocation of resources.

Linger Time

I 'i nger. nms sets the maximum time to buffer data in asynchronous mode. For example, the setting of 100 means that
it batches 100ms of messages to send at once. This improves throughput, but the buffering adds message delivery
latency.

By default, the producer does not wait. It sends the buffer any time data is available.

Instead of sending immediately, you can setl i nger . ns to 5 and send more messages in one batch. This would reduce
the number of requests sent, but would add up to 5 milliseconds of latency to records sent, even if the load on the
system does not warrant the delay.

The farther away the broker is from the producer, the more overhead required to send messages. Increase |l i nger . ms
for higher latency and higher throughput in your producer.

Tuning Consumers

Consumers can create throughput issues on the other side of the pipeline. The maximum number of consumers in a
consumer group for a topic is equal to the number of partitions. You need enough partitions to handle all the consumers
needed to keep up with the producers.

Consumers in the same consumer group split the partitions among them. Adding more consumers to a group can
enhance performance (up to the number of partitions). Adding more consumer groups does not affect performance.

Mirror Maker Performance

Kafka Mirror Maker is a tool to replicate topics between data centers. It is best to run Mirror Maker at the destination
data center. Consuming messages from a distant cluster and writing them into a local cluster tends to be more safe
than producing over a long-distance network. Deploying the Mirror Maker in the source data center and producing
remotely has a higher risk of losing data. However, if you need this setup, make sure that you configure acks=al |
with appropriate number of retries and min ISR.

e Encrypting data in transit with SSL has impact on performance of Kafka brokers.

¢ Toreduce lag between clusters, you can improve performance by deploying multiple Mirror Maker instances using
the same consumer group ID.

* Measure CPU utilization.

e Consider using compression for consumers and producers when mirroring topics between data centers as bandwidth
can be a bottleneck.

e Monitor lag and metrics of Mirror Maker.

To properly size Mirror Maker, take expected throughput and maximum allowed lag between data centers into account.

e num st reans parameter controls the number of consumer threads in Mirror Maker.
e kaf ka- producer - perf-test can be used to generate load on the source cluster. You can test and measure
performance of Mirror Maker with different num st r eans values (start from 1 and increase it gradually).

Good performance can be achieved with proper consumer and producer settings and properly tuned OS properties,
such as networking and 1/0 related kernel settings.

Kafka Tuning: Handling Large Messages

Before configuring Kafka to handle large messages, first consider the following options to reduce message size:

¢ The Kafka producer can compress messages. For example, if the original message is a text-based format (such as
XML), in most cases the compressed message will be sufficiently small.

e Use the conpr essi on. t ype producer configuration parameters to enable compression. gzip, 1z4 and Snappy

are supported.

¢ |f shared storage (such as NAS, HDFS, or S3) is available, consider placing large files on the shared storage and
using Kafka to send a message with the file location. In many cases, this can be much faster than using Kafka to

send the large file itself.

e Split large messages into 1 KB segments with the producing client, using partition keys to ensure that all segments
are sent to the same Kafka partition in the correct order. The consuming client can then reconstruct the original

large message.

If you still need to send large messages with Kafka, modify the configuration parameters in the following sections to

match your requirements.

Table 5: Broker Configuration Recommendations

Property Default Value Description

message. max. byt es 1000000 Maximum message size the broker accepts. Must be
(1 MB) smaller than the consumerf et ch. message. nax. byt es,

or the consumer cannot consume the message.

| 0og. segnent . byt es 1073741824 Size of a Kafka data file. Must be larger than any single
(1GiB) message.

replica. fetch. max. byt es 1048576 Maximum message size a broker can replicate. Must be
(1 MiB) larger than nessage. max. byt es, or a broker can accept

messages it cannot replicate, potentially resulting in data
loss.

If a single message batch is larger than any of the default values below, the consumer is still be able to consume the
batch, but the batch is sent alone, which can cause performance degradation.

Table 6: Consumer Configuration Recommendations

Property Default Value Description

nmax. partition.fetch. bytes 1048576 The maximum amount of data per-partition the server
(10 MiB) will return.

f et ch. max. bytes 52428800 The maximum amount of data the server should return
(50 MiB) for a fetch request.

f et ch. nessage. max. byt es 1048576 Maximum message size a consumer can read. Must be at
(1 MiB) least as large as nessage. max. byt es.

Kafka Cluster Sizing

Cluster Sizing - Network and Disk Message Throughput

There are many variables that go into determining the correct hardware footprint for a Kafka cluster. The most accurate
way to model your use case is to simulate the load you expect on your own hardware. You can do this using the load
generation tools that ship with Kafka, kaf ka- pr oducer - per f - t est and kaf ka- consuner - perf -t est . For more
information, see Kafka Administration Using Command Line Tools on page 55.

However, if you want to size a cluster without simulation, a very simple rule could be to size the cluster based on the
amount of disk-space required (which can be computed from the estimated rate at which you get data times the
required data retention period).

A slightly more sophisticated estimation can be done based on network and disk throughput requirements. To make
this estimation, let's plan for a use case with the following characteristics:

e W- MB/sec of data that will be written
* R- Replication factor
e C- Number of consumer groups, that is the number of readers for each write

Kafka is mostly limited by the disk and network throughput.

The volume of writing expected is W * R (that is, each replica writes each message). Data is read by replicas as part
of the internal cluster replication and also by consumers. Because every replicas but the master read each write, the
read volume of replicationis (R-1) * W n addition each of the Cconsumers reads each write, so there will be a read
volume of C * W This gives the following:

e Writess W* R
e Reads:(R+C 1) * W

However, note that reads may actually be cached, in which case no actual disk I/O happens. We can model the effect
of caching fairly easily. If the cluster has MMB of memory, then a write rate of WMB/second allows M (W * R) seconds
of writes to be cached. So a server with 32 GB of memory taking writes at 50 MB/second serves roughly the last 10
minutes of data from cache. Readers may fall out of cache for a variety of reasons—a slow consumer or a failed server
that recovers and needs to catch up. An easy way to model this is to assume a number of lagging readers you to budget
for. To model this, let’s call the number of lagging readers L. A very pessimistic assumption would be thatL = R +

C -1, thatis that all consumers are lagging all the time. A more realistic assumption might be to assume no more than
two consumers are lagging at any given time.

Based on this, we can calculate our cluster-wide 1/0 requirements:

e Disk Throughput (Read + Write): W* R + L * W
e Network Read Throughput: (R + C -1) * W
e Network Write Throughput: W* R

A single server provides a given disk throughput as well as network throughput. For example, if you have a 1 Gigabit
Ethernet card with full duplex, then that would give 125 MB/sec read and 125 MB/sec write; likewise 6 7200 SATA
drives might give roughly 300 MB/sec read + write throughput. Once we know the total requirements, as well as what
is provided by one machine, you can divide to get the total number of machines needed. This gives a machine count
running at maximum capacity, assuming no overhead for network protocols, as well as perfect balance of data and
load. Since there is protocol overhead as well as imbalance, you want to have at least 2x this ideal capacity to ensure
sufficient capacity.

Choosing the Number of Partitions for a Topic

Choosing the proper number of partitions for a topic is the key to achieving a high degree of parallelism with respect
to writes to and reads and to distribute load. Evenly distributed load over partitions is a key factor to have good
throughput (avoid hot spots). Making a good decision requires estimation based on the desired throughput of producers
and consumers per partition.

Producers Topic Partitions Consumer Group

e
3,

-
- - -
-

B

For example, if you want to be able to read 1 GB/sec, but your consumer is only able process 50 MB/sec, then you
need at least 20 partitions and 20 consumers in the consumer group. Similarly, if you want to achieve the same for
producers, and 1 producer can only write at 100 MB/sec, you need 10 partitions. In this case, if you have 20 partitions,
you can maintain 1 GB/sec for producing and consuming messages. You should adjust the exact number of partitions
to number of consumers or producers, so that each consumer and producer achieve their target throughput.

So a simple formula could be:
#Partitions = max(Ne, No

where:

¢ Npis the number of required producers determined by calculating: T{/ Tp
* Ncis the number of required consumers determined by calculating: T/ T¢
e Tqis the total expected throughput for our system

e Tpis the max throughput of a single producer to a single partition

e Tcis the max throughput of a single consumer from a single partition

This calculation gives you a rough indication of the number of partitions. It's a good place to start. Keep in mind the
following considerations for improving the number of partitions after you have your system in place:

e The number of partitions can be specified at topic creation time or later.

¢ Increasing the number of partitions also affects the number of open file descriptors. So make sure you set file
descriptor limit properly.

e Reassigning partitions can be very expensive, and therefore it's better to over- than under-provision.

e Changing the number of partitions that are based on keys is challenging and involves manual copying (see Kafka
Administration on page 52).

e Reducing the number of partitions is not currently supported. Instead, create a new a topic with a lower number
of partitions and copy over existing data.

e Metadata about partitions are stored in ZooKeeper in the form of znodes. Having a large number of partitions
has effects on ZooKeeper and on client resources:

— Unneeded partitions put extra pressure on ZooKeeper (more network requests), and might introduce delay
in controller and/or partition leader election if a broker goes down.

— Producer and consumer clients need more memory, because they need to keep track of more partitions and
also buffer data for all partitions.

¢ As guideline for optimal performance, you should not have more than 3000 partitions per broker and not more
than 30,000 partitions in a cluster.

Make sure consumers don’t lag behind producers by monitoring consumer lag. To check consumers' position in a
consumer group (that is, how far behind the end of the log they are), use the following command:

$ kaf ka- consumer - groups --boot strap-server BROKER_ADDRESS --describe --group
CONSUMER_GROUP - - new consurrer

Kafka Performance Broker Configuration

JVM and Garbage Collection

Garbage collection has a huge impact on performance of JVM based applications. It is recommended to use the
Garbage-First (G1) garbage collector for Kafka broker. In Cloudera Manager specify the following under Additional
Broker Java Options in the Kafka service configuration:

-server -XX: +UseGLCC - XX: MaxGCPauseM | | i s=20
-XX: I nitiati ngHeapOccupancyPer cent =35 - XX: +Di sabl eExplicitCGC
-Dj ava. am . headl ess=true -Dj ava. net. preferl Pv4St ack=true

Cloudera recommends to set 4-8 GB of JVM heap size memory for the brokers depending on your use case. As Kafka’s
performance depends heavily on the operating systems page cache, it is not recommended to collocate with other
memory-hungry applications.

e Large messages can cause longer garbage collection (GC) pauses as brokers allocate large chunks. Monitor the GC
log and the server log.

Add this to Broker Java Options:

- XX +Print GC - XX: +Pri nt GCDet ai | s
- XX: +Pri nt GCTi meSt anps
- Xl oggc: </path/to/file.txt>

¢ If long GC pauses cause Kafka to abandon the ZooKeeper session, you may need to configure longer timeout
values, see Kafka-ZooKeeper Performance Tuning on page 69 for details.

Network and I/O Threads

Kafka brokers use network threads to handle client requests. Incoming requests (such as produce and fetch requests)
are placed into a requests queue from where 1/0 threads are taking them up and process them. After a request is
processed, the response is placed into an internal response queue from where a network thread picks it up and sends
response back to the client.

e num net wor k. t hr eads is an important cluster-wide setting that determines the number of threads used for
handling network requests (that is, receiving requests and sending responses). Set this value mainly based on
number of producers, consumers and replica fetchers.

e queued. max. r equest s controls how many requests are allowed in the request queue before blocking network
threads.

e num i o.t hr eads specifies the number of threads that a broker uses for processing requests from the request
queue (might include disk 1/0).

ISR Management

Anin-sync replica (ISR) set for a topic partition contains all follower replicas that are caught-up with the leader partition,
and are situated on a broker that is alive.

e If areplica lags “too far” behind from the partition leader, it is removed from the ISR set. The definition of what
is too far is controlled by the configuration settingrepl i ca. | ag. ti me. nax. ms. If a follower hasn't sent any
fetch requests or hasn't consumed up to the leaders log end offset for at least this time, the leader removes the
follower from the ISR set.

e numreplica.fetchers isa cluster-wide configuration setting that controls how many fetcher threads are in
a broker. These threads are responsible for replicating messages from a source broker (that is, where partition
leader resides). Increasing this value results in higher 1/O parallelism and fetcher throughput. Of course, there is
a trade-off: brokers use more CPU and network.

e replica.fetch. mn. bytes controls the minimum number of bytes to fetch from a follower replica. If there
is not enough bytes, wait uptorepl i ca. fetch. wai t. nax. ns.

e replica.fetch.wait.nmax.ns controls how long to sleep before checking for new messages from a fetcher
replica. This value should be less thanrepl i ca. | ag. ti me. max. s, otherwise the replica is kicked out of the
ISR set.

¢ To check the ISR set for topic partitions, run the following command:

kaf ka-topi cs --zookeeper ${ZOOKEEPER HOSTNAME}: 2181/ kaf ka --describe --topic ${TOPI C

¢ |If a partition leader dies, a new leader is selected from the ISR set. There will be no data loss. If there is no ISR,
unclean leader election can be used with the risk of data-loss.

¢ Unclean leader election occurs if uncl ean. | eader . el ecti on. enabl e is set to true. By default, this is set to
fal se.
Log Cleaner

As discussed in Record Management on page 52, the log cleaner implements log compaction. The following cluster-wide
configuration settings can be used to fine tune log compaction:

e | og. cl eaner. t hr eads controls how many background threads are responsible for log compaction. Increasing
this value improves performance of log compaction at the cost of increased I/O activity.

e | og.cl eaner.io. max. byt es. per. second throttles log cleaner’s I/O activity so that the sum of its read and
write is less than this value on average.

e | og. cl eaner. dedupe. buf f er. si ze specifies memory used for log compaction across all cleaner threads.

e | 0g.cl eaner.io. buffer.sizecontrols total memory used for log cleaner I/O buffers across all cleaner threads.

e | og. cl eaner. m n. conpaction. | ag. ns controls how long messages are left uncompacted.

e | og.cleaner.io.buffer.|oad.factor controls log cleaner’s load factor for the dedupe buffer. Increasing
this value allows the system to clean more logs at once but increases hash collisions.

e | 0g. cl eaner. backof f. ms controls how long to wait until the next check if there is no log to compact.

Kafka Performance: System-Level Broker Tuning

Operating system related kernel parameters affect overall performance of Kafka. These parameters can be configured
via sysct | at runtime. To make kernel configuration changes persistent (that is, use adjusted parameters after a
reboot), edit/ et ¢/ sysct | . conf . The following sections describe some important kernel settings.

File Descriptor Limits

As Kafka works with many log segment files and network connections, the Maxi num Process File Descriptors
setting may need to be increased in some cases in production deployments, if a broker hosts many partitions. For
example, a Kafka broker needs at least the following number of file descriptors to just track log segment files:

(nunber of partitions)*(partition size / segment size)
The broker needs additional file descriptors to communicate via network sockets with external parties (such as clients,
other brokers, Zookeeper, Sentry, and Kerberos).

The Maxi mum Process File Descri ptors setting can be monitored in Cloudera Manager and increased if usage
requires a larger value than the default ul i mi t (often 64K). It should be reviewed for use case suitability.

¢ To review FD limit currently set for a running Kafka broker, run cat / proc/ KAFKA BROKER PID/linits, and
look for Max open files.
¢ To see open file descriptors, run:

| sof -p KAFKA BROKER PI D

Filesystems

Linux records when a file was created (ct i ne), modified (nt i me) and accessed (at i me). The value noat i ne is a special
mount option for filesystems (such as EXT4) in Linux that tells the kernel not to update inode information every time
afile is accessed (that is, when it was last read). Using this option may result in write performance gain. Kafka is not
relying on at i me. The value r el at i ne is another mounting option that optimizes how at i me is persisted. Access
time is only updated if the previous at i me was earlier than the current modified time.

To view mounting options, run nount -1 orcat /etc/fstabcommand.

Virtual Memory Handling

Kafka uses system page cache extensively for producing and consuming the messages. The Linux kernel parameter,
vm swappi ness, is a value from 0-100 that controls the swapping of application data (as anonymous pages) from
physical memory to virtual memory on disk. The higher the value, the more aggressively inactive processes are swapped
out from physical memory. The lower the value, the less they are swapped, forcing filesystem buffers to be emptied.
It is an important kernel parameter for Kafka because the more memory allocated to the swap space, the less memory
can be allocated to the page cache. Cloudera recommends to set vm swappi ness value to 1.

¢ To check memory swapped to disk, run virst at and look for the swap columns.

Kafka heavily relies on disk I/0 performance.vm dirty_rati oandvm dirty_background_r ati o are kernel
parameters that control how often dirty pages are flushed to disk. Higher vm di rty_rati o results in less frequent
flushes to disk.

¢ To display the actual number of dirty pages in the system, runegrep "dirty|witeback" /proc/vnstat

Networking Parameters

Kafka is designed to handle a huge amount of network traffic. By default, the Linux kernel is not tuned for this scenario.
The following kernel settings may need to be tuned based on use case or specific Kafka workload:

e net.core. wrem def aul t : Default send socket buffer size.

e net.core.rnmem def aul t : Default receive socket buffer size.

e net.core. wrem max: Maximum send socket buffer size.

e net.core.rnmem max: Maximum receive socket buffer size.

e net.ipv4.tcp_wrem Memory reserved for TCP send buffers.

e net.ipv4.tcp_rmem Memory reserved for TCP receive buffers.

e net.ipv4d.tcp_w ndow scal i ng: TCP Window Scaling option.

e net.ipv4. tcp_nmax_syn_backl og: Maximum number of outstanding TCP SYN requests (connection requests).

e net.core. netdev_nax_backl og: Maximum number of queued packets on the kernel input side (useful to deal
with spike of network requests).

To specify the parameters, you can use Cloudera Enterprise Reference Architecture as a guideline.

Configuring JMX Ephemeral Ports

Kafka uses two high-numbered ephemeral ports for JMX. These ports are listed when you view net st at - anp
information for the Kafka broker process.

¢ You can change the number for the first port by adding a command similar to the following to the field Additional
Broker Java Options (br oker _j ava_opt s) in Cloudera Manager.

- Dcom sun. managenent . j nxrenot e. rm . port =port

e The JMX_PORT configuration maps to com sun. managenent . j nxr enot e. port by default.

To access JMX via JConsole, run j consol e ${ BROKER_HOST} : 9393

e The second ephemeral port used for JIMX communication is implemented for the JRMP protocol and cannot be
changed.

http://www.cloudera.com/documentation/other/reference-architecture/PDF/cloudera_ref_arch_metal.pdf

Kafka-ZooKeeper Performance Tuning

Kafka uses Zookeeper to store metadata information about topics, partitions, brokers and system coordination (such
as membership statuses). Unavailability or slowness of Zookeeper makes the Kafka cluster unstable, and Kafka brokers
do not automatically recover from it. Cloudera recommends to use a 3-5 machines Zookeeper ensemble solely dedicated
to Kafka (co-location of applications can cause unwanted service disturbances).

e zookeeper. sessi on. ti neout . ns is a setting for Kafka that specifies how long Zookeeper shall wait for heartbeat
messages before it considers the client (the Kafka broker) unavailable. If this happens, metadata information
about partition leadership owned by the broker will be reassigned. If this setting is too high, then it might take a
long time for the system to detect a broker failure. On the other hand, if it is set to too small, it might result in
frequent leadership reassignments.

e jute.maxbuffer isa crucial Java system property for both Kafka and Zookeeper. It controls the maximum size
of the data a znode can contain. The default value, one megabyte, might be increased for certain production use
cases.

e There are cases where Zookeeper can require more connections. In those cases, it is recommended to increase
the maxd i ent Cnxns parameter in Zookeeper.

¢ Note that old Kafka consumers store consumer offset commits in Zookeeper (deprecated). It is recommended to
use new consumers that store offsets in internal Kafka topics (reduces load on Zookeeper).

Kafka Reference

Metrics Reference

In addition to these metrics, many aggregate metrics are available. If an entity type has parents defined, you can
formulate all possible aggregate metrics using the formula base_netri c_across_parents.

In addition, metrics for aggregate totals can be formed by adding the prefix total_ to the front of the metric name.

Use the type-ahead feature in the Cloudera Manager chart browser to find the exact aggregate metric name, in case
the plural form does not end in "s". For example, the following metric names may be valid for Kafka:

e alerts_rate_across_clusters
e total alerts rate_across_clusters

Some metrics, such as al erts_r at e, apply to nearly every metric context. Others only apply to a certain service or
role.

For more information about metrics the Cloudera Manager, see Cloudera Manager Metrics and Metric Aggregation.

E’; Note: The following sections are identical to the metrics listed with Cloudera Manager. Be sure to
scroll horizontally to see the full content in each table.

Base Metrics

Metric Name Description Unit Parents CDH Version

alerts_rate The number of alerts. events per cluster CDH 5, CDH 6
second

events critical _rate |Thenumber of critical events. |events per cluster CDH 5,CDH 6
second

events_i nportant rate |Thenumberofimportantevents. | events per cluster CDH 5, CDH 6
second

events_i nformati onal _ |The number of informational events per cluster CDH 5,CDH 6
rate events. second

health_bad rate Percentage of Time with Bad seconds per cluster CDH 5,CDH 6
Health second

heal t h_concer ni ng_r at e | Percentage of Time with seconds per cluster CDH5,CDH 6
Concerning Health second

heal t h_di sabl ed_rate |Percentage of Time with seconds per cluster CDH5,CDH 6
Disabled Health second

heal th_good_rate Percentage of Time with Good |seconds per cluster CDH5,CDH 6
Health second

heal t h_unknown_r at e Percentage of Time with seconds per cluster CDH5,CDH 6
Unknown Health second

Broker Metrics

Metric Name Description Unit Parents CDH Version

alerts_rate The number of alerts. events per cluster, kafka, |CDH 5, CDH 6
second rack

cgroup_cpu_system r at e | CPU usage of the role's cgroup |seconds per cluster, kafka, |CDH 5, CDH 6
second rack

cgroup_cpu_user _rate |UserSpace CPU usage of the seconds per cluster, kafka, |CDH 5, CDH 6
role's cgroup second rack

cgroup_nem page_cache |Page cache usage of therole's |bytes cluster, kafka, |CDH 5, CDH 6
cgroup rack

cgroup_nmemrss Resident memory of the role's | bytes cluster, kafka, |CDH 5, CDH 6
cgroup rack

cgroup_nmem swap Swap usage of the role's cgroup | bytes cluster, kafka, |CDH 5, CDH 6
rack

cgroup_read_bytes rat e |Bytesread from all disks by the |bytes per cluster, kafka, |CDH 5, CDH 6
role's cgroup second rack

cgroup_read_ios_rate |Numberof read /O operations |ios persecond |cluster, kafka, |CDH 5, CDH 6
from all disks by the role's rack

cgroup

cgroup_write_bytes_ Bytes written to all disks by the | bytes per cluster, kafka, |CDH5,CDH 6
rate role's cgroup second rack

cgroup_write_i os_rate |Number of write I/O operations |ios per second |cluster, kafka, |CDH 5, CDH 6
to all disks by the role's cgroup rack

cpu_systemrate Total System CPU seconds per cluster, kafka, |CDH5,CDH 6
second rack

cpu_user_rate Total CPU user time seconds per cluster, kafka, |CDH 5, CDH 6
second rack

events critical _rate |Thenumber of critical events. |events per cluster, kafka, |CDH 5, CDH 6
second rack

events_i nmportant rate |Thenumberofimportantevents. | events per cluster, kafka, |CDH 5, CDH 6
second rack

events_i nformati onal _ |The number of informational events per cluster, kafka, |CDH5,CDH 6
rate events. second rack

fd_nmax Maximum number of file file descriptors | cluster, kafka, |CDH 5, CDH 6
descriptors rack

fd_open Open file descriptors. file descriptors | cluster, kafka, |CDH 5, CDH 6
rack

health_bad rate Percentage of Time with Bad seconds per cluster, kafka, |CDH5,CDH 6
Health second rack

heal t h_concer ni ng_r at e | Percentage of Time with seconds per cluster, kafka, |CDH5,CDH 6
Concerning Health second rack

heal t h_di sabl ed_r at e |Percentage of Time with seconds per cluster, kafka, |CDH 5, CDH 6

Disabled Health

second

rack

Metric Name Description Unit Parents CDH Version
heal t h_good_rate Percentage of Time with Good |seconds per cluster, kafka, |CDH 5, CDH 6
Health second rack
heal t h_unknown_rate Percentage of Time with seconds per cluster, kafka, |CDH5,CDH 6
Unknown Health second rack
kaf ka_active_ Will be 1 if this broker is the message.units. | cluster, kafka, |CDH 5, CDH 6
controller active controller, 0 otherwise controller rack
kaf ka_broker _state The state the broker is in. message.units. | cluster, kafka, |CDH 5, CDH 6
e 0=Not Runni ng state rack
e 1=Starting
e 2=RecoveringFrom
Uncl eanShut down
¢ 3=Runni ngAsBr oker
o 4=
Runni ngAsContr ol | er
e 6=
Pendi ngControl | ed
Shut down
o 7=
Br oker Shut t i ngDown
kaf ka_bytes_fetched_ |Amount of data consumers bytes per cluster, kafka, |CDH 5, CDH 6
15mn_rate fetched from this topic on this | message.units. | rack
broker: 15 Min Rate singular.second
kaf ka_bytes_fetched_ |Amount of data consumers bytes per cluster, kafka, |CDH 5, CDH 6
Imn_rate fetched from this topic on this | message.units. | rack
broker: 1 Min Rate singular.second
kaf ka_byt es_fetched_ |Amount of data consumers bytes per cluster, kafka, |CDH 5, CDH 6
5mn_rate fetched from this topic on this | message.units. |rack
broker: 5 Min Rate singular.second
kaf ka_byt es_fetched_ |Amount of data consumers bytes per cluster, kafka, |CDH 5, CDH 6
avg_rate fetched from this topic on this | message.units. |rack
broker: Avg Rate singular.second
kaf ka_bytes fetched_ | Amount of data consumers bytes per cluster, kafka, |CDH 5, CDH 6
rate fetched from this topic on this | second rack
broker
kaf ka_byt es_recei ved_ | Amount of data written to topic | bytes per cluster, kafka, |CDH 5, CDH 6
15m n_rate on this broker: 15 Min Rate message.units. | rack
singular.second
kaf ka_byt es_recei ved_ | Amount of data written to topic | bytes per cluster, kafka, |CDH 5, CDH 6
Imin_rate on this broker: 1 Min Rate message.units. | rack
singular.second
kaf ka_byt es_recei ved_ | Amount of data written to topic | bytes per cluster, kafka, |CDH 5, CDH 6
5min_rate on this broker: 5 Min Rate message.units. | rack
singular.second
kaf ka_byt es_recei ved_ | Amount of data written to topic | bytes per cluster, kafka, |CDH 5, CDH 6

avg_rate

on this broker: Avg Rate

message.units.
singular.second

rack

Metric Name Description Unit Parents CDH Version
kaf ka_byt es_recei ved_ | Amount of data written to topic | bytes per cluster, kafka, |CDH 5, CDH 6
rate on this broker second rack
kaf ka_byt es_rej ect ed_ | Amount of data in messages bytes per cluster, kafka, |CDH 5, CDH 6
15mn_rate rejected by broker for this topic: | message.units. | rack

