cloudera

Apache Impala Guide

Important Notice
© 2010-2021 Cloudera, Inc. All rights reserved.

Cloudera, the Cloudera logo, and any other product or

service names or slogans contained in this document are trademarks of Cloudera and
its suppliers or licensors, and may not be copied, imitated or used, in whole or in part,
without the prior written permission of Cloudera or the applicable trademark holder. If
this documentation includes code, including but not limited to, code examples, Cloudera
makes this available to you under the terms of the Apache License, Version 2.0, including
any required notices. A copy of the Apache License Version 2.0, including any notices,
is included herein. A copy of the Apache License Version 2.0 can also be found here:
https://opensource.org/licenses/Apache-2.0

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software
Foundation. All other trademarks, registered trademarks, product names and company
names or logos mentioned in this document are the property of their respective owners.
Reference to any products, services, processes or other information, by trade name,
trademark, manufacturer, supplier or otherwise does not constitute or imply
endorsement, sponsorship or recommendation thereof by us.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this document may be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Cloudera.

Cloudera may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as expressly
provided in any written license agreement from Cloudera, the furnishing of this document
does not give you any license to these patents, trademarks copyrights, or other
intellectual property. For information about patents covering Cloudera products, see
http://tiny.cloudera.com/patents.

The information in this document is subject to change without notice. Cloudera shall
not be liable for any damages resulting from technical errors or omissions which may
be present in this document, or from use of this document.

Cloudera, Inc.

395 Page Mill Road
Palo Alto, CA 94306
info@cloudera.com
US: 1-888-789-1488
Intl: 1-650-362-0488
www.cloudera.com

Release Information

Version: CDH 6.2.x
Date: August 2, 2021

Table of Contents

Introducing Apache Impala........cccciiiiiiiiiiiirrrccrrecrrcc e reneeesensessenseseess 1O

Ty gV o= =T 1T 0 1= SRR 16
HOW IMpPala WOrKS With CDH.......ooiiiiiiiie ettt e e et e e e e et e e e e ettt e e e e esnaseeeeeansseeeeeanneaeaeans 16
PrimMary IMPala FEAtUIES. .. .iiiiiiiiiee ettt e e ettt e e ettt e e e eeba e e e e e ssbaeeeeeansaaeeeeanssseeeeassseeeeannnsneaaens 17

Impala Concepts and Architecture......c.ccoveeiiieeiiiiiiiiieiiiicicrrccrenecreesesensseneneeness 18

Components Of the IMPAla SEIVET........uiiiiie e e e e e e e e e e e e e e e e e e eeeesaaatraaeeeeaeaeesannnnnes 18
LT [T To] e B0 o =T Lo T SRR 18
LE L= [T e o B (o (=X e = PP UUPPTN 18
The IMPAIA CALAIOG SEIVICE......cc.eeeeeeeeee ettt e e ettt e e et e e e ettt e e ettt e e e st e e e aass s e e assaaasaassaaeeaassaasassaaaeesssaeesnsses 19
Developing IMPala APPIiCaAtIONS. ...ci ittt e e e et e e e ettt e e e e ssabeeeeessnteeeeeennbaeeeseanraeeeeans 20
Overview Of the IMPaAIa SQL DIGQIECT................oeeeeeeeeeeeeeeeeee et e et e e et e e et e e ettt e e e et e e e e st eeeats e s e e sassaaestseaeeasssaessssseas 20
Overview of IMpala Programming INTEIFOCES.c.uueeueerieeeie ettt ettt ettt e st ssesenineeane s 21
How Impala Fits INto the HAad0OP ECOSYSTEML....uiiiiiiii ittt e e e e e e e e et r e e e e e e e e e e e e eannenranaeeeas 21
HOW IMPGIA WOIKS WIth HIVE..........veeeeeeeeeeee ettt et e ettt e e ettt e e et e e ettt e e easstaeeaatstaeassaaaaaasssaeasssaeeasssaeenssses 21
Overview of Impala Metadata aNd the MELASLOIE.............ccc.uuueeeeeieee et ee ettt e e e e e ettt e e e e e e et et aaeeeeeessasaseaaaaeeaas 22
HOW IMPGIQ USES HDFS......co.eeeeeeeeee ettt ettt e ettt e et e e ettt e e e et e e e atste e e ettt s e easssaaeaatstaaasssaaaansssaasastsaasesnsssaennssees 22
HOW IMPQAIA USES HBASE. ...ttt e e ettt e e e e e ettt e e e e e e ettt a e e e e eee s assseaaaeeesaaasasasaaeeeaesnstsseeaaeeaaan 22

Planning for Impala Deployment.......cccccciieiieniiieiieiireireeinrneneeceenerencssnsernsssenesns 23

TeaTo] T 2 (Te [T 001) €T OO 23
Product COMPALIDITIEY IMIGEEIX........coeeeeeieeeieeeeeee ettt ettt ettt e st e et e st e et e st e e st e enaneeneas 23
SUPPOITEA OPEIALING SYSTOIMS......vveeeeeeeeeeee e et e et e et e e ettt e e et a e e et e e e ettt s e e eassaaeeaseaaeassseaaaassssaeaasssaasantssaeassssaaeassseaaaas 23
Hive Metastore and Related CONFIGUILION............ccueeeeeisiieeeeeeeeeee ettt ettt ete e e e s 23
Lo 1Y B DT oY=l g Lo =T ol (=SSR 23
Networking CoNfigUIation REGUIF@MENLS.c.ueeiueeeieiseeee ettt ettt e ettt e et et e ettt e e enanees 24
L2 Lo T o = t=Te TV 4=l L= 2SR 24
USEI ACCOUNT REGUITEIMENTS. ...ttt ettt ettt et s et e st e e ettt e et e e st e e e sttt e e e tneaesnnneas 25
Guidelines for Designing IMPala SCHEMAS.........coiiiiiiiie e e e e e et e e e e eare e e e e nareee e e eanres 25

Setting Up Apache Impala Using the Command Line.......ccccceereeiireirencrencienccnnennn 27

What is Included in an Impala INStallation...........oooiiiieiice e e e e e e e 27
Installing Impala from the CoOMMANT LiNE.......occuiiiiiiiiiiiie et et e e e sar e e s sabaeeessenbaneeesanes 27
Modifying IMpala STartUp OPtioNS......eiie i e e e e e e e e e e e e e e e e e e s aeasbaeraeeeaeeeeseasssnenernees 29

Configuring Impala Startup Options through the COMMQANG LiNe...............oeeeeuveieeeeiiieeeieeeesiieeeeteaeesaaaessaaeeesiaaaeesasneas 29

Checking the Values of Impala CONfigUIQtion OPLIONS............cccuueeeeeueeeeeiieeeeeieeeeeeeeeeettee e e ettt eeeeetsa e e et e e e etseaeeeasaaeesnes 32

Startup Options fOr iMPAIAU DOACMON..........cccccueeeeeeee et eete et e s ee e et e e ettt e ettt e e e sstteesasseaeesassaasassesesssssasssssenasans 32
Startup OPtions fOr SLATESTOIEA DACMON.............cceueeeeeeeeeeeeee et ettt e e ettt e e ettt e e ettt e e e ettt e e esasaaeestseaeeaasaaeesassaaessseseens 32
Startup Options fOr CAtAlOGA DACIMON..........ccccuueeeeeieeeseeeeeeeeeeee e e st e e ettt e e ettt e e ssteaeessttaasasseaeessssaasassesenssssasnssssnasnas 32
YL TaT = o 0] o T 1 OSSPSR 32
Starting IMmpala from the COMMEANG LINE..............cc.ueeeeeeiieeeeee e et e e ettt e ettt e e ettt e e e ettt e e e ssaaeaststaeesssaaeessseaasessseseens 33
Installing Impala With CloUdEra MA@coccuiiiie ittt ettt e ettt e e e et e e e e sbte e e e e sataeeesessbaeeeesenseneeeeanns 33
Installing Impala from the CoOMMAND LiNE.......occuiiiiiiiiiiee et et e sar e e s ssbaee e s ssnnaeeeesanes 34

Managing IMpPala.......ccceieiiieiiiiiiieiiiiirrierecernereeeerneressesnsessssssnsessssssnsessssssasssassess 30

Post-Installation Configuration for IMPala.........c.eeii i e et e e e eaaeeeeeeaes 36
Configuring Impala to WOrk With ODBC.......cccuuiiiiiiiiiiie ettt e e s e e e st e e e e s rba e e e e s abaeeeeesanaaeeeesnrees 37
DOWNIOAAING TN ODBC DIVueeeeeeeeeeeeee et e ettt e e e e e ettt e e e e e e e ettt eaeaeeeatassseaaaeeesassssseaaaeeeeasasssasasaaeaaaas 38
CONFIGUIING TNE ODBC POIL......ooeeeeeeeeeeee e et e e e e ettt e et e e e et a e e et e e e et e e aastseaeaasssaeeassstaeansssaaaaasssasanssanasasssaennssnees 38
Example of Setting Up an ODBC Application fOr IMPQIQ...............oooeeueeeeeeeeeeeeeee ettt e e e e eeeeaeaaeeaneas 38
Notes about JDBC and ODBC Interaction wWith IMpPala SQL FEALUIES.............covueerieesiieesieesieesiee st siee et siveesiteesiteesineens 39
Configuring IMpala t0 WOrk With JDBC......ccoicuiiiiiiiiiiee ettt et e e s e e e s e e e e seba e e e e e nbaeeesesnsraeeeesnnsees 40
CONFIGUITING TRE JDBC POI ..ottt e ettt e ettt e e ettt e e et e e e et e e e et e e e eats e s e e st e e e aatsaaaaassaaaeasssaeeassasesanseseeaasneas 40
CROOSING tNE JDBC DIIVEI ..ottt ettt ettt ettt ettt et ettt et et e st e st e et e st e et s enaneenanes 40
Enabling Impala JDBC SUPPOIt ON CHENT SYSEOMIS..........ueeeceeeeeeeiiee e et e e ettt e e ettt e e ettt e e ettt e e e et e e estaaaeestsaaeeeaseaeesasees 40
EStaDIISNING JDBC CONNECLIONS.......c..eeeuieeeiieesieeeee ettt ettt ettt s e ettt e e ettt ettt ettt e et e st e s st e st e eneeebneeanas 41
Notes about JDBC and ODBC Interaction With IMpPala SQL FEATUIES............ccccveeeeeeeeeeetieeeesieeeeeeaeeesteaesssaaeescseaeesseeas 43
Kudu Considerations fOr DIMIL SEAEEMENTS..........c..eeeueeeieisieeeee sttt ettt ettt st et s et e e enane s 43

Impala Upgrade Considerations........ccccciveeieeiieniieecrenierenceencernscrencernscresscsnsesesscsnsesesdd

Converting Legacy UDFs During Upgrade to CDH 5.12 Or Hiher....covivioii i 44
Handling Large Rows During Upgrade to CDH 5.13 / Impala 2.10 or Higher........c.ccoooviiiiiiiicieecee e 44
Change Impala catalogd Heap when Upgrading from CDH 5.6 OF LOWETcccoviiiiieeiiiiiieeeiiieeeeeiveee e 45
List of Reserved Words Updated in CDH 6.0 / IMPala 3.0.....cccueiiiuieieiee ettt eevee e eeneee e 46
Decimal V2 Used by Default in CDH 6.0 / IMPala 3.0.....ccccuiiiiiieeciiee ettt ettt eaaeeeearee e 46
Behavior of Column Aliases Changed in CDH 6.0 / IMPala 3.0......c..eooiuiiiiiiiie et e 46
Default PARQUET_ARRAY_RESOLUTION Changed in CDH 6.0 / IMpala 3.0......ccooiieeieeieieeeeeeeeeeee e 46
Enable ClUStEring HiNt fOr INSEITS. . .uiiiiii ittt e e et e e e e e e e e e e e st e b b e e e e eeaeeeeeennnsnsesaeeees 46
Deprecated Query Options Removed in CDH 6.0 / IMPala 3.0....c..oiiiiiiiiiieceiee ettt e 46
refresh_after_connect Impala Shell Option Removed in CDH 6.0 / Impala 3.0.........cccueeeiiiieciieeeciee e, a7
Return Type Changed for EXTRACT and DATE_PART Functions in CDH 6.0 / Impala 3.0......cccceeeeveviveieecnneeenee. 47
Impala Roles with SELECT or INSERT Privilege Receive REFRESH Privilege During the Upgrade to CDH 5.16
JCDH B.1. ittt e e et e et e e e e e te e e eaeeeebeeeabeeeataeeabeeeabaeeateeeabaeeateeeareeenares 47
Port Change for SHUTDOWN COMMANG......iiiiiiiiiiieiiiiiieeeeciieee e eeitee e e e ettt e e e seataeeeesebteeeessataeeeessnsaaeeesessneeenanns a7

D] YU LAY =Y a u oY <A O - o =TSR UPRSPRRY 47

3] o1 T EVL oY o T £ U - -

TULOrials fOr GELLING STArtEU.ueeiiiiiiiieee e e e e e e e e e e s a e e e eeeeaeesessansssrsseaeeaeeessssannnssnnns 48
EXPIOre @ NEW IMPGIA INSTANCE.........ccccuveeeeeeieeeeeee e ete e et e et e e ettt e e ettt e e et a e ettt e e sasstaeeassaaaeanssaaeassstaassssanaeasssaensssneas 48
LOAA CSV DAL frOM LOCOI Fil@S........oooceeeeeeeeeeieeeeeee ettt e et ettt e e ettt e e e ettt e e e et e e e e asa s e e eatssaeeetsaaeeeaseaeenasseas 53
Point an Impala Table At EXiStiNG DALQ FilES.............cccueeeesieieeeeiieeeee e eeee e e st e e e ttta e e ttaeeastttaaeassaaasaassaasasssaaaeesnseaennanees 54
DeSCribe the IMPQIQ TADIE.............cooeeeeeeeeeeee et e ettt e e e e e e ettt a e e e e e ettt s e e e e eeeestasasasaaaeeaessstssesaaeeaaas 56
(O L= g (L= [T e Te o Lo o) = USRS 56
Data Loading and QUEIYING EXAMPIES..........cooeeeeeeeeeeeeeeeeeeeeeeeee ettt e e ettt a e e e e e ettt e e e e eeesassseaaaeeesssssssesaaaeeeanaes 57
AAVANCE TULOTTAIS .eeeeieeeeiiee ittt st e st e st e e sbe e e ssteeesataeeestaeesssaeesnsseeenseaesnsseesnsseeesseesnnsenenns 59
Attaching an External Partitioned Table to an HDFS Directory StrUCLUIE...........ccc.cevvueeeiueiesieeiieesieeeiee et 59
Switching Back and Forth Between IMpPala QN HIVe..................oocueeeeeieieeeeeieeeeeeeeesetteeeetta e e staaaeestaa e e e ssaa e e sissaaeasseaaeeans 61
Cross Joins and Cartesian Products with the CROSS JOIN OPEIGLONccueerueeeseeesieeeieesieeeiee ettt 62
Dealing with Parquet Files with UnKnOWN SChEMa........c..cuiiiiiiiiiic e 63
DoWNIOAd the DA FIlES INEO HDFS........coceeeiieeeeeeeeeee ettt ettt s e st s bttt e et e et e et e saseesstaesnseesbaesnseas 64
Create DAtADASE ANO TOADIES.............oeeeeieeeeeee ettt ettt e e ettt e et e e et e e e st e e e atae e s aaatta e sttt e e sasseaeassteaesnasneas 64
Examine Physical GNA LOGICAI SCREMIQ............oooeeeeeeeeeeeeeee ettt e et e e e et e e et e e e et a e e et e e e s sstaaesstsaaeesasssaesnsees 65
YN e Lo 1Y 7L=3 D o L o TP UPPP 66

Impala AdmInNistration.......cccceieiiieiiiiiiieiiiiiieiireiereeernereestenesenssessersscssnsesnssssssesns /D

Setting Timeout Periods for Daemons, QUETres, aNd SESSIONS.......cccciuieieiiiiiiieeeeiiieeeeeiiree e e e eree e e e senraeeeeesreeeas 75
INCreasing the StALESTOIE TIMEOUL..........cceeeuueeeeiieeeeiee ettt e et e e ettt e ettt e e ettt e e sttt aesttaeeasnsteaesastaaesnsseesanasneasnssnens 75
Setting the Idle Query and Idle Session Timeouts fOr iIMPAIAQ.............c..oovvverieevciieiiiescie ettt 75
Setting Timeout and Retries for Thrift Connections to the Backend ClieNt..............ccccuveeecuueiesiieeeeniiseseiieeesieeeesiiee e 76
(0T To=d [T Te e B O TV 1] o O PRSPPI 77
Using Impala through a Proxy for High Availability..........cooeiiiiiiiiie e 77
Overview of Proxy Usage and Load Balancing for IMPalQ................cc.ueeeoeeeeeeieieeeeeeee ettt etaa e s e e e eaea e e 77
Choosing the Load-BalanCing AlIGOITtAM.............c...ueeeeueeeeesiee et et eee e e et e e et e e e ettt e e e sattaeeeasstaasasstassassanasennssaensasees 78
Special Proxy Considerations for CIUSLErs USING KEIDEIOS............c.uueeicuueeeeeieeeeeeeeeeeeeeettee e etae e eteeeeeaaa e e ssaeaessseaeeaans 79
Special Proxy Considerations for TLS/SSL ENADIEA CIUSTIS...........cc.ccveeeeereeieeiieesieeeieeseeeseeeseeeseesseesseesseesssesssessesssessesssessees 80
Example of Configuring HAProxy Load Balancer fOr IMPQIQ.................ccoccueeeeeeueeeeeeieeeeeieeeeeee et eetaa e staa e e saea e e e 80
Managing Disk Space for IMPala Data.......c.uueiiiiciiiie ettt e e e et e e e e eat e e e e eeba e e e e e earaaaeeaans 82
AUAItING IMPAIA OPOIAtIONS. . utiiiiiiiiiiee ettt ettt e e et e e e e eae e e e ssbteeeeesastaeaeesasbaeeeesanstaeaesanssaeaessnsseneessanses 83
Durability and Performance Considerations for Impala AUGItING................ceeeeueeeeeceiieeiieeeesie et eeeee et e e e e 84
FOIrMQL Of tNE AUGTE LOG FilES....ccc..eeeeeeeeeeeeeeeeeeee ettt e et e e ettt e e et e e ettt e e et e e e asatasasstaeesastaaesssanasasseaesnnsneas 84
WHhiCh OPerations Are AUGIEEAc..ueeeeeeeeeeeeeee et e et e ettt e e et e e et a e e et e e e e aats e e e etsaaeesstsaaeeassaseeasssasasssssanannns 85
REVIEWING THE AUIE LOGS....cc.evveeeeeieeeeeee ettt e e ettt e et e e ettt e e e ettt e e et staeaassseaeaasstaaeaasstasasstaaeanstsaenassnaasasssaesnnssees 85
Viewing Lineage Information for IMPala Data.........cccccuiiiiiiiiiice et r e e e e e e s e e ran e e e e aaeeeeeas 85

139 T 1 E T T=To1 UL 4| A 2 RRPRRRRRRRRRORE . ¥ 4

Security GUIdeliNes fOr IMPala........cii i e e e et e e e e et e e e e e eataee e s enbaeeeeenaeeeas 87

Securing IMpala Data @nd LOZ FilES....cccuuiiiiiiiiiie ettt et et e e e e e e e st e e e e e sareeeeessabaeeeeensees 88

Installation Considerations for IMPala SECUTILY.......iiiiciiiie et e e e s s saaaeeeesaes 89

Securing the Hive Metastore Database. e e e e et e e e e e e e e e e sranrreeeeeeeeeeesannnnns 89
Securing the IMpala Web User INtEIfaCe......cccuviiiiieeeee ettt e e e e e e e e sare e e e e e nres 89
Configuring TLS/SSL fOr IMPala.....cicuei ittt ettt e et e e ebe e et e e ebe e sabeebeesabeebeesaneebeesaseenseees 90
USING ClOUGEIA IMONGQGEToeeeeeeeeeeeeeeeee ettt e e ettt e e e e e e ettt e e e e e e e st ataa et e e e eeaaastssesaaaeeeesssssssesaseesaesssssssasaaeeenias 90
Configuring TLS/SSL Communication for the IMPaAIQ SREI...............c..ccuveeeeeeeeeieeieeeeeeeeee et et e eteetesee s e e ssseesseaseens 91
Using TLS/SSL With BusSiNess INTEIlIGENCE TOOIS...........cccuveeeueeeieeeeeeecieeeeeeeieeeteeetteeetaeeeetteeeaeeetseeeseessaeeiseseesaeeeseseerseenaseen 91
Specifying TLS/SSL Minimum Allowed Version QNnd CIDREIS..............cuecveeveceeieeeeeieeeieeeieeeseeeseeiseeiseesssesssesssssssessessesssessees 92
Enabling Sentry Authorization fOr IMPala........oociiiie et e s e sbae e e e e eaes 92
THE SENLIY PriVIlEGE MOUEL............eveeeeeeeeeeeeee ettt ettt e ettt e e ettt e e et e e ettt e e e et et e e e st aeeaasaaaeesssaaaeesnsaeeassnes 92
Starting the impalad Daemon with Sentry Authorization ENGDIEd................c.ooeeeiiiieeieiiiieeei et 95
Enabling Sentry for Impala in ClOUdEIa MONQGET.............cc..ueeeeeieeeeeeeeeeeee e et e ettt e e ettt e e et s e e et e e essaaaeatseaeeeaseaeesanees 96
Using Impala with the Sentry Service (CDH 5.1 0F RiGQRer ONIY).........c.cooeeiuieieieeeeeee ettt 97
Using IMpala With the SENEIY POLICY File...............oooeueeeeeeeieeeeee ettt e ettt e et a e ettt e e et e e e st a e e s staeeesasaaeeesssaeesasenen 99
Setting Up Schema Objects for a Secure IMmpala Deployment...............c.coocueeereeeieeisiieeiieseeeee et 101
Debugging Failed Sentry AUtNOIIZAtION REGUESES...........cccuueeeeeieeeeeieeeeeeee e esee e e teeeeete e e e tsaeaeatsaaeeassaaeesssaaessseaeesasees 101
The DEFAULT Database in @ SECUIre DePIOYMENL............cccueeiieeeieieieeeee ettt ettt 101
TaaY o] A UL g =T oL aToF 1 o o P UEPRRPE 101
Enabling Kerberos Authentication fOr IMPQIQ...............coeeeueeeeeeeeeeeeee et ee e et e et e e e te e e ettt e esstaaeesaseaeesnseaeesanees 101
Enabling LDAP AUthentiCation fOr IMPQIQ..............oeeecuveeeeeeee et ee e ettt e ettt e e et e e e et e e ettt e e e easaaeeeateaeeeaseaeeeannes 103
Using Multiple Authentication Methods With IMPQIQ.................oeeeeeeeeeeeeeeeee ettt e e s eta e e s ta e e esaaeessnes 105
Configuring Impala Delegation for HUE QNG Bl TOOIS.............cccueeeeeeieeeeeeee et eeeee ettt e et a e et e e e s aaestsaeeeaneas 106

Impala SQL Language Reference.......cccceveeeerreenereencrenncreenerenserenseerenssesensessenseesess 108

(670] 010 41T 01 £ TSP PP OPPPPPPPPPPPPPPPN 108
D L= I 1Y 01T OO U TP PP PP PPPPPPPPPPPTPTPPIN 108
ARRAY Complex Type (CDH 5.5 OF RIGREI ONIY).....ccc.ueeeeeeeeeeeeeeeee ettt e ettt e e et a et e e e et e e e easaaeeasees 109
BIGINT DOEQ TYPEC....eeeeeeeeeee ettt ettt ettt e et e sttt e sttt e e sttt e e st e e st e e e st e e e tn e e s snseeeeasnneesaanns 112
BOOLEAN DO TYPC..cccoeeeeeeeeeeeeeeeeeeeeeeeietetetete ettt s s s s s s s s aaanansasasasasasans 113
CHAR Data Type (CDH 5.2 OF RIGREI ONIY).......oueeeeeieieeee ettt ettt sttt et et et e ntesasesnaesaeas 114
DECIMAL Data Type (CDH 6.0 / Impala 3.0 OF RIGREE ONIY).......occveeeeeeieeeeeeeeeeeeete e ettt ee s e e e esvesesse e 116
DOUBLE DOEQ TYP....ceeoeeeeee ettt ettt ettt ettt e et e ettt e st e e sttt e e et e e st e e e sats e s e atn e e s sanneeeessnneesannns 121
FLOAT DQEQ TYPC..coooeeeeeeeeeeeeeeeeeeeeeeeetetet ettt a s e s s s s s s s s asssansasasasasasens 123
L I Do Lo B B o =PRI 124
MAP Complex Type (CDH 5.5 OF RIGREI ONIY).........ooooeeeeeeee ettt e et e ettt et e e et e e e et a e e e sasaeaeeaseaeesasees 125
REAL DOTQ TYPC..c.coeeeeeeee ettt ettt ettt ettt e ettt e e e e ettt e e e e e sttt e e e e s e satanneeee s 128
SMALLINT DGEQ TYPC.eeevveeeeeeiieesieeesitee et stesieestte st e e tte ettt e sata e s st e s st e s st e s astesatt s e aste et aassa e st anasesantaesaseasnssesnssaenasaensss 129
STRING DOEGO TYPE..ccneieieeeeeee ettt ettt ettt et e et e e e st e st e e ettt e s ettt e s itn e e s sttt e e s anneeesannneas 130
STRUCT Complex Type (CDH 5.5 08 RIGREI ONIY).........occuveeeeeeeeeeeee ettt ettt e et e et taa e e st e e e etaaaeeassaeesasaeaaas 131
TIMESTAIMP DOEA TYDC....veveveeeeeereeseeseesiessoseseseessesassass s sessassessssessssssassassassssssssassassassasssssnsssssssssasassasssssaassssessessanees 137
TINYINT DOEQ TYPCoeeeeeeeeee ettt ettt ettt ettt ettt ettt ettt ettt e e et sttt sttt sttt sttt st bttt ttasatststa bt sssssssasnbssssnsnes 143
VARCHAR Data Type (CDH 5.2 OF RIGREE ONIY).....ooueeeeeieeeeee ettt ettt st s satesaee s e naeenteens 144

Complex Types (CDH 5.5 OF RIGREE ONIY).........oooeeeeeeeeeeeeee et e ettt e ettt e e ettt e e ettt e e e et e e e easaaaeaatssaeeaatsaeeaasnes 146

=Y =Y KRR 174

A Y T=Tq (ol N =1 | KSR PP RPN 174
SEIING LIE@IQIS. ..ottt ettt ettt et ettt a e at e e et e e et et e ettt et ettt e e e et es 175
1210 To) (<o T I N =1 | TP PPUPPRN 176
TIM@SEAMUD LIE@IQIS........eeoeeeeeeeee ettt ettt et e e e et e sttt e et e st e et e e st e st e et enateeeaseenaes 176
INULL. ettt et ettt ettt ettt e 22t e st e s st e skt e 2t e et e et s e st e e sas e e s st e e e et e e s bt e e te e et e et e e st e e nteenanee e 177
1O LI O] 011 - | 1] TSP 178
AFTERMETIC OP@IALOIS. ... e eeee e et e et e e et e e et e e ettt e e e e ats e e e eatsa e e eaaseaeeaatseaeeaass s e e aatssaaaaatsaaensssaaessssaaeasssaaeanaes 178
BETWEEN OPEIALONc..cccoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeetee ettt s s s e s n s s s nnn e s e nananananass 181
COMPATISON OPOIATOIS.cccceeeeeseseseseieeeeeieteteeeeetetteet ettt tatats s tsasssts sttt a e a s s s s s s aasaanaasasasans 182
EXISTS OPEIATON oottt s e s e e s s e s e s e s s asnsanansananasasasass 183
LT O oY= 4o | (o] TR TPUPPPOTPPPTP 186
IN OPEIATON oottt e s e s s s s s e s e a e s e n e neaeaenennaaeanaeaneeaeeas 187
L Yy O o L= do | (o] SO PTPPP 189
IS DISTINCT FROM OP@IGLON......veeeeeeiieeee ettt ettt ettt et s et e st e et e st e et e et e e steeasteenaseenaseenateessnenans 190
IS INULL OPCIALONccccoeeeeeeeeeeieeeeeeeeeeeeetetetete ettt e s e s e s e s e s e s s s s aasasasasasasasasans 192
IS TRUE OPEIATON ..ottt s e s e s s s e s s n s s s aennanaananasasasass 193
L OO o L= o | (o] OO SSPTUTPPPPP 193
Jo Yo 1ol |0 T=T o e TSRS 194
L Y O o T=1 d v | Lo] SOOI 196
RLIKE OPEIATONc.cceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt s s s s e s s s s s s e s s asnnnnnnsananasasasans 198
Impala Schema Objects and ObJECT NAMES.....cccuuiiiiieiiiiie et e e s s e e s st ee e s e baaeeeessnaeeeean 198
OVEIVIEW Of IMPAIA AlIGSES......oooeeeeeeeeeeeeee ettt e et e e et e e et e e ettt e e e ettt e e e sttt e e ssstaeaastssaaasssaaesasssaaasssanaeannes 199
OVervieW Of IMPAIG DOALADASES.cceueeeeeeieeeee ettt ettt ettt e ettt st e et e et e et e et et e e saseenaneenneenane 200
OVEIVIEW Of IMPOIA FUNCLIONS.ovveeeeeeeeeie e e e et e e et ee e e et e e e ettt e e et e e e satseaeaaasaaaeaasssaaasssssaaasssaeesasssasanssesaesanes 201
OVerVieW Of IMPAIA IACNTIfIEIS...........cccueeeeeeeeeeeeee ettt ettt sttt ettt et e sateesateenaee e 202
OVEIVIEW Of IMPAIA TADIES........oc..eeeeeeeeeeeeeeee ettt e et e e e et e e et e e e ettt e e e aatat e e eas s e e aaatssaaesssaaeeasssaseassseaeanes 203
OVEIVIEW Of IMPAIA VIBWS......ccneieeeeeeee ettt ettt e et s e et e et e ettt e et et e naseenateasneenane 206
FaaY o] Y O TS = =T o =Y o U PUEURRROS 210
DDL SEATOIMENTS.c.c.eeeeeee ettt ettt e e ettt e e e sttt e e e e e et n et e e e e e sttt e e e e e e e e s 210
DIMIL SEQT@MENTS. ...ttt et ettt e e+ e ettt e 222 e sttt et e e e e e et s et e e e e e e e asas e e e e e e eeenstnnneeeens 211
ALTER DATABASE SEALEIMENL.......eeeeeeeeeeeee ettt ettt ettt ettt et et e st e st e st e e ste et e e sataenateasaseenane 211
ALTER TABLE SEGEEIMENT.....ccvvveseiieeiee ettt ettt ettt e et e st e et e et e et e e ste e sse e s ateaeaseasassaeatesaassaanssaeasseesssaanasaeaateaaseanass 212
ALTER VIEW SEGEEME@NT ...ttt ettt ettt et et e s e et e st e st et e et e e asteeateasasaesabeasnseenae 225
COMMENT SEATEMENT.....cceeeeeeeeeee ettt ettt e e+ ettt et a2 e ettt e e e e e ettt e e e e e e e aaans e e e e e e eeananstnneeeeens 226
COMPUTE STATS SEALEIMENT....cceeeeeeeeee ettt ettt ettt e st e st e st e st e et e et e et e e steenaseesaseenateesseenans 227
CREATE DATABASE SEAEEME@NT......oieeeeeiieeeeeste et ste ettt et e et et e e s aae ettt e et e e st e st e st e e aste e st e e ssaaasseenssaesnsaennsasnseenass 233
CREATE FUNCTION SEGEEMENT.....cccueeeeeiieeeeeeee ettt ettt ettt e st e st e st e st e et e esteenataessteenateasseenane 235
CREATE ROLE Statement (CDH 5.2 OF RIGREE ONIY)........cccueeeeeeeeeeeeee ettt e e e e e e et a e et eaeearaaeeeanns 241
CREATE TABLE SEALEIMENT ..ottt ettt ettt ettt e et e st e et e et e et e et eeate e s ateenateesaseenateasnseenass 241
(00 Y A Y e 1 =T =T o U SPPUURRRN 255
DELETE Statement (CDH 5.10 OF RIGREI ONIY)........ooeuveeeeeeeeeeeeee ettt ettt ettt et e s e et e st e e saesassaeasssesssaansseenas 256
DESCRIBE SEATEIMENT......cceeeieeeeeee ettt ettt e e+ ettt et 42+ 2ttt et e e a2 e ettt e e e e e e asas e e e e e e eeannssnneeeeens 258

DROP DATABASE STATEIMENT........oooeeeiieiiiictecteete ettt ettt st eeas e e aaeeeaseeeae e 269

DROP FUNCTION SEATEIMENT.......eoiiiiiiiiiiiiiiiiiietie ettt sttt st s s s s s e ae e 270

DROP ROLE Statement (CDH 5.2 OF RIGREI ONIY)..........ccueeeeeeeseeee et eeee ettt e ete ettt e e e sa e e te e st aeesaesasaaeasseeassaeasseeans 272
DROP STATS SEAEEMENT.....veveeeeeiiieeeeeste ettt e it et e ettt e ettt ettt e st esata e et e et e e st s e st e estaeastaeasseesssaeaasaasnsaanasesenseenass 272
DROP TABLE SEQEEME@NL ..ottt ettt ettt et e et e st e st e et e et e et e e st e e ate e st e naseesaseenateasnseenaes 275
DROP VIEW SEQEEMIENT.....cccoeaeeeeee ettt ettt e e e ettt e e ettt e e a2 e ettt e e e e e e e aaas e e e e e e eeanassnneeeaens 277
EXPLAIN STQTEIMENL........eeeeeeeeeeeee ettt ettt et ettt et e e sttt e e e e ettt e e e e sttt e e e e e e sannnneeeens 278
GRANT Statement (CDH 5.2 OF RIGREE ONIY)...........oeeeeeeeeeeeeeeeeeee et ettt e e e et e e et e e e et a e et aaeeasaaeeaasnes 280
INSERT STATEIMENT. ...ttt ettt et ettt et e e sttt e e e e ettt e e e e e st e e e e sennnnnneeeens 284
INVALIDATE METADATA SEALEIMENT....cc.evveseiieeiie et et ettt e se e et eeteatae e atte e sttt e sataesuttasasaeaateeasesesssasneeassaenssaennsaanasesans 293
LOAD DATA SEAEEIMENT.....cccoieeeeee ettt ettt ettt e e e e e ettt e e e s ettt e e e e e st e e e e e s e snnnneeeeens 295
REFRESH SEQEEIMEONL.......ceeeeiieeeeee ettt ettt et e ettt e 222ttt e e a2 e ettt e e e e e e e aaaseeeeeeeeanastnnneeaens 298
REFRESH AUTHORIZATION SEALEMENT.....ccuveeeeiee ettt ettt ettt ettt s e st e st e et estteenateenateenaneeeas 300
REFRESH FUNCTIONS SEQEEMENT......eeeviieieesiieeeieeseeettestteeteatte ettt et ettt e s ataesataaese e s e e sastasasaassessassaensssasssaenssassseenass 300
REVOKE Statement (CDH 5.2 OF RIGREI ONIY).........oocueeeeeeeeeeeeee ettt et ettt e e et este e st e e ssaesatsaeasssesssseaseaias 300
SELECT SEATEMIGNT....ccceeeaeeeeee ettt ettt e e e ettt 42 ettt e a2 e e et ettt e a2 e e astse et e e e e e e nsssseeeaeaeannaasnnen 301
SET STATEIMEBNT. ...ttt ettt e ettt e e e e ettt e e e s ettt e e e e et eeeeeesnanneeeeeesannnnee 328
SHOW SEATEMENT.....ccoeeeeeeeeeee et ettt e e e ettt 42 e ettt e 22 e ettt et e e e e et e et e e e eeeaansassteeaeaeaanannnen 370
SHUTDOWN STATEIMENT ...ttt ettt ettt et ettt e e e e sttt e e e s et e e e s essnann e eeeeesnnneee 386
TRUNCATE TABLE Statement (CDH 5.5 OF RIGREI ONIY)........oocuueeeeeeeeeeeeeeeeeee ettt e ettt e e e e aeesaaaeee e 387
UPDATE Statement (CDH 5.10 OF RIGREI ONIY).......ccuveeeueeeeeeeeeeeeee ettt ettt ettt sta e e a et eeests e eaaeeessaesssesaseaeseeeases 389
UPSERT Statement (CDH 5.10 OF RIGREI ONIY).......occ.eueeeeeeeeeeeeeeeeeee ettt ettt e e et e e et e e ettt e e e et eaeeasaaeeeasns 390
USE STAT@IMENT. ...ttt ettt e ettt e e e e ettt e e e e ettt e e e e e st n e e e e e e st e eeeeeenaas 391
VALUES SEOTEME@NT ...ttt e e ettt et e ettt 4222ttt e e e e e e asts e e e e e e eeeaansssneeeaeeesaaannnen 392
OPLIMIZEr HINES IN IMPQIQ..c.......oooeeeeeeeeeeeee ettt et e et e e et e e et e e et e e e et e e e aassteaesasstaaaasssaasanssaensassaasansssaesnnnen 393
TeaTo 1 I =011 [T ol U o ot oY o L SRR 398
IMPAIa MAtREMALICAI FUNCLIONS.c..veeeeeeiee e e et e et e e e et e e ettt e e ettt e e e st e e e e aassaaesasssaeasssaseaassaseesassaasassseneesnnes 404
IMPAIG Bit FUNCEIONS. ...ttt ettt ettt et e et e et e et e ettt e e st e eane e st esate e st e nateeesee e 420
IMPAIA TYPE CONVEISION FUNCLIONS.vveeeeiiieeeeeeeeeee e ettt e e e tee e e et e e ettt e e e sse e e e st e e eaassaaeesasssaeassaseaasssaaeesssssasassessennses 429
IMPQAIa DAL ANA TIME FUNCLIONS.cc..eieiieeiieeeee ettt ettt e e e st e et e et e ettt et e et eeeaseenaneenaneenan 430
IMPAIA CONAIEIONA] FUNCLIONS.oveeeeeeeeeieeeeee e e ettt e e et e e et e e e ettt e e et e e e sttt e e e aassaeesasssaaasssssasasssaeesasssaeasssessesnnes 463
IMPAIG SEIING FUNCEIONS. ...ttt ettt ettt et e ettt et e et et e ettt e st eeeas e e st enateesneenae 468
IMPAIA MiSCEIIANEOUS FUNCLIONS.ccc.eeeeeeeieieeeeeee e e e et e e e ee e e et e e ettt e e e ettt e e e st e e aeaasaaeesassaasassssseaassasesssssaasassseseesnnes 484
IMPAIA AGGIEGALE FUNCLIONS.eieeeeeieeeee ettt ettt e et sa e et e et e ettt et eenaseenaseenateesneenae 486
IMPAIA ANGIYEIC FUNCEIONS. ... vveeeeeeeeee et et e et e e et e e et e e e ettt e e e e e e eatseaaeaasssaeaasssaaaastssaaasssaaasasssaseassssaennes 513
USEr-DefiN@d FUNCEIONS (UDFS)...ciciiiuvrieeeiiireeeeeeitreee e eeeteeeeeeeireeeeeeiaseeeeesesaaeeeeeesssseeeeaassseeeeeassaseeeensseeeesasssseeens 532
(85 @0 Tol=] o) & S 532
RUNEIME ENVIFONMENT fOF UDFS........oveeeeeeeeeee ettt e et e ettt e e ettt e e st a e ettt e e e stea e e asseaeastaaaeansssaensnssaasassenennnnen 535
Installing the UDF DevelopmMENt POCKGAGE.coccuueeeeeeeeeeeeeee et eeee ettt e e et e e et e e e et a e e et e e e eassaeesataaaeeaseaeeaasnes 535
Writing USer-DefiNed FUNCLIONS (UDFS)..........ccuveieeeeeeeeeieeeeieeesteeetteeetta e ettt e staeesaessaeetse e s e e ssaaeassseassaeessaessssaasssesssesseanns 536
Writing User-Defined Aggregate FUNCLIONS (UDAFS)...........eeee oot etttteeeetee e et e e estaaeeeasaa e esaaaaesasaaenaans 539
BUIIAING QNA DEPIOYING UDFS..........eeeeeeeeeeeeeeeeee et eeea e a e et a e ettt e e et e e e satseaaassaaaeaasseasassasaaansssaenasssaasanssenannnnen 540
Performance CONSIAEIATIONS fOr UDFS..............ccuueeeeeieeeeeeee e eeeee e et tee e ettt e e et e e e ettt e e ettt e e e ette e e e ets e e eaaassaeeaatsaaenaatsaeeaannes 542
Examples Of CreQting QN USING UDFS.............coeuuueeeeiieeeeeteeetteeettaeeastt e e ststaeeattaaessassaaesssssaeaassssasaanssaasssssaasassssaesnnses 542
Security Considerations for USer-Defined FUNCLIONS..............cc.ueeeeeueeeeiieeeeeeeeeeeeeieeeettteeeesiaeeeettaaaestseaaesaseaeeesassaeesaseeaaas 547

Limitations and RestriCtions fOr IMPAIA UDFS...............cooeeuueeeeieeeeeeeeet e esee e et e e et e e e sastaeesstaaessstaaeasseaaessssaessnsnes 547

Converting Legacy UDFs During Upgrade to CDH 5.12 OF HIQREI............cuoeeeeeeiieiieeeeeeeeeeieeee e eeeeceteaea e e esessveaaaaaeeeea 548

SQL Differences Between Impala and HIVE.........oooiiiii it e 548
HiveQL Features not AVailable in IMPQIQ.............c.cooceioiieii ettt ettt e s 548
Semantic Differences Between Impala and HIVEQL FEALUIES.........c..cccueeeeiesiieesiiesieesieesieesieessieesitessiaeesiseessseesseessee s 549
Porting SQL from Other Database Systems t0 IMPala.......coocuiiiiiiiiiiie e e 550
POrting DDL QNd DML SEQEEMENTS...........eeeeeeeee ettt e ettt e e e e e e e st e e e e e e et eaaeeeessasssseaaaeeesasssssenaaaaeas 550
Porting Data Types from Other DAtADASE SYSTOIMS........ccccuueeeeeieeeeeieeeeeee e e saeeeetea e e ete e e ststaeestttaesssstaeeasseaeenassseessssees 550
SQL Statements t0 REIMOVE OF AUGPL.......c..coeueeeeeeeeeeeeeeeeeeeee e ettt et e e e e e e ettt e e e e e e e et ataaaeeessstssseasaeaesassssanesaaseeasiees 553
SQL CONSLIUCES t0 DOUDIE-CRECK.......c...veeeeeeeiiiee ettt ettt s e et e et e et e e st e sateesaeesneas 554
Next Porting Steps after Verifying SyNtax and SEMOANTICS.ccccuueeeeeeeeeeeiiieeeeeeee et eeeee e e st e e et e e e st aeaesraaeeeaenas 555

Using the Impala Shell (impala-shell Command).......ccccceeeervenierienccreencereenecrenneese.. 556

impala-shell Configuration OPtiONS.........ciii it e e e e e e e et ra e e e e sabae e e e s nbaeeeeesnnsees 556
Summary of impala-shell CONfiGQUIALION OPTIONS............c..eeeeeeeeeeeeeeee e et e ettt e ettt e e e ettt e e e e e e e st aeesssaeeesassasesassseaan 556
iMPAIA-SNEI CONFIGUIATION FilE.........veeeeeeeeeeeeee et e et e et e e et e e e et e e et e e e ettt aaeastseaeeasssaaeasssaasaassssaensssasnasssaanans 559
Connecting to impalad through impala-shell.........c..ooii e e 560
Running Commands and SQL Statements in impala-shell.........oo e 562
Variable SUbStitution in iMPQIA-SREIL.................ooeoeeeeeeeeeeeeeee et e ettt e et e ettt e e ettt e e e st e e es e e e estaaessasanaeasseeen 562
impala-shell ComMmMaNnd REfEIENCE.........iiii e e e st e e e st e e e e s rae e e e e eansees 563

Resource Management......cciciiiieiiiiiiiiiiiiiiiiiiiieieieiieiieissisnassssissssssssssssessss 300

Admission Control and QUENY QUEUING.......uuuiiiiieeieeiiiciitireree e e e e e e esscarreeeeeeeeeessssartsaareeaeeeseseassssssssnnreeaaaeeeann 566
Concurrent Queries and AdMISSION CONTIOL..........eeeueiirieeeiie ettt ettt e st a st e st ensteesiteenine e 566
Memory Limits aNd AdMUSSION CONTIOL.............ccuueeeeeiieeeeeee et e et e et e e et e e e ettt e e ettt e e e et e e e et e e e easaaeestseaeeaaseeeeaasnes 567
How Impala Admission Control Relates to Other Resource Management TOOIS............cccveecueeemeerseeenieeeniienieenieesiee s 569
How Impala Schedules and Enforces Limits 0n CONCUIT@Nt QUEIIES.............cccueeeeereeeeeieeeeesirieeeasreeeesiseeessseeeeessseaeessseeas 569
How Admission Control works with Impala Clients (JDBC, ODBC, HiVESEIVEI2).........c.cccvueeciereiieeeiiresiieesirsesiseesisessiseennes 570
SQL and Schema Considerations for AdmiSSiON CONTIOL.............ccccuueieeieeeeeeeie et e st eeeee e et e e et e e e ssraaeessaaaaas 570
Guidelines for USiNG AAMISSION CONEIO............ccooueeeueiiieeiie ettt ettt s et s st e e sate e s e ennee e 571
Configuring Resource Pools and Admission CONTIOl.......uiiieiii it e e e e e e re e e e e e e e e e eaa 571
CreQtiNG STATIC SEIVICE POOIS.....cc...eeeeeeeeeeeeee et e ettt ettt e e et e e e ettt e e ettt e e e aatseaeeaassaaesasstaaaastssaaasssasensssaasansssaansanen 572
USING AGMUSSION CONEIOL..c..nniiiiieeiiiee ettt et e e et e ettt e et e e et e e e st e s st aesansteaesaasteasssstaeannssesesnseeas 572
SELEING PEIr-QUEIY IMEMOIY LIMNITES.ueeeeeeeeeeeeeeeeeeeeeeee e e ettt ettt ettt et et ettt et et et et et et e et eeeteteeeeaeaeaeaeaesesesesesesesesassssssssssnsees 575
Configuring Admission Control in Command LiN@ INEEIFACE............cc..veeeeueiiesiiieeesiee ettt ssta e e siea e s 576
Configuring Cluster-wide AdMiSSiON CONTIOL...........cccuueeeeieeeeeieeeeee e e e e e e e ettt e e ettt e e et e e e ettt e esssaaeesssaaaeasseaeesanees 577
Admission CoNtrol SAMPIE SCENAIIO......cuiiiie ittt e e e et e e e esbteeeeeebtaeeeseastaeeessanseneeesanns 579

Tuning Impala for Performance.........cccciveiiiieiiiiniiiiiiinieiiniecnieceneeneneessssensenes. 5382
Impala Performance Guidelines and Best PraCtiCes.........ciuiiuiiiiiiiiiiiee et e et e e e rae e e e eaaeea e 582

Performance Considerations fOr JOIN QUUEIIES.uuuuureeeiieieeeeeeeeeeeeeeee et et e e eeeeeeee et et e e eeearae e eeeeeeeeas 585
How Joins Are Processed when Statistics Are UNQVAIlODIC...............oooueeeeeeeeeeeiiieeeeiieeeieeeeeieieieieieieieiaiaaiaassssssssasssssssssnes 586

Overriding Join Reordering With STRAIGHT JOIN..........ccooeouuuueeeeeeeeeeeeeeeeee e e e et e e e e e e ettt aa e e e e eesaasaaaaaaeeessssssseaaaeaaias 586

Examples Of JOIN Order OPtiMUZATION.c...veeeueeeeeeiee et eeee e et e e e et e e sttt e e e et eessssteaeessseaeaasssaseasnsaaesassseaenssssaensannes 587
Table and ColUMN STatISTICS. ..iiuuiiie ettt e e e e e st e e s st e e e e s e sbaeeessansaeeeeesnsbeeeessnssaeeens 592
OVEIVIEW Of TADIE SEATISTICS. ... eeeeceeeeeeeeeeeeeee e eeee et e e ettt e e et e e ettt e e e ettt e e eassa e e e eats e e e e asssaaeaasssaaaastssaaasssaaeasssaaesnssssaeannen 592
OVEIVIEW Of COIUMN SEALISTICS. ...ttt ettt ettt e ettt st e et e et e et e et eeas e e naseenaneenneenane 593
How Table and Column Statistics Work for Partition€d TABIES..............cc..ueeeeceeeeeiiie et eeete e eetaa et eesrea e e 594
Generating Table aNd COIUMN SEALISTICS.cc..eeiueeeieieeeee ettt ettt ettt etn e sateesiaeesnee e 595
[0 =Tot o Lo A TR o Y Xo A K A (o TP 599
Manually Setting Table and Column StatiSticsS With ALTER TABLE..........ccc.oovii ittt 601
Examples of Using Table and Column Statistics With IMPQIQ..............ccoeeueeieecieeeesiee et e e et e e e sraa e e 602
Benchmarking IMPala QuUEIIES.ciiieiiiie ettt e eet e e e st e e e st e e e e e sataeeeeesaaeeeeeasssaeeaeeansseeeessnsaneens 605
Controlling IMPala RESOUICE USAEE....ccuuiiieiiiiiiie e eeiieee e eetttee e e ettt e e e ete e e e et e e e s sbteeeeessbaeeeessnsaeeessansseeesennnsees 605
Runtime Filtering for Impala Queries (CDH 5.7 or higher only).........coooiiiiiiiiiiie e 605
Background Information for RUNEIME Filt@IING.............ceeeeuueeeeeeieeeeee ettt ettt e e eetea e e ettt e e ttaaassstaaessstaaeasssaaeennseaessnnnes 606
RUNEIME FIltEIING INTEINQIS..........oeeeeeeeeeeeeeee e ettt e e e ettt e e e e e e e ettt e e e e e e e ettt aseaaaeeesasssssesaaeseeesassssanaaeas 607
File Format Considerations for RUNTIME FIlt@riNg............ccuuveeeueeeeeeiie et e e e eeee e ettt e e e te e e ettt e e ssstaaeassaaeennsaaensnsnes 607
Wait INEEIVAIS fOr RUNTIME FIlLIS.......ccc..veeeeeeeee ettt e e ettt ettt e et e e ettt e e e et s e e e aatsaaeesassaeeesssaeeeasenaaans 607
Query Options fOr RUNEIME FIlLEIING.........ccuueeuee ittt ettt s e st e st e st e e steeateenateesteesneeeas 608
Runtime Filtering QNA QUETY PIONS..............oeeeieeeeeeeee e e ettt e e e ettt e e e e e se et e e e e e eeessbseeaaaeeesasssssenaaaaeas 608
Examples of Queries that Benefit from RUNEIME Filt@riNgG............cceecuuueeeeiieeeiieeeeeeeeeeea e esteeesta e e siaaaeessaaeeesstaaeesnneas 609
Tuning and Troubleshooting Queries that Use RUNLIME Filtering.............ccccuuuveeeiiieeiiiiiiieeeeeeeeesiiteeeaeeeeesscaeaeeaaeeesssanees 610
Limitations and Restrictions fOr RUNTIME FIlteriNg............ccuueeiueeeeeeieeeeeie e esiee e e tea e et e e e te e e sttt e e ssstaaeassaaaenanaaaessnsees 610
Using HDFS Caching with Impala (CDH 5.3 or higher ONly).....uociciiiiiieeee et 610
Overview of HDFS CACRING fOr IMPAIA..............cccueeeeeeiee et e e e et e e et e e ettt e e e et e e e et e e e esssaaeasseaeeanteeeesanses 611
Setting Up HDFS CACRING fOr IMPQIQ..........ccc.ooeiueiiiieieeeeeeeee ettt ettt nine e s 611
Enabling HDFS Caching for Impala Tables QNd PAIrtitioNS.............ccccueeeeecuieeeiieeesieeeeeeeeesee e et e e e ssaa e e siaaaaesseaaesnseas 612
Loading and Removing Data with HDFS CAChing ENGDIEA...............cccoeeueimmiiiiieeieeeee ettt 613
Administration for HDFS CAching With IMPQIQ..............ccoccueeeeeeiieeeeeee et e ettt e et e e ettt e e e et e e et a e e e saaeeessaaeesasees 614
Performance Considerations for HDFS Caching With IMPaIQ................cccceoomiiiiiiiiiieeiieseeeee ettt 615
Testing IMPala PeITOIMANCE.......oiii et e e e et e e e et e e e e e s tb e e e e e eaaaeeeeeasseeeeeansseeeesassaneens 616
Understanding Impala Query Performance - EXPLAIN Plans and Query Profiles.........cccocovveeiiiiiiieiiicciiieeeeens 617
Using the EXPLAIN Plan for Performance TUNING.............ocueeeueerueieieeeiee ettt ettt sttt et 617
Using the SUMMARY Report for Performance TUNING............cc.ueeeeeueeeeeiieeeeesiieeeesaeeeeitaaaestaaaeestaaeesssssaaessssasesssssaesissees 618
Using the Query Profile for Prformance TUNING.............cccueeeueerueeeieeeee ettt ettt ettt 619
Detecting and Correcting HDFS Block SKeW CoNditioNs.........uuiiiiiiiiiiiiiiieieee et e e 619