15 Min Rate singular.second
kaf ka_byt es_rej ect ed_ | Amount of data in messages bytes per cluster, kafka, |CDH 5, CDH 6
Imin_rate rejected by broker for this topic: | message.units. |rack

1 Min Rate singular.second
kaf ka_byt es_rej ect ed_ | Amount of data in messages bytes per cluster, kafka, |CDH 5, CDH 6
5min_rate rejected by broker for this topic: | message.units. |rack

5 Min Rate singular.second
kaf ka_byt es_rej ect ed_ | Amount of data in messages bytes per cluster, kafka, |CDH 5, CDH 6
avg_rate rejected by broker for this topic: | message.units. | rack

Avg Rate singular.second
kaf ka_byt es_rej ect ed_ | Amount of data in messages bytes per cluster, kafka, |CDH 5, CDH 6
rate rejected by broker for this topic | second rack
kaf ka_consuner _ Number of expired delayed requests per | cluster, kafka, |CDH 5, CDH 6
expires_15mn_rate consumer fetch requests: 15 Min | message.units. | rack

Rate singular.second
kaf ka_consuner _ Number of expired delayed requests per | cluster, kafka, |CDH 5, CDH 6
expires_1lmn_rate consumer fetch requests: 1 Min | message.units. |rack

Rate singular.second
kaf ka_consuner _ Number of expired delayed requests per | cluster, kafka, |CDH 5, CDH 6
expires_5Smn_rate consumer fetch requests: 5 Min | message.units. | rack

Rate singular.second
kaf ka_consuner _ Number of expired delayed requests per | cluster, kafka, |CDH 5, CDH 6
expires_avg_rate consumer fetch requests: Avg | message.units. | rack

Rate singular.second
kaf ka_consuner _ Number of expired delayed requests per | cluster, kafka, |CDH 5, CDH 6
expires_rate consumer fetch requests second rack
kaf ka_consuner _ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
nmet adat a_| ocal _ti me_ |toConsumerMetadata requests: rack
75t h_percentile 75th Percentile
kaf ka_consuner _ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
nmet adata_l ocal _time_ |toConsumerMetadata requests: rack
999t h_percentile 999th Percentile
kaf ka_consuner _ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
nmet adata_| ocal tine_ |toConsumerMetadatarequests: rack
99t h_percentile 99th Percentile
kaf ka_consuner _ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
nmet adata_| ocal tine_ |toConsumerMetadatarequests: rack
avg Avg
kaf ka_consuner _ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6

net adata_l ocal _time_
max

to ConsumerMetadata requests:
Max

rack

Metric Name Description Unit Parents CDH Version
kaf ka_consuner _ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
nmet adata_| ocal tine_ |toConsumerMetadatarequests: rack
nmedi an 50th Percentile
kaf ka_consuner _ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
net adata_l ocal time_ |toConsumerMetadata requests: rack
m n Min
kaf ka_consuner _ Local Time spent in responding |requests per | cluster, kafka, |CDH 5, CDH 6
net adata_l| ocal time_ |toConsumerMetadata requests: | second rack
rate Samples
kaf ka_consuner _ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
met adat a_| ocal _time_ |toConsumerMetadata requests: rack
st ddev Standard Deviation
kaf ka_consuner _ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
net adata_renote_tine_ |respondingto rack
75t h_percentile ConsumerMetadata requests:

75th Percentile
kaf ka_consuner _ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
net adata_renote_tine_ |responding to rack
999t h_percentile ConsumerMetadata requests:

999th Percentile
kaf ka_consuner _ Remote Time spent in ms cluster, kafka, |CDH5,CDH 6
net adata_renote_tine_ |respondingto rack
99t h_percentile ConsumerMetadata requests:

99th Percentile
kaf ka_consuner _ Remote Time spent in ms cluster, kafka, |CDH5,CDH 6
net adata_renote_tine_ |respondingto rack
avg ConsumerMetadata requests:

Avg
kaf ka_consuner _ Remote Time spent in ms cluster, kafka, |CDH5,CDH 6
net adata_renote_tine_ |respondingto rack
max ConsumerMetadata requests:

Max
kaf ka_consuner _ Remote Time spent in ms cluster, kafka, |CDH5,CDH 6
net adata_renote_tine_ |respondingto rack
medi an ConsumerMetadata requests:

50th Percentile
kaf ka_consuner _ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
net adata_renote_tine_ |respondingto rack
m n ConsumerMetadata requests:

Min
kaf ka_consuner _ Remote Time spent in requests per | cluster, kafka, |CDH 5, CDH 6
nmet adata_renote_ti me_ |responding to second rack
rate ConsumerMetadata requests:

Samples
kaf ka_consumer _ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6

net adata_renote_time_

st ddev

responding to
ConsumerMetadata requests:
Standard Deviation

rack

Metric Name Description Unit Parents CDH Version
kaf ka_consumer _ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
nmet adat a_r equest _ responding to rack
gueue_tinme_75th_ ConsumerMetadata requests:
percentile 75th Percentile
kaf ka_consuner _ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
net adat a_r equest _ responding to rack
gqueue_time_999th_ ConsumerMetadata requests:
percentile 999th Percentile
kaf ka_consuner _ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
net adat a_r equest _ responding to rack
queue_time_99th_ ConsumerMetadata requests:
percentile 99th Percentile
kaf ka_consuner _ Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
net adat a_r equest _ responding to rack
gueue_ti nme_avg ConsumerMetadata requests:

Avg
kaf ka_consuner _ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
net adat a_r equest _ responding to rack
gueue_ti me_max ConsumerMetadata requests:

Max
kaf ka_consuner _ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
net adat a_request _ responding to rack
gueue_ti me_mnedi an ConsumerMetadata requests:

50th Percentile
kaf ka_consuner _ Request Queue Time spent in ms cluster, kafka, |CDH5,CDH 6
net adat a_request _ responding to rack
gueue_time_mn ConsumerMetadata requests:

Min
kaf ka_consuner _ Request Queue Time spentin |requests per |cluster, kafka, |CDH 5, CDH 6
net adat a_request _ responding to second rack
gqueue_time_rate ConsumerMetadata requests:

Samples
kaf ka_consuner _ Request Queue Time spent in ms cluster, kafka, |CDH5,CDH 6
net adat a_r equest _ responding to rack
gueue_ti me_st ddev ConsumerMetadata requests:

Standard Deviation
kaf ka_consuner _ Number of ConsumerMetadata |requests per | cluster, kafka, |CDH5, CDH 6
net adat a_requests_ requests: 15 Min Rate message.units. | rack
15mi n_rate singular.second
kaf ka_consuner _ Number of ConsumerMetadata |requests per | cluster, kafka, |CDH 5, CDH 6
net adat a_requests_ requests: 1 Min Rate message.units. | rack
Imin_rate singular.second
kaf ka_consuner _ Number of ConsumerMetadata | requests per cluster, kafka, |CDH 5, CDH 6

net adat a_requests_

5mn_rate

requests: 5 Min Rate

message.units.
singular.second

rack

Metric Name Description Unit Parents CDH Version
kaf ka_consuner _ Number of ConsumerMetadata |requests per | cluster, kafka, |CDH5, CDH 6
nmet adat a_r equest s_avg_ | requests: Avg Rate message.units. | rack
rate singular.second
kaf ka_consuner _ Number of ConsumerMetadata |requests per | cluster, kafka, |CDH5, CDH 6
net adat a_r equests_r at e | requests second rack
kaf ka_consuner _ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
nmet adat a_r esponse_ responding to rack
queue_tinme_75th_ ConsumerMetadata requests:
percentile 75th Percentile
kaf ka_consuner _ Response Queue Time spentin | ms cluster, kafka, |CDH5,CDH 6
net adat a_r esponse_ responding to rack
queue_time_999th_ ConsumerMetadata requests:
percentile 999th Percentile
kaf ka_consumer _ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
net adat a_r esponse_ responding to rack
queue_time_99th_ ConsumerMetadata requests:
percentile 99th Percentile
kaf ka_consuner _ Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
net adat a_r esponse_ responding to rack
gueue_ti me_avg ConsumerMetadata requests:

Avg
kaf ka_consuner _ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
net adat a_response_ responding to rack
gueue_ti me_max ConsumerMetadata requests:

Max
kaf ka_consuner _ Response Queue Time spentin |ms cluster, kafka, |CDH5,CDH 6
net adat a_r esponse_ responding to rack
gueue_ti me_medi an ConsumerMetadata requests:

50th Percentile
kaf ka_consuner _ Response Queue Time spentin |ms cluster, kafka, |CDH5,CDH 6
net adat a_r esponse_ responding to rack
gqueue_time_mn ConsumerMetadata requests:

Min
kaf ka_consuner _ Response Queue Time spentin |requests per | cluster, kafka, |CDH 5, CDH 6
net adat a_r esponse_ responding to second rack
gueue_time_rate ConsumerMetadata requests:

Samples
kaf ka_consuner _ Response Queue Time spentin | ms cluster, kafka, |CDH5,CDH 6
net adat a_r esponse_ responding to rack
gueue_ti me_st ddev ConsumerMetadata requests:

Standard Deviation
kaf ka_consuner _ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6

net adat a_r esponse_
send _time_75th_
percentile

responding to
ConsumerMetadata requests:
75th Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_consumer _ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
nmet adat a_r esponse_ responding to rack
send_tinme_999th_ ConsumerMetadata requests:
percentile 999th Percentile
kaf ka_consuner _ Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
net adat a_r esponse_ responding to rack
send_time_99th_ ConsumerMetadata requests:
percentile 99th Percentile
kaf ka_consuner _ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
net adat a_r esponse_ responding to rack
send_ti me_avg ConsumerMetadata requests:

Avg
kaf ka_consumer _ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
nmet adat a_r esponse_ responding to rack
send_t i me_nmax ConsumerMetadata requests:

Max
kaf ka_consumer _ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
nmet adat a_r esponse_ responding to rack
send_ti me_nedi an ConsumerMetadata requests:

50th Percentile
kaf ka_consuner _ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
nmet adat a_r esponse_ responding to rack
send_time_mn ConsumerMetadata requests:

Min
kaf ka_consuner _ Response Send Time spent in requests per | cluster, kafka, |CDH 5, CDH 6
nmet adat a_r esponse_ responding to second rack
send time_rate ConsumerMetadata requests:

Samples
kaf ka_consuner _ Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
net adat a_r esponse_ responding to rack
send_ti nme_stddev ConsumerMetadata requests:

Standard Deviation
kaf ka_consuner _ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
nmet adata_total _time_ |toConsumerMetadata requests: rack
75t h_percentile 75th Percentile
kaf ka_consuner _ Total Time spent in responding | ms cluster, kafka, |CDH5,CDH 6
nmet adata_total time_ |toConsumerMetadata requests: rack
999t h_percentile 999th Percentile
kaf ka_consuner _ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
nmet adata_total _tine_ |toConsumerMetadatarequests: rack
99t h_percentile 99th Percentile
kaf ka_consuner _ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
net adata_total time_ |toConsumerMetadata requests: rack
avg Avg
kaf ka_consuner _ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6

netadata_total time_
max

to ConsumerMetadata requests:

Max

rack

Metric Name Description Unit Parents CDH Version
kaf ka_consuner _ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
nmet adata_total _tine_ |toConsumerMetadatarequests: rack

nmedi an 50th Percentile

kaf ka_consuner _ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
net adata_total time_ |toConsumerMetadata requests: rack

m n Min

kaf ka_consuner _ Total Time spent in responding | requests per | cluster, kafka, |CDH 5, CDH 6
netadata_total time_ |toConsumerMetadatarequests: | second rack

rate Samples

kaf ka_consuner _ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
nmet adata_total _time_ |toConsumerMetadata requests: rack

st ddev Standard Deviation

kaf ka_control |l ed_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
shut down_| ocal _ti ne_ |toControlledShutdown requests: rack

75t h_percentile 75th Percentile

kaf ka_control | ed_ Local Time spent in responding | ms cluster, kafka, |CDH5,CDH 6
shut down_Il ocal _tinme_ |toControlledShutdown requests: rack

999t h_percentile 999th Percentile

kaf ka_control |l ed_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
shut down_| ocal _time_ |toControlledShutdown requests: rack

99t h_percentile 99th Percentile

kaf ka_control |l ed_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
shutdown_| ocal _tine_ |toControlledShutdown requests: rack

avg Avg

kaf ka_control | ed_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
shut down_| ocal _ti ne_ |toControlledShutdown requests: rack

max Max

kaf ka_control | ed_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
shut down_| ocal _ti ne_ |toControlledShutdown requests: rack

nmedi an 50th Percentile

kaf ka_control |l ed_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
shut down_| ocal _ti ne_ |toControlledShutdown requests: rack

mn Min

kaf ka_control | ed_ Local Time spent in responding |requests per | cluster, kafka, |CDH5, CDH 6
shut down_Il ocal _tinme_ |toControlledShutdown requests: | second rack

rate Samples

kaf ka_control | ed_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
shut down_| ocal _time_ |toControlledShutdown requests: rack

st ddev Standard Deviation

kaf ka_control | ed_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6

shutdown_renote_tinme_
75t h_percentile

responding to
ControlledShutdown requests:
75th Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_control | ed_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
shut down_renote_tine_ |respondingto rack
999t h_percentile ControlledShutdown requests:

999th Percentile
kaf ka_control | ed_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
shut down_renote tine_ |respondingto rack
99t h_percentile ControlledShutdown requests:

99th Percentile
kaf ka_control | ed_ Remote Time spent in ms cluster, kafka, |CDH5,CDH 6
shut down_renote_ti me_ |responding to rack
avg ControlledShutdown requests:

Avg
kaf ka_control | ed_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
shut down_renote tine_ |respondingto rack
max ControlledShutdown requests:

Max
kaf ka_control |l ed_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
shut down_renote_time_ |responding to rack
medi an ControlledShutdown requests:

50th Percentile
kaf ka_control | ed_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
shut down_renote_tinme_ |responding to rack
m n ControlledShutdown requests:

Min
kaf ka_control | ed_ Remote Time spent in requests per | cluster, kafka, |CDH 5, CDH 6
shut down_renote_tinme_ |responding to second rack
rate ControlledShutdown requests:

Samples
kaf ka_control | ed_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
shut down_renote_tinme_ |responding to rack
st ddev ControlledShutdown requests:

Standard Deviation
kaf ka_control | ed_ Request Queue Time spent in ms cluster, kafka, |CDH5,CDH 6
shut down_request _ responding to rack
queue_time_75th_ ControlledShutdown requests:
percentile 75th Percentile
kaf ka_control | ed_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
shut down_r equest _ responding to rack
queue_tinme_999th_ ControlledShutdown requests:
percentile 999th Percentile
kaf ka_control | ed_ Request Queue Time spent in ms cluster, kafka, |CDH5,CDH 6
shut down_r equest _ responding to rack
queue_time_99th_ ControlledShutdown requests:
percentile 99th Percentile
kaf ka_control | ed_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6

shut down_r equest _
gueue_tinme_avg

responding to

ControlledShutdown requests:

Avg

rack

Metric Name Description Unit Parents CDH Version
kaf ka_control | ed_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
shut down_r equest _ responding to rack
queue_ti me_max ControlledShutdown requests:

Max
kaf ka_control | ed_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
shut down_r equest _ responding to rack
queue_ti nme_nedi an ControlledShutdown requests:

50th Percentile
kaf ka_control | ed_ Request Queue Time spent in ms cluster, kafka, |CDH5,CDH 6
shut down_r equest _ responding to rack
gueue_tinme_mn ControlledShutdown requests:

Min
kaf ka_control | ed_ Request Queue Time spentin | requests per |cluster, kafka, |CDH5, CDH 6
shut down_r equest _ responding to second rack
gqueue_tinme_rate ControlledShutdown requests:

Samples
kaf ka_control |l ed_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
shut down_r equest _ responding to rack
gueue_ti me_st ddev ControlledShutdown requests:

Standard Deviation
kaf ka_control | ed_ Number of ControlledShutdown | requests per | cluster, kafka, |CDH 5, CDH 6
shut down_requests_ requests: 15 Min Rate message.units. | rack
15mn_rate singular.second
kaf ka_control | ed_ Number of ControlledShutdown | requests per | cluster, kafka, |CDH 5, CDH 6
shut down_r equests_ requests: 1 Min Rate message.units. | rack
Imn_rate singular.second
kaf ka_control |l ed_ Number of ControlledShutdown | requests per | cluster, kafka, |CDH 5, CDH 6
shut down_r equests_ requests: 5 Min Rate message.units. | rack
S5min_rate singular.second
kaf ka_control | ed_ Number of ControlledShutdown | requests per | cluster, kafka, |CDH 5, CDH 6
shut down_r equest s_avg_ | requests: Avg Rate message.units. | rack
rate singular.second
kaf ka_control | ed_ Number of ControlledShutdown | requests per | cluster, kafka, |CDH5, CDH 6
shut down_r equests_r at e | requests second rack
kaf ka_control | ed_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
shut down_r esponse_ responding to rack
queue_tinme_75th_ ControlledShutdown requests:
percentile 75th Percentile
kaf ka_control |l ed_ Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
shut down_r esponse_ responding to rack
gqueue_time_999th_ ControlledShutdown requests:
percentile 999th Percentile
kaf ka_control | ed_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6

shut down_r esponse_
queue_tinme _99th_
percentile

responding to
ControlledShutdown requests:
99th Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_control | ed_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
shut down_r esponse_ responding to rack
gueue_tinme_avg ControlledShutdown requests:

Avg
kaf ka_control | ed_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
shut down_r esponse_ responding to rack
gueue_ti me_max ControlledShutdown requests:

Max
kaf ka_control | ed_ Response Queue Time spentin |ms cluster, kafka, |CDH5,CDH 6
shut down_r esponse_ responding to rack
queue_ti nme_nedi an ControlledShutdown requests:

50th Percentile
kaf ka_control | ed_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
shut down_r esponse_ responding to rack
gqueue_tinme_mn ControlledShutdown requests:

Min
kaf ka_control |l ed_ Response Queue Time spent in |requests per | cluster, kafka, |CDH 5, CDH 6
shut down_r esponse_ responding to second rack
gueue_time_rate ControlledShutdown requests:

Samples
kaf ka_control | ed_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
shut down_r esponse_ responding to rack
gueue_ti me_st ddev ControlledShutdown requests:

Standard Deviation
kaf ka_control | ed_ Response Send Time spent in ms cluster, kafka, |CDH5,CDH 6
shut down_r esponse_ responding to rack
send_time_75th_ ControlledShutdown requests:
percentile 75th Percentile
kaf ka_control | ed_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
shut down_r esponse_ responding to rack
send_time_999t h_ ControlledShutdown requests:
percentile 999th Percentile
kaf ka_control | ed_ Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
shut down_r esponse_ responding to rack
send_time_99th_ ControlledShutdown requests:
percentile 99th Percentile
kaf ka_control | ed_ Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
shut down_r esponse_ responding to rack
send_ti me_avg ControlledShutdown requests:

Avg
kaf ka_control | ed_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
shut down_r esponse_ responding to rack
send_ti me_nax ControlledShutdown requests:

Max
kaf ka_control | ed_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6

shut down_r esponse_
send_time_nedi an

responding to
ControlledShutdown requests:
50th Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_control | ed_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
shut down_r esponse_ responding to rack
send_time_mn ControlledShutdown requests:

Min
kaf ka_control | ed_ Response Send Time spent in requests per | cluster, kafka, |CDH 5, CDH 6
shut down_r esponse_ responding to second rack
send time_rate ControlledShutdown requests:

Samples
kaf ka_control | ed_ Response Send Time spent in ms cluster, kafka, |CDH5,CDH 6
shut down_r esponse_ responding to rack
send_ti nme_stddev ControlledShutdown requests:

Standard Deviation
kaf ka_control | ed_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
shutdown_total _tine_ |toControlledShutdown requests: rack
75t h_percentile 75th Percentile
kaf ka_control | ed_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
shutdown_total time_ |toControlledShutdown requests: rack
999t h_percentile 999th Percentile
kaf ka_control | ed_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
shut down_total time_ |toControlledShutdown requests: rack
99t h_percentile 99th Percentile
kaf ka_control | ed_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
shutdown_total tine_ |toControlledShutdown requests: rack
avg Avg
kaf ka_control | ed_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
shut down_total _tine_ |toControlledShutdown requests: rack
max Max
kaf ka_control | ed_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
shut down_total _tine_ |toControlledShutdown requests: rack
nmedi an 50th Percentile
kaf ka_control | ed_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
shutdown_total _tine_ |toControlledShutdown requests: rack
m n Min
kaf ka_control | ed_ Total Time spent in responding | requests per | cluster, kafka, |CDH 5, CDH 6
shutdown_total time_ |toControlledShutdown requests: | second rack
rate Samples
kaf ka_control | ed_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
shut down_total time_ |toControlledShutdown requests: rack
st ddev Standard Deviation
kaf ka_daenon_t hread_ |JVM daemon thread count threads cluster, kafka, |CDH5,CDH 6
count rack
kaf ka_f et ch_consumer _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6

| ocal _time_75th_
percentile

to FetchConsumer requests:
75th Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_f et ch_consumer _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _time_999th_ to FetchConsumer requests: rack
percentile 999th Percentile
kaf ka_f et ch_consumer _ | Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
local tinme 99th_ to FetchConsumer requests: rack
percentile 99th Percentile
kaf ka_fetch_consuner _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _tinme_avg to FetchConsumer requests: Avg rack
kaf ka_f et ch_consumer _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _time_nax to FetchConsumer requests: Max rack
kaf ka_fetch_consumer_ |Local Time spent in responding | ms cluster, kafka, |CDH5,CDH 6
| ocal time_nedi an to FetchConsumer requests: rack

50th Percentile
kaf ka_fetch_consumer _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
local _tinme_mn to FetchConsumer requests: Min rack
kaf ka_fetch_consuner__ |Local Time spentin responding |requests per |cluster, kafka, |CDH5, CDH 6
local _tinme_rate to FetchConsumer requests: second rack

Samples
kaf ka_f et ch_consuner _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _time_stddev to FetchConsumer requests: rack

Standard Deviation
kaf ka_fetch_consuner__ |Remote Time spentin ms cluster, kafka, |CDH 5, CDH 6
renote_time_75th_ responding to FetchConsumer rack
percentile requests: 75th Percentile
kaf ka_fetch_consuner__ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_time_999th_ responding to FetchConsumer rack
percentile requests: 999th Percentile
kaf ka_fetch_consumer_ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_time_99th_ responding to FetchConsumer rack
percentile requests: 99th Percentile
kaf ka_f et ch_consumer_ |Remote Time spent in ms cluster, kafka, |CDH5,CDH 6
renote_time_avg responding to FetchConsumer rack

requests: Avg
kaf ka_fetch_consumer__ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_tinme_max responding to FetchConsumer rack

requests: Max
kaf ka_fetch_consumer__ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_time_nedi an responding to FetchConsumer rack

requests: 50th Percentile
kaf ka_fetch_consumer__ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote time_mn responding to FetchConsumer rack

requests: Min
kaf ka_fetch_consuner__ |Remote Time spent in requests per | cluster, kafka, |CDH 5, CDH 6

renote tinme_rate

responding to FetchConsumer
requests: Samples

second

rack

Metric Name Description Unit Parents CDH Version
kaf ka_f et ch_consumer _ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_tinme_stddev responding to FetchConsumer rack
requests: Standard Deviation
kaf ka_f et ch_consumer_ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
request _queue_time_ responding to FetchConsumer rack
75t h_percentile requests: 75th Percentile
kaf ka_f et ch_consumer _ |Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_time_ responding to FetchConsumer rack
999t h _percentile requests: 999th Percentile
kaf ka_f et ch_consumer _ |Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request queue_tinme_ responding to FetchConsumer rack
99t h_percentile requests: 99th Percentile
kaf ka_f et ch_consuner _ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti ne_avg | responding to FetchConsumer rack
requests: Avg
kaf ka_fetch_consuner _ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti ne_nax |responding to FetchConsumer rack
requests: Max
kaf ka_f et ch_consumer _ |Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request queue_tinme_ responding to FetchConsumer rack
medi an requests: 50th Percentile
kaf ka_f et ch_consuner _ |Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti ne_m n |responding to FetchConsumer rack
requests: Min
kaf ka_fetch_consuner__ |Request Queue Time spentin |requests per |cluster, kafka, |CDH5, CDH 6
request queue_tinme_ responding to FetchConsumer |second rack
rate requests: Samples
kaf ka_f et ch_consuner _ |Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request queue_tinme_ responding to FetchConsumer rack
st ddev requests: Standard Deviation
kaf ka_f et ch_consumer_ | Number of FetchConsumer requests per | cluster, kafka, |CDH 5, CDH 6
requests_15min_rate requests: 15 Min Rate message.units. | rack
singular.second
kaf ka_fetch_consumer__ | Number of FetchConsumer requests per | cluster, kafka, |CDH 5, CDH 6
requests _1mn_rate requests: 1 Min Rate message.units. | rack
singular.second
kaf ka_fetch_consuner__ |Number of FetchConsumer requests per | cluster, kafka, |CDH 5, CDH 6
requests 5mn_rate requests: 5 Min Rate message.units. | rack
singular.second
kaf ka_fetch_consuner__ |Number of FetchConsumer requests per | cluster, kafka, |CDH 5, CDH 6
requests_avg_rate requests: Avg Rate message.units. | rack
singular.second
kaf ka_fetch_consuner__ |Number of FetchConsumer requests per | cluster, kafka, |CDH 5, CDH 6

requests_rate

requests

second

rack

Metric Name Description Unit Parents CDH Version
kaf ka_f et ch_consumer _ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to FetchConsumer rack
75t h_percentile requests: 75th Percentile
kaf ka_f et ch_consumer _ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to FetchConsumer rack
999t h_percentile requests: 999th Percentile
kaf ka_f et ch_consumer _ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to FetchConsumer rack
99t h_percentile requests: 99th Percentile
kaf ka_f et ch_consuner __ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to FetchConsumer rack
avg requests: Avg
kaf ka_f et ch_consumer _ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to FetchConsumer rack
max requests: Max
kaf ka_f et ch_consumer_ |Response Queue Time spentin |ms cluster, kafka, |CDH5,CDH 6
response_queue_time_ |responding to FetchConsumer rack
medi an requests: 50th Percentile
kaf ka_f et ch_consumer_ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to FetchConsumer rack
mn requests: Min
kaf ka_fetch_consuner__ |Response Queue Time spentin |requests per |cluster, kafka, |CDH5, CDH 6
response_queue_time_ |responding to FetchConsumer |second rack
rate requests: Samples
kaf ka_fetch_consuner _ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to FetchConsumer rack
st ddev requests: Standard Deviation
kaf ka_f et ch_consuner__ |Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_tine_ responding to FetchConsumer rack
75t h_percentile requests: 75th Percentile
kaf ka_f et ch_consumer _ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_tine_ responding to FetchConsumer rack
999t h_percentile requests: 999th Percentile
kaf ka_f et ch_consumer _ |Response Send Time spent in ms cluster, kafka, |CDH5,CDH 6
response_send_time_ responding to FetchConsumer rack
99t h_percentile requests: 99th Percentile
kaf ka_f et ch_consumer _ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_avg |responding to FetchConsumer rack

requests: Avg
kaf ka_f et ch_consumer__ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_max |responding to FetchConsumer rack

requests: Max
kaf ka_f et ch_consumer _ |Response Send Time spent in ms cluster, kafka, |CDH5,CDH 6

response_send_time_
medi an

responding to FetchConsumer
requests: 50th Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_f et ch_consumer _ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_mi n |responding to FetchConsumer rack

requests: Min
kaf ka_f et ch_consumer__ |Response Send Time spent in requests per | cluster, kafka, |CDH 5, CDH 6
response_send_time_ responding to FetchConsumer |second rack
rate requests: Samples
kaf ka_f et ch_consumer _ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_time_ responding to FetchConsumer rack
st ddev requests: Standard Deviation
kaf ka_f et ch_consumer _ | Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine 75th_ to FetchConsumer requests: rack
percentile 75th Percentile
kaf ka_f et ch_consuner _ |Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine 999th_ to FetchConsumer requests: rack
percentile 999th Percentile
kaf ka_fetch_consumer _ |Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _time_99th_ to FetchConsumer requests: rack
percentile 99th Percentile
kaf ka_f et ch_consumer _ |Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine_avg to FetchConsumer requests: Avg rack
kaf ka_f et ch_consuner _ |Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine_max to FetchConsumer requests: Max rack
kaf ka_f et ch_consumer _ | Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine_nedian to FetchConsumer requests: rack