Scalability Considerations for Impala.......c.cccceeveeirieeiiieiereencereencereencerenneenenneeeenees. 021

Impact of Many Tables or Partitions on Impala Catalog Performance and Memory Usage............cccuveeeennnee. 621
Scalability Consideration for Large CIUSLEIS.......iiiiiiiii ittt et e e et e e e e stre e e e e sbae e e e snneeas 621
Scalability Considerations for the Impala StateStore.... .. 622
Effect of Buffer Pool on Memory Usage (CDH 5.13 and higher).........ooooiiiiiiiiiiec e 623
SQL Operations that SPill 0 DiSK.......cieiuiiiiiiiiie e et e e e s e e e e e srte e e e e snaeeeeeenrees 623

Limits on QuEry Size and COMPIEXITY....ciiiiuiiieiiiiiiie ettt e ee e s e e s et e e s s saaeeeeessbaeeesssaaeeessnssseeeean 627

Scalability Considerations for IMPala [/O........cciiiiiiiieiie ettt ee e ste e e te et e s be e sbaesbeesbaesaseebeesnneens 627

Scalability Considerations for Table LAYOUL.........coccuiiii ittt e e e e arae e e e aneeas 627
Kerberos-Related Network Overhead for Large CIUSTEIS........eeiiicuiiiei it 627
Avoiding CPU Hotspots for HDFS Cached Data.......cccuuviiiiiiiiiei et e cciieee ettt e et e e eitaee e s e sivaeae s essraaeeeennns 628
Scalability Considerations for NameNode Traffic with File Handle Caching........cccccveeiiiieiiiiiiiiieecciee e, 628
Scaling LIimits @and GUILEIINES......ccoo e e e e e e e e e e et re e e e e e eeeeessnnnnsstrrreaeeaaaeens 629
DEPIOYIMENT LIMITS....veseeieeeeee ettt ettt e ettt e e ettt e e et a e et e e e e aste e e eassaaeansseaaaaas e s e aasssaaaansseaananstaaesnsssaaennssaaennes 629
[0 o 1o BN Y (o) o o T N [| TSROSO 629
Yol (131 Lo B Dt o L I [T SR 630
RY=1ol) 1 A 011 < SO O 630
QUEIY LIMIES = COMPIIE TIME....c..vee ettt e e ettt e ettt e e e st e e e e st e e st e e atseesa e e astaeassseassaesssaesassesasesnassenans 630
(O V=1 A N [T I Y T 14 = [-2 630
How to Configure Impala with Dedicated Coordinators...........ccuiciiieeiiciiiiee e et e e evae e 630
Determining the Optimal Number of Dedicated COOrdiNALOrS............oocueiiiiieiiiesieeeieeseeeee ettt 631
Deploying Dedicated Coordinators and Executors in Cloudera MONAGEr..............cccueeeeceeeeeeciieeeeiiieeescieeeesirieeeesiseaeeesns 634
Deploying Dedicated Coordinators and Executors from Command LiNE..............ccceeecueimmeemieieniiisiiesieeeieesee s 635
VI =T L= T Y T 0 P <] 01T o | SRR 635
Startup Options for Automatic Invalidation Of MEEAGGTQ.c.c..eeeeecueeeeeeiee et e s e e se e a e ste e e st a e esntaaesnseaaans 636
Loading Incremental StatiStiCs fromM CAAIOG SEIVEN............uueeeueeeeeeieeeeeeee et e et ee e ettt e e et e e et e e e st eeeetsaeeeaseas 636
Automatic Metadata Sync using Hive Metastore NOtIfiCOtion EVENTS..........cc.ueeeecueeeeciieeesiiieeesiiaeeeiieaessiiaesessasaesnseens 636

Partitioning for Impala Tables........cccceirieeiiiiiiiiirccrrccrrr e eeeneee00. 040

When to Use Partitioned Tables.........oui ittt e e st e e s satae e e s ssabeaeeessnbeaeeesanns 640
SQL Statements for Partitioned Tables........ccuuv it 640
Static and Dynamic Partitioning ClaUSES.........uuiiiiiiiiiee ettt e e e stae e e e e earae e e e e eabae e e e eaneeas 641
Refreshing @ SINGIE PartitioN........cciiiiiiii i et e e et e e e sttt e e e s ssbaeeeesanabaeeeeansaeeens 641
Permissions for Partition SUDAITECTOIIES.uii i s e e st e e s s eaaeeee s 642
Partition Pruning fOr QUETIES.....ueii ittt e et e e e st e e e e e aae e e e e e s atteeeeeaaaseeeeeaasseeeeeansseeeesannseneeas 642
Checking if Partition Pruning HAPPENS fOI G QUETIY.........cccueeeueeeiiieesieeit sttt site st se st e s ieesieaenaee e 642
What SQL Constructs Work With PArtition PrUNiNG.............cceeiueesiueesiiiesiesitieeseeesiieestsesiseesisaesssesseessssessssssnssesssssesseenns 643
DYNAmiC PArEitiON PrUNING.........ccccuueiiiiiiieieeiie ettt ettt et e s et e e et e sttt e e ettt e s et e e sisneessnaneeenannns 643
YN To) o T =1 o] (1] s o o T PEPRRRRt 645
Setting Different File FOrmats for Partitions........coccuiei it e e rae e e e aneeas 645
Y ETaE TaTa Y= o T A [0] o E T O PSP PPPPPPPPPPPRPPRIIN 646
Using Partitioning With KUU Tables......coiiuiiiiiiiiiiie ettt e e e e e et e e s s saae e e e snnnaeeae s 646
Keeping Statistics Up to Date for Partitioned Tables........ccuuuiiiiiiiii i 646

How Impala Works with Hadoop File Formats........cccccceeieeiiieciencirecrencnencneneene....649

Choosing the File FOrmat for @ Table.... ..ot e e e e e e e e eanres 650
Using Text Data Files With IMPala TablES.......ceiiiiiiiiiiiie e e e e e e e s e e e e s anaeeaean 650

Query Performance for IMPala TOXE TABIES.............ccccuveeeeeeieeeeeeee et e ettt ettt e e e et e e et e e e et e e e sttt a e eeasaaeesasseaeassseaeeeasees 651

CLEALING TEXE TADIS.......oeveeeeeeeeeee ettt e e ettt e e e e e ettt e e e e e e e ettt e e e e e eeesasatssaaaaaeeeassssssasaaeseeesssssseenaeas 652

DOLA FileS fOr TEXTE TADIES.........vveeeeeeeeeeeeeee ettt e et e e et e e e et e e et a e e ettt e e e sastaaeaasseaaaastssaaanstaanssssnasansssnannnnes 652
Loading Data into IMPGIQA TEXt TADIES.............ccceeeeeeeeeeeei ettt e ettt e e e e e sttt a e e e e e e e tatss et aaaeeessassssesaaaaeas 654
USIiNG LZO-COMPIESSEU TOXE FileS.........vveeeeiieeeeeeeeee ettt e e et e et e e e e e e ettt e e e s ata e e e atse e e e anstaaennstaaeasssnaeaanssaannnsnans 655
Using gzip, bzip2, or SNApPy-CoOmMPreSSEA TOXE FIlES............ueeiieeeeeerieeieeeeeeeeeeeeee e e e ee ettt eea e e e e e st aeaaeeesesssaaaaaeesessissres 657
Using the Parquet File Format with Impala Tables..........ooiiiiiiiiiie e 658
Creating Parquet TADIES iN IMPGIQ............c.ooieeeiieeiieeeeeeee ettt ettt ettt st ettt et e e e nne e 658
LoAdING DA iNTO POATGUEL TABIES............eeeeeeeeeeeeee ettt ettt e e ettt e e et a e e sttt e e e ettt e e e sasaaaeatsaseaassssaeassssaasassesaennnes 659
Query Performance for Impala PArquet TADIES..............c.coeueieiieeiieieeeeeeeeeete ettt ettt e e 660
Snappy and GZip Compression for PArquUEt DATA FIleS..............oeeeeueeeeeeieeeeeiieeeeeieeeesee e ettt e e e ttaa e estaeaesitaaaessnsaaeesiseeaaas 662
Parquet Tables for IMPala COMPIEX TYPES........coouueeueiiieee ettt ettt ettt e ettt et eeaineenanee e 664
Exchanging Parquet Data Files with Other Had00p COMPONENLS.........ccc.ueveeeieeeeeeiieeeeciieeeseeeeeteeeessaaaesssaeeeesisaaeesseeas 664
How Parquet Data FileS Are OFGONIZEU.............ccooueeeueieieeie ettt ettt ettt e ettt e et et eenineesnee e 667
Compacting Data Files fOr PAIGUET TADIES.ceeeeuueeeeeieeeeeeeeeeee e ettt e ettt e e e et e e ettt e e e ataa e e e tttaeessssaeesasssaeensseaeesasees 668
Schema EVOIULION fOr PAIQUETL TADIES.............ooecueeeieee ettt ettt ettt e nine e s 669
Data Type Considerations fOr PArQUETL TADIES...............ooeeeueeeeeeeeeeeeee ettt e et e e ettt e e et e e e ettt e e e st aaeesaseeaeesseaeesasees 670
Using the ORC File Format with IMpala Tables.......ccoeeuiiiiiiiiiiiie e aaee e 671
Creating ORC Tables ANd LOAAING DGLQ............ccccuuueveeeieeeeeeeeeeee ettt e e e et ettt e e e e e e st a e e e e e eeesttssaaaeeeeesssssssasaaaaaas 672
ENabling COMPIeSSioN fOr ORC TOADIES.c..ueeeeeeeeeeeeee et ee e e te e e et e e et e e e ettt e e st eaesssseaeaasstaaeasssaasasssaaeensssaensnnses 672
Query Performance for IMPQIA ORC TABIES............ccecuueeeeeeeeeeeeee e eeee e et e ettt e e et e e et e e e ettt e e e etsaaeesataaeeesasaeeenanees 673
Data Type Considerations fOr ORC TADIES.........cc.ueeeeeeeeeeeeteeeee e e ee e e se e e s te e e st e e e eaattaeeaasteaeastsaessssaaesnssaaaeassenessanses 674
Using the Avro File Format with Impala Tables.......couuiiiiiiiiiiie e aaee e 674
CrEALING AVIO TADIBS.........oeeeeeeeeeee ettt e ettt e e et e e ettt e e ettt e e et e e e ettt e e e aasseaeeasssaaeaatsaaaeasssaseasssaasassseaaanes 675
Using a Hive-Created Avro TABIE iN IMPAIQ.............c.c.cooueemieiiieeeeeee ettt ettt 677
Specifying the Avro SChema@ tRrOUGR JSON................oee ettt e et e e ettt e e e ettt e e e esaa e e et e e e atseaeesssaaeasseeaas 677
LoAdING DAL INEO QN AVIO TADIC........c...eeeeeeeeee ettt ettt sttt s ettt e e e e naneenneenane 677
ENabling COMPIeSSiON fOr AVIO TOBIES.oeoeueeeeeeee et e et e et e e et e e e ettt e e ettt e e e ettt e e e e stteaeeasssaaeasseaeeastseeeaanses 678
How Impala Handles AVro SCHEMQA EVOIULION.ccooueeeueieieee ettt 678
Data Type Considerations fOr AVIO TADIES..............ueeecueeeeeeee e e e ee e ettt e ettt e e e ettt e e ettt e e e satte e e e asttaeesasssaeesassaaeeasseseesanees 679
Query Performance for IMPala AVIO TODIES............ccc.eoeueeeiiiieeee ettt e ettt e sineenine e 679
Using the RCFile File Format with IMpala Tables........cooeeiiiiiiieee e e 680
Creating RCFile Tables and LOAAING DOTA..............ceeeeueeeeeeeeeeeeeeee e et e e ete e e ettt e e ettt e e ssteaessstaaeesnsaaesassaeaensseaeesanees 680
Enabling COMPression fOr RCFilE TADIES.................oueeeueeeeeeeeeeeeee e ee e e et e ettt e e et e e e et e e e et e e e et e e e eatssaeesateaeeeannes 681
Query Performance for IMPala RCFIlE TADIES...........c..coouueeueeesieeie ettt ettt s st e sttt ite e iteenane e 682
Using the SequenceFile File Format with IMmpala Tables.........oueiiiiiii i 682
Creating SequenceFile Tables ANd LOAGING DALQ.............ccuueeeeeueeeeeeiieeeeeiee e esceee e et tee e ee et e e e ate e e e stseeeesssaaeestsaaeeasssaeesasees 682
Enabling Compression for SEQUENCEFIlE TABIES..............c.cooueiemieeiiiieeeeee ettt ettt sane e 683
Query Performance for Impala SEGUENCEFIIE TADIES.............ccocueeieiesieesiiesiieste st sttt st sie e saesaessieesieassaeeees 684

Using Impala to Query Kudu Tables......ccccccereeiiieeiireeiireniiienccenencerenceesenseesenses.085

Benefits of Using Kudu Tables With IMpPala.......ccuveiiiiiiii e e e aaee e 685
Configuring Impala for Use With KUQU.........eeiiiiiiiieeee e e e e e e e e e e ra e e e e e e e e e eeeas 685
Cluster TOPOIOGY fOr KUAU TOABIES.............oeeeeeiieeeeeee et e ettt e e ettt e e et a e e sttt e e e e staaeesasseaeassaaeaassseaeasssaasasseaaennnes 685

(U o [V =Y o] Lo A oY T - o1 e Y SRR 686

Impala DDL Enhancements for Kudu Tables (CREATE TABLE and ALTER TABLE)......c..cceeieiiiiieeiciieeee et 686
Primary Key COIUMNS fOIr KUU TOBIES.eveeeeeeeeeeee ettt e e et e e et e e e ettt e e et e e e st aasasstaaesnsaaaeaassaaennssnensannes 686
Kudu-Specific Column Attributes fOr CREATE TABLE.............uee ettt e et e et e e et aea e e et a e et aaeetsaaaeaassaaeesanns 686
Partitioning fOr KUGU TODIES.ueeeeeeeeeeeeee et e et e e ettt e e e e et a e et e e e et e e e aats e e e essaaaesasstaeasssaaaansssaensnssaasanssenennnnes 690
Handling Date, Time, or Timestamp DAtQ With KUGU................coeeeeeeeuuieiiieee et eeeetttee e e e e ettt e e e e e e e ssntanraaaaeeaas 693
How Impala Handles KUdU MEEAOQLA.eeeeeeeeeeeiee ettt e e e et e e e ettt e e ettt e e ettt e e e asstaaeansaaeesassnaeansseaennannes 695
Loading Data iNtO KUAU Tables.....uiii ittt ettt e st e e et e e e s snaae e e e s e sbaeeessnnssaeeeennnsneeens 696
Impala DML Support for Kudu Tables (INSERT, UPDATE, DELETE, UPSERT).......cviiiiiiiiiieeeciieee et 696
Consistency Considerations for KUdU Tables.......coouiiii ittt et tae e e e 697
Security Considerations fOr KUAU TableS...........oiiiiiiiiiiiiiieee ettt ee e e e e e e e e e e e eaarararreeeeeeeeeens 697
Impala Query Performance for KUdu Tables.........uuii i e e e e e saaee e 698

Using Impala to Query HBase Tables.......cccccieeiiieiieeiiieciencireciencerecnencenencreneens. 0699

Overview of Using HBase With IMPala........cccuiiiioiiiii et e e e e e e etae e e e e e 699
Configuring HBase for Use With IMpPala........ccuviiiiiiiiiie ettt e e bae e e e e 699
Supported Data Types fOr HBASE COIUMINS.......uiiiiiiiiieeeiiiieee e eeiieee e e ettt e e e etee e e e e sbae e e e s sabaeaeeesnsraeaeesnsaeeessnnseeas 700
Performance Considerations for the Impala-HBase INtegration.........cccceeeeeeieeiiiccccciiieee e 700
Use Cases for Querying HBase through IMpPala.........occuiiiiiiiiiii ettt e 704
Loading Data into @an HBAS@ Table.......ueii ittt e et e e e st e e e et e e e e e e naaaeeeeesnsaeaaas 704
Limitations and Restrictions of the Impala and HBase INtegration..........cceeveiiiieiiiiiiie e 704
Examples of Querying HBase Tables from IMpala........ccccuuiiiiiiiiic e 705

Using Impala with the Amazon S3 Filesystem.........cccceeeiiveiirencrencirencrenccrencrennennean. 707

How Impala SQL Statements WOrk With S3........ueiiiiiiie et e e et e e e aaaeeaean 707
Loading Data into S3 for IMPala QuUETIES.......eiiiiiiiie ettt e e et e e e et e e e s ebbeeeeessbaeeeeesnaeeeean 708
Using Impala DML StQteMENTLS fOr S3 DAT...........eeeeueeeeeeeieeeeeeeeeeeee ettt e e ettt e e et e e ettt e e e et e e e etsa e e essssaeesasaaaeesseaeeeasnes 708
Manually Loading Data into IMpala TADIES 0N S3........cc..eeeeee ittt ettt et esinaesaee e 708
Creating Impala Databases, Tables, and Partitions for Data Stored on S3.........eeeeeeieeiii i, 709
Internal and External Tables Located 0N S3.. ..o ittt e e st e e st e e s s anaeeeean 710
Running and Tuning Impala Queries for Data Stored 0N S3........cciiiiii i e 712
Understanding and Tuning Impala Query Performance for S3 DAtQ............cccueeeeecuieeesiiiieesiiieeesiieeesieeeesiieeessivaa e 712
Restrictions on IMpala SUPPOIT FOr S3.... it e e et e e e e satr e e e e e traeeeeeaaneeeeennnseeaean 713
Best Practices for Using IMpala With S3.......eo et e e e e e e e e anaeeeean 713
Specifying Impala Credentials to Access Data in S3 with Cloudera Manager.........eeeeeeeeeeeiiciiireeeeeeeeeeeeeeeccinnns 714
Specifying Impala Credentials on Clusters Not Secured by Sentry Or KErberos...............ccccvuueeeecueeeeeiieeeeesieeeesiiieeeesiseeaeens 714
Specifying Impala Credentials to AcCesS Data iN S3....cciiuiiiiiiiiiiie et e e e 714
Using Impala with the Azure Data Lake Store (ADLS).......ccceeeeecerreennccereennnceenennnnns 716

T =T LU Y1 = 716

How Impala SQL Statements WOrk With ADLS........cooiiiiiiiiiiiie ettt e s e e e s st re e s ssaaaeeesssneeeeean 716

Specifying Impala Credentials to Access Data in ADLS..........coocuiieiieiiiiee e ettt e e e e iree e e e e earre e e e eanaeeas 717
Loading Data into ADLS for IMPala QUEIIES.uuiiiieiiieiee ettt ettt e e et e e e e ae e e e e aaaeeeesanaeeaean 718
Using Impala DML Statements fOr ADLS DQTQ...........cccueeeueeeieeeieeeieeeee ettt ettt ettt e e e 718
Manually Loading Data into IMPala TABIES 0N ADLS............coeeeeeeeeieeeeeeee e eetee et e e et e e sttt a e et e e e atsaaaesatssaeessses 718
Creating Impala Databases, Tables, and Partitions for Data Stored on ADLS..........ccceeeeiieeeeeiiieee e, 718
Internal and External Tables LOcated 0N ADLS.......coiiiiiiieiiiiiie e erieee et e e e e s s e e e s s e e e s snsaaeeessnsaaeeeean 720
Running and Tuning Impala Queries for Data Stored 0N ADLS...........cooiiiiiie it e e 722
Understanding and Tuning Impala Query Performance for ADLS DQtQ............ccoccuueeeesuieeeesiiieesiieaessiaeeesieaessinaessseeens 722
Restrictions on IMpala SUPPOIt fOr ADLS......oii ittt e e e e e s s b e e s s sbraeeesssaaeeeesssaeeeean 723
Best Practices for Using IMpala With ADLS...........uuiii ittt ectee e et e e e et e e e e e ar e e e e esaaaeeeeennaeeaean 723

Using IMPala LOGEINEG...cccciieuiiiniriniirniiieiiennirenctennernsesencsrnssrensssnssssssssnssssssssnsessnsees /24

Locations and Names of IMPala LOZ FilES......oii ittt e e e et ee e e e aaa e e e e s aaaeeaean 724
Managing Impala Logs through Cloudera Manager or Manually.........cccouviiiiiiiiiiiiniiiiee e 725
ROTAtING IMPAIA LOZS.euiiiiiiiiiiiiiiiieiee e et e e e e e e e e et e e e e eeeeeeesss s aabtaaaeeaeeaeeeeesasasssssanneaeaeeeeessnnnsssrnnns 725
REVIEWINEG IMPAIA LOZS. . utiiiiiiiiiiie ettt e e et e e et e e e e et e e e e e e eabaeeeeeaatbaeeeaeabaeeeeaansbaeaeeansaeeeeannseneas 725
Understanding IMpPala LOg CONtENTS.iiiiiuiiiie ittt e et e e e s e e e et e e e e saae e e e e s araeeeessaaeeeeesnnseeaean 726
SEHLING LOGEING LOVEIS...eiii ittt e e ettt e e e e ettt e e e ettt e e e e santaeeeesansteaeesanstaeeessasseeeesannses 726
Redacting Sensitive Information from Impala Log FileS......uuueiiiiiiiieiiieeeee et 727

Troubleshooting IMPala........ceiiieiiiiiicrcrrrcrcrreree e rreerenerensesnsssennennness T 28

Troubleshooting IMpala SQL SYNTAX ISSUBS.....ccccuuiiiiiiiiiiieeecieee e ettt e e et e e e e et e e e e sra e e e e s saaseeeeesssaeeeeaaraeeaean 728
Troubleshooting Crashes Caused by Memory Resource LiMit........ccccivuiiiieeeeiiieiiciiiiiiieeeeeee e e 728
Troubleshooting /0 Capacity PrODIEMS.cccuvii et e e et e e et e e eateeeeaneeeenreeas 729
Impala Troubleshooting QUICK REFEIENCE........cccuviiii e e e et e e e e anaeeaean 729
Impala Web User Interface for DEDUGZING......ccccviiiiieieie et e e e e e e e aaa e e e e e anaeeaean 731
Debug Web Ul fOr IMPAIQQ...............cooeeeeeeiiieeeee ettt et e et e e sttt e e st e e e s asteaesnatteessssaasssassaassnsseaesnnnes 731
DEbUG WED Ul fOI SEALESTOIEU.........vveeeeeeeeeieeeeee e e et e ettt e e et e e e ettt e e ettt e e e ettt e e e aasaaaesasstaeasstssaaasssaessassaasanssenanannes 734
Debug Web Ul fOr COtAIOGU.uuuimmiieeiiieeeeee ettt et e e et e e sttt e e sttt e e sttt e e e satteassnssaaesaassaasansseaesnnnes 736
Breakpad Minidumps for Impala (CDH 5.8 or higher only)........ccccuviiiiiiiiiee e 737
Enabling or Disabling MinidUmp GENEIATION.ccevueeeiueeesieeie ettt ettt e st e sate e st e st e e nsteesineenaneenas 737
Specifying the Location for MiNiQUMP FilES.................oecueeeeeeieeeeeeeee et e et e et e ettt e e ettt e e e ese e e e taaaestsaaeesssaeeasseaaas 737
Controlling the NUMBET Of MiNIGUIMP FIlES...........eeeueiiiieeiie ettt ettt et e st ste e st e st e eniteeniteesineenas 738
DELECEING CIOSR EVENTS.....oeeceeeeeeeee ettt e et e e et e e et a e ettt e e e ettt s e e ass s e e ettt e e eaassaaesaassaeaaatssaaaasssasessssaeessssssenaes 738
Using the Minidump Files for Problem RESOIULION.cccueerueeriiieieeie ettt sttt 738
Demonstration Of BreQKPAT FEATUIE...............ececueeeeeeeeeeeeee et eee e ettt e ettt e e et e e e ettt e e e et e e e ettt e e e et e s e eaassaaeaatssaeeaatsaeeennes 739

Ports Used by Impala.....ccccciiieiiiiiiiiiiicieiiieiiieiineineecneecnencssnenesssessssnssssnesnsenes 741

Impala Reserved WOords........ccciieeiiiieiiieeiiieniiieninieninieniniesessessnssssesssssessensenses 743
LiSt Of CUITENT RESEIVEI WOTTS...uuueiiiiiiiiiiee ettt ettt e e ettt e e e ettt e e e e e e aaba e e esesasbaas e essssbaaasseessssransaeaens 743

Impala Frequently Asked QUESEIONS......c.cccceeieeiiieniieeiirencieeierencrencerneerencesescresssensees 709

Transition 10 APACHE GOVEIMANCE.uiiiiiiiiiieeecieee e eecte et e e ettt e e e et eeeeataaeeeeeastaeeaeeasaaeeeeassaeeeeanssseeeesasseeaens 759
o T = 2T =1 - T PP 759
IMPAla SYSTEM REQUITEIMENES. .. .uiiiiiiiiiee et e e e e e e e e e e e e e e e et et e e eeeaeeeeeeessasasrassaeaaeeeseesassnsrenneees 760
Supported and Unsupported Functionality In ImMpala........ccooooiiiii e 761
[101V Ao o TN I PR UPPTPR 763
TaaTo] R =T (o] s s T T Vol TSP SPR 763
ML USE CaSES. . uuuiiiiiiiieeeee ittt reeeeeeeeeesebtarareeeeeaeeaesasasssstasaeaaaaaaeeasaaasssasassaasaasessasaasssssssnasaeeasssannnsssrnnns 766
Questions about IMPala AN HIVE........uuiiiiiiieeee e e e e e e e e e e s eeeeeaeeeesssnsrarrereeeaaaeaaaan 766
TeaTo] I AN = 11 =1 o111 A SRR 767
TaaTo 1 I 101 = o o = PRSP 768
1] | PSPPSR 770
[T A Lo] T=To I =] o] L= P TP TUPPR T 771
1T T TSP PP PO OP PP PPPPPPPPPPRRN 771

Appendix: Apache License, Version 2.0.......c.ccceeeireeirieniirennerinncrrnnsersnssersnssessnsnens 773

Introducing Apache Impala

Introducing Apache Impala

Impala provides fast, interactive SQL queries directly on your Apache Hadoop data stored in HDFS, HBase, or the
Amazon Simple Storage Service (S3). In addition to using the same unified storage platform, Impala also uses the same
metadata, SQL syntax (Hive SQL), ODBC driver, and user interface (Impala query Ul in Hue) as Apache Hive. This provides
a familiar and unified platform for real-time or batch-oriented queries.

Impala is an addition to tools available for querying big data. Impala does not replace the batch processing frameworks
built on MapReduce such as Hive. Hive and other frameworks built on MapReduce are best suited for long running
batch jobs, such as those involving batch processing of Extract, Transform, and Load (ETL) type jobs.

E’; Note: Impala graduated from the Apache Incubator on November 15, 2017. In places where the
documentation formerly referred to “Cloudera Impala”, now the official name is “Apache Impala”.

Impala Benefits

Impala provides:

e Familiar SQL interface that data scientists and analysts already know.

¢ Ability to query high volumes of data (“big data”) in Apache Hadoop.

e Distributed queries in a cluster environment, for convenient scaling and to make use of cost-effective commodity
hardware.

¢ Ability to share data files between different components with no copy or export/import step; for example, to
write with Pig, transform with Hive and query with Impala. Impala can read from and write to Hive tables, enabling
simple data interchange using Impala for analytics on Hive-produced data.

¢ Single system for big data processing and analytics, so customers can avoid costly modeling and ETL just for
analytics.

How Impala Works with CDH

The following graphic illustrates how Impala is positioned in the broader Cloudera environment:

Hive
Metastore

-

Impala Shell

The Impala solution is composed of the following components:

e Clients - Entities including Hue, ODBC clients, JDBC clients, and the Impala Shell can all interact with Impala. These
interfaces are typically used to issue queries or complete administrative tasks such as connecting to Impala.

16 | Apache Impala Guide

¢ Hive Metastore - Stores information about the data available to Impala. For example, the metastore lets Impala
know what databases are available and what the structure of those databases is. As you create, drop, and alter
schema objects, load data into tables, and so on through Impala SQL statements, the relevant metadata changes
are automatically broadcast to all Impala nodes by the dedicated catalog service introduced in Impala 1.2.

e Impala - This process, which runs on DataNodes, coordinates and executes queries. Each instance of Impala can
receive, plan, and coordinate queries from Impala clients. Queries are distributed among Impala nodes, and these
nodes then act as workers, executing parallel query fragments.

e HBase and HDFS - Storage for data to be queried.
Queries executed using Impala are handled as follows:

1. User applications send SQL queries to Impala through ODBC or JDBC, which provide standardized querying
interfaces. The user application may connect to anyi npal ad in the cluster. Thisi npal ad becomes the coordinator
for the query.

2. Impala parses the query and analyzes it to determine what tasks need to be performed by i npal ad instances
across the cluster. Execution is planned for optimal efficiency.

3. Services such as HDFS and HBase are accessed by local i npal ad instances to provide data.
4. Eachi npal ad returns data to the coordinating i npal ad, which sends these results to the client.

Primary Impala Features

Impala provides support for:

e Most common SQL-92 features of Hive Query Language (HiveQL) including SELECT, joins, and aggregate functions.
e HDFS, HBase, and Amazon Simple Storage System (S3) storage, including:

— HDES file formats: delimited text files, Parquet, Avro, SequenceFile, and RCFile.
— Compression codecs: Snappy, GZIP, Deflate, BZIP.

e Common data access interfaces including:

— JDBCdriver.
— ODBC driver.
— Hue Beeswax and the Impala Query Ul.

¢ impala-shell command-line interface.

e Kerberos authentication.

Impala Concepts and Architecture

The following sections provide background information to help you become productive using Impala and its features.
Where appropriate, the explanations include context to help understand how aspects of Impala relate to other
technologies you might already be familiar with, such as relational database management systems and data warehouses,
or other Hadoop components such as Hive, HDFS, and HBase.

Components of the Impala Server

The Impala server is a distributed, massively parallel processing (MPP) database engine. It consists of different daemon
processes that run on specific hosts within your CDH cluster.

The Impala Daemon

The core Impala component is the Impala daemon, physically represented by the i npal ad process. A few of the key
functions that an Impala daemon performs are:

e Reads and writes to data files.

e Accepts queries transmitted from the i npal a- shel | command, Hue, JDBC, or ODBC.
¢ Parallelizes the queries and distributes work across the cluster.

e Transmits intermediate query results back to the central coordinator.

Impala daemons can be deployed in one of the following ways:

e HDFS and Impala are co-located, and each Impala daemon runs on the same host as a DataNode.
e Impala is deployed separately in a compute cluster and reads remotely from HDFS, S3, ADLS, etc.

The Impala daemons are in constant communication with StateStore, to confirm which daemons are healthy and can
accept new work.

They also receive broadcast messages from the cat al ogd daemon (introduced in Impala 1.2) whenever any Impala
daemon in the cluster creates, alters, or drops any type of object, or when an | NSERT or LOAD DATA statement is
processed through Impala. This background communication minimizes the need for REFRESHor | NVALI DATE METADATA
statements that were needed to coordinate metadata across Impala daemons prior to Impala 1.2.

In CDH 5.12 / Impala 2.9 and higher, you can control which hosts act as query coordinators and which act as query
executors, to improve scalability for highly concurrent workloads on large clusters. See How to Configure Impala with
Dedicated Coordinators on page 630 for details.

Related information: Setting the Idle Query and Idle Session Timeouts for impalad on page 75, Modifying Impala
Startup Options, Ports Used by Impala on page 741, Using Impala through a Proxy for High Availability on page 77

The Impala Statestore

The Impala component known as the StateStore checks on the health of all Impala daemons in a cluster, and continuously
relays its findings to each of those daemons. It is physically represented by a daemon process named st at est or ed.
You only need such a process on one host in a cluster. If an Impala daemon goes offline due to hardware failure,
network error, software issue, or other reason, the StateStore informs all the other Impala daemons so that future
queries can avoid making requests to the unreachable Impala daemon.

Because the StateStore's purpose is to help when things go wrong and to broadcast metadata to coordinators, it is not
always critical to the normal operation of an Impala cluster. If the StateStore is not running or becomes unreachable,
the Impala daemons continue running and distributing work among themselves as usual when working with the data
known to Impala. The cluster just becomes less robust if other Impala daemons fail, and metadata becomes less
consistent as it changes while the StateStore is offline. When the StateStore comes back online, it re-establishes
communication with the Impala daemons and resumes its monitoring and broadcasting functions.

If you issue a DDL statement while the StateStore is down, the queries that access the new object the DDL created will
fail.

Most considerations for load balancing and high availability apply to the i npal ad daemon. The st at est or ed and
cat al ogd daemons do not have special requirements for high availability, because problems with those daemons do
not result in data loss. If those daemons become unavailable due to an outage on a particular host, you can stop the
Impala service, delete the Impala StateStore and Impala Catalog Server roles, add the roles on a different host, and
restart the Impala service.

Related information:

Scalability Considerations for the Impala Statestore on page 622, Modifying Impala Startup Options, Increasing the
Statestore Timeout on page 75, Ports Used by Impala on page 741

The Impala Catalog Service

The Impala component known as the Catalog Service relays the metadata changes from Impala SQL statements to all
the Impala daemons in a cluster. It is physically represented by a daemon process named cat al ogd. You only need
such a process on one host in a cluster. Because the requests are passed through the StateStore daemon, it makes
sense to run the st at est or ed and cat al ogd services on the same host.

The catalog service avoids the need to issue REFRESHand | NVALI DATE METADATA statements when the metadata
changes are performed by statements issued through Impala. When you create a table, load data, and so on through
Hive, you do need to issue REFRESHor | NVALI DATE METADATA on an Impala node before executing a query there.

This feature touches a number of aspects of Impala:

¢ See Impala Upgrade Considerations on page 44 and Modifying Impala Startup Options for usage information for
the cat al ogd daemon.

e The REFRESHand | NVALI DATE METADATA statements are not needed when the CREATE TABLE, | NSERT, or
other table-changing or data-changing operation is performed through Impala. These statements are still needed
if such operations are done through Hive or by manipulating data files directly in HDFS, but in those cases the
statements only need to be issued on one Impala daemon rather than on all daemons. See REFRESH Statement
on page 298 and INVALIDATE METADATA Statement on page 293 for the latest usage information for those
statements.

Use - -1 oad_cat al og_i n_backgr ound option to control when the metadata of a table is loaded.

e |fsettofal se, the metadata of a table is loaded when it is referenced for the first time. This means that the first
run of a particular query can be slower than subsequent runs. Starting in Impala 2.2, the default for
| oad_cat al og_i n_backgroundisfal se.

e Ifsettotrue, the catalog service attempts to load metadata for a table even if no query needed that metadata.
So metadata will possibly be already loaded when the first query that would need it is run. However, for the
following reasons, we recommend not to set the optiontotr ue.

— Background load can interfere with query-specific metadata loading. This can happen on startup or after
invalidating metadata, with a duration depending on the amount of metadata, and can lead to a seemingly
random long running queries that are difficult to diagnose.

— Impala may load metadata for tables that are possibly never used, potentially increasing catalog size and
consequently memory usage for both catalog service and Impala Daemon.

Most considerations for load balancing and high availability apply to the i npal ad daemon. The st at est or ed and
cat al ogd daemons do not have special requirements for high availability, because problems with those daemons do
not result in data loss. If those daemons become unavailable due to an outage on a particular host, you can stop the
Impala service, delete the Impala StateStore and Impala Catalog Server roles, add the roles on a different host, and
restart the Impala service.

E,i Note:

In Impala 1.2.4 and higher, you can specify a table name with | NVALI DATE METADATA after the table
is created in Hive, allowing you to make individual tables visible to Impala without doing a full reload
of the catalog metadata. Impala 1.2.4 also includes other changes to make the metadata broadcast
mechanism faster and more responsive, especially during Impala startup.

Related information:

Modifying Impala Startup Options, Ports Used by Impala on page 741

Developing Impala Applications

The core development language with Impala is SQL. You can also use Java or other languages to interact with Impala
through the standard JDBC and ODBC interfaces used by many business intelligence tools. For specialized kinds of
analysis, you can supplement the SQL built-in functions by writing user-defined functions (UDFs) in C++ or Java.

Overview of the Impala SQL Dialect

The Impala SQL dialect is highly compatible with the SQL syntax used in the Apache Hive component (HiveQL). As such,
it is familiar to users who are already familiar with running SQL queries on the Hadoop infrastructure. Currently, Impala
SQL supports a subset of HiveQL statements, data types, and built-in functions. Impala also includes additional built-in
functions for common industry features, to simplify porting SQL from non-Hadoop systems.

For users coming to Impala from traditional database or data warehousing backgrounds, the following aspects of the
SQL dialect might seem familiar:

e The SELECT statement includes familiar clauses such as WHERE, GROUP BY, ORDER BY, and W TH. You will find
familiar notions such as joins, built-in functions for processing strings, numbers, and dates, aggregate functions,
subqueries, and comparison operators such as | N() and BETWEEN. The SELECT statement is the place where
SQL standards compliance is most important.

¢ From the data warehousing world, you will recognize the notion of partitioned tables. One or more columns serve
as partition keys, and the data is physically arranged so that queries that refer to the partition key columns in the
VWHERE clause can skip partitions that do not match the filter conditions. For example, if you have 10 years worth
of data and use a clause such as WHERE year = 2015, WHERE year > 2010, or WHERE year | N (2014,
2015), Impala skips all the data for non-matching years, greatly reducing the amount of 1/0O for the query.

¢ InlImpala 1.2 and higher, UDFs let you perform custom comparisons and transformation logic during SELECT and
| NSERT. . . SELECT statements.

For users coming to Impala from traditional database or data warehousing backgrounds, the following aspects of the
SQL dialect might require some learning and practice for you to become proficient in the Hadoop environment:

e Impala SQL is focused on queries and includes relatively little DML. There is no UPDATE or DELETE statement.
Stale data is typically discarded (by DROP TABLE or ALTER TABLE ... DROP PARTI TI ONstatements) or
replaced (by | NSERT OVERWRI TE statements).

e All data creation is done by | NSERT statements, which typically insert data in bulk by querying from other tables.
There are two variations, | NSERT | NTOwhich appends to the existing data, and | NSERT OVERWRI TE which
replaces the entire contents of a table or partition (similar to TRUNCATE TABLE followed by a new | NSERT).
Although thereis an | NSERT ... VALUES syntax to create a small number of values in a single statement, it is
far more efficient to use the | NSERT ... SELECT to copy and transform large amounts of data from one table
to another in a single operation.

¢ You often construct Impala table definitions and data files in some other environment, and then attach Impala so
that it can run real-time queries. The same data files and table metadata are shared with other components of
the Hadoop ecosystem. In particular, Impala can access tables created by Hive or data inserted by Hive, and Hive

can access tables and data produced by Impala. Many other Hadoop components can write files in formats such
as Parquet and Avro, that can then be queried by Impala.

e Because Hadoop and Impala are focused on data warehouse-style operations on large data sets, Impala SQL
includes some idioms that you might find in the import utilities for traditional database systems. For example,
you can create a table that reads comma-separated or tab-separated text files, specifying the separator in the
CREATE TABLE statement. You can create external tables that read existing data files but do not move or transform
them.

e Because Impala reads large quantities of data that might not be perfectly tidy and predictable, it does not require
length constraints on string data types. For example, you can define a database column as STRI NGwith unlimited
length, rather than CHAR(1) or VARCHAR(64) . (Although in Impala 2.0 and later, you can also use
length-constrained CHAR and VARCHAR types.)

Related information: Impala SQL Language Reference on page 108, especially Impala SQL Statements on page 210 and
Impala Built-In Functions on page 398

Overview of Impala Programming Interfaces
You can connect and submit requests to the Impala daemons through:

e Theinpal a-shel | interactive command interpreter.
e The Hue web-based user interface.

e JDBC.

e ODBC.

With these options, you can use Impala in heterogeneous environments, with JDBC or ODBC applications running on
non-Linux platforms. You can also use Impala on combination with various Business Intelligence tools that use the
JDBC and ODBC interfaces.

Each i npal ad daemon process, running on separate nodes in a cluster, listens to several ports for incoming requests.
Requests from i npal a- shel | and Hue are routed to the i npal ad daemons through the same port. The i npal ad
daemons listen on separate ports for JDBC and ODBC requests.

How Impala Fits Into the Hadoop Ecosystem

Impala makes use of many familiar components within the Hadoop ecosystem. Impala can interchange data with other
Hadoop components, as both a consumer and a producer, so it can fit in flexible ways into your ETL and ELT pipelines.

How Impala Works with Hive

A major Impala goal is to make SQL-on-Hadoop operations fast and efficient enough to appeal to new categories of
users and open up Hadoop to new types of use cases. Where practical, it makes use of existing Apache Hive infrastructure
that many Hadoop users already have in place to perform long-running, batch-oriented SQL queries.

In particular, Impala keeps its table definitions in a traditional MySQL or PostgreSQL database known as the metastore,
the same database where Hive keeps this type of data. Thus, Impala can access tables defined or loaded by Hive, as
long as all columns use Impala-supported data types, file formats, and compression codecs.

The initial focus on query features and performance means that Impala can read more types of data with the SELECT
statement than it can write with the | NSERT statement. To query data using the Avro, RCFile, or SequenceFile file
formats, you load the data using Hive.

The Impala query optimizer can also make use of table statistics and column statistics. Originally, you gathered this
information with the ANALYZE TABLE statement in Hive; in Impala 1.2.2 and higher, use the Impala COVWPUTE STATS
statement instead. COMPUTE STATS requires less setup, is more reliable, and does not require switching back and
forth between i npal a- shel | and the Hive shell.

http://gethue.com/

Overview of Impala Metadata and the Metastore

As discussed in How Impala Works with Hive on page 21, Impala maintains information about table definitions in a
central database known as the metastore. Impala also tracks other metadata for the low-level characteristics of data
files:

¢ The physical locations of blocks within HDFS.

For tables with a large volume of data and/or many partitions, retrieving all the metadata for a table can be
time-consuming, taking minutes in some cases. Thus, each Impala node caches all of this metadata to reuse for future
queries against the same table.

If the table definition or the data in the table is updated, all other Impala daemons in the cluster must receive the
latest metadata, replacing the obsolete cached metadata, before issuing a query against that table. In Impala 1.2 and
higher, the metadata update is automatic, coordinated through the cat al ogd daemon, for all DDL and DML statements
issued through Impala. See The Impala Catalog Service on page 19 for details.

For DDL and DML issued through Hive, or changes made manually to files in HDFS, you still use the REFRESH statement
(when new data files are added to existing tables) or the | NVALI DATE METADATA statement (for entirely new tables,
or after dropping a table, performing an HDFS rebalance operation, or deleting data files). Issuing | NVALI DATE
METADATA by itself retrieves metadata for all the tables tracked by the metastore. If you know that only specific tables
have been changed outside of Impala, you can issue REFRESH t abl e_name for each affected table to only retrieve
the latest metadata for those tables.

How Impala Uses HDFS

Impala uses the distributed filesystem HDFS as its primary data storage medium. Impala relies on the redundancy
provided by HDFS to guard against hardware or network outages on individual nodes. Impala table data is physically
represented as data files in HDFS, using familiar HDFS file formats and compression codecs. When data files are present
in the directory for a new table, Impala reads them all, regardless of file name. New data is added in files with names
controlled by Impala.

How Impala Uses HBase

HBase is an alternative to HDFS as a storage medium for Impala data. It is a database storage system built on top of
HDFS, without built-in SQL support. Many Hadoop users already have it configured and store large (often sparse) data
sets in it. By defining tables in Impala and mapping them to equivalent tables in HBase, you can query the contents of
the HBase tables through Impala, and even perform join queries including both Impala and HBase tables. See Using
Impala to Query HBase Tables on page 699 for details.

Planning for Impala Deployment

Before you set up Impala in production, do some planning to make sure that your hardware setup has sufficient capacity,
that your cluster topology is optimal for Impala queries, and that your schema design and ETL processes follow the
best practices for Impala.

Impala Requirements

To perform as expected, Impala depends on the availability of the software, hardware, and configurations described
in the following sections.

Product Compatibility Matrix
The ultimate source of truth about compatibility between various versions of CDH, Cloudera Manager, and various
CDH components is the .

Supported Operating Systems
The relevant supported operating systems and versions for Impala are the same as for the corresponding CDH platforms.
For details, see the Supported Operating Systems page for CDH.

Hive Metastore and Related Configuration

Impala can interoperate with data stored in Hive, and uses the same infrastructure as Hive for tracking metadata about
schema objects such as tables and columns. The following components are prerequisites for Impala:

e MySQL or PostgreSQL, to act as a metastore database for both Impala and Hive.

Always configure a Hive metastore service rather than connecting directly to the metastore database. The Hive
metastore service is required to interoperate between different levels of metastore APIs if this is necessary for
your environment, and using it avoids known issues with connecting directly to the metastore database.

See below for a summary of the metastore installation process.

¢ Hive (optional). Although only the Hive metastore database is required for Impala to function, you might install
Hive on some client machines to create and load data into tables that use certain file formats. See How Impala
Works with Hadoop File Formats on page 649 for details. Hive does not need to be installed on the same DataNodes
as Impala; it just needs access to the same metastore database.

To install the metastore:

. Install a MySQL or PostgreSQL database. Start the database if it is not started after installation.

. Download the MySQL connector or the PostgreSQL connector and place it in the / usr/ shar e/ j ava/ directory.

. Use the appropriate command line tool for your database to create the metastore database.

. Use the appropriate command line tool for your database to grant privileges for the metastore database to the
hi ve user.

5. Modify hi ve-si t e. xm to include information matching your particular database: its URL, username, and

password. You will copy the hi ve-si te. xm file to the Impala Configuration Directory later in the Impala

installation process.

A WN R

Java Dependencies
Although Impala is primarily written in C++, it does use Java to communicate with various Hadoop components:

e The officially supported JVMs for Impala are the OpenJDK JVM and Oracle JVM. Other JVMs might cause issues,
typically resulting in a failure at i npal ad startup. In particular, the JamVM used by default on certain levels of
Ubuntu systems can cause i nmpal ad to fail to start.

http://www.cloudera.com/documentation/enterprise/latest/topics/rn_consolidated_pcm.html#cdh_cm_supported_os
http://www.mysql.com/products/connector/
http://jdbc.postgresql.org/download.html

¢ Internally, thei nmpal ad daemon relies on the JAVA HOME environment variable to locate the system Java libraries.
Make sure the i npal ad service is not run from an environment with an incorrect setting for this variable.

e All Java dependencies are packaged in the i npal a- dependenci es. j ar file, which is located at
fusr/lib/inpalallib/.These map to everything that is built under f e/ t ar get / dependency.

Networking Configuration Requirements

As part of ensuring best performance, Impala attempts to complete tasks on local data, as opposed to using network
connections to work with remote data. To support this goal, Impala matches the hostname provided to each Impala
daemon with the IP address of each DataNode by resolving the hostname flag to an IP address. For Impala to work
with local data, use a single IP interface for the DataNode and the Impala daemon on each machine. Ensure that the
Impala daemon's hostname flag resolves to the IP address of the DataNode. For single-homed machines, this is usually
automatic, but for multi-homed machines, ensure that the Impala daemon's hostname resolves to the correct interface.
Impala tries to detect the correct hostname at start-up, and prints the derived hostname at the start of the log in a
message of the form:

Usi ng host nane: i npal a- daenon- 1. exanpl e. com

In the majority of cases, this automatic detection works correctly. If you need to explicitly set the hostname, do so by
setting the - - host nane flag.

Hardware Requirements

The memory allocation should be consistent across Impala executor nodes. A single Impala executor with a lower
memory limit than the rest can easily become a bottleneck and lead to suboptimal performance.

This guideline does not apply to coordinator-only nodes.

Hardware Requirements for Optimal Join Performance

During join operations, portions of data from each joined table are loaded into memory. Data sets can be very large,
so ensure your hardware has sufficient memory to accommodate the joins you anticipate completing.

While requirements vary according to data set size, the following is generally recommended:
e CPU

Impala version 2.2 and higher uses the SSSE3 instruction set, which is included in newer processors.

E’; Note: This required level of processor is the same as in Impala version 1.x. The Impala 2.0 and
2.1 releases had a stricter requirement for the SSE4.1 instruction set, which has now been relaxed.

e Memory

128 GB or more recommended, ideally 256 GB or more. If the intermediate results during query processing on a
particular node exceed the amount of memory available to Impala on that node, the query writes temporary work
data to disk, which can lead to long query times. Note that because the work is parallelized, and intermediate
results for aggregate queries are typically smaller than the original data, Impala can query and join tables that are
much larger than the memory available on an individual node.

e JVM Heap Size for Catalog Server

4 GB or more recommended, ideally 8 GB or more, to accommodate the maximum numbers of tables, partitions,
and data files you are planning to use with Impala.

e Storage

DataNodes with 12 or more disks each. 1/0 speeds are often the limiting factor for disk performance with Impala.
Ensure that you have sufficient disk space to store the data Impala will be querying.

User Account Requirements

Impala creates and uses a user and group named i npal a. Do not delete this account or group and do not modify the
account's or group's permissions and rights. Ensure no existing systems obstruct the functioning of these accounts and
groups. For example, if you have scripts that delete user accounts not in a white-list, add these accounts to the list of
permitted accounts.

For correct file deletion during DROP TABLE operations, Impala must be able to move files to the HDFS trashcan. You
might need to create an HDFS directory / user /i npal a, writeable by the i npal a user, so that the trashcan can be
created. Otherwise, data files might remain behind after a DROP TABLE statement.

Impala should not run as root. Best Impala performance is achieved using direct reads, but root is not permitted to
use direct reads. Therefore, running Impala as root negatively affects performance.

By default, any user can connect to Impala and access all the associated databases and tables. You can enable
authorization and authentication based on the Linux OS user who connects to the Impala server, and the associated
groups for that user. Impala Security on page 87 for details. These security features do not change the underlying file
permission requirements; the i npal a user still needs to be able to access the data files.

Guidelines for Designing Impala Schemas

The guidelines in this topic help you to construct an optimized and scalable schema, one that integrates well with your
existing data management processes. Use these guidelines as a checklist when doing any proof-of-concept work,
porting exercise, or before deploying to production.

If you are adapting an existing database or Hive schema for use with Impala, read the guidelines in this section and
then see Porting SQL from Other Database Systems to Impala on page 550 for specific porting and compatibility tips.

Prefer binary file formats over text-based formats.

To save space and improve memory usage and query performance, use binary file formats for any large or intensively
queried tables. Parquet file format is the most efficient for data warehouse-style analytic queries. Avro is the other
binary file format that Impala supports, that you might already have as part of a Hadoop ETL pipeline.

Although Impala can create and query tables with the RCFile and SequencefFile file formats, such tables are relatively
bulky due to the text-based nature of those formats, and are not optimized for data warehouse-style queries due to
their row-oriented layout. Impala does not support | NSERT operations for tables with these file formats.

Guidelines:

e For an efficient and scalable format for large, performance-critical tables, use the Parquet file format.

¢ Todeliver intermediate data during the ETL process, in a format that can also be used by other Hadoop components,
Avro is a reasonable choice.

¢ For convenient import of raw data, use a text table instead of RCFile or SequenceFile, and convert to Parquet in
a later stage of the ETL process.

Use Snappy compression where practical.

Snappy compression involves low CPU overhead to decompress, while still providing substantial space savings. In cases
where you have a choice of compression codecs, such as with the Parquet and Avro file formats, use Snappy compression
unless you find a compelling reason to use a different codec.

Prefer numeric types over strings.

If you have numeric values that you could treat as either strings or numbers (such as YEAR, MONTH, and DAY for partition
key columns), define them as the smallest applicable integer types. For example, YEAR can be SMALLI NT, MONTH and
DAY can be TI NYI NT. Although you might not see any difference in the way partitioned tables or text files are laid out
on disk, using numeric types will save space in binary formats such as Parquet, and in memory when doing queries,
particularly resource-intensive queries such as joins.

Partition, but do not over-partition.

Partitioning is an important aspect of performance tuning for Impala. Follow the procedures in Partitioning for Impala
Tables on page 640 to set up partitioning for your biggest, most intensively queried tables.

If you are moving to Impala from a traditional database system, or just getting started in the Big Data field, you might
not have enough data volume to take advantage of Impala parallel queries with your existing partitioning scheme. For
example, if you have only a few tens of megabytes of data per day, partitioning by YEAR, MONTH, and DAY columns
might be too granular. Most of your cluster might be sitting idle during queries that target a single day, or each node
might have very little work to do. Consider reducing the number of partition key columns so that each partition directory
contains several gigabytes worth of data.

For example, consider a Parquet table where each data file is 1 HDFS block, with a maximum block size of 1 GB. (In
Impala 2.0 and later, the default Parquet block size is reduced to 256 MB. For this exercise, let's assume you have
bumped the size back up to 1 GB by setting the query option PARQUET_FI LE_SI ZE=1g.) if you have a 10-node cluster,
you need 10 data files (up to 10 GB) to give each node some work to do for a query. But each core on each machine
can process a separate data block in parallel. With 16-core machines on a 10-node cluster, a query could process up
to 160 GB fully in parallel. If there are only a few data files per partition, not only are most cluster nodes sitting idle
during queries, so are most cores on those machines.

You can reduce the Parquet block size to as low as 128 MB or 64 MB to increase the number of files per partition and
improve parallelism. But also consider reducing the level of partitioning so that analytic queries have enough data to
work with.

Always compute stats after loading data.

Impala makes extensive use of statistics about data in the overall table and in each column, to help plan
resource-intensive operations such as join queries and inserting into partitioned Parquet tables. Because this information
is only available after data is loaded, run the COMPUTE STATS statement on a table after loading or replacing data in
a table or partition.

Having accurate statistics can make the difference between a successful operation, or one that fails due to an
out-of-memory error or a timeout. When you encounter performance or capacity issues, always use the SHOWV STATS
statement to check if the statistics are present and up-to-date for all tables in the query.

When doing a join query, Impala consults the statistics for each joined table to determine their relative sizes and to
estimate the number of rows produced in each join stage. When doing an | NSERT into a Parquet table, Impala consults
the statistics for the source table to determine how to distribute the work of constructing the data files for each
partition.

See COMPUTE STATS Statement on page 227 for the syntax of the COVPUTE STATS statement, and Table and Column
Statistics on page 592 for all the performance considerations for table and column statistics.

Verify sensible execution plans with EXPLAIN and SUMMARY.

Before executing a resource-intensive query, use the EXPLAI N statement to get an overview of how Impala intends
to parallelize the query and distribute the work. If you see that the query plan is inefficient, you can take tuning steps
such as changing file formats, using partitioned tables, running the COVPUTE STATS statement, or adding query hints.
For information about all of these techniques, see Tuning Impala for Performance on page 582.

After you run a query, you can see performance-related information about how it actually ran by issuing the SUMVARY
commandini npal a- shel | . Priorto Impala 1.4, you would use the PROFI LE command, but its highly technical output
was only useful for the most experienced users. SUVMARY, new in Impala 1.4, summarizes the most useful information
for all stages of execution, for all nodes rather than splitting out figures for each node.

Setting Up Apache Impala Using the Command Line

Impala is an open-source add-on to the Cloudera Enterprise Core that returns rapid responses to queries.

E,i Note:

Under CDH 5 and CDH 6, Impala is included as part of the CDH installation and no separate steps are
needed. Therefore, the instruction steps in this section apply to CDH 4 only.

What is Included in an Impala Installation

Impala is made up of a set of components that can be installed on multiple nodes throughout your cluster. The key
installation step for performance is to install the i npal ad daemon (which does most of the query processing work)
on all DataNodes in the cluster.

The Impala package installs these binaries:

e inpal ad - The Impala daemon. Plans and executes queries against HDFS, HBase, and Amazon S3 data. Run one
impalad process on each node in the cluster that has a DataNode.

e st at est or ed - Name service that tracks location and status of all i npal ad instances in the cluster. Run one
instance of this daemon on a node in your cluster. Most production deployments run this daemon on the namenode.

e cat al ogd - Metadata coordination service that broadcasts changes from Impala DDL and DML statements to all
affected Impala nodes, so that new tables, newly loaded data, and so on are immediately visible to queries
submitted through any Impala node. (Prior to Impala 1.2, you had to run the REFRESHor | NVALI DATE METADATA
statement on each node to synchronize changed metadata. Now those statements are only required if you perform
the DDL or DML through an external mechanism such as Hive or by uploading data to the Amazon S3 filesystem.)
Run one instance of this daemon on a node in your cluster, preferably on the same host as the st at est or ed
daemon.

e inpal a- shel | - Command-line interface for issuing queries to the Impala daemon. You install this on one or
more hosts anywhere on your network, not necessarily DataNodes or even within the same cluster as Impala. It
can connect remotely to any instance of the Impala daemon.

Before doing the installation, ensure that you have all necessary prerequisites. See Impala Requirements on page 23
for details.

Installing Impala from the Command Line

Before installing Impala manually, make sure all applicable nodes have the appropriate hardware configuration, levels
of operating system and CDH, and any other software prerequisites. See Impala Requirements on page 23 for details.

You can install Impala across many hosts or on one host:

* |Installing Impala across multiple machines creates a distributed configuration. For best performance, install Impala
on all DataNodes.

¢ Installing Impala on a single machine produces a pseudo-distributed cluster.
To install Impala on a host:

1. Install CDH, including Hive, as described in Installing and Deploying Unmanaged CDH Using the Command Line.

2. Configure the Hive metastore to use an external database as a metastore. Impala uses this same database for its
own table metadata. You can choose either a MySQL or PostgreSQL database as the metastore. The process for
configuring each type of database is described in the CDH Installation Guide).

Cloudera recommends setting up a Hive metastore service rather than connecting directly to the metastore
database; this configuration is required when running Impala under CDH 4.1. Make sure the

/etc/inpal a/ conf/hive-site.xnl file contains the following setting, substituting the appropriate hostname
for metastore_server_host:

<property>

<name>hi ve. met ast or e. uri s</ nane>

<value>thrift://metastore_server host:9083</val ue>

</ property>

<property>

<name>hi ve. net ast ore. cl i ent. socket. ti meout </ nane>

<val ue>3600</ val ue>

<description>MetaStore Client socket timeout in seconds</description>
</ property>

3. (Optional) If you installed the full Hive component on any host, you can verify that the metastore is configured
properly by starting the Hive console and querying for the list of available tables. Once you confirm that the console
starts, exit the console to continue the installation:

$ hive

Hi ve history file=/tnp/root/hive_job_log_root_201207272011_678722950. t xt
hi ve> show t abl es

tabl el

tabl e2

hive> quit;

$

4. Confirm that your package management command is aware of the Impala repository settings, as described in
Impala Requirements on page 23. (For CDH 4, this is a different repository than for CDH.) You might need to
download a repo or list file into a system directory underneath / et c.

5. Use one of the following sets of commands to install the Impala package:

For RHEL, Oracle Linux, or CentOS systems:

$ sudo yuminstall inpala # Binaries for daenobns
$ sudo yuminstall inpal a-server # Service start/stop script
$ sudo yuminstall inpala-state-store # Service start/stop script
$ sudo yuminstall inpal a-catal og # Service start/stop script
For SUSE systems:
$ sudo zypper install inpala # Binaries for daenons
$ sudo zypper install inpala-server # Service start/stop script
$ sudo zypper install inpala-state-store # Service start/stop script
$ sudo zypper install inpala-catalog # Service start/stop script
For Debian or Ubuntu systems:
$ sudo apt-get install inpala # Binaries for daenons
$ sudo apt-get install inpala-server # Service start/stop script
$ sudo apt-get install inpala-state-store # Service start/stop script
$ sudo apt-get install inpala-catalog # Service start/stop script

E,i Note: Cloudera recommends that you not install Impala on any HDFS NameNode. Installing
Impala on NameNodes provides no additional data locality, and executing queries with such a
configuration might cause memory contention and negatively impact the HDFS NameNode.

6. Copy theclient hi ve-site.xm ,core-site.xm ,b hdfs-site.xm,andhbase-site.xm configuration files
to the Impala configuration directory, which defaults to/ et c/ i npal a/ conf . Create this directory if it does not
already exist.

7. Use one of the following commands to install i npal a- shel | on the machines from which you want to issue
queries. You caninstalli mpal a- shel | onanysupported machine that can connect to DataNodes that are running
i npal ad.

For RHEL/CentOS systems:

$ sudo yuminstall inpal a-shell
For SUSE systems:
$ sudo zypper install inpala-shell

For Debian/Ubuntu systems:
$ sudo apt-get install inpala-shell

8. Complete any required or recommended configuration, as described in Post-Installation Configuration for Impala
on page 36. Some of these configuration changes are mandatory.

Once installation and configuration are complete, see Starting Impala on page 32 for how to activate the software on
the appropriate nodes in your cluster.

If this is your first time setting up and using Impala in this cluster, run through some of the exercises in Impala Tutorials
on page 48 to verify that you can do basic operations such as creating tables and querying them.

Modifying Impala Startup Options

The configuration options for the Impala-related daemons let you choose which hosts and ports to use for the services
that run on a single host, specify directories for logging, control resource usage and security, and specify other aspects
of the Impala software.

Configuring Impala Startup Options through the Command Line

When you run Impala in a non-Cloudera Manager environment, the Impala server, statestore, and catalog services
start up using values provided in a defaults file, / et ¢/ def aul t /i npal a.

This file includes information about many resources used by Impala. Most of the defaults included in this file should
be effective in most cases. For example, typically you would not change the definition of the CLASSPATH variable, but
you would always set the address used by the statestore server. Some of the content you might modify includes:

| MPALA_STATE_STORE_HOST=127.0.0. 1
| MPALA_STATE_STORE_PORT=24000

I MPALA_BACKEND_PORT=22000

| MPALA_LOG DI R=/var/ 1 og/i rrpal a

| MPALA_CATALOG_SERVI CE_HOST=.

| MPALA_STATE_STORE_HOST=.

export | MPALA _STATE_STORE_ARGS=${| MPALA STATE_STORE_ARGS: - \
-1 og_di r=%{| MPALA LOG DI R} -state_store_port=%${1 MPALA STATE_STORE_PORT}}
| MPALA_SERVER_ARGS=" \
-1 og_dir=${I MPALA LOG DIR} \
-cat al og_servi ce_host =${ | MPALA_CATALOG_SERVI CE_HOST} \
-state_store_port=%${1 MPALA STATE STORE_PORT} \
-state_store_host=${1 MPALA_STATE_STORE_HOST} \
- be_port =${ | MPALA_BACKEND PORT}"
export ENABLE_CORE_DUMPS=${ ENABLE_COREDUMPS: - f al se}

To use alternate values, edit the defaults file, then restart all the Impala-related services so that the changes take
effect. Restart the Impala server using the following commands:

$ sudo service inpal a-server restart
St oppi ng | npal a Server: [O]
Starting I npala Server: [&K

Restart the Impala statestore using the following commands:

$ sudo service inpala-state-store restart

Stopping Inpala State Store Server: [O]
Starting Inpala State Store Server: [OK]
Restart the Impala catalog service using the following commands:

$ sudo service inpal a-catal og restart

St oppi ng I npal a Cat al og Server: [O]
Starting Inpala Catal og Server: [O]

Some common settings to change include:

e Statestore address. Where practical, put the statestore on a separate host not running the i npal ad daemon. In
that recommended configuration, the i npal ad daemon cannot refer to the statestore server using the loopback
address. If the statestore is hosted on a machine with an IP address of 192.168.0.27, change:

| MPALA STATE STORE HOST=127.0.0. 1
to:

| MPALA_STATE_STORE_HOST=192. 168. 0. 27

e Catalog server address (including both the hostname and the port number). Update the value of the
| MPALA CATALOG SERVI CE_HOST variable. Cloudera recommends the catalog server be on the same host as
the statestore. In that recommended configuration, the i npal ad daemon cannot refer to the catalog server using

the loopback address. If the catalog service is hosted on a machine with an IP address of 192.168.0.27, add the
following line:

I MPALA_CATALOG_SERVI CE_HOST=192. 168. 0. 27: 26000

The / et ¢/ def aul t /i npal a defaults file currently does not define an | MPALA_CATALOG_ARGS environment
variable, but if you add one it will be recognized by the service startup/shutdown script. Add a definition for this
variable to/ et ¢/ def aul t /i npal a and add the option - cat al og_ser vi ce_host =host nane. If the port is
different than the default 26000, also add the option - cat al og_servi ce_port =port.

Memory limits. You can limit the amount of memory available to Impala. For example, to allow Impala to use no
more than 70% of system memory, change:

export | MPALA SERVER ARGS=${| MPALA SERVER_ARGS: - \
-1 og_di r=${I MPALA_LOG DI R} \
-state_store_port=${1 MPALA_STATE_STORE_PCRT} \
-state_store_host =${| MPALA_STATE_STORE_HOST} \
- be_port =${| MPALA_BACKEND_PORT}}

to:

export | MPALA SERVER ARGS=${| MPALA_ SERVER ARGS: - \
-1 og_di r=${1 MPALA LOG DIR} -state_store_port=${| MPALA STATE_STORE_PORT} \
-state_store_host =${1 MPALA_STATE_STORE_HOST} \
-be_port=${| MPALA_BACKEND PORT} -mem|imt=70%

You can specify the memory limit using absolute notation such as 500mor 2G or as a percentage of physical
memory such as 60%

E,i Note: Queries that exceed the specified memory limit are aborted. Percentage limits are based
on the physical memory of the machine and do not consider cgroups.

e Core dump enablement. To enable core dumps on systems not managed by Cloudera Manager, change:
export ENABLE_CORE_DUMPS=${ ENABLE_COREDUMPS: - f al se}
to:
export ENABLE_CORE_DUMPS=${ ENABLE_COREDUMPS: -t r ue}

On systems managed by Cloudera Manager, enable the Enable Core Dump setting for the Impala service.

E’; Note:

e The location of core dump files may vary according to your operating system configuration.

e Other security settings may prevent Impala from writing core dumps even when this option
is enabled.

¢ The default location for core dumps is on a temporary filesystem, which can lead to
out-of-space issues if the core dumps are large, frequent, or not removed promptly. To
specify an alternative location for the core dumps, filter the Impala configuration settings
to find the cor e_dunp_di r option. This option lets you specify a different directory for core
dumps for each of the Impala-related daemons.

e Authorization using the open source Sentry plugin. Specify the - ser ver _nane and
-aut horization_policy_fil eoptionsaspartofthel MPALA SERVER ARGSand | MPALA_STATE_STORE_ARGS
settings to enable the core Impala support for authentication. See Enabling Sentry Authorization for Impala on
page 92 for details.

¢ Auditing for successful or blocked Impala queries, another aspect of security. Specify the
-audit _event _| og_dir=di rectory_pat h option and optionally the
-max_audi t _event | og_fil e_size=nunber_of queri esand-abort_on_fail ed_audit_event options
as part of the | MPALA_SERVER _ARGS settings, for each Impala node, to enable and customize auditing. See
Auditing Impala Operations on page 83 for details.

e Password protection for the Impala web Ul, which listens on port 25000 by default. This feature involves adding
some or all of the - - webser ver _password_fil e, --webserver _aut henti cati on_donai n, and
--webserver _certificate fil e optionstothel MPALA SERVER ARGS and | MPALA STATE_STORE_ARGS
settings. See Security Guidelines for Impala on page 87 for details.

e Another setting you might add to | MPALA_ SERVER ARGS is a comma-separated list of query options and values:
-defaul t_query_options='opti on=val ue, opti on=val ue,..."

These options control the behavior of queries performed by thisi npal ad instance. The option values you specify
here override the default values for Impala query options, as shown by the SET statement ini npal a- shel I .

e During troubleshooting, Cloudera Support might direct you to change other values, particularly for
| MPALA SERVER_ARGS, to work around issues or gather debugging information.

E,i Note:

These startup options for the i npal ad daemon are different from the command-line options for the
i mpal a- shel | command. For the i npal a- shel | options, see impala-shell Configuration Options
on page 556.

Checking the Values of Impala Configuration Options

You can check the current runtime value of all these settings through the Impala web interface, available by default
athttp://inpal a_host nane: 25000/ var z for thei npal ad daemon, htt p: //i npal a_host nane: 25010/ var z
for the st at est or ed daemon, or htt p: / /i npal a_host nane: 25020/ var z for the cat al ogd daemon. In the
Cloudera Manager interface, you can see the link to the appropriate service_name Web Ul page when you look at the
status page for a specific daemon on a specific host.

Startup Options for impalad Daemon

The i npal ad daemon implements the main Impala service, which performs query processing and reads and writes
the data files. Some of the noteworthy options are:

e Thefe_service_t hreads option specifies the maximum number of concurrent client connections allowed. The
default value is 64 with which 64 queries can run simultaneously.

If you have more clients trying to connect to Impala than the value of this setting, the later arriving clients have
to wait until previous clients disconnect. You can increase this value to allow more client connections. However,
alarge value means more threads to be maintained even if most of the connections are idle, and it could negatively
impact query latency. Client applications should use the connection pool to avoid the need for large number of
sessions.

Startup Options for statestored Daemon

The st at est or ed daemon implements the Impala statestore service, which monitors the availability of Impala services
across the cluster, and handles situations such as nodes becoming unavailable or becoming available again.

Startup Options for catalogd Daemon

The cat al ogd daemon implements the Impala catalog service, which broadcasts metadata changes to all the Impala
nodes when Impala creates a table, inserts data, or performs other kinds of DDL and DML operations.

Use - -1 oad_cat al og_i n_backgr ound option to control when the metadata of a table is loaded.

e |fsettofal se, the metadata of a table is loaded when it is referenced for the first time. This means that the first
run of a particular query can be slower than subsequent runs. Starting in Impala 2.2, the default for
| oad_cat al og_i n_backgroundisfal se.

e Ifsettotrue, the catalog service attempts to load metadata for a table even if no query needed that metadata.
So metadata will possibly be already loaded when the first query that would need it is run. However, for the
following reasons, we recommend not to set the optiontotr ue.

— Background load can interfere with query-specific metadata loading. This can happen on startup or after
invalidating metadata, with a duration depending on the amount of metadata, and can lead to a seemingly
random long running queries that are difficult to diagnose.

— Impala may load metadata for tables that are possibly never used, potentially increasing catalog size and
consequently memory usage for both catalog service and Impala Daemon.

Starting Impala

To activate Impala if it is installed but not yet started:

1. Set any necessary configuration options for the Impala services. See Modifying Impala Startup Options for details.

2. Start one instance of the Impala statestore. The statestore helps Impala to distribute work efficiently, and to
continue running in the event of availability problems for other Impala nodes. If the statestore becomes unavailable,
Impala continues to function.

3. Start one instance of the Impala catalog service.

4. Start the main Impala service on one or more DataNodes, ideally on all DataNodes to maximize local processing
and avoid network traffic due to remote reads.

Once Impala is running, you can conduct interactive experiments using the instructions in Impala Tutorials on page 48
and try Using the Impala Shell (impala-shell Command) on page 556.

Starting Impala from the Command Line

To start the Impala state store and Impala from the command line or a script, you can either use the ser vi ce command
or you can start the daemons directly through the i npal ad, st at est or ed, and cat al ogd executables.

Start the Impala statestore and then start i npal ad instances. You can modify the values the service initialization
scripts use when starting the statestore and Impala by editing / et ¢/ def aul t /i npal a.

Start the statestore service using a command similar to the following:

$ sudo service inpal a-state-store start

Start the catalog service using a command similar to the following:

$ sudo service inpal a-catal og start

Start the Impala service on each DataNode using a command similar to the following:

$ sudo service inpal a-server start

E,’ Note:

In CDH 5.7 / Impala 2.5 and higher, Impala UDFs and UDAs written in C++ are persisted in the metastore
database. Java UDFs are also persisted, if they were created with the new CREATE FUNCTI ON syntax
for Java UDFs, where the Java function argument and return types are omitted. Java-based UDFs
created with the old CREATE FUNCTI ON syntax do not persist across restarts because they are held
in the memory of the cat al ogd daemon. Until you re-create such Java UDFs using the new CREATE
FUNCTI ONsyntax, you must reload those Java-based UDFs by running the original CREATE FUNCTI ON
statements again each time you restart the cat al ogd daemon. Prior to CDH 5.7 / Impala 2.5 the
requirement to reload functions after a restart applied to both C++ and Java functions.

If any of the services fail to start, review:

e Reviewing Impala Logs on page 725
e Troubleshooting Impala on page 728

Installing Impala with Cloudera Manager

Before installing Impala through the Cloudera Manager interface, make sure all applicable nodes have the appropriate
hardware configuration and levels of operating system and CDH. See Impala Requirements on page 23 for details.

For information on installing Impala in a Cloudera Manager-managed environment, see
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_ig_install_impala.html

Managing your Impala installation through Cloudera Manager has a number of advantages. For example, when you
make configuration changes to CDH components using Cloudera Manager, it automatically applies changes to the

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_ig_install_impala.html

copies of configuration files, such as hi ve- si t e. xnml , that Impala keeps under / et ¢/ i npal a/ conf . It also sets up
the Hive Metastore service that is required for Impala.

In some cases, depending on the level of Impala, CDH, and Cloudera Manager, you might need to add particular
component configuration details in some of the free-form option fields on the Impala configuration pages within
Cloudera Manager. In Cloudera Manager 4, these fields are labelled Safety Valve; in Cloudera Manager 5, they are
called Advanced Configuration Snippet.

Installing Impala from the Command Line

Before installing Impala manually, make sure all applicable nodes have the appropriate hardware configuration, levels
of operating system and CDH, and any other software prerequisites. See Impala Requirements on page 23 for details.

You can install Impala across many hosts or on one host:

¢ Installing Impala across multiple machines creates a distributed configuration. For best performance, install Impala
on all DataNodes.
¢ Installing Impala on a single machine produces a pseudo-distributed cluster.

To install Impala on a host:

1. Install CDH, including Hive, as described in Installing and Deploying Unmanaged CDH Using the Command Line.

2. Configure the Hive metastore to use an external database as a metastore. Impala uses this same database for its
own table metadata. You can choose either a MySQL or PostgreSQL database as the metastore. The process for
configuring each type of database is described in the CDH Installation Guide).

Cloudera recommends setting up a Hive metastore service rather than connecting directly to the metastore
database; this configuration is required when running Impala under CDH 4.1. Make sure the

/etc/inpal a/ conf/ hive-site.xmn filecontains the following setting, substituting the appropriate hostname
for metastore_server_host:

<property>

<nane>hi ve. met ast or e. uri s</ name>
<value>thrift://nmetastore_server_host: 9083</val ue>

</ property>

<property>

<nane>hi ve. met ast ore. cli ent. socket. ti meout </ name>

<val ue>3600</ val ue>

<description>MetaStore Client socket timeout in seconds</description>
</ property>

3. (Optional) If you installed the full Hive component on any host, you can verify that the metastore is configured
properly by starting the Hive console and querying for the list of available tables. Once you confirm that the console
starts, exit the console to continue the installation:

$ hive

H ve history file=/tnp/root/hive_job_|log_root_ 201207272011 678722950. t xt
hi ve> show t abl es;

tabl el

tabl e2

hi ve> quit;

4. Confirm that your package management command is aware of the Impala repository settings, as described in
Impala Requirements on page 23. (For CDH 4, this is a different repository than for CDH.) You might need to
download a repo or list file into a system directory underneath / et c.

5. Use one of the following sets of commands to install the Impala package:

For RHEL, Oracle Linux, or CentOS systems:

$ sudo yuminstall inpala # Binaries for daenons
$ sudo yuminstall inpal a-server # Service start/stop script

$ sudo yuminstall inpala-state-store # Service start/stop script
$ sudo yuminstall inpal a-catal og # Service start/stop script
For SUSE systems:
$ sudo zypper install inpala # Binaries for daenons
$ sudo zypper install inpala-server # Service start/stop script
$ sudo zypper install inpala-state-store # Service start/stop script
$ sudo zypper install inpala-catalog # Service start/stop script
For Debian or Ubuntu systems:
$ sudo apt-get install inpala # Binaries for daenobns
$ sudo apt-get install inpala-server # Service start/stop script
$ sudo apt-get install inpala-state-store # Service start/stop script
$ sudo apt-get install inpala-catal og # Service start/stop script

E,’ Note: Cloudera recommends that you not install Impala on any HDFS NameNode. Installing
Impala on NameNodes provides no additional data locality, and executing queries with such a
configuration might cause memory contention and negatively impact the HDFS NameNode.

6. Copy theclient hi ve-site.xm ,core-site.xn ,hdfs-site.xm,andhbase-site.xm configuration files
to the Impala configuration directory, which defaults to / et c/ i npal a/ conf . Create this directory if it does not
already exist.

7. Use one of the following commands to install i npal a- shel | on the machines from which you want to issue
queries. You caninstalli mpal a- shel I onanysupported machine that can connect to DataNodes that are running
i mpal ad.

For RHEL/CentOS systems:

$ sudo yuminstall inpal a-shell
For SUSE systems:
$ sudo zypper install inpala-shell

For Debian/Ubuntu systems:

$ sudo apt-get install inpala-shell

8. Complete any required or recommended configuration, as described in Post-Installation Configuration for Impala
on page 36. Some of these configuration changes are mandatory.

Once installation and configuration are complete, see Starting Impala on page 32 for how to activate the software on
the appropriate nodes in your cluster.

If this is your first time setting up and using Impala in this cluster, run through some of the exercises in Impala Tutorials
on page 48 to verify that you can do basic operations such as creating tables and querying them.

Managing Impala

The first part of this section describes the following Impala configuration topics:

¢ The Impala Service

e Post-Installation Configuration for Impala on page 36

* |mpala Security on page 87
e Modifying Impala Startup Options

The rest of this section describes how to configure Impala to accept connections from applications that use popular
programming APlIs:

e Configuring Impala to Work with ODBC on page 37
¢ Configuring Impala to Work with JDBC on page 40

This type of configuration is especially useful when using Impala in combination with Business Intelligence tools, which
use these standard interfaces to query different kinds of database and Big Data systems.

Post-Installation Configuration for Impala

This section describes the mandatory and recommended configuration settings for Impala. If Impala is installed using
Cloudera Manager, some of these configurations are completed automatically; you must still configure short-circuit
reads manually. If you installed Impala without Cloudera Manager, or if you want to customize your environment,
consider making the changes described in this topic.

In some cases, depending on the level of Impala, CDH, and Cloudera Manager, you might need to add particular
component configuration details in one of the free-form fields on the Impala configuration pages within Cloudera
Manager. In Cloudera Manager 4, these fields are labelled Safety Valve; in Cloudera Manager 5, they are called
Advanced Configuration Snippet.

¢ You must enable short-circuit reads, whether or not Impala was installed through Cloudera Manager. This setting
goes in the Impala configuration settings, not the Hadoop-wide settings.

¢ Ifyouinstalled Impalain an environment that is not managed by Cloudera Manager, you must enable block location
tracking, and you can optionally enable native checksumming for optimal performance.

¢ If you deployed Impala using Cloudera Manager see Testing Impala Performance on page 616 to confirm proper
configuration.

Mandatory: Short-Circuit Reads

Enabling short-circuit reads allows Impala to read local data directly from the file system. This removes the need to
communicate through the DataNodes, improving performance. This setting also minimizes the number of additional
copies of data. Short-circuit reads requires | i bhadoop. so (the Hadoop Native Library) to be accessible to both the
server and the client. You must install it from an . r pm . deb, or parcel to use short-circuit local reads.

E,i Note: If you use Cloudera Manager, you can enable short-circuit reads through a checkbox in the
user interface and that setting takes effect for Impala as well.

To configure DataNodes for short-circuit reads:

1. Copytheclientcore-site. xm andhdfs-site.xm configuration files from the Hadoop configuration directory
to the Impala configuration directory. The default Impala configuration location is / et ¢/ i npal a/ conf .

2. On all Impala nodes, configure the following properties in Impala's copy of hdf s- si t e. xm as shown:

<property>
<nane>dfs.client.read. shortcircuit</name>

<val ue>true</ val ue>
</ property>

<property>
<nane>df s. domai n. socket . pat h</ name>
<val ue>/ var/run/ hdf s- socket s/ dn</ val ue>
</ property>
<property>
<name>dfs.client.file-bl ock-storage-locations.tinmeout.mllis</name>
<val ue>10000</ val ue>
</ property>

3. If/ var/ run/ hadoop- hdf s/ is group-writable, make sure its group is r oot .

E,’ Note: If you are also going to enable block location tracking, you can skip copying configuration

files and restarting DataNodes and go straight to Optional: Block Location Tracking. Configuring
short-circuit reads and block location tracking require the same process of copying files and
restarting services, so you can complete that process once when you have completed all
configuration changes. Whether you copy files and restart services now or during configuring
block location tracking, short-circuit reads are not enabled until you complete those final steps.

4. After applying these changes, restart all DataNodes.

Mandatory: Block Location Tracking

Enabling block location metadata allows Impala to know which disk data blocks are located on, allowing better utilization
of the underlying disks. Impala will not start unless this setting is enabled.

To enable block location tracking:

1. For each DataNode, adding the following to the hdf s- si t e. xni file:

<property>
<nane>df s. dat anode. hdf s- bl ocks- net adat a. enabl ed</ nanme>
<val ue>true</ val ue>

</ property>

2. Copytheclientcore-site. xm andhdf s-site.xnl configuration files from the Hadoop configuration directory
to the Impala configuration directory. The default Impala configuration location is / et ¢/ i npal a/ conf.

3. After applying these changes, restart all DataNodes.

Optional: Native Checksumming

Enabling native checksumming causes Impala to use an optimized native library for computing checksumes, if that library
is available.

To enable native checksumming:

If you installed CDH from packages, the native checksumming library is installed and setup correctly. In such a case,
no additional steps are required. Conversely, if you installed by other means, native checksumming may not be available
due to missing shared objects. Finding the message "Unabl e to | oad native-hadoop library for your
platform.. using builtin-java classes where applicabl e"in the Impala logs indicates native
checksumming may be unavailable. To enable native checksumming, you must build and install | i bhadoop. so (the
Hadoop Native Library).

Configuring Impala to Work with ODBC

Third-party products can be designed to integrate with Impala using ODBC. For the best experience, ensure any
third-party product you intend to use is supported. Verifying support includes checking that the versions of Impala,

ODBGC, the operating system, and the third-party product have all been approved for use together. Before configuring
your systems to use ODBC, download a connector. You may need to sign in and accept license agreements before
accessing the pages required for downloading ODBC connectors.

Downloading the ODBC Driver

Important: As of late 2015, most business intelligence applications are certified with the 2.x ODBC
drivers. Although the instructions on this page cover both the 2.x and 1.x drivers, expect to use the
2.x drivers exclusively for most ODBC applications connecting to Impala. CDH 6.0 has been tested with
the Impala ODBC driver version 2.5.42, and Cloudera recommends that you use this version when you
start using CDH 6.0.

See the database drivers section on the Cloudera downloads web page to download and install the driver.

Configuring the ODBC Port

Versions 2.5 and 2.0 of the Cloudera ODBC Connector, currently certified for some but not all Bl applications, use the
HiveServer2 protocol, corresponding to Impala port 21050. Impala supports Kerberos authentication with all the
supported versions of the driver, and requires ODBC 2.05.13 for Impala or higher for LDAP username/password
authentication.

Version 1.x of the Cloudera ODBC Connector uses the original HiveServerl protocol, corresponding to Impala port
21000.

Example of Setting Up an ODBC Application for Impala

To illustrate the outline of the setup process, here is a transcript of a session to set up all required drivers and a business
intelligence application that uses the ODBC driver, under Mac OS X. Each . dny file runs a GUI-based installer, first for
the underlying IODBC driver needed for non-Windows systems, then for the Cloudera ODBC Connector, and finally for
the Bl tool itself.

$1s -1
Cl oudera- ODBC-Dri ver-for-1Impal a-1nstal | - Gui de. pdf
Bl _Tool _Install er. dng
i odbc-sdk-3.52. 7- macosx- 10. 5. dng
Cl ouder al npal aODBC. dnyg
$ open iodbc-sdk-3.52. 7-macosx- 10. dng
Install the 1 ODBC driver using its installer
$ open d ouder al mpal aCDBC. dng
Install the C oudera ODBC Connector using its installer
$ installer_dir=$(pwd)
§ ::d [opt/ cl ouder a/ i npal aodbc
s -1
Cl oudera ODBC Driver for Inpala Install Cuide. pdf
Readne. t xt
Set up
lib
Err or Messages
Rel ease Notes. t xt

Tool s

$ cd Setup

$1s

odbc. i ni odbci nst.ini

$ cp odbc.ini ~/.odbc.ini

$ vi ~/.odbc.ini

$ cat ~/.odbc.ini

[ODBC]

Specify any gl obal ODBC configuration here such as ODBC tracing.

[ODBC Dat a Sour ces]
Sanpl e Cl oudera I npala DSN=Cl oudera ODBC Driver for Inpala

[Sanpl e Cl oudera I npal a DSN|
Description: DSN Description.

https://www.cloudera.com/downloads.html
http://www.iodbc.org/dataspace/iodbc/wiki/iODBC/Downloads

This key is not necessary and is only to give a description of the data source.
Descri pti on=C oudera ODBC Driver for Inpala DSN

Driver: The |ocation where the ODBC driver is installed to.
Driver=/opt/cl ouderalinpal aodbc/ i b/universal/libcl ouderai npal aodbc. dylib

The Driver Uni codeEncodi ng setting is only used for SinbaDM
Wien set to 1, SinmbaDMruns in UTF-16 node.

When set to 2, SinmbaDMruns in UTF-8 node.

#Dr i ver Uni codeEncodi ng=2

Val ues for HOST, PORT, KrbFQDN, and KrbServi ceNane shoul d be set here.
They can al so be specified on the connection string.

HOST=host nane. sanpl e. exanpl e. com

PORT=21050

Schena=def aul t

The aut hentication nmechani sm

0 - No authentication (NCSASL)

1 - Kerberos authentication (SASL)

2 - Username authentication (SASL)

3 - Usernane/ password aut hentication (SASL)
4 - Username/ password aut hentication with SSL (SASL)
5 - No authentication with SSL (NOSASL)

6 - Username/ password aut hentication (NOSASL)
Aut hMech=0

Kerberos rel ated settings.

Kr bFQDN=

Kr bReal n¥

Kr bSer vi ceNane=

User nane/ password aut hentication with SSL settings.

Ul D=

PWD

CAl ssuedCert NanesM smat ch=1

Trust edCert s=/ opt/cl ouder a/i npal aodbc/ | i b/ uni versal /cacerts. pem

Specify the proxy user ID to use.
#Del egat i onUl D=

General settings

TSasl Tr ansport Buf Si ze=1000

RowsFet chedPer Bl ock=10000

Socket Ti meout =0

St ri ngCol utmLengt h=32767

UseNat i veQuery=0

$ pwd

/ opt/ cl ouder a/ i npal aodbc/ Set up

$ cd Sinstaller_dir

$ open Bl _Tool _Installer.dng

Install the Bl tool using its installer
$ Is /Applications | grep BI_Tool

Bl _Tool . app

$ open -a BI_Tool . app

In the Bl tool, connect to a data source using port 21050

Notes about JDBC and ODBC Interaction with Impala SQL Features

Most Impala SQL features work equivalently through the i nmpal a- shel | interpreter of the JDBC or ODBC APIs. The
following are some exceptions to keep in mind when switching between the interactive shell and applications using
the APIs:

E,i Note: If your JDBC or ODBC application connects to Impala through a load balancer such as hapr oxy,
be cautious about reusing the connections. If the load balancer has set up connection timeout values,
either check the connection frequently so that it never sits idle longer than the load balancer timeout
value, or check the connection validity before using it and create a new one if the connection has
been closed.

Configuring Impala to Work with JDBC

Impala supports the standard JDBC interface, allowing access from commercial Business Intelligence tools and custom
software written in Java or other programming languages. The JDBC driver allows you to access Impala from a Java
program that you write, or a Business Intelligence or similar tool that uses JDBC to communicate with various database
products.

Setting up a JDBC connection to Impala involves the following steps:

e Verifying the communication port where the Impala daemons in your cluster are listening for incoming JDBC
requests.

¢ Installing the JDBC driver on every system that runs the JDBC-enabled application.

¢ Specifying a connection string for the JDBC application to access one of the servers running the i npal ad daemon,
with the appropriate security settings.

Configuring the JDBC Port

The default port used by JDBC 2.0 and later (as well as ODBC 2.x) is 21050. Impala server accepts JDBC connections
through this same port 21050 by default. Make sure this port is available for communication with other hosts on your
network, for example, that it is not blocked by firewall software. If your JDBC client software connects to a different
port, specify that alternative port number with the - - hs2_port option when starting i npal ad. See Impala Startup
Options for details about Impala startup options. See Ports Used by Impala on page 741 for information about all ports
used for communication between Impala and clients or between Impala components.

Choosing the JDBC Driver

In Impala 2.0 and later, you have the choice between the Cloudera JDBC Connector and the Hive 0.13 or higher JDBC
driver. Cloudera recommends using the Cloudera JDBC Connector where practical.

If you are already using JDBC applications with an earlier Impala release, you must update your JDBC driver to one of
these choices, because the Hive 0.12 driver that was formerly the only choice is not compatible with Impala 2.0 and
later.

Both the Cloudera JDBC Connector and the Hive JDBC driver provide a substantial speed increase for JDBC applications
with Impala 2.0 and higher, for queries that return large result sets.

Enabling Impala JDBC Support on Client Systems

Using the Cloudera JDBC Connector (recommended)

Download and install the Cloudera JDBC connector on any Linux, Windows, or Mac system where you intend to run
JDBC-enabled applications. From the Cloudera Downloads page, navigate to the Database Drivers section of the page
and choose the appropriate protocol (JDBC or ODBC) and target product (Impala or Hive). The ease of downloading
and installing on a wide variety of systems makes this connector a convenient choice for organizations with
heterogeneous environments. This is the download pagefor the Impala JDBC Connector.

Using the Hive JDBC Driver

Install the Hive JDBC driver (hi ve- j dbc package) through the Linux package manager, on hosts within the CDH cluster.
The driver consists of several JAR files. The same driver can be used by Impala and Hive.

To get the JAR files, install the Hive JDBC driver on each host in the cluster that will run JDBC applications. Follow the
instructions for Installing Cloudera JDBC and ODBC Drivers on Clients in CDH.

https://www.cloudera.com/downloads.html
https://www.cloudera.com/downloads/connectors/impala/jdbc.html

E,i Note: The latest JDBC driver, corresponding to Hive 0.13, provides substantial performance

improvements for Impala queries that return large result sets. Impala 2.0 and later are compatible
with the Hive 0.13 driver. If you already have an older JDBC driver installed, and are running Impala
2.0 or higher, consider upgrading to the latest Hive JDBC driver for best performance with JDBC
applications.

If you are using JDBC-enabled applications on hosts outside the CDH cluster, you cannot use the CDH install procedure
on the non-CDH hosts. Install the JDBC driver on at least one CDH host using the preceding procedure. Then download
the JAR files to each client machine that will use JDBC with Impala:

commons- | oggi ng- X. X. X. j ar
hadoop- comon. j ar
hi ve- common- X. XX. X- cdhX. X. X. j ar
hi ve-j dbc- X. XX. X-cdhX. X. X.j ar
hi ve- met ast ore- X. XX. X-cdhX. X. X. j ar
hi ve-servi ce- X. XX. X-cdhX. X. X. j ar
httpclient-X X X.jar
httpcore-X X X. jar
i bf b303- X. X. X. j ar
libthrift-X X X jar
log4j-X. X. XX. ja
slf4j-api-X X X jar
sl f4)-10gX XX-X. X X.jar

To enable JDBC support for Impala on the system where you run the JDBC application:

1. Download the JAR files listed above to each client machine.

E,i Note: For Maven users, see this sample github page for an example of the dependencies you
could add to a pomfile instead of downloading the individual JARs.

2. Store the JAR files in a location of your choosing, ideally a directory already referenced in your CLASSPATH setting.
For example:

e On Linux, you might use a location such as/ opt/j ars/.
¢ On Windows, you might use a subdirectory underneath C: \ Program Fi | es.

3. To successfully load the Impala JDBC driver, client programs must be able to locate the associated JAR files. This
often means setting the CLASSPATH for the client process to include the JARs. Consult the documentation for
your JDBC client for more details on how to install new JDBC drivers, but some examples of how to set CLASSPATH
variables include:

e On Linux, if you extracted the JARs to/ opt / j ar s/, you might issue the following command to prepend the
JAR files path to an existing classpath:

export CLASSPATH=/ opt/jars/*.jar: $CLASSPATH

¢ On Windows, use the System Properties control panel item to modify the Environment Variables for your
system. Modify the environment variables to include the path to which you extracted the files.

E,’ Note: If the existing CLASSPATH on your client machine refers to some older version of the
Hive JARs, ensure that the new JARs are the first ones listed. Either put the new JAR files
earlier in the listings, or delete the other references to Hive JAR files.

Establishing JDBC Connections

The JDBC driver class depends on which driver you select.

https://github.com/onefoursix/Cloudera-Impala-JDBC-Example

E,i Note: If your JDBC or ODBC application connects to Impala through a load balancer such as hapr oxy,
be cautious about reusing the connections. If the load balancer has set up connection timeout values,
either check the connection frequently so that it never sits idle longer than the load balancer timeout
value, or check the connection validity before using it and create a new one if the connection has
been closed.

Using the Cloudera JDBC Connector (recommended)

Depending on the level of the JDBC API your application is targeting, you can use the following fully-qualified class
names (FQCNs):

e comcl oudera.inpal a.jdbc4l. Driver
e com cl oudera.inpal a.jdbc4l. Dat aSour ce

e com cl oudera.inpal a.jdbc4. Driver
e com cl oudera. i npal a. j dbc4. Dat aSour ce

e comcloudera.inpala.jdbc3.Driver
e com cl oudera. i npal a. j dbc3. Dat aSour ce

The connection string has the following format:
jdbc:inpala://Host:Port[/Schema]; Propertyl=Val ue; Property2=Val ue;. ..

The port value is typically 21050 for Impala.

For full details about the classes and the connection string (especially the property values available for the connection
string), download the appropriate driver documentation for your platform from the Impala JDBC Connector download

page.

Using the Hive JDBC Driver

For example, with the Hive JDBC driver, the class name is or g. apache. hi ve. j dbc. Hi veDri ver. Once you have
configured Impala to work with JDBC, you can establish connections between the two. To do so for a cluster that does
not use Kerberos authentication, use a connection string of the form j dbc: hi ve2: // host : port/; aut h=noSasl .
For example, you might use:

jdbc: hive2://nyhost. exanpl e. com 21050/ ; aut h=noSasl

To connect to an instance of Impala that requires Kerberos authentication, use a connection string of the form
jdbc: hive2://host:port/;principal =princi pal _nane. The principal must be the same user principal you
used when starting Impala. For example, you might use:

j dbc: hive2:// nyhost. exanpl e. com 21050/ ; pri nci pal =i npal a/ nyhost . exanpl e. com@{2. EXAMPLE. COM

To connect to an instance of Impala that requires LDAP authentication, use a connection string of the form
jdbc: hive2://host: port/db_nane; user=Il dap_useri d; passwor d=I dap_passwor d. For example, you might
use:

jdbc: hive2://nyhost. exanpl e. com 21050/ t est _db; user =fr ed; passwor d=xyz123

E’; Note:

Prior to CDH 5.7 / Impala 2.5, the Hive JDBC driver did not support connections that use both Kerberos
authentication and SSL encryption. If your cluster is running an older release that has this restriction,
to use both of these security features with Impala through a JDBC application, use the Cloudera JDBC
Connector as the JDBC driver.

http://www.cloudera.com/content/cloudera/en/downloads/connectors/impala/jdbc/impala-jdbc-v2-5-5.html
http://www.cloudera.com/content/cloudera/en/downloads/connectors/impala/jdbc/impala-jdbc-v2-5-5.html
http://www.cloudera.com/content/www/en-us/downloads.html
http://www.cloudera.com/content/www/en-us/downloads.html

Notes about JDBC and ODBC Interaction with Impala SQL Features

Most Impala SQL features work equivalently through the i nmpal a- shel | interpreter of the JDBC or ODBC APIs. The
following are some exceptions to keep in mind when switching between the interactive shell and applications using

the APIs:

e Complex type considerations:

— Queries involving the complex types (ARRAY, STRUCT, and MAP) require notation that might not be available
in all levels of JDBC and ODBC drivers. If you have trouble querying such a table due to the driver level or
inability to edit the queries used by the application, you can create a view that exposes a “flattened” version
of the complex columns and point the application at the view. See Complex Types (CDH 5.5 or higher only)

on page 146 for details.

— The complex types available in CDH 5.5 / Impala 2.3 and higher are supported by the JDBC get Col umms()
API. Both MAP and ARRAY are reported as the JDBC SQL Type ARRAY, because this is the closest matching Java
SQL type. This behavior is consistent with Hive. STRUCT types are reported as the JDBC SQL Type STRUCT.

To be consistent with Hive's behavior, the TYPE_NAME field is populated with the primitive type name for
scalar types, and with the fullt 0Sqgl () for complex types. The resulting type names are somewhat inconsistent,
because nested types are printed differently than top-level types. For example, the following list shows how
t oSQL() for Impala types are translated to TYPE_NAME values:

DECI MAL(10, 10) becones
CHAR(10) becomes
VARCHAR(10) becones
ARRAY<DECI MAL(10, 10) > becones
ARRAY<CHAR(10) > becones
ARRAY<VARCHAR(10) > becones

Kudu Considerations for DML Statements

DECI MAL
CHAR

VARCHAR

ARRAY<DECI MAL(10, 10) >
ARRAY<CHAR(10) >
ARRAY<VARCHAR(10) >

Currently, Impala | NSERT, UPDATE, or other DML statements issued through the JDBC interface against a Kudu table
do not return JDBC error codes for conditions such as duplicate primary key columns. Therefore, for applications that
issue a high volume of DML statements, prefer to use the Kudu Java API directly rather than a JDBC application.

Impala Upgrade Considerations

Converting Legacy UDFs During Upgrade to CDH 5.12 or Higher

In CDH 5.7 / Impala 2.5 and higher, the CREATE FUNCTION Statement on page 235 is available for creating Java-based
UDFs. UDFs created with the new syntax persist across Impala restarts, and are more compatible with Hive UDFs.
Because the replication features in CDH 5.12 and higher only work with the new-style syntax, convert any older Java
UDFs to use the new syntax at the same time you upgrade to CDH 5.12 or higher.

Follow these steps to convert old-style Java UDFs to the new persistent kind:

e Use SHOW FUNCTI ONS to identify all UDFs and UDAs.

e For each function, use SHOW CREATE FUNCTI ONand save the statement in a script file.

e ForJava UDFs, change the output of SHOW CREATE FUNCTI ONto use the new CREATE FUNCTI ONsyntax (without
argument types), which makes the UDF persistent.

e For each function, drop it and re-create it, using the new CREATE FUNCTI ON syntax for all Java UDFs.

Handling Large Rows During Upgrade to CDH 5.13 / Impala 2.10 or Higher

In CDH 5.13 / Impala 2.10 and higher, the handling of memory management for large column values is different than
in previous releases. Some queries that succeeded previously might now fail immediately with an error message. The
--read_si ze option no longer needs to be increased from its default of 8 MB for queries against tables with huge
column values. Instead, the query option MAX_ROW SI ZE lets you fine-tune this value at the level of individual queries
or sessions. The default for MAX_ROW SI ZE is 512 KB. If your queries process rows with column values totalling more
than 512 KB, you might need to take action to avoid problems after upgrading.

Follow these steps to verify if your deployment needs any special setup to deal with the new way of dealing with large
rows:

1. Check if your i npal ad daemons are already running with a larger-than-normal value for the - - r ead_si ze
configuration setting.

2. Examine all tables to find if any have STRI NGvalues that are hundreds of kilobytes or more in length. This
information is available under the Max Si ze column in the output from the SHOW TABLE STATS statement,
after the COVPUTE STATS statement has been run on the table. In the following example, the S1 column with a
maximum length of 700006 could cause an issue by itself, or if a combination of values from the S1, S2, and S3
columns exceeded the 512 KB MAX_ROW SI ZE value.

show col um stats big_strings;

Fomm e m e - - B o e e e e o oo Fom e e oo - [SR S +
| Colum | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
Fomm e m e - - Fom e oo - o e e e e o oo Fom e e oo - B S Fom e e e e e oo +
| x | BIG NT | 30000 | -1 | 8 | 8 [
| s1 | STRING | 30000 | -1 | 700006 | 392625 [
| s2 | STRING | 30000 | -1 | 10532 | 9232.6669921875 |
| s3 | STRING | 30000 | -1 | 103 | 87.66670227050781 |
oo - N - T N - . N +

3. For each candidate table, run a query to materialize the largest string values from the largest columns all at once.
Check if the query fails with a message suggesting to set the MAX_ROW SI ZE query option.

sel ect count(distinct sl1l, s2, s3) fromlittle_strings;
e +

sel ect count(distinct sl1, s2, s3) frombig_strings;
WARNI NGS: Row of size 692.13 KB could not be naterialized in plan node with id 1.
I ncrease the max_row size query option (currently 512.00 KB) to process |arger rows.