50th Percentile
kaf ka_f et ch_consumer _ | Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tinme_mn to FetchConsumer requests: Min rack
kaf ka_fetch_consumer__ | Total Time spent in responding |requests per | cluster, kafka, |CDH 5, CDH 6
total _time_rate to FetchConsumer requests: second rack

Samples
kaf ka_f et ch_consumer _ |Total Time spent in responding | ms cluster, kafka, |CDH5,CDH 6
total _tine_stddev to FetchConsumer requests: rack

Standard Deviation
kaf ka_fetch foll ower_ |Local Time spentin responding | ms cluster, kafka, |CDH 5, CDH 6
[ocal _tinme_75th_ to FetchFollower requests: 75th rack
percentile Percentile
kaf ka_fetch foll ower_ |Local Time spentin responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _time _999th to FetchFollower requests: 999th rack
percentile Percentile
kaf ka_f et ch_f ol | ower _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _time_99th_ to FetchFollower requests: 99th rack
percentile Percentile
kaf ka_fetch_foll ower_ |Local Time spentin responding | ms cluster, kafka, |CDH 5, CDH 6

| ocal tinme_avg

to FetchFollower requests: Avg

rack

Metric Name Description Unit Parents CDH Version
kaf ka_f et ch_f ol | ower _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _time_nax to FetchFollower requests: Max rack
kaf ka_fetch foll ower_ |Local Time spentin responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _tinme_nedi an to FetchFollower requests: 50th rack

Percentile
kaf ka_fetch foll ower_ |Local Time spentin responding | ms cluster, kafka, |CDH 5, CDH 6
[ocal _tinme_mn to FetchFollower requests: Min rack
kaf ka_fetch_foll ower_ |Local Time spentinresponding |requests per |cluster, kafka, |CDH5, CDH 6
local _tinme_rate to FetchFollower requests: second rack

Samples
kaf ka_fetch_foll ower_ |Local Time spentin responding |ms cluster, kafka, |CDH 5, CDH 6
| ocal _time_stddev to FetchFollower requests: rack

Standard Deviation
kaf ka_fetch_foll ower_ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote time_75th_ responding to FetchFollower rack
percentile requests: 75th Percentile
kaf ka_fetch_foll ower_ |Remote Time spentin ms cluster, kafka, |CDH 5, CDH 6
renote_time_999th_ responding to FetchFollower rack
percentile requests: 999th Percentile
kaf ka_fetch foll ower_ |Remote Time spentin ms cluster, kafka, |CDH 5, CDH 6
renote_time_99th_ responding to FetchFollower rack
percentile requests: 99th Percentile
kaf ka_fetch foll ower_ |Remote Time spentin ms cluster, kafka, |CDH 5, CDH 6
renote_time_avg responding to FetchFollower rack

requests: Avg
kaf ka_fetch foll ower_ |Remote Time spentin ms cluster, kafka, |CDH 5, CDH 6
renote_time_max responding to FetchFollower rack

requests: Max
kaf ka_fetch foll ower_ |Remote Time spentin ms cluster, kafka, |CDH 5, CDH 6
renote_time_nedian responding to FetchFollower rack

requests: 50th Percentile
kaf ka_fetch_foll ower_ |Remote Time spentin ms cluster, kafka, |CDH 5, CDH 6
renote tinme_mn responding to FetchFollower rack

requests: Min
kaf ka_fetch_foll ower_ |Remote Time spentin requests per | cluster, kafka, |CDH 5, CDH 6
renote tinme_rate responding to FetchFollower second rack

requests: Samples
kaf ka_fetch _foll ower_ |Remote Time spentin ms cluster, kafka, |CDH 5, CDH 6
renote_time_stddev responding to FetchFollower rack

requests: Standard Deviation
kaf ka_fetch_foll ower_ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
request queue_tinme_ responding to FetchFollower rack
75t h_percentile requests: 75th Percentile
kaf ka_fetch_foll ower_ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6

request _queue_tinme_
999t h_percentile

responding to FetchFollower
requests: 999th Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_f et ch_f ol | ower _ |Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_time_ responding to FetchFollower rack
99t h_percentile requests: 99th Percentile
kaf ka_fetch_foll ower_ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti ne_avg |responding to FetchFollower rack
requests: Avg
kaf ka_f et ch_f ol | ower _ |Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti ne_max |responding to FetchFollower rack
requests: Max
kaf ka_f et ch_f ol | ower _ |Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_time_ responding to FetchFollower rack
medi an requests: 50th Percentile
kaf ka_fetch_foll ower_ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti ne_m n |responding to FetchFollower rack
requests: Min
kaf ka_fetch _foll ower_ |Request Queue Time spentin |requests per |cluster, kafka, |CDH 5, CDH 6
request _queue_time_ responding to FetchFollower second rack
rate requests: Samples
kaf ka_fetch_foll ower_ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
request queue_tinme_ responding to FetchFollower rack
st ddev requests: Standard Deviation
kaf ka_fetch_foll ower_ |Number of FetchFollower requests per | cluster, kafka, |CDH 5, CDH 6
requests_15nmin_rate requests: 15 Min Rate message.units. | rack
singular.second
kaf ka_fetch_foll ower_ |Number of FetchFollower requests per | cluster, kafka, |CDH 5, CDH 6
requests_1mn_rate requests: 1 Min Rate message.units. | rack
singular.second
kaf ka_fetch_foll ower_ |Number of FetchFollower requests per | cluster, kafka, |CDH 5, CDH 6
requests 5mn_rate requests: 5 Min Rate message.units. | rack
singular.second
kaf ka_fetch_foll ower_ |Number of FetchFollower requests per | cluster, kafka, |CDH 5, CDH 6
requests_avg_rate requests: Avg Rate message.units. | rack
singular.second
kaf ka_f et ch_f ol | ower _ | Number of FetchFollower requests per | cluster, kafka, |CDH 5, CDH 6
requests_rate requests second rack
kaf ka_fetch _foll ower_ |Response Queue Time spentin |ms cluster, kafka, |CDH5,CDH 6
response_queue_time_ |responding to FetchFollower rack
75t h_percentile requests: 75th Percentile
kaf ka_f et ch_f ol | ower _ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to FetchFollower rack
999t h_percentile requests: 999th Percentile
kaf ka_fetch_foll ower_ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6

response_queue_time_
99t h_percentile

responding to FetchFollower
requests: 99th Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_f et ch_f ol | ower _ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to FetchFollower rack
avg requests: Avg
kaf ka_fetch_foll ower_ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to FetchFollower rack
max requests: Max
kaf ka_fetch_foll ower_ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to FetchFollower rack
nmedi an requests: 50th Percentile
kaf ka_fetch_foll ower_ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to FetchFollower rack
m n requests: Min
kaf ka_fetch foll ower_ |Response Queue Time spentin |requests per |cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to FetchFollower second rack
rate requests: Samples
kaf ka_fetch _foll ower_ |Response Queue Time spentin |ms cluster, kafka, |CDH5,CDH 6
response_queue_time_ |responding to FetchFollower rack
st ddev requests: Standard Deviation
kaf ka_f et ch_f ol | ower _ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_time_ responding to FetchFollower rack
75t h_percentile requests: 75th Percentile
kaf ka_fetch_foll ower_ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_tinme_ responding to FetchFollower rack
999t h_percentile requests: 999th Percentile
kaf ka_fetch_foll ower_ |Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_tine_ responding to FetchFollower rack
99t h_percentile requests: 99th Percentile
kaf ka_fetch_foll ower_ |Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_avg | responding to FetchFollower rack

requests: Avg
kaf ka_fetch_fol |l ower_ |Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_t i ne_max |responding to FetchFollower rack

requests: Max
kaf ka_fetch_foll ower_ |Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_tine_ responding to FetchFollower rack
nmedi an requests: 50th Percentile
kaf ka_fetch_foll ower_ |Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_mi n |responding to FetchFollower rack

requests: Min
kaf ka_fetch_foll ower_ |Response Send Time spent in requests per | cluster, kafka, |CDH 5, CDH 6
response_send_tinme_ responding to FetchFollower second rack
rate requests: Samples
kaf ka_fetch foll ower_ |Response Send Time spentin | ms cluster, kafka, |CDH5,CDH 6

response_send_time_
st ddev

responding to FetchFollower
requests: Standard Deviation

rack

Metric Name Description Unit Parents CDH Version
kaf ka_f et ch_f ol | ower _ | Total Time spent in responding |ms cluster, kafka, |CDH 5, CDH 6
total time_75th_ to FetchFollower requests: 75th rack
percentile Percentile
kaf ka_fetch_fol |l ower_ |Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total tine 999th_ to FetchFollower requests: 999th rack
percentile Percentile
kaf ka_fetch_foll ower |Total Time spentin responding |ms cluster, kafka, |CDH 5, CDH 6
total _tine 99th_ to FetchFollower requests: 99th rack
percentile Percentile
kaf ka_fetch_fol | ower _ |Total Time spentin responding |ms cluster, kafka, |CDH 5, CDH 6
total _tine_avg to FetchFollower requests: Avg rack
kaf ka_fetch_foll ower_ |Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total tinme_nax to FetchFollower requests: Max rack
kaf ka_f et ch_f ol | ower _ | Total Time spent in responding |ms cluster, kafka, |CDH 5, CDH 6
total tine_nedian to FetchFollower requests: 50th rack

Percentile
kaf ka_fetch _foll ower_ |Total Time spentin responding |ms cluster, kafka, |CDH 5, CDH 6
total _tine_mn to FetchFollower requests: Min rack
kaf ka_fetch foll ower_ |Total Time spentin responding |requests per |cluster, kafka, |CDH 5, CDH 6
total _tine_ rate to FetchFollower requests: second rack

Samples
kaf ka_fetch foll ower_ |Total Time spentin responding | ms cluster, kafka, |CDH 5, CDH 6
total _time_stddev to FetchFollower requests: rack

Standard Deviation
kaf ka_fetch_ | ocal _ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_75th_percentil e |toFetchrequests: 75th rack

Percentile
kaf ka_fetch_ | ocal _ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_999th percentil e |toFetch requests: 999th rack

Percentile
kaf ka_fetch | ocal _ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_99th percentil e |toFetchrequests: 99th rack

Percentile
kaf ka_fetch_|l ocal _ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_avg to Fetch requests: Avg rack
kaf ka_fetch_I ocal _ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_max to Fetch requests: Max rack
kaf ka_fetch_ | ocal _ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
ti me_nedi an to Fetch requests: 50th rack

Percentile
kaf ka_fetch_ | ocal _ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_mn to Fetch requests: Min rack
kaf ka_fetch_ | ocal _ Local Time spent in responding |requests per | cluster, kafka, |CDH 5, CDH 6

time_rate

to Fetch requests: Samples

second

rack

Metric Name Description Unit Parents CDH Version
kaf ka_fetch_I ocal _ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
tine_stddev to Fetch requests: Standard rack

Deviation
kaf ka_f et ch_pur gat ory_ | Number of requests delayed in | requests cluster, kafka, |CDH 5, CDH 6
del ayed_requests the fetch purgatory rack
kaf ka_f et ch_pur gat ory_ | Requests waiting in the fetch requests cluster, kafka, |CDH 5, CDH 6
si ze purgatory. This depends on value rack

of fetch.wait.max.ms in the

consumer
kaf ka_fetch renote_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
time_75th_percentil e |respondingto Fetch requests: rack

75th Percentile
kaf ka fetch_renote_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
time_999t h percentil e |respondingto Fetch requests: rack

999th Percentile
kaf ka fetch_renote_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
time_99th percentil e |respondingto Fetch requests: rack

99th Percentile
kaf ka fetch _renote_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
time_avg responding to Fetch requests: rack

Avg
kaf ka_fetch_renote_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
ti me_max responding to Fetch requests: rack

Max
kaf ka_fetch_renote_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
ti me_nedi an responding to Fetch requests: rack

50th Percentile
kaf ka_fetch_renote_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
tinme_mn responding to Fetch requests: rack

Min
kaf ka_fetch_renote_ Remote Time spent in requests per | cluster, kafka, |CDH 5, CDH 6
tine_rate responding to Fetch requests: | second rack

Samples
kaf ka_fetch renote_ Remote Time spent in ms cluster, kafka, |CDH5,CDH 6
tine_stddev responding to Fetch requests: rack

Standard Deviation
kaf ka_fetch request |Number of data read requests | message.units. | cluster, kafka, |CDH 5, CDH 6
failures_15nmi n_rate from consumers that brokers fetch_requests | rack

failed to process for this topic: | per message.

15 Min Rate units.singular.

second

kaf ka_fetch request |Number of data read requests | message.units. | cluster, kafka, |CDH 5, CDH 6

failures_1min_rate

from consumers that brokers
failed to process for this topic: 1
Min Rate

fetch_requests
per message.
units.singular.
second

rack

Metric Name Description Unit Parents CDH Version
kaf ka_f et ch_request _ | Number of data read requests | message.units. | cluster, kafka, |CDH 5, CDH 6
failures 5nmn_rate from consumers that brokers fetch_requests | rack
failed to process for this topic: 5 | per message.
Min Rate units.singular.
second
kaf ka_fetch request |Number of data read requests | message.units. | cluster, kafka, |CDH 5, CDH 6
failures_avg rate from consumers that brokers fetch_requests |rack
failed to process for this topic: | per message.
Avg Rate units.singular.
second
kaf ka_fetch request |Number of data read requests | message.units. | cluster, kafka, |CDH 5, CDH 6
failures rate from consumers that brokers fetch_requests | rack
failed to process for this topic | per second
kaf ka_fetch _request |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
queue_time_75th_ responding to Fetch requests: rack
percentile 75th Percentile
kaf ka_fetch _request |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
queue_time_999th_ responding to Fetch requests: rack
percentile 999th Percentile
kaf ka_f et ch_request _ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
gueue_time_99th_ responding to Fetch requests: rack
percentile 99th Percentile
kaf ka_fetch_request __ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
gueue_ti nme_avg responding to Fetch requests: rack
Avg
kaf ka_fetch_request _ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
gueue_ti me_max responding to Fetch requests: rack
Max
kaf ka_fetch_request _ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
gqueue_ti me_mnedi an responding to Fetch requests: rack
50th Percentile
kaf ka_fetch _request |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
gueue_time_mn responding to Fetch requests: rack
Min
kaf ka_fetch request |Request Queue Time spentin |requests per |cluster, kafka, |CDH 5, CDH 6
gqueue_time_rate responding to Fetch requests: | second rack
Samples
kaf ka_fetch _request |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
gueue_ti me_st ddev responding to Fetch requests: rack
Standard Deviation
kaf ka_fetch requests_ |Number of Fetch requests: 15 | requests per | cluster, kafka, |CDH 5, CDH 6
15m n_rate Min Rate message.units. | rack
singular.second
kaf ka_fetch _requests_ |NumberofFetchrequests: 1 Min | requests per | cluster, kafka, |CDH 5, CDH 6

Imin_rate

Rate

message.units.
singular.second

rack

Metric Name Description Unit Parents CDH Version
kaf ka_fetch _requests_ |NumberofFetchrequests: 5 Min | requests per | cluster, kafka, |CDH 5, CDH 6
5mn_rate Rate message.units. | rack
singular.second
kaf ka_fetch _requests_ |Number of Fetch requests: Avg |requests per | cluster, kafka, |CDH 5, CDH 6
avg_rate Rate message.units. | rack
singular.second

kaf ka_fetch_requests_ |Number of Fetch requests requests per | cluster, kafka, |CDH 5, CDH 6
rate second rack
kaf ka_fetch _response_ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
queue_tinme_75th_ responding to Fetch requests: rack
percentile 75th Percentile
kaf ka_fetch_response_ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
queue_time_999th_ responding to Fetch requests: rack
percentile 999th Percentile
kaf ka_fetch_response_ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
queue_time_99th_ responding to Fetch requests: rack
percentile 99th Percentile
kaf ka_f et ch_r esponse_ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
gueue_ti me_avg responding to Fetch requests: rack

Avg
kaf ka_f et ch_r esponse_ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
gueue_ti me_max responding to Fetch requests: rack

Max
kaf ka_fetch_response_ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
gueue_ti me_mnedi an responding to Fetch requests: rack

50th Percentile
kaf ka_fetch_response_ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
gqueue_time_mn responding to Fetch requests: rack

Min
kaf ka_f et ch_r esponse_ |Response Queue Time spentin |requests per |cluster, kafka, |CDH 5, CDH 6
gueue_time_rate responding to Fetch requests: |second rack

Samples
kaf ka_fetch_response_ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
gqueue_ti me_st ddev responding to Fetch requests: rack

Standard Deviation
kaf ka_fetch _response_ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
send_time_75th_ responding to Fetch requests: rack
percentile 75th Percentile
kaf ka_fetch_response_ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
send tinme 999t h responding to Fetch requests: rack
percentile 999th Percentile
kaf ka_fetch_response_ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6

send_time _99th_
percentile

responding to Fetch requests:
99th Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_f et ch_response_ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
send_time_avg responding to Fetch requests: rack

Avg
kaf ka_fetch _response_ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
send_ti me_nax responding to Fetch requests: rack

Max
kaf ka_fetch_response_ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
send_ti me_nedi an responding to Fetch requests: rack

50th Percentile
kaf ka_fetch_response_ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
send tinme_mn responding to Fetch requests: rack

Min
kaf ka_fetch _response_ |Response Send Time spentin | requests per |cluster, kafka, |CDH 5, CDH 6
send_time_rate responding to Fetch requests: |second rack

Samples
kaf ka_fetch _response_ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
send_ti me_stddev responding to Fetch requests: rack

Standard Deviation
kaf ka fetch total _ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_75th_percentil e |toFetchrequests: 75th rack

Percentile
kaf ka_fetch total _ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_999th percentil e |toFetch requests: 999th rack

Percentile
kaf ka fetch total _ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_99th percentil e |toFetchrequests: 99th rack

Percentile
kaf ka_fetch_total _ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_avg to Fetch requests: Avg rack
kaf ka_fetch_total _ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_max to Fetch requests: Max rack
kaf ka_fetch total _ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
ti me_nedi an to Fetch requests: 50th rack

Percentile
kaf ka_fetch total _ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_mn to Fetch requests: Min rack
kaf ka_fetch total _ Total Time spent in responding | requests per | cluster, kafka, |CDH 5, CDH 6
time_rate to Fetch requests: Samples second rack
kaf ka_fetch_total _ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
ti me_stddev to Fetch requests: Standard rack

Deviation
kaf ka_f ol | ower _ Number of expired delayed requests per | cluster, kafka, |CDH 5, CDH 6

expires_15m n_rate

follower fetch requests: 15 Min
Rate

message.units.
singular.second

rack

Metric Name Description Unit Parents CDH Version
kaf ka_f ol | ower _ Number of expired delayed requests per | cluster, kafka, |CDH 5, CDH 6
expires_1lmn_rate follower fetch requests: 1 Min | message.units. | rack

Rate singular.second
kaf ka_f ol | ower _ Number of expired delayed requests per | cluster, kafka, |CDH 5, CDH 6
expires_5mn_rate follower fetch requests: 5 Min | message.units. | rack

Rate singular.second
kaf ka_f ol | ower _ Number of expired delayed requests per | cluster, kafka, |CDH 5, CDH 6
expires_avg _rate follower fetch requests: Avg Rate | message.units. | rack

singular.second

kaf ka_f ol | ower _ Number of expired delayed requests per | cluster, kafka, |CDH 5, CDH 6
expires_rate follower fetch requests second rack
kaf ka_heart beat | ocal _|Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_75th_percentil e |toHeartbeatrequests: 75th rack

Percentile
kaf ka_heart beat | ocal _|Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_999th _percentil e |toHeartbeat requests: 999th rack

Percentile
kaf ka_heart beat | ocal _|Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_99th percentil e |toHeartbeatrequests: 99th rack

Percentile
kaf ka_heartbeat | ocal _|Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_avg to Heartbeat requests: Avg rack
kaf ka_heart beat _| ocal _ | Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
ti me_max to Heartbeat requests: Max rack
kaf ka_heartbeat | ocal _|Local Time spentin responding | ms cluster, kafka, |CDH 5, CDH 6
ti me_nedi an to Heartbeat requests: 50th rack

Percentile
kaf ka_heartbeat | ocal _|Local Time spentin responding | ms cluster, kafka, |CDH 5, CDH 6
time_mn to Heartbeat requests: Min rack
kaf ka_heart beat | ocal _|Local Time spentin responding |requests per |cluster, kafka, |CDH5, CDH 6
time_rate to Heartbeat requests: Samples | second rack
kaf ka_heartbeat | ocal _|Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
ti me_st ddev to Heartbeat requests: Standard rack

Deviation
kaf ka_heart beat _ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
remote tine_75th_ responding to Heartbeat rack
percentile requests: 75th Percentile
kaf ka_heart beat _ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_time_999th_ responding to Heartbeat rack
percentile requests: 999th Percentile
kaf ka_heart beat _ Remote Time spent in ms cluster, kafka, |CDH5,CDH 6

renote time_99th_
percentile

responding to Heartbeat
requests: 99th Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_heart beat _ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_time_avg responding to Heartbeat rack

requests: Avg
kaf ka_heart beat _ Remote Time spent in ms cluster, kafka, |CDH5,CDH 6
renote_tinme_max responding to Heartbeat rack

requests: Max
kaf ka_heart beat _ Remote Time spent in ms cluster, kafka, |CDH5,CDH 6
renote_time_nedi an responding to Heartbeat rack

requests: 50th Percentile
kaf ka_heart beat _ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_time_mn responding to Heartbeat rack

requests: Min
kaf ka_heart beat _ Remote Time spent in requests per | cluster, kafka, |CDH 5, CDH 6
renote_time_rate responding to Heartbeat second rack

requests: Samples
kaf ka_heart beat _ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote _time_stddev responding to Heartbeat rack

requests: Standard Deviation
kaf ka_heart beat _ Request Queue Time spent in ms cluster, kafka, |CDH5,CDH 6
request queue_tinme_ responding to Heartbeat rack
75t h_percentile requests: 75th Percentile
kaf ka_heart beat _ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_tinme_ responding to Heartbeat rack
999t h_percentile requests: 999th Percentile
kaf ka_heart beat _ Request Queue Time spent in ms cluster, kafka, |CDH5,CDH 6
request _queue_time_ responding to Heartbeat rack
99t h_percentile requests: 99th Percentile
kaf ka_heart beat _ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti ne_avg |responding to Heartbeat rack

requests: Avg
kaf ka_heart beat _ Request Queue Time spent in ms cluster, kafka, |CDH5,CDH 6
request _queue_ti ne_max |responding to Heartbeat rack

requests: Max
kaf ka_heart beat _ Request Queue Time spent in ms cluster, kafka, |CDH5,CDH 6
request _queue_time_ responding to Heartbeat rack
nmedi an requests: 50th Percentile
kaf ka_heart beat _ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti ne_mi n|responding to Heartbeat rack

requests: Min
kaf ka_heart beat _ Request Queue Time spentin |requests per |cluster, kafka, |CDH 5, CDH 6
request _queue_time_ responding to Heartbeat second rack
rate requests: Samples
kaf ka_heart beat _ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6

request _queue_time_
st ddev

responding to Heartbeat
requests: Standard Deviation

rack

Metric Name Description Unit Parents CDH Version
kaf ka_heart beat _ Number of Heartbeat requests: |requests per | cluster, kafka, |CDH5, CDH 6
requests_15m n_rate 15 Min Rate message.units. | rack

singular.second
kaf ka_heart beat _ Number of Heartbeat requests: |requests per | cluster, kafka, |CDH 5, CDH 6
requests_1mn_rate 1 Min Rate message.units. | rack

singular.second
kaf ka_heart beat _ Number of Heartbeat requests: |requests per | cluster, kafka, |CDH5, CDH 6
requests_5mn_rate 5 Min Rate message.units. | rack

singular.second
kaf ka_heart beat _ Number of Heartbeat requests: |requests per | cluster, kafka, |CDH5, CDH 6
requests_avg_rate Avg Rate message.units. | rack

singular.second
kaf ka_heart beat _ Number of Heartbeat requests |requests per | cluster, kafka, |CDH 5, CDH 6
requests_rate second rack
kaf ka_heart beat _ Response Queue Time spentin | ms cluster, kafka, |CDH5,CDH 6
response_queue_time_ |responding to Heartbeat rack
75th_percentile requests: 75th Percentile
kaf ka_heart beat _ Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to Heartbeat rack
999t h_percentile requests: 999th Percentile
kaf ka_heart beat _ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to Heartbeat rack
99t h_percentile requests: 99th Percentile
kaf ka_heart beat _ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to Heartbeat rack
avg requests: Avg
kaf ka_heart beat _ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to Heartbeat rack
max requests: Max
kaf ka_heart beat _ Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to Heartbeat rack
medi an requests: 50th Percentile
kaf ka_heart beat _ Response Queue Time spentin | ms cluster, kafka, |CDH5,CDH 6
response_queue_time_ |responding to Heartbeat rack
mn requests: Min
kaf ka_heart beat _ Response Queue Time spent in |requests per | cluster, kafka, |CDH5, CDH 6
response_queue_time_ |responding to Heartbeat second rack
rate requests: Samples
kaf ka_heart beat _ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to Heartbeat rack
st ddev requests: Standard Deviation
kaf ka_heart beat _ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6

response_send_time_
75t h_percentile

responding to Heartbeat
requests: 75th Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_heart beat _ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_time_ responding to Heartbeat rack
999t h_percentile requests: 999th Percentile
kaf ka_heart beat _ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_tinme_ responding to Heartbeat rack
99t h_percentile requests: 99th Percentile
kaf ka_heart beat _ Response Send Time spent in ms cluster, kafka, |CDH5,CDH 6
response_send_ti ne_avg |responding to Heartbeat rack

requests: Avg
kaf ka_heart beat _ Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_max |responding to Heartbeat rack

requests: Max
kaf ka_heart beat _ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_tinme_ responding to Heartbeat rack
nmedi an requests: 50th Percentile
kaf ka_heart beat _ Response Send Time spent in ms cluster, kafka, |CDH5,CDH 6
response_send_ti ne_m n|responding to Heartbeat rack

requests: Min
kaf ka_heart beat _ Response Send Time spent in requests per | cluster, kafka, |CDH 5, CDH 6
response_send_tinme_ responding to Heartbeat second rack
rate requests: Samples
kaf ka_heart beat _ Response Send Time spent in ms cluster, kafka, |CDH5,CDH 6
response_send_tine_ responding to Heartbeat rack
st ddev requests: Standard Deviation
kaf ka_heartbeat total |Total Time spentin responding |ms cluster, kafka, |CDH 5, CDH 6
time_75th_percentil e |toHeartbeatrequests: 75th rack

Percentile
kaf ka_heart beat total _|Total Time spentin responding |ms cluster, kafka, |CDH 5, CDH 6
time_999t h_percentil e |toHeartbeat requests: 999th rack

Percentile
kaf ka_heart beat total _|Total Time spentin responding |ms cluster, kafka, |CDH 5, CDH 6
time_99th percentile |toHeartbeatrequests: 99th rack

Percentile
kaf ka_heart beat total |Total Time spentin responding |ms cluster, kafka, |CDH 5, CDH 6
time_avg to Heartbeat requests: Avg rack
kaf ka_heartbeat total _|Total Time spentin responding |ms cluster, kafka, |CDH 5, CDH 6
ti me_max to Heartbeat requests: Max rack
kaf ka_heartbeat total _|Total Time spentin responding |ms cluster, kafka, |CDH5,CDH 6
ti me_nedi an to Heartbeat requests: 50th rack

Percentile
kaf ka_heartbeat total _|Total Time spentin responding |ms cluster, kafka, |CDH 5, CDH 6
time_mn to Heartbeat requests: Min rack
kaf ka_heart beat total _|Total Time spentin responding |requests per |cluster, kafka, |CDH5, CDH 6

time_rate

to Heartbeat requests: Samples

second

rack

Metric Name Description Unit Parents CDH Version
kaf ka_heartbeat total |Total Time spentin responding |ms cluster, kafka, |CDH 5, CDH 6
ti me_st ddev to Heartbeat requests: Standard rack
Deviation
kaf ka_i sr_expands__ Number of times ISR for a message.units. | cluster, kafka, |CDH 5, CDH 6
15mn_rate partition expanded: 15 Min Rate | expansions per | rack
message.units.
singular.second
kaf ka_i sr_expands__ Number of times ISR for a message.units. | cluster, kafka, |CDH 5, CDH 6
Imn rate partition expanded: 1 Min Rate |expansions per |rack
message.units.
singular.second
kaf ka_i sr_expands__ Number of times ISR for a message.units. | cluster, kafka, |CDH 5, CDH 6
5mn rate partition expanded: 5 Min Rate |expansions per |rack
message.units.
singular.second
kaf ka_i sr_expands_avg_ | Number of times ISR for a message.units. | cluster, kafka, |CDH 5, CDH 6
rate partition expanded: Avg Rate expansions per |rack
message.units.
singular.second
kaf ka_i sr_expands_r at e | Number of times ISR for a message.units. | cluster, kafka, |CDH 5, CDH 6
partition expanded expansions per |rack
second
kaf ka_i sr_shrinks_ Number of times ISR for a message.units. | cluster, kafka, |CDH 5, CDH 6
15mn_rate partition shrank: 15 Min Rate shrinks per rack
message.units.
singular.second
kaf ka_i sr_shrinks_ Number of times ISR for a message.units. | cluster, kafka, |CDH 5, CDH 6
lmin_rate partition shrank: 1 Min Rate shrinks per rack
message.units.
singular.second
kaf ka_i sr_shrinks_ Number of times ISR for a message.units. | cluster, kafka, |CDH 5, CDH 6
S5min_rate partition shrank: 5 Min Rate shrinks per rack
message.units.
singular.second
kaf ka_i sr_shri nks_avg_ |Number of times ISR for a message.units. | cluster, kafka, |CDH 5, CDH 6
rate partition shrank: Avg Rate shrinks per rack
message.units.
singular.second
kaf ka_i sr_shri nks_r at e | Number of times ISR for a message.units. | cluster, kafka, |CDH 5, CDH 6
partition shrank shrinks per rack
second
kaf ka_j oi n_group_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _time_75th_ to JoinGroup requests: 75th rack
percentile Percentile
kaf ka_j oi n_group_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6

local time_999th_
percentile

to JoinGroup requests: 999th
Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_j oi n_group_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _time_99th_ to JoinGroup requests: 99th rack
percentile Percentile
kaf ka_j oi n_group_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal tinme_avg to JoinGroup requests: Avg rack
kaf ka_j oi n_group_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _time_nax to JoinGroup requests: Max rack
kaf ka_j oi n_group_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
[ocal _time_medi an to JoinGroup requests: 50th rack

Percentile
kaf ka_j oi n_group_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
local _tinme_mn to JoinGroup requests: Min rack
kaf ka_j oi n_group_ Local Time spent in responding |requests per | cluster, kafka, |CDH 5, CDH 6
local _tinme_rate to JoinGroup requests: Samples | second rack
kaf ka_j oi n_group_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _time_stddev to JoinGroup requests: Standard rack

Deviation
kaf ka_j oi n_group_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
remote _tine_75th_ responding to JoinGroup rack
percentile requests: 75th Percentile
kaf ka_j oi n_group_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_time_999th_ responding to JoinGroup rack
percentile requests: 999th Percentile
kaf ka_j oi n_group_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote time_99th_ responding to JoinGroup rack
percentile requests: 99th Percentile
kaf ka_j oi n_group_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_time_avg responding to JoinGroup rack

requests: Avg
kaf ka_j oi n_group_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_tinme_max responding to JoinGroup rack

requests: Max
kaf ka_j oi n_group_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_time_nedi an responding to JoinGroup rack

requests: 50th Percentile
kaf ka_j oi n_group_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_tinme_mn responding to JoinGroup rack

requests: Min
kaf ka_j oi n_group_ Remote Time spent in requests per | cluster, kafka, |CDH 5, CDH 6
renote tinme_rate responding to JoinGroup second rack

requests: Samples
kaf ka_j oi n_group_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_tine_stddev responding to JoinGroup rack

requests: Standard Deviation

Metric Name Description Unit Parents CDH Version
kaf ka_j oi n_group_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_time_ responding to JoinGroup rack
75t h_percentile requests: 75th Percentile
kaf ka_j oi n_group_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request queue_tine_ responding to JoinGroup rack
999t h_percentile requests: 999th Percentile
kaf ka_j oi n_group_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request queue_tinme_ responding to JoinGroup rack
99t h_percentile requests: 99th Percentile
kaf ka_j oi n_group_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti me_avg | responding to JoinGroup rack
requests: Avg
kaf ka_j oi n_group_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti ne_max |responding to JoinGroup rack
requests: Max
kaf ka_j oi n_group_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request queue_tinme_ responding to JoinGroup rack
nmedi an requests: 50th Percentile
kaf ka_j oi n_group_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti ne_m n |responding to JoinGroup rack
requests: Min
kaf ka_j oi n_group_ Request Queue Time spentin |requests per |cluster, kafka, |CDH 5, CDH 6
request queue_tine_ responding to JoinGroup second rack
rate requests: Samples
kaf ka_j oi n_group_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request queue_time_ responding to JoinGroup rack
st ddev requests: Standard Deviation
kaf ka_j oi n_group_ Number of JoinGroup requests: | requests per | cluster, kafka, |CDH 5, CDH 6
requests_15mi n_rate 15 Min Rate message.units. | rack
singular.second
kaf ka_j oi n_group_ Number of JoinGroup requests: | requests per | cluster, kafka, |CDH 5, CDH 6
requests_1mn_rate 1 Min Rate message.units. | rack
singular.second
kaf ka_j oi n_group_ Number of JoinGroup requests: | requests per | cluster, kafka, |CDH 5, CDH 6
requests 5mn_rate 5 Min Rate message.units. | rack
singular.second
kaf ka_j oi n_group_ Number of JoinGroup requests: |requests per | cluster, kafka, |CDH 5, CDH 6
requests_avg_rate Avg Rate message.units. | rack
singular.second
kaf ka_j oi n_group_ Number of JoinGroup requests |requests per |cluster, kafka, |CDH 5, CDH 6
requests_rate second rack
kaf ka_j oi n_group_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6

response_queue_time_
75t h_percentile

responding to JoinGroup
requests: 75th Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_j oi n_group_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to JoinGroup rack
999t h_percentile requests: 999th Percentile
kaf ka_j oi n_group_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to JoinGroup rack
99t h_percentile requests: 99th Percentile
kaf ka_j oi n_group_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to JoinGroup rack
avg requests: Avg
kaf ka_j oi n_group_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to JoinGroup rack
max requests: Max
kaf ka_j oi n_group_ Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |respondingto JoinGroup rack
medi an requests: 50th Percentile
kaf ka_j oi n_group_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to JoinGroup rack
nmn requests: Min
kaf ka_j oi n_group_ Response Queue Time spent in | requests per | cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to JoinGroup second rack
rate requests: Samples
kaf ka_j oi n_group_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to JoinGroup rack
st ddev requests: Standard Deviation
kaf ka_j oi n_group_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_tinme_ responding to JoinGroup rack
75th_percentile requests: 75th Percentile
kaf ka_j oi n_group_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_tine_ responding to JoinGroup rack
999t h_percentile requests: 999th Percentile
kaf ka_j oi n_group_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_tine_ responding to JoinGroup rack
99t h_percentile requests: 99th Percentile
kaf ka_j oi n_group_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_avg |responding to JoinGroup rack

requests: Avg
kaf ka_j oi n_group_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_max |responding to JoinGroup rack

requests: Max
kaf ka_j oi n_group_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_tine_ responding to JoinGroup rack
medi an requests: 50th Percentile
kaf ka_j oi n_group_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6

response_send_tine_min

responding to JoinGroup
requests: Min

rack

Metric Name Description Unit Parents CDH Version
kaf ka_j oi n_group_ Response Send Time spentin | requests per | cluster, kafka, |CDH 5, CDH 6
response_send_time_ responding to JoinGroup second rack
rate requests: Samples
kaf ka_j oi n_group_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_tinme_ responding to JoinGroup rack
st ddev requests: Standard Deviation
kaf ka_j oi n_group_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total tine 75th_ to JoinGroup requests: 75th rack
percentile Percentile
kaf ka_j oi n_group_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tinme_999th_ to JoinGroup requests: 999th rack
percentile Percentile
kaf ka_j oi n_group_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _time_99th_ to JoinGroup requests: 99th rack
percentile Percentile
kaf ka_j oi n_group_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine_avg to JoinGroup requests: Avg rack
kaf ka_j oi n_group_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total tine_nmax to JoinGroup requests: Max rack
kaf ka_j oi n_group_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total tine _nedian to JoinGroup requests: 50th rack

Percentile
kaf ka_j oi n_group_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tinme_mn to JoinGroup requests: Min rack
kaf ka_j oi n_group_ Total Time spent in responding |requests per | cluster, kafka, |CDH 5, CDH 6
total _time_rate to JoinGroup requests: Samples | second rack
kaf ka_j oi n_group_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total tine_stddev to JoinGroup requests: Standard rack

Deviation
kaf ka_| eader _and_i sr_ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
[ocal _tine_75th_ to LeaderAndlsr requests: 75th rack
percentile Percentile
kaf ka_| eader _and_i sr__ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
[ocal _time_999th_ to LeaderAndlsr requests: 999th rack
percentile Percentile
kaf ka_| eader _and_i sr_ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _time_99th_ to LeaderAndlsr requests: 99th rack
percentile Percentile
kaf ka_| eader _and_i sr_ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal tinme_avg to LeaderAndlIsr requests: Avg rack
kaf ka_| eader _and_i sr_ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _time_nax to LeaderAndIsr requests: Max rack
kaf ka_| eader _and_i sr_ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6

[ocal _tine_nedi an

to LeaderAndlsr requests: 50th
Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_| eader _and_i sr_ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
local _time_mn to LeaderAndIsr requests: Min rack
kaf ka_| eader _and_i sr_ |Local Time spent in responding |requests per | cluster, kafka, |CDH 5, CDH 6
local tinme_rate to LeaderAndlsr requests: second rack

Samples
kaf ka_| eader _and_i sr_ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _tine_stddev to LeaderAndlsr requests: rack

Standard Deviation
kaf ka_| eader _and_i sr_ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_time_75th_ responding to LeaderAndlsr rack
percentile requests: 75th Percentile
kaf ka_| eader _and_i sr_ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renmote tinme 999t h_ responding to LeaderAndIsr rack
percentile requests: 999th Percentile
kaf ka_| eader _and_i sr_ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
remote tine _99th_ responding to LeaderAndIsr rack
percentile requests: 99th Percentile
kaf ka_| eader _and_i sr_ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_time_avg responding to LeaderAndIsr rack

requests: Avg
kaf ka_| eader _and_i sr_ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_tinme_max responding to LeaderAndIsr rack

requests: Max
kaf ka_| eader _and_i sr_ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
remote_tinme_medi an responding to LeaderAndIsr rack

requests: 50th Percentile
kaf ka_| eader _and_i sr_ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_time_mn responding to LeaderAndlsr rack

requests: Min
kaf ka_| eader _and_i sr_ |Remote Time spent in requests per | cluster, kafka, |CDH 5, CDH 6
renmote tine _rate responding to LeaderAndIsr second rack

requests: Samples
kaf ka_| eader _and_i sr_ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_time_stddev responding to LeaderAndIsr rack

requests: Standard Deviation
kaf ka_| eader _and_i sr_ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
request queue_time_ responding to LeaderAndlsr rack
75t h_percentile requests: 75th Percentile
kaf ka_| eader _and_i sr_ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
request _queue_time_ responding to LeaderAndIsr rack
999t h_percentile requests: 999th Percentile
kaf ka_| eader _and_i sr_ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6

request _queue_time_
99t h_percentile

responding to LeaderAndIsr
requests: 99th Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_| eader _and_i sr_ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti ne_avg |responding to LeaderAndIsr rack
requests: Avg
kaf ka_| eader _and_i sr_ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti ne_max |responding to LeaderAndIsr rack
requests: Max
kaf ka_| eader _and_i sr_ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
request _queue_time_ responding to LeaderAndlsr rack
nmedi an requests: 50th Percentile
kaf ka_| eader _and_i sr_ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti ne_mi n |responding to LeaderAndIsr rack
requests: Min
kaf ka_| eader _and_i sr_ |Request Queue Time spentin |requests per |cluster, kafka, |CDH 5, CDH 6
request _queue_time_ responding to LeaderAndIsr second rack
rate requests: Samples
kaf ka_| eader _and_i sr_ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
request _queue_time_ responding to LeaderAndIsr rack
st ddev requests: Standard Deviation
kaf ka_| eader _and_i sr_ | Number of LeaderAndlIsr requests per | cluster, kafka, |CDH 5, CDH 6
requests_15nmn_rate requests: 15 Min Rate message.units. | rack
singular.second
kaf ka_| eader _and_i sr_ | Number of LeaderAndIsr requests per | cluster, kafka, |CDH 5, CDH 6
requests_1mn_rate requests: 1 Min Rate message.units. | rack
singular.second
kaf ka_| eader _and_i sr_ | Number of LeaderAndIsr requests per | cluster, kafka, |CDH 5, CDH 6
requests_5S5mn_rate requests: 5 Min Rate message.units. | rack
singular.second
kaf ka_| eader _and_i sr_ | Number of LeaderAndIsr requests per | cluster, kafka, |CDH 5, CDH 6
requests_avg_rate requests: Avg Rate message.units. | rack
singular.second
kaf ka_| eader _and_i sr_ | Number of LeaderAndIsr requests per | cluster, kafka, |CDH 5, CDH 6
requests_rate requests second rack
kaf ka_| eader _and_i sr__ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to LeaderAndlsr rack
75t h_percentile requests: 75th Percentile
kaf ka_| eader _and_i sr_ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to LeaderAndIsr rack
999t h_percentile requests: 999th Percentile
kaf ka_| eader _and_i sr_ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to LeaderAndlsr rack
99t h_percentile requests: 99th Percentile
kaf ka_| eader _and_i sr_ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6

response_queue_time_
avg

responding to LeaderAndIsr
requests: Avg

rack

Metric Name Description Unit Parents CDH Version
kaf ka_| eader _and_i sr_ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to LeaderAndIsr rack
max requests: Max
kaf ka_| eader _and_i sr_ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to LeaderAndlsr rack
nmedi an requests: 50th Percentile
kaf ka_| eader _and_i sr_ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to LeaderAndlsr rack
mn requests: Min
kaf ka_| eader _and_i sr_ |Response Queue Time spentin |requests per |cluster, kafka, |CDH5, CDH 6
response_queue_time_ |responding to LeaderAndlsr second rack
rate requests: Samples
kaf ka_| eader _and_i sr_ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to LeaderAndlsr rack
st ddev requests: Standard Deviation
kaf ka_| eader _and_i sr_ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_time_ responding to LeaderAndlsr rack
75t h_percentile requests: 75th Percentile
kaf ka_| eader _and_i sr_ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_time_ responding to LeaderAndIsr rack
999t h_percentile requests: 999th Percentile
kaf ka_| eader _and_i sr_ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_tinme_ responding to LeaderAndlsr rack
99t h_percentile requests: 99th Percentile
kaf ka_| eader _and_i sr__ |Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_avg |responding to LeaderAndlsr rack

requests: Avg
kaf ka_| eader _and_i sr_ | Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_nax |responding to LeaderAndIsr rack

requests: Max
kaf ka_| eader _and_i sr_ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_tinme_ responding to LeaderAndlsr rack
nmedi an requests: 50th Percentile
kaf ka_| eader _and_i sr__ |Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_ti me_m n |responding to LeaderAndlsr rack

requests: Min
kaf ka_| eader _and_i sr_ | Response Send Time spent in requests per | cluster, kafka, |CDH 5, CDH 6
response_send_tinme_ responding to LeaderAndlsr second rack
rate requests: Samples
kaf ka_| eader _and_i sr__ |Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_tine_ responding to LeaderAndlsr rack
st ddev requests: Standard Deviation
kaf ka_| eader _and_i sr__ |Total Time spent in responding | ms cluster, kafka, |CDH5,CDH 6

total tinme 75th_
percentile

to LeaderAndlsr requests: 75th
Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_| eader _and_i sr_ | Total Time spent in responding |ms cluster, kafka, |CDH 5, CDH 6
total tine_999th_ to LeaderAndlsr requests: 999th rack
percentile Percentile
kaf ka_| eader _and_i sr__ | Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total tine 99th_ to LeaderAndlsr requests: 99th rack
percentile Percentile
kaf ka_| eader _and_i sr__ | Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine_avg to LeaderAndlIsr requests: Avg rack
kaf ka_| eader _and_i sr_ | Total Time spent in responding |ms cluster, kafka, |CDH 5, CDH 6
total tine_max to LeaderAndlsr requests: Max rack
kaf ka_| eader _and_i sr__ |Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine_nedian to LeaderAndlsr requests: 50th rack
Percentile
kaf ka_| eader _and_i sr__ |Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine_mn to LeaderAndIsr requests: Min rack
kaf ka_| eader _and_i sr_ | Total Time spent in responding |requests per |cluster, kafka, |CDH5, CDH 6
total _time_rate to LeaderAndlsr requests: second rack
Samples
kaf ka_| eader _and_i sr__ | Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total tine_stddev to LeaderAndlIsr requests: rack
Standard Deviation
kaf ka_| eader _el ecti on_ | Leader elections: 15 Min Rate | message.units. | cluster, kafka, |CDH 5, CDH 6
15mn_rate elections per | rack
message.units.
singular.second
kaf ka_| eader _el ecti on_ | Leader elections: 1 Min Rate message.units. | cluster, kafka, |CDH 5, CDH 6
Imin_rate elections per | rack
message.units.
singular.second
kaf ka_| eader _el ecti on_ | Leader elections: 5 Min Rate message.units. | cluster, kafka, |CDH 5, CDH 6
5min_rate elections per | rack
message.units.
singular.second
kaf ka_| eader _el ecti on_ | Leader elections: 75th Percentile | ms cluster, kafka, |CDH 5, CDH 6
75t h_percentile rack
kaf ka_| eader el ecti on_ | Leader elections: 999th ms cluster, kafka, |CDH5,CDH 6
999t h_percentile Percentile rack
kaf ka_| eader _el ecti on_ | Leader elections: 99th Percentile | ms cluster, kafka, |CDH 5, CDH 6
99t h_percentile rack
kaf ka_| eader el ecti on_ | Leader elections: Avg ms cluster, kafka, |CDH 5, CDH 6
avg rack
kaf ka_| eader _el ecti on_ |Leader elections: Max ms cluster, kafka, |CDH 5, CDH 6
max rack
kaf ka_| eader _el ecti on_ | Leader elections: 50th Percentile | ms cluster, kafka, |CDH5,CDH 6

nmedi an

rack

Metric Name Description Unit Parents CDH Version
kaf ka_| eader _el ecti on_ |Leader elections: Min ms cluster, kafka, |CDH 5, CDH 6
m n rack
kaf ka_| eader el ecti on_ | Leader elections: Samples message.units. | cluster, kafka, |CDH 5, CDH 6
rate elections per |rack
second
kaf ka_| eader _el ecti on_ | Leader elections: Standard ms cluster, kafka, |CDH 5, CDH 6
st ddev Deviation rack
kaf ka_| eader _repl i cas |Number of leader replicas on replicas cluster, kafka, |CDH5,CDH 6
broker rack
kaf ka_| og_fl ush_15m n_ | Rate of flushing Kafka logs to message.units. | cluster, kafka, |CDH 5, CDH 6
rate disk: 15 Min Rate flushes per rack
message.units.
singular.second
kaf ka_| og_fl ush_1m n_ |Rate of flushing Kafka logs to message.units. | cluster, kafka, |CDH 5, CDH 6
rate disk: 1 Min Rate flushes per rack
message.units.
singular.second
kaf ka_l og_fl ush_5m n_ |Rate of flushing Kafka logs to message.units. | cluster, kafka, |CDH 5, CDH 6
rate disk: 5 Min Rate flushes per rack
message.units.
singular.second
kaf ka_l og_f | ush_75t h_ |Rate of flushing Kafka logs to ms cluster, kafka, |CDH 5, CDH 6
percentile disk: 75th Percentile rack
kaf ka_| og fl ush_999t h_|Rate of flushing Kafka logs to ms cluster, kafka, |CDH 5, CDH 6
percentile disk: 999th Percentile rack
kaf ka_| og_fl ush_99t h_ |Rate of flushing Kafka logs to ms cluster, kafka, |CDH 5, CDH 6
percentile disk: 99th Percentile rack
kaf ka_l og_fl ush_avg Rate of flushing Kafka logs to ms cluster, kafka, |CDH 5, CDH 6
disk: Avg rack
kaf ka_l og_fl ush_max Rate of flushing Kafka logs to ms cluster, kafka, |CDH 5, CDH 6
disk: Max rack
kaf ka_| og_f | ush_nedi an | Rate of flushing Kafka logs to ms cluster, kafka, |CDH 5, CDH 6
disk: 50th Percentile rack
kaf ka_l og_flush_m n Rate of flushing Kafka logs to ms cluster, kafka, |CDH 5, CDH 6
disk: Min rack
kaf ka_l og_flush_rate |Rate of flushing Kafka logs to message.units. | cluster, kafka, |CDH 5, CDH 6
disk: Samples flushes per rack
second
kaf ka_| og_fl ush_st ddev |Rate of flushing Kafka logs to ms cluster, kafka, |CDH 5, CDH 6
disk: Standard Deviation rack
kaf ka_rmax_repl i cati on_|Maximum replication lag on messages cluster, kafka, |CDH 5, CDH 6
| ag broker, across all fetchers, topics rack
and partitions
kaf ka_nmenory_heap_ JVM heap committed memory | bytes cluster, kafka, |CDH 5, CDH 6

comm tted

rack

Metric Name Description Unit Parents CDH Version
kaf ka_menory_heap_i ni t |JVM heap initial memory bytes cluster, kafka, |CDH 5, CDH 6
rack
kaf ka_nmenory_heap_nax |JVM heap max used memory bytes cluster, kafka, |CDH 5, CDH 6
rack
kaf ka_nmenory_heap_used |JVM heap used memory bytes cluster, kafka, |CDH 5, CDH 6
rack
kaf ka_nmenory_total _ JVM heap and non-heap bytes cluster, kafka, |CDH 5, CDH 6
comitted committed memory rack
kaf ka_menory_total _ JVM heap and non-heap initial | bytes cluster, kafka, |CDH 5, CDH 6
init memory rack
kaf ka_rmenory_t ot al _max |JVM heap and non-heap max | bytes cluster, kafka, |CDH 5, CDH 6
initial memory rack
kaf ka_menory_total _ JVM heap and non-heap used | bytes cluster, kafka, |CDH 5, CDH 6
used memory rack
kaf ka_nmessages_ Number of messages written to | messages per | cluster, kafka, |CDH 5, CDH 6
received 15nmn rate topic on this broker: 15 Min Rate | message.units. | rack
singular.second
kaf ka_nessages_ Number of messages written to | messages per | cluster, kafka, |CDH 5, CDH 6
received_1mn_rate topic on this broker: 1 Min Rate | message.units. |rack
singular.second
kaf ka_nmessages_ Number of messages written to | messages per | cluster, kafka, |CDH 5, CDH 6
received _5mn_rate topic on this broker: 5 Min Rate | message.units. | rack
singular.second
kaf ka_nmessages__ Number of messages written to | messages per | cluster, kafka, |CDH 5, CDH 6
received_avg_rate topic on this broker: Avg Rate | message.units. | rack
singular.second
kaf ka_nmessages__ Number of messages written to | messages per | cluster, kafka, |CDH 5, CDH 6
received_rate topic on this broker second rack
kaf ka_met adat a_| ocal _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_75th _percentile |toMetadatarequests: 75th rack
Percentile
kaf ka_met adat a_| ocal _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_999th percentil e |to Metadata requests: 999th rack
Percentile
kaf ka_met adat a_| ocal _ | Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_99th percentile |toMetadatarequests: 99th rack
Percentile
kaf ka_met adat a_| ocal _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_avg to Metadata requests: Avg rack
kaf ka_net adat a_| ocal _ |Local Time spent in responding | ms cluster, kafka, |CDH5,CDH 6
ti me_max to Metadata requests: Max rack
kaf ka_net adat a_| ocal _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6

ti me_nedi an

to Metadata requests: 50th
Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_met adat a_| ocal _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_mn to Metadata requests: Min rack
kaf ka_net adat a_| ocal _ |Local Time spent in responding | requests per | cluster, kafka, |CDH 5, CDH 6
tine_rate to Metadata requests: Samples |second rack
kaf ka_met adat a_| ocal _ | Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
ti me_st ddev to Metadata requests: Standard rack