If any of your tables are affected, make sure the MAX_ROW SI ZE is set large enough to allow all queries against the
affected tables to deal with the large column values:

e InSQL scripts run by i npal a- shel | with the - g or -f options, or in interactive i npal a- shel | sessions, issue
a statement SET MAX_ROW SI ZE=I ar ge_enough_si ze before the relevant queries:

$ inmpal a-shell -i localhost -q\
'set max_row_size=1nmb; sel ect count(distinct sl, s2, s3) frombig_strings'

e |f large column values are common to many of your tables and it is not practical to set MAX_ROW SI ZE only for a
limited number of queries or scripts, use the - - def aul t _query_opt i ons configuration setting for all your
i npal ad daemons, and include the larger MAX_ROW SI ZE setting as part of the argument to that setting. For
example:

i mpal ad --default_query_options='"max_row_si ze=1gb; appx_count _di sti nct =true'

¢ If your deployment uses a non-default value for the - - r ead_si ze configuration setting, remove that setting and
let Impala use the default. A high value for - - r ead_si ze could cause higher memory consumption in CDH 5.13
/ Impala 2.10 and higher than in previous versions. The - - r ead_si ze setting still controls the HDFS 1/O read size
(which is rarely if ever necessary to change), but no longer affects the spill-to-disk buffer size.

Change Impala catalogd Heap when Upgrading from CDH 5.6 or Lower

The default heap size for Impala cat al ogd has changed in CDH 5.7 / Impala 2.5 and higher:

e Before 5.7, by default cat al ogd was using the JVM's default heap size, which is the smaller of 1/4th of the physical
memory or 32 GB.
e Starting with CDH 5.7.0, the default cat al ogd heap size is 4 GB.

For example, on a host with 128 GB physical memory this will result in cat al ogd heap decreasing from 32 GB to 4
GB.

For schemas with large numbers of tables, partitions, and data files, the cat al ogd daemon might encounter an
out-of-memory error. To prevent the error, increase the memory limit for the cat al ogd daemon:

1. Check current memory usage for the cat al ogd daemon by running the following commands on the host where
that daemon runs on your cluster:

jemd catal ogd_pid VM fl ags
j map -heap catal ogd_pid

2. Decide on a large enough value for the cat al ogd heap.

e On systems managed by Cloudera Manager, include this value in the configuration field Java Heap Size of
Catalog Server in Bytes (Cloudera Manager 5.7 and higher), or Impala Catalog Server Environment Advanced
Configuration Snippet (Safety Valve) (prior to Cloudera Manager 5.7). Then restart the Impala service.

¢ On systems not managed by Cloudera Manager, put the JAVA_TOOL_COPTI ONS environment variable setting
into the startup script for the cat al ogd daemon, then restart the cat al ogd daemon.

For example, the following environment variable setting specifies the maximum heap size of 8 GB.

JAVA TOOL_OPTI ONS=" - Xnx8g"

3. Use the same j cnd and j mep commands as earlier to verify that the new settings are in effect.

List of Reserved Words Updated in CDH 6.0 / Impala 3.0

The list of Impala Reserved Words on page 743 in Impala was updated in CDH 6.0 / Impala 3.0. If you need to use a
reserved word as an identifier, e.g. a table name, enclose the word in back-ticks.

If you need to use the reserved words from previous versions of CDH, set the impalad and catalogd startup option,
--reserved_words_version,to"2.11. 0".

Decimal V2 Used by Default in CDH 6.0 / Impala 3.0

In Impala, two different behaviors of DECI MAL types are supported. In CDH 6.0 / Impala 3.0, DECI MAL V2 is used by
default. See DECIMAL Data Type for detail information.

If you need to continue using the first version of the DECI MAL type for the backward compatibility of your queries, set
the DECI MAL_V2 query option to FALSE:

SET DECI MAL_V2=FALSE;

Behavior of Column Aliases Changed in CDH 6.0 / Impala 3.0

To conform to the SQL standard, Impala no longer performs alias substitution in the subexpressions of GROUP BY,
HAVI NG and ORDER BY. See Overview of Impala Aliases on page 199 for examples of supported and unsupported

aliases syntax.

Default PARQUET_ARRAY_RESOLUTION Changed in CDH 6.0 / Impala 3.0

The default value for the PARQUET _ARRAY_RESOLUTI ONwas changed to THREE_LEVEL in CDH 6.0 / Impala 3.0, to
match the Parquet standard 3-level encoding.

See PARQUET_RESOLUTION Query option for the information about the query option.

Enable Clustering Hint for Inserts

In CDH 6.0 / Impala 3.0, the clustered hint is enabled by default. The hint adds a local sort by the partitioning columns
to a query plan.

The cl ust er ed hint is only effective for HDFS and Kudu tables.

As in previous versions, the nocl ust er ed hint prevents clustering. If a table has ordering columns defined, the
nocl ust er ed hint is ignored with a warning.

Deprecated Query Options Removed in CDH 6.0 / Impala 3.0

The following query options have been deprecated for several releases and removed:

e DEFAULT ORDER BY LIMT

e ABORT_ON DEFAULT_LI M T_EXCEEDED
e V_CPU CORES

e RESERVATI ON_REQUEST TI MEOUT

e RM I N TIAL_MEM

e SCAN_NODE_CODEGEN THRESHOLD

e MAX_| O BUFFERS

e RM.IN TIAL_MEM

DI SABLE_CACHED_READS

refresh_after_connect Impala Shell Option Removed in CDH 6.0 / Impala 3.0

The deprecated r ef resh_aft er _connect option was removed from Impala Shell in CDH 6.0 / Impala 3.0

Return Type Changed for EXTRACT and DATE_PART Functions in CDH 6.0 / Impala 3.0

The following changes were made to the EXTRACT and DATE_PART functions:

¢ The output type of the EXTRACT and DATE_PART functions was changed to Bl G NT.

e Extracting the millisecond part from a TI MESTAMP returns the seconds component and the milliseconds component.
For example, EXTRACT (CAST(' 2006-05-12 18:27:28.123456789' AS TI MESTAMP), 'M LLI SECOND)
will return 28123.

Impala Roles with SELECT or INSERT Privilege Receive REFRESH Privilege During the Upgrade
toCDH5.16 / CDH 6.1

Due to the Sentry and Impala fine grained privileges feature in CDH 5.16 / CDH 6.1, if a role has the SELECT or | NSERT
privilege on an object in Impala before upgrading to CDH 5.16 / CDH 6.1, that role will automatically get the REFRESH
privilege during the upgrade.

Port Change for SHUTDOWN Command

If you used the SHUTDOWN command in CDH 6.1, and specified a port explicitly, change the port number parameter,
in CDH 6.2, to use the KRPC port.

Default Setting Changes

Release Changed Setting Default Value
CDH 5.15 & CDH 6.1 / Impala 2.12 --conpact _catal og_t opi ci npal ad flag |true

CDH 6.1 / Impala 2.12 --max_cached_fil e_handl esi npal ad flag | 20000

CDH 6.0 / Impala 3.0 PARQUET _ARRAY_RESOLUTI ONquery option | THREE LEVEL
CDH 6.0 / Impala 3.0 DECI MAL_V2 query option TRUE

Impala Tutorials

This section includes tutorial scenarios that demonstrate how to begin using Impala once the software is installed. It
focuses on techniques for loading data, because once you have some data in tables and can query that data, you can
quickly progress to more advanced Impala features.

E,i Note:

Where practical, the tutorials take you from “ground zero” to having the desired Impala tables and
data. In some cases, you might need to download additional files from outside sources, set up additional
software components, modify commands or scripts to fit your own configuration, or substitute your
own sample data.

Before trying these tutorial lessons, install Impala using one of these procedures:

¢ If you already have some CDH environment set up and just need to add Impala to it, add the Impala service using
the instructions in Adding a Service. Make sure to also install the Hive metastore service if you do not already
have Hive configured.

e To set up Impala and all its prerequisites at once, in a minimal configuration that you can use for small-scale
experiments, set up the Cloudera QuickStart VM, which includes CDH and Impala on CentOS. Use this single-node
VM to try out basic SQL functionality, not anything related to performance and scalability. For more information,
see the Cloudera QuickStart VM.

Tutorials for Getting Started
These tutorials demonstrate the basics of using Impala. They are intended for first-time users, and for trying out Impala
on any new cluster to make sure the major components are working correctly.

Explore a New Impala Instance

This tutorial demonstrates techniques for finding your way around the tables and databases of an unfamiliar (possibly
empty) Impala instance.

When you connect to an Impala instance for the first time, you use the SHOW DATABASES and SHOW TABLES statements
to view the most common types of objects. Also, call the ver si on() function to confirm which version of Impala you
are running; the version number is important when consulting documentation and dealing with support issues.

A completely empty Impala instance contains no tables, but still has two databases:

e def aul t, where new tables are created when you do not specify any other database.
e _inpal a_builtins,asystem database used to hold all the built-in functions.

The following example shows how to see the available databases, and the tables in each. If the list of databases or
tables is long, you can use wildcard notation to locate specific databases or tables based on their names.

$ inpal a-shell -i local host --quiet
Starting Inpala Shell w thout Kerberos authentication
Wel come to the Inpala shell. Press TAB twice to see a |ist of avail abl e comands.

Copyright (c) 2012 Coudera, Inc. Al rights reserved.

(Shell build version: Inpala Shell v...
[l ocal host:21000] > select version();

| inpalad version ...
| Built on ...

http://www.cloudera.com/content/support/en/downloads/quickstart_vms.html

_impala_builtins
ctas

di

d2

d3

def aul t

expl ai n_pl ans
external _table
file_formats

tpc
o e e e e e aa oo +
[l ocal host:21000] > sel ect current_dat abase();
o e e e e e e oo +
| current_dat abase() |
o e e e e e e e oo +
| default |
o e e e e e e e oo +
[l ocal host:21000] > show tabl es;
Fomm - +
| name |
B +
| ex_t |
| t1 I
. +

[l ocal host:21000] > show tables in d3;

[l ocal host:21000] > show tables in tpc;

i +
| nane |
o +
city
cust oner

cust oner _addr ess

cust oner _denogr aphi cs
househol d_denogr aphi cs
item

pronoti on

store

store2

store_sal es
ticket_view

tinme_dim
tpc_tables
B e +
[l ocal host:21000] > show tables in tpc like 'custoner*';
- +
| name |
B T +
| custoner |

| custoner_address
| custoner_denographics |
oo +

Once you know what tables and databases are available, you descend into a database with the USE statement. To
understand the structure of each table, you use the DESCRI BE command. Once inside a database, you can issue
statements such as | NSERT and SELECT that operate on particular tables.

The following example explores a database named TPC whose name we learned in the previous example. It shows
how to filter the table names within a database based on a search string, examine the columns of a table, and run
queries to examine the characteristics of the table data. For example, for an unfamiliar table you might want to know
the number of rows, the number of different values for a column, and other properties such as whether the column

contains any NULL values. When sampling the actual data values from a table, use a LI M T clause to avoid excessive
output if the table contains more rows or distinct values than you expect.

[l ocal host:21000] > use tpc;
[l ocal host:21000] > show tables |ike '*view';

e +
| name |
. +
| ticket_view |
. +
[l ocal host: 21000] > descrlbe cnty
e
| name | type | comrent
. oo - N +
id	int	
name	string	
countrycode	string	
district	string	
population	int	
. oo - N +		
[l ocal host: 21000] > select count(*) fromcity;		
e,		
count(*)		
- +
| O I
. +
[l ocal host:21000] > desc custoner
L T R +
| name | type | comment
T N S +
c_customner_sk i nt
c_custoner_id string
c_current _cdeno_sk i nt
c_current _hdermo_sk i nt
c_current_addr_sk i nt
c_first_shipto_date_sk i nt
c_first_sal es_date_sk i nt
c_salutation string
c_first_nane string
c_l ast _nane string
c_preferred_cust_flag string
c_birth_day i nt
c_birth_nonth i nt
c_birth_year i nt
c_birth_country string
c_login string
c_enuni |l _address string
c_last_review date string
o e e e e e e e e Fom e e oo - B R +
[l ocal host:21000] > select count(*) from custoner
S +
| count(*) |
B +
| 100000
S +

[l ocal host:21000] > select distinct c_salutation fromcustormer limt 10

When you graduate from read-only exploration, you use statements such as CREATE DATABASE and CREATE TABLE
to set up your own database objects.

The following example demonstrates creating a new database holding a new table. Although the last example ended
inside the TPC database, the new EXPERI MENTS database is not nested inside TPC; all databases are arranged in a
single top-level list.

[l ocal host:21000] > create dat abase experinents;
[l ocal host:21000] > show dat abases;

_inmpala_builtins
ctas

di

d2

d3

defaul t
experinments

expl ai n_pl ans
external _table
file_formats

tpc
o e m e e e e e eeeeoo o +
[l ocal host:21000] > show dat abases |i ke 'exp*';
o e e oo +
| name |
o e e e m o +

| experinents |
| explain_plans |

The following example creates a new table, T1. To illustrate a common mistake, it creates this table inside the wrong
database, the TPCdatabase where the previous example ended. The ALTER TABLE statement lets you move the table
to the intended database, EXPERI MENTS, as part of a rename operation. The USE statement is always needed to switch
to a new database, and the cur r ent _dat abase() function confirms which database the session is in, to avoid these
kinds of mistakes.

[l ocal host:21000] > create table t1 (x int);

[l ocal host:21000] > show tabl es;
o e e meeeeea e +

cust oner _address

cust oner _denogr aphi cs
househol d_denogr aphi cs
item

pronoti on

store

store2

store_sal es

tl

ticket_view

time_dim

tpc_tabl es

| current_dat abase() |

[l ocal host:21000] > alter table t1 renane to experinments.t1;
[l ocal host: 21000] > use experinents;
[l ocal host:21000] > show tabl es;

+

I
| nane |

+o-mm - +

| t1]

+o-mm - +

[l ocal host:21000] > sel ect current_dat abase();
U +

| current_database() |

e e e e e e e e -

| experinents |

e +

For your initial experiments with tables, you can use ones with just a few columns and a few rows, and text-format
data files.

E,’ Note: As you graduate to more realistic scenarios, you will use more elaborate tables with many

columns, features such as partitioning, and file formats such as Parquet. When dealing with realistic
data volumes, you will bring in data using LOAD DATAor| NSERT ... SELECT statements to operate
on millions or billions of rows at once.

The following example sets up a couple of simple tables with a few rows, and performs queries involving sorting,
aggregate functions and joins.

[l ocal host:21000] > insert into t1l values (1), (3), (2), (4);
[l ocal host:21000] > select x fromtl order by x desc;

+-- -+
| x|
+-- -+
| 4|
| 3|
| 2|
[1]
+--- 4+
[l ocal host:21000] > select min(x), max(x), sumx), avg(x) fromt1l,
oo - o oo - o +
| min(x) | max(x) | sum(x) | avg(x) |
oo - R oo - R +
| 1 | 4 | 10 | 2.5 |
oo - . oo - . +
[l ocal host:21000] > create table t2 (id int, word string);
[l ocal host:21000] > insert into t2 values (1, "one"), (3, "three"), (5, 'five');
[l ocal host:21000] > select word fromtl join t2 on (tl.x =t2.id);
R +
| word |
Fomm +
one |
| three |
Fommmm - +

After completing this tutorial, you should now know:

e How to tell which version of Impala is running on your system.

¢ How to find the names of databases in an Impala instance, either displaying the full list or searching for specific
names.

¢ How to find the names of tables in an Impala database, either displaying the full list or searching for specific names.
¢ How to switch between databases and check which database you are currently in.

e How to learn the column names and types of a table.

e How to create databases and tables, insert small amounts of test data, and run simple queries.

Load CSV Data from Local Files

This scenario illustrates how to create some very small tables, suitable for first-time users to experiment with Impala
SQL features. TAB1 and TAB2 are loaded with data from files in HDFS. A subset of data is copied from TAB1 into TAB3.

Populate HDFS with the data you want to query. To begin this process, create one or more new subdirectories underneath
your user directory in HDFS. The data for each table resides in a separate subdirectory. Substitute your own username
for user nane where appropriate. This example uses the - p option with the nkdi r operation to create any necessary
parent directories if they do not already exist.

$ whoami

user nane

$ hdfs dfs -1s /user
Found 3 itens

dr wxr - Xr - X - username username 0 2013-04-22 18:54 /user/usernane
dr wxr wx- - - - mapred mapr ed 0 2013-03-15 20: 11 /user/history
dr wxr - Xr - X - hue super gr oup 0 2013-03-15 20: 10 /user/ hive

$ hdfs dfs -nkdir -p /user/usernanme/ sanpl e_data/tabl /user/usernane/sanpl e_data/tab2

Here is some sample data, for two tables named TAB1 and TAB2.
Copy the following content to . csv files in your local filesystem:

tabl. csv:

1,true, 123. 123, 2012- 10- 24 08: 55: 00

2,fal se, 1243. 5, 2012- 10- 25 13: 40: 00

3, fal se, 24453. 325, 2008- 08- 22 09: 33: 21. 123
4, f

5t

al se, 243423. 325, 2007- 05- 12 22: 32: 21. 33454
rue, 243. 325, 1953- 04-22 09: 11: 33

tab2. csv:

1,true, 12789. 123
2,fal se, 1243.5

3, fal se, 24453. 325

4, fal se, 2423. 3254
5,true, 243. 325

60, f al se, 243565423. 325
70, true, 243. 325

80, f al se, 243423. 325
90, true, 243. 325

Put each . csv file into a separate HDFS directory using commands like the following, which use paths available in the
Impala Demo VM:

$ hdfs dfs -put tabl.csv /user/usernanme/sanpl e_datal/tabl

$ hdfs dfs -lIs /user/usernane/sanpl e_data/tabl

Found 1 itens

STWr--T-- 1 usernanme usernane 192 2013-04-02 20: 08
/user/ username/ sanpl e_dat a/tabl/tabl. csv

$ hdfs dfs -put tab2.csv /user/usernane/ sanpl e_data/tab2

$ hdfs dfs -ls /user/usernanme/ sanpl e_datal/tab2

Found 1 itens

STWr--1-- 1 usernane user nanme 158 2013-04-02 20: 09

[user/ username/ sanpl e_dat a/ t ab2/ t ab2. csv

The name of each data file is not significant. In fact, when Impala examines the contents of the data directory for the
first time, it considers all files in the directory to make up the data of the table, regardless of how many files there are
or what the files are named.

To understand what paths are available within your own HDFS filesystem and what the permissions are for the various
directories and files, issue hdf s df s -1s / and work your way down the tree doing - | s operations for the various
directories.

Use the i npal a- shel | command to create tables, either interactively or through a SQL script.

The following example shows creating three tables. For each table, the example shows creating columns with various
attributes such as Boolean or integer types. The example also includes commands that provide information about how
the data is formatted, such as rows terminating with commas, which makes sense in the case of importing data from
a. csv file. Where we already have . csv files containing data in the HDFS directory tree, we specify the location of
the directory containing the appropriate . csv file. Impala considers all the data from all the files in that directory to
represent the data for the table.

DROP TABLE | F EXI STS tabi;
-- The EXTERNAL cl ause neans the data is |ocated outside the central |ocation
-- for Inpala data files and is preserved when the associated Inpala table is dropped.
-- W expect the data to already exist in the directory specified by the LOCATI ON cl ause.
CREATE EXTERNAL TABLE tabl
(

id |NT,

col _1 BOCLEAN,

col _2 DOUBLE,

col _3 TI MESTAWP

)
ROW FORVAT DELI M TED FI ELDS TERM NATED BY ', '
LOCATI ON '/ user/ user nane/ sanpl e_dat a/tabl';

DROP TABLE | F EXI STS tab2;
-- TAB2 is an external table, simlar to TABI.
CREATE EXTERNAL TABLE t ab2

id INT,
col _1 BOCLEAN,
col "2 DOUBLE

)
ROW FORMAT DELI M TED FI ELDS TERM NATED BY ',
LOCATI ON '/ user/ user nane/ sanpl e_dat a/t ab2' ;

DROP TABLE | F EXI STS t ab3;

-- Leaving out the EXTERNAL cl ause neans the data will be managed
-- in the central Inpala data directory tree. Rather than readi ng
-- existing data files when the table is created, we load the

-- data after creating the table.

CREATE TABLE t ab3

(
id |NT,
col _1 BOCLEAN,
col _2 DOUBLE,
nmont h | NT,
day | NT

)
ROW FORVAT DELIM TED FI ELDS TERM NATED BY ', ';

E,’ Note: Getting through these CREATE TABLE statements successfully is an important validation step
to confirm everything is configured correctly with the Hive metastore and HDFS permissions. If you
receive any errors during the CREATE TABLE statements:

e Make sure the hi ve. net ast or e. war ehouse. di r property points to a directory that Impala
can write to. The ownership should be hi ve: hi ve, and thei npal a user should also be a member
of the hi ve group.

e Ifthe value of hi ve. net ast or e. war ehouse. di r is different in the Cloudera Manager dialogs
and in the Hive shell, you might need to designate the hosts runningi nmpal ad with the “gateway”
role for Hive, and deploy the client configuration files to those hosts.

Point an Impala Table at Existing Data Files

A convenient way to set up data for Impala to access is to use an external table, where the data already exists in a set
of HDFS files and you just point the Impala table at the directory containing those files. For example, you might run in

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_managing_roles.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_managing_roles.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_client_config.html

i mpal a-shel | a*. sql file with contents similar to the following, to create an Impala table that accesses an existing
data file used by Hive.

The following examples set up 2 tables, referencing the paths and sample data from the sample TPC-DS kit for Impala.
For historical reasons, the data physically resides in an HDFS directory tree under/ user / hi ve, although this particular
data is entirely managed by Impala rather than Hive. When we create an external table, we specify the directory
containing one or more data files, and Impala queries the combined content of all the files inside that directory. Here
is how we examine the directories and files within the HDFS filesystem:

$ cd ~/usernane/ dat asets
$./tpcds-setup. sh
... Downl oads and unzips the kit, builds the data and loads it into HDFS ...
$ hdfs dfs -Is /user/hiveltpcds/custoner
Found 1 itens
STWr--1-- 1 usernanme supergroup 13209372 2013-03-22 18: 09
/user/ hi vel/tpcds/ cust oner/ cust omer . dat
$ hdfs dfs -cat /user/hive/tpcds/customer/custoner.dat | nore
1| AAAAAAAABAAAAAAA| 980124| 7135| 32946| 2452238| 2452208| M . | Javi er | Lewi s| Y] 9] 12| 1936] CH LE| | Javi e
r. Lewi s@FAxI nZEvOx. or g| 2452508|
2| AAAAAAAACAAAAAAA| 819667| 1461| 31655|] 2452318| 2452288| Dr . | Any| Moses| Y| 9] 4| 1966| TO] | Any. Mbses@
Q/k9KJ HH. com 2452318|
3] 1473522| 6247| 48572| 2449130| 2449100| M ss| Lat i sha] Hami | t on| N 18] 9] 1979| Nl UF] |
Lati sha. Ham | t on@/. conm 2452313|
4| AAAAAAAAEAAAAAAA| 1703214| 3986| 39558| 2450030] 2450000] Dr . | M chael | Wit e| N 7| 6] 1983 MEXICJ | M ¢
hael . Wi te@ . org| 2452361
5| AAAAAAAAFAAAAAAA| 953372| 4470| 36368| 2449438| 2449408| Sir | Robert | Moran| N 8| 5| 1956| FI JI | | Robert .
Mor an@h. edu| 2452469

Here is a SQL script to set up Impala tables pointing to some of these data files in HDFS. (The script in the VM sets up
tables like this through Hive; ignore those tables for purposes of this demonstration.) Save the following as
cust oner _setup. sql :

-- store_sales fact table and surrounding di mension tables only

create database tpcds;
use tpcds;

drop table if exists custoner;
create external table customer

c_customer _sk int,
c_custoner_id string,
c_current _cdenp_sk int,
c_current _hdermo_sk int,
c_current _addr_sk int,
c_first_shipto_date sk int,
c_first_sal es_date_sk int,
c_salutation string,
c_first_name string,
c¢_last_name string,
c_preferred_cust_flag string,
c¢_birth_day int,
¢_birth_nonth int,
c¢_birth_year int,
c_birth_country string,
c_login string,
c_enmi |l _address string,
c_last_review date string

)
row format delinmted fields term nated by "|'
| ocation '/user/hive/tpcds/customer'

drop table if exists custoner_address;
create external table custoner_address

ca_address_sk int,
ca_address_id string,
ca_street _nunber string,

ca_street_nanme string,

ca_street _type string,
ca_suite_nunber string,
ca_city string,
ca_county string,
ca_state string,
ca_zip string,
ca_country string,
ca_gm _of fset float,

ca_l ocation_type string

ow format delinmted fields termnated by '|'
ocation '/user/hive/tpcds/custoner_address';

)
r
|

We would run this script with a command such as:

i mpal a-shell -i local host -f custoner_setup. sql

Describe the Impala Table

Now that you have updated the database metadata that Impala caches, you can confirm that the expected tables are
accessible by Impala and examine the attributes of one of the tables. We created these tables in the database named
def aul t . If the tables were in a database other than the default, we would issue acommand use db_nane to switch
to that database before examining or querying its tables. We could also qualify the name of a table by prepending the
database name, for example def aul t . cust omer and def aul t . cust oner _nane.

[i mpal a- host: 21000] > show dat abases
Query finished, fetching results ...
def aul t

Returned 1 row(s) in 0.00s

[i mpal a- host: 21000] > show tabl es
Query finished, fetching results ...
cust omer

cust oner _addr ess

Returned 2 row(s) in 0.00s

[i mpal a- host: 21000] > descri be custoner_address
o e e e e e oo oo Fommm e oo - E R +
| name | type | commrent |
o e e e e e e e oo Fomm e e oo - R +
ca_address_sk i nt
ca_address_id string
ca_street _nunber string
ca_street_nane string
ca_street_type string
ca_suite_nunber string
ca_city string
ca_county string
ca_state string
ca_zip string
ca_country string
ca_gm _of fset fl oat
ca_l ocation_type string
o e e e e e e e o oo Fommm e e o - R +

Returned 13 row(s) in 0.01

Query the Impala Table

You can query data contained in the tables. Impala coordinates the query execution across a single node or multiple
nodes depending on your configuration, without the overhead of running MapReduce jobs to perform the intermediate
processing.

There are a variety of ways to execute queries on Impala:

e Using the i npal a- shel | command in interactive mode:

$ inpal a-shel |l -i inpal a-host
Connected to | ocal host: 21000

[i mpal a- host: 21000] > sel ect count(*) from customner_address;
50000
Returned 1 row(s) in 0.37s

¢ Passing a set of commands contained in a file:

$ inpal a-shell -i inpala-host -f nyquery. sqgl
Connected to | ocal host: 21000
50000

Returned 1 row(s) in 0.19s

e Passing a single command to the i npal a- shel | command. The query is executed, the results are returned, and
the shell exits. Make sure to quote the command, preferably with single quotation marks to avoid shell expansion
of characters such as *.

$ inpal a-shell -i inpala-host -q 'select count(*) from custoner_address'
Connected to | ocal host: 21000
50000

Returned 1 row(s) in 0.29s

Data Loading and Querying Examples

This section describes how to create some sample tables and load data into them. These tables can then be queried
using the Impala shell.

Loading Data
Loading data involves:

e Establishing a data set. The example below uses . csv files.
¢ C(Creating tables to which to load data.
¢ Loading the data into the tables you created.

Sample Queries

To run these sample queries, create a SQL query file query. sql , copy and paste each query into the query file, and
then run the query file using the shell. For example, torun query. sgl oni npal a- host, you might use the command:

i mpal a-shell.sh -i inpala-host -f query.sql

The examples and results below assume you have loaded the sample data into the tables as described above.
Example: Examining Contents of Tables

Let's start by verifying that the tables do contain the data we expect. Because Impala often deals with tables containing
millions or billions of rows, when examining tables of unknown size, include the LI M T clause to avoid huge amounts
of unnecessary output, as in the final query. (If your interactive query starts displaying an unexpected volume of data,
pressCtrl - Cini npal a- shel | to cancel the query.)

SELECT * FROM t ab1;
SELECT * FROM t ab2;
SELECT * FROMtab2 LIMT 5;

Results:

Fomm e Fommm e e e e e e e e e eeeaeaaa- +
| id | col_1 | col_2 | col_3 |
Fomm e Fommm e e e e e e e e e e eeeeeaao +
| 2 | true 123.123 2012-10- 24 08:55: 00

| | |
[2 | | 1243.5 | 2012-10-25 13:40: 00 |
| 3 | false | 24453.325 | 2008-08-22 09:33:21. 123000000 |
| 4 | | 243423.325 | 2007-05-12 22:32: 21. 334540000 |

S B o e e e e e e e e e e e e
S S +

| id] col_1 | col_2

T S +

1 true 12789. 123

2 fal se 1243.5

3 fal se 24453. 325

4 fal se 2423. 3254

5 true 243. 325

60 fal se 243565423. 325
70 true 243. 325

80 fal se 243423. 325

90 true 243. 325

S S +
S [+

| id] col_1 | col_2 |
T [U +

| 1 | true | 12789.123 |

| 2 | false | 1243.5

| 3 | false | 24453.325 |

| 4 | false | 2423.3254 |

| 5 | true | 243.325 [
S [+

Example: Aggregate and Join

SELECT tabl.col _1, MAX(tab2.col _2), M N(tab2.col _2)
FROM t ab2 JO N tabl USI NG (id)

GROUP BY col _1 ORDER BY 1 LIMT 5;

Results:

S RS- teceecaasaeae s S +

| col_1 | max(tab2.col _2) | min(tab2.col _2) |
tecomaan SRR SRS +

| false | 24453.325 | 1243.5 |

| true | 12789.123 | 243.325 |

S R oo oo +

Example: Subquery, Aggregate and Joins

SELECT t ab2. *

FROM t ab2,

(SELECT tabl.col _1, MAX(tab2.col _2) AS nmax_col 2
FROM t ab2, tabl
WHERE tabl.id = tab2.id
GROUP BY col _1) subqueryl

WHERE subqueryl. max_col 2 = tab2. col _2;

Results:

o e e e oo o e e e oo +
| id] col_1 | col_2 [
S o e e oo oo +

1 | true | 12789.123 |
| 3 | false | 24453.325 |

Example: INSERT Query

| NSERT OVERWRI TE TABLE t ab3
SELECT id, col _1, col _2, MONTH(col _3), DAYOFMONTH(col _3)
FROM t abl WHERE YEAR(col _3) = 2012;

Query TAB3 to check the result:

SELECT * FROM t abs3;

Results:

Sy [S Fomm e m - +o- - o= +
| id | col_1 | col_2 | nonth | day |
Fom e e e e oo Fomm e e o R, E +
| 2 | true | 123.123 | 10 | 24 |
| 2 | false | 1243.5 | 10 | 25 |
T [[S Homm - - +

Advanced Tutorials

These tutorials walk you through advanced scenarios or specialized features.

Attaching an External Partitioned Table to an HDFS Directory Structure

This tutorial shows how you might set up a directory tree in HDFS, put data files into the lowest-level subdirectories,
and then use an Impala external table to query the data files from their original locations.

The tutorial uses a table with web log data, with separate subdirectories for the year, month, day, and host. For
simplicity, we use a tiny amount of CSV data, loading the same data into each partition.

First, we make an Impala partitioned table for CSV data, and look at the underlying HDFS directory structure to
understand the directory structure to re-create elsewhere in HDFS. The columnsfi el d1,fi el d2,andfi el d3
correspond to the contents of the CSV data files. The year, nont h, day, and host columns are all represented as
subdirectories within the table structure, and are not part of the CSV files. We use STRI NGfor each of these columns
so that we can produce consistent subdirectory names, with leading zeros for a consistent length.

create database external _partitions
use external partitions
create table logs (fieldl string, field2 string, field3 string)

partitioned by (year string, nonth string , day string, host string)

row format delimted fields termnated by ',"';
insert into logs partition (year="2013", nonth="07", day="28", host="host1l") val ues
("foo","foo","foo");
insert into logs partition (year="2013", nonth="07", day="28", host="host2") val ues
("foo","foo","foo");
insert into logs partition (year="2013", nonth="07", day="29", host="host1") val ues
("foo","foo","foo");
insert into logs partition (year="2013", nonth="07", day="29", host="host2") val ues
("foo","foo","foo");
insert into logs partition (year="2013", nonth="08", day="01", host="host1") val ues
("foo","foo","foo");

Back in the Linux shell, we examine the HDFS directory structure. (Your Impala data directory might be in a different
location; for historical reasons, it is sometimes under the HDFS path / user/ hi ve/ war ehouse.) We use the hdf s

df s -1 s command to examine the nested subdirectories corresponding to each partitioning column, with separate
subdirectories at each level (with = in their names) representing the different values for each partitioning column.
When we get to the lowest level of subdirectory, we use the hdf s df s -cat command to examine the data file and
see CSV-formatted data produced by the | NSERT statement in Impala.

$ hdfs dfs -Is /user/inpal a/ war ehouse/ external _partitions.db

Found 1 itens

dr wxr wxr wt - impala hive 0 2013-08-07 12: 24

/user/inpal a/ war ehouse/ ext ernal _partitions. db/| ogs

$ hdfs dfs -Is /user/inpal a/ war ehouse/ external _partitions. db/l ogs

Found 1 itens

dr wxr - Xr - X - impala hive 0 2013-08-07 12: 24

/user/inpal a/ war ehouse/ external _partitions. db/l ogs/year=2013

$ hdfs dfs -Is /user/inpal a/ war ehouse/ external _partitions.db/| ogs/year=2013

Found 2 itens

dr wxr - xr - x - inmpala hive 0 2013-08-07 12:23
/user/inpal a/ war ehouse/ ext ernal _partitions. db/| ogs/year=2013/ nont h=07
dr wxr - xr - x - inmpala hive 0 2013-08-07 12:24

/user/inpal a/ war ehouse/ ext ernal _partitions. db/| ogs/year=2013/ nont h=08
$ hdfs dfs -Is /user/inpal a/ war ehouse/ external _partitions. db/| ogs/year=2013/ nont h=07
Found 2 itens

dr wxr - xr - x - inmpala hive 0 2013-08-07 12:22
/user/inpal a/ war ehouse/ ext ernal _partitions. db/| ogs/year=2013/ nont h=07/ day=28
dr wxr - xr - x - inmpala hive 0 2013-08-07 12:23

/user/inpal a/ war ehouse/ ext ernal _partitions. db/| ogs/year=2013/ nont h=07/ day=29
$ hdfs dfs -Is

/user/inpal a/ war ehouse/ ext ernal _partitions. db/| ogs/year=2013/ nont h=07/ day=28
Found 2 itens

dr wxr - Xr - X - impala hive 0 2013-08-07 12:21
/user /i npal a/ war ehouse/ ext ernal _partitions. db/| ogs/year=2013/ nont h=07/ day=28/ host =host 1
dr wxr - Xr - X - impala hive 0 2013-08-07 12:22

/user /i npal a/ war ehouse/ ext ernal _partitions. db/| ogs/year=2013/ nont h=07/ day=28/ host =host 2
$ hdfs dfs -Is

/user /i npal a/ war ehouse/ ext ernal _partitions. db/| ogs/year=2013/ nont h=07/ day=28/ host =host 1
Found 1 itens

STWr--T-- 3 inpala hive 12 2013-08-07 12:21

/user/inpal a/ war ehouse/ ext ernal _partiti

ons. db/ | ogs/ year =2013/ nont h=07/ day=28/ host =host 1/ 3981726974111751120- - 8907184999369517436 822630111 data. 0
$ hdfs dfs -cat

/user/inpal a/ war ehouse/ ext ernal _partitions. db/| ogs/year=2013/ nont h=07/ day=28/\

host =host 1/ 3981726974111751120- -8 907184999369517436_822630111_dat a. 0

f oo, foo, foo

Still in the Linux shell, we use hdf s df s - nkdi r to create several data directories outside the HDFS directory tree
that Impala controls (/ user /i mpal a/ war ehouse in this example, maybe different in your case). Depending on your
configuration, you might need to log in as a user with permission to write into this HDFS directory tree; for example,
the commands shown here were run while logged in as the hdf s user.

hdfs dfs -nkdi
hdfs dfs -nkdi

r user/inpal a/ dat a/ | ogs/ year =2013/ nont h=07/ day=28/ host =host 1
r
hdfs dfs -nkdir
r
r

user/inpal a/ dat a/ | ogs/ year =2013/ nont h=07/ day=28/ host =host 2
user/inpal a/ dat a/ | ogs/ year =2013/ nont h=07/ day=28/ host =host 1
user/inpal a/ dat a/ | ogs/ year =2013/ nont h=07/ day=29/ host =host 1
user/inpal a/ dat a/ | ogs/ year =2013/ nont h=08/ day=01/ host =host 1

hdfs dfs -nkdi
hdfs dfs -nkdi

TTTTT
~———

We make a tiny CSV file, with values different than in the | NSERT statements used earlier, and put a copy within each
subdirectory that we will use as an Impala partition.

$ cat >dummy_I| og_data

bar, baz, bl et ch

hdfs dfs -nkdir -p

/user/inpal a/ dat a/ external _partitions/year=2013/ nont h=08/ day=01/ host =host 1

hdfs dfs -nkdir -p

/user/inpal a/ dat a/ external _partitions/year=2013/ nmont h=07/ day=28/ host =host 1

hdfs dfs -nkdir -p

/user/inpal a/ dat a/ external _partitions/year=2013/ nont h=07/ day=28/ host =host 2

hdfs dfs -nkdir -p

/user/inpal a/ dat a/ external _partitions/year=2013/ nmont h=07/ day=29/ host =host 1

hdfs dfs -put dummy_| og_data /user/i npal a/ dat a/ | ogs/ year =2013/ nont h=07/ day=28/ host =host 1
$ hdfs dfs -put dummy_| og_data /user/inpal a/ dat a/ | ogs/ year =2013/ nont h=07/ day=28/ host =host 2
hdfs dfs -put dummy_| og_data /user/i npal a/ dat a/ | ogs/ year =2013/ nont h=07/ day=29/ host =host 1
$ hdfs dfs -put dummy_l| og_dat a /user/i npal a/ dat a/ | ogs/ year =2013/ nont h=08/ day=01/ host =host 1

Back in the i npal a- shel | interpreter, we move the original Impala-managed table aside, and create a new external
table with a LOCATI ONclause pointing to the directory under which we have set up all the partition subdirectories
and data files.

use external _partitions;

alter table logs renane to | ogs_original;

create external table logs (fieldl string, field2 string, field3 string)
partitioned by (year string, nonth string, day string, host string)

row format delinmted fields term nated by ',
| ocation '/user/inpal a/data/l ogs';

Because partition subdirectories and data files come and go during the data lifecycle, you must identify each of the
partitions through an ALTER TABLE statement before Impala recognizes the data files they contain.

alter table logs add partition (year="2013", nont h="07", day="28", host ="host 1")

alter table log_type add partition (year="2013", nont h="07", day="28", host ="host 2");
alter table log_type add partition (year="2013", nont h="07", day="29", host ="host 1");
alter table log_type add partition (year="2013", nont h="08", day="01", host ="host 1");

We issue a REFRESHstatement for the table, always a safe practice when data files have been manually added, removed,
or changed. Then the data is ready to be queried. The SELECT * statement illustrates that the data from our trivial
CSV file was recognized in each of the partitions where we copied it. Although in this case there are only a few rows,
we include a LI M T clause on this test query just in case there is more data than we expect.

refresh | og_type;
select * fromlog_type limt 100;

S RS Foemmaaaa L L e tecomaan L e tecomnan +
| fieldl | field2 | field3 | year | nonth | day | host |
S RS Foemmaaaa S RS R tecoeaan Feaana tecoaman +
bar	baz	bletch	2013	07	28	host1l
bar	baz	bletch	2013	08	01	host1l
bar	baz	bletch	2013	07	29	host1l
bar	baz	bletch	2013	07	28	host2
ommmmmn - o ommmme - oo - ommmm- +o-m-- ommmm- +

Switching Back and Forth Between Impala and Hive

Sometimes, you might find it convenient to switch to the Hive shell to perform some data loading or transformation
operation, particularly on file formats such as RCFile, SequenceFile, and Avro that Impala currently can query but not
write to.

Whenever you create, drop, or alter a table or other kind of object through Hive, the next time you switch back to the
i mpal a- shel | interpreter, issue a one-time | NVALI DATE METADATA statement so that Impala recognizes the new
or changed object.

Whenever you load, insert, or change data in an existing table through Hive (or even through manual HDFS operations
such as the hdf s command), the next time you switch back to the i npal a- shel | interpreter, issue a one-time
REFRESH t abl e_nane statement so that Impala recognizes the new or changed data.

For examples showing how this process works for the REFRESH statement, look at the examples of creating RCFile and
SequenceFile tables in Impala, loading data through Hive, and then querying the data through Impala. See Using the
RCFile File Format with Impala Tables on page 680 and Using the SequencefFile File Format with Impala Tables on page
682 for those examples.

For examples showing how this process works for the | NVALI DATE METADATA statement, look at the example of
creating and loading an Avro table in Hive, and then querying the data through Impala. See Using the Avro File Format
with Impala Tables on page 674 for that example.

E’; Note:

Originally, Impala did not support UDFs, but this feature is available in Impala starting in Impala 1.2.
Some | NSERT ... SELECT transformations that you originally did through Hive can now be done
through Impala. See User-Defined Functions (UDFs) on page 532 for details.

Prior to Impala 1.2, the REFRESHand | NVALI DATE METADATA statements needed to be issued on
each Impala node to which you connected and issued queries. In Impala 1.2 and higher, when you
issue either of those statements on any Impala node, the results are broadcast to all the Impala nodes
in the cluster, making it truly a one-step operation after each round of DDL or ETL operations in Hive.

Cross Joins and Cartesian Products with the CROSS JOIN Operator

Originally, Impala restricted join queries so that they had to include at least one equality comparison between the
columns of the tables on each side of the join operator. With the huge tables typically processed by Impala, any
miscoded query that produced a full Cartesian product as a result set could consume a huge amount of cluster resources.

In Impala 1.2.2 and higher, this restriction is lifted when you use the CROSS JO Noperator in the query. You still
cannot remove all WHERE clauses from a query like SELECT * FROM t1 JO N t 2 to produce all combinations of
rows from both tables. But you can use the CROSS JO N operator to explicitly request such a Cartesian product.
Typically, this operation is applicable for smaller tables, where the result set still fits within the memory of a single
Impala node.

The following example sets up data for use in a series of comic books where characters battle each other. At first, we
use an equijoin query, which only allows characters from the same time period and the same planet to meet.

[l ocal host:21000] > create table heroes (nane string, era string, planet string);
[l ocal host:21000] > create table villains (nane string, era string, planet string);
[l ocal host:21000] > insert into heroes val ues

> ('Tesla','20th century','Earth'),

> (' Pythagoras',' Antiquity','Earth'),

> (' Zopzar','Far Future',' Mars');
Inserted 3 rows in 2.28s
[l ocal host:21000] > insert into villains val ues

> ("Caligula ,"Antiquity', Earth'),

> ("John Dillinger','20th century','Earth'),

> ("Xibulor','Far Future','\Venus');
Inserted 3 rows in 1.93s
[l ocal host:21000] > sel ect concat (heroes.nane,' vs. ',villains.nane) as battle

> fromheroes join villains

> where heroes.era = villains.era and heroes. pl anet = villains. pl anet;

| battle |
o e e e e e e e aa oo +
| Tesla vs. John Dillinger |
| Pythagoras vs. Caligula |
T +

Returned 2 row(s) in 0.47s

Readers demanded more action, so we added elements of time travel and space travel so that any hero could face
any villain. Prior to Impala 1.2.2, this type of query was impossible because all joins had to reference matching values
between the two tables:

[l ocal host:21000] > -- Cartesian product not possible in Inmpala 1.1.
> sel ect concat(heroes.nanme,’ vs. ',villains.nane) as battle from
heroes join villains;
ERROR: Not | npl enent edException: Join between 'heroes' and 'villains' requires at |east
one conjunctive equality predicate between the two tables

With Impala 1.2.2, we rewrite the query slightly to use CROSS JO Nrather than JO N, and now the result set includes
all combinations:

[l ocal host:21000] > -- Cartesian product available in Inpala 1.2.2 with the CROSS JO N
synt ax.

> sel ect concat (heroes. name,' vs.

o _ _ ,villains.name) as battle from
heroes cross join villains;

R +
| battle |
e T T +
Tesla vs. Caligula
Tesla vs. John Dillinger

Tesla vs. Xibul or

Pyt hagoras vs. Caligul a

Pyt hagoras vs. John Dillinger
Pyt hagoras vs. Xi bul or

Zopzar vs. Caligula

Zopzar vs. John Dillinger
Zopzar vs. Xibul or

Returned 9 row(s) in 0.33s

The full combination of rows from both tables is known as the Cartesian product. This type of result set is often used
for creating grid data structures. You can also filter the result set by including WHERE clauses that do not explicitly
compare columns between the two tables. The following example shows how you might produce a list of combinations
of year and quarter for use in a chart, and then a shorter list with only selected quarters.

[l ocal host:21000] > create table x_axis (x int);

[l ocal host:21000] > create table y_axis (y int);

[l ocal host:21000] > insert into x_axis values (1),(2),(3),(4);

Inserted 4 rows in 2.14s

[l ocal host:21000] > insert into y_axis values (2010), (2011), (2012), (2013), (2014);

Inserted 5 rows in 1.32s

[l ocal host:21000] > select y as year, x as quarter fromx_axis cross join y_axis;
+

| year | quarter |
+

. . +
Returned 20 row(s) in 0.38s
[l ocal host:21000] > select y as year, x as quarter fromx_axis cross join y_axis where

o +

Returned 10 row(s) in 0.39s

Dealing with Parquet Files with Unknown Schema

As data pipelines start to include more aspects such as NoSQL or loosely specified schemas, you might encounter
situations where you have data files (particularly in Parquet format) where you do not know the precise table definition.
This tutorial shows how you can build an Impala table around data that comes from non-Impala or even non-SQL
sources, where you do not have control of the table layout and might not be familiar with the characteristics of the
data.

The data used in this tutorial represents airline on-time arrival statistics, from October 1987 through April 2008. See
the details on the 2009 ASA Data Expo web site. You can also see the explanations of the columns; for purposes of this
exercise, wait until after following the tutorial before examining the schema, to better simulate a real-life situation
where you cannot rely on assumptions and assertions about the ranges and representations of data values.

Download the Data Files into HDFS

First, we download and unpack the data files. There are 8 files totalling 1.4 GB.

$ wget -Oairlines_parquet.tar.gz https://home. apache. org/ ~arodoni/airlines_parquet.tar. gz
$ wget https://home. apache. org/ ~arodoni/airlines_parquet.tar.gz.sha512

$ shasum-a 512 -c airlines_parquet.tar.gz.sha512

airlines_parquet.tar.gz: OK

$ tar xvzf airlines_parquet.tar.gz
$ cd airlines_parquet/

$ du -kch *.parq

253M 4345e5eef 217aalb- c8f 16177f 35f d983_1150363067_dat a. 0. parq
14M 4345e5eef 217aalb- c8f 16177 35f d983_1150363067_dat a. 1. parq
253M 4345e5eef 217aalb- c8f 16177f 35f d984 501176748 _dat a. O. parq
64M 4345e5eef 217aalb- c8f 16177f 35f d984 501176748 _dat a. 1. parq
184M 4345e5eef 217aalb- c8f 16177f 35f d985_ 1199995767 dat a. 0. parq
241M 4345e5eef 217aalb- c8f 16177f 35f d986_2086627597_dat a. 0. par q
212M 4345e5eef 217aalb- c8f 16177f 35f d987_1048668565 dat a. 0. parq
152M 4345e5eef 217aalb- c8f 16177f 35f d988_ 1432111844 dat a. 0. par q
1.4G total

Next, we put the Parquet data files in HDFS, all together in a single directory, with permissions on the directory and
the files so that the i npal a user will be able to read them.

After unpacking, we saw the largest Parquet file was 253 MB. When copying Parquet files into HDFS for Impala to use,
for maximum query performance, make sure that each file resides in a single HDFS data block. Therefore, we pick a
size larger than any single file and specify that as the block size, using the argument - Ddf s. bl ock. si ze=253mon
the hdf s df s - put command.

$ sudo -u hdfs hdfs dfs -nkdir -p /user/inpal a/staging/airlines

$ sudo -u hdfs hdfs dfs -Ddfs. bl ock. si ze=253m -put *.parq /user/inpal a/ stagi ng/airlines
$ sudo -u hdfs hdfs dfs -Is /user/inpal a/stagi ng

Found 1 itens

$ sudo -u hdfs hdfs dfs -Is /user/inpal a/staging/airlines
Found 8 itens

Create Database and Tables
With the files in an accessible location in HDFS, you create a database table that uses the data in those files:

e The CREATE EXTERNAL syntax and the LOCATI ON attribute point Impala at the appropriate HDFS directory.

e Thell KE PARQUET 'path_to_any_parquet_file' clause meanswe skip the list of column names and types;
Impala automatically gets the column names and data types straight from the data files. (Currently, this technique
only works for Parquet files.)

* Ignore the warning about lack of READ_WRI TE access to the files in HDFS; the i mpal a user can read the files,
which will be sufficient for us to experiment with queries and perform some copy and transform operations into
other tables.

$ i npal a- shel |
CREATE DATABASE ai rl i nes_dat a;
USE airlines_data;
CREATE EXTERNAL TABLE airlines_external
LI KE PARQUET
" hdf s: stagi ng/airlines/4345e5eef 217aalb-c8f 16177f 35f d983_1150363067_dat a. 0. parq’
STORED AS PARQUET LOCATI ON ' hdfs: staging/airlines';

http://stat-computing.org/dataexpo/2009/
http://stat-computing.org/dataexpo/2009/the-data.html

WARNI NGS: | npal a does not have READ WRI TE access to path
"hdf s: // myhost . com 8020/ user /i npal a/ st agi ng'

Examine Physical and Logical Schema

With the table created, we examine its physical and logical characteristics to confirm that the data is really there and
in a format and shape that we can work with.

e The SHOW TABLE STATS statement gives a very high-level summary of the table, showing how many files and
how much total data it contains. Also, it confirms that the table is expecting all the associated data files to be in
Parquet format. (The ability to work with all kinds of HDFS data files in different formats means that it is possible
to have a mismatch between the format of the data files, and the format that the table expects the data files to
be in.)

e The SHOW FI LES statement confirms that the data in the table has the expected number, names, and sizes of
the original Parquet files.

e The DESCRI BE statement (or its abbreviation DESC) confirms the names and types of the columns that Impala
automatically created after reading that metadata from the Parquet file.

e The DESCRI BE FORMATTED statement prints out some extra detail along with the column definitions. The pieces
we care about for this exercise are:

The containing database for the table.

The location of the associated data files in HDFS.

The table is an external table so Impala will not delete the HDFS files when we finish the experiments and
drop the table.

The table is set up to work exclusively with files in the Parquet format.