Deviation
kaf ka_ret adat a_r enot e_ | Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
time_75th _percentile |respondingto Metadata rack

requests: 75th Percentile
kaf ka_ret adat a_r enot e_ | Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
time_999th percentil e |responding to Metadata rack

requests: 999th Percentile
kaf ka_ret adat a_r enot e_ | Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
time_99th percentile |respondingto Metadata rack

requests: 99th Percentile
kaf ka_ret adat a_r enot e_ | Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
time_avg responding to Metadata rack

requests: Avg
kaf ka_met adat a_r enot e_ | Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
time_max responding to Metadata rack

requests: Max
kaf ka_met adat a_r enot e_ | Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
time_median responding to Metadata rack

requests: 50th Percentile
kaf ka_ret adat a_r enot e_ | Remote Time spent in ms cluster, kafka, |CDH5,CDH 6
tinme_mn responding to Metadata rack

requests: Min
kaf ka_ret adat a_r enot e_ | Remote Time spent in requests per | cluster, kafka, |CDH 5, CDH 6
tine_rate responding to Metadata second rack

requests: Samples
kaf ka_ret adat a_r enot e_ | Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
tine_stddev responding to Metadata rack

requests: Standard Deviation
kaf ka_net adat a_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_time_ responding to Metadata rack
75t h_percentile requests: 75th Percentile
kaf ka_net adat a_ Request Queue Time spent in ms cluster, kafka, |CDH5,CDH 6
request _queue_time_ responding to Metadata rack
999t h_percentile requests: 999th Percentile
kaf ka_net adat a_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_time_ responding to Metadata rack
99t h_percentile requests: 99th Percentile
kaf ka_met adat a_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6

request _queue_tine_avg

responding to Metadata
requests: Avg

rack

Metric Name Description Unit Parents CDH Version
kaf ka_met adat a_ Request Queue Time spent in ms cluster, kafka, |CDH5,CDH 6
request _queue_ti ne_max |responding to Metadata rack
requests: Max
kaf ka_net adat a_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_time_ responding to Metadata rack
medi an requests: 50th Percentile
kaf ka_met adat a_ Request Queue Time spent in ms cluster, kafka, |CDH5,CDH 6
request _queue_ti ne_m n |responding to Metadata rack
requests: Min

kaf ka_met adat a_ Request Queue Time spentin | requests per |cluster, kafka, |CDH5, CDH 6
request _queue_time_ responding to Metadata second rack
rate requests: Samples
kaf ka_met adat a_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request queue_tinme_ responding to Metadata rack
st ddev requests: Standard Deviation
kaf ka_met adata__ Number of Metadata requests: |requests per |cluster, kafka, |CDH 5, CDH 6
requests_15nmin_rate 15 Min Rate message.units. | rack

singular.second
kaf ka_met adat a_ Number of Metadata requests: |requests per |cluster, kafka, |CDH5, CDH 6
requests_1mn_rate 1 Min Rate message.units. | rack

singular.second
kaf ka_net adata__ Number of Metadata requests: |requests per |cluster, kafka, |CDH5, CDH 6
requests 5mn_rate 5 Min Rate message.units. | rack

singular.second
kaf ka_met adat a_ Number of Metadata requests: |requests per |cluster, kafka, |CDH5, CDH 6
requests_avg_rate Avg Rate message.units. | rack

singular.second
kaf ka_met adat a_ Number of Metadata requests | requests per | cluster, kafka, |CDH5, CDH 6
requests_rate second rack
kaf ka_net adat a_ Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to Metadata rack
75t h_percentile requests: 75th Percentile
kaf ka_net adat a_ Response Queue Time spentin |ms cluster, kafka, |CDH5,CDH 6
response_queue_time_ |responding to Metadata rack
999t h_percentile requests: 999th Percentile
kaf ka_met adat a_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to Metadata rack
99t h_percentile requests: 99th Percentile
kaf ka_met adat a_ Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to Metadata rack
avg requests: Avg
kaf ka_met adat a__ Response Queue Time spentin | ms cluster, kafka, |CDH5,CDH 6

response_queue_time_
max

responding to Metadata
requests: Max

rack

Metric Name Description Unit Parents CDH Version
kaf ka_net adat a_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to Metadata rack
medi an requests: 50th Percentile
kaf ka_met adat a_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to Metadata rack
m n requests: Min
kaf ka_met adat a__ Response Queue Time spentin |requests per | cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to Metadata second rack
rate requests: Samples
kaf ka_met adat a__ Response Queue Time spentin | ms cluster, kafka, |CDH5,CDH 6
response_queue_time_ |responding to Metadata rack
st ddev requests: Standard Deviation
kaf ka_net adat a_ Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_tine_ responding to Metadata rack
75t h_percentile requests: 75th Percentile
kaf ka_net adat a_ Response Send Time spent in ms cluster, kafka, |CDH5,CDH 6
response_send_time_ responding to Metadata rack
999t h_percentile requests: 999th Percentile
kaf ka_net adat a_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_time_ responding to Metadata rack
99t h_percentile requests: 99th Percentile
kaf ka_met adat a_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_avg |responding to Metadata rack

requests: Avg
kaf ka_net adat a_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_max |responding to Metadata rack

requests: Max
kaf ka_met adat a_ Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_time_ responding to Metadata rack
medi an requests: 50th Percentile
kaf ka_met adat a_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_m n|responding to Metadata rack

requests: Min
kaf ka_met adat a_ Response Send Time spent in requests per | cluster, kafka, |CDH 5, CDH 6
response_send_time_ responding to Metadata second rack
rate requests: Samples
kaf ka_net adata__ Response Send Time spent in ms cluster, kafka, |CDH5,CDH 6
response_send_tinme_ responding to Metadata rack
st ddev requests: Standard Deviation
kaf ka_mnet adat a_t ot al _ | Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_75th _percentil e |toMetadatarequests: 75th rack

Percentile
kaf ka_met adat a_t ot al _ | Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6

time_999th percentile

to Metadata requests: 999th
Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_mnet adat a_t ot al _ | Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_99th_percentil e |toMetadatarequests: 99th rack
Percentile
kaf ka_net adat a_t ot al _ | Total Time spent in responding | ms cluster, kafka, |CDH5,CDH 6
time_avg to Metadata requests: Avg rack
kaf ka_net adat a_t ot al _ | Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
ti me_max to Metadata requests: Max rack
kaf ka_mnet adat a_t ot al _ | Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
ti me_nedi an to Metadata requests: 50th rack
Percentile
kaf ka_met adat a_t ot al _ | Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_mn to Metadata requests: Min rack
kaf ka_met adat a_t ot al _ | Total Time spent in responding |requests per | cluster, kafka, |CDH 5, CDH 6
tine_rate to Metadata requests: Samples |second rack
kaf ka_net adat a_t ot al _ | Total Time spent in responding | ms cluster, kafka, |CDH5,CDH 6
ti me_stddev to Metadata requests: Standard rack
Deviation
kaf ka_m n_replicati on_|Minimum replication rate, across | message.units. | cluster, kafka, |CDH 5, CDH 6
rate all fetchers, topics and partitions. | fetch_requests | rack
Measured in average fetch per message.
requests per sec in the last units.singular.
minute second
kaf ka_network__ The average free capacity of the | message.units. | cluster, kafka, |CDH 5, CDH 6
processor _avg_idle_ network processors: 15 Min Rate | percent_idle | rack
15mn_rate per message.
units.singular.
nanoseconds
kaf ka_net wor k__ The average free capacity of the | message.units. | cluster, kafka, |CDH 5, CDH 6
processor _avg_idle_ network processors: 1 Min Rate | percent_idle | rack
Imn_rate per message.
units.singular.
nanoseconds
kaf ka_network__ The average free capacity of the | message.units. | cluster, kafka, |CDH 5, CDH 6
processor _avg_idle_ network processors: 5 Min Rate | percent_idle | rack
5mn_rate per message.
units.singular.
nanoseconds
kaf ka_network_ The average free capacity of the | message.units. | cluster, kafka, |CDH 5, CDH 6
processor_avg_ idle_ network processors: Avg Rate | percent_idle |rack
avg_rate per message.
units.singular.
nanoseconds
kaf ka_network__ The average free capacity of the | message.units. | cluster, kafka, |CDH 5, CDH 6
processor_avg_ idle_ network processors percent_idle |rack
rate per second
kaf ka_of fline_ Number of unavailable partitions | partitions cluster, kafka, |CDH 5, CDH 6

partitions

rack

Metric Name Description Unit Parents CDH Version
kaf ka_of f set _commi t _ | Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _time_75th_ to OffsetCommit requests: 75th rack
percentile Percentile
kaf ka_of fset _commit_ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal time_999th_ to OffsetCommit requests: 999th rack
percentile Percentile
kaf ka_of fset _conmit_ |Local Time spentin responding | ms cluster, kafka, |CDH 5, CDH 6
local tine 99th_ to OffsetCommit requests: 99th rack
percentile Percentile
kaf ka_of fset _conmit__ |Local Time spentin responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _tine_avg to OffsetCommit requests: Avg rack
kaf ka_of fset _conmit_ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _time_max to OffsetCommit requests: Max rack
kaf ka_of f set _commi t _ | Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _time_nedi an to OffsetCommit requests: 50th rack

Percentile
kaf ka_of fset _commt __ |Local Time spentin responding | ms cluster, kafka, |CDH 5, CDH 6
local _time_mn to OffsetCommit requests: Min rack
kaf ka_of fset _commt __ |Local Time spentin responding |requests per |cluster, kafka, |CDH 5, CDH 6
local tinme_rate to OffsetCommit requests: second rack

Samples
kaf ka_of fset _commt __ |Local Time spentin responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _tine_stddev to OffsetCommit requests: rack

Standard Deviation
kaf ka_of fset _conmmit_ |Remote Time spentin ms cluster, kafka, |CDH 5, CDH 6
renote_time_75th_ responding to OffsetCommit rack
percentile requests: 75th Percentile
kaf ka_of fset _commt__ |Remote Time spentin ms cluster, kafka, |CDH 5, CDH 6
renote_time_999th_ responding to OffsetCommit rack
percentile requests: 999th Percentile
kaf ka_of fset _commt__ |Remote Time spentin ms cluster, kafka, |CDH5,CDH 6
renote_time_99th_ responding to OffsetCommit rack
percentile requests: 99th Percentile
kaf ka_of f set _commi t _ | Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_time_avg responding to OffsetCommit rack

requests: Avg
kaf ka_of fset _commt__ |Remote Time spentin ms cluster, kafka, |CDH 5, CDH 6
renote_tinme_max responding to OffsetCommit rack

requests: Max
kaf ka_of fset _commt__ |Remote Time spentin ms cluster, kafka, |CDH5,CDH 6
renmote _tinme_nedi an responding to OffsetCommit rack

requests: 50th Percentile
kaf ka_of fset _commt__ |Remote Time spentin ms cluster, kafka, |CDH 5, CDH 6

renmote tine _mn

responding to OffsetCommit
requests: Min

rack

Metric Name Description Unit Parents CDH Version
kaf ka_of fset _commit_ |Remote Time spentin requests per | cluster, kafka, |CDH 5, CDH 6
remote tine_rate responding to OffsetCommit second rack
requests: Samples
kaf ka_of fset _commt__ |Remote Time spentin ms cluster, kafka, |CDH 5, CDH 6
renmote_tinme_stddev responding to OffsetCommit rack
requests: Standard Deviation
kaf ka_of fset _commt__ |Request Queue Time spentin ms cluster, kafka, |CDH5,CDH 6
request _queue_time_ responding to OffsetCommit rack
75t h_percentile requests: 75th Percentile
kaf ka_of f set _commi t _ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
request _queue_time_ responding to OffsetCommit rack
999t h_percentile requests: 999th Percentile
kaf ka_of fset _conmmit _ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
request queue_tinme_ responding to OffsetCommit rack
99t h_percentile requests: 99th Percentile
kaf ka_of fset _conmit_ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti nme_avg | responding to OffsetCommit rack
requests: Avg
kaf ka_of fset _conmit_ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti ne_nax |responding to OffsetCommit rack
requests: Max
kaf ka_of fset _conmmit _ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
request queue_tine_ responding to OffsetCommit rack
nmedi an requests: 50th Percentile
kaf ka_of fset _conmit_ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti ne_m n |responding to OffsetCommit rack
requests: Min
kaf ka_of fset _conmmit _ |Request Queue Time spentin |requests per |cluster, kafka, |CDH 5, CDH 6
request queue_tinme_ responding to OffsetCommit second rack
rate requests: Samples
kaf ka_of fset _conmit__ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
request queue_tinme_ responding to OffsetCommit rack
st ddev requests: Standard Deviation
kaf ka_of fset _commt__ | Number of OffsetCommit requests per | cluster, kafka, |CDH 5, CDH 6
requests_15nmin_rate requests: 15 Min Rate message.units. | rack
singular.second
kaf ka_of fset _conmit_ | Number of OffsetCommit requests per | cluster, kafka, |CDH 5, CDH 6
requests _1mn_rate requests: 1 Min Rate message.units. | rack
singular.second
kaf ka_of fset _conmit__ | Number of OffsetCommit requests per | cluster, kafka, |CDH 5, CDH 6
requests 5mn_rate requests: 5 Min Rate message.units. | rack
singular.second
kaf ka_of fset _conmit__ | Number of OffsetCommit requests per | cluster, kafka, |CDH 5, CDH 6

requests_avg rate

requests: Avg Rate

message.units.
singular.second

rack

Metric Name Description Unit Parents CDH Version
kaf ka_of f set _commi t _ | Number of OffsetCommit requests per | cluster, kafka, |CDH 5, CDH 6
requests_rate requests second rack
kaf ka_of fset _commt__ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to OffsetCommit rack
75t h_percentile requests: 75th Percentile
kaf ka_of fset _commt__ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to OffsetCommit rack
999t h_percentile requests: 999th Percentile
kaf ka_of f set _commi t _ | Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to OffsetCommit rack
99t h_percentile requests: 99th Percentile
kaf ka_of fset _conmit_ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to OffsetCommit rack
avg requests: Avg
kaf ka_of fset _conmit__ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to OffsetCommit rack
max requests: Max
kaf ka_of fset _commt __ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to OffsetCommit rack
medi an requests: 50th Percentile
kaf ka_of fset _commt__ |Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to OffsetCommit rack
mn requests: Min
kaf ka_of fset _commt__ |Response Queue Time spentin |requests per |cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to OffsetCommit second rack
rate requests: Samples
kaf ka_of f set _commi t _ | Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to OffsetCommit rack
st ddev requests: Standard Deviation
kaf ka_of fset _commit _ |Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_tinme_ responding to OffsetCommit rack
75t h_percentile requests: 75th Percentile
kaf ka_of fset _conmit_ |Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_tine_ responding to OffsetCommit rack
999t h_percentile requests: 999th Percentile
kaf ka_of fset _commt __ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_tine_ responding to OffsetCommit rack
99t h_percentile requests: 99th Percentile
kaf ka_of fset _commt__ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_avg |responding to OffsetCommit rack

requests: Avg
kaf ka_of fset _commt__ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6

response_send_ti ne_max

responding to OffsetCommit
requests: Max

rack

Metric Name Description Unit Parents CDH Version
kaf ka_of f set _commi t _ | Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_time_ responding to OffsetCommit rack
medi an requests: 50th Percentile
kaf ka_of fset _commit_ |Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_m n |responding to OffsetCommit rack

requests: Min
kaf ka_of fset _comrit_ |Response Send Time spent in requests per | cluster, kafka, |CDH 5, CDH 6
response_send_time_ responding to OffsetCommit second rack
rate requests: Samples
kaf ka_of fset _commit _ |Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_tinme_ responding to OffsetCommit rack
st ddev requests: Standard Deviation
kaf ka_of fset _conmit__ | Total Time spentin responding | ms cluster, kafka, |CDH 5, CDH 6
total tine 75th_ to OffsetCommit requests: 75th rack
percentile Percentile
kaf ka_of fset _commt __ |Total Time spentin responding |ms cluster, kafka, |CDH 5, CDH 6
total _tinme_999th_ to OffsetCommit requests: 999th rack
percentile Percentile
kaf ka_of fset _commt __ |Total Time spentin responding |ms cluster, kafka, |CDH 5, CDH 6
total time _99th_ to OffsetCommit requests: 99th rack
percentile Percentile
kaf ka_of fset _commt | Total Time spent in responding |ms cluster, kafka, |CDH 5, CDH 6
total _tine_avg to OffsetCommit requests: Avg rack
kaf ka_of fset _commt __ |Total Time spentin responding |ms cluster, kafka, |CDH 5, CDH 6
total _tine_max to OffsetCommit requests: Max rack
kaf ka_of fset _conmit__ | Total Time spentin responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine_nedian to OffsetCommit requests: 50th rack

Percentile
kaf ka_of fset _conmit _ | Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine_mn to OffsetCommit requests: Min rack
kaf ka_of fset _commrit | Total Time spent in responding |requests per | cluster, kafka, |CDH 5, CDH 6
total _time_rate to OffsetCommit requests: second rack

Samples
kaf ka_of f set _commi t _ | Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total tine_stddev to OffsetCommit requests: rack

Standard Deviation
kaf ka_of fset fetch_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _time_75th_ to OffsetFetch requests: 75th rack
percentile Percentile
kaf ka_of f set _fetch_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal time_999th_ to OffsetFetch requests: 999th rack
percentile Percentile
kaf ka_of fset _fetch_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6

local tinme 99th_
percentile

to OffsetFetch requests: 99th
Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_of f set _fetch_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _tinme_avg to OffsetFetch requests: Avg rack
kaf ka_of fset fetch_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
l ocal _tinme_max to OffsetFetch requests: Max rack
kaf ka_of fset fetch_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _tine_nedi an to OffsetFetch requests: 50th rack

Percentile
kaf ka_of fset fetch_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
local _tinme_mn to OffsetFetch requests: Min rack
kaf ka_of fset fetch_ Local Time spent in responding |requests per | cluster, kafka, |CDH5, CDH 6
local _time rate to OffsetFetch requests: Samples | second rack
kaf ka_of fset fetch_ Local Time spent in responding | ms cluster, kafka, |CDH5,CDH 6
| ocal time_stddev to OffsetFetch requests: rack

Standard Deviation
kaf ka_of fset _fetch_ Remote Time spent in ms cluster, kafka, |CDH5,CDH 6
renote_time_75th_ responding to OffsetFetch rack
percentile requests: 75th Percentile
kaf ka_of f set _fetch_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
remote tinme 999t h_ responding to OffsetFetch rack
percentile requests: 999th Percentile
kaf ka_of fset _fetch_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote time_99th_ responding to OffsetFetch rack
percentile requests: 99th Percentile
kaf ka_of fset fetch_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_time_avg responding to OffsetFetch rack

requests: Avg
kaf ka_of fset _fetch_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_tinme_max responding to OffsetFetch rack

requests: Max
kaf ka_of fset _fetch_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_time_nedi an responding to OffsetFetch rack

requests: 50th Percentile
kaf ka_of f set _fetch_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
remote_tinme_mn responding to OffsetFetch rack

requests: Min
kaf ka_of f set _fetch_ Remote Time spent in requests per | cluster, kafka, |CDH 5, CDH 6
remote tine_rate responding to OffsetFetch second rack

requests: Samples
kaf ka_of fset fetch_ Remote Time spent in ms cluster, kafka, |CDH5,CDH 6
remote_tinme_stddev responding to OffsetFetch rack

requests: Standard Deviation
kaf ka_of fset fetch_ Request Queue Time spent in ms cluster, kafka, |CDH5,CDH 6

request _queue_time_
75t h_percentile

responding to OffsetFetch
requests: 75th Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_of f set _fetch_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_time_ responding to OffsetFetch rack
999t h_percentile requests: 999th Percentile
kaf ka_of fset _fetch_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request queue_tine_ responding to OffsetFetch rack
99t h_percentile requests: 99th Percentile
kaf ka_of fset fetch_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti nme_avg | responding to OffsetFetch rack
requests: Avg
kaf ka_of fset _fetch_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti ne_max |responding to OffsetFetch rack
requests: Max
kaf ka_of fset _fetch_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request queue_tinme_ responding to OffsetFetch rack
nmedi an requests: 50th Percentile
kaf ka_of fset fetch_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti ne_m n|responding to OffsetFetch rack
requests: Min
kaf ka_of fset _fetch_ Request Queue Time spentin | requests per |cluster, kafka, |CDH5, CDH 6
request queue_tinme_ responding to OffsetFetch second rack
rate requests: Samples
kaf ka_of fset fetch_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request queue_tine_ responding to OffsetFetch rack
st ddev requests: Standard Deviation
kaf ka_of fset fetch_ Number of OffsetFetch requests: | requests per | cluster, kafka, |CDH 5, CDH 6
requests_15nmin_rate 15 Min Rate message.units. | rack
singular.second
kaf ka_of fset fetch_ Number of OffsetFetch requests: | requests per | cluster, kafka, |CDH5, CDH 6
requests _1mn_rate 1 Min Rate message.units. | rack
singular.second
kaf ka_of fset fetch_ Number of OffsetFetch requests: | requests per | cluster, kafka, |CDH5, CDH 6
requests 5mn_rate 5 Min Rate message.units. | rack
singular.second
kaf ka_of fset fetch_ Number of OffsetFetch requests: | requests per | cluster, kafka, |CDH 5, CDH 6
requests_avg_rate Avg Rate message.units. | rack
singular.second
kaf ka_of fset _fetch_ Number of OffsetFetch requests | requests per | cluster, kafka, |CDH5, CDH 6
requests_rate second rack
kaf ka_of f set _fetch_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to OffsetFetch rack
75t h_percentile requests: 75th Percentile
kaf ka_of fset _fetch_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6

response_queue_time_
999t h_percentile

responding to OffsetFetch
requests: 999th Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_of f set _fetch_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to OffsetFetch rack
99t h_percentile requests: 99th Percentile
kaf ka_of fset _fetch_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to OffsetFetch rack
avg requests: Avg
kaf ka_of fset fetch_ Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to OffsetFetch rack
max requests: Max
kaf ka_of fset fetch_ Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to OffsetFetch rack
nmedi an requests: 50th Percentile
kaf ka_of fset fetch_ Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to OffsetFetch rack
m n requests: Min
kaf ka_of fset _fetch_ Response Queue Time spent in |requests per | cluster, kafka, |CDH5, CDH 6
response_queue_time_ |responding to OffsetFetch second rack
rate requests: Samples
kaf ka_of f set _fetch_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to OffsetFetch rack
st ddev requests: Standard Deviation
kaf ka_of fset _fetch_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_tinme_ responding to OffsetFetch rack
75t h_percentile requests: 75th Percentile
kaf ka_of fset fetch_ Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_tine_ responding to OffsetFetch rack
999t h_percentile requests: 999th Percentile
kaf ka_of fset fetch_ Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_tine_ responding to OffsetFetch rack
99t h_percentile requests: 99th Percentile
kaf ka_of fset fetch_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_avg | responding to OffsetFetch rack

requests: Avg
kaf ka_of fset fetch_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_ti nme_nax |responding to OffsetFetch rack

requests: Max
kaf ka_of fset fetch_ Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_tine_ responding to OffsetFetch rack
nmedi an requests: 50th Percentile
kaf ka_of fset fetch_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_ti me_m n |responding to OffsetFetch rack

requests: Min
kaf ka_of fset fetch_ Response Send Time spent in requests per | cluster, kafka, |CDH 5, CDH 6

response_send_time_
rate

responding to OffsetFetch
requests: Samples

second

rack

Metric Name Description Unit Parents CDH Version
kaf ka_of f set _fetch_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_time_ responding to OffsetFetch rack
st ddev requests: Standard Deviation
kaf ka_of fset _fetch_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total tine 75th_ to OffsetFetch requests: 75th rack
percentile Percentile
kaf ka_of fset fetch_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total tine 999th_ to OffsetFetch requests: 999th rack
percentile Percentile
kaf ka_of fset fetch_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _time_99th_ to OffsetFetch requests: 99th rack
percentile Percentile
kaf ka_of fset fetch_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine_avg to OffsetFetch requests: Avg rack
kaf ka_of fset fetch_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine_max to OffsetFetch requests: Max rack
kaf ka_of fset _fetch_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine _nedian to OffsetFetch requests: 50th rack
Percentile
kaf ka_of f set _fetch_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine_mn to OffsetFetch requests: Min rack
kaf ka_of fset _fetch_ Total Time spent in responding | requests per | cluster, kafka, |CDH 5, CDH 6
total _tine_rate to OffsetFetch requests: Samples | second rack
kaf ka_of fset fetch_ Total Time spent in responding | ms cluster, kafka, |CDH5,CDH 6
total _time_stddev to OffsetFetch requests: rack
Standard Deviation
kaf ka_of f sets The size of the offsets cache groups cluster, kafka, |CDH5,CDH 6
rack
kaf ka_of f set s_groups | The number of consumer groups | groups cluster, kafka, |CDH 5, CDH 6
in the offsets cache rack
kaf ka_of fsets | ocal _ |Local Time spentin responding | ms cluster, kafka, |CDH 5, CDH 6
time_75th _percentil e |toOffsetsrequests: 75th rack
Percentile
kaf ka_of fsets_| ocal _ |Local Time spentin responding | ms cluster, kafka, |CDH 5, CDH 6
time_999th _percentil e |toOffsets requests: 999th rack
Percentile
kaf ka_of fsets_| ocal _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_99th percentile |toOffsetsrequests: 99th rack
Percentile
kaf ka_of f sets_| ocal _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_avg to Offsets requests: Avg rack
kaf ka_of fsets | ocal _ |Local Time spentin responding | ms cluster, kafka, |CDH5,CDH 6

ti me_max

to Offsets requests: Max

rack

Metric Name Description Unit Parents CDH Version
kaf ka_of f sets_l| ocal _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
ti me_nedi an to Offsets requests: 50th rack

Percentile
kaf ka_of fsets | ocal _ |Local Time spentin responding | ms cluster, kafka, |CDH5,CDH 6
tinme_mn to Offsets requests: Min rack
kaf ka_of fsets_| ocal _ |Local Time spentin responding |requests per |cluster, kafka, |CDH 5, CDH 6
time_rate to Offsets requests: Samples second rack
kaf ka_of fsets_| ocal _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
ti me_stddev to Offsets requests: Standard rack

Deviation
kaf ka_of fsets_renot e_ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
time_75th _percentil e |respondingto Offsets requests: rack

75th Percentile
kaf ka_of fsets_renote_ |Remote Time spentin ms cluster, kafka, |CDH 5, CDH 6
time_999th _percentil e |responding to Offsets requests: rack

999th Percentile
kaf ka_of f sets_renpt e_ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
time_99th percentile |respondingto Offsets requests: rack

99th Percentile
kaf ka_of fsets_renpt e_ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
time_avg responding to Offsets requests: rack

Avg
kaf ka_of f set s_r enpt e_ | Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
time_max responding to Offsets requests: rack

Max
kaf ka_of fsets_renpt e_ |Remote Time spent in ms cluster, kafka, |CDH5,CDH 6
tinme_medi an responding to Offsets requests: rack

50th Percentile
kaf ka_of fsets_renpt e_ |Remote Time spent in ms cluster, kafka, |CDH5,CDH 6
tinme_mn responding to Offsets requests: rack

Min
kaf ka_of fsets_renpt e_ |Remote Time spent in requests per | cluster, kafka, |CDH 5, CDH 6
tine_rate responding to Offsets requests: |second rack

Samples
kaf ka_of fsets_renpt e_ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
ti me_stddev responding to Offsets requests: rack

Standard Deviation
kaf ka_of f set s_request _|Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
queue_time_75th_ responding to Offsets requests: rack
percentile 75th Percentile
kaf ka_of f set s_request _|Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
queue_time_999th_ responding to Offsets requests: rack
percentile 999th Percentile
kaf ka_of f set s_request _|Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6

queue_time_99th_
percentile

responding to Offsets requests:

99th Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_of f set s_r equest _ | Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
gueue_ti me_avg responding to Offsets requests: rack
Avg
kaf ka_of f set s_request _|Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
gueue_ti me_max responding to Offsets requests: rack
Max
kaf ka_of f set s_request _|Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
gueue_ti me_medi an responding to Offsets requests: rack
50th Percentile
kaf ka_of f set s_request _|Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
gqueue_time_mn responding to Offsets requests: rack
Min
kaf ka_of f set s_request _|Request Queue Time spentin |requests per |cluster, kafka, |CDH 5, CDH 6
queue_time_rate responding to Offsets requests: | second rack
Samples
kaf ka_of f set s_request _|Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
gqueue_ti me_st ddev responding to Offsets requests: rack
Standard Deviation
kaf ka_of fsets_ Number of Offsets requests: 15 |requests per | cluster, kafka, |CDH 5, CDH 6
requests_15nmin_rate Min Rate message.units. | rack
singular.second
kaf ka_of fsets_ Number of Offsets requests: 1 |requests per | cluster, kafka, |CDH 5, CDH 6
requests_1mn_rate Min Rate message.units. | rack
singular.second
kaf ka_of fsets_ Number of Offsets requests: 5 |requests per | cluster, kafka, |CDH 5, CDH 6
requests 5mn_rate Min Rate message.units. | rack
singular.second
kaf ka_of fsets_ Number of Offsets requests: Avg | requests per | cluster, kafka, |CDH5, CDH 6
requests_avg_rate Rate message.units. | rack
singular.second
kaf ka_of fsets_ Number of Offsets requests requests per | cluster, kafka, |CDH 5, CDH 6
requests_rate second rack
kaf ka_of fsets_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to Offsets requests: rack
75t h_percentile 75th Percentile
kaf ka_of fsets_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to Offsets requests: rack
999t h_percentile 999th Percentile
kaf ka_of fsets_ Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to Offsets requests: rack
99t h_percentile 99th Percentile
kaf ka_of fsets_ Response Queue Time spentin | ms cluster, kafka, |CDH5,CDH 6

response_queue_time_
avg

responding to Offsets requests:
Avg

rack

Metric Name Description Unit Parents CDH Version
kaf ka_of fsets_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_ti me_ |responding to Offsets requests: rack
max Max
kaf ka_of fsets_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to Offsets requests: rack
medi an 50th Percentile
kaf ka_of fsets_ Response Queue Time spentin |ms cluster, kafka, |CDH5,CDH 6
response_queue_time_ |responding to Offsets requests: rack
nmn Min
kaf ka_of fsets_ Response Queue Time spentin |requests per | cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to Offsets requests: | second rack
rate Samples
kaf ka_of fsets__ Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to Offsets requests: rack
st ddev Standard Deviation
kaf ka_of fsets__ Response Send Time spent in ms cluster, kafka, |CDH5,CDH 6
response_send_time_ responding to Offsets requests: rack
75t h_percentile 75th Percentile
kaf ka_of fsets_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_time_ responding to Offsets requests: rack
999t h_percentile 999th Percentile
kaf ka_of fsets_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_tinme_ responding to Offsets requests: rack
99t h_percentile 99th Percentile
kaf ka_of fsets_ Response Send Time spent in ms cluster, kafka, |CDH5,CDH 6
response_send_ti ne_avg |responding to Offsets requests: rack

Avg
kaf ka_of fsets_ Response Send Time spent in ms cluster, kafka, |CDH5,CDH 6
response_send_ti ne_nax |responding to Offsets requests: rack

Max
kaf ka_of fsets_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_tinme_ responding to Offsets requests: rack
medi an 50th Percentile
kaf ka_of fsets_ Response Send Time spent in ms cluster, kafka, |CDH5,CDH 6
response_send_ti ne_m n |responding to Offsets requests: rack

Min
kaf ka_of fsets_ Response Send Time spent in requests per | cluster, kafka, |CDH 5, CDH 6
response_send_tinme_ responding to Offsets requests: |second rack
rate Samples
kaf ka_of fsets_ Response Send Time spent in ms cluster, kafka, |CDH5,CDH 6
response_send_tinme_ responding to Offsets requests: rack
st ddev Standard Deviation
kaf ka_of fsets _total _|Total Time spentin responding |ms cluster, kafka, |CDH5,CDH 6

time_75th_percentile

to Offsets requests: 75th
Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_of fsets_total _ |Total Time spentin responding |ms cluster, kafka, |CDH 5, CDH 6
time_999t h_percentil e |to Offsets requests: 999th rack

Percentile
kaf ka_of fsets _total _|Total Time spentin responding |ms cluster, kafka, |CDH5,CDH 6
time_99th _percentile |toOffsetsrequests: 99th rack

Percentile
kaf ka_of fsets_total _|Total Time spentin responding |ms cluster, kafka, |CDH5,CDH 6
time_avg to Offsets requests: Avg rack
kaf ka_of fsets_total _|Total Time spentin responding |ms cluster, kafka, |CDH 5, CDH 6
ti me_max to Offsets requests: Max rack
kaf ka_of fsets _total _|Total Time spentin responding |ms cluster, kafka, |CDH 5, CDH 6
ti me_nedi an to Offsets requests: 50th rack

Percentile
kaf ka_of fsets_total _ |Total Time spentin responding | ms cluster, kafka, |CDH 5, CDH 6
time_mn to Offsets requests: Min rack
kaf ka_of fsets_total _ |Total Time spentin responding |requests per |cluster, kafka, |CDH 5, CDH 6
tine_rate to Offsets requests: Samples second rack
kaf ka_of fsets_total _|Total Time spentin responding |ms cluster, kafka, |CDH 5, CDH 6
ti me_stddev to Offsets requests: Standard rack

Deviation
kaf ka_partitions Number of partitions (lead or | partitions cluster, kafka, |CDH 5, CDH 6

follower replicas) on broker rack
kaf ka_preferred_ Number of partitions where the | partitions cluster, kafka, |CDH 5, CDH 6
replica_i nbal ance lead replica is not the preferred rack

replica
kaf ka_produce_l ocal _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_75th_percentil e |toProducerequests: 75th rack

Percentile
kaf ka_produce_l ocal _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_999t h _percentil e |toProduce requests: 999th rack

Percentile
kaf ka_produce_l ocal _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_99th percentile |toProduce requests: 99th rack

Percentile
kaf ka_produce_l ocal _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_avg to Produce requests: Avg rack
kaf ka_produce_l ocal _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_max to Produce requests: Max rack
kaf ka_produce_| ocal _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
ti me_nedi an to Produce requests: 50th rack

Percentile
kaf ka_produce_| ocal _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_mn to Produce requests: Min rack
kaf ka_produce_l ocal _ |Local Time spent in responding |requests per | cluster, kafka, |CDH 5, CDH 6

time_rate

to Produce requests: Samples

second

rack

Metric Name Description Unit Parents CDH Version
kaf ka_produce_l ocal _ |Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
tine_stddev to Produce requests: Standard rack

Deviation
kaf ka_produce_r enpt e_ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
time_75th_percentil e |respondingtoProducerequests: rack

75th Percentile
kaf ka_produce_r enpt e_ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
time_999t h_percentil e |respondingto Produce requests: rack

999th Percentile
kaf ka_produce_r enpt e_ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
time_99th _percentil e |respondingtoProducerequests: rack

99th Percentile
kaf ka_produce_r enpt e_ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
time_avg responding to Produce requests: rack

Avg
kaf ka_produce_r enpt e_ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
ti me_max responding to Produce requests: rack

Max
kaf ka_pr oduce_r enpt e_ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
ti me_nedi an responding to Produce requests: rack

50th Percentile
kaf ka_pr oduce_r enpt e_ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
time_mn responding to Produce requests: rack

Min
kaf ka_pr oduce_r enpt e_ |Remote Time spent in requests per | cluster, kafka, |CDH 5, CDH 6
time_rate responding to Produce requests: | second rack

Samples
kaf ka_produce_r enpt e_ |Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
ti me_stddev responding to Produce requests: rack

Standard Deviation
kaf ka_produce_r equest _ | Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
queue_tinme_75th_ responding to Produce requests: rack
percentile 75th Percentile
kaf ka_produce_r equest _ | Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
queue_tinme_999th_ responding to Produce requests: rack
percentile 999th Percentile
kaf ka_produce_r equest _ | Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
queue_tinme_99th_ responding to Produce requests: rack
percentile 99th Percentile
kaf ka_produce_r equest _ |Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
gueue_ti me_avg responding to Produce requests: rack

Avg
kaf ka_produce_r equest _ |Request Queue Time spentin |ms cluster, kafka, |CDH5,CDH 6

gueue_ti me_max

responding to Produce requests:
Max

rack

Metric Name Description Unit Parents CDH Version
kaf ka_produce_r equest _|Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
gueue_ti me_nedi an responding to Produce requests: rack
50th Percentile
kaf ka_produce_r equest _|Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
gueue_time_mn responding to Produce requests: rack
Min
kaf ka_produce_r equest _ | Request Queue Time spentin | requests per |cluster, kafka, |CDH 5, CDH 6
gqueue_time_rate responding to Produce requests: | second rack
Samples
kaf ka_produce_r equest _|Request Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
gueue_ti me_st ddev responding to Produce requests: rack
Standard Deviation
kaf ka_produce_ Number of Produce requests: 15 | requests per | cluster, kafka, |CDH 5, CDH 6
requests_15min_rate Min Rate message.units. | rack
singular.second
kaf ka_produce_ Number of Produce requests: 1 | requests per | cluster, kafka, |CDH 5, CDH 6
requests _1mn_rate Min Rate message.units. | rack
singular.second
kaf ka_produce_ Number of Produce requests: 5 |requests per | cluster, kafka, |CDH 5, CDH 6
requests 5mn_rate Min Rate message.units. | rack
singular.second
kaf ka_produce_ Number of Produce requests: |requests per |cluster, kafka, |CDH 5, CDH 6
requests_avg_rate Avg Rate message.units. | rack
singular.second
kaf ka_produce_ Number of Produce requests requests per | cluster, kafka, |CDH 5, CDH 6
requests_rate second rack
kaf ka_pr oduce_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |respondingto Produce requests: rack
75t h_percentile 75th Percentile
kaf ka_produce_ Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |respondingto Produce requests: rack
999t h_percentile 999th Percentile
kaf ka_produce_ Response Queue Time spentin | ms cluster, kafka, |CDH5,CDH 6
response_queue_time_ |respondingto Produce requests: rack
99t h_percentile 99th Percentile
kaf ka_produce_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_ti me_ |respondingto Produce requests: rack
avg Avg
kaf ka_produce_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |respondingto Produce requests: rack
max Max
kaf ka_produce_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6

response_queue_ti me_
medi an

responding to Produce requests:
50th Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_pr oduce_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |respondingto Produce requests: rack
mn Min
kaf ka_produce_ Response Queue Time spentin |requests per | cluster, kafka, |CDH5, CDH 6
response_queue_time_ |respondingto Produce requests: | second rack
rate Samples
kaf ka_produce_ Response Queue Time spentin |ms cluster, kafka, |CDH5,CDH 6
response_queue_time_ |respondingto Produce requests: rack
st ddev Standard Deviation
kaf ka_produce_ Response Send Time spent in ms cluster, kafka, |CDH5,CDH 6
response_send_tinme_ responding to Produce requests: rack
75t h_percentile 75th Percentile
kaf ka_produce_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_time_ responding to Produce requests: rack
999t h_percentile 999th Percentile
kaf ka_produce_ Response Send Time spent in ms cluster, kafka, |CDH5,CDH 6
response_send_time_ responding to Produce requests: rack
99t h_percentile 99th Percentile
kaf ka_produce_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_avg | responding to Produce requests: rack

Avg
kaf ka_produce_ Response Send Time spent in ms cluster, kafka, |CDH5,CDH 6
response_send_ti ne_max |responding to Produce requests: rack

Max
kaf ka_produce_ Response Send Time spent in ms cluster, kafka, |CDH5,CDH 6
response_send_time_ responding to Produce requests: rack
medi an 50th Percentile
kaf ka_produce_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_mi n |responding to Produce requests: rack

Min
kaf ka_produce_ Response Send Time spent in requests per | cluster, kafka, |CDH 5, CDH 6
response_send_time_ responding to Produce requests: | second rack
rate Samples
kaf ka_pr oduce_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_time_ responding to Produce requests: rack
st ddev Standard Deviation
kaf ka_produce_total _ |Total Time spent in responding |ms cluster, kafka, |CDH 5, CDH 6
time_75th _percentile |toProduce requests: 75th rack

Percentile
kaf ka_produce_total _ |Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_999th percentil e |toProduce requests: 999th rack

Percentile
kaf ka_produce_total _ |Total Time spentin responding |ms cluster, kafka, |CDH 5, CDH 6

time_99th _percentile

to Produce requests: 99th
Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_produce_total _ |Total Time spentin responding |ms cluster, kafka, |CDH 5, CDH 6
time_avg to Produce requests: Avg rack
kaf ka_produce_total _|Total Time spentin responding |ms cluster, kafka, |CDH 5, CDH 6
ti me_max to Produce requests: Max rack
kaf ka_produce_total _ |Total Time spentin responding | ms cluster, kafka, |CDH 5, CDH 6
ti me_nedi an to Produce requests: 50th rack
Percentile
kaf ka_produce_total _ |Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
time_mn to Produce requests: Min rack
kaf ka_produce_total _ |Total Time spent in responding |requests per |cluster, kafka, |CDH 5, CDH 6
time_rate to Produce requests: Samples | second rack
kaf ka_produce_total _|Total Time spentin responding |ms cluster, kafka, |CDH 5, CDH 6
tine_stddev to Produce requests: Standard rack
Deviation
kaf ka_producer _ Number of expired delayed requests per | cluster, kafka, |CDH 5, CDH 6
expires_15nm n_rate producer requests: 15 Min Rate | message.units. | rack
singular.second
kaf ka_producer _ Number of expired delayed requests per | cluster, kafka, |CDH 5, CDH 6
expires_1mn_rate producer requests: 1 Min Rate | message.units. |rack
singular.second
kaf ka_producer _ Number of expired delayed requests per | cluster, kafka, |CDH 5, CDH 6
expires_bSmin_rate producer requests: 5 Min Rate | message.units. | rack
singular.second
kaf ka_producer _ Number of expired delayed requests per | cluster, kafka, |CDH 5, CDH 6
expires_avg_rate producer requests: Avg Rate message.units. | rack
singular.second
kaf ka_pr oducer _ Number of expired delayed requests per | cluster, kafka, |CDH 5, CDH 6
expires_rate producer requests second rack
kaf ka_pr oducer _ Number of requests delayed in | requests cluster, kafka, |CDH 5, CDH 6
purgatory_del ayed_ the producer purgatory rack
requests
kaf ka_pr oducer _ Requests waiting in the producer | requests cluster, kafka, |CDH 5, CDH 6
purgatory_size purgatory. This should be rack
non-zero when acks = -1 is used
in producers
kaf ka_rejected_ Number of message batches sent | message.units. | cluster, kafka, |CDH 5, CDH 6
nessage_bat ches_15m n_ | by producers that the broker message_batches | rack
rate rejected for this topic: 15 Min | per message.
Rate units.singular.
second
kaf ka_rejected_ Number of message batches sent | message.units. | cluster, kafka, |CDH5, CDH 6

nessage_batches_1min_
rate

by producers that the broker
rejected for this topic: 1 Min
Rate

message_
batches per

message.units.
singular.second

rack

Metric Name Description Unit Parents CDH Version
kaf ka_rejected_ Number of message batches sent | message.units. | cluster, kafka, |CDH 5, CDH 6
nmessage_bat ches_5m n_ | by producers that the broker message_ rack
rate rejected for this topic: 5 Min batches per
Rate message.units.

singular.second
kaf ka_rejected_ Number of message batches sent | message.units. | cluster, kafka, |CDH 5, CDH 6
nmessage_bat ches_avg_ | by producers that the broker message_ rack
rate rejected for this topic: Avg Rate | batches per

message.units.

singular.second
kaf ka_rejected_ Number of message batches sent | message.units. | cluster, kafka, |CDH 5, CDH 6
nmessage_bat ches_rate |byproducers that the broker message_ rack

rejected for this topic batches per

second
kaf ka_r equest _handl er _ | The average free capacity of the | message.units. | cluster, kafka, |CDH 5, CDH 6
avg_idle_15min_rate request handler: 15 Min Rate | percent_idle | rack

per message.

units.singular.

nanoseconds
kaf ka_r equest _handl er _ | The average free capacity of the | message.units. | cluster, kafka, |CDH 5, CDH 6
avg_idle_1min_rate request handler: 1 Min Rate percent_idle |rack

per message.

units.singular.

nanoseconds
kaf ka_r equest _handl er _ | The average free capacity of the | message.units. | cluster, kafka, |CDH 5, CDH 6
avg_idle_5min_rate request handler: 5 Min Rate percent_idle |rack

per message.

units.singular.

nanoseconds
kaf ka_r equest _handl er _ | The average free capacity of the | message.units. | cluster, kafka, |CDH 5, CDH 6
avg_idle_avg rate request handler: Avg Rate percent_idle |rack

per message.

units.singular.

nanoseconds
kaf ka_r equest _handl er _ | The average free capacity of the | message.units. | cluster, kafka, |CDH 5, CDH 6
avg idle rate request handler percent_idle |rack

per second
kaf ka_r equest _queue_ |Request Queue Size requests cluster, kafka, |CDH 5, CDH 6
si ze rack
kaf ka_r esponse_queue_ |Response Queue Size message.units. | cluster, kafka, |CDH 5, CDH 6
si ze responses rack
kaf ka_r esponses_bei ng_ | The number of responses being | message.units. | cluster, kafka, |CDH 5, CDH 6
sent sent by the network processors | responses rack
kaf ka_stop_replica_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6

local tine 75th_
percentile

to StopReplica requests: 75th
Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_stop_replica_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _time_999th_ to StopReplica requests: 999th rack
percentile Percentile
kaf ka_stop_replica_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
local tinme 99th_ to StopReplica requests: 99th rack
percentile Percentile
kaf ka_stop_replica_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _tinme_avg to StopReplica requests: Avg rack
kaf ka_stop_replica_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _time_nax to StopReplica requests: Max rack
kaf ka_stop_replica_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal time_nedi an to StopReplica requests: 50th rack

Percentile
kaf ka_stop_replica_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
local _tinme_mn to StopReplica requests: Min rack
kaf ka_stop_replica_ Local Time spent in responding |requests per | cluster, kafka, |CDH 5, CDH 6
local _tinme_rate to StopReplica requests: Samples | second rack
kaf ka_stop_replica_ Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _time_stddev to StopReplica requests: rack

Standard Deviation
kaf ka_stop_replica_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote time_75th_ responding to StopReplica rack
percentile requests: 75th Percentile
kaf ka_stop_replica_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_time_999th_ responding to StopReplica rack
percentile requests: 999th Percentile
kaf ka_stop_replica_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote time_99th_ responding to StopReplica rack
percentile requests: 99th Percentile
kaf ka_stop_replica_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_tinme_avg responding to StopReplica rack

requests: Avg
kaf ka_stop_replica_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_time_max responding to StopReplica rack

requests: Max
kaf ka_stop_replica_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_time_nedi an responding to StopReplica rack

requests: 50th Percentile
kaf ka_stop_replica_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote tinme_mn responding to StopReplica rack

requests: Min
kaf ka_stop_replica_ Remote Time spent in requests per | cluster, kafka, |CDH 5, CDH 6

renote tinme_rate

responding to StopReplica
requests: Samples

second

rack

Metric Name Description Unit Parents CDH Version
kaf ka_stop_replica_ Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_tinme_stddev responding to StopReplica rack
requests: Standard Deviation
kaf ka_stop_replica_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_time_ responding to StopReplica rack
75t h_percentile requests: 75th Percentile
kaf ka_stop_replica_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_time_ responding to StopReplica rack
999t h _percentile requests: 999th Percentile
kaf ka_stop_replica_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request queue_tinme_ responding to StopReplica rack
99t h_percentile requests: 99th Percentile
kaf ka_stop_replica_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti ne_avg | responding to StopReplica rack
requests: Avg
kaf ka_stop_replica_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti ne_max |responding to StopReplica rack
requests: Max
kaf ka_stop_replica_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request queue_tinme_ responding to StopReplica rack
medi an requests: 50th Percentile
kaf ka_stop_replica_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti ne_m n|responding to StopReplica rack
requests: Min
kaf ka_stop_replica_ Request Queue Time spentin |requests per |cluster, kafka, |CDH 5, CDH 6
request queue_tinme_ responding to StopReplica second rack
rate requests: Samples
kaf ka_stop_replica_ Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request queue_tinme_ responding to StopReplica rack
st ddev requests: Standard Deviation
kaf ka_stop_replica_ Number of StopReplica requests: | requests per | cluster, kafka, |CDH 5, CDH 6
requests_15min_rate 15 Min Rate message.units. | rack
singular.second
kaf ka_stop_replica_ Number of StopReplica requests: | requests per | cluster, kafka, |CDH 5, CDH 6
requests _1mn_rate 1 Min Rate message.units. | rack
singular.second
kaf ka_stop_replica_ Number of StopReplica requests: | requests per | cluster, kafka, |CDH 5, CDH 6
requests 5mn_rate 5 Min Rate message.units. | rack
singular.second
kaf ka_stop_replica_ Number of StopReplica requests: | requests per | cluster, kafka, |CDH 5, CDH 6
requests_avg_rate Avg Rate message.units. | rack
singular.second
kaf ka_stop_replica_ Number of StopReplica requests | requests per | cluster, kafka, |CDH 5, CDH 6

requests_rate

second

rack

Metric Name Description Unit Parents CDH Version
kaf ka_stop_replica_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to StopReplica rack
75t h_percentile requests: 75th Percentile
kaf ka_stop_replica_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to StopReplica rack
999t h_percentile requests: 999th Percentile
kaf ka_stop_replica_ Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to StopReplica rack
99t h_percentile requests: 99th Percentile
kaf ka_stop_replica_ Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to StopReplica rack
avg requests: Avg
kaf ka_stop_replica_ Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to StopReplica rack
max requests: Max
kaf ka_stop_replica_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to StopReplica rack
medi an requests: 50th Percentile
kaf ka_stop_replica_ Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to StopReplica rack
mn requests: Min
kaf ka_stop_replica_ Response Queue Time spent in |requests per | cluster, kafka, |CDH5, CDH 6
response_queue_time_ |responding to StopReplica second rack
rate requests: Samples
kaf ka_stop_replica_ Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to StopReplica rack
st ddev requests: Standard Deviation
kaf ka_stop_replica_ Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_tinme_ responding to StopReplica rack
75t h_percentile requests: 75th Percentile
kaf ka_stop_replica_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_time_ responding to StopReplica rack
999t h_percentile requests: 999th Percentile
kaf ka_stop_replica_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_time_ responding to StopReplica rack
99t h_percentile requests: 99th Percentile
kaf ka_stop_replica_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_avg | responding to StopReplica rack

requests: Avg
kaf ka_stop_replica_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_max | responding to StopReplica rack

requests: Max
kaf ka_stop_replica_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6

response_send_time_
medi an

responding to StopReplica
requests: 50th Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_stop_replica_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_mi n|responding to StopReplica rack
requests: Min
kaf ka_stop_replica_ Response Send Time spentin | requests per | cluster, kafka, |CDH 5, CDH 6
response_send_time_ responding to StopReplica second rack
rate requests: Samples
kaf ka_stop_replica_ Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_time_ responding to StopReplica rack
st ddev requests: Standard Deviation
kaf ka_stop_replica_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine 75th_ to StopReplica requests: 75th rack
percentile Percentile
kaf ka_stop_replica_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine 999th_ to StopReplica requests: 999th rack
percentile Percentile
kaf ka_stop_replica_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine 99th_ to StopReplica requests: 99th rack
percentile Percentile
kaf ka_stop_replica_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine_avg to StopReplica requests: Avg rack
kaf ka_stop_replica_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total tine_nmax to StopReplica requests: Max rack
kaf ka_stop_replica_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine_nedian to StopReplica requests: 50th rack
Percentile
kaf ka_stop_replica_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tinme_mn to StopReplica requests: Min rack
kaf ka_stop_replica_ Total Time spent in responding |requests per | cluster, kafka, |CDH 5, CDH 6
total _time_rate to StopReplica requests: Samples | second rack
kaf ka_stop_replica_ Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine_stddev to StopReplica requests: rack
Standard Deviation
kaf ka_t hr ead_count JVM daemon and non-daemon |threads cluster, kafka, |CDH 5, CDH 6
thread count rack
kaf ka_uncl ean_| eader _ |Unclean leader elections. message.units. | cluster, kafka, |CDH 5, CDH 6
el ections_15m n_rate |Clouderarecommends disabling |elections per |rack
unclean leader elections, to message.units.
avoid potential data loss, so this | singular.second
should be 0: 15 Min Rate
kaf ka_uncl ean_| eader _ |Unclean leader elections. message.units. | cluster, kafka, |CDH 5, CDH 6

elections_1nmin_rate

Cloudera recommends disabling
unclean leader elections, to
avoid potential data loss, so this
should be 0: 1 Min Rate

elections per
message.units.
singular.second

rack

Metric Name Description Unit Parents CDH Version
kaf ka_uncl ean_| eader _ |Unclean leader elections. message.units. | cluster, kafka, |CDH 5, CDH 6
el ections _5nmin_rate Cloudera recommends disabling | elections per | rack

unclean leader elections, to message.units.

avoid potential data loss, so this | singular.second

should be 0: 5 Min Rate
kaf ka_uncl ean_| eader _ |Unclean leader elections. message.units. | cluster, kafka, |CDH 5, CDH 6
el ections_avg rate Cloudera recommends disabling | elections per | rack

unclean leader elections, to message.units.

avoid potential data loss, so this | singular.second

should be 0: Avg Rate
kaf ka_uncl ean_| eader _ |Unclean leader elections. message.units. | cluster, kafka, |CDH 5, CDH 6
el ections rate Cloudera recommends disabling | elections per | rack

unclean leader elections, to second

avoid potential data loss, so this

should be 0
kaf ka_under _ Number of partitions with partitions cluster, kafka, |CDH 5, CDH 6
replicated_partitions |unavailable replicas rack
kaf ka_updat e_met adat a_ | Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _tine_75th_ to UpdateMetadata requests: rack
percentile 75th Percentile
kaf ka_updat e_met adat a_ | Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
[ocal _tine_999th_ to UpdateMetadata requests: rack
percentile 999th Percentile
kaf ka_updat e_met adat a_ | Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
local _tinme_99th_ to UpdateMetadata requests: rack
percentile 99th Percentile
kaf ka_updat e_net adat a_ | Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _tinme_avg to UpdateMetadata requests: rack

Avg
kaf ka_updat e_met adat a_ | Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
| ocal _time_nax to UpdateMetadata requests: rack

Max
kaf ka_updat e_met adat a_ | Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
[ocal _time_medi an to UpdateMetadata requests: rack

50th Percentile
kaf ka_updat e_met adat a_ | Local Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
local tinme_min to UpdateMetadata requests: rack

Min
kaf ka_updat e_met adat a_ | Local Time spent in responding | requests per | cluster, kafka, |CDH 5, CDH 6
local _tine_rate to UpdateMetadata requests: | second rack

Samples
kaf ka_updat e_net adat a_ | Local Time spent in responding | ms cluster, kafka, |CDH5,CDH 6
| ocal _time_stddev to UpdateMetadata requests: rack

Standard Deviation
kaf ka_updat e_met adat a_ | Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6

renote time_75th_
percentile

responding to UpdateMetadata
requests: 75th Percentile

rack

Metric Name Description Unit Parents CDH Version
kaf ka_updat e_net adat a_ | Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
remote tinme 999t h_ responding to UpdateMetadata rack
percentile requests: 999th Percentile
kaf ka_updat e_met adat a_ | Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote time_99th_ responding to UpdateMetadata rack
percentile requests: 99th Percentile
kaf ka_updat e_met adat a_ | Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_tinme_avg responding to UpdateMetadata rack

requests: Avg
kaf ka_updat e_met adat a_ | Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_tinme_max responding to UpdateMetadata rack

requests: Max
kaf ka_updat e_met adat a_ | Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renote_time_nedi an responding to UpdateMetadata rack

requests: 50th Percentile
kaf ka_updat e_net adat a_ | Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
remote_tinme_mn responding to UpdateMetadata rack

requests: Min
kaf ka_updat e_met adat a_ | Remote Time spent in requests per | cluster, kafka, |CDH 5, CDH 6
remote tine_rate responding to UpdateMetadata | second rack

requests: Samples
kaf ka_updat e_met adat a_ | Remote Time spent in ms cluster, kafka, |CDH 5, CDH 6
renmote_tinme_stddev responding to UpdateMetadata rack

requests: Standard Deviation
kaf ka_updat e_met adat a_ | Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_time_ responding to UpdateMetadata rack
75t h_percentile requests: 75th Percentile
kaf ka_updat e_met adat a_ | Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_time_ responding to UpdateMetadata rack
999t h_percentile requests: 999th Percentile
kaf ka_updat e_met adat a_ | Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request queue_tine_ responding to UpdateMetadata rack
99t h_percentile requests: 99th Percentile
kaf ka_updat e_met adat a_ | Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request _queue_ti ne_avg |responding to UpdateMetadata rack

requests: Avg
kaf ka_updat e_met adat a_ | Request Queue Time spentin | ms cluster, kafka, |CDH5,CDH 6
request _queue_ti ne_nax |responding to UpdateMetadata rack

requests: Max
kaf ka_updat e_met adat a_ | Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request queue_tine_ responding to UpdateMetadata rack
nmedi an requests: 50th Percentile
kaf ka_updat e_met adat a_ | Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6

request _queue_tine _nin

responding to UpdateMetadata
requests: Min

rack

Metric Name Description Unit Parents CDH Version
kaf ka_updat e_met adat a_ | Request Queue Time spentin | requests per | cluster, kafka, |CDH 5, CDH 6
request _queue_time_ responding to UpdateMetadata | second rack
rate requests: Samples
kaf ka_updat e_met adat a_ | Request Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
request queue_tine_ responding to UpdateMetadata rack
st ddev requests: Standard Deviation
kaf ka_updat e_met adat a_ | Number of UpdateMetadata requests per | cluster, kafka, |CDH 5, CDH 6
requests_15nmin_rate requests: 15 Min Rate message.units. | rack

singular.second
kaf ka_updat e_met adat a_ | Number of UpdateMetadata requests per | cluster, kafka, |CDH 5, CDH 6
requests_1mn_rate requests: 1 Min Rate message.units. | rack

singular.second
kaf ka_updat e_met adat a_ | Number of UpdateMetadata requests per | cluster, kafka, |CDH 5, CDH 6
requests 5mn_rate requests: 5 Min Rate message.units. | rack

singular.second
kaf ka_updat e_met adat a_ | Number of UpdateMetadata requests per | cluster, kafka, |CDH 5, CDH 6
requests_avg_rate requests: Avg Rate message.units. | rack

singular.second
kaf ka_updat e_met adat a_ | Number of UpdateMetadata requests per | cluster, kafka, |CDH 5, CDH 6
requests_rate requests second rack
kaf ka_updat e_met adat a_ | Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to UpdateMetadata rack
75t h_percentile requests: 75th Percentile
kaf ka_updat e_net adat a_ | Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to UpdateMetadata rack
999t h_percentile requests: 999th Percentile
kaf ka_updat e_met adat a_ | Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to UpdateMetadata rack
99t h_percentile requests: 99th Percentile
kaf ka_updat e_met adat a_ | Response Queue Time spentin | ms cluster, kafka, |CDH5,CDH 6
response_queue_time_ |responding to UpdateMetadata rack
avg requests: Avg
kaf ka_updat e_met adat a_ | Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to UpdateMetadata rack
max requests: Max
kaf ka_updat e_net adat a_ | Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to UpdateMetadata rack
medi an requests: 50th Percentile
kaf ka_updat e_met adat a_ | Response Queue Time spentin |ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to UpdateMetadata rack
mn requests: Min
kaf ka_updat e_met adat a_ | Response Queue Time spentin |requests per | cluster, kafka, |CDH 5, CDH 6

response_queue_ti me_
rate

responding to UpdateMetadata
requests: Samples

second

rack

Metric Name Description Unit Parents CDH Version
kaf ka_updat e_met adat a_ | Response Queue Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_queue_time_ |responding to UpdateMetadata rack
st ddev requests: Standard Deviation
kaf ka_updat e_mnet adat a_ | Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_tinme_ responding to UpdateMetadata rack
75t h_percentile requests: 75th Percentile
kaf ka_updat e_met adat a_ | Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_tinme_ responding to UpdateMetadata rack
999t h_percentile requests: 999th Percentile
kaf ka_updat e_net adat a_ | Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_tinme_ responding to UpdateMetadata rack
99t h_percentile requests: 99th Percentile
kaf ka_updat e_net adat a_ | Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_avg |responding to UpdateMetadata rack

requests: Avg
kaf ka_updat e_net adat a_ | Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_max |responding to UpdateMetadata rack

requests: Max
kaf ka_updat e_net adat a_ | Response Send Time spent in ms cluster, kafka, |CDH 5, CDH 6
response_send_tinme_ responding to UpdateMetadata rack
medi an requests: 50th Percentile
kaf ka_updat e_net adat a_ | Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_ti ne_m n|responding to UpdateMetadata rack

requests: Min
kaf ka_updat e_met adat a_ | Response Send Time spentin | requests per | cluster, kafka, |CDH 5, CDH 6
response_send_tinme_ responding to UpdateMetadata | second rack
rate requests: Samples
kaf ka_updat e_met adat a_ | Response Send Time spentin | ms cluster, kafka, |CDH 5, CDH 6
response_send_time_ responding to UpdateMetadata rack
st ddev requests: Standard Deviation
kaf ka_updat e_met adat a_ | Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _time_75th_ to UpdateMetadata requests: rack
percentile 75th Percentile
kaf ka_updat e_net adat a_ | Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine 999th_ to UpdateMetadata requests: rack
percentile 999th Percentile
kaf ka_updat e_met adat a_ | Total Time spent in responding | ms cluster, kafka, |CDH5,CDH 6
total _tine 99th_ to UpdateMetadata requests: rack
percentile 99th Percentile
kaf ka_updat e_met adat a_ | Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total tine_avg to UpdateMetadata requests: rack

Avg
kaf ka_updat e_met adat a_ | Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6

total tine_nax

to UpdateMetadata requests:
Max

rack

Metric Name Description Unit Parents CDH Version
kaf ka_updat e_net adat a_ | Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tinme_nedian to UpdateMetadata requests: rack
50th Percentile
kaf ka_updat e_met adat a_ | Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total _tine_mn to UpdateMetadata requests: rack
Min
kaf ka_updat e_met adat a_ | Total Time spent in responding | requests per | cluster, kafka, |CDH 5, CDH 6
total _tine_rate to UpdateMetadata requests: | second rack
Samples
kaf ka_updat e_met adat a_ | Total Time spent in responding | ms cluster, kafka, |CDH 5, CDH 6
total tine_stddev to UpdateMetadata requests: rack
Standard Deviation
memrss Resident memory used bytes cluster, kafka, |CDH 5, CDH 6
rack
mem swap Amount of swap memory used | bytes cluster, kafka, |CDH5,CDH 6
by this role's process. rack
mem vi rt ual Virtual memory used bytes cluster, kafka, |CDH5,CDH 6
rack
oomexits rate The number of times the role's | exits per cluster, kafka, |CDH 5, CDH 6
backing process was killed due |second rack
to an OutOfMemory error. This
counter is only incremented if
the Cloudera Manager "Kill
When Out of Memory" option is
enabled.
read_bytes_rate The number of bytes read from | bytes per cluster, kafka, |CDH5,CDH 6
the device second rack
unexpect ed_exits_rat e |The number of times the role's | exits per cluster, kafka, |CDH 5, CDH 6
backing process exited second rack
unexpectedly.
uptime For a host, the amount of time |seconds cluster, kafka, |CDH 5, CDH 6
since the host was booted. For a rack
role, the uptime of the backing
process.
wite bytes rate The number of bytes written to | bytes per cluster, kafka, |CDH 5, CDH 6
the device second rack
Broker Topic Metrics
Metric Name Description Unit Parents CDH Version
kaf ka_bytes_ Amount of data consumers | bytes per cluster, kafka, CDHS5,CDH6
fetched_15m n_rat e |fetched from this topicon |message. kafka-kafka_broker,
this broker: 15 Min Rate units. kafka_topic, rack
singular.
second

Metric Name Description Unit Parents CDH Version
kaf ka_byt es_ Amount of data consumers | bytes per cluster, kafka, CDH5,CDH6
fetched 1m n_rate |fetched from thistopicon |message. kafka-kafka_broker,
this broker: 1 Min Rate units. kafka_topic, rack
singular.
second
kaf ka_bytes_ Amount of data consumers | bytes per cluster, kafka, CDH5,CDH6
fetched 5min_rate |fetched from thistopicon |message. kafka-kafka_broker,
this broker: 5 Min Rate units. kafka_topic, rack
singular.
second
kaf ka_bytes_ Amount of data consumers | bytes per cluster, kafka, CDH5,CDH6
fetched _avg_rate fetched from this topic on | message. kafka-kafka_broker,
this broker: Avg Rate units. kafka_topic, rack
singular.
second
kaf ka_bytes_ Amount of data consumers | bytes per cluster, kafka, CDHS5,CDH6
fetched rate fetched from this topicon |second kafka-kafka_broker,
this broker kafka_topic, rack
kaf ka_bytes_ Amount of data written to | bytes per cluster, kafka, CDHS5,CDH6
recei ved_15mi n_r at e | topic on this broker: 15 Min | message. kafka-kafka_broker,
Rate units. kafka_topic, rack
singular.
second
kaf ka_bytes_ Amount of data written to | bytes per cluster, kafka, CDHS5,CDH6
recei ved_1m n_rat e |topicon this broker: 1 Min | message. kafka-kafka_broker,
Rate units. kafka_topic, rack
singular.
second
kaf ka_bytes_ Amount of data written to | bytes per cluster, kafka, CDH5,CDH6
recei ved_5m n_rat e |topicon this broker: 5 Min | message. kafka-kafka_broker,
Rate units. kafka_topic, rack
singular.
second
kaf ka_bytes_ Amount of data written to | bytes per cluster, kafka, CDH5,CDH6
recei ved_avg rate topic on this broker: Avg message. kafka-kafka_broker,
Rate units. kafka_topic, rack
singular.
second
kaf ka_bytes_ Amount of data written to | bytes per cluster, kafka, CDH5,CDH6
received rate topic on this broker second kafka-kafka_broker,
kafka_topic, rack
kaf ka_bytes_ Amount of data in messages | bytes per cluster, kafka, CDH5,CDH6
rej ected _15m n_r at e | rejected by broker for this | message. kafka-kafka_broker,
topic: 15 Min Rate units. kafka_topic, rack
singular.

second

Metric Name Description Unit Parents CDH Version
kaf ka_byt es_ Amount of data in messages | bytes per cluster, kafka, CDH5,CDH6
rejected_1m n_rate |rejected by broker for this | message. kafka-kafka_broker,
topic: 1 Min Rate units. kafka_topic, rack
singular.
second
kaf ka_bytes_ Amount of data in messages | bytes per cluster, kafka, CDH5,CDH6
rej ected_5m n_rate |rejected by broker for this | message. kafka-kafka_broker,
topic: 5 Min Rate units. kafka_topic, rack
singular.
second
kaf ka_bytes_ Amount of data in messages | bytes per cluster, kafka, CDH5,CDH6
rejected_avg rate rejected by broker for this | message. kafka-kafka_broker,
topic: Avg Rate units. kafka_topic, rack
singular.
second
kaf ka_bytes_ Amount of data in messages | bytes per cluster, kafka, CDHS5,CDH6
rejected rate rejected by broker for this | second kafka-kafka_broker,
topic kafka_topic, rack
kaf ka_fetch_ Number of data read message. cluster, kafka, CDHS5,CDH6
request _failures_ |requests from consumers | units. kafka-kafka_broker,
15mn_rate that brokers failed to fetch_requests | kafka_topic, rack
process for this topic: 15 per message.
Min Rate units.
singular.
second
kaf ka_fetch_ Number of data read message. cluster, kafka, CDHS5,CDH6
request _failures_ |requests from consumers | units. kafka-kafka_broker,
Imn_rate that brokers failed to fetch_requests | kafka_topic, rack
process for this topic: 1 Min | per message.
Rate units.
singular.
second
kaf ka fetch_ Number of data read message. cluster, kafka, CDH5,CDH6
request _failures_ |requests from consumers | units. kafka-kafka_broker,
5mn_rate that brokers failed to fetch_requests | kafka_topic, rack
process for this topic: 5 Min | per message.
Rate units.
singular.
second
kaf ka fetch_ Number of data read message. cluster, kafka, CDH5,CDH6
request failures_ |requestsfrom consumers |units. kafka-kafka_broker,
avg_rate that brokers failed to fetch_requests | kafka_topic, rack
process for this topic: Avg | per message.
Rate units.
singular.
second
kaf ka fetch_ Number of data read message. cluster, kafka, CDH5,CDH6
request failures_ |requestsfrom consumers |units. kafka-kafka_broker,
rate that brokers failed to fetch_requests | kafka_topic, rack
process for this topic per second

Metric Name Description Unit Parents CDH Version
kaf ka_messages_ Number of messages written | messages per | cluster, kafka, CDH5,CDH6
recei ved_15m n_r at e | to topic on this broker: 15 | message. kafka-kafka_broker,
Min Rate units. kafka_topic, rack
singular.
second
kaf ka_nmessages_ Number of messages written | messages per | cluster, kafka, CDH5,CDH6
received _1m n_rate |totopicon this broker:1 message. kafka-kafka_broker,
Min Rate units. kafka_topic, rack
singular.
second
kaf ka_nmessages_ Number of messages written | messages per | cluster, kafka, CDH5,CDH6
recei ved _5mi n_rate |totopicon this broker: 5 message. kafka-kafka_broker,
Min Rate units. kafka_topic, rack
singular.
second
kaf ka_nmessages_ Number of messages written | messages per | cluster, kafka, CDHS5,CDH6
recei ved_avg rate to topic on this broker: Avg | message. kafka-kafka_broker,
Rate units. kafka_topic, rack
singular.
second
kaf ka_nmessages__ Number of messages written | messages per | cluster, kafka, CDHS5,CDH6
received rate to topic on this broker second kafka-kafka_broker,
kafka_topic, rack
kaf ka_rejected_ Number of message batches | message. cluster, kafka, CDHS5,CDH6
nmessage_bat ches_ sent by producers that the | units. kafka-kafka_broker,
15mn_rate broker rejected for this message batrhes | kafka_topic, rack
topic: 15 Min Rate per message.
units.
singular.
second
kaf ka_rejected_ Number of message batches | message. cluster, kafka, CDH5,CDH6
nmessage_bat ches_ sent by producers that the | units. kafka-kafka_broker,
Imn_ rate broker rejected for this message batrhes | kafka_topic, rack
topic: 1 Min Rate per message.
units.
singular.
second
kaf ka_rejected_ Number of message batches | message. cluster, kafka, CDH5,CDH6
nmessage_bat ches_ sent by producers that the | units. kafka-kafka_broker,
5mn rate broker rejected for this message batches | kafka_topic, rack
topic: 5 Min Rate per message.
units.
singular.
second
kaf ka_rejected_ Number of message batches | message. cluster, kafka, CDH5,CDH6
nmessage_bat ches_ sent by producers that the | units. kafka-kafka_broker,
avg_rate broker rejected for this message batches | kafka_topic, rack
topic: Avg Rate per message.

units.

Metric Name Description Unit Parents CDH Version
singular.
second
kaf ka_rejected_ Number of message batches | message. cluster, kafka, CDH5,CDH6
nessage_ batches_ sent by producers that the | units. kafka-kafka_broker,
rate broker rejected for this topic | message batches | kafka_topic, rack
per second
Mirror Maker Metrics
Metric Name Description Unit Parents CDH Version
alerts_rate The number of alerts. events per cluster, kafka, |CDH 5, CDH 6
second rack
cgroup_cpu_system rat e | CPU usage of the role's cgroup |seconds per cluster, kafka, |CDH 5, CDH 6
second rack
cgroup_cpu_user _rate |UserSpace CPU usage of the seconds per cluster, kafka, |CDH 5, CDH 6
role's cgroup second rack
cgroup_nem page_cache |Page cache usage of therole's |bytes cluster, kafka, |CDH 5, CDH 6
cgroup rack
cgroup_nmemrss Resident memory of the role's | bytes cluster, kafka, |CDH 5, CDH 6
cgroup rack
cgroup_nem swap Swap usage of the role's cgroup | bytes cluster, kafka, |CDH 5, CDH 6
rack
cgroup_read_bytes_rat e |Bytes read from all disks by the |bytes per cluster, kafka, |CDH5,CDH 6
role's cgroup second rack
cgroup_read_i os_rate |Number of read I/O operations |ios per second |cluster, kafka, |CDH 5, CDH 6
from all disks by the role's rack
cgroup
cgroup_write_bytes_ Bytes written to all disks by the | bytes per cluster, kafka, |CDH5,CDH 6
rate role's cgroup second rack
cgroup_write_i os_rate |Number of write I/O operations |ios per second |cluster, kafka, |CDH 5, CDH 6
to all disks by the role's cgroup rack
cpu_systemrate Total System CPU seconds per cluster, kafka, |CDH 5, CDH 6
second rack
cpu_user_rate Total CPU user time seconds per cluster, kafka, |CDH 5, CDH 6
second rack
events critical _rate |The number of critical events. |events per cluster, kafka, |CDH5,CDH 6
second rack
events_i nportant _rate |Thenumberofimportantevents. | events per cluster, kafka, |CDH 5, CDH 6
second rack
events_i nformational _ |The number of informational events per cluster, kafka, |CDH 5, CDH 6
rate events. second rack
fd_max Maximum number of file file descriptors | cluster, kafka, |CDH 5, CDH 6

descriptors

rack

Metric Name Description Unit Parents CDH Version
fd_open Open file descriptors. file descriptors | cluster, kafka, |CDH 5, CDH 6
rack
heal th_bad _rate Percentage of Time with Bad seconds per cluster, kafka, |CDH5,CDH 6
Health second rack
heal t h_concerni ng_r at e | Percentage of Time with seconds per cluster, kafka, |CDH5,CDH 6
Concerning Health second rack
heal t h_di sabl ed_rate |Percentage of Time with seconds per cluster, kafka, |CDH 5, CDH 6
Disabled Health second rack
heal th_good rate Percentage of Time with Good | seconds per cluster, kafka, |CDH 5, CDH 6
Health second rack
heal t h_unknown_rate Percentage of Time with seconds per cluster, kafka, |CDH 5, CDH 6
Unknown Health second rack
memrss Resident memory used bytes cluster, kafka, |CDH 5, CDH 6
rack
mem _swap Amount of swap memory used |bytes cluster, kafka, |CDH5,CDH 6
by this role's process. rack
mem vi rt ual Virtual memory used bytes cluster, kafka, |CDH5,CDH 6
rack
oomexits_rate The number of times the role's | exits per cluster, kafka, |CDH 5, CDH 6
backing process was killed due |second rack
to an OutOfMemory error. This
counter is only incremented if
the Cloudera Manager "Kill
When Out of Memory" option is
enabled.
read_bytes rate The number of bytes read from | bytes per cluster, kafka, |CDH 5, CDH 6
the device second rack
unexpect ed_exi ts_rate |The number of times the role's | exits per cluster, kafka, |CDH 5, CDH 6
backing process exited second rack
unexpectedly.
uptime For a host, the amount of time |seconds cluster, kafka, |CDH 5, CDH 6
since the host was booted. For a rack
role, the uptime of the backing
process.
wite bytes rate The number of bytes written to | bytes per cluster, kafka, |CDH 5, CDH 6
the device second rack
Replica Metrics
Metric Name Description Unit Parents CDH Version
kaf ka_|l og_end_ The offset of the next message. cluster, kafka, CDH5,CDH6
of f set message that will be units.offset | kafka-kafka_broker,
appended to the log kafka_broker_topic,
kafka_topic, rack
kaf ka_|l og_start _ The earliest message offset | message. cluster, kafka, CDH5,CDH6
of f set in the log units.offset | kafka-kafka_broker,

kafka-kafka_broker,
kafka_broker_topic,
kafka_topic, rack

Metric Name Description Unit Parents CDH Version
kafka_broker_topic,
kafka_topic, rack
kaf ka_num | og_ The number of segments in | message. cluster, kafka, CDH5,CDH6
segnent s the log units. kafka-kafka_broker,
segments kafka_broker_topic,
kafka_topic, rack
kaf ka_si ze The size of the log bytes cluster, kafka, CDH5,CDH6

Useful Shell Command Reference

Hardware Information

There are many ways to get information about hardware:

|

cPU $ cat /proc/cpuinfo ;
$ | scpu !

!

|

Memory $ cat /proc/menm nfo :
$ vimstat -s |

$ free -mor free -g :

Network interface

$ ip link show

|

$ netstat -i

i

|

1/O device (hard drive) $ Isblk -d |
$ fdisk -I :

|

Virtual environment $ virt-what |

Disk Space

df or mount show the disks mounted and can be used to show disk space.

On afile or directory level, the du command is useful for seeing how much disk space is being used.

I/O Activity and Utilization

i ost at and sar come with Linux package sysstat-9.0.4-27.i ost at is used for tracking I/O performance. The

recommended options are:

e -d for disk utilization

e - mfor calculations in MB/sec

e -x for extended report

e -t sec to repeat statistics every sec seconds

sar has several forms of output:

e - b for1/O and transfer rate statistics
e -d for block device activity

e - n for network statistics
e -v for various file system statistics

File Descriptor Usage

| sof is used to identify mapping between processes and open files. By passing multiple arguments, | sof can be used
to help isolate the output:

e | sof <fil enane> to list processes that have <fi | enane> open.
e | sof -p <pid>tolistall files opened by the process corresponding to <pi d>.
e |sof -r <secs>to keep producing output with a period of <secs>.

Network Ports, States, and Connections

e nc (net cat) or ss (socket statistics) are good for showing network activity.
e net st at is the Swiss-army knife tool for network interfaces.
e t cpdunp or Wireshark with Kafka filter should be good for packet sniffing.

Process Information

e t op shows a sorted list of processes.
e ps shows a snapshot list of processes. Arguments can be used to filter the output.
e ps -o min_flt,mj_flt pidshows page faultinformation.

Kernel Configuration

e ulimt -aisused to display kernel limits and shows which flags affect which kernel settings.
e ulimt -n FDto seta limit on open file descriptors.

http://mail-archives.apache.org/mod_mbox/kafka-users/201408.mbox/%3C20140812180358.GA24108@idrathernotsay.com%3E

Kafka Public APIs

What is a Public API

The following parts of Apache Kafka in CDH are considered as public APIs:

Kafka wire protocol format: the format itself might change, but brokers will be able to use the old format as long
as documentation and upgrade instructions are followed properly.

Binary log format: the format itself might change, but brokers will be able to use the old format as long as
documentation and upgrade instructions are followed properly.

Interfaces and classes in the following packages:

— org/apache/kafka/common/serialization
— org/apache/kafka/common/errors

— org/apache/kafka/clients/producer

— org/apache/kafka/clients/consumer

Command-line admin tools: arguments, except ZooKeeper related options, that are subject to change and/or
removal.

Ht t pMet ri csReport er : existing fields will stay backward compatible, but new fields may be introduced. The
only public APl of Ht t pMet ri csReport er is the /api/metrics REST endpoint. For a list of supported metrics, see
Kafka Metrics.

Properties, excluding their default values

Config file content and format, and the effect of configuration attributes

Endpoints

E,’ Note: Cloudera maintains APl compatibility between minor and maintenance versions. However, we

reserve the right to break compatibility in case of security issues.

What is NOT a public API

There are structures that third parties might regard as an interface but Cloudera Kafka distributions do not consider
them public APIs. In general, any API that is not listed as public in the What is a Public API section should be considered
private, and client code should not rely on behavior/data content or format. Some examples are:

Data structures in ZooKeeper: the content and format what Kafka stores in ZooKeeper are internal implementation
details.

Authorizer interface: the only supported authorizer in CHD is the Sentry one.

AdminClient: it is a new and rapidly evolving part of Kafka, so Cloudera can’t provide the same guarantees as for
other interfaces.

Interfaces marked with the @vol vi ng or @Jnst abl e annotations in the Kafka source code

Index files generated by Kafka

Application log file content and format (for example what Log4J/SLF4)/... produces)

Any classes used for testing

Relying on transitive dependencies: any dependency pulled in by Kafka

Any other interfaces not listed above

Anything that Cloudera does not support, even if it fits the definition of a public API

Kafka Frequently Asked Questions

This is intended to be an easy to understand FAQ on the topic of Kafka. One part is for beginners, one for advanced
users and use cases. We hope you find it fruitful. If you are missing a question, please send it to your favorite Cloudera
representative and we’ll populate this FAQ over time.

Basics

What is Kafka?
Kafka is a streaming message platform. Breaking it down a bit further:

“Streaming”: Lots of messages (think tens or hundreds of thousands) being sent frequently by publishers ("producers").
Message polling occurring frequently by lots of subscribers ("consumers").

“Message”: From a technical standpoint, a key value pair. From a non-technical standpoint, a relatively small number
of bytes (think hundreds to a few thousand bytes).

If this isn’t your planned use case, Kafka may not be the solution you are looking for. Contact your favorite Cloudera
representative to discuss and find out. It is better to understand what you can and cannot do upfront than to go ahead
based on some enthusiastic arbitrary vendor message with a solution that will not meet your expectations in the end.

What is Kafka designed for?

Kafka was designed at LinkedIn to be a horizontally scaling publish-subscribe system. It offers a great deal of
configurability at the system- and message-level to achieve these performance goals. There are well documented cases
(Uber and LinkedIn) that showcase how well Kafka can scale when everything is done right.

What is Kafka not well fitted for (or what are the tradeoffs)?

It’s very easy to get caught up in all the things that Kafka can be used for without considering the tradeoffs. Kafka
configuration is also not automatic. You need to understand each of your use cases to determine which configuration
properties can be used to tune (and retune!) Kafka for each use case.

Some more specific examples where you need to be deeply knowledgeable and careful when configuring are:
¢ Using Kafka as your microservices communication hub

Kafka can replace both the message queue and the services discovery part of your software infrastructure. However,
this is generally at the cost of some added latency as well as the need to monitor a new complex system (i.e. your
Kafka cluster).

¢ Using Kafka as long-term storage

While Kafka does have a way to configure message retention, it’s primarily designed for low latency message
delivery. Kafka does not have any support for the features that are usually associated with filesystems (such as
metadata or backups). As such, using some form of long-term ingestion, such as HDFS, is recommended instead.