> SHOW TABLE STATS airlines_external;

toeema - RIS Fommma o Fommmmmmemeaaas T Fommmemaa T +
| #Rows | #Files | Size | Bytes Cached | Cache Replication | Format | |ncrenental
stats |
Fome oo Fomm e [S oo F o e e e +
| -1 | 8 | 1.34GB | NOT CACHED | NOT CACHED | PARQUET | false

I
Foeme o a - RIS Fommma o . T Fommmemaa T +

> SHOW FILES IN airlines_external;

S B SRR [SRR +
| path
| size | partition

R R R N N S S - +

| /user/inmpal al staging/airlines/4345e5eef217aalb- c8f 16177f 35f d983_1150363067_dat a. 0. parq
| 252.99MB | |

| /user/inpal alstaging/airlines/4345e5eef217aalb-c8f16177f 35f d983_1150363067_dat a. 1. parq
| 13.43MB | |

| /user/inpal alstaging/airlines/4345e5eef217aalb-c8f16177f 35fd984_501176748_dat a. 0. parq
| 252.84MB | |

| /user/inpal a/stagi ng/airlines/4345e5eef 217aalb-c8f 16177f 35f d984_501176748_dat a. 1. parq
| 63.92MB | |

| /user/inmpal al staging/airlines/4345e5eef 217aalb- c8f 16177f 35f d985_1199995767_dat a. 0. parq
| 183.64MB | |

| /user/inmpal alstaging/airlines/4345e5eef217aalb-c8f 16177f 35f d986_2086627597_dat a. 0. parq
| 240.04MB | |

| /user/inmpal alstaging/airlines/4345e5eef217aalb-c8f 16177f 35f d987_1048668565_dat a. 0. par q
| 211.35MB | |

| /user/inmpal alstaging/airlines/4345e5eef217aalb-c8f16177f 35f d988_1432111844_dat a. 0. parq
| 151.46MB | |

S B SRR [SRR +

oo R o e e e e +
| name | type | comment |
o +
year	int	I'nferred from Parquet file
month	int	I'nferred from Parquet file.
day	int	I'nferred from Parquet file

dayof week i nt Inferred from Parquet file.
dep_time i nt Inferred from Parquet file.
crs_dep_time i nt Inferred from Parquet file.
arr_time i nt Inferred from Parquet file.
crs_arr_tine int Inferred from Parquet file.
carrier string Inferred from Parquet file.
flight_num i nt Inferred from Parquet file.
tail _num i nt Inferred from Parquet file.
actual _el apsed_time i nt Inferred from Parquet file.
crs_el apsed_tinme i nt Inferred from Parquet file.
airtine i nt Inferred from Parquet file.
arrdel ay i nt Inferred from Parquet file.
depdel ay i nt Inferred from Parquet file.
origin string Inferred from Parquet file.
dest string Inferred from Parquet file.
di stance i nt Inferred from Parquet file.
taxi _in i nt Inferred from Parquet file.
taxi _out i nt Inferred from Parquet file.
cancel | ed i nt Inferred from Parquet file.
cancel | ati on_code string Inferred from Parquet file.
di verted i nt Inferred from Parquet file.
carrier_del ay i nt Inferred from Parquet file.
weat her _del ay i nt Inferred from Parquet file.
nas_del ay i nt Inferred from Parquet file.
security_del ay i nt Inferred from Parquet file.
| ate_aircraft_del ay i nt Inferred from Parquet file.

. oo - . +

> DESCRI BE FORMATTED airlines_external;

o m e e e e e e e e e e e o m e e e e e e e e m e e aa oo

| name | type

o m e e e e e e e e e e e oo Fo o m e e e e e e e e e aa oo

| # Detailed Table Information | NULL

| Dat abase: | airlines_data

| Owner: | impala

| Locati on: | /user/inpalalstaging/airlines

| Table Type: | EXTERNAL_TABLE

| # Storage Information
| SerDe Library:

or g. apache. hadoop. hi ve. gl . i 0. par quet . serde. Par quet H veSer De

| I'nput Fornat:

or g. apache. hadoop. hi ve. gl . i 0. par quet . Mapr edPar quet | nput For ma

| Qut put For mat :

or g. apache. hadoop. hi ve. gl . i 0. par quet . Mapr edPar quet Cut put For mat

| NULL

Analyze Data

Now that we are confident that the connections are solid between the Impala table and the underlying Parquet files,
we run some initial queries to understand the characteristics of the data: the overall number of rows, and the ranges
and how many different values are in certain columns.

> SELECT COUNT(*) FROM airlines_external;

S +
| count(*) |
S +
| 123534969 |
S +

The NDV() function returns a number of distinct values, which, for performance reasons, is an estimate when there
are lots of different values in the column, but is precise when the cardinality is less than 16 K. Use NDV() function for
this kind of exploration rather than COUNT(DI STI NCT col nane), because Impala can evaluate multiple NDV()
functions in a single query, but only a single instance of COUNT DI STI NCT.

> SEI ECT NDV(carrier), NDV(flight_num, NDV(tail_num,
NDV(origin), NDV(dest) FROM airlines_external;

> SELECT tail _num COUNT(*) AS howrany FROM airlines_external
GROUP BY tail _num
T - +

oo o o +
| NULL | 123122001 |
| 715 | 1

| 0 | 406405 |
| 112 | 6562 |
oo o e - +

> SELECT DI STINCT dest FROM ai rlines_external
WHERE dest NOT I N (SELECT origin FROM airlines_external);

B R, +
| dest |
Fomm oo - +
| CBM |
| SKA |
| LAR |
| RCA |
| LBF |
Fomm oo - +

> SELECT DI STI NCT dest FROM ai rlines_external
WHERE dest NOT I N (SELECT DI STINCT origin FROM airlines_external);

> SELECT DI STINCT origin FROM airlines_external
VWHERE origin NOT IN (SELECT DI STI NCT dest FROM airlines_external);
Fetched O rowms) in 2.63

i

(
.6
With the above queries, we see that there are modest numbers of different airlines, flight numbers, and origin and
destination airports. Two things jump out from this query: the number of t ai | _numvalues is much smaller than we
might have expected, and there are more destination airports than origin airports. Let's dig further. What we find is
that most t ai | _numvalues are NULL. It looks like this was an experimental column that wasn't filled in accurately.
We make a mental note that if we use this data as a starting point, we'll ignore this column. We also find that certain
airports are represented in the ORI G Ncolumn but not the DEST column; now we know that we cannot rely on the
assumption that those sets of airport codes are identical.

E’; Note: The first SELECT DI STI NCT DEST query takes almost 40 seconds. We expect all queries on
such a small data set, less than 2 GB, to take a few seconds at most. The reason is because the

expression NOT | N (SELECT origin FROM airli nes_external) produces an intermediate
result set of 123 million rows, then runs 123 million comparisons on each data node against the tiny
set of destination airports. The way the NOT | Noperator works internally means that this intermediate
result set with 123 million rows might be transmitted across the network to each data node in the
cluster. Applying another DI STI NCT inside the NOT | Nsubquery means that the intermediate result
set is only 340 items, resulting in much less network traffic and fewer comparison operations. The
more efficient query with the added DI STI NCT is approximately 7 times as fast.

Next, we try doing a simple calculation, with results broken down by year. This reveals that some years have no data
inthe ai rti nme column. That means we might be able to use that column in queries involving certain date ranges, but
we cannot count on it to always be reliable. The question of whether a column contains any NULL values, and if so

what is their number, proportion, and distribution, comes up again and again when doing initial exploration of a data
set.

> SELECT year, SUMairtine) FROM airlines_external
GROUP BY year ORDER BY year DESC,
Hommm o - TR +

| year | sunm(airtinme) |

2008 713050445
2007 748015545
2006 720372850
2005 708204026
2004 714276973
2003 665706940
2002 549761849
2001 590867745
2000 583537683
1999 561219227
1998 538050663
1997 536991229
1996 519440044
1995 513364265

1994 NULL
1993 NULL
1992 NULL
1991 NULL
1990 NULL
1989 NULL
1988 NULL
1987 NULL
Fommm - Fomm e e e o +

With the notion of NULL values in mind, let's come back to the t ai | _numcolumn that we discovered had a lot of
NULLs. Let's quantify the NULL and non-NULL values in that column for better understanding. First, we just count the
overall number of rows versus the non-NULL values in that column. That initial result gives the appearance of relatively
few non-NULL values, but we can break it down more clearly in a single query. Once we have the COUNT(*) and the
COUNT(col narre) numbers, we can encode that initial query in a W THclause, then run a follow-on query that performs
multiple arithmetic operations on those values. Seeing that only one-third of one percent of all rows have non-NULL
values for the t ai | _numcolumn clearly illustrates that column is not of much use.

> SELECT COUNT(*) AS 'rows', COUNT(tail_nun) AS 'non-null tail numbers'
FROM airl i nes_external;

Fom e e m e e e eeaa oo +
| rows | non-null tail nunbers |
Fom e o m e e e eeaao oo +
| 123534969 | 412968 |
Fom e o m e e e eeaao oo +

> WTH t1 AS
(SELECT COUNT(*) AS 'rows', COUNT(tail_num AS 'nonnull"’
FROM ai rl i nes_external)

SELECT “rows™, "nonnull’, “rows™ - “nonnull™ AS 'nulls',
("nonnull™ / “rows™) * 100 AS 'percentage non-nul |’

FROM t 1;

Fom e Fom ek Fom e e o e e e e e +
| rows | nonnull | nulls | percentage non-null |
Fom e Femm ek Ty +
| 123534969 | 412968 | 123122001 | 0.3342923897119365 |
Fom e Femm ek Fem e e o e e aa e +

By examining other columns using these techniques, we can form a mental picture of the way data is distributed
throughout the table, and which columns are most significant for query purposes. For this tutorial, we focus mostly
on the fields likely to hold discrete values, rather than columns such as act ual _el apsed_t i me whose names suggest
they hold measurements. We would dig deeper into those columns once we had a clear picture of which questions
were worthwhile to ask, and what kinds of trends we might look for. For the final piece of initial exploration, let's look

attheyear column. A simple GROUP BY query shows that it has a well-defined range, a manageable number of distinct
values, and relatively even distribution of rows across the different years.

> SELECT M N(year), MAX(year), NDV(year) FROM airlines_external;

S R S +
| mn(year) | max(year) | ndv(year) |
S S S +
| 1987 | 2008 | 22 |
S Fom e e S +

> SELECT year, COUNT(*) howrany FROM airlines_external
GROUP BY year ORDER BY year DESC,
B R, [+

2008 7009728
2007 7453215
2006 7141922
2005 7140596
2004 7129270
2003 6488540
2002 5271359
2001 5967780
2000 5683047
1999 5527884
1998 5384721
1997 5411843
1996 5351983
1995 5327435
1994 5180048
1993 5070501
1992 5092157
1991 5076925
1990 5270893
1989 5041200
1988 5202096
1987 1311826

We could go quite far with the data in this initial raw format, just as we downloaded it from the web. If the data set
proved to be useful and worth persisting in Impala for extensive queries, we might want to copy it to an internal table,
letting Impala manage the data files and perhaps reorganizing a little for higher efficiency. In this next stage of the
tutorial, we copy the original data into a partitioned table, still in Parquet format. Partitioning based on the year
column lets us run queries with clauses such as WHERE year = 2001 or WHERE year BETWEEN 1989 AND 1999,
which can dramatically cut down on 1/0 by ignoring all the data from years outside the desired range. Rather than
reading all the data and then deciding which rows are in the matching years, Impala can zero in on only the data files
from specific year partitions. To do this, Impala physically reorganizes the data files, putting the rows from each year
into data files in a separate HDFS directory for each year value. Along the way, we'll also get rid of thet ai | _num
column that proved to be almost entirely NULL.

The first step is to create a new table with a layout very similar to the original ai r | i nes_ext er nal table. We'll do
that by reverse-engineering a CREATE TABLE statement for the first table, then tweaking it slightly to include a
PARTI Tl ON BY clause for year, and excluding the t ai | _numcolumn. The SHOW CREATE TABLE statement gives us
the starting point.

Although we could edit that output into a new SQL statement, all the ASCIl box characters make such editing
inconvenient. To get a more stripped-down CREATE TABLE to start with, we restart the i npal a- shel I command
with the - B option, which turns off the box-drawing behavior.

$ inpal a-shell -i localhost -B -d airlines_data,;

> SHOW CREATE TABLE airlines_external;
" CREATE EXTERNAL TABLE airlines_data.airlines_external (
year | NT COWENT 'inferred from optional int32 year',
mont h | NT COMMENT 'inferred from optional int32 nonth',
day INT COWENT 'inferred from optional int32 day',
dayof week | NT COWENT 'inferred from optional int32 dayofweek'

dep_time I NT COMWENT 'inferred from optional int32 dep_tine',

crs_dep_tinme INT COMWENT '"inferred from optional int32 crs_dep_tine',
arr_time | NT COWENT 'inferred from optional int32 arr_tinme',

crs_arr_tinme INT COMENT 'inferred from optional int32 crs_arr_tine',

carrier STRING COMMENT 'inferred from optional binary carrier',

flight_num I NT COMENT '"inferred from optional int32 flight_num,

tail _num | NT COMWENT 'inferred from optional int32 tail_nun,

actual _el apsed_tinme INT COMWENT 'inferred from optional int32 actual _el apsed_tine'
crs_elapsed_time |NT COWENT 'inferred from optional int32 crs_el apsed_tine',
airtinme INT COWENT 'inferred from optional int32 airtine',

arrdelay | NT COWENT 'inferred from optional int32 arrdelay',

depdel ay INT COWENT 'inferred from optional int32 depdelay',

origin STRING COWENT 'inferred from optional binary origin',

dest STRING COMMENT 'inferred from optional binary dest',

di stance | NT COMVENT 'inferred from optional int32 distance',

taxi _in INT COMENT 'inferred from optional int32 taxi_in',

taxi _out I NT COWENT 'inferred from optional int32 taxi_out"',

cancell ed I NT COWENT 'inferred from optional int32 cancelled',

cancel | ati on_code STRING COMMENT 'inferred from optional binary cancellation_code',
diverted I NT COWENT 'inferred from optional int32 diverted',

carrier_delay INT COWENT 'inferred from optional int32 carrier_delay',
weat her _del ay | NT COWENT 'inferred from optional int32 weather_del ay',

nas_delay I NT COWENT 'inferred from optional int32 nas_delay',

security_delay |NT COWENT 'inferred from optional int32 security_delay',
late_aircraft_delay INT COMWENT 'inferred from optional int32 |ate_aircraft_del ay'

)

STORED AS PARQUET

LOCATI ON ' hdfs://al730. exanpl e. com 8020/ user/i npal a/ stagi ng/ airlines'

TBLPROPERTI ES (' nunFiles' =" 0", 'COLUVN_STATS _ACCURATE ='fal se',
"transient _|astDdl Ti ne' = 1439425228', 'nunRows'='-1', 'total Size' = 0",
‘rawbDat aSi ze'='-1")"

After copying and pasting the CREATE TABLE statement into a text editor for fine-tuning, we quit and restart
i mpal a- shel | without the - B option, to switch back to regular output.

Next we run the CREATE TABLE statement that we adapted from the SHOW CREATE TABLE output. We kept the
STORED AS PARQUET clause because we want to rearrange the data somewhat but still keep it in the high-performance
Parquet format. The LOCATI ONand TBLPROPERTI ES clauses are not relevant for this new table, so we edit those out.
Because we are going to partition the new table based on the year column, we move that column name (and its type)
into a new PARTI TI ONED BY clause.

> CREATE TABLE airlines_data.airlines

(rmont h | NT,

day | NT,

dayof week | NT,

dep_tinme |NT,
crs_dep_time |NT,
arr_time |NT,
crs_arr_time |NT,
carrier STRI NG
flight_num I NT,

actual _el apsed_tine |NT,
crs_el apsed_time | NT,
airtime |NT,

arrdel ay | NT,

depdel ay | NT,

origin STRI NG

dest STRI NG

di st ance | NT,

taxi _in INT,

taxi _out | NT,

cancel | ed | NT,

cancel | ati on_code STRI NG,
di verted I NT,
carrier_delay |NT,

weat her _del ay | NT,
nas_del ay | NT,
security_delay INT,
late_aircraft_delay |INT)

PARTI TI ONED BY (year | NT)

STORED AS PARQUET

1

Next, we copy all the rows from the original table into this new one with an | NSERT statement. (We edited the CREATE
TABLE statement to make an | NSERT statement with the column names in the same order.) The only change is to add
a PARTI TI ON(year) clause, and move the year column to the very end of the SELECT list of the | NSERT statement.
Specifying PARTI TI ON(year), rather than a fixed value such as PARTI TI ON(year =2000) , means that Impala figures
out the partition value for each row based on the value of the very last column in the SELECT list. This is the first SQL
statement that legitimately takes any substantial time, because the rows from different years are shuffled around the
cluster; the rows that go into each partition are collected on one node, before being written to one or more new data
files.

> |NSERT INTO airlines_data.airlines
PARTI TI ON (year)
SELECT
nmont h,
day,
dayof week,
dep_tine,
crs_dep_tine,
arr_time,
crs_arr_tine,
carrier,
flight_num
act ual _el apsed_ti ne,
crs_el apsed_ti ne,
airtinme,
arrdel ay,
depdel ay,
origin,
dest,
di st ance,
taxi _in,
taxi _out,
cancel | ed,
cancel | ati on_code,
di verted,
carrier_del ay,
weat her _del ay,
nas_del ay,
security_del ay,
late_aircraft_del ay,
year
FROM airlines_data.airlines_external

Once partitioning or join queries come into play, it's important to have statistics that Impala can use to optimize queries
on the corresponding tables. The COMPUTE | NCREMENTAL STATS statement is the way to collect statistics for
partitioned tables. Then the SHOW TABLE STATS statement confirms that the statistics are in place for each partition,
and also illustrates how many files and how much raw data is in each partition.

> COVPUTE | NCREMENTAL STATS airlines;

> SHOW TABLE STATS airlines;

B L . e . . . +
| year | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format |
Incremental stats | Location
I
— . - + + e e +
| 1987 | 1311826 | 1 | 11.75MB | NOT CACHED | NOT CACHED | PARQUET |
true
hdf s: // myhost. com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year=1987 |
| 1988 | 5202096 | 1 | 44.04MB | NOT CACHED | NOT CACHED | PARQUET |

true |

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =1988

| 1989 | 5041200 | 1 | 46.07MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =1989

| 1990 | 5270893 | 1 | 46.25MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =1990

| 1991 | 5076925 | 1 | 46.77MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_data. db/airlines/year=1991

| 1992 | 5092157 | 1 | 48.21MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =1992

| 1993 | 5070501 | 1 | 47.46MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year=1993

| 1994 | 5180048 | 1 | 47.47MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =1994

| 1995 | 5327435 | 1 | 62.40MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =1995

| 1996 | 5351983 | 1 | 62.93MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =1996

| 1997 | 5411843 | 1 | 65.05MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =1997

| 1998 | 5384721 | 1 | 62.21MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =1998

| 1999 | 5527884 | 1 | 65.10MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year=1999

| 2000 | 5683047 | 1 | 67.68MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =2000

| 2001 | 5967780 | 1 | 74.03MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ airl i nes/year=2001

| 2002 | 5271359 | 1 | 74.00MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =2002

| 2003 | 6488540 | 1 | 99.35MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =2003

| 2004 | 7129270 | 1 | 123.29MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai r| i nes/ year =2004

| 2005 | 7140596 | 1 | 120.72MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =2005

| 2006 | 7141922 | 1 | 121.88MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =2006

| 2007 | 7453215 | 1 | 130.87MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =2007

| 2008 | 7009728 | 1 | 123.14MB | NOT CACHED | NOT CACHED | PARQUET
true

hdf s: // myhost . com 8020/ user/ hi ve/ war ehouse/ ai rl i ne_dat a. db/ ai rl i nes/ year =2008

| Total | 123534969 | 22 | 1.55GB | OB | | |

—* e — + + e — + +

At this point, we sanity check the partitioning we did. All the partitions have exactly one file, which is on the low side.
A query that includes a clause WHERE year =2004 will only read a single data block; that data block will be read and
processed by a single data node; therefore, for a query targeting a single year, all the other nodes in the cluster will
sitidle while all the work happens on a single machine. It's even possible that by chance (depending on HDFS replication
factor and the way data blocks are distributed across the cluster), that multiple year partitions selected by a filter such

as WHERE year BETWEEN 1999 AND 2001 could all be read and processed by the same data node. The more data
files each partition has, the more parallelism you can get and the less probability of “hotspots” occurring on particular
nodes, therefore a bigger performance boost by having a big cluster.

However, the more data files, the less data goes in each one. The overhead of dividing the work in a parallel query
might not be worth it if each node is only reading a few megabytes. 50 or 100 megabytes is a decent size for a Parquet
data block; 9 or 37 megabytes is on the small side. Which is to say, the data distribution we ended up with based on
this partitioning scheme is on the borderline between sensible (reasonably large files) and suboptimal (few files in
each partition). The way to see how well it works in practice is to run the same queries against the original flat table
and the new partitioned table, and compare times.

Spoiler: in this case, with my particular 4-node cluster with its specific distribution of data blocks and my particular
exploratory queries, queries against the partitioned table do consistently run faster than the same queries against the
unpartitioned table. But | could not be sure that would be the case without some real measurements. Here are some
queries | ran to draw that conclusion, first against ai r | i nes_ext er nal (no partitioning), then against Al RLI NES
(partitioned by year). The Al RLI NES queries are consistently faster. Changing the volume of data, changing the size
of the cluster, running queries that did or didn't refer to the partition key columns, or other factors could change the
results to favor one table layout or the other.

E,i Note: If you find the volume of each partition is only in the low tens of megabytes, consider lowering

the granularity of partitioning. For example, instead of partitioning by year, month, and day, partition
by year and month or even just by year. The ideal layout to distribute work efficiently in a parallel
query is many tens or even hundreds of megabytes per Parquet file, and the number of Parquet files
in each partition somewhat higher than the number of data nodes.

> SELECT SUM airtine) FROM airlines_external;
+

> SELECT SUMairtinme) FROM airlines;
+

> SELECT SUM airtine) FROM airlines_external WHERE year = 2005;
+

> SELECT SUMairtime) FROM airlines WHERE year = 2005;
+

Now we can finally analyze this data set that from the raw data files and we didn't know what columns they contained.
Let's see whether the ai r t i ne of a flight tends to be different depending on the day of the week. We can see that
the average is a little higher on day number 6; perhaps Saturday is a busy flying day and planes have to circle for longer
at the destination airport before landing.

> SELECT dayofweek, AVEairtime) FROM airlines
GROUP BY dayof week ORDER BY dayof week;
S T +

| 102.1560425016671
| 102.1582931538807
| 102.2170009256653
| 102.37477661846

| 102.2697358763511
| 105.3627448363705
| 103. 4144351202054

To see if the apparent trend holds up over time, let's do the same breakdown by day of week, but also split up by year.
Now we can see that day number 6 consistently has a higher average air time in each year. We can also see that the
average air time increased over time across the board. And the presence of NULL for this column in years 1987 to 1994
shows that queries involving this column need to be restricted to a date range of 1995 and higher.

> SELECT year, dayofweek, AVGEairtine) FROM airlines

NULL

NULL
NULL
NULL

GROUP BY year, dayofweek ORDER BY year DESC, dayof week;
+oemm - Fommmeaa e - +
| year | dayofweek | avg(airtine) [
+o-m - Fommmeaaaaa . +

2008 | 1 103. 1821651651355

2008 2 103. 2149301386094

2008 | 3 103. 0585076622796

2008 4 103. 4671383539038

2008 | 5 103. 5575385182659

2008 6 107. 4006306562128

2008 7 104. 8648851041755

2007 1 102. 2196114337825

2007 2 101. 9317791906348

2007 3 102. 0964767689043

2007 4 102. 6215927201686

2007 5 102. 4289399000661

2007 6 105. 1477448215756

2007 7 103. 6305945644095

1996 1 99. 33860750862108

1996 | 2 99. 54225446396656

1996 3 99.41129336113134

1996 | 4 99. 5110373340348

1996 5 99. 22120745027595

1996 6 101.1717447111921

1996 7 99. 95410136133704

1995 | 1 96. 93779698300494

1995 2 96. 93458674589712

1995 | 3 97.00972311337051

1995 4 96. 90843832024412

1995 5 96. 78382115425562

1995 6 98. 70872826057003

1995 7 97.85570478374616

1994 1 NULL

1994 2 NULL

3
5
6
7

Impala Administration

As an administrator, you monitor Impala's use of resources and take action when necessary to keep Impala running
smoothly and avoid conflicts with other Hadoop components running on the same cluster. When you detect that an
issue has happened or could happen in the future, you reconfigure Impala or other components such as HDFS or even
the hardware of the cluster itself to resolve or avoid problems.

Related tasks:

As an administrator, you can expect to perform installation, upgrade, and configuration tasks for Impala on all machines
in a cluster. See Impala Upgrade Considerations on page 44, and Managing Impala on page 36 for details.

For security tasks typically performed by administrators, see Impala Security on page 87.

Administrators also decide how to allocate cluster resources so that all Hadoop components can run smoothly together.
For Impala, this task primarily involves:

¢ Deciding how many Impala queries can run concurrently and with how much memory, through the admission
control feature. See Admission Control and Query Queuing on page 566 for details.

¢ Dividing cluster resources such as memory between Impala and other components, using YARN for overall resource
management, and Llama to mediate resource requests from Impala to YARN. See Resource Management on page
566 for details.

Setting Timeout Periods for Daemons, Queries, and Sessions

Depending on how busy your CDH cluster is, you might increase or decrease various timeout values. Increase timeouts
if Impala is cancelling operations prematurely, when the system is responding slower than usual but the operations
are still successful if given extra time. Decrease timeouts if operations are idle or hanging for long periods, and the idle
or hung operations are consuming resources and reducing concurrency.

Increasing the Statestore Timeout

If you have an extensive Impala schema, for example with hundreds of databases, tens of thousands of tables, and so
on, you might encounter timeout errors during startup as the Impala catalog service broadcasts metadata to all the
Impala nodes using the statestore service. To avoid such timeout errors on startup, increase the statestore timeout
value from its default of 10 seconds. Specify the timeout value using the

-statestore_subscriber _tinmeout _seconds option for the statestore service, using the configuration instructions
in Modifying Impala Startup Options. The symptom of this problem is messages in the i npal ad log such as:

Connection with state-store |ost
Trying to re-register with state-store

See Scalability Considerations for the Impala Statestore on page 622 for more details about statestore operation and
settings on clusters with a large number of Impala-related objects such as tables and partitions.

Setting the Idle Query and Idle Session Timeouts for impalad

To keep long-running queries or idle sessions from tying up cluster resources, you can set timeout intervals for both
individual queries, and entire sessions.

E,i Note:

The timeout clock for queries and sessions only starts ticking when the query or session is idle.

For queries, this means the query has results ready but is waiting for a client to fetch the data. A query
can run for an arbitrary time without triggering a timeout, because the query is computing results
rather than sitting idle waiting for the results to be fetched. The timeout period is intended to prevent
unclosed queries from consuming resources and taking up slots in the admission count of running
queries, potentially preventing other queries from starting.

For sessions, this means that no query has been submitted for some period of time.

Use the following startup options for the i npal ad daemon to specify timeout values:
e --idle_query_tineout

Specifies the time in seconds after which an idle query is cancelled. This could be a query whose results were all
fetched but was never closed, or one whose results were partially fetched and then the client program stopped
requesting further results. This condition is most likely to occur in a client program using the JDBC or ODBC
interfaces, rather than in the interactive i npal a- shel | interpreter. Once a query is cancelled, the client program
cannot retrieve any further results from the query.

You can reduce the idle query timeout by using the QUERY_TI MEQUT_S query option. Any non-zero value specified
forthe--idl e_query_ti neout startup option serves as an upper limit for the QUERY_TI MEQUT_S query option.
See QUERY_TIMEOUT _S Query Option (CDH 5.2 or higher only) on page 361 about the query option.

A zero value for - -i dl e_query_ti neout disables query timeouts.

Cancelled queries remain in the open state but use only the minimal resources.

e --idle_session_tineout

Specifies the time in seconds after which an idle session expires. A session is idle when no activity is occurring for
any of the queries in that session, and the session has not started any new queries. Once a session is expired, you
cannot issue any new query requests to it. The session remains open, but the only operation you can perform is
to close it.

The default value of 0 specifies sessions never expire.

You can override the - -i dl e_sessi on_t i neout value with the IDLE_SESSION_TIMEOQOUT Query Option (CDH
5.15 / Impala 2.12 or higher only) on page 342 at the session level.

For instructions on changing i npal ad startup options, see Modifying Impala Startup Options.

E,i Note:

Impala checks periodically for idle sessions and queries to cancel. The actual idle time before
cancellation might be up to 50% greater than the specified configuration setting. For example, if the
timeout setting was 60, the session or query might be cancelled after being idle between 60 and 90
seconds.

Setting Timeout and Retries for Thrift Connections to the Backend Client

Impala connections to the backend client are subject to failure in cases when the network is momentarily overloaded.
To avoid failed queries due to transient network problems, you can configure the number of Thrift connection retries
using the following option:

e The--backend_cl i ent_connection_numretries option specifies the number of times Impala will try
connecting to the backend client after the first connection attempt fails. By default, i npal ad will attempt three
re-connections before it returns a failure.

You can configure timeouts for sending and receiving data from the backend client. Therefore, if for some reason a
query hangs, instead of waiting indefinitely for a response, Impala will terminate the connection after a configurable
timeout.

e The--backend_client _rpc_timeout ns option can be used to specify the number of milliseconds Impala
should wait for a response from the backend client before it terminates the connection and signals a failure. The
default value for this property is 300000 milliseconds, or 5 minutes.

Cancelling a Query

Occasionally, an Impala query might run for an unexpectedly long time, tying up resources in the cluster. This section
describes the options to terminate such runaway queries.

Setting a Time Limit on Query Execution

An Impala administrator can set a default value of the EXEC_TI ME_LI M T_S query option for a resource pool. If a
user accidentally runs a large query that executes for longer than the limit, it will be automatically terminated after
the time limit expires to free up resources.

You can override the default value per query or per session if you do not want to apply the default EXEC TIME LIM T_S
value to a specific query or a session. See EXEC_TIME_LIMIT_S Query Option (CDH 5.15 / Impala 2.12 or higher only)
on page 337 for the details of the query option.

Interactively Cancelling a Query

You can manually cancel a query in the Impala Web Ul for the i npal ad host (on port 25000 by default):
1. Click /queries.
2. Click Cancel for a query in the queries in flight list.

Various client applications let you interactively cancel queries submitted or monitored through those applications. For
example:

e Press”"Cini npal a-shel | .
¢ Click Cancel from the Watch page in Hue.

Using Impala through a Proxy for High Availability

For most clusters that have multiple users and production availability requirements, you might want to set up a
load-balancing proxy server to relay requests to and from Impala.

Set up a software package of your choice to perform these functions.

E,’ Note:

Most considerations for load balancing and high availability apply to the i npal ad daemon. The

st at est or ed and cat al ogd daemons do not have special requirements for high availability, because
problems with those daemons do not result in data loss. If those daemons become unavailable due
to an outage on a particular host, you can stop the Impala service, delete the Impala StateStore and
Impala Catalog Server roles, add the roles on a different host, and restart the Impala service.

Overview of Proxy Usage and Load Balancing for Impala
Using a load-balancing proxy server for Impala offers the following advantages:

¢ Applications connect to a single well-known host and port, rather than keeping track of the hosts where the
i mpal ad daemons are running.

e If any host running an i npal ad becomes unavailable, application connection requests still succeed because you
always connect to the proxy server rather than a specific host running the i npal ad daemon.

¢ The coordinator node for each Impala query potentially requires more memory and CPU cycles than the other
nodes that process the query. The proxy server can schedule queries so that each connection uses a different
coordinator node. This load-balancing technique lets the i npal ad nodes share this additional work, rather than
directing it on a single machine.

The following are the general setup steps that apply to any load-balancing proxy software:

1. Select and download a load-balancing proxy software or other load-balancing hardware appliance. It should only
need to be installed and configured on a single host, typically on an edge node.

N

. Configure the load balancer (typically by editing a configuration file). In particular:

¢ To relay Impala requests back and forth, set up a port that the load balancer will listen on.

e Select a load balancing algorithm. See Choosing the Load-Balancing Algorithm on page 78 for load balancing
algorithm options.

e For Kerberized clusters, follow the instructions in Special Proxy Considerations for Clusters Using Kerberos
on page 79.

3. If you are using Hue or JDBC-based applications, you typically set up load balancing for both ports 21000 and
21050, because these client applications connect through port 21050 while the i npal a- shel | command connects
through port 21000. See Ports Used by Impala on page 741 for when to use port 21000, 21050, or another value
depending on what type of connections you are load balancing.

Sy

. Run the load-balancing proxy server, pointing it at the configuration file that you set up.
. On systems managed by Cloudera Manager:

(%}

a. Navigate to Impala > Configuration > Impala Daemon Default Group.

b. In the Impala Daemons Load Balancer field, specify the address of the load balancer in the host : port
format.

This setting lets Cloudera Manager route all appropriate Impala-related operations through the load-balancing
proxy server.

6. For any scripts, jobs, or configuration settings for applications that formerly connected to a specifici npal ad to
run Impala SQL statements, change the connection information (such as the-i optionini npal a- shel |) to point
to the load balancer instead.

E,i Note: The following sections use the HAProxy software as a representative example of a load balancer
that you can use with Impala. For information specifically about using Impala with the F5 BIG-IP load
balancer, see Impala HA with F5 BIG-IP.

Choosing the Load-Balancing Algorithm

Load-balancing software offers a number of algorithms to distribute requests. Each algorithm has its own characteristics
that make it suitable in some situations but not others.

Leastconn

Connects sessions to the coordinator with the fewest connections, to balance the load evenly. Typically used for
workloads consisting of many independent, short-running queries. In configurations with only a few client machines,
this setting can avoid having all requests go to only a small set of coordinators.

Recommended for Impala with F5.
Source IP Persistence

Sessions from the same IP address always go to the same coordinator. A good choice for Impala workloads containing
a mix of queries and DDL statements, such as CREATE TABLE and ALTER TABLE. Because the metadata changes
from a DDL statement take time to propagate across the cluster, prefer to use the Source IP Persistence algorithm
in this case. If you are unable to choose Source IP Persistence, run the DDL and subsequent queries that depend
on the results of the DDL through the same session, for example by running i npal a-shel | -f script_file
to submit several statements through a single session.

http://www.cloudera.com/documentation/other/reference-architecture/PDF/Impala-HA-with-F5-BIG-IP.pdf

Required for setting up high availability with Hue. See Configure Hive and Impala for High Availability for configuring
high availability with Hue.

Round-robin
Distributes connections to all coordinator nodes. Typically not recommended for Impala.

You might need to perform benchmarks and load testing to determine which setting is optimal for your use case.
Always set up using two load-balancing algorithms: Source IP Persistence for Hue and Leastconn for others.
Special Proxy Considerations for Clusters Using Kerberos

In a cluster using Kerberos, applications check host credentials to verify that the host they are connecting to is the
same one that is actually processing the request.

In Impala 2.11 and lower versions, once you enable a proxy server in a Kerberized cluster, users will not be able to
connect to individual impala daemons directly from impala-shell.

In Impala 2.12 and higher, when you enable a proxy server in a Kerberized cluster, users have an option to connect to
Impala daemons directly from i npal a- shel | usingthe-b /--kerberos_host fqdninpal a-shel | flag. This
option can be used for testing or troubleshooting purposes, but not recommended for live production environments
as it defeats the purpose of a load balancer/proxy.

Example:

i mpal a-shell -i inpal ad-1. mydorai n.com -k -b | oadbal ancer-1. nydonai n. com
Alternatively, with the fully qualified configurations:

i mpal a-shel | --inpal ad=i npal ad- 1. mydomai n. com 21000 - - ker ber os
- - ker ber os_host _f qdn=I oadbal ancer- 1. mydomai n. com

See impala-shell Configuration Options on page 556 for information about the option.

To validate the load-balancing proxy server, perform these extra Kerberos setup steps:

1. This section assumes you are starting with a Kerberos-enabled cluster. See Enabling Kerberos Authentication for
Impala on page 101 for instructions for setting up Impala with Kerberos. See Enabling Kerberos Authentication for
CDH for general steps to set up Kerberos.

2. Choose the host you will use for the proxy server. Based on the Kerberos setup procedure, it should already have
an entry i npal a/ pr oxy_host @ eal min its keyt ab.

3. In Cloudera Manager, navigate to Impala > Configuration > Impala Daemon Default Group.
4. In the Impala Daemons Load Balancer field, specify the address of the load balancer in the host : port format.

When this field is specified and Kerberos is enabled, Cloudera Manager adds a principal for
i mpal a/ pr oxy_host @ eal mto the keyt ab for all Impala daemons.

5. Restart the Impala service.

Client Connection to Proxy Server in Kerberized Clusters

When a client connect to Impala, the service principal specified by the client must match the - pri nci pal setting,
i npal a/ proxy_host @ eal m of the Impala proxy server as specified in its keyt ab. And the client should connect
to the proxy server port.

In hue. i ni, set the following to configure Hue to automatically connect to the proxy server:

[impal a]
server _host =pr oxy_host
i mpal a_pri nci pal =i npal a/ pr oxy_host

The following are the JDBC connection string formats when connecting through the load balancer with the load
balancer's host name in the principal:

jdbc: hive2://proxy_host: | oad_bal ancer_port/; princi pal =i npal a/ _HOST@ eal m
j dbc: hive2://proxy_host: | oad_bal ancer _port/; princi pal =i npal a/ pr oxy_host @ eal m

When starting i mpal a- shel |, specify the service principal via the - b or - - ker ber os_host _f qdn flag.

Special Proxy Considerations for TLS/SSL Enabled Clusters

When TLS/SSL is enabled for Impala, the client application, whether impala-shell, Hue, or something else, expects the
certificate common name (CN) to match the hostname that it is connected to. With no load balancing proxy server,
the hostname and certificate CN are both that of the i npal ad instance. However, with a proxy server, the certificate
presented by the i npal ad instance does not match the load balancing proxy server hostname. If you try to load-balance
a TLS/SSL-enabled Impala installation without additional configuration, you see a certificate mismatch error when a
client attempts to connect to the load balancing proxy host.

You can configure a proxy server in several ways to load balance TLS/SSL enabled Impala:

TLS/SSL Bridging

In this configuration, the proxy server presents a TLS/SSL certificate to the client, decrypts the client request, then
re-encrypts the request before sending it to the backend i npal ad. The client and server certificates can be managed
separately. The request or resulting payload is encrypted in transit at all times.

TLS/SSL Passthrough

In this configuration, traffic passes through to the backend i npal ad instance with no interaction from the load
balancing proxy server. Traffic is still encrypted end-to-end.

The same server certificate, utilizing either wildcard or Subject Alternate Name (SAN), must be installed on each
i npal ad instance.

TLS/SSL Offload

In this configuration, all traffic is decrypted on the load balancing proxy server, and traffic between the backend
i npal ad instances is unencrypted. This configuration presumes that cluster hosts reside on a trusted network and
only external client-facing communication need to be encrypted in-transit.

If you plan to use Auto-TLS, your load balancer must perform TLS/SSL bridging or TLS/SSL offload.

Refer to your load balancer documentation for the steps to set up Impala and the load balancer using one of the options
above.

For information specifically about using Impala with the F5 BIG-IP load balancer with TLS/SSL enabled, see Impala HA
with F5 BIG-IP.

Example of Configuring HAProxy Load Balancer for Impala
If you are not already using a load-balancing proxy, you can experiment with HAProxy a free, open source load balancer.
This example shows how you might install and configure that load balancer on a Red Hat Enterprise Linux system.

¢ [nstall the load balancer:
yuminstall haproxy

e Setupthe configuration file:/ et ¢/ hapr oxy/ hapr oxy. cf g. See the following section for a sample configuration
file.

¢ Run the load balancer (on a single host, preferably one not running i npal ad):

/usr/ sbi n/ haproxy —f /[etc/haproxy/haproxy.cfg

http://www.cloudera.com/documentation/other/reference-architecture/PDF/Impala-HA-with-F5-BIG-IP.pdf
http://www.cloudera.com/documentation/other/reference-architecture/PDF/Impala-HA-with-F5-BIG-IP.pdf
http://haproxy.1wt.eu/

e Ininpal a- shel |, JDBC applications, or ODBC applications, connect to the listener port of the proxy host, rather
than port 21000 or 21050 on a host actually running i npal ad. The sample configuration file sets haproxy to listen
on port 25003, therefore you would send all requests to hapr oxy_host : 25003.

This is the sample hapr oxy. cf g used in this example:

gl obal
To have these nessages end up in /var/log/ haproxy.log you will
need to:

1) configure syslog to accept network log events. This is done
by adding the '-r' option to the SYSLOGD _OPTIONS in
/et c/ sysconfi g/ sysl og

2) configure local2 events to go to the /var/| og/ haproxy.| og
file. Aline like the follow ng can be added to
/ et c/sysconfi g/ sysl og

| ocal 2. * /var /1 og/ haproxy. | og

HHEHHFEHHFHHHRHH

127.0.0.1 local O

| og 127.0.0.1 local 1 notice
chr oot /var/1ib/ haproxy
pidfile /var/run/ haproxy. pid
maxconn 4000

user hapr oxy

group hapr oxy

daenon

o
«

turn on stats unix socket
#istats socket /var/lib/haproxy/stats

common defaults that all the 'listen' and 'backend' sections wll
use if not designated in their block

The timeout val ues should be dependant on how you use the cluster

#
#
#
You might need to adjust timng values to prevent tineouts.
#
#
and how | ong your queries run.

He s s e m e
defaul ts

nmode http

| og gl obal

option htt pl og

option dont | ognul |

option http-server-close

option forwardfor except 127.0.0.0/8

option redi spat ch

retries 3

maxconn 3000

ti meout connect 5000

timeout client 3600s

ti meout server 3600s
#
This sets up the admin page for HA Proxy at port 25002
#
listen stats : 25002

bal ance

nmode http

stats enabl e
stats auth usernamne: password

This is the setup for Inpala. Inpala client connect to | oad_bal ancer_host: 25003.
HAProxy wi |l bal ance connections anong the list of servers |listed bel ow
The list of Inpalad is |listening at port 21000 for beeswax (inpal a-shell) or original
CODBC dri ver.
For JDBC or ODBC version 2.x driver, use port 21050 instead of 21000.
listen inmpala :25003
nmode tcp
option tcplog

bal ance | eastconn

server synbolic_name_1 inpal a- host - 1. exanpl e. com 21000 check
server synbolic_nane_2 inpal a- host-2. exanpl e. com 21000 check
server synbolic_name_3 inpal a- host - 3. exanpl e. com 21000 check
server synbol i c_nane_4 inpal a- host-4. exanpl e. com 21000 check

Setup for Hue or other JDBC enabl ed applications
In particular, Hue requires sticky sessions.
The application connects to | oad_bal ancer _host: 21051, and HAProxy bal ances
connections to the associated hosts, where Inpala |listens for JDBC
requests on port 21050.
listen inpalajdbc :21051
node tcp
option tcplog
bal ance source
server synbolic_name_5 inpal a- host - 1. exanpl e. com 21050 check
server synbol i c_nane_6 inpal a- host-2. exanpl e. com 21050 check
server synbolic_name_7 inpal a- host - 3. exanpl e. com 21050 check
server synbolic_nane_8 inpal a- host-4. exanpl e. com 21050 check

o Important: Hue requires the check option at the end of each line in the above file to ensure HAProxy
can detect any unreachable i npal ad server, and failover can be successful. Without the TCP check,
you can hit an error when the i npal ad daemon to which Hue tries to connect is down.

E,i Note: If your JDBC or ODBC application connects to Impala through a load balancer such as hapr oxy,
be cautious about reusing the connections. If the load balancer has set up connection timeout values,
either check the connection frequently so that it never sits idle longer than the load balancer timeout
value, or check the connection validity before using it and create a new one if the connection has
been closed.

Managing Disk Space for Impala Data

Although Impala typically works with many large files in an HDFS storage system with plenty of capacity, there are
times when you might perform some file cleanup to reclaim space, or advise developers on techniques to minimize
space consumption and file duplication.

e Use compact binary file formats where practical. Numeric and time-based data in particular can be stored in more
compact form in binary data files. Depending on the file format, various compression and encoding features can
reduce file size even further. You can specify the STORED AS clause as part of the CREATE TABLE statement, or
ALTER TABLE with the SET FI LEFORMAT clause for an existing table or partition within a partitioned table. See
How Impala Works with Hadoop File Formats on page 649 for details about file formats, especially Using the Parquet
File Format with Impala Tables on page 658. See CREATE TABLE Statement on page 241 and ALTER TABLE Statement
on page 212 for syntax details.

¢ You manage underlying data files differently depending on whether the corresponding Impala table is defined as
an internal or external table:

— Use the DESCRI BE FORVATTED statement to check if a particular table is internal (managed by Impala) or
external, and to see the physical location of the data files in HDFS. See DESCRIBE Statement on page 258 for
details.

— For Impala-managed (“internal”) tables, use DROP TABLE statements to remove data files. See DROP TABLE
Statement on page 275 for details.

— For tables not managed by Impala (“external” tables), use appropriate HDFS-related commands such as
hadoop fs, hdfs dfs, ordi stcp, to create, move, copy, or delete files within HDFS directories that are
accessible by the i npal a user. Issue a REFRESH t abl e_nane statement after adding or removing any files
from the data directory of an external table. See REFRESH Statement on page 298 for details.

— Use external tables to reference HDFS data files in their original location. With this technique, you avoid
copying the files, and you can map more than one Impala table to the same set of data files. When you drop
the Impala table, the data files are left undisturbed. See External Tables on page 204 for details.

— Use the LOAD DATA statement to move HDFS files into the data directory for an Impala table from inside
Impala, without the need to specify the HDFS path of the destination directory. This technique works for both
internal and external tables. See LOAD DATA Statement on page 295 for details.

e Make sure that the HDFS trashcan is configured correctly. When you remove files from HDFS, the space might not
be reclaimed for use by other files until sometime later, when the trashcan is emptied. See DROP TABLE Statement
on page 275 and the FAQ entry Why is space not freed up when | issue DROP TABLE? on page 770 for details. See
User Account Requirements on page 25 for permissions needed for the HDFS trashcan to operate correctly.

e Drop all tables in a database before dropping the database itself. See DROP DATABASE Statement on page 269 for
details.

e Clean up temporary files after failed | NSERT statements. If an | NSERT statement encounters an error, and you
see a directory named . i npal a_i nsert _stagi ng or_i npal a_i nsert _st agi ng left behind in the data
directory for the table, it might contain temporary data files taking up space in HDFS. You might be able to salvage
these data files, for example if they are complete but could not be moved into place due to a permission error.
Or, you might delete those files through commands such as hadoop fs or hdf s df s, to reclaim space before
re-trying the | NSERT. Issue DESCRI BE FORMATTED t abl e_nane to see the HDFS path where you can check for
temporary files.

e By default, intermediate files used during large sort, join, aggregation, or analytic function operations are stored
inthe directory/ t np/ i npal a- scr at ch . These files are removed when the operation finishes. (Multiple concurrent
queries can perform operations that use the “spill to disk” technique, without any name conflicts for these
temporary files.) You can specify a different location by starting the i npal ad daemon with the
--scratch_dirs="path_to_directory" configuration option or the equivalent configuration option in the
Cloudera Manager user interface. You can specify a single directory, or a comma-separated list of directories. The
scratch directories must be on the local filesystem, not in HDFS. You might specify different directory paths for
different hosts, depending on the capacity and speed of the available storage devices. In CDH 5.5 / Impala 2.3 or
higher, Impala successfully starts (with a warning written to the log) if it cannot create or read and write files in
one of the scratch directories. If there is less than 1 GB free on the filesystem where that directory resides, Impala
still runs, but writes a warning message to its log. If Impala encounters an error reading or writing files in a scratch
directory during a query, Impala logs the error and the query fails.

¢ If you use the Amazon Simple Storage Service (S3) as a place to offload data to reduce the volume of local storage,
Impala 2.2.0 and higher can query the data directly from S3. See Using Impala with the Amazon S3 Filesystem on
page 707 for details.

Auditing Impala Operations

To monitor how Impala data is being used within your organization, ensure that your Impala authorization and
authentication policies are effective, and detect attempts at intrusion or unauthorized access to Impala data, you can
use the auditing feature in Impala 1.2.1 and higher:

e Enable auditing by including the option - - audi t _event _| og_di r=di rect ory_pat h inyouri npal ad startup
options for a cluster not managed by Cloudera Manager, or configuring Impala Daemon logging in Cloudera
Manager. The log directory must be a local directory on the server, not an HDFS directory.

e Decide how many queries will be represented in each log files. By default, Impala starts a new log file every 5000
queries. To specify a different number, include the option
--max_audit _event _|og _fil e_si ze=nunber_of _queri es inthei npal ad startup options.

e Configure Cloudera Navigator to collect and consolidate the audit logs from all the hosts in the cluster.

¢ InCDH5.12 /Impala 2.9 and higher, you can control how many audit event log files are kept on each host. Specify
the option - - max_audi t _event _| og_fil es=nunber _of _| og_fil es inthei npal ad startup options. Once
the limit is reached, older files are rotated out using the same mechanism as for other Impala log files. The default
value for this setting is 0, representing an unlimited number of audit event log files.

http://www.cloudera.com/documentation/enterprise/latest/topics/cn_iu_service_audit.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cn_iu_service_audit.html

¢ Use Cloudera Navigator or Cloudera Manager to filter, visualize, and produce reports based on the audit data.
(The Impala auditing feature works with Cloudera Manager 4.7 to 5.1 and Cloudera Navigator 2.1 and higher.)
Check the audit data to ensure that all activity is authorized and detect attempts at unauthorized access.

Durability and Performance Considerations for Impala Auditing
The auditing feature only imposes performance overhead while auditing is enabled.

Because any Impala host can process a query, enable auditing on all hosts where the i npal ad daemon runs. Each
host stores its own log files, in a directory in the local filesystem. The log data is periodically flushed to disk (through
anfsync() system call) to avoid loss of audit data in case of a crash.

The runtime overhead of auditing applies to whichever host serves as the coordinator for the query, that is, the host
you connect to when you issue the query. This might be the same host for all queries, or different applications or users
might connect to and issue queries through different hosts.

To avoid excessive I/0 overhead on busy coordinator hosts, Impala syncs the audit log data (using the f sync() system
call) periodically rather than after every query. Currently, the f sync() calls are issued at a fixed interval, every 5
seconds.

By default, Impala avoids losing any audit log data in the case of an error during a logging operation (such as a disk full
error), by immediately shutting down i npal ad on the host where the auditing problem occurred. You can override
this setting by specifying the option - - abort _on_f ai | ed_audi t _event =f al se in the i npal ad startup options.

Format of the Audit Log Files

The audit log files represent the query information in JSON format, one query per line. Typically, rather than looking
at the log files themselves, you use the Cloudera Navigator product to consolidate the log data from all Impala hosts
and filter and visualize the results in useful ways. (If you do examine the raw log data, you might run the files through
a JSON pretty-printer first.)

All the information about schema objects accessed by the query is encoded in a single nested record on the same line.
For example, the audit log foran | NSERT ... SELECT statement records that a select operation occurs on the source
table and an insert operation occurs on the destination table. The audit log for a query against a view records the base
table accessed by the view, or multiple base tables in the case of a view that includes a join query. Every Impala
operation that corresponds to a SQL statement is recorded in the audit logs, whether the operation succeeds or fails.
Impala records more information for a successful operation than for a failed one, because an unauthorized query is
stopped immediately, before all the query planning is completed.

The information logged for each query includes:
e Client session state:

— Session ID
— User name
— Network address of the client connection

e SQL statement details:

— QueryID

— Statement Type - DML, DDL, and so on

— SQL statement text

— Execution start time, in local time

— Execution Status - Details on any errors that were encountered
— Target Catalog Objects:

— Object Type - Table, View, or Database
— Fully qualified object name
— Privilege - How the object is being used (SELECT, | NSERT, CREATE, and so on)

Which Operations Are Audited

The kinds of SQL queries represented in the audit log are:
e Queries that cause data to be returned or changed.

This includes queries that fail while running but still stream partial results to the user.

e Queries that are prevented due to lack of authorization, even if nothing is returned or changed.
e Queries that Impala can analyze and parse to determine that they are authorized.

The audit data is recorded immediately after Impala finishes its analysis and before the query is actually executed.

Other than audits for lack of authorization, the audit log does not contain entries for queries that could not be parsed
and analyzed, such as errors, cancelled queries, and timed out queries. For example, a query that fails due to a syntax
error is not recorded in the audit log. Certain statements in the Impala-shell interpreter, such as CONNECT, SUMVARY,
PROFI LE, SET, and QUI T, do not correspond to actual SQL queries; these statements are not reflected in the audit
log.

Reviewing the Audit Logs

You typically do not review the audit logs in raw form. The Cloudera Manager Agent periodically transfers the log
information into a back-end database where it can be examined in consolidated form. See the Cloudera Navigator
documentation for details .

Viewing Lineage Information for Impala Data

Lineage is a feature in the Cloudera Navigator data management component that helps you track where data originated,
and how data propagates through the system through SQL statements such as SELECT, | NSERT, and CREATE TABLE
AS SELECT. Impala is covered by the Cloudera Navigator lineage features in CDH 5.4 / Impala 2.2 and higher.

This type of tracking is important in high-security configurations, especially in highly regulated industries such as

healthcare, pharmaceuticals, financial services and intelligence. For such kinds of sensitive data, it is important to know
all the places in the system that contain that data or other data derived from it; to verify who has accessed that data;
and to be able to doublecheck that the data used to make a decision was processed correctly and not tampered with.

You interact with this feature through lineage diagrams showing relationships between tables and columns. For
instructions about interpreting lineage diagrams, see
http://www.cloudera.com/documentation/enterprise/latest/topics/cn_iu_lineage.html.

Column Lineage
Column lineage tracks information in fine detail, at the level of particular columns rather than entire tables.

For example, if you have a table with information derived from web logs, you might copy that data into other tables
as part of the ETL process. The ETL operations might involve transformations through expressions and function calls,
and rearranging the columns into more or fewer tables (normalizing or denormalizing the data). Then for reporting,
you might issue queries against multiple tables and views. In this example, column lineage helps you determine that
data that entered the system as RAW LOGS. FI ELD1 was then turned into WVEBSI TE_REPORTS. | P_ADDRESS through
an | NSERT ... SELECT statement. Or, conversely, you could start with a reporting query against a view, and trace
the origin of the data in a field such as TOP_10_VI SI TORS. USER _| D back to the underlying table and even further
back to the point where the data was first loaded into Impala.

When you have tables where you need to track or control access to sensitive information at the column level, see
Enabling Sentry Authorization for Impala on page 92 for how to implement column-level security. You set up
authorization using the Sentry framework, create views that refer to specific sets of columns, and then assign
authorization privileges to those views rather than the underlying tables.

http://www.cloudera.com/content/cloudera-content/cloudera-docs/Navigator/latest/Cloudera-Navigator-Installation-and-User-Guide/Cloudera-Navigator-Installation-and-User-Guide.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/Navigator/latest/Cloudera-Navigator-Installation-and-User-Guide/Cloudera-Navigator-Installation-and-User-Guide.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cn_iu_lineage.html

Lineage Data for Impala

The lineage feature is enabled by default. When lineage logging is enabled, the serialized column lineage graph is
computed for each query and stored in a specialized log file in JSON format.

Impala records queries in the lineage log if they complete successfully, or fail due to authorization errors. For write
operations such as | NSERT and CREATE TABLE AS SELECT, the statement is recorded in the lineage log only if it
successfully completes. Therefore, the lineage feature tracks data that was accessed by successful queries, or that was
attempted to be accessed by unsuccessful queries that were blocked due to authorization failure. These kinds of queries
represent data that really was accessed, or where the attempted access could represent malicious activity.

Impala does not record in the lineage log queries that fail due to syntax errors or that fail or are cancelled before they
reach the stage of requesting rows from the result set.

To enable or disable this feature on a system not managed by Cloudera Manager, set or remove the
-1ineage_event _| og_di r configuration option for thei npal ad daemon. For information about turning the lineage
feature on and off through Cloudera Manager, see
http://www.cloudera.com/documentation/enterprise/latest/topics/datamgmt_impala_lineage log.html.

http://www.cloudera.com/documentation/enterprise/latest/topics/datamgmt_impala_lineage_log.html

Impala Security

Impala includes a fine-grained authorization framework for Hadoop, based on the Sentry open source project. Sentry
authorization was added in Impala 1.1.0. Together with the Kerberos authentication framework, Sentry takes Hadoop
security to a new level needed for the requirements of highly regulated industries such as healthcare, financial services,
and government. Impala also includes an auditing capability; Impala generates the audit data, the Cloudera Navigator
product consolidates the audit data from all nodes in the cluster, and Cloudera Manager lets you filter, visualize, and
produce reports. The auditing feature was added in Impala 1.1.1.

The Impala security features have several objectives. At the most basic level, security prevents accidents or mistakes
that could disrupt application processing, delete or corrupt data, or reveal data to unauthorized users. More advanced
security features and practices can harden the system against malicious users trying to gain unauthorized access or
perform other disallowed operations. The auditing feature provides a way to confirm that no unauthorized access
occurred, and detect whether any such attempts were made. This is a critical set of features for production deployments
in large organizations that handle important or sensitive data. It sets the stage for multi-tenancy, where multiple
applications run concurrently and are prevented from interfering with each other.

The material in this section presumes that you are already familiar with administering secure Linux systems. That is,
you should know the general security practices for Linux and Hadoop, and their associated commands and configuration
files. For example, you should know how to create Linux users and groups, manage Linux group membership, set Linux
and HDFS file permissions and ownership, and designate the default permissions and ownership for new files. You
should be familiar with the configuration of the nodes in your Hadoop cluster, and know how to apply configuration
changes or run a set of commands across all the nodes.

The security features are divided into these broad categories:

authorization

Which users are allowed to access which resources, and what operations are they allowed to perform? Impala relies
on the open source Sentry project for authorization. By default (when authorization is not enabled), Impala does
all read and write operations with the privileges of the i npal a user, which is suitable for a development/test
environment but not for a secure production environment. When authorization is enabled, Impala uses the OS user
ID of the user who runs i npal a- shel | or other client program, and associates various privileges with each user.
See Enabling Sentry Authorization for Impala on page 92 for details about setting up and managing authorization.

authentication

How does Impala verify the identity of the user to confirm that they really are allowed to exercise the privileges
assigned to that user? Impala relies on the Kerberos subsystem for authentication. See Enabling Kerberos
Authentication for Impala on page 101 for details about setting up and managing authentication.

auditing
What operations were attempted, and did they succeed or not? This feature provides a way to look back and
diagnose whether attempts were made to perform unauthorized operations. You use this information to track
down suspicious activity, and to see where changes are needed in authorization policies. The audit data produced
by this feature is collected by the Cloudera Manager product and then presented in a user-friendly form by the
Cloudera Manager product. See Auditing Impala Operations on page 83 for details about setting up and managing
auditing.

Security Guidelines for Impala

The following are the major steps to harden a cluster running Impala against accidents and mistakes, or malicious
attackers trying to access sensitive data:

e Secure the r oot account. The r oot user can tamper with the i npal ad daemon, read and write the data files in
HDFS, log into other user accounts, and access other system services that are beyond the control of Impala.

e Restrict membership in the sudoer s list (in the / et ¢/ sudoer s file). The users who can run the sudo command
can do many of the same things as the r oot user.

e Ensure the Hadoop ownership and permissions for Impala data files are restricted.
e Ensure the Hadoop ownership and permissions for Impala log files are restricted.

e Ensure that the Impala web Ul (available by default on port 25000 on each Impala node) is password-protected.
See Impala Web User Interface for Debugging on page 731 for details.

e Create a policy file that specifies which Impala privileges are available to users in particular Hadoop groups (which
by default map to Linux OS groups). Create the associated Linux groups using the gr oupadd command if necessary.

e The Impala authorization feature makes use of the HDFS file ownership and permissions mechanism; for background
information, see the HDFS Permissions Guide. Set up users and assign them to groups at the OS level, corresponding
to the different categories of users with different access levels for various databases, tables, and HDFS locations
(URISs). Create the associated Linux users using the user add command if necessary, and add them to the appropriate
groups with the user nrod command.

e Design your databases, tables, and views with database and table structure to allow policy rules to specify simple,
consistent rules. For example, if all tables related to an application are inside a single database, you can assign
privileges for that database and use the * wildcard for the table name. If you are creating views with different
privileges than the underlying base tables, you might put the views in a separate database so that you can use
the * wildcard for the database containing the base tables, while specifying the precise names of the individual
views. (For specifying table or database names, you either specify the exact name or * to mean all the databases
on a server, or all the tables and views in a database.)

e Enable authorization by running the i npal ad daemons with the - ser ver _nane and
-aut hori zation_policy_fil e optionson all nodes. (The authorization feature does not apply to the
st at est or ed daemon, which has no access to schema objects or data files.)

¢ Set up authentication using Kerberos, to make sure users really are who they say they are.

Securing Impala Data and Log Files

One aspect of security is to protect files from unauthorized access at the filesystem level. For example, if you store
sensitive data in HDFS, you specify permissions on the associated files and directories in HDFS to restrict read and write
permissions to the appropriate users and groups.

If you issue queries containing sensitive values in the WHERE clause, such as financial account numbers, those values
are stored in Impala log files in the Linux filesystem and you must secure those files also. For the locations of Impala
log files, see Using Impala Logging on page 724.

All Impala read and write operations are performed under the filesystem privileges of the i npal a user. The i npal a
user must be able to read all directories and data files that you query, and write into all the directories and data files
for | NSERT and LOAD DATA statements. At a minimum, make sure the i npal a user is in the hi ve group so that it
can access files and directories shared between Impala and Hive. See User Account Requirements on page 25 for more
details.

Setting file permissions is necessary for Impala to function correctly, but is not an effective security practice by itself:

e The way to ensure that only authorized users can submit requests for databases and tables they are allowed to
access is to set up Sentry authorization, as explained in Enabling Sentry Authorization for Impala on page 92. With
authorization enabled, the checking of the user ID and group is done by Impala, and unauthorized access is blocked
by Impala itself. The actual low-level read and write requests are still done by the i npal a user, so you must have
appropriate file and directory permissions for that user ID.

* You must also set up Kerberos authentication, as described in Enabling Kerberos Authentication for Impala on
page 101, so that users can only connect from trusted hosts. With Kerberos enabled, if someone connects a new

https://archive.cloudera.com/cdh6/6.0.0/docs/hadoop-3.0.0-cdh6.0.0/hadoop-project-dist/hadoop-hdfs/HdfsPermissionsGuide.html

host to the network and creates user IDs that match your privileged IDs, they will be blocked from connecting to
Impala at all from that host.

Installation Considerations for Impala Security

Impala 1.1 comes set up with all the software and settings needed to enable security when you run the i npal ad
daemon with the new security-related options (- ser ver _nane and - aut hori zati on_policy_file).Youdo not
need to change any environment variables or install any additional JAR files. In a cluster managed by Cloudera Manager,
you do not need to change any settings in Cloudera Manager.

Securing the Hive Metastore Database

Itis important to secure the Hive metastore, so that users cannot access the names or other information about databases
and tables the through the Hive client or by querying the metastore database. Do this by turning on Hive metastore
security, using the instructions in the CDH Security Guide for securing different Hive components:

¢ Secure the Hive Metastore.

e |n addition, allow access to the metastore only from the HiveServer2 server, and then disable local access to the
HiveServer2 server.

Securing the Impala Web User Interface

The instructions in this section presume you are familiar with the _. ht passwd mechanism commonly used to
password-protect pages on web servers.

Password-protect the Impala web Ul that listens on port 25000 by default. Set up a. ht passwd file in the $1 MPALA_HOVE
directory, or start both the i npal ad and st at est or ed daemons with the - - webser ver _password_fi | e option
to specify a different location (including the filename).

This file should only be readable by the Impala process and machine administrators, because it contains (hashed)
versions of passwords. The username / password pairs are not derived from Unix usernames, Kerberos users, or any
other system. The domai n field in the password file must match the domain supplied to Impala by the new command-line
option - - webser ver _aut henti cati on_domai n. The default is mydomai n. com

Impala also supports using HTTPS for secure web traffic. To do so, set - - webserver _certificate fil e to refer
to a valid . pemTLS/SSL certificate file. Impala will automatically start using HTTPS once the TLS/SSL certificate has
been read and validated. A . pemfile is basically a private key, followed by a signed TLS/SSL certificate; make sure to
concatenate both parts when constructing the . pemfile.

If Impala cannot find or parse the . pemfile, it prints an error message and quits.

E’; Note:

If the private key is encrypted using a passphrase, Impala will ask for that passphrase on startup, which
is not useful for a large cluster. In that case, remove the passphrase and make the . pemfile readable
only by Impala and administrators.

When you turn on TLS/SSL for the Impala web Ul, the associated URLs change from ht t p: / / prefixes
to htt ps: // . Adjust any bookmarks or application code that refers to those URLs.

Configuring Secure Access for Impala Web Servers

Cloudera Manager supports two methods of authentication for secure access to the Impala Catalog Server, Daemon,
and StateStoreweb servers: password-based authentication and TLS/SSL certificate authentication.

Authentication for the three types of daemons can be configured independently.

http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_sg_hive_security.html
http://en.wikipedia.org/wiki/.htpasswd

Configuring Password Authentication

1. Navigate to Clusters > Impala Service > Configuration.

2. Search for "password" using the Search box in the Configuration tab. This should display the password-related
properties (Username and Password properties) for the Impala Daemon, StateStore, and Catalog Server. If there
are multiple role groups configured for Impala Daemon instances, the search should display all of them.

3. Enter a username and password into these fields.
4. Click Save Changes, and restart the Impala service.

Now when you access the Web Ul for the Impala Daemon, StateStore, or Catalog Server, you are asked to log in before
access is granted.

Configuring TLS/SSL Certificate Authentication

1. Create or obtain an TLS/SSL certificate.

2. Place the certificate, in . pemformat, on the hosts where the Impala Catalog Server and StateStore are running,
and on each host where an Impala Daemon is running. It can be placed in any location (path) you choose. If all
the Impala Daemons are members of the same role group, then the . pemfile must have the same path on every
host.

3. Navigate to Clusters > Impala Service > Configuration.

4. Search for "certificate" using the Search box in the Configuration tab. This should display the certificate file location
properties for the Impala Catalog Server, Impala Daemon, and StateStore. If there are multiple role groups
configured for Impala Daemon instances, the search should display all of them.

5. In the property fields, enter the full path name to the certificate file.
6. Click Save Changes, and restart the Impala service.

o Important: If Cloudera Manager cannot find the . pemfile on the host for a specific role instance,
that role will fail to start.

When you access the Web Ul for the Impala Catalog Server, Impala Daemon, and StateStore, ht t ps will be used.

Configuring TLS/SSL for Impala

Impala supports TLS/SSL network encryption, between Impala and client programs, and between the Impala-related
daemons running on different nodes in the cluster. This feature is important when you also use other features such
as Kerberos authentication or Sentry authorization, where credentials are being transmitted back and forth.

o Important:

¢ You can use either Cloudera Manager or the following command-line instructions to complete
this configuration.

¢ This information applies specifically to the version of Impala shown in the HTML page header or
on the PDF title page. If you use an earlier version of CDH, see the documentation for that version
located at Cloudera Documentation.

Using Cloudera Manager
To configure Impala to listen for Beeswax and HiveServer2 requests on TLS/SSL-secured ports:

. Open the Cloudera Manager Admin Console and go to the Impala service.
. Click the Configuration tab.

. Select Scope > Impala (Service-Wide).

. Select Category > Security.

. Edit the following properties:

U b WN R

http://www.cloudera.com/content/support/en/documentation.html

Table 1: Impala SSL Properties

Property Description

Enable TLS/SSL for Impala Encrypt communication between clients (like ODBC, JDBC, and the Impala shell)
and the Impala daemon using Transport Layer Security (TLS) (formerly known
as Secure Socket Layer (SSL)).

Impala TLS/SSL Server Local path to the X509 certificate that identifies the Impala daemon to clients
Certificate File (PEM Format) | during TLS/SSL connections. This file must be in PEM format.

Impala TLS/SSL Server Private | Local path to the private key that matches the certificate specified in the
Key File (PEM Format) Certificate for Clients. This file must be in PEM format.

Impala TLS/SSL Private Key The password for the private key in the Impala TLS/SSL Server Certificate and
Password Private Key file. If left blank, the private key is not protected by a password.

Impala TLS/SSL CA Certificate | The location on disk of the certificate, in PEM format, used to confirm the
authenticity of SSL/TLS servers that the Impala daemons might connect to.
Because the Impala daemons connect to each other, this should also include
the CA certificate used to sign all the SSL/TLS Certificates. Without this parameter,
SSL/TLS between Impala daemons will not be enabled.

6. Click Save Changes to commit the changes.

7. Select each scope, one each for “Impala Daemon”, “Catalog Server”, and “Statestore”, and repeat the above steps.
Each of these Impala components has its own internal web server that powers the associated web Ul with diagnostic
information. The configuration setting represents the local path to the X509 certificate that identifies the web
server to clients during TLS/SSL connections.

8. Restart the Impala service.

Configuring TLS/SSL Communication for the Impala Shell

Typically, a client program has corresponding configuration properties in Cloudera Manager to verify that it is connecting
to the right server. For example, with TLS/SSL enabled for Impala, you use the following options when starting
i mpal a-shel | :

e --ssl:enables TLS/SSL fori npal a-shel | .

e --ca_cert:the local pathname pointing to the third-party CA certificate, or to a copy of the server certificate
for self-signed server certificates.

If--ca_cert isnotset, i npal a- shel | enables TLS/SSL, but does not validate the server certificate. This is useful
for connecting to a known-good Impala that is only running over TLS/SSL, when a copy of the certificate is not available
(such as when debugging customer installations).

Fori npal a- shel | to successfully connect to an Impala cluster that has the minimum allowed TLS/SSL version set to
1.2 (--ssl _mi ni num ver si on=t | sv1. 2), the Python version on the cluster that i npal a- shel | runs on must be
2.7.9 or higher (or a vendor-provided Python version with the required support. Some vendors patched Python 2.7.5
versions on Red Hat Enterprise Linux 7 and derivatives).

Using TLS/SSL with Business Intelligence Tools

You can use Kerberos authentication, TLS/SSL encryption, or both to secure connections from JDBC and ODBC applications
to Impala. See Configuring Impala to Work with JDBC on page 40 and Configuring Impala to Work with ODBC on page
37 for details.

Prior to CDH 5.7 / Impala 2.5, the Hive JDBC driver did not support connections that use both Kerberos authentication
and SSL encryption. If your cluster is running an older release that has this restriction, to use both of these security
features with Impala through a JDBC application, use the Cloudera JDBC Connector as the JDBC driver.

http://www.cloudera.com/content/www/en-us/downloads.html

Specifying TLS/SSL Minimum Allowed Version and Ciphers

Depending on your cluster configuration and the security practices in your organization, you might need to restrict the
allowed versions of TLS/SSL used by Impala. Older TLS/SSL versions might have vulnerabilities or lack certain features.
In CDH 5.13 / Impala 2.10, you can use startup options for the i npal ad, cat al ogd, and st at est or ed daemons to

specify a minimum allowed version of TLS/SSL.

Specify one of the following values for the - - ssl _mi ni mum ver si on configuration setting:

e tlsvi: Allow any TLS version of 1.0 or higher. This setting is the default when TLS/SSL is enabled.
e tlsvil. 1: Allow any TLS version of 1.1 or higher.

e tlsvl. 2: Allow any TLS version of 1.2 or higher.

Along with specifying the version, you can also specify the allowed set of TLS ciphers by using the - - ssl _ci pher _| i st
configuration setting. The argument to this option is a list of keywords, separated by colons, commas, or spaces, and
optionally including other notation. For example:

--ssl _ci pher_Ii st =" RC4- SHA, RC4- MD5"

By default, the cipher list is empty, and Impala uses the default cipher list for the underlying platform. See the output
of man ci pher s for the full set of keywords and notation allowed in the argument string.

Enabling Sentry Authorization for Impala

Authorization determines which users are allowed to access which resources, and what operations they are allowed
to perform. In Impala 1.1 and higher, you use Apache Sentry for authorization. Sentry adds a fine-grained authorization
framework for Hadoop. By default (when authorization is not enabled), Impala does all read and write operations with
the privileges of the i npal a user, which is suitable for a development/test environment but not for a secure production
environment. When authorization is enabled, Impala uses the OS user ID of the user who runsi npal a- shel | orother
client program, and associates various privileges with each user.

E,’ Note: Sentry is typically used in conjunction with Kerberos authentication that defines which hosts
are allowed to connect to each server. Using the combination of Sentry and Kerberos prevents malicious
users from being able to connect by creating a named account on an untrusted machine. See Enabling
Kerberos Authentication for Impala on page 101 for details about Kerberos authentication.

The Sentry Privilege Model

Privileges can be granted on different objects in the schema and are associated with a level in the object hierarchy. If
a privilege is granted on a parent object in the hierarchy, the child object automatically inherits it. This is the same
privilege model as Hive and other database systems.

The objects in the Impala schema hierarchy are:

Server
URI
Dat abase
Tabl e
Col um

The table-level privileges apply to views as well. Anywhere you specify a table name, you can specify a view name
instead.

In CDH 5.5 / Impala 2.3 and higher, you can specify privileges for individual columns.

The table below lists the minimum level of privileges and the scope required to execute SQL statements in CDH 6.1 /
CDH 5.16 and higher. The following notations are used:

e ANY denotes the SELECT, | NSERT, CREATE, or REFRESH privilege.

e ALL privilege denotes the SELECT, | NSERT, CREATE, and REFRESH privileges.

e The owner of an object effectively has the ALL privilege on the object.

Impala Security

e The parent levels of the specified scope are implicitly supported. For example, if a privilege is listed with the TABLE
scope, the same privilege granted on DATABASE and SERVER will allow the user to execute that specific SQL

statement on TABLE.

SQL Statement Privileges Scope
SELECT SELECT TABLE
WITH SELECT SELECT TABLE
EXPLAIN SELECT SELECT TABLE
INSERT INSERT TABLE
EXPLAIN INSERT INSERT TABLE
TRUNCATE INSERT TABLE
LOAD INSERT TABLE
ALL URI
CREATE DATABASE CREATE SERVER
CREATE DATABASE LOCATION CREATE SERVER
ALL URI
CREATE TABLE CREATE DATABASE
CREATE TABLE LIKE CREATE DATABASE
SELECT, INSERT, or REFRESH TABLE
CREATE TABLE AS SELECT CREATE DATABASE
INSERT DATABASE
SELECT TABLE
EXPLAIN CREATE TABLE AS SELECT CREATE DATABASE
INSERT DATABASE
SELECT TABLE
CREATE TABLE LOCATION CREATE TABLE
ALL URI
CREATE VIEW CREATE DATABASE
SELECT TABLE
ALTER DATABASE SET OWNER ALL WITH GRANT DATABASE
ALTER TABLE ALL TABLE
ALTER TABLE SET LOCATION ALL TABLE
ALL URI
ALTER TABLE RENAME CREATE DATABASE
ALL TABLE
ALTER TABLE SET OWNER ALL WITH GRANT TABLE

Apache Impala Guide | 93

Impala Security

ALTER VIEW ALL TABLE
SELECT TABLE
ALTER VIEW RENAME CREATE DATABASE
ALL TABLE
ALTER VIEW SET OWNER ALL WITH GRANT VIEW
DROP DATABASE ALL DATABASE
DROP TABLE ALL TABLE
DROP VIEW ALL TABLE
CREATE FUNCTION CREATE DATABASE
ALL URI
DROP FUNCTION ALL DATABASE
COMPUTE STATS ALL TABLE
DROP STATS ALL TABLE
INVALIDATE METADATA REFRESH SERVER
INVALIDATE METADATA <table> REFRESH TABLE
REFRESH <table> REFRESH TABLE
REFRESH AUTHORIZATION REFRESH SERVER
REFRESH FUNCTIONS REFRESH DATABASE
COMMENT ON DATABASE ALL DATABASE
COMMENT ON TABLE ALL TABLE
COMMENT ON VIEW ALL TABLE
COMMENT ON COLUMN ALL TABLE
DESCRIBE DATABASE SELECT, INSERT, or REFRESH DATABASE
DESCRIBE <table/view> SELECT, INSERT, or REFRESH TABLE
If the user has the SELECT privilege at | SELECT COLUMN
the COLUMN level, only the columns
the user has access will show.
USE ANY TABLE
SHOW DATABASES ANY TABLE
SHOW TABLES ANY TABLE
SHOW FUNCTIONS SELECT, INSERT, or REFRESH DATABASE
SHOW PARTITIONS SELECT, INSERT, or REFRESH TABLE
SHOW TABLE STATS SELECT, INSERT, or REFRESH TABLE
SHOW COLUMN STATS SELECT, INSERT, or REFRESH TABLE
SHOW FILES SELECT, INSERT, or REFRESH TABLE
SHOW CREATE TABLE SELECT, INSERT, or REFRESH TABLE
SHOW CREATE VIEW SELECT, INSERT, or REFRESH TABLE

94 | Apache Impala Guide

SHOW CREATE FUNCTION SELECT, INSERT, or REFRESH DATABASE
SHOW RANGE PARTITIONS (Kudu only) | SELECT, INSERT, or REFRESH TABLE
UPDATE (Kudu only) ALL TABLE
EXPLAIN UPDATE (Kudu only) ALL TABLE
UPSERT (Kudu only) ALL TABLE
WITH UPSERT (Kudu only) ALL TABLE
EXPLAIN UPSERT (Kudu only) ALL TABLE
DELETE (Kudu only) ALL TABLE
EXPLAIN DELETE (Kudu only) ALL TABLE

E,’ Note: If a specific privilege is not enabled in Sentry, the ALL privilege is required in Impala.

Originally, privileges were encoded in a policy file, stored in HDFS. This mode of operation is still an option, but the
emphasis of privilege management is moving towards being SQL-based. The SQL-based mode of operation with the
GRANT and REVOKE statements requires that a special Sentry service be enabled. This Sentry service stores, retrieves,
and manipulates privilege information stored inside the metastore database.

Note:

Although this document refers to the ALL privilege, currently if you use the policy file mode, you do
not use the actual keyword ALL in the policy file. When you code role entries in the policy file:

¢ To specify the ALL privilege for a server, use a role like ser ver =ser ver _nane.
e To specify the ALL privilege for a database, use a role like
server =server _nane- >db=dat abase_nane.
¢ To specify the ALL privilege for a table, use a role like
server =server _nane- >db=dat abase_nane- >t abl e=t abl e_nane- >acti on=*.

Object Ownership in Sentry

Starting in CDH 5.16 and CDH 6.1, Impala supports the ownership on databases, tables, and views. The CREATE
statements implicitly make the user running the statement the owner of the object. An owner has the OANER privilege
if enabled in Sentry. For example, if User A creates a database, foo, via the CREATE DATABASE statement, User A now
owns the foo database and is authorized to perform any operation on the foo database.

The ONNER privilege is not a grantable or revokable privilege whereas the ALL privilege is explicitly granted via the
GRANT statement.

The object ownership feature is controlled by a Sentry configuration. The OANER privilege is only granted when the
feature is enabled in Sentry. When enabled they get the owner privilege, with or without the GRANT OPTI ON, which
is also controlled by the Sentry configuration.

An ownership can be transferred to another user or role via the ALTER DATABASE, ALTER TABLE, or ALTER VI EW
with the SET OMNER clause.
Starting the impalad Daemon with Sentry Authorization Enabled

To runthei nmpal ad daemon with authorization enabled, you add the following options to the | MPALA_SERVER _ARGS
declaration in the / et ¢/ def aul t /i npal a configuration file:

e -server _nane:Turnson Sentry authorization for Impala. The authorization rules refer to a symbolic server name,
and you specify the name to use as the argument to the - ser ver _nane option.

Starting in Impala 1.4.0 and higher, if you specify just - ser ver _nane without - aut hori zation_policy file,
Impala uses the Sentry service for authorization.

e --sentry_confi g:Specifies the local path to the sent ry-si t e. xm configuration file. This setting is required
to enable authorization.

e -authorization_policy_fil e:Specifiesthe HDFS path to the policy file that defines the privileges on schema
objects. Prior to Impala 1.4.0, or if you want to continue storing privilege rules in the policy file, specify the
-aut hori zation_policy_fil e optionto make Impala read privilege information from a policy file, rather
than from the metastore database.

For example, you might adapt your / et ¢/ def aul t /i npal a configuration to contain lines like the following. To use
the Sentry service rather than the policy file:

| MPALA_SERVER ARGS=" \
-server _name=serverl \

Or to use the policy file, as in releases prior to Impala 1.4:

| MPALA_SERVER_ARGS=" \
-aut hori zation_policy_file=/user/hivel/warehouse/auth-policy.ini \
-server _nane=server1l \

The preceding examples set up a symbolic name of ser ver 1 to refer to the current instance of Impala. This symbolic
name is used in the following ways:

¢ In an environment managed by Cloudera Manager, see Enabling Sentry for Impala in Cloudera Manager on page
96 for setting up Sentry for Impala in Cloud Manager. The values must be the same for both, so that Impala and
Hive can share the privilege rules. Restart the Impala and Hive services after setting or changing this value.

¢ In an environment not managed by Cloudera Manager, you specify this value for the sent ry. hi ve. server
propertyinthesent ry-si te. xm configuration file for Hive, as well asin the - ser ver _nane option fori npal ad.

Now restart the i npal ad daemons on all the nodes.

Enabling Sentry for Impala in Cloudera Manager
To enable the Sentry service for Impala and Hive:

1. Navigate to the Hive cluster.

2. In the Configuration tab, select Hive (Service-Wide) under SCOPE and Advanced under CATEGORY.

3. In the Sentry Service field, type the Sentry service you specified in the Impala configuration. This is the server
name to use when granting server level privileges

4. When using Sentry with the Hive Metastore, you can specify the list of users that are allowed to bypass Sentry
Authorization in Hive Metastore. Select Security for CATEGORY in the Configuration tab, and specify the users in
the Bypass Sentry Authorization Users field. These are usually service users that already ensure all activity has
been authorized.

5. If in CDH 5, navigate to the Impala cluster, and perform the next two steps to disable the policy file-based
authorization.

6. In the Configuration tab, select Impala (Service-Wide) under SCOPE and Policy File Based Sentry under CATEGORY.

7. Deselect the Enable Sentry Authorization using Policy Files parameter when using the Sentry service. Cloudera
Manager throws a validation error in CDH 5 if you attempt to configure the Sentry service and policy file at the
same time.

8. Restart Impala and Hive.

Using Impala with the Sentry Service (CDH 5.1 or higher only)

When you use the Sentry service, set up privileges through the GRANT and REVOKE statements in either Impala or Hive.
Sentry privileges are automatically propagated to both services. Impala added the GRANT and REVOKE statements in
CDH 5.2 / Impala 2.0.

For information about using the Impala GRANT and REVOKE statements, see GRANT Statement (CDH 5.2 or higher only)
on page 280 and REVOKE Statement (CDH 5.2 or higher only) on page 300.

Changing Privileges

If you make a change to privileges in Sentry from outside of Impala, e.g. adding a user, removing a user, modifying
privileges, there are two options to propagate the change:

e Usethecat al ogd flag, --sentry_catal og_pol I i ng_f requency_s to specify how often to do a Sentry
refresh. The flag is set to 60 seconds by default.

e Runthe | NVALI DATE METADATA statement to force a Sentry refresh. | NVALI DATE METADATA forces a Sentry
refresh regardless of the - - sentry_cat al og_pol | i ng_f equency_s flag.

If you make a change to privileges within Impala, | NVALI DATE METADATA is not required.

n Warning: As | NVALI DATE METADATA is an expensive operation, you should use it judiciously.

Granting Privileges on URI

URIs represent the file paths you specify as part of statements such as CREATE EXTERNAL TABLE and LOAD DATA.
Typically, you specify what look like UNIX paths, but these locations can also be prefixed with hdf s: // to make clear
that they are really URIs. To set privileges for a URI, specify the name of a directory, and the privilege applies to all the
files in that directory and any directories underneath it.

URIs must start with hdf s: //,s3a://,adl ://,orfile://.IfaURIstarts with an absolute path, the path will be
appended to the default filesystem prefix. For example, if you specify:

GRANT ALL ON URI '/tnp';

The above statement effectively becomes the following where the default filesystem is HDFS.

GRANT ALL ON URI 'hdfs://1ocal host:20500/tnp';

When defining URIs for HDFS, you must also specify the NameNode. For example:

GRANT ALL ON URI file:///path/to/dir TO <rol e>
GRANT ALL ON URI hdfs://nanmenode: port/path/to/dir TO <rol e>

Warning: Because the NameNode host and port must be specified, it is strongly recommended that
A you use High Availability (HA). This ensures that the URI will remain constant even if the NameNode
changes. For example:

GRANT ALL ON URI hdfs://ha-nn-uri/path/to/dir TO <rol e>

Examples of Setting up Authorization for Security Scenarios

The following examples show how to set up authorization to deal with various scenarios.

A User with No Privileges

If a user has no privileges at all, that user cannot access any schema objects in the system. The error messages do not
disclose the names or existence of objects that the user is not authorized to read.

This is the experience you want a user to have if they somehow log into a system where they are not an authorized
Impala user. Or in a real deployment, a user might have no privileges because they are not a member of any of the
authorized groups.

Examples of Privileges for Administrative Users

In this example, the SQL statements grant the ent i r e_ser ver role all privileges on both the databases and URIs
within the server.

CREATE ROLE entire_server;
GRANT ROLE entire_server TO GROUP admi n_group;
GRANT ALL ON SERVER serverl TO ROLE entire_server;

A User with Privileges for Specific Databases and Tables

If a user has privileges for specific tables in specific databases, the user can access those things but nothing else. They
can see the tables and their parent databases in the output of SHOW TABLES and SHOW DATABASES, USE the appropriate
databases, and perform the relevant actions (SELECT and/or | NSERT) based on the table privileges. To actually create
a table requires the ALL privilege at the database level, so you might define separate roles for the user that sets up a
schema and other users or applications that perform day-to-day operations on the tables.

CREATE RCLE one_dat abase;
GRANT ROLE one_dat abase TO GROUP adni n_gr oup;
GRANT ALL ON DATABASE dbl TO RCOLE one_dat abase;

CREATE ROLE instructor;
GRANT ROLE instructor TO GROUP trainers;
GRANT ALL ON TABLE dbl.!|esson TO RCLE i nstructor;

This particular course is all about queries, so the students can SELECT but not | NSERT
or CREATE/ DROP.

CREATE ROLE student;

GRANT ROLE student TO GROUP visitors;

GRANT SELECT ON TABLE dbl.training TO ROLE student;

Privileges for Working with External Data Files

When data is being inserted through the LOAD DATA statement, or is referenced from an HDFS location outside the
normal Impala database directories, the user also needs appropriate permissions on the URIs corresponding to those
HDFS locations.

In this example:

e The ext ernal _tabl e role can insert into and query the Impala table, ext er nal _t abl e. sanpl e.

e The st agi ng_di r role can specify the HDFS path / user/ cl ouder a/ ext er nal _dat a with the LOAD DATA
statement. When Impala queries or loads data files, it operates on all the files in that directory, not just a single
file, so any Impala LOCATI ON parameters refer to a directory rather than an individual file.

CREATE RCLE external _table;
GRANT ROLE external _table TO GROUP cl ouder a;
GRANT ALL ON TABLE external _tabl e.sanple TO ROLE external _tabl e;

CREATE RCLE staging_dir;

GRANT ROLE staging TO GROUP cl ouder a;
GRANT ALL ON URI ' hdfs://127.0.0.1: 8020/ user/ cl ouder a/ external _data' TO ROLE stagi ng_dir;

Separating Administrator Responsibility from Read and Write Privileges

To create a database, you need the full privilege on that database while day-to-day operations on tables within that
database can be performed with lower levels of privilege on specific table. Thus, you might set up separate roles for

each database or application: an administrative one that could create or drop the database, and a user-level one that
can access only the relevant tables.

In this example, the responsibilities are divided between users in 3 different groups:

e Members of the super gr oup group have the t r ai ni ng_sysadmi n role and so can set up a database named
training.

e Members of the cl ouder a group have the i nstruct or role and so can create, insert into, and query any tables
in the t r ai ni ng database, but cannot create or drop the database itself.

e Members of thevi si t or group have the st udent role and so can query those tables in the t r ai ni ng database.

CREATE ROLE trai ni ng_sysadmi n;
GRANT ROLE training_sysadm n TO GROUP super group;
GRANT ALL ON DATABASE trai ningl TO ROLE traini ng_sysadm n;

CREATE ROLE instructor;
GRANT ROLE instructor TO GROUP cl ouder a;
GRANT ALL ON TABLE trainingl.coursel TO ROLE instructor;

CREATE ROLE visitor;
GRANT ROLE student TO GROUP visitor;
GRANT SELECT ON TABLE trainingl. coursel TO ROLE student;

Using Impala with the Sentry Policy File

The policy file is a file that you put in a designated location in HDFS, and is read during the startup of the i npal ad
daemon when you specify both the - ser ver _name and - aut hori zati on_pol i cy_fil e startup options. It controls
which objects (databases, tables, and HDFS directory paths) can be accessed by the user who connects to i npal ad,
and what operations that user can perform on the objects.

’ Note: The policy-file based authorization was deprecated in CDH 5.16. We recommend managing

El privileges through SQL statements as described in Using Impala with the Sentry Service (CDH 5.1 or
higher only) on page 97. If you are still using policy files, plan to migrate to the new approach some
time in the future.

The location of the policy file is listed in the aut h- si t e. xm configuration file.

When authorization is enabled, Impala uses the policy file as a whitelist, representing every privilege available to any
user on any object. That is, only operations specified for the appropriate combination of object, role, group, and user
are allowed. All other operations are not allowed. If a group or role is defined multiple times in the policy file, the last
definition takes precedence.

To understand the notion of whitelisting, set up a minimal policy file that does not provide any privileges for any object.
When you connect to an Impala node where this policy file is in effect, you get no results for SHOW DATABASES, and
an error when you issue any SHOW TABLES, USE dat abase_nane, DESCRI BE t abl e_nane, SELECT, and or other
statements that expect to access databases or tables, even if the corresponding databases and tables exist.

The contents of the policy file are cached, to avoid a performance penalty for each query. The policy file is re-checked
by each i npal ad node every 5 minutes. When you make a non-time-sensitive change such as adding new privileges
or new users, you can let the change take effect automatically a few minutes later. If you remove or reduce privileges,
and want the change to take effect immediately, restart the i npal ad daemon on all nodes, again specifying the
-server _nane and - aut hori zati on_pol i cy_fil e options so that the rules from the updated policy file are
applied.

Policy File Format
The policy file uses the familiar . i ni format, divided into the major sections [gr oups] and[rol es].

Thereis also an optional [dat abases] section, which allows you to specify a specific policy file for a particular database,
as explained in Using Multiple Policy Files for Different Databases on page 100.

Another optional section, [user s], allows you to override the OS-level mapping of users to groups; that is an advanced
technique primarily for testing and debugging, and is beyond the scope of this document.

In the [gr oups] section, you define various categories of users and select which roles are associated with each

category. The group and usernames correspond to Linux groups and users on the server where the i npal ad daemon
runs.

The group and usernames in the [gr oups] section correspond to Hadoop groups and users on the server where the
i npal ad daemon runs. When you access Impala through the i npal ad interpreter, for purposes of authorization, the
user is the logged-in Linux user and the groups are the Linux groups that user is a member of. When you access Impala
through the ODBC or JDBC interfaces, the user and password specified through the connection string are used as login
credentials for the Linux server, and authorization is based on that username and the associated Linux group membership.

Inthe [r ol es] section, you a set of roles. For each role, you specify precisely the set of privileges is available. That
is, which objects users with that role can access, and what operations they can perform on those objects. This is the
lowest-level category of security information; the other sections in the policy file map the privileges to higher-level
divisions of groups and users. In the [gr oups] section, you specify which roles are associated with which groups. The
group and usernames correspond to Linux groups and users on the server where the i npal ad daemon runs. The
privileges are specified using patterns like:

server =server _nane- >db=dat abase_nane- >t abl e=t abl e_nane- >act i on=SELECT
server =server _name- >db=dat abase_nane- >t abl e=t abl e_nane- >act i on=CREATE
server =server _nane- >db=dat abase_nane- >t abl e=t abl e_name- >acti on=ALL

For the server_name value, substitute the same symbolic name you specify with the i npal ad - ser ver _nane option.
You can use * wildcard characters at each level of the privilege specification to allow access to all such objects. For
example:

server =i npal a- host . exanpl e. com >db=def aul t - >t abl e=t 1- >act i on=SELECT
server =i npal a- host . exanpl e. com >db=*- >t abl e=*- >act i on=CREATE

server =i npal a- host . exanpl e. com >db=*- >t abl e=audi t _| og- >acti on=SELECT
server =i npal a- host . exanpl e. com >db=def aul t - >t abl e=t 1- >acti on=*

Using Multiple Policy Files for Different Databases

For an Impala cluster with many databases being accessed by many users and applications, it might be cumbersome
to update the security policy file for each privilege change or each new database, table, or view. You can allow security
to be managed separately for individual databases, by setting up a separate policy file for each database:

¢ Add the optional [dat abases] section to the main policy file.
e Add entries in the [dat abases] section for each database that has its own policy file.
e For each listed database, specify the HDFS path of the appropriate policy file.

For example:

[dat abases]

Defines the location of the per-DB policy files for the 'custoners' and 'sales’
dat abases.

custoners = hdfs://ha-nn-uri/etc/access/custoners.ini

sales = hdfs://ha-nn-uri/etc/access/sales.ini

To enable URIs in per-DB policy files, add the following string in the Cloudera Manager field Impala Service Environment
Advanced Configuration Snippet (Safety Valve):

JAVA _TOOL_OPTI ONS="-Dsentry. al | ow. uri . db. policyfil e=true"
o Important: Enabling URIs in per-DB policy files introduces a security risk by allowing the owner of

the db-level policy file to grant himself/herself load privileges to anything the i npal a user has read
permissions for in HDFS (including data in other databases controlled by different db-level policy files).

Setting Up Schema Objects for a Secure Impala Deployment

In your role definitions, you must specify privileges at the level of individual databases and tables, or all databases or
all tables within a database. To simplify the structure of these rules, plan ahead of time how to name your schema
objects so that data with different authorization requirements is divided into separate databases.

If you are adding security on top of an existing Impala deployment, you can rename tables or even move them between
databases using the ALTER TABLE statement.

Debugging Failed Sentry Authorization Requests

Sentry logs all facts that lead up to authorization decisions at the debug level. If you do not understand why Sentry is
denying access, the best way to debug is to temporarily turn on debug logging:

¢ InCloudera Manager, add | og4j . | ogger . or g. apache. sent r y=DEBUGto the logging settings for your service
through the corresponding Logging Safety Valve field for the Impala, Hive Server 2, or Solr Server services.

¢ On systems not managed by Cloudera Manager, add | og4j . | ogger . or g. apache. sent r y=DEBUGto the
| og4j . properti es file on each host in the cluster, in the appropriate configuration directory for each service.

Specifically, look for exceptions and messages such as:
Fi | ePerm ssion server..., RequestPernission server...., result [true|false]

which indicate each evaluation Sentry makes. The Fi | ePer mi ssi on is from the policy file, while Request Per mi ssi on
is the privilege required for the query. A Request Per ni ssi on will iterate over all appropriate Fi | ePer i ssi on
settings until a match is found. If no matching privilege is found, Sentry returns f al se indicating “Access Denied” .

The DEFAULT Database in a Secure Deployment

Because of the extra emphasis on granular access controls in a secure deployment, you should move any important
or sensitive information out of the DEFAULT database into a named database whose privileges are specified in the
policy file. Sometimes you might need to give privileges on the DEFAULT database for administrative reasons; for
example, as a place you can reliably specify with a USE statement when preparing to drop a database.

Impala Authentication

Authentication is the mechanism to ensure that only specified hosts and users can connect to Impala. It also verifies
that when clients connect to Impala, they are connected to a legitimate server. This feature prevents spoofing such as
impersonation (setting up a phony client system with the same account and group names as a legitimate user) and
man-in-the-middle attacks (intercepting application requests before they reach Impala and eavesdropping on sensitive
information in the requests or the results).

Impala supports authentication using either Kerberos or LDAP.

E,’ Note: Regardless of the authentication mechanism used, Impala always creates HDFS directories and

data files owned by the same user (typically i npal a). To implement user-level access to different
databases, tables, columns, partitions, and so on, use the Sentry authorization feature, as explained
in Enabling Sentry Authorization for Impala on page 92.

Once you are finished setting up authentication, move on to authorization, which involves specifying what databases,
tables, HDFS directories, and so on can be accessed by particular users when they connect through Impala. See Enabling
Sentry Authorization for Impala on page 92 for details.

Enabling Kerberos Authentication for Impala

Impala supports Kerberos authentication. For background information on enabling Kerberos authentication, see
Enabling Kerberos Authentication for CDH.

When using Impala in a managed environment, Cloudera Manager automatically completes Kerberos configuration.

In Impala 2.0 and later, user () returns the full Kerberos principal string, such as user @xanpl e. com in a Kerberized
environment.

E,i Note: Regardless of the authentication mechanism used, Impala always creates HDFS directories and

data files owned by the same user (typically i npal a). To implement user-level access to different
databases, tables, columns, partitions, and so on, use the Sentry authorization feature, as explained
in Enabling Sentry Authorization for Impala on page 92.

An alternative form of authentication you can use is LDAP, described in Enabling LDAP Authentication for Impala on
page 103.

Requirements for Using Impala with Kerberos

o Important:

¢ If you plan to use Impala in your cluster, you must configure your KDC to allow tickets to be
renewed, and you must configure kr b5. conf to request renewable tickets. Typically, you can
do this by adding the max_r enewabl e_| i f e setting to your realm in kdc. conf , and by adding
therenew_ | ifeti me parameter to the | i bdef aul t s section of kr b5. conf .

For more information about renewable tickets, see the Kerberos documentation.

e The Impala Web Ul does not support Kerberos authentication.

¢ You cannot use the Impala resource management feature on a cluster that has Kerberos
authentication enabled.

Impala supports the Cloudera ODBC driver and the Kerberos interface provided. To use Kerberos through the ODBC
driver, the host type must be set depending on the level of the ODBD driver:

e Secl npal a for the ODBC 1.0 driver.

e SecBeeswax for the ODBC 1.2 driver.

¢ Blank for the ODBC 2.0 driver or higher, when connecting to a secure cluster.

e HS2NoSasl for the ODBC 2.0 driver or higher, when connecting to a non-secure cluster.

To enable Kerberos in the Impala shell, start the i npal a- shel | command using the - k flag.

Configuring Impala to Support Kerberos Security
Enabling Kerberos authentication for Impala involves steps that can be summarized as follows:

¢ Creating service principals for Impala and the HTTP service. Principal names take the form:
servi ceNane/ful l y. qualified. domai n. name @GXKERBERCS. REALM

e Creating, merging, and distributing key tab files for these principals.

e Editing/ et c/ def aul t /i npal a (in cluster not managed by Cloudera Manager), or editing the Security settings
in the Cloudera Manager interface, to accommodate Kerberos authentication.

Enabling Kerberos for Impala with a Proxy Server

A common configuration for Impala with High Availability is to use a proxy server to submit requests to the actual

i npal ad daemons on different hosts in the cluster. This configuration avoids connection problems in case of machine
failure, because the proxy server can route new requests through one of the remaining hosts in the cluster. This
configuration also helps with load balancing, because the additional overhead of being the “coordinator node” for
each query is spread across multiple hosts.

Although you can set up a proxy server with or without Kerberos authentication, typically users set up a secure Kerberized
configuration. For information about setting up a proxy server for Impala, including Kerberos-specific steps, see Using
Impala through a Proxy for High Availability on page 77.

http://web.mit.edu/Kerberos/krb5-1.8/

Enabling Impala Delegation for Kerberos Users

See Configuring Impala Delegation for Hue and Bl Tools on page 106 for details about the delegation feature that lets
certain users submit queries using the credentials of other users.

Using TLS/SSL with Business Intelligence Tools

You can use Kerberos authentication, TLS/SSL encryption, or both to secure connections from JDBC and ODBC applications
to Impala. See Configuring Impala to Work with JDBC on page 40 and Configuring Impala to Work with ODBC on page
37 for details.

Prior to CDH 5.7 / Impala 2.5, the Hive JDBC driver did not support connections that use both Kerberos authentication
and SSL encryption. If your cluster is running an older release that has this restriction, to use both of these security
features with Impala through a JDBC application, use the Cloudera JDBC Connector as the JDBC driver.

Enabling Access to Internal Impala APIs for Kerberos Users

For applications that need direct access to Impala APIs, without going through the HiveServer2 or Beeswax interfaces,
you can specify a list of Kerberos users who are allowed to call those APIs. By default, the i npal a and hdf s users are
the only ones authorized for this kind of access. Any users not explicitly authorized through the

i nternal _principal s_whitelist configuration setting are blocked from accessing the APIs. This setting applies
to all the Impala-related daemons, although currently it is primarily used for HDFS to control the behavior of the catalog
server.

Mapping Kerberos Principals to Short Names for Impala

In CDH 5.8 / Impala 2.6 and higher, Impala recognizes the aut h_t o_| ocal setting, specified through the Cloudera
Manager setting Additional Rules to Map Kerberos Principals to Short Names. This feature is disabled by default, to
avoid an unexpected change in security-related behavior. To enable it, select the Use HDFS Rules to Map Kerberos
Principals to Short Names checkbox to enable the service-wide - -1 oad_aut h_t o_| ocal _r ul es configuration
setting. Then restart the Impala service. See Using Auth-to-Local Rules to Isolate Cluster Users for general information
about this feature.

Enabling LDAP Authentication for Impala

Authentication is the process of allowing only specified named users to access the server (in this case, the Impala
server). This feature is crucial for any production deployment, to prevent misuse, tampering, or excessive load on the
server. Impala uses LDAP for authentication, verifying the credentials of each user who connects throughi npal a- shel |,
Hue, a Business Intelligence tool, JDBC or ODBC application, etc.

E,i Note: Regardless of the authentication mechanism used, Impala always creates HDFS directories and

data files owned by the same user (typically i npal a). To implement user-level access to different
databases, tables, columns, partitions, and so on, use the Sentry authorization feature, as explained
in Enabling Sentry Authorization for Impala on page 92.

An alternative form of authentication you can use is Kerberos, described in Enabling Kerberos Authentication for Impala
on page 101.

Requirements for Using Impala with LDAP

Authentication against LDAP servers is available in Impala 1.2.2 and higher. Impala 1.4.0 added the support for secure
LDAP authentication through SSL and TLS.

The Impala LDAP support lets you use Impala with systems such as Active Directory that use LDAP behind the scenes.
Consideration for Connections Between Impala Components
Only the connections between clients and Impala can be authenticated by LDAP.

You must use the Kerberos authentication mechanism for connections between internal Impala components, such as
between the i mpal ad, st at est or ed, and cat al ogd daemons. See Enabling Kerberos Authentication for Impala on
page 101 on how to set up Kerberos for Impala.

http://www.cloudera.com/content/www/en-us/downloads.html

Enabling LDAP in Command Line Interface

To enable LDAP authentication via a command line interface, start the i npal ad with the following startup options
for:

--enabl e_| dap_auth
Enables LDAP-based authentication between the client and Impala.
--ldap_uri

Sets the URI of the LDAP server to use. Typically, the URI is prefixed with | dap: / / . You can specify secure SSL-based
LDAP transport by using the prefix | daps:/ /. The URI can optionally specify the port, for example:

| dap: / /| dap_server. exanpl e. com 389 or | daps://| dap_server. exanpl e. com 636. (389 and 636 are
the default ports for non-SSL and SSL LDAP connections, respectively.)

Support for Custom Bind Strings

When Impala connects to LDAP it issues a bind call to the LDAP server to authenticate as the connected user. Impala
clients, including the Impala shell, provide the short name of the user to Impala. This is necessary so that Impala can
use Sentry for role-based access, which uses short names.

However, LDAP servers often require more complex, structured usernames for authentication. Impala supports three
ways of transforming the short name (for example, ' henry') to a more complicated string. If necessary, specify one
of the following configuration options when starting the i npal ad daemon.

--ldap_donai n
Replaces the username with a string user name@ dap_donai n.
--1 dap_baseDN

Replaces the username with a “distinguished name” (DN) of the form: ui d=useri d, | dap_baseDN. (This is
equivalent to a Hive option).