¢ Using Kafka as an end-to-end solution

Kafka is only part of a solution. There are a lot of best practices to follow and support tools to build before you
can get the most out of it (see this wise LinkedIn post).

¢ Deploying Kafka without the right support

Uber has given some numbers for their engineering organization. These numbers could help give you an idea what
it takes to reach that kind of scale: 1300 microservers, 2000 engineers.

https://www.slideshare.net/Hadoop_Summit/how-uber-scaled-its-real-time-infrastructure-to-trillion-events-per-day
https://techcrunch.com/2017/08/28/linkedin-announces-new-automated-load-balancing-tool-to-keep-kafka-clusters-running/
https://engineering.linkedin.com/kafka/kafka-linkedin-current-and-future
https://www.theserverside.com/feature/How-microservices-patterns-helped-Uber-systems-perform-better
http://highscalability.com/blog/2016/10/12/lessons-learned-from-scaling-uber-to-2000-engineers-1000-ser.html

Where can | get a general Kafka overview?

The first four sections (Introduction, Setup, Clients, Brokers) of the CDH 6 Kafka Documentation cover the basics and
design of Kafka. This should serve as a good starting point. If you have any remaining questions after reading that
documentation, come to this FAQ or talk to your favorite Cloudera representative about training or a best practices
deep dive.

Where does Kafka fit well into an Analytic DB solution?

ADB deployments benefit from Kafka by utilizing it for data ingest. Data can then populate tables for various analytics
workloads. For ad hoc Bl the real-time aspect is less critical, but the ability to utilize the same data used in real time
applications, in Bl and analytics as well, is a benefit that Cloudera’s platform provides, as you will have Kafka for both
purposes, already integrated, secured, governed and centrally managed.

Where does Kafka fit well into an Operational DB solution?

Kafka is commonly used in the real-time, mission-critical world of Operational DB deployments. It is used to ingest
data and allow immediate serving to other applications and services via Kudu or HBase. The benefit of utilizing Kafka
in the Cloudera platform for ODB is the integration, security, governance and central management. You avoid the risks
and costs of siloed architecture and “yet another solution” to support.

What is a Kafka consumer?

If Kafka is the system that stores messages, then a consumer is the part of your system that reads those messages
from Kafka.

While Kafka does come with a command line tool that can act as a consumer, practically speaking, you will most likely
write Java code using the KafkaConsumer API for your production system.

What is a Kafka producer?

While consumers read from a Kafka cluster, producers write to a Kafka cluster.

Similar to the consumer (see previous question), your producer is also custom Java code for your particular use case.

Your producer may need some tuning for write performance and SLA guarantees, but will generally be simpler (fewer
error cases) to tune than your consumer.

What functionality can | call in my Kafka Java code?

The best way to get more information on what functionality you can call in your Kafka Java code is to look at the Java
docs. And read very carefully!

What’s a good size of a Kafka record if | care about performance and stability?

There is an older blog post from 2014 from LinkedIn titled: Benchmarking Apache Kafka: 2 Million Writes Per Second
(On Three Cheap Machines). In the “Effect of Message Size” section, you can see two charts which indicate that Kafka
throughput starts being affected at a record size of 100 bytes through 1000 bytes and bottoming out around 10000
bytes. In general, keeping topics specific and keeping message sizes deliberately small helps you get the most out of
Kafka.

Excerpting from Deploying Apache Kafka: A Practical FAQ:

How to send large messages or payloads through Kafka?

Cloudera benchmarks indicate that Kafka reaches maximum throughput with message sizes of around 10 KB. Larger
messages show decreased throughput. However, in certain cases, users need to send messages much larger than 10
KB.

If the message payload sizes are in the order of 100s of MB, consider exploring the following alternatives:

https://www.cloudera.com/documentation/enterprise/latest/topics/kafka.html
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
http://blog.cloudera.com/blog/2015/07/deploying-apache-kafka-a-practical-faq/

Use

o If shared storage is available (HDFS, S3, NAS), place the large payload on shared storage and use Kafka just to
send a message with the payload location.

¢ Handle large messages by chopping them into smaller parts before writing into Kafka, using a message key to
make sure all the parts are written to the same partition so that they are consumed by the same Consumer, and
re-assembling the large message from its parts when consuming.

Where can | get Kafka training?

You have many options. Cloudera provides training as listed in the next two questions. You can also ask your Resident
Solution Architect to do a deep dive on Kafka architecture and best practices. And you could always engage in the
community to get insight and expertise on specific topics.

Where can | get basic Kafka training?

Cloudera training offers a basic on-demand training for Kafka®.

This covers basics of Kafka architecture, messages, ordering, and a few slides (code examples) of (to my knowledge)
an older version of the Java API. It also covers using Flume + Kafka.

Where can | get Kafka developer training?

Kafka developer training is included in Cloudera’s Developer Training for Apache Spark and Hadoop?.

Cases

Like most Open Source projects, Kafka provides a lot of configuration options to maximize performance. In some cases,
it is not obvious how best to map your specific use case to those configuration options. We attempt to address some
of those situations below.

What can | do to ensure that | never lose a Kafka event?

This is a simple question which has lots of far-reaching implications for your entire Kafka setup. A complete answer
includes the next few related FAQs and their answers.

What is the recommended node hardware for best reliability?
Operationally, you need to make sure your Kafka cluster meets the following hardware setup:

1. Have a 3 or 5 node cluster only running Zookeeper (higher only necessary at largest scales).

2. Have at least a 3 node cluster only running Kafka.

3. Have the disks on the Kafka cluster running in RAID 10. (Required for resiliency against disk failure.)
4

. Have sufficient memory for both the Kafka and Zookeeper roles in the cluster. (Recommended: 4GB for the broker,
the rest of memory automatically used by the kernel as file cache.)

i

. Have sufficient disk space on the Kafka cluster.
. Have a sufficient number of disks to handle the bandwidth requirements for Kafka and Zookeeper.
7. You need a number of nodes greater than or equal to the highest replication factor you expect to use.

[2)]

What are the network requirements for best reliability?
Kafka expects a reliable, low-latency connection between the brokers and the Zookeeper nodes.

1. The number of network hops between the Kafka cluster and the Zookeeper cluster is relatively low.
2. Have highly reliable network services (such as DNS).

https://ondemand.cloudera.com/courses/course-v1:Cloudera+Kafka+201601/info
https://ondemand.cloudera.com/courses/course-v1:Cloudera+DevSH+201709/info

What are the system software requirements for best reliability?

Assuming you're following the recommendations of the previous two questions, the actual system outside of Kafka
must be configured properly.

1. The kernel must be configured for maximum 1/0O usage that Kafka requires.

a. Large page cache
b. Maximum file descriptions
¢. Maximum file memory map limits

2. Kafka JVM configuration settings:

a. Brokers generally don’t need more than 4GB-8GB of heap space.
b. Run with the +G1GC garbage collection using Java 8 or later.

How can | configure Kafka to ensure that events are stored reliably?
The following recommendations for Kafka configuration settings make it extremely difficult for data loss to occur.
1. Producer

. bl ock. on. buffer.full =true

. retries=Long. MAX_VALUE

acks=al |

.max.in.flight.requests. per.connections=1

® o0 T

. Remember to close the producer when it is finished or when there is a long pause.
2. Broker

a. Topic replication.factor >= 3
b. Mn.insync.replicas = 2
c. Disable unclean leader election

3. Consumer

a. Disable enabl e. aut 0. conmi t
b. Commit offsets after messages are processed by your consumer client(s).

If you have more than 3 hosts, you can increase the broker settings appropriately on topics that need more protection
against data loss.

Once I've followed all the previous recommendations, my cluster should never lose data, right?
Kafka does not ensure that data loss never occurs. There are the following tradeoffs:

1. Throughput vs. reliability. For example, the higher the replication factor, the more resilient your setup will be
against data loss. However, to make those extra copies takes time and can affect throughput.

2. Reliability vs. free disk space. Extra copies due to replication use up disk space that would otherwise be used for
storing events.

Beyond the above design tradeoffs, there are also the following issues:

¢ Toensure events are consumed you need to monitor your Kafka brokers and topics to verify sufficient consumption
rates are sustained to meet your ingestion requirements.

e Ensure that replication is enabled on any topic that requires consumption guarantees. This protects against Kafka
broker failure and host failure.

e Kafka is designed to store events for a defined duration after which the events are deleted. You can increase the
duration that events are retained up to the amount of supporting storage space.

¢ You will always run out of disk space unless you add more nodes to the cluster.

My Kafka events must be processed in order. How can | accomplish this?

After your topic is configured with partitions, Kafka sends each record (based on key/value pair) to a particular partition
based on key. So, any given key, the corresponding records are “in order” within a partition.

For global ordering, you have two options:

1. Your topic must consist of one partition (but a higher replication factor could be useful for redundancy and failover).
However, this will result in very limited message throughput.

2. You configure your topic with a small number of partitions and perform the ordering after the consumer has pulled
data. This does not result in guaranteed ordering, but, given a large enough time window, will likely be equivalent.

Conversely, it is best to take Kafka’s partitioning design into consideration when designing your Kafka setup rather
than rely on global ordering of events.

How do | size my topic? Alternatively: What is the “right” number of partitions for a topic?

Choosing the proper number of partitions for a topic is the key to achieving a high degree of parallelism with respect
to writes to and reads and to distribute load. Evenly distributed load over partitions is a key factor to have good
throughput (avoid hot spots). Making a good decision requires estimation based on the desired throughput of producers
and consumers per partition.

Producers Topic Partitions Consumer Group

-
~
-~
[

I e 0 R

For example, if you want to be able to read 1 GB/sec, but your consumer is only able process 50 MB/sec, then you
need at least 20 partitions and 20 consumers in the consumer group. Similarly, if you want to achieve the same for
producers, and 1 producer can only write at 100 MB/sec, you need 10 partitions. In this case, if you have 20 partitions,
you can maintain 1 GB/sec for producing and consuming messages. You should adjust the exact number of partitions
to number of consumers or producers, so that each consumer and producer achieve their target throughput.

So a simple formula could be:
#Partitions = max(Ne, No)

where:

* Npis the number of required producers determined by calculating: T{/ Tp
* Ncis the number of required consumers determined by calculating: T4/ T¢
e Tris the total expected throughput for our system

e Tpis the max throughput of a single producer to a single partition

e Tcis the max throughput of a single consumer from a single partition

This calculation gives you a rough indication of the number of partitions. It's a good place to start. Keep in mind the
following considerations for improving the number of partitions after you have your system in place:

e The number of partitions can be specified at topic creation time or later.

¢ Increasing the number of partitions also affects the number of open file descriptors. So make sure you set file
descriptor limit properly.

* Reassigning partitions can be very expensive, and therefore it's better to over- than under-provision.

e Changing the number of partitions that are based on keys is challenging and involves manual copying (see Kafka
Administration on page 52).

¢ Reducing the number of partitions is not currently supported. Instead, create a new a topic with a lower number
of partitions and copy over existing data.

e Metadata about partitions are stored in ZooKeeper in the form of znodes. Having a large number of partitions
has effects on ZooKeeper and on client resources:

— Unneeded partitions put extra pressure on ZooKeeper (more network requests), and might introduce delay
in controller and/or partition leader election if a broker goes down.

— Producer and consumer clients need more memory, because they need to keep track of more partitions and
also buffer data for all partitions.

e As guideline for optimal performance, you should not have more than 3000 partitions per broker and not more
than 30,000 partitions in a cluster.

Make sure consumers don’t lag behind producers by monitoring consumer lag. To check consumers' position in a
consumer group (that is, how far behind the end of the log they are), use the following command:

$ kaf ka- consuner - groups --bootstrap-server BROKER_ADDRESS --describe --group
CONSUMER_GROUP - - new consurrer

How can | scale a topic that's already deployed in production?
Recall the following facts about Kafka:

¢ When you create a topic, you set the number of partitions. The higher the partition count, the better the parallelism
and the better the events are spread somewhat evenly through the cluster.

¢ In most cases, as events go to the Kafka cluster, events with the same key go to the same partition. This is a
consequence of using a hash function to determine which key goes to which partition.

Now, you might assume that scaling means increasing the number of partitions in a topic. However, due to the way
hashing works, simply increasing the number of partitions means that you will lose the "events with the same key go
to the same partition" fact.

Given that, there are two options:

1. Your cluster may not be scaling well because the partition loads are not balanced properly (for example, one
broker has four very active partitions, while another has none). In those cases, you can use the
kaf ka-reassi gn-partitions script to manually balance partitions.

2. Create a new topic with more partitions, pause the producers, copy data over from the old topic, and then move
the producers and consumers over to the new topic. This can be a bit tricky operationally.

How do | rebalance my Kafka cluster?

This one comes up when new nodes or disks are added to existing nodes. Partitions are not automatically balanced.
If a topic already has a number of nodes equal to the replication factor (typically 3), then adding disks does not help
with rebalancing.

Using the kaf ka- r eassi gn- partiti ons command after adding new hosts is the recommended method.
Caveats
There are several caveats to using this command:

e |t is highly recommended that you minimize the volume of replica changes to make sure the cluster remains
healthy. Say, instead of moving ten replicas with a single command, move two at a time.

e |tis not possible to use this command to make an out-of-sync replica into the leader partition.

¢ If too many replicas are moved, then there could be serious performance impact on the cluster. When using the
kaf ka-r eassi gn- parti ti ons command, look at the partition counts and sizes. From there, you can test various
partition sizes along with the - - t hr ot t | e flag to determine what volume of data can be copied without affecting
broker performance significantly.

e Given the earlier restrictions, it is best to use this command only when all brokers and topics are healthy.

How do | monitor my Kafka cluster?
As of Cloudera Enterprise 5.14, Cloudera Manager has monitoring for a Kafka cluster.
Currently, there are three GitHub projects as well that provide additional monitoring functionality:

e Doctor Kafka® (Pinterest, Apache 2.0 License)
e Kafka Manager4 (Yahoo, Apache 2.0 License)
e Cruise Control® (LinkedIn, BSD 2-clause License)

These projects are Apache-compatible licensed, but are not Open Source (no community, bug filing, or transparency).

What are the best practices concerning consumer group.id?
The gr oup. i d is just a string that helps Kafka track which consumers are related (by having the same group id).

¢ In general, timestamps as part of gr oup. i d are not useful. Because each gr oup. i d corresponds to multiple
consumers, you cannot have a unique timestamp for each consumer.

¢ Add any helpful identifiers. This could be related to a group (for example, transactions, marketing), purpose (fraud,
alerts), or technology (Flume, Spark).

How do | monitor consumer group lag?

This is typically done using the kaf ka- consumer - gr oups command line tool. Copying directly from the upstream
documentationG, we have this example output (reformatted for readability):

]

$ bi n/ kaf ka- consuner - gr oups. sh --boot strap-server |ocal host: 9092 --descri be --group
nmy-group !
TOPI C PARTI TI ON CURRENT- OFFSET LOG END- OFFSET LAG CONSUMER- | D HOST [
CLIENT-1D !
ny-topic 0 2 4 2 consumer-1-69d6 /127.0.0.1 :
consuner-1 [
ny-topic 1 2 3 1 consumer-1-69d6 /127.0.0.1 ;
consuner-1 [
ny-topic 2 2 3 1 consumer-2-9bb2 /127.0.0.1 |
consuner - 2 I
|

In general, if everything is going well with a particular topic, each consumer’s CURRENT- OFFSET should be up-to-date
or nearly up-to-date with the LOG- END- OFFSET. From this command, you can determine whether a particular host
or a particular partition is having issues keeping up with the data rate.

How do | reset the consumer offset to an arbitrary value?

This is also done using the kaf ka- consuner - gr oups command line tool. This is generally an administration feature
used to get around corrupted records, data loss, or recovering from failure of the broker or host. Aside from those
special cases, using the command line tool for this purpose is not recommended.

By using the - - execut e --reset - of f set s flags, you can change the consumer offsets for a consumer group (or
even all groups) to a specific setting based on each partitions log’s beginning/end or a fixed timestamp. Typing the
kaf ka- consuner - gr oups command with no arguments will give you the complete help output.

How do | configure MirrorMaker for bi-directional replication across DCs?

Mirror Maker is a one way copy of one or more topics from a Source Kafka Cluster to a Destination Kafka Cluster. Given
this restriction on Mirror Maker, you need to run two instances, one to copy from A to B and another to copy from B
to A.

In addition, consider the following:

¢ Cloudera recommends using the "pull" model for Mirror Maker, meaning that the Mirror Maker instance that is
writing to the destination is running on a host "near" the destination cluster.

¢ The topics must be unique across the two clusters being copied.

http://github.com/pinterest/doctorkafka
http://github.com/yahoo/kafka-manager
http://github.com/linkedin/cruise-control
http://kafka.apache.org/documentation/#basic_ops_consumer_lag
http://kafka.apache.org/documentation/#basic_ops_consumer_lag

e On secure clusters, the source cluster and destination cluster must be in the same Kerberos realm.

How does the consumer max retries vs timeout work?
With the newer versions of Kafka, consumers have two ways they communicate with brokers.

* Retries: This is generally related to reading data. When a consumer reads from a brokers, it’s possible for that
attempt to fail due to problems such as intermittent network outages or 1/0 issues on the broker. To improve
reliability, the consumer retries (up to the configured max. r et ri es value) before actually failing to read a log
offset.

e Timeout. This term is a bit vague because there are two timeouts related to consumers:

— Poll Timeout: This is the timeout between calls to Kaf kaConsuner . pol | (). This timeout is set based on
whatever read latency requirements your particular use case needs.

— Heartbeat Timeout: The newer consumer has a “heartbeat thread” which give a heartbeat to the broker
(actually the Group Coordinator within a broker) to let the broker know that the consumer is still alive. This
happens on a regular basis and if the broker doesn’t receive at least one heartbeat within the timeout period,
it assumes the consumer is dead and disconnects it.

How do | size my Kafka cluster?
There are several considerations for sizing your Kafka cluster.
¢ Disk space

Disk space will primarily consist of your Kafka data and broker logs. When in debug mode, the broker logs can get
quite large (10s to 100s of GB), so reserving a significant amount of space could save you some future headaches.

For Kafka data, you need to perform estimates on message size, number of topics, and redundancy. Also remember
that you will be using RAID10 for Kafka’s data, so half your hard drives will go towards redundancy. From there,
you can calculate how many drives will be needed.

In general, you will want to have more hosts than the minimum suggested by the number of drives. This leaves
room for growth and some scalability headroom.

e Zookeeper nodes

One node is fine for a test cluster. Three is standard for most Kafka clusters. At large scale, five nodes is fairly
common for reliability.

¢ Looking at leader partition count/bandwidth usage

This is likely the metric with the highest variability. Any Kafka broker will be overloaded if it has too many leader
partitions. In the worst cases, each leader partition requires high bandwidth, high message rates, or both. For
other topics, leader partitions will be a tiny fraction of what a broker can handle (limited by software and hardware).
To estimate an average that works on a per-host basis, try grouping topics by partition data throughput
requirements, such as 2 high bandwidth data partitions, 4 medium bandwidth data partitions, 20 small bandwidth
data partitions. From there, you can determine how many hosts are needed.

How can | combine Kafka with Flume to ingest into HDFS?
We have two blog posts on using Kafka with Flume:

e The original post: Flafka: Apache Flume Meets Apache Kafka for Event Processing
¢ This updated version for CDH 5.8/Apache Kafka 0.9/Apache Flume 1.7: New in Cloudera Enterprise 5.8: Flafka
Improvements for Real-Time Data Ingest

How can | build a Spark streaming application that consumes data from Kafka?
You will need to set up your development environment to use both Spark libraries and Kafka libraries:

¢ Building Spark Applications

http://blog.cloudera.com/blog/2014/11/flafka-apache-flume-meets-apache-kafka-for-event-processing/
https://blog.cloudera.com/blog/2016/08/new-in-cloudera-enterprise-5-8-flafka-improvements-for-real-time-data-ingest/
https://blog.cloudera.com/blog/2016/08/new-in-cloudera-enterprise-5-8-flafka-improvements-for-real-time-data-ingest/
https://www.cloudera.com/documentation/enterprise/latest/topics/spark_building.html

¢ The kafka-examples directory on Cloudera’s public GitHub has an example pom xmi .

From there, you should be able to read data using the KafkaConsumer class and using Spark libraries for real-time data
processing. The blog post Reading data securely from Apache Kafka to Apache Spark has a pointer to a GitHub repository
that contains a word count example.

For further background, read the blog post Architectural Patterns for Near Real-Time Data Processing with Apache
Hadoop.

References

. Kafka basic training: https://ondemand.cloudera.com/courses/course-vl:Cloudera+Kafka+201601/info

. Kafka developer training: https://ondemand.cloudera.com/courses/course-v1:Cloudera+DevSH+201709/info
. Doctor Kafka: http://github.com/pinterest/doctorkafka

. Kafka manager: http://github.com/yahoo/kafka-manager

. Cruise control: http://github.com/linkedin/cruise-control

. Upstream documentation: http://kafka.apache.org/documentation/#basic_ops_consumer_lag

AU A WN R

https://github.com/cloudera/kafka-examples
http://blog.cloudera.com/blog/2017/05/reading-data-securely-from-apache-kafka-to-apache-spark/
http://blog.cloudera.com/blog/2015/06/architectural-patterns-for-near-real-time-data-processing-with-apache-hadoop/
http://blog.cloudera.com/blog/2015/06/architectural-patterns-for-near-real-time-data-processing-with-apache-hadoop/
https://ondemand.cloudera.com/courses/course-v1:Cloudera+Kafka+201601/info
https://ondemand.cloudera.com/courses/course-v1:Cloudera+DevSH+201709/info
http://github.com/pinterest/doctorkafka
http://github.com/yahoo/kafka-manager
http://github.com/linkedin/cruise-control
http://kafka.apache.org/documentation/#basic_ops_consumer_lag

Appendix: Apache License, Version 2.0

SPDX short identifier: Apache-2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through
9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of
fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole,
an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or
additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work
by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of
discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims

licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated
within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and

2. You must cause any modified files to carry prominent notices stating that You changed the files; and

3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,
and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part
of the Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along
with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party
notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify
the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be
construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as
a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required
by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable
to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even
if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
"[1" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class name and description of
purpose be included on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [nane of copyright owner]

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/licenses/ LI CENSE-2.0

Unl ess required by applicable |aw or agreed to in witing, software
distributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or inplied.
See the License for the specific |anguage governi ng permn ssions and
limtations under the License.

	Table of Contents
	Kafka Setup
	Hardware Requirements
	Brokers
	ZooKeeper

	Kafka Performance Considerations
	Operating System Requirements
	SUSE Linux Enterprise Server (SLES)
	Kernel Limits

	Kafka in Cloudera Manager
	Kafka Clients
	Commands for Client Interactions
	Kafka Producers
	Kafka Consumers
	Subscribing to a topic
	Groups and Fetching
	Protocol between Consumer and Broker
	Rebalancing Partitions
	Consumer Configuration Properties
	Retries

	Kafka Clients and ZooKeeper

	Kafka Brokers
	Single Cluster Scenarios
	Leader Positions
	In-Sync Replicas

	Topic Configuration
	Topic Creation
	Topic Properties

	Partition Management
	Partition Reassignment
	Adding Partitions
	Choosing the Number of Partitions
	Controller

	Kafka Integration
	Kafka Security
	Client-Broker Security with TLS
	Step 1: Generating Keys and Certificates for Kafka Brokers
	Step 2: Creating Your Own Certificate Authority
	Step 3: Signing the Certificate
	Step 4: Configuring Kafka Brokers
	Step 5: Configuring Kafka Clients

	Using Kafka’s Inter-Broker Security
	Enabling Kerberos Authentication
	Enabling Encryption at Rest
	Topic Authorization with Kerberos and Sentry
	Configuring Kafka to Use Sentry Authorization
	Authorizable Resources
	Authorized Actions
	Authorizing Privileges
	Granting Privileges to a Role
	Troubleshooting Kafka with Sentry

	Managing Multiple Kafka Versions
	Kafka Feature Support in Cloudera Manager and CDH
	Client/Broker Compatibility Across Kafka Versions
	Upgrading your Kafka Cluster
	General Upgrade Information
	Upgrading Kafka from CDH 6.0.0 to other CDH 6 versions
	Upstream Upgrade Instructions

	Managing Topics across Multiple Kafka Clusters
	Consumer/Producer Compatibility
	Topic Differences between Clusters
	Optimize Mirror Maker Producer Location
	Destination Cluster Configuration
	Kerberos and Mirror Maker
	Setting up Mirror Maker in Cloudera Manager

	Setting up an End-to-End Data Streaming Pipeline
	Data Streaming Pipeline
	Ingest Using Kafka with Apache Flume
	Sources
	Kafka Sinks
	Kafka Channels
	CDH Flume Kafka Compatibility
	Securing Flume with Kafka

	Using Kafka with Apache Spark Streaming for Stream Processing
	CDH Spark/Kafka Compatibility
	Validating Kafka Integration with Spark Streaming
	Securing Spark with Kafka

	Developing Kafka Clients
	Simple Client Examples
	Moving Kafka Clients to Production
	Reuse your Producer/Consumer object
	Each KafkaConsumer object requires calling poll() frequently
	Catch all exceptions from poll()
	Callback#onCompletion() should always exit without errors
	Check your API usage against the latest API
	Hidden Dependency on Network Availability
	Read the Details Carefully in the Apache Kafka Javadoc

	Kafka Metrics
	Metrics Categories
	Viewing Metrics
	Building Cloudera Manager Charts with Kafka Metrics

	Kafka Administration
	Kafka Administration Basics
	Broker Log Management
	Record Management
	Broker Garbage Log Collection and Log Rotation
	Adding Users as Kafka Administrators

	Migrating Brokers in a Cluster
	Using rsync to Copy Files from One Broker to Another

	Setting User Limits for Kafka
	Quotas
	Setting Quotas

	Kafka Administration Using Command Line Tools
	Unsupported Command Line Tools
	Notes on Kafka CLI Administration
	kafka-topics
	kafka-configs
	kafka-console-consumer
	kafka-console-producer
	kafka-consumer-groups
	kafka-reassign-partitions
	kafka-*-perf-test
	Enabling DEBUG or TRACE in command line scripts
	Understanding the kafka-run-class Bash Script

	Kafka Performance Tuning
	Tuning Brokers
	Tuning Producers
	Tuning Consumers
	Mirror Maker Performance
	Kafka Tuning: Handling Large Messages
	Kafka Cluster Sizing
	Cluster Sizing - Network and Disk Message Throughput
	Choosing the Number of Partitions for a Topic

	Kafka Performance Broker Configuration
	JVM and Garbage Collection
	Network and I/O Threads
	ISR Management
	Log Cleaner

	Kafka Performance: System-Level Broker Tuning
	File Descriptor Limits
	Filesystems
	Virtual Memory Handling
	Networking Parameters
	Configuring JMX Ephemeral Ports

	Kafka-ZooKeeper Performance Tuning

	Kafka Reference
	Metrics Reference
	Useful Shell Command Reference
	Hardware Information
	Disk Space
	I/O Activity and Utilization
	File Descriptor Usage
	Network Ports, States, and Connections
	Process Information
	Kernel Configuration

	Kafka Public APIs
	Kafka Frequently Asked Questions
	Basics
	Use Cases
	References

	Appendix: Apache License, Version 2.0