--ldap_bi nd_pattern

This is the most general option, and replaces the username with the string Idap_bind_pattern where all instances
of the string #Ul D are replaced with userid. For example, an | dap_bi nd_pat t er n of

"user =#Ul D, OU=f 0o, CN=bar " with a username of henr y will construct a bind name of

"user =henry, OU=f 0o, CN=bar " .

The above options are mutually exclusive, and Impala does not start if more than one of these options are specified.

Secure LDAP Connections

To avoid sending credentials over the wire in cleartext, you must configure a secure connection between both the
client and Impala, and between Impala and the LDAP server. The secure connection could use SSL or TLS.

Secure LDAP connections through SSL:

For SSL-enabled LDAP connections, specify a prefix of | daps: // instead of | dap: / /. Also, the default port for
SSL-enabled LDAP connections is 636 instead of 389.

Secure LDAP connections through TLS:

TLS, the successor to the SSL protocol, is supported by most modern LDAP servers. Unlike SSL connections, TLS
connections can be made on the same server port as non-TLS connections. To secure all connections using TLS, specify
the following flags as startup options to the i npal ad daemon:

--ldap_tls
Tells Impala to start a TLS connection to the LDAP server, and to fail authentication if it cannot be done.
--ldap_ca_certificate="/path/to/certificatel/pent

Specifies the location of the certificate in standard . PEMformat. Store this certificate on the local filesystem, in a
location that only the i npal a user and other trusted users can read.

http://en.wikipedia.org/wiki/Transport_Layer_Security

Enabling LDAP in Cloudera Manager
To enable LDAP authentication in Cloudera Manager:

1. In the Impala service, click the Configuration tab.

2. In the search box, type Idap.
3. Specify the values for the option fields. Each field lists the corresponding Impala startup flag. See the sections
above for the corresponding flag if you need more information on a particular field.

4. Click Save Changes.
5. Restart the Impala service.

LDAP Authentication for impala-shell
To connect to Impala using LDAP authentication, you specify command-line options to the i npal a- shel | command
interpreter and enter the password when prompted.
-1
Enables LDAP authentication.
-u
Sets the user. Per Active Directory, the user is the short username, not the full LDAP distinguished name. If your

LDAP settings include a search base, use the - - | dap_bi nd_pat t er n on the i npal ad daemon to translate the
short user name from i mpal a- shel | automatically to the fully qualified name.

i mpal a- shel | automatically prompts for the password.

See Configuring Impala to Work with JDBC on page 40 for the format to use with the JDBC connection string for servers
using LDAP authentication.

Enabling LDAP for Impala in Hue

1. Go to the Hue service.
. Click the Configuration tab.
. Select Scope > Hue Server.

. Select Category > Advanced.
. Add the following properties to the Hue Server Advanced Configuration Snippet (Safety Valve) for

hue_safety_valve_server.ini property.

i b WN

[i nmpal a]
aut h_user name=<LDAP usernane of Hue user to be authenticated>
aut h_passwor d=<LDAP password of Hue user to be authenticated>

6. Click Save Changes.

Enabling Impala Delegation for LDAP Users

See Configuring Impala Delegation for Hue and Bl Tools on page 106 for details about the delegation feature that lets
certain users submit queries using the credentials of other users.

LDAP Restrictions for Impala

The LDAP support is preliminary. It currently has only been tested against Active Directory.

Using Multiple Authentication Methods with Impala

Impala 2.0 and later automatically handles both Kerberos and LDAP authentication. Each i npal ad daemon can accept
both Kerberos and LDAP requests through the same port. No special actions need to be taken if some users authenticate
through Kerberos and some through LDAP.

Prior to Impala 2.0, you had to configure each i npal ad to listen on a specific port depending on the kind of
authentication, then configure your network load balancer to forward each kind of request to a DataNode that was

set up with the appropriate authentication type. Once the initial request was made using either Kerberos or LDAP
authentication, Impala automatically handled the process of coordinating the work across multiple nodes and transmitting
intermediate results back to the coordinator node.

Configuring Impala Delegation for Hue and Bl Tools

When users submit Impala queries through a separate application, such as Hue or a business intelligence tool, typically
all requests are treated as coming from the same user. In Impala 1.2 and higher, Impala supports “delegation” where
users whose names you specify can delegate the execution of a query to another user. The query runs with the privileges
of the delegated user, not the original authenticated user.

Starting in Impala 3.1 and higher, you can delegate using groups. Instead of listing a large number of delegated users,
you can create a group of those users and specify the delegated group name in the Impalad startup option. The client
sends the delegated user name, and Impala performs an authorization to see if the delegated user belongs to a delegated
group.

The name of the delegated user is passed using the HiveServer2 protocol configuration property i npal a. doas. user
when the client connects to Impala.

Currently, the delegation feature is available only for Impala queries submitted through application interfaces such as
Hue and BI tools. For example, Impala cannot issue queries using the privileges of the HDFS user.

The delegation feature is enabled by the startup options for i npal ad: - - aut hori zed_pr oxy_user _confi g and
--aut hori zed_proxy_group_confi g. See Enabling Delegation in Cloudera Manager on page 107 for enabling
delegation in Cloudera Manager.

¢ The list of authorized users/groups are delimited with ;
e The list of delegated users/groups are delimited with , by default.

e Usethe--authorized_proxy_user_config_deliniter startup optionto override the default user delimiter
(the comma character) to another character.

e Usethe--authorized_proxy_group_config_delimter startup option to override the default group
delimiter (the comma character) to another character.

e Awildcard (*) is supported to delegated to any users or any groups, e.g.
--aut hori zed_proxy_group_confi g=hue=*. Make sure to use single quotes or escape characters to ensure
that any * characters do not undergo wildcard expansion when specified in command-line arguments.

When you start Impala with the - - aut hori zed_pr oxy_user _confi g=aut henti cat ed_user =del egat ed_user
or--authorized_proxy_group_confi g=aut henti cat ed_user =del egat ed_gr oup option:

e Authentication is based on the user on the left hand side (authenticated_user).
e Authorization is based on the right hand side user(s) or group(s) (delegated_user, delegated_group).

¢ When opening a client connection, the client must provide a delegated username via the HiveServer2 protocol
property,i npal a. doas. user or Del egat i onUl D.

 Itis not necessary for authenticated_user to have the permission to access/edit files.
e Itis not necessary for the delegated users to have access to the service via Kerberos.
e delegated_user and delegated_group must exist in the OS.

e For group delegation, use the JNI-based mapping providers for group delegation, such as
JniBasedUnixGroupsMappingWithFallback and JniBasedUnixGroupsNetgroupMappingWithFallback.

¢ ShellBasedUnixGroupsNetgroupMapping and ShellBasedUnixGroupsMapping Hadoop group mapping providers
are not supported in Impala group delegation.

e Inlmpala,user () returns authenticated_userandef f ecti ve_user () returnsthe delegated user that the client
specified.

The user or group delegation process works as follows:
1. The Impalad daemon starts with one or both of the following options:

e --authorized_proxy_user_config=authenti cat ed_user=del egat ed_user
e --authorized_proxy_group_config=aut henti cat ed_user=del egat ed_gr oup

2. Aclient connects to Impala via the HiveServer2 protocol with the i npal a. doas. user configuration property,
e.g. connected user is authenticated_user with i npal a. doas. user =del egat ed_user.

3. The client user aut hent i cat ed_user sends a request to Impala as the delegated user delegated_user.
4. Impala checks authorization:

¢ In user delegation, Impala checks if del egat ed_user is in the list of authorized delegate users for the user
aut henti cat ed_user.

¢ In group delegate, Impala checks if del egat ed_user belongs to one of the delegated groups for the user
aut hent i cat ed_user, delegated_group in this example.

5. If the user is an authorized delegated user for aut hent i cat ed_user, the request is executed as the delegate
user del egat ed_user.

See Modifying Impala Startup Options for details about adding or changing i npal ad startup options.

See this blog post for background information about the delegation capability in HiveServer2.
To set up authentication for the delegated users:

¢ On the server side, configure either user/password authentication through LDAP, or Kerberos authentication, for
all the delegated users. See Enabling LDAP Authentication for Impala on page 103 or Enabling Kerberos Authentication
for Impala on page 101 for details.

¢ On the client side, to learn how to enable delegation, consult the documentation for the ODBC driver you are
using.

Enabling Delegation in Cloudera Manager
To enable delegation in Cloudera Manager:

1. Navigate to Clusters > Impala > Configuration > Policy File-Based Sentry.

2. In the Proxy User Configuration field, type the a semicolon-separated list of key=value pairs of authorized proxy
users to the user(s) they can impersonate. The list of delegated short user names are delimited with a comma,
e.g. hue=userl, user2.

The short user names should be specified. The user names are case-sensitive.

3. In the Proxy Group Configuration field, type the a semicolon-separated list of key=value pairs of authorized proxy
users to the group(s) they can impersonate. The list of delegated groups are delimited with a comma, e.g.
hue=groupl, group2.

The group names are case-sensitive.

4. Click Save Changes and restart the Impala service.

http://blog.cloudera.com/blog/2013/07/how-hiveserver2-brings-security-and-concurrency-to-apache-hive/

Impala SQL Language Reference

Impala uses SQL as its query language. To protect user investment in skills development and query design, Impala
provides a high degree of compatibility with the Hive Query Language (HiveQL):

e Because Impala uses the same metadata store as Hive to record information about table structure and properties,
Impala can access tables defined through the native Impala CREATE TABLE command, or tables created using
the Hive data definition language (DDL).

e Impala supports data manipulation (DML) statements similar to the DML component of HiveQL.

e Impala provides many built-in functions with the same names and parameter types as their HiveQL equivalents.
Impala supports most of the same statements and clauses as HiveQL, including, but not limited to JO N, AGGREGATE,

DI STI NCT, UNI ON ALL, ORDER BY, LI M T and (uncorrelated) subquery in the FROMclause. Impala also supports
I NSERT | NTOand | NSERT OVERWRI TE.

Impala supports data types with the same names and semantics as the equivalent Hive data types: STRI NG, Tl NYI NT,
SMALLI NT, I NT, Bl G NT, FLOAT, DOUBLE, BOOLEAN, STRI NG, TI MESTAMP.

For full details about Impala SQL syntax and semantics, see Impala SQL Statements on page 210.

Most HiveQL SELECT and | NSERT statements run unmodified with Impala. For information about Hive syntax not
available in Impala, see SQL Differences Between Impala and Hive on page 548.

For a list of the built-in functions available in Impala queries, see Impala Built-In Functions on page 398.

Comments
Impala supports the familiar styles of SQL comments:

e All text from a - - sequence to the end of the line is considered a comment and ignored. This type of comment
can occur on a single line by itself, or after all or part of a statement.
e Alltextfroma/ * sequence to the next */ sequence is considered a comment and ignored. This type of comment

can stretch over multiple lines. This type of comment can occur on one or more lines by itself, in the middle of a
statement, or before or after a statement.

For example:

-- This line is a comment about a table.
create table ...;

/*

This is a multi-line conment about a query.
*/

select ...;

select * fromt /* This is an enbedded conmment about a query. */ where ..

L]

select * fromt -- This is a trailing coment within a nulti-line conmand.
where ...;

Data Types

Impala supports a set of data types that you can use for table columns, expression values, and function arguments and
return values.

E,i Note: Currently, Impala supports only scalar types, not composite or nested types. Accessing a table
containing any columns with unsupported types causes an error.

For the notation to write literals of each of these data types, see Literals on page 174.
Impala supports a limited set of implicit casts to avoid undesired results from unexpected casting behavior.

e Impala does not implicitly cast between string and numeric or Boolean types. Always use CAST() for these
conversions.

e Impala does perform implicit casts among the numeric types, when going from a smaller or less precise type to a
larger or more precise one. For example, Impala will implicitly convert a SMALLI NT to a Bl G NT or FLOAT, but to
convert from DOUBLE to FLOAT or | NT to TI NYI NT requires a call to CAST() in the query.

* Impala does perform implicit casts from STRI NGto TI MESTAMP. Impala has a restricted set of literal formats for
the TI MESTAMP data type and the FROM_UNI XTI ME() format string; see TIMESTAMP Data Type on page 137 for
details.

See the topics under this section for full details on implicit and explicit casting for each data type, and see Impala Type
Conversion Functions on page 429 for details about the CAST() function.

ARRAY Complex Type (CDH 5.5 or higher only)

A complex data type that can represent an arbitrary number of ordered elements. The elements can be scalars or
another complex type (ARRAY, STRUCT, or MAP).

Syntax:

col um_nane ARRAY < type >

type ::= primtive_type | conplex_type

Usage notes:

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are unfamiliar
with the Impala complex types, start with Complex Types (CDH 5.5 or higher only) on page 146 for background information
and usage examples.

The elements of the array have no names. You refer to the value of the array item using the | TEMpseudocolumn, or
its position in the array with the POS pseudocolumn. See ITEM and POS Pseudocolumns on page 160 for information
about these pseudocolumns.

Each row can have a different number of elements (including none) in the array for that row.

When an array contains items of scalar types, you can use aggregation functions on the array elements without using
join notation. For example, you can find the COUNT() , AVE), SUM), and so on of numeric array elements, or the
MAX() and M N() of any scalar array elements by referring to t abl e_nane. arr ay_col um in the FROMclause of
the query. When you need to cross-reference values from the array with scalar values from the same row, such as by
including a GROUP BY clause to produce a separate aggregated result for each row, then the join clause is required.

A common usage pattern with complex types is to have an array as the top-level type for the column: an array of
structs, an array of maps, or an array of arrays. For example, you can model a denormalized table by creating a column
that is an ARRAY of STRUCT elements; each item in the array represents a row from a table that would normally be
used in a join query. This kind of data structure lets you essentially denormalize tables by associating multiple rows
from one table with the matching row in another table.

You typically do not create more than one top-level ARRAY column, because if there is some relationship between the
elements of multiple arrays, it is convenient to model the data as an array of another complex type element (either
STRUCT or MAP).

You can pass a multi-part qualified name to DESCRI BE to specify an ARRAY, STRUCT, or MAP column and visualize its
structure as if it were a table. For example, if table T1 contains an ARRAY column Al, you could issue the statement
DESCRI BE t 1. al. If table T1 contained a STRUCT column S1, and a field F1 within the STRUCT was a MAP, you could
issue the statement DESCRI BE t 1. s1.f 1. An ARRAY is shown as a two-column table, with | TEMand POS columns.
A STRUCT is shown as a table with each field representing a column in the table. A MAP is shown as a two-column table,
with KEY and VALUE columns.

Added in: CDH 5.5.0 / Impala 2.3.0

Restrictions:
e Columns with this data type can only be used in tables or partitions with the Parquet file format.
e Columns with this data type cannot be used as partition key columns in a partitioned table.
e The COMPUTE STATS statement does not produce any statistics for columns of this data type.

¢ The maximum length of the column definition for any complex type, including declarations for any nested types,
is 4000 characters.

¢ See Limitations and Restrictions for Complex Types on page 150 for a full list of limitations and associated guidelines
about complex type columns.

Kudu considerations:
Currently, the data types CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Examples:

E,i Note: Many of the complex type examples refer to tables such as CUSTOVER and REG ON adapted

from the tables used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with
Impala Complex Types on page 167 for the table definitions.

The following example shows how to construct a table with various kinds of ARRAY columns, both at the top level and
nested within other complex types. Whenever the ARRAY consists of a scalar value, such as in the PETS column or the
CHI LDREN field, you can see that future expansion is limited. For example, you could not easily evolve the schema to
record the kind of pet or the child's birthday alongside the name. Therefore, it is more common to use an ARRAY whose
elements are of STRUCT type, to associate multiple fields with each array element.

E,i Note: Practice the CREATE TABLE and query notation for complex type columns using empty tables,
until you can visualize a complex data structure and construct corresponding SQL statements reliably.

CREATE TABLE array_deno

id Bl G NT,
nane STRI NG

-- An ARRAY of scalar type as a top-level columm.
pets ARRAY <STRI NG,

-- An ARRAY with el enents of conplex type (STRUCT).
pl aces_|ived ARRAY < STRUCT <
pl ace: STRI NG
start_year: |INT
>>,
-- An ARRAY as a field (CH LDREN) within a STRUCT.
-- (The STRUCT is inside another ARRAY, because it is rare
-- for a STRUCT to be a top-level colum.)
marri ages ARRAY < STRUCT <
spouse: STRI NG
children: ARRAY <STRI NG
>>,
-- An ARRAY as the value part of a MAP.
-- The first MAP field (the key) woul d be a val ue such as
-- "Parent' or 'Grandparent', and the corresponding array woul d
-- represent 2 parents, 4 grandparents, and so on.
ancestors MAP < STRING ARRAY <STRI NG >

)
STORED AS PARQUET;

The following example shows how to examine the structure of a table containing one or more ARRAY columns by using
the DESCRI BE statement. You can visualize each ARRAY as its own two-column table, with columns | TEMand PCS.

DESCRI BE array_deno;

S Fom e e e e e e e +
| name | type
e e e Fom e e e e e e e e +
id bi gi nt
nanme string
pets array<string>
marri ages array<struct<

spouse: string,
children:array<string>
>>
pl aces_lived array<struct<
pl ace: stri ng,
start_year:int
>>
ancestors map<string, array<string>>

DESCRI BE array_denp. pets;
B +

| item]| string |
| pos | bigint |

item| struct< |
| spouse: string, |
children:array<string> |
I

I

item]| struct< |
| pl ace:string, |
start_year:int |
I

I

E Fom e +
| name | type I
B o e e e +
| key | string _

| value | array<string> |
. T +

The following example shows queries involving ARRAY columns containing elements of scalar or complex types. You
“unpack” each ARRAY column by referring to it in a join query, as if it were a separate table with | TEMand PQS columns.
If the array element is a scalar type, you refer to its value using the | TEMpseudocolumn. If the array element is a
STRUCT, you refer to the STRUCT fields using dot notation and the field names. If the array element is another ARRAY
or a MAP, you use another level of join to unpack the nested collection elements.

-- Array of scalar val ues.
-- Each array el enent represents a single string, plus we knowits position in the array.
SELECT id, nane, pets.pos, pets.item FROM array_deno, array_deno. pets;

-- Array of structs.

-- Now each array el ement has named fields, possibly of different types.

-- You can consider an ARRAY of STRUCT to represent a table inside another table.
SELECT id, name, places_lived. pos, places_lived.itemplace, places_lived.itemstart_year
FROM array_deno, array_deno. pl aces_li ved;

-- The .ITEM nanme is optional for array elenments that are structs.

-- The following query is equivalent to the previous one, with .| TEM

-- renoved fromthe colum references.

SELECT id, nane, places_lived. pos, places_|lived.place, places_lived.start_year
FROM array_deno, array_deno. pl aces_li ved;

-- To filter specific items fromthe array, do conparisons against the .PCS or .| TEM
-- pseudocol ums, or names of struct fields, in the WHERE cl ause.
SELECT id, nane, pets.item FROM array_deno, array_denp. pets

WHERE pets.pos in (0, 1, 3);

SELECT id, nane, pets.item FROM array_deno, array_denp. pets
WHERE pets.itemLIKE 'M. %;

SELECT id, nane, places_lived. pos, places_lived.place, places_lived.start_year

FROM array_deno, array_denvo. pl aces_|ived
VWHERE pl aces_lived. place like '%California%;

Related information:

Complex Types (CDH 5.5 or higher only) on page 146, STRUCT Complex Type (CDH 5.5 or higher only) on page 131, MAP
Complex Type (CDH 5.5 or higher only) on page 125

BIGINT Data Type
An 8-byte integer data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_nane BI G NT

Range: -9223372036854775808 .. 9223372036854775807. There is no UNSI GNED subtype.

Conversions: Impala automatically converts to a floating-point type (FLOAT or DOUBLE) automatically. Use CAST() to
convertto TI NYI NT, SMALLI NT, I NT, STRI NG or TI MESTAMP. Casting an integer or floating-point value Nto TI MESTAMP
produces a value that is Nseconds past the start of the epoch date (January 1, 1970). By default, the result value
represents a date and time in the UTC time zone. If the setting

--use_local _tz for_unix_timestanp_conversions=true is in effect, the resulting TI| MESTAMP represents a
date and time in the local time zone.

Examples:

CREATE TABLE t1 (x BI G NT):
SELECT CAST(1000 AS Bl G NT) ;

Usage notes:

Bl G NT is a convenient type to use for column declarations because you can use any kind of integer values in | NSERT
statements and they are promoted to Bl G NT where necessary. However, Bl G NT also requires the most bytes of
any integer type on disk and in memory, meaning your queries are not as efficient and scalable as possible if you
overuse this type. Therefore, prefer to use the smallest integer type with sufficient range to hold all input values, and
CAST() when necessary to the appropriate type.

For a convenient and automated way to check the bounds of the Bl G NT type, call the functions M N_BI Gl NT() and
MAX_BI G NT() .

If an integer value is too large to be represented as a Bl G NT, use a DECI MAL instead with sufficient digits of precision.

NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently
than a STRI NGrepresentation of the value.

HBase considerations: This data type is fully compatible with HBase tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as an 8-byte value.
Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COVPUTE STATS statement.

Related information:

Numeric Literals on page 174, TINYINT Data Type on page 143, SMALLINT Data Type on page 129, INT Data Type on page
124, BIGINT Data Type on page 112, DECIMAL Data Type (CDH 6.0 / Impala 3.0 or higher only) on page 116, Impala
Mathematical Functions on page 404

BOOLEAN Data Type
A data type used in CREATE TABLE and ALTER TABLE statements, representing a single true/false choice.
Syntax:
In the column definition of a CREATE TABLE statement:

col utm_nanme BOOLEAN

Range: TRUE or FALSE. Do not use quotation marks around the TRUE and FALSE literal values. You can write the literal
values in uppercase, lowercase, or mixed case. The values queried from a table are always returned in lowercase, t r ue
orfal se.

Conversions: Impala does not automatically convert any other type to BOOLEAN. All conversions must use an explicit
call to the CAST() function.

You can use CAST() to convert any integer or floating-point type to BOOLEAN: a value of O represents f al se, and any
non-zero value is converted to t r ue.

SELECT CAST(42 AS BOOLEAN) AS nonzero_int, CAST(99.44 AS BOOLEAN) AS nonzero_deci mal ,
CAST(000 AS BOOLEAN) AS zero_int, CAST(0.0 AS BOOLEAN) AS zero_deci nal;
+

Ty [SR, [SR +
| nonzero_int | nonzero_decinmal | zero_int | zero_decimal |
Fom e e o m e e e e B [+
| true | true | false | fal se |
S o m e e e e B S SR +

When you cast the opposite way, from BOOLEAN to a numeric type, the result becomes either 1 or 0:

SELECT CAST(true AS INT) AS true_int, CAST(true AS DOUBLE) AS true_doubl e,

5

| true_int | true_double | false_int | false_double |
Fom e e [Fom e e oo o e e e an +
| 1 | 1 | 0 | 0 |
Fom e e S o e e o o e e ek +

You can cast DEClI MAL values to BOOLEAN, with the same treatment of zero and non-zero values as the other numeric
types. You cannot cast a BOOLEAN to a DECI MAL.

You cannot cast a STRI NGvalue to BOOLEAN, although you can cast a BOOLEAN value to STRI NG, returning ' 1' for
truevaluesand' 0' forf al se values.

Although you can cast a TI MESTAMP to a BOOLEAN or a BOOLEANto a TI MESTAMP, the results are unlikely to be useful.
Any non-zero TI MESTAMP (that is, any value other than 1970- 01- 01 00: 00: 00) becomes TRUE when converted to
BOOLEAN, while 1970- 01- 01 00: 00: 00 becomes FALSE. A value of FALSE becomes 1970- 01- 01 00: 00: 00 when
converted to BOOLEAN, and TRUE becomes one second past this epoch date, that is, 1970- 01- 01 00: 00: 01.

NULL considerations: An expression of this type produces a NULL value if any argument of the expression is NULL.
Partitioning:

Do not use a BOOLEAN column as a partition key. Although you can create such a table, subsequent operations produce
errors:

[l ocal host:21000] > create table truth_table (assertion string) partitioned by (truth
bool ean) ;

[l ocal host:21000] > insert into truth_table values ('Pigs can fly',false);

ERROR: Anal ysi sException: INSERT into table with BOOLEAN partition colum (truth) is
not supported: partitioning.truth_table

Examples:

SELECT 1 < 2;
SELECT 2 = 5;
SELECT 100 < NULL, 100 > NULL;
CREATE TABLE assertions (claim STRING really BOOLEAN);
I NSERT | NTO assertions VALUES
("1 is less than 2", 1 < 2),
("2 is the sane as 5", 2 = 5),
("Grass is green", true),
("The noon is made of green cheese", false);
SELECT cl ai m FROM assertions WHERE real ly = TRUE;

HBase considerations: This data type is fully compatible with HBase tables.
Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COVPUTE STATS statement.

Kudu considerations:
Currently, the data types BOOLEAN, FLOAT, and DOUBLE cannot be used for primary key columns in Kudu tables.

Related information: Boolean Literals on page 176, SQL Operators on page 178, Impala Conditional Functions on page
463

CHAR Data Type (CDH 5.2 or higher only)

A fixed-length character type, padded with trailing spaces if necessary to achieve the specified length. If values are
longer than the specified length, Impala truncates any trailing characters.

Syntax:
In the column definition of a CREATE TABLE statement:

col um_nane CHAR(I| engt h)

The maximum length you can specify is 255.
Semantics of trailing spaces:

e When you store a CHAR value shorter than the specified length in a table, queries return the value padded with
trailing spaces if necessary; the resulting value has the same length as specified in the column definition.
¢ Leading spaces in CHAR are preserved within the data file.

¢ If you store a CHARvalue containing trailing spaces in a table, those trailing spaces are not stored in the data file.
When the value is retrieved by a query, the result could have a different number of trailing spaces. That is, the
value includes however many spaces are needed to pad it to the specified length of the column.

¢ |f you compare two CHAR values that differ only in the number of trailing spaces, those values are considered
identical.

e When comparing or processing CHAR values:

— CAST() truncates any longer string to fit within the defined length. For example:

SELECT CAST(' x' AS CHAR(4)) = CAST(' X ' AS CHAR(4)); -- Returns TRUE

— If a CHARvalue is shorter than the specified length, it is padded on the right with spaces until it matches the
specified length.

— CHAR_LENGTH() returns the length including any trailing spaces.

— LENGTH() returns the length excluding trailing spaces.

— CONCAT() returns the length including trailing spaces.

Partitioning: This type can be used for partition key columns. Because of the efficiency advantage of numeric values
over character-based values, if the partition key is a string representation of a number, prefer to use an integer type
with sufficient range (I NT, Bl G NT, and so on) where practical.

HBase considerations: This data type cannot be used with HBase tables.
Parquet considerations:

e This type can be read from and written to Parquet files.

e There is no requirement for a particular level of Parquet.

e Parquet files generated by Impala and containing this type can be freely interchanged with other components
such as Hive and MapReduce.

¢ Any trailing spaces, whether implicitly or explicitly specified, are not written to the Parquet data files.

¢ Parquet data files might contain values that are longer than allowed by the CHAR(n) length limit. Impala ignores
any extra trailing characters when it processes those values during a query.

Text table considerations:

Text data files might contain values that are longer than allowed for a particular CHAR(n) column. Any extra trailing
characters are ignored when Impala processes those values during a query. Text data files can also contain values that
are shorter than the defined length limit, and Impala pads them with trailing spaces up to the specified length. Any
text data files produced by Impala | NSERT statements do not include any trailing blanks for CHAR columns.

Avro considerations:

The Avro specification allows string values up to 2**64 bytes in length. Impala queries for Avro tables use 32-bit integers
to hold string lengths. In CDH 5.7 / Impala 2.5 and higher, Impala truncates CHAR and VARCHAR values in Avro tables
to (2**31)-1 bytes. If a query encounters a STRI NGvalue longer than (2**31)-1 bytes in an Avro table, the query fails.
In earlier releases, encountering such long values in an Avro table could cause a crash.

Compatibility:
This type is available using CDH 5.2 / Impala 2.0 or higher.
Some other database systems make the length specification optional. For Impala, the length is required.

Internal details: Represented in memory as a byte array with the same size as the length specification. Values that are
shorter than the specified length are padded on the right with trailing spaces.

Added in: CDH 5.2.0 / Impala 2.0.0

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COVPUTE STATS statement.

UDF considerations: This type cannot be used for the argument or return type of a user-defined function (UDF) or
user-defined aggregate function (UDA).

Kudu considerations:
Currently, the data types CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Performance consideration:

The CHARtype currently does not have the Impala Codegen support, and we recommend using VARCHAR or STRI NG
over CHAR as the performance gain of Codegen outweighs the benefits of fixed width CHAR.

Restrictions:

Because the blank-padding behavior requires allocating the maximum length for each value in memory, for scalability
reasons, you should avoid declaring CHAR columns that are much longer than typical values in that column.

All data in CHAR and VARCHAR columns must be in a character encoding that is compatible with UTF-8. If you have
binary data from another database system (that is, a BLOB type), use a STRI NGcolumn to hold it.

When an expression compares a CHAR with a STRI NG or VARCHAR, the CHAR value is implicitly converted to STRI NG
first, with trailing spaces preserved.

This behavior differs from other popular database systems. To get the expected result of TRUE, cast the expressions
on both sides to CHAR values of the appropriate length. For example:

SELECT CAST("foo " AS CHAR(5)) = CAST('foo' AS CHAR(3)); -- Returns TRUE.

This behavior is subject to change in future releases.
Related information:

STRING Data Type on page 130, VARCHAR Data Type (CDH 5.2 or higher only) on page 144, String Literals on page 175,
Impala String Functions on page 468

DECIMAL Data Type (CDH 6.0 / Impala 3.0 or higher only)
The DECI MAL data type is a numeric data type with fixed scale and precision.
The data type is useful for storing and doing operations on precise decimal values.

Syntax:
DECI MAL[(precision[, scale])]

Precision:

precision represents the total number of digits that can be represented regardless of the location of the decimal point.
This value must be between 1 and 38, specified as an integer literal.

The default precision is 9.

Scale:

scale represents the number of fractional digits.

This value must be less than or equal to the precision, specified as an integer literal.

The default scale is 0.

When the precision and the scale are omitted, a DECI MAL is treated as DECI MAL(9, 0).
Range:

The range of DECI MAL type is -10738 +1 through 10738 —1.

The largest value is represented by DECI MAL(38, 0).

The most precise fractional value (between 0 and 1, or 0 and -1) is represented by DECI MAL(38, 38), with 38 digits
to the right of the decimal point. The value closest to 0 would be .0000...1 (37 zeros and the final 1). The value closest
to 1 would be .999... (9 repeated 38 times).

Memory and disk storage:

Only the precision determines the storage size for DECI MAL values, and the scale setting has no effect on the storage
size. The following table describes the in-memory storage once the values are loaded into memory.

Precision In-memory Storage
1-9 4 bytes

10-18 8 bytes

19-38 16 bytes

The on-disk representation varies depending on the file format of the table.
Text, RCFile, and SequenceFile tables use ASCll-based formats as below:

¢ Leading zeros are not stored.
¢ Trailing zeros are stored.
e Each DECI MAL value takes up as many bytes as the precision of the value, plus:

— One extra byte if the decimal point is present.

— One extra byte for negative values.

Parquet and Avro tables use binary formats and offer more compact storage for DECI MAL values. In these tables,
Impala stores each value in fewer bytes where possible depending on the precision specified for the DECI MAL column.
To conserve space in large tables, use the smallest-precision DECI MAL type.

Precision and scale in arithmetic operations:
For all arithmetic operations, the resulting precision is at most 38.

If the resulting precision would be greater than 38, Impala truncates the result from the back, but keeps at least 6
fractional digits in scale and rounds.

For example, DECI MAL(38, 20) * DECI MAL(38, 20) returns DECI MAL(38, 6).According to the table below,
the resulting precision and scale would be (77, 40), but they are higher than the maximum precision and scale for
DECI MAL. So, Impala sets the precision to the maximum allowed 38, and truncates the scale to 6.

When you use DECI MAL values in arithmetic operations, the precision and scale of the result value are determined as
follows. For better readability, the following terms are used in the table below:

e P1, P2: Input precisions
e S1,S2:Input scales

e L1, L2: Leading digits in input DECl MALs, i.e., L1 =P1-S1and L2 =P2-S2

Operation Resulting Precision Resulting Scale

Addition and Subtraction max (L1, L2) + max (S1,S2) + 1 max (S1, S2)

1is for carry-over.

Multiplication P1+P2+1 S1+8S2
Division L1+S2+max (S1+P2+1,6) max (S1+P2+1,6)
Modulo min (L1, L2) + max (S1, S2) max (S1, S2)

Precision and scale in functions:

When you use DECI MAL values in built-in functions, the precision and scale of the result value are determined as
follows:

¢ The result of the SUMaggregate function on a DECl MAL value is:

— Precision: 38

— Scale: The same scale as the input column

e The result of AVGaggregate function on a DEClI MAL value is:

— Precision: 38

— Scale: max(Scale of input column, 6)

Implicit conversions in DECIMAL assignments:

Impala enforces strict conversion rules in decimal assignments like in | NSERT and UNI ON statements, or in functions
like COALESCE.

If there is not enough precision and scale in the destination, Impala fails with an error.
Impala performs implicit conversions between DECI MAL and other numeric types as below:

e DECI MAL is implicitly converted to DOUBLE or FLOAT when necessary even with a loss of precision. It can be
necessary, for example when inserting a DECl MAL value into a DOUBLE column. For example:

CREATE TABLE flt(c FLOAT);

INSERT INTO flt SELECT CAST(1e37 AS DECI MAL(38, 0));
SELECT CAST(c AS DECI MAL(38, 0)) FROMflt;

Resul t: 9999999933815812510711506376257961984

The result has a loss of information due to implicit casting. This is why we discourage using the DOUBLE and FLOAT
types in general.

e DOUBLE and FLOAT cannot be implicitly converted to DECI MAL. An error is returned.
e DECI MAL is implicitly converted to DECI MAL if all digits fit in the resulting DECI MAL.

For example, the following query returns an error because the resulting type that guarantees that all digits fit
cannot be determined .

SELECT GREATEST (CAST(1 AS DECI MAL(38, 0)), CAST(2 AS DECI MAL(38, 37)));

¢ Integer values can be implicitly converted to DECI MAL when there is enough room in the DECI MAL to guarantee
that all digits fit. The integer types require the following numbers of digits to the left of the decimal point when
converted to DECI MAL:

— Bl G NT: 19 digits

I NT: 10 digits

SMALLI NT: 5 digits

TI NYI NT: 3 digits
For example:

CREATE TABLE deci mal s_10_8 (x DECI MAL(10, 8));
I NSERT | NTO deci mal s_10_8 VALUES (CAST(1 AS TINYINT));

The above | NSERT statement fails because TI NYI NT requires room for 3 digits to the left of the decimal point in
the DECI MAL.

CREATE TABLE decinmals_11_8(x DECIMAL(11, 8));
I NSERT | NTO decimal s_11_8 VALUES (CAST(1 AS TINYINT));

The above | NSERT statement succeeds because there is enough room for 3 digits to the left of the decimal point
that TI NYI NT requires.
In UNI ON, the resulting precision and scales are determined as follows.
e Precision: max (L1, L2) + max (S1, S2)
If the resulting type does not fit in the DECI MAL type, an error is returned. See the first example below.
e Scale: max (S1, S2)
Examples for UNI ON:

e DECI MAL(20, 0) UNI ON DECI MAL(20, 20) would require a DECI MAL(40, 20) to fit all the digits. Since this
is larger than the max precision for DEClI MAL, Impala returns an error. One way to fix the error is to cast both
operands to the desired type, for example DECI MAL(38, 18).

e DECI MAL(20, 2) UNION DECI MAL(8, 6) returns DECI MAL(24, 6).
e | NT UNI ON DECI MAL(9, 4) returns DECI MAL(14, 4).
I NT has the precision 10 and the scale 0, so it is treated as DECI MAL(10, 0) UNI ON DECI MAL(9. 4).

Casting between DECIMAL and other data types:

To avoid potential conversion errors, use CAST to explicitly convert between DECI MAL and other types in decimal
assignments like in | NSERT and UNI ON statements, or in functions like COALESCE:

¢ You can cast the following types to DECI MAL: FLOAT, Tl NYI NT, SMALLI NT, I NT, Bl G NT, STRI NG
¢ You can cast DECI MAL to the following types: FLOAT, Tl NYI NT, SMALLI NT, I NT, Bl G NT, STRI NG BOOLEAN,
TI MESTAMP
Impala performs CAST between DECI MAL and other numeric types as below:

e Precision: If you cast a value with bigger precision than the precision of the destination type, Impala returns an
error. For example, CAST(123456 AS DECI MAL(3, 0)) returns an error because all digits do not fit into
DECI MAL(3, 0)

e Scale: If you cast a value with more fractional digits than the scale of the destination type, the fractional digits are
rounded. For example, CAST(1. 239 AS DECI MAL(3, 2)) returns 1. 24.
Casting STRING to DECIMAL:

You can cast STRI NG of numeric characters in columns, literals, or expressions to DECI MAL as long as number fits
within the specified target DECI MAL type without overflow.

e If scale in STRI NG> scale in DECI MAL, the fractional digits are rounded to the DECI MAL scale.
For example, CAST(' 98. 678912' AS DECI MAL(15, 1)) returns98. 7.

o If # leading digits in STRI NG> # leading digits in DECI MAL, an error is returned.
For example, CAST(' 123. 45' AS DECI MAL(2, 2)) returnsan error.

Exponential notation is supported when casting from STRI NG

For example, CAST(' 1. 0e6' AS DECI MAL(32, 0)) returns 1000000.

Casting any non-numeric value, such as' ABC to the DEClI MAL type returns an error.
Casting DECIMAL to TIMESTAMP:

Casting a DECI MAL value N to TI MESTAMP produces a value that is N seconds past the start of the epoch date (January
1, 1970).

DECIMAL vs FLOAT consideration:

The FLOAT and DOUBLE types can cause problems or unexpected behavior due to inability to precisely represent certain
fractional values, for example dollar and cents values for currency. You might find output values slightly different than
you inserted, equality tests that do not match precisely, or unexpected values for GROUP BY columns. The DECI MAL
type can help reduce unexpected behavior and rounding errors, but at the expense of some performance overhead
for assignments and comparisons.

Literals and expressions:
e Numeric literals without a decimal point

— The literals are treated as the smallest integer that would fit the literal. For example, 111 is a TI NYI NT, and
1111 isa SMALLI NT.

— Large literals that do not fit into any integer type are treated as DECI MAL.

— The literals too large to fit into a DECI MAL(38, 0) are treated as DOUBLE.

e Numeric literals with a decimal point

— The literal with less than 38 digits are treated as DECl MAL.
— The literals with 38 or more digits are treated as a DOUBLE.

e Exponential notation is supported in DECI MAL literals.

e Torepresent a very large or precise DECI MAL value as a literal, for example one that contains more digits than
can be represented by a Bl G NT literal, use a quoted string or a floating-point value for the number and CAST
the string to the desired DECl MAL type.

For example: CAST(' 999999999999999999999999999999' AS DECI MAL(38, 5)))

File format considerations:
The DECI MAL data type can be stored in any of the file formats supported by Impala:

e Impala can query Avro, RCFile, or SequenceFile tables that contain DECI MAL columns, created by other Hadoop
components.

e Impala can query and insert into Kudu tables that contain DECI MAL columns. Kudu supports the DECI MAL type
in CDH 6.1 and higher.

e The DECI MAL data type is fully compatible with HBase tables.
e The DECI MAL data type is fully compatible with Parquet tables.
¢ Values of the DECI MAL data type are potentially larger in text tables than in tables using Parquet or other binary
formats.
UDF consideration:
When writing a C++ UDF, use the Deci mal Val data type defined in/ usr/i ncl ude/i npal a_udf/ udf. h.
Changing precision and scale:

You can issue an ALTER TABLE ... REPLACE COLUMWNS statement to change the precision and scale of an existing
DECI MAL column.

e For text-based formats (text, RCFile, and SequenceFile tables)

— If the values in the column fit within the new precision and scale, they are returned correctly by a query.

— If any values that do not fit within the new precision and scale:

¢ Impala returns an error if the query option ABORT_ON_ERRORis settot r ue.
e Impala returns a NULL and warning that conversion failed if the query option ABORT _ON_ERRORs set
tofal se.

— Leading zeros do not count against the precision value, but trailing zeros after the decimal point do.

¢ For binary formats (Parquet and Avro tables)

— Although an ALTER TABLE ... REPLACE COLUMNS statement that changes the precision or scale of a
DECI MAL column succeeds, any subsequent attempt to query the changed column results in a fatal error.
This is because the metadata about the columns is stored in the data files themselves, and ALTER TABLE
does not actually make any updates to the data files. The other unaltered columns can still be queried
successfully.

— If the metadata in the data files disagrees with the metadata in the metastore database, Impala cancels the
query.

Partitioning:

Using a DECI MAL column as a partition key provides you a better match between the partition key values and the HDFS
directory names than using a DOUBLE or FLOAT partitioning column.

Column statistics considerations:

Because the DECI MAL type has a fixed size, the maximum and average size fields are always filled in for column statistics,
even before you run the COMPUTE STATS statement.

Compatibility with older version of DECIMAL:

This version of DECI MAL type is the default in CDH 6.0 / Impala 3.0 and higher. The key differences between this version
of DECI MAL and the previous DECI MAL V1 in Impala 2.x include the following.

DECIMAL in CDH 6.0 / Impala 3.0 or | DECIMAL in CDH 5.15 / Impala 2.12
higher or lower
Overall behavior Returns either the result or an error. | Returns either the result or NULL with
a warning.
Overflow behavior Aborts with an error. Issues a warning and returns NULL.
Truncation / rounding behavior in Truncates and rounds digits from the | Truncates digits from the front.
arithmetic back.
String cast Truncates from the back and rounds. | Truncates from the back.

If you need to continue using the first version of the DECI MAL type for the backward compatibility of your queries, set
the DECI MAL_V2 query option to FALSE:

SET DECI MAL_V2=FALSE;
Compatibility with other databases:
Use the DECI MAL data type in Impala for applications where you used the NUVBER data type in Oracle.

The Impala DECI MAL type does not support the Oracle idioms of * for scale.

The Impala DECI MAL type does not support negative values for precision.

DOUBLE Data Type
A double precision floating-point data type used in CREATE TABLE and ALTER TABLE statements.

Syntax:
In the column definition of a CREATE TABLE statement:

col um_nanme DOUBLE

Range: 4.94065645841246544e-324d .. 1.79769313486231570e+308, positive or negative

Precision: 15 to 17 significant digits, depending on usage. The number of significant digits does not depend on the
position of the decimal point.

Representation: The values are stored in 8 bytes, using |IEEE 754 Double Precision Binary Floating Point format.

Conversions: Impala does not automatically convert DOUBLE to any other type. You can use CAST() to convert DOUBLE
values to FLOAT, TI NYI NT, SMALLI NT, | NT, Bl G NT, STRI NG, TI MESTAMP, or BOOLEAN. You can use exponential
notation in DOUBLE literals or when casting from STRI NG for example 1. 0e6 to represent one million. Casting an
integer or floating-point value Nto TI MESTAMP produces a value that is Nseconds past the start of the epoch date
(January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting
--use_local _tz for_unix_tinmestanp_conversions=true is in effect, the resulting TI MESTAMP represents a
date and time in the local time zone.

Usage notes:
The data type REAL is an alias for DOUBLE.

Impala does not evaluate NaN (not a number) as equal to any other numeric values, including other NaN values. For
example, the following statement, which evaluates equality between two NaN values, returns f al se:

SELECT CAST(' nan' AS DOUBLE) =CAST(' nan’ AS DOUBLE);
Examples:

CREATE TABLE t1 (x DOUBLE):
SELECT CAST(1000.5 AS DOUBLE);

Partitioning: Because fractional values of this type are not always represented precisely, when this type is used for a
partition key column, the underlying HDFS directories might not be named exactly as you expect. Prefer to partition
on a DECI MAL column instead.

HBase considerations: This data type is fully compatible with HBase tables.
Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as an 8-byte value.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COVPUTE STATS statement.

Restrictions:

Due to the way arithmetic on FLOAT and DOUBLE columns uses high-performance hardware instructions, and distributed
queries can perform these operations in different order for each query, results can vary slightly for aggregate function
calls suchas SUM) and AVE) for FLOAT and DOUBLE columns, particularly on large data sets where millions or billions
of values are summed or averaged. For perfect consistency and repeatability, use the DECI MAL data type for such
operations instead of FLOAT or DOUBLE.

The inability to exactly represent certain floating-point values means that DECI MAL is sometimes a better choice than
DOUBLE or FLOAT when precision is critical, particularly when transferring data from other database systems that use
different representations or file formats.

Kudu considerations:
Currently, the data types BOOLEAN, FLOAT, and DOUBLE cannot be used for primary key columns in Kudu tables.
Related information:

Numeric Literals on page 174, Impala Mathematical Functions on page 404, FLOAT Data Type on page 123

https://en.wikipedia.org/wiki/Double-precision_floating-point_format

FLOAT Data Type
A single precision floating-point data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_nane FLOAT

Range: 1.40129846432481707e-45 .. 3.40282346638528860e+38, positive or negative

Precision: 6 to 9 significant digits, depending on usage. The number of significant digits does not depend on the position
of the decimal point.

Representation: The values are stored in 4 bytes, using IEEE 754 Single Precision Binary Floating Point format.

Conversions: Impala automatically converts FLOAT to more precise DOUBLE values, but not the other way around.
You can use CAST() to convert FLOAT valuesto TI NYI NT, SMALLI NT, | NT, Bl G NT, STRI NG, TI MESTAMP, or BOOLEAN.
You can use exponential notation in FLQOAT literals or when casting from STRI NG, for example 1. 0e6 to represent one
million. Casting an integer or floating-point value Nto TI MESTAMP produces a value that is Nseconds past the start of
the epoch date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the
setting - -use_l ocal _tz_for_uni x_ti mestanp_conver si ons=t r ue is in effect, the resulting TI| MESTAMP
represents a date and time in the local time zone.

Usage notes:

Impala does not evaluate NaN (not a number) as equal to any other numeric values, including other NaN values. For
example, the following statement, which evaluates equality between two NaN values, returns f al se:

SELECT CAST(' nan' AS FLQOAT)=CAST(' nan' AS FLQAT);
Examples:

CREATE TABLE t1 (x FLOAT);
SELECT CAST(1000.5 AS FLOAT);

Partitioning: Because fractional values of this type are not always represented precisely, when this type is used for a
partition key column, the underlying HDFS directories might not be named exactly as you expect. Prefer to partition
on a DECI MAL column instead.

HBase considerations: This data type is fully compatible with HBase tables.
Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as a 4-byte value.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COVPUTE STATS statement.

Restrictions:

Due to the way arithmetic on FLOAT and DOUBLE columns uses high-performance hardware instructions, and distributed
queries can perform these operations in different order for each query, results can vary slightly for aggregate function
calls suchas SUM) and AVGE) for FLOAT and DOUBLE columns, particularly on large data sets where millions or billions
of values are summed or averaged. For perfect consistency and repeatability, use the DECI MAL data type for such
operations instead of FLOAT or DOUBLE.

The inability to exactly represent certain floating-point values means that DECI MAL is sometimes a better choice than
DOUBLE or FLOAT when precision is critical, particularly when transferring data from other database systems that use
different representations or file formats.

https://en.wikipedia.org/wiki/Single-precision_floating-point_format

Kudu considerations:
Currently, the data types BOOLEAN, FLOAT, and DOUBLE cannot be used for primary key columns in Kudu tables.
Related information:

Numeric Literals on page 174, Impala Mathematical Functions on page 404, DOUBLE Data Type on page 121

INT Data Type
A 4-byte integer data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_name | NT

Range: -2147483648 .. 2147483647. There is no UNSI GNED subtype.

Conversions: Impala automatically converts to a larger integer type (Bl G NT) or a floating-point type (FLOAT or DOUBLE)
automatically. Use CAST() to convert to TI NYI NT, SMALLI NT, STRI NG, or TI MESTAMP. Casting an integer or
floating-point value Nto TI MESTAMP produces a value that is N seconds past the start of the epoch date (January 1,
1970). By default, the result value represents a date and time in the UTC time zone. If the setting

--use_local _tz_for_unix_tinmestanp_conversi ons=tr ue is in effect, the resulting TI MESTAMP represents a
date and time in the local time zone.

Usage notes:
The data type | NTEGER s an alias for | NT.

For a convenient and automated way to check the bounds of the | NT type, call the functions M N_I NT() and
MAX_| NT() .

If an integer value is too large to be represented as a | NT, use a Bl G NT instead.
NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Examples:

CREATE TABLE t1 (x INT);
SELECT CAST(1000 AS I NT);

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently
than a STRI NGrepresentation of the value.

HBase considerations: This data type is fully compatible with HBase tables.

Parquet considerations:

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as a 4-byte value.
Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COVPUTE STATS statement.

Related information:

Numeric Literals on page 174, TINYINT Data Type on page 143, SMALLINT Data Type on page 129, INT Data Type on page
124, BIGINT Data Type on page 112, DECIMAL Data Type (CDH 6.0 / Impala 3.0 or higher only) on page 116, Impala
Mathematical Functions on page 404

MAP Complex Type (CDH 5.5 or higher only)

A complex data type representing an arbitrary set of key-value pairs. The key part is a scalar type, while the value part
can be a scalar or another complex type (ARRAY, STRUCT, or VAP).

Syntax:

col um_nanme MAP < primtive_type, type >

type ::= primtive_type | conplex_type

Usage notes:

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are unfamiliar
with the Impala complex types, start with Complex Types (CDH 5.5 or higher only) on page 146 for background information
and usage examples.

The MAP complex data type represents a set of key-value pairs. Each element of the map is indexed by a primitive type
such as BI G NT or STRI NG, letting you define sequences that are not continuous or categories with arbitrary names.
You might find it convenient for modelling data produced in other languages, such as a Python dictionary or Java
HashMap, where a single scalar value serves as the lookup key.

In a big data context, the keys in a map column might represent a numeric sequence of events during a manufacturing
process, or TI MESTAMP values corresponding to sensor observations. The map itself is inherently unordered, so you
choose whether to make the key values significant (such as a recorded TI MESTAMP) or synthetic (such as a random
global universal ID).

E,’ Note: Behind the scenes, the MAP type is implemented in a similar way as the ARRAY type. Impala

does not enforce any uniqueness constraint on the KEY values, and the KEY values are processed by
looping through the elements of the MAP rather than by a constant-time lookup. Therefore, this type
is primarily for ease of understanding when importing data and algorithms from non-SQL contexts,
rather than optimizing the performance of key lookups.

You can pass a multi-part qualified name to DESCRI BE to specify an ARRAY, STRUCT, or MAP column and visualize its
structure as if it were a table. For example, if table T1 contains an ARRAY column Al, you could issue the statement
DESCRI BE t 1. al. If table T1 contained a STRUCT column S1, and a field F1 within the STRUCT was a MAP, you could
issue the statement DESCRI BE t 1. s1. f 1. An ARRAY is shown as a two-column table, with | TEMand PCS columns.
A STRUCT is shown as a table with each field representing a column in the table. A MAP is shown as a two-column table,
with KEY and VALUE columns.

Added in: CDH 5.5.0 / Impala 2.3.0

Restrictions:
e Columns with this data type can only be used in tables or partitions with the Parquet file format.
¢ Columns with this data type cannot be used as partition key columns in a partitioned table.
e The COMPUTE STATS statement does not produce any statistics for columns of this data type.

¢ The maximum length of the column definition for any complex type, including declarations for any nested types,
is 4000 characters.

e See Limitations and Restrictions for Complex Types on page 150 for a full list of limitations and associated guidelines
about complex type columns.

Kudu considerations:
Currently, the data types CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.

Examples:

&

Note: Many of the complex type examples refer to tables such as CUSTOVER and REG ON adapted
from the tables used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with

Impala Complex Types on page 167 for the table definitions.

The following example shows a table with various kinds of MAP columns, both at the top level and nested within other
complex types. Each row represents information about a specific country, with complex type fields of various levels
of nesting to represent different information associated with the country: factual measurements such as area and
population, notable people in different categories, geographic features such as cities, points of interest within each
city, and mountains with associated facts. Practice the CREATE TABLE and query notation for complex type columns
using empty tables, until you can visualize a complex data structure and construct corresponding SQL statements

reliably.

create TABLE map_deno
country_id BIG NT,

-- Nuneric facts about each country,
-- For exanple, 'Area':1000, 'Popul ation':999999.

| ooked up by nane.

-- Using a MAP instead of a STRUCT because there could be

-- adifferent set of facts for each country.
metrics MAP <STRI NG Bl G NT>,

-- MAP whose val ue part is an ARRAY.

-- For exanple, the key 'Fanous Politicians'

-- while the key ' Fanbus Actors'
not abl es MAP <STRI NG ARRAY <STRI NG>>,

-- MAP that is a field within a STRUCT.

-- (The STRUCT is inside another ARRAY, because it

-- for a STRUCT to be a top-level colum.)
-- For exanple, city #1 nmight have points of
-- representing an array of 3 different zoos.

-- City #2 mght have conpletely different kinds of points of

coul d represent an array of 10 el enents,
could represent an array of 20 el enents.

is rare

interest with key 'Zoo',

interest.

-- Because the set of field nanes is potentially large, and nost entries could be bl ank,
-- a MAP nakes nore sense than a STRUCT to represent such a sparse data structure.

cities ARRAY < STRUCT <
nane: STRI NG
poi nts_of _interest:
>>
-- MAP t hat
-- the nountain nane with all

MAP <STRI NG, ARRAY <STRI NG>>

is an el ement within an ARRAY. The MAP is inside a STRUCT field to associ ate
the facts about the nountain.

-- The "key" of the map (the first STRING field) represents the nane of sone fact whose

val ue
-- can be expressed as an integer,
mount ai ns ARRAY < STRUCT < nanme: STRING facts:

)
STORED AS PARQUET;

DESCRI BE map_deno;

such as 'Height',

'Year First dinbed , and so on.

MAP <STRING, INT > > >

S L +
| name | type
S e +
country_id bi gi nt
metrics map<stri ng, bi gi nt >
not abl es map<string, array<string>>
cities array<struct<
name: string
poi nts_of _i nterest: map<string, array<string>>
>>
nmount ai ns array<struct<
name: string
facts: map<string,int>
>>
S e +

DESCRI BE map_deno. netri cs;

| key
| val ue

| key
| val ue

| string |
| bigint |

e +
| type I

_______________ +
| string |
| array<string> |
o e +

DESCRI BE map_denp. not abl es. val ue;

string |
bi gint |

oo - o e e e e
| name | type

S S o e e e
| item]| struct<

| | nane: string,

| | poi nts_of _interest: map<string, array<string>>
I | >

| pos | bigint

S S o e e e e
DESCRI BE map_denp. cities.item points_of _i nterest;

E Fom e oo +

| name | type I

B o e e e +

| key | string

| value | array<string> |

S oo +

DESCRI BE map_denp. cities.item points_of _i nterest. val ue;
B R, Fom e e oo - +

| name | type

Fomm oo - Fomm e oo - +

| item]| string |

| pos | bigint |

S S R +

DESCRI BE map_deno. nobunt ai ns;

B R, o e e e e e e e o oo +

| name | type I

Fomm oo - o e e e e e e e e e oo +

| item]| struct< |

| [name: string, [

| | facts: map<string,int> |

I | > I

| pos | bigint [

R R, o e e e e e e e e ao oo +

DESCRI BE map_deno. nountai ns.item facts;

S Foemo oo +

| name | type |

e

| key | string |

| value | int [

The following example shows a table that uses a variety of data types for the MAP “key” field. Typically, you use Bl G NT
or STRI NGto use numeric or character-based keys without worrying about exceeding any size or length constraints.

CREATE TABLE nap_deno_obscure
(
id Bl G NT,
MAP <I NT, | NT>,
MAP <SMALLI NT, | NT>,
MAP <TI NYI NT, | NT>,
MAP <TI MESTAMP, | NT>,
<BOCLEAN, | NT>,
MAP <CHAR(5), | NT>,
MAP <VARCHAR(25), | NT>,
MAP <FLQOAT, | NT>,
MAP <DOUBLE, | NT>,
ml0 MAP <DECI MAL(12,2), |NT>

333333332
3

)
STORED AS PARQUET;

CREATE TABLE cel ebrities (nanme STRING birth_year MAP < STRING SMALLINT >) STORED AS
PARQUET;

-- Atypical row mght represent values with 2 different birth years, such as:

-- ("Joe Movie Star", { "real": 1972, "claimed": 1977 })

CREATE TABLE countries (name STRING famous_| eaders MAP < INT, STRING >) STORED AS
PARQUET;

-- Atypical row nmight represent values with different |eaders, with key val ues
corresponding to their nuneric sequence, such as:

-- ("United States", { 1: "George Washington", 3: "Thomas Jefferson", 16: "Abraham
Li ncol n" })

CREATE TABLE airlines (name STRING special_neals MAP < STRING MAP < STRING STRING >
>) STORED AS PARQUET;

-- Atypical row mght represent values with nultiple kinds of nmeals, each with several
conponent s:

-- ("Elegant Airlines",

-- "vegetarian": { "breakfast": "pancakes", "snack": "cookies", "dinner": "rice
pilaf" },
-- "gluten free": { "breakfast": "oatneal", "snack": "fruit", "dinner": "chicken"

-- 1)

Related information:

Complex Types (CDH 5.5 or higher only) on page 146, ARRAY Complex Type (CDH 5.5 or higher only) on page 109, STRUCT
Complex Type (CDH 5.5 or higher only) on page 131

REAL Data Type
An alias for the DOUBLE data type. See DOUBLE Data Type on page 121 for details.

Examples:
These examples show how you can use the type names REAL and DOUBLE interchangeably, and behind the scenes

Impala treats them always as DOUBLE.

[l ocal host:21000] > create table r1 (x real);
[l ocal host:21000] > describe ri;

R o e Femm ek +
| name | type | comment |
R o e Femm ek +
| x | double | |
R o e e Femm ek +

[l ocal host:21000] > insert into rl values (1.5), (cast (2.2 as double));
[l ocal host:21000] > select cast (le6 as real);

| cast(1000000.0 as double) |

SMALLINT Data Type
A 2-byte integer data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_name SMALLI NT

Range: -32768 .. 32767. There is no UNSI GNED subtype.

Conversions: Impala automatically converts to a larger integer type (I NT or Bl G NT) or a floating-point type (FLOAT
or DOUBLE) automatically. Use CAST() to convert to TI NYI NT, STRI NG or TI MESTAMP. Casting an integer or
floating-point value Nto TI MESTAMP produces a value that is Nseconds past the start of the epoch date (January 1,
1970). By default, the result value represents a date and time in the UTC time zone. If the setting

--use_local _tz for_unix_timestanp_conversions=true is in effect, the resulting TI MESTAMP represents a
date and time in the local time zone.

Usage notes:

For a convenient and automated way to check the bounds of the SMALLI NT type, call the functions M N_SMALLI NT()
and MAX_SMALLI NT() .

If an integer value is too large to be represented as a SMALLI NT, use an | NT instead.
NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Examples:

CREATE TABLE t1 (x SMALLINT);
SELECT CAST(1000 AS SMALLI NT) ;

Parquet considerations:

Physically, Parquet files represent TI NYI NT and SMALLI NT values as 32-bit integers. Although Impala rejects attempts
to insert out-of-range values into such columns, if you create a new table with the CREATE TABLE ... LI KE PARQUET
syntax, any Tl NYI NT or SMALLI NT columns in the original table turn into | NT columns in the new table.

Partitioning: Prefer to use this type for a partition key column. Impala can process the numeric type more efficiently
than a STRI NGrepresentation of the value.

HBase considerations: This data type is fully compatible with HBase tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as a 2-byte value.
Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COVPUTE STATS statement.

Related information:

Numeric Literals on page 174, TINYINT Data Type on page 143, SMALLINT Data Type on page 129, INT Data Type on page
124, BIGINT Data Type on page 112, DECIMAL Data Type (CDH 6.0 / Impala 3.0 or higher only) on page 116, Impala
Mathematical Functions on page 404

STRING Data Type
A data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE and ALTER TABLE statements:

col utm_nanme STRI NG

Length:

If you need to manipulate string values with precise or maximum lengths, in Impala 2.0 and higher you can declare
columns as VARCHAR(max_| engt h) or CHAR(| engt h), but for best performance use STRI NGwhere practical.

Take the following considerations for STRI NGlengths:
¢ The hard limit on the size of a STRI NGand the total size of a row is 2 GB.

If a query tries to process or create a string larger than this limit, it will return an error to the user.

e The limitis 1 GB on STRI NGwhen writing to Parquet files.

e Queries operating on strings with 32 KB or less will work reliably and will not hit significant performance or memory
problems (unless you have very complex queries, very many columns, etc.)

e Performance and memory consumption may degrade with strings larger than 32 KB.

e The row size, i.e. the total size of all string and other columns, is subject to lower limits at various points in query
execution that support spill-to-disk. A few examples for lower row size limits are:

— Rows coming from the right side of any hash join
— Rows coming from either side of a hash join that spills to disk
Rows being sorted by the SORT operator without a limit

Rows in a grouping aggregation
In CDH 5.12 and lower, the default limit of the row size in the above cases is 8 MB.

In CDH 5.13 and higher, the max row size is configurable on a per-query basis with the MAX_ROW S| ZE query
option. Rows up to MAX_ROW SI ZE (which defaults to 512 KB) can always be processed in the above cases. Rows
larger than MAX_ROW SI ZE are processed on a best-effort basis. See MAX_ROW_SIZE for more details.

Character sets:

For full support in all Impala subsystems, restrict string values to the ASCII character set. Although some UTF-8 character
data can be stored in Impala and retrieved through queries, UTF-8 strings containing non-ASCIl characters are not
guaranteed to work properly in combination with many SQL aspects, including but not limited to:

e String manipulation functions.
e Comparison operators.

e The ORDER BY clause.

e Values in partition key columns.

For any national language aspects such as collation order or interpreting extended ASCI| variants such as 1ISO-8859-1
or I1SO-8859-2 encodings, Impala does not include such metadata with the table definition. If you need to sort, manipulate,
or display data depending on those national language characteristics of string data, use logic on the application side.

Conversions:

¢ Impala does not automatically convert STRI NGto any numeric type. Impala does automatically convert STRI NG
to TI MESTAMP if the value matches one of the accepted TI MESTAVP formats; see TIMESTAMP Data Type on page
137 for details.

* You can use CAST() to convert STRI NGvalues to TI NYI NT, SMALLI NT, | NT, Bl G NT, FLOAT, DOUBLE, or
Tl MESTAMP.

¢ You cannot directly cast a STRI NGvalue to BOOLEAN. You can use a CASE expression to evaluate string values
suchas' T',' true', and so on and return Boolean t r ue and f al se values as appropriate.

* You can cast a BOOLEANvalue to STRI NG, returning' 1' fortr ue valuesand' 0' forf al se values.

Partitioning:

Although it might be convenient to use STRI NGcolumns for partition keys, even when those columns contain numbers,
for performance and scalability it is much better to use numeric columns as partition keys whenever practical. Although
the underlying HDFS directory name might be the same in either case, the in-memory storage for the partition key
columns is more compact, and computations are faster, if partition key columns such as YEAR, MONTH, DAY and so on
are declared as | NT, SMALLI NT, and so on.

Zero-length strings: For purposes of clauses such as DI STI NCT and GROUP BY, Impala considers zero-length strings
(""), NULL, and space to all be different values.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Avro considerations:

The Avro specification allows string values up to 2**64 bytes in length. Impala queries for Avro tables use 32-bit integers
to hold string lengths. In CDH 5.7 / Impala 2.5 and higher, Impala truncates CHAR and VARCHAR values in Avro tables
to (2**31)-1 bytes. If a query encounters a STRI NGvalue longer than (2**31)-1 bytes in an Avro table, the query fails.
In earlier releases, encountering such long values in an Avro table could cause a crash.

Column statistics considerations: Because the values of this type have variable size, none of the column statistics fields
are filled in until you run the COVPUTE STATS statement.

Examples:

The following examples demonstrate double-quoted and single-quoted string literals, and required escaping for
quotation marks within string literals:

SELECT '|I am a single-quoted string';

SELECT "I am a doubl e-quoted string";

SELECT 'I\'m a single-quoted string with an apostrophe';

SELECT "I\'m a doubl e-quoted string with an apostrophe";

SELECT 'l ama "short" single-quoted string containing quotes';
SELECT "I ama \"short\" doubl e-quoted string containing quotes"”;

The following examples demonstrate calls to string manipulation functions to concatenate strings, convert numbers
to strings, or pull out substrings:

SELECT CONCAT("Once upon a tinme, there were ", CAST(3 AS STRING, ' little pigs.');
SELECT SUBSTR("hello world", 7,5);

The following examples show how to perform operations on STRI NG columns within a table:

CREATE TABLE t1 (s1 STRING s2 STRING;
INSERT INTO t1 VALUES (“hello", "world'), (CAST(7 AS STRING), "wonders"):
SELECT s1, s2, length(sl) FROMt1l WHERE s2 LIKE 'wi% ;

Related information:

String Literals on page 175, CHAR Data Type (CDH 5.2 or higher only) on page 114, VARCHAR Data Type (CDH 5.2 or
higher only) on page 144, Impala String Functions on page 468, Impala Date and Time Functions on page 430

STRUCT Complex Type (CDH 5.5 or higher only)

A complex data type, representing multiple fields of a single item. Frequently used as the element type of an ARRAY
or the VALUE part of a MAP.

Syntax:

col um_nanme STRUCT < nane : type [COMWENT 'comment_string'], ... >

type ::= primtive_type | conplex_type

The names and number of fields within the STRUCT are fixed. Each field can be a different type. A field within a STRUCT
can also be another STRUCT, or an ARRAY or a MAP, allowing you to create nested data structures with a maximum
nesting depth of 100.

A STRUCT can be the top-level type for a column, or can itself be an item within an ARRAY or the value part of the
key-value pair in a MAP.

When a STRUCT is used as an ARRAY element or a MAP value, you use a join clause to bring the ARRAY or MAP elements
into the result set, and thenrefertoarray_name. | TEM fi el d ormap_nane. VALUE. fi el d. In the case of a STRUCT
directly inside an ARRAY or MAP, you can omit the . | TEMand . VALUE pseudocolumns and refer directly to
array_nane. fiel dormap_nane. fiel d.

Usage notes:

Because complex types are often used in combination, for example an ARRAY of STRUCT elements, if you are unfamiliar
with the Impala complex types, start with Complex Types (CDH 5.5 or higher only) on page 146 for background information
and usage examples.

A STRUCT is similar conceptually to a table row: it contains a fixed number of named fields, each with a predefined
type. To combine two related tables, while using complex types to minimize repetition, the typical way to represent
that data is as an ARRAY of STRUCT elements.

Because a STRUCT has a fixed number of named fields, it typically does not make sense to have a STRUCT as the type
of a table column. In such a case, you could just make each field of the STRUCT into a separate column of the table.
The STRUCT type is most useful as an item of an ARRAY or the value part of the key-value pair in a MAP. A nested type
column with a STRUCT at the lowest level lets you associate a variable number of row-like objects with each row of
the table.

The STRUCT type is straightforward to reference within a query. You do not need to include the STRUCT column in a
join clause or give it a table alias, as is required for the ARRAY and MAP types. You refer to the individual fields using
dot notation, such as st ruct _col um_nane. fi el d_name, without any pseudocolumn such as | TEMor VALUE.

You can pass a multi-part qualified name to DESCRI BE to specify an ARRAY, STRUCT, or MAP column and visualize its
structure as if it were a table. For example, if table T1 contains an ARRAY column Al, you could issue the statement
DESCRI BE t 1. al. If table T1 contained a STRUCT column S1, and a field F1 within the STRUCT was a MAP, you could
issue the statement DESCRI BE t 1. s1. f 1. An ARRAY is shown as a two-column table, with | TEMand POS columns.
A STRUCT is shown as a table with each field representing a column in the table. A MAP is shown as a two-column table,
with KEY and VALUE columns.

Internal details:

Within the Parquet data file, the values for each STRUCT field are stored adjacent to each other, so that they can be
encoded and compressed using all the Parquet techniques for storing sets of similar or repeated values. The adjacency
applies even when the STRUCT values are part of an ARRAY or MAP. During a query, Impala avoids unnecessary 1/0 by
reading only the portions of the Parquet data file containing the requested STRUCT fields.

Added in: CDH 5.5.0 / Impala 2.3.0

Restrictions:
e Columns with this data type can only be used in tables or partitions with the Parquet file format.
¢ Columns with this data type cannot be used as partition key columns in a partitioned table.
e The COVPUTE STATS statement does not produce any statistics for columns of this data type.

e The maximum length of the column definition for any complex type, including declarations for any nested types,
is 4000 characters.

¢ See Limitations and Restrictions for Complex Types on page 150 for a full list of limitations and associated guidelines
about complex type columns.

Kudu considerations:
Currently, the data types CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Examples:

E,i Note: Many of the complex type examples refer to tables such as CUSTOVER and REG ON adapted

from the tables used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with
Impala Complex Types on page 167 for the table definitions.

The following example shows a table with various kinds of STRUCT columns, both at the top level and nested within
other complex types. Practice the CREATE TABLE and query notation for complex type columns using empty tables,
until you can visualize a complex data structure and construct corresponding SQL statements reliably.

CREATE TABLE struct_deno

id BI G NT,
nane STRI NG

-- A STRUCT as a top-level colum. Denonstrates how the table ID col um
-- and the ID field within the STRUCT can coexi st wi thout a nanme conflict.
enpl oyee_i nfo STRUCT < enployer: STRING id: BIGQNT, address: STRI NG >,

-- A STRUCT as the element type of an ARRAY.
pl aces_|ived ARRAY < STRUCT <street: STRING city: STRING country: STRI NG >>,

-- A STRUCT as the value portion of the key-value pairs in a MAP.

menor abl e_nmonents MAP < STRING STRUCT < year: INT, place: STRING details: STRI NG
>>,
-- A STRUCT where one of the fields is another STRUCT.

current_address STRUCT < street_address: STRUCT <street_number: |NT, street_nane:
STRING street_type: STRING>, country: STRING postal _code: STRING >

)
STORED AS PARQUET;

The following example shows how to examine the structure of a table containing one or more STRUCT columns by
using the DESCRI BE statement. You can visualize each STRUCT as its own table, with columns named the same as
each field of the STRUCT. If the STRUCT is nested inside another complex type, such as ARRAY, you can extend the
qualified name passed to DESCRI BE until the output shows just the STRUCT fields.

DESCRI BE struct _deno;

name string

enpl oyee_info struct<
enpl oyer: string,
id:bigint,
address:string

>

pl aces_|ived array<struct<
street:string,
city:string,
country:string

>>

menor abl e_nonent s map<string, struct<
year:int,
pl ace: string,
details:string

>>

current _address struct<

street _address:struct< |
street _nunber:int, |
street _nane:string, |
street_type:string |
>, I
country: string, [
postal _code: string |
I

The top-level column EMPLOYEE | NFOis a STRUCT. Describingt abl e_nane. st ruct _nane displays the fields of the
STRUCT as if they were columns of a table:

DESCRI BE struct _deno. enpl oyee_i nf o;

[SR, Fommm e oo - +
| name | type |
B S Fommm e oo - +
enployer	string
id	bigint
address	string
B S Fommm e oo - +

Because PLACES LI VEDis a STRUCT inside an ARRAY, the initial DESCRI BE shows the structure of the ARRAY:

DESCRI BE struct _deno. pl aces_| i ved,;
S RS, L e +

item| struct< |
[street:string, |
[city:string, |
[country:string |
I I
I I

Ask for the details of the | TEMfield of the ARRAY to see just the layout of the STRUCT:

DESCRI BE struct _deno. pl aces_lived.item

E Fomm e m e - - +
| name | type |
B R Fomm e e e - - +
street	string
city	string
country	string
B Fomm e m e - - +

Likewise, MEMORABLE_MOVMENTS has a STRUCT inside a MAP, which requires an extra level of qualified name to see just
the STRUCT part:

DESCRI BE struct _deno. nenor abl e_nonent s;

S . +
| name | type |
. T +
| key | string |
| value | struct< |
| | year:int, [
| | pl ace:string, |
| | details:string |
I | > I
Fomm o o e e e e e e o oo +

For a MAP, ask to see the VALUE field to see the corresponding STRUCT fields in a table-like structure:

DESCRI BE struct _deno. nenor abl e_nonent s. val ue;

E Fomm e m e - - +
| name | type |
B R Fomm e e e - - +
year	int
place	string
details	string
B R Fomm e m e - - +

For a STRUCT inside a STRUCT, we can see the fields of the outer STRUCT:

DESCRI BE struct _denp. current _address;

. . +
| name | type

. . +
| street_address | struct< |
| [street _nunber:int, |
| [street _name:string, |
| [street _type:string |
| | > |
| country | string [
| postal _code | string [
. - +

Then we can use a further qualified name to see just the fields of the inner STRUCT:

DESCRI BE struct _denp. current _address. street _address;

. tommm - +
| nane | type

. tomm e +
street_nunber	int
street_nane	string
street_type	string
- tomm e +

The following example shows how to examine the structure of a table containing one or more STRUCT columns by
using the DESCRI BE statement. You can visualize each STRUCT as its own table, with columns named the same as
each field of the STRUCT. If the STRUCT is nested inside another complex type, such as ARRAY, you can extend the

qualified name passed to DESCRI BE until the output shows just the STRUCT fields.

DESCRI BE struct _deno;

T L g +
| name type conment |
T L e +
id bi gi nt
name string
enpl oyee_info struct<
enpl oyer: string,
id:bigint,
address:string
>

pl aces_|ived

menor abl e_nmonent s

current_address

array<struct<
street:string,
city:string,
country:string

>>

map<string, struct<
year:int,
pl ace: string,
details:string

>>

struct<
street _address: struct<

street _nunber:int,

| street _nane:string, |
| street_type:string |
| > I
| country: string, [
| postal _code: string |
I I

SELECT id, enployee_info.id FROM struct_deno;
SELECT id, enployee_info.id AS enpl oyee_id FROM struct_deno;

SELECT id, enployee_info.id AS enpl oyee_id, enpl oyee_i nfo. enpl oyer
FROM st ruct _deno;

SELECT id, nane, street, city, country
FROM struct _denp, struct_deno. pl aces_|ived;

SELECT id, nane, places_|lived. pos, places_lived.street, places_lived.city,
pl aces_lived. country
FROM struct _denp, struct_deno. pl aces_|ived;

SELECT id, nane, pl.pos, pl.street, pl.city, pl.country
FROM struct _denp, struct_deno. pl aces_lived AS pl;

SELECT id, nane, places_lived. pos, places_lived.street, places_lived.city,
pl aces_| ived. country
FROM struct _denp, struct_deno. pl aces_|ived;

SELECT id, nane, pos, street, city, country
FROM struct _denp, struct_deno. pl aces_|ived;

SELECT id, nane, nenorabl e_nonents. key,
menor abl e_nonent s. val ue. year,
menor abl e_nonent s. val ue. pl ace,
menor abl e_nonent s. val ue. detai l s
FROM struct _deno, struct _deno. nenorabl e_nonent s
WHERE nenor abl e_nonents. key IN ('Birthday',' Anniversary',' G aduation');

SELECT id, nane, nm key, nmm val ue.year, nmmval ue. pl ace, nmval ue.details
FROM struct _deno, struct_deno. nenorabl e_nmonents AS nm
WHERE mm key IN (' Birthday','Anniversary',' Graduation');

SELECT id, nane, nenorabl e_nonents. key, nenorabl e_nonents. val ue. year,
menor abl e_nonent s. val ue. pl ace, nenorabl e_nonents. val ue. detail s

FROM struct _denp, struct_deno. nenorabl e_nonents

WHERE key IN ('Birthday',' Anniversary',' Graduation');

SELECT id, nane, key, value.year, value.place, value.details
FROM struct _denp, struct_deno. nenorabl e_nonents

WHERE key IN (' Birthday',' Anniversary',' Graduation');

SELECT id, nane, key, year, place, details
FROM struct _denp, struct_deno. nenorabl e_nonents

WHERE key IN (' Birthday',' Anniversary',' Graduation');

SELECT id, nane,
current _address. street _address. street _nunber,
current address. street _address. street_nane,
current _address. street_address. street _type,
current _address. country,
current _address. postal _code

FROM struct _deno;

For example, this table uses a struct that encodes several data values for each phone number associated with a person.
Each person can have a variable-length array of associated phone numbers, and queries can refer to the category field
to locate specific home, work, mobile, and so on kinds of phone numbers.

CREATE TABLE contact _i nfo_many_structs
id BIG NT, nane STRI NG

phone_nunbers ARRAY < STRUCT <cat egory: STRING country_code: STRING area_code: SVALLI NT,
full _nunmber: STRING nobil e: BOOLEAN, carrier: STRING > >
) STORED AS PARQUET;

Because structs are naturally suited to composite values where the fields have different data types, you might use
them to decompose things such as addresses:

CREATE TABLE contact _i nfo_detai | ed_address

id BIGA NT, nane STRI NG,
address STRUCT < house_nunber: | NT, street: STRING street_type: STRING apartnent: STRI NG
city: STRING region: STRING country: STRING >

In a big data context, splitting out data fields such as the number part of the address and the street name could let
you do analysis on each field independently. For example, which streets have the largest number range of addresses,
what are the statistical properties of the street names, which areas have a higher proportion of “Roads”, “Courts” or
“Boulevards”, and so on.

Related information:

Complex Types (CDH 5.5 or higher only) on page 146, ARRAY Complex Type (CDH 5.5 or higher only) on page 109, MAP
Complex Type (CDH 5.5 or higher only) on page 125

TIMESTAMP Data Type

In Impala, the TI MESTAMP data type holds a value of date and time. It can be decomposed into year, month, day, hour,
minute and seconds fields, but with no time zone information available, it does not correspond to any specific point
in time.

Internally, the resolution of the time portion of a TI MESTAMP value is in nanoseconds.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_nane TI MESTAWMP

timestanp [+ | -] INTERVAL interval
DATE_ADD (timestanp, |INTERVAL interval time_unit)

Range: 1400-01-01 to 9999-12-31

Out of range TI MESTAMP values are converted to NULL.

The range of Impala TI MESTAMP is different from the Hive TI MESTAMP type. Refer to Hive documentation for detail.
INTERVAL expressions:

You can perform date arithmetic by adding or subtracting a specified number of time units, using the | NTERVAL
keyword and the + operator, the - operator, dat e_add() ordate_sub().

The following units are supported fort i me_uni t in the | NTERVAL clause:

s YEAR S|
o NONTH S]
o VEEK[S]
e DAY[S|

¢ HOUR S|
e M NUTE[S|
¢ SECOND| S|

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+Types#LanguageManualTypes-timestamp

e M LLI SECOND S
e M CROSECOND| S]
e NANOSECOND| S]
You can only specify one time unit in each interval expression, for example | NTERVAL 3 DAYSor | NTERVAL 25

HOURS, but you can produce any granularity by adding together successive | NTERVAL values, suchast i nest anp_val ue
+ | NTERVAL 3 WEEKS - | NTERVAL 1 DAY + | NTERVAL 10 M CROSECONDS.

Internal details: Represented in memory as a 16-byte value.
Time zones:

By default, Impala stores and interprets TI MESTAMP values in UTC time zone when writing to data files, reading from
data files, or converting to and from system time values through functions.

When you set the - - use_l ocal _tz_for_uni x_ti mestanp_conver si ons startup flag to TRUE, Impala treats the
TI MESTAMP values specified in the local time zone. The local time zone is determined in the following order with the
TI MESTAMP query option takes the highest precedence:

1. The TI MESTAMP query option

2. $TZ environment variable

3. System time zone where the impalad coordinator runs
The--use_local tz for_unix_tinmestanp_conversi ons setting can be used to fix discrepancy in | NTERVAL
operations. For example, a TI MESTAMP + | NTERVAL n- hour s can be affected by Daylight Saving Time, which Impala

does not consider by default as these operations are applied as if the timestamp was in UTC. You can use the
--use_local _tz for_unix_tinmestanp_conversi ons setting to fix the issue.

See Customizing Time Zones on page 142 for configuring to use custom time zone database and aliases.

See Impala Date and Time Functions for the list of functions affected by the
--use_local _tz for_unix_tinmestanp_conver si ons setting.

Time zone handling between Impala and Hive:
Interoperability between Hive and Impala is different depending on the file format.
e Text

For text tables, TI MESTAMP values can be written and read interchangeably by Impala and Hive as Hive reads and
writes TI MESTAMP values without converting with respect to time zones.

e Parquet

E’; Note: This section only appliesto | NT96 Tl MESTAMP. See Data Type Considerations for Parquet
Tables on page 670 for information about Parquet data types.

When Hive writes to Parquet data files, the TI MESTAMP values are normalized to UTC from the local time zone
of the host where the data was written. On the other hand, Impala does not make any time zone adjustment
when it writes or reads | NT96 TI MESTAMP values to Parquet files. This difference in time zone handling can cause
potentially inconsistent results when Impala processes TI MESTAMP values in the Parquet files written by Hive.

To avoid incompatibility problems or having to code workarounds, you can specify one or both of these impalad
startup flags:

e --use_local _tz for_unix_tinestanp_conversions=true
e --convert_|legacy_hive_parquet_utc_tinestanps=true
When the - - convert | egacy_hi ve_parquet _utc_ti nest anps setting is enabled, Impala recognizes the

Parquet data files written by Hive, and applies the same UTC-to-local-timezone conversion logic during the query
as Hive does.

In CDH 6.0 / Impala 3.0 and lower, the - - convert _| egacy_hi ve_par quet _ut c_t i mest anps setting had a
severe impact on multi-threaded performance. The new time zone implementation in CDH 6.1 eliminated most

of the performance overhead and made Impala scale well to multiple threads. The

--convert _| egacy_hi ve_parquet _utc_ti mest anps setting is turned off by default for a performance
reason. To avoid unexpected incompatibility problems, you should turn on the option when processing TI MESTAVP
columns in Parquet files written by Hive.

Hive currently cannot write | NT64 TI MESTAMP values.

In CDH 6.2 and higher, | NT64 Tl MESTAMP values annotated with the T| MESTAMP_M LLI Sor TI MESTAMP_M CRCS
Ori gi nal Type are assumed to be always UTC normalized, so the UTC to local conversion will be always done.

| NT64 TI MESTAMP annotated with the TI MESTAMP Logi cal Type specifies whether UTC to local conversion is
necessary depending on the Parquet metadata.

Conversions:

Impala automatically converts STRI NGliterals of the correct format into TI MESTAMP values. Timestamp values are
accepted in the format ' yyyy- Mt dd HH: nm ss. SSSSSS' , and can consist of just the date, or just the time, with
or without the fractional second portion. For example, you can specify TI MESTAMP values such as ' 1966- 07- 30",
' 08:30: 00", o0r"'1985-09-25 17:45: 30. 005" .

Leading zeroes are not required in the numbers representing the date component, such as month and date, or the
time component, such as hour, minute, and second. For example, Impala accepts both' 2018-1-1 01: 02: 03' and
' 2018-01-01 1:2: 3" asvalid.

In STRI NGto TI MESTANMP conversions, leading and trailing white spaces, such as a space, a tab, a newline, or a carriage
return, are ignored. For example, Impala treats the following as equivalent: '1999-12-01 01:02:03 ', ' 1999-12-01 01:02:03',
'1999-12-01 01:02:03\r\n\t'".

When you convert or cast a STRI NGliteral to TI MESTAMP, you can use the following separators between the date part
and the time part:

e One or more space characters
Example: CAST(' 2001- 01- 09 01: 05: 01' AS Tl MESTAMP)
¢ The character “T”

Example: CAST(' 2001- 01- 09T01: 05: 01' AS Tl MESTAMP)

Casting an integer or floating-point value Nto TI MESTAMP produces a value that is Nseconds past the start of the
epoch date (January 1, 1970). By default, the result value represents a date and time in the UTC time zone. If the setting
--use_local _tz for_unix_timestanp_conversions=true is in effect, the resulting TI MESTAMP represents a
date and time in the local time zone.

In Impala 1.3 and higher, the FROM_UNI XTI ME() and UNI X_TI MESTAMP() functions allow a wider range of format
strings, with more flexibility in element order, repetition of letter placeholders, and separator characters. In CDH 5.5
/ Impala 2.3 and higher, the UNI X_TI MESTAMP() function also allows a numeric timezone offset to be specified as
part of the input string. See Impala Date and Time Functions on page 430 for details.

In Impala 2.2.0 and higher, built-in functions that accept or return integers representing TI MESTAMP values use the
Bl G NT type for parameters and return values, rather than | NT. This change lets the date and time functions avoid
an overflow error that would otherwise occur on January 19th, 2038 (known as the “Year 2038 problem” or “Y2K38
problem”). This change affects the FROM_UNI XTI ME() and UNI X_TI MESTAMP() functions. You might need to change
application code that interacts with these functions, change the types of columns that store the return values, or add
CAST() calls to SQL statements that call these functions.

Partitioning:

Although you cannot use a TI MESTAMP column as a partition key, you can extract the individual years, months, days,
hours, and so on and partition based on those columns. Because the partition key column values are represented in
HDFS directory names, rather than as fields in the data files themselves, you can also keep the original TI MESTAMP

http://en.wikipedia.org/wiki/Year_2038_problem
http://en.wikipedia.org/wiki/Year_2038_problem

values if desired, without duplicating data or wasting storage space. See Partition Key Columns on page 645 for more
details on partitioning with date and time values.

[l ocal host:21000] > create table tineline (event string) partitioned by (happened

ti nmestanp);

ERROR Anal ysi sException: Type ' TI MESTAMP' is not supported as partition-colum type in
col um: happened

NULL considerations: Casting any unrecognized STRI NGvalue to this type produces a NULL value.
HBase considerations: This data type is fully compatible with HBase tables.

Parquet consideration: | NT96 encoded Parquet timestamps are supported in Impala. | NT64 timestamps are supported
in CDH 6.2 and higher.

Parquet considerations: This type is fully compatible with Parquet tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COVPUTE STATS statement.

Kudu considerations:

In CDH 5.12 / Impala 2.9 and higher, you can include TI MESTAMP columns in Kudu tables, instead of representing the
date and time as a BI G NT value. The behavior of TI MESTANP for Kudu tables has some special considerations:

¢ Any nanoseconds in the original 96-bit value produced by Impala are not stored, because Kudu represents date/time
columns using 64-bit values. The nanosecond portion of the value is rounded, not truncated. Therefore, a
TI MESTAMP value that you store in a Kudu table might not be bit-for-bit identical to the value returned by a query.

¢ The conversion between the Impala 96-bit representation and the Kudu 64-bit representation introduces some
performance overhead when reading or writing TI MESTAMP columns. You can minimize the overhead during
writes by performing inserts through the Kudu API. Because the overhead during reads applies to each query, you
might continue to use a Bl G NT column to represent date/time values in performance-critical applications.

e The Impala TI MESTAMP type has a narrower range for years than the underlying Kudu data type. Impala can
represent years 1400-9999. If year values outside this range are written to a Kudu table by a non-Impala client,
Impala returns NULL by default when reading those TI MESTAMP values during a query. Or, if the ABORT_ON_ERROR
guery option is enabled, the query fails when it encounters a value with an out-of-range year.

Restrictions:

If you cast a STRI NGwith an unrecognized format to a TI| MESTAMP, the result is NULL rather than an error. Make sure
to test your data pipeline to be sure any textual date and time values are in a format that Impala TI MESTAMP can
recognize.

Currently, Avro tables cannot contain TI MESTAMP columns. If you need to store date and time values in Avro tables,
as a workaround you can use a STRI NGrepresentation of the values, convert the values to Bl G NT with the

UNI X_TI MESTAMP() function, or create separate numeric columns for individual date and time fields using the
EXTRACT() function.

Examples:

The following examples demonstrate using TI MESTAMP values with built-in functions:

sel ect cast('1966-07-30" as tinestanp);
sel ect cast('1985-09-25 17:45:30. 005" as tinmestanp);
sel ect cast('08:30:00' as tinestanp);

sel ect hour('1970-01-01 15:30:00'); -- Succeeds, returns 15.

sel ect hour('1970-01-01 15:30'); -- Returns NULL because seconds field
required.

sel ect hour('1970-01-01 27:30:00'); -- Returns NULL because hour value out of

range.

sel ect dayof week(' 2004- 06-13'); -- Returns 1,
sel ect daynane(' 2004-06-13");
sel ect date_add(' 2004- 06- 13",
fields.

sel ect day(' 2004-06-13"); --
sel ect datediff('1989-12-31"',"'1984-09-01"); --
sel ect now); --
timezone.

365) ; --

representi ng Sunday.

Ret urns ' Sunday' .
Ret urns 2005-06-13 with zeros for hh: mm ss

Returns 13.
How many days between these 2 dates?
Returns current date and tinme in |ocal

The following examples demonstrate using TI MESTAMP values with HDFS-backed tables:

create table dates_and_times (t tinestanp);
insert into dates_and_tines val ues
(' 1966-07-30"), ('1985-09-25 17:45:30.005"),

(' 08:30:00'),

(now());

The following examples demonstrate using TI MESTAMP values with Kudu tables:

create table tinmestanp_t (x int primary key,
partition by hash (x) partitions 16
stored as kudu;

s string, t

-- The default value of now() has m crosecond precision,
representi ng nanoseconds are all zero.
insert into tinestanp_t values (1, cast(now() as string),

Val ues with 1-499 nanoseconds are rounded down in the
insert into timestanp_t values (2, cast(now() + interval
now() + interval 100 nanoseconds, unix_timestanp(now) +
insert into timestanp_t values (3, cast(now() + interval
now() + interval 499 nanoseconds, unix_timestanp(now) +

-- Val ues wi th 500-999 nanoseconds are rounded up in the
insert into timestanp_t values (4, cast(now() + Interval
now() + interval 500 nanoseconds, unix_timestanp(now) +
insert into timestanp_t values (5, cast(now() + interval
now() + interval 501 nanoseconds, unix_timestanp(now) +

-- The string representati on shows how underlying | npal a
preci si on.

now()

ti mestanp, b bigint)

so the final 3 digits

uni x_ti mestanp(now()));

Kudu TI MESTAMP col um.

100 nanoseconds as string
interval 100 nanoseconds)
499 nanoseconds as string
i nterval 499 nanoseconds)

)
)
)
);
Kudu TI MESTAMP col um.

500 nanoseconds as string
i nterval 500 nanoseconds)
501 nanoseconds as string
i nterval 501 nanoseconds)

)
)
)
)

TI MESTAMP can have nanosecond

-- The TI MESTAMP col umm shows how tinestanps in a Kudu table are rounded to microsecond

preci si on.
-- The BIGA NT colum represents seconds past the epoch and so if not affected nuch by
nanoseconds.
select s, t, b fromtinestanp_t order by t;
S S e teceecaaaaaa +
| s |t | b I
S e e R +
2017-05-31 15:30: 05.107157000	2017-05-31 15:30: 05. 107157000	1496244605
2017-05-31 15:30:28.868151100	2017-05-31 15: 30: 28. 868151000	1496244628
2017-05-31 15:34:33.674692499	2017-05-31 15: 34: 33. 674692000	1496244873
2017-05-31 15:35:04. 769166500	2017-05-31 15:35:04. 769167000	1496244904
2017-05-31 15:35:33.033082501	2017-05-31 15: 35:33. 033083000	1496244933
S e e R +

Added in: Available in all versions of Impala.
Related information:

e Timestamp Literals on page 176.

¢ To convert to or from different date formats, or perform date arithmetic, use the date and time functions described
in Impala Date and Time Functions on page 430. In particular, the f r om_uni xt i me() function requires a
case-sensitive format string such as " yyyy- M dd HH: mm ss. SSSS", matching one of the allowed variations
of a TI MESTAMP value (date plus time, only date, only time, optional fractional seconds).

e See SQL Differences Between Impala and Hive on page 548 for details about differences in TI MESTAMP handling
between Impala and Hive.

Customizing Time Zones
Starting in CDH 6.1 / Impala 3.1, you can customize the time zone definitions used in Impala.

e By default, Impala uses the OS’s time zone database located in / usr/ shar e/ zonei nf 0. This directory contains
the IANA timezone database in a compiled binary format. The contents of the zonei nf o directory is controlled
by the OS’s package manager.

¢ Use the following start-up flags managed as i npal ad safety valves in Cloudera Manager.

— --hdf s_zone_i nf o_zi p: This flag allows Impala administrators to specify a custom timezone database.
The flag should be set to a shared (not necessarily HDFS) path that points to a zip archive of a custom IANA
timezone database. The timezone database is expected to be in a compiled binary format. If the startup flag
is set, Impala will use the specified timezone database instead of the default/ usr/ shar e/ zonei nf o
database. The timezone db upgrade process is described in detail below.

— --hdfs_zone_al i as_conf : This flag allows Impala administrators to specify definitions for custom timezone
aliases. The flag should be set to a shared (not necessarily HDFS) path that specifies a config file containing
custom timezone alias definitions. This config file can be used as a workaround for users who want to keep
using their legacy timezone names. Configuring custom aliases is described in detail below.

Upgrading custom IANA time zone database:

1. Download latest IANA time zone database distribution:

git clone https://github. confeggert/tz

Alternatively, download a specific tzdb version from:

https://ww. iana.org/time-zones/repository

2. Build timezone tools:

cd tz
make TOPDI R=t zdata install

3. Generate the compiled binary time zone database:

.lzic -d ./tzdata/etc/zoneinfo africa antarctica asia austral asi a backward backzone
etcetera europe factory northanerica pacificnew southanmerica systenv

4. Create zip archive:

pushd ./tzdatal/etc
zip -r zoneinfo.zip zoneinfo

popd
5. Copy the time zone database to HDFS:

hdfs dfs -nkdir -p /tzdb/l atest
hdf s dfs -copyFroniocal ./tzdata/etc/zoneinfo.zip /tzdb/l atest

6. Setthe - - hdf s_zone_i nf o_zi p startup flagto/t zdb/ | at est/ zonei nf 0. zi p asani npal ad safety valve.
7. Perform a full restart of Impala service.
Configuring custom time zone aliases:

1. Createat zal i as. conf config file that contains time zone alias definitions formatted as ALI AS = DEFI NI TI ON.
For example:

#
Define aliases for existing tinmezone nanes:

#

Uni versal Coordinated Time = UTC
M deast/ Ri yadh89 = Asi a/ Ri yadh
PDT = Anerical/ Los_Angel es

#

Define aliases as UTC offsets in seconds:
#

GMVIr- 01: 00 = 3600

Gvir+01: 00 = -3600

2. Copy the config file to HDFS:

hdfs dfs -nkdir -p /tzdb
hdfs dfs -copyFronmLocal tzalias.conf /tzdb

3. Set the--hdf s_zone_al i as_conf startup flagto/t zdb/t zal i as. conf asani npal ad safety valve.
4. Perform a full restart of Impala service.

Added in: CDH 6.1 / Impala 3.1

TINYINT Data Type
A 1-byte integer data type used in CREATE TABLE and ALTER TABLE statements.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_nare TI NYI NT

Range: -128 .. 127. There is no UNSI GNED subtype.

Conversions: Impala automatically converts to a larger integer type (SMALLI NT, | NT, or Bl G NT) or a floating-point
type (FLOAT or DOUBLE) automatically. Use CAST() to convert to STRI NGor TI MESTAMP. Casting an integer or
floating-point value Nto TI MESTAMP produces a value that is N seconds past the start of the epoch date (January 1,
1970). By default, the result value represents a date and time in the UTC time zone. If the setting

--use_local _tz_for_unix_tinmestanp_conversi ons=tr ue is in effect, the resulting TI MESTAMP represents a
date and time in the local time zone.

Impala does not return column overflows as NULL, so that customers can distinguish between NULL data and overflow
conditions similar to how they do so with traditional database systems. Impala returns the largest or smallest value in
the range for the type. For example, valid values for a t i nyi nt range from -128 to 127. In Impala, ati nyi nt witha

value of -200 returns -128 rather than NULL. At i nyi nt with a value of 200 returns 127.

Usage notes:

For a convenient and automated way to check the bounds of the TI NYI NT type, call the functions M N_TI NYI NT()
and MAX_TI NYI NT() .

If an integer value is too large to be represented as a TI NYI NT, use a SMALLI NT instead.
NULL considerations: Casting any non-numeric value to this type produces a NULL value.

Examples:

CREATE TABLE t1 (x TINYINT);
SELECT CAST(100 AS TI NYI NT);

Parquet considerations:

Physically, Parquet files represent TI NYI NT and SMALLI NT values as 32-bit integers. Although Impala rejects attempts
to insert out-of-range values into such columns, if you create a new table with the CREATE TABLE ... LI KE PARQUET
syntax, any TI NYI NT or SMALLI NT columns in the original table turn into | NT columns in the new table.

HBase considerations: This data type is fully compatible with HBase tables.

Text table considerations: Values of this type are potentially larger in text tables than in tables using Parquet or other
binary formats.

Internal details: Represented in memory as a 1-byte value.
Added in: Available in all versions of Impala.

Column statistics considerations: Because this type has a fixed size, the maximum and average size fields are always
filled in for column statistics, even before you run the COVPUTE STATS statement.

Related information:

Numeric Literals on page 174, TINYINT Data Type on page 143, SMALLINT Data Type on page 129, INT Data Type on page
124, BIGINT Data Type on page 112, DECIMAL Data Type (CDH 6.0 / Impala 3.0 or higher only) on page 116, Impala
Mathematical Functions on page 404

VARCHAR Data Type (CDH 5.2 or higher only)

A variable-length character type, truncated during processing if necessary to fit within the specified length.
Syntax:
In the column definition of a CREATE TABLE statement:

col um_nanme VARCHAR(max_| engt h)

The maximum length you can specify is 65,535.

Partitioning: This type can be used for partition key columns. Because of the efficiency advantage of numeric values
over character-based values, if the partition key is a string representation of a number, prefer to use an integer type
with sufficient range (I NT, Bl G NT, and so on) where practical.

HBase considerations: This data type cannot be used with HBase tables.
Parquet considerations:

e This type can be read from and written to Parquet files.

e There is no requirement for a particular level of Parquet.

e Parquet files generated by Impala and containing this type can be freely interchanged with other components
such as Hive and MapReduce.

¢ Parquet data files can contain values that are longer than allowed by the VARCHAR(n) length limit. Impala ignores
any extra trailing characters when it processes those values during a query.

Text table considerations:

Text data files can contain values that are longer than allowed by the VARCHAR(n) length limit. Any extra trailing
characters are ignored when Impala processes those values during a query.

Avro considerations:

The Avro specification allows string values up to 2**64 bytes in length. Impala queries for Avro tables use 32-bit integers
to hold string lengths. In CDH 5.7 / Impala 2.5 and higher, Impala truncates CHAR and VARCHAR values in Avro tables
to (2**31)-1 bytes. If a query encounters a STRI NGvalue longer than (2**31)-1 bytes in an Avro table, the query fails.
In earlier releases, encountering such long values in an Avro table could cause a crash.

Schema evolution considerations:

You can use ALTER TABLE ... CHANGE to switch column data types to and from VARCHAR. You can convert from
STRI NGto VARCHAR(n), or from VARCHAR(n) to STRI NG, or from CHAR(n) to VARCHAR(n), or from VARCHAR(n)
to CHAR(n) . When switching back and forth between VARCHAR and CHAR, you can also change the length value. This
schema evolution works the same for tables using any file format. If a table contains values longer than the maximum
length defined for a VARCHAR column, Impala does not return an error. Any extra trailing characters are ignored when
Impala processes those values during a query.

Compatibility:

This type is available in CDH 5.2 / Impala 2.0 or higher.
Internal details: Represented in memory as a byte array with the minimum size needed to represent each value.
Added in: CDH 5.2.0 / Impala 2.0.0

Column statistics considerations: Because the values of this type have variable size, none of the column statistics fields
are filled in until you run the COVPUTE STATS statement.

Kudu considerations:
Currently, the data types CHAR, VARCHAR, ARRAY, MAP, and STRUCT cannot be used with Kudu tables.
Restrictions:

All data in CHAR and VARCHAR columns must be in a character encoding that is compatible with UTF-8. If you have
binary data from another database system (that is, a BLOB type), use a STRI NGcolumn to hold it.

Examples:

The following examples show how long and short VARCHAR values are treated. Values longer than the maximum
specified length are truncated by CAST(), or when queried from existing data files. Values shorter than the maximum
specified length are represented as the actual length of the value, with no extra padding as seen with CHAR values.

create table varchar_1 (s varchar(1));
create table varchar_4 (s varchar(4));
create table varchar_20 (s varchar(20));

insert into varchar_1 values (cast('a' as varchar(1l))), (cast('b'" as varchar(1))),
(cast('hell o' as varchar(1))), (cast('world" as varchar(1l)));

insert into varchar_4 values (cast('a' as varchar(4))), (cast('b" as varchar(4))),
(cast('hello' as varchar(4))), (cast('world" as varchar(4)));

insert into varchar_20 values (cast('a' as varchar(20))), (cast('b' as varchar(20))),
(cast('hello' as varchar(20))), (cast('world" as varchar(20)));

select * fromvarchar_1;

+--- 4
| s |

+--- 4+

| a|

| b|

| h|

[w

+---+

select * fromvarchar_4;
B R, +

| s I

Fomm oo - +

| a I

| b I

| hell |

| worl |

oo +

[l ocal host:21000] > select * from varchar_20;
ocmenn- +

| s I

. +

| a |

| b I

| hello |

| world |

B +

select concat('[',s,']') as s fromvarchar_20;
E +

| s I

B R +

| [a] |

| [b] I

| [hello] |

| [world] |

The following example shows how identical VARCHAR values compare as equal, even if the columns are defined with
different maximum lengths. Both tables contain' a' and' b' values. The longer' hel | o' and' wor| d' values from
the VARCHAR 20 table were truncated when inserted into the VARCHAR 1 table.

select s fromvarchar_1 join varchar_20 using (s);

Fomm - +
| s I
Fomm - +
| a I
[b I
Fomma - +

The following examples show how VARCHAR values are freely interchangeable with STRI NGvalues in contexts such
as comparison operators and built-in functions:

sel ect length(cast('foo' as varchar(100))) as |ength;
Femmm e +

| length |

Femm e +

| 3 |

Femmm e +

sel ect cast('xyz' as varchar(5)) > cast('abc' as varchar(10)) as greater;
Fomm ek +

| greater |

Femm ek +

| true |

Fomm ek +

UDF considerations: This type cannot be used for the argument or return type of a user-defined function (UDF) or
user-defined aggregate function (UDA).

Related information:

STRING Data Type on page 130, CHAR Data Type (CDH 5.2 or higher only) on page 114, String Literals on page 175, Impala
String Functions on page 468

Complex Types (CDH 5.5 or higher only)

Complex types (also referred to as nested types) let you represent multiple data values within a single row/column
position. They differ from the familiar column types such as Bl G NT and STRI NG known as scalar types or primitive
types, which represent a single data value within a given row/column position. Impala supports the complex types
ARRAY, MAP, and STRUCT in CDH 5.5 / Impala 2.3 and higher. The Hive UNI ON type is not currently supported.

Once you understand the basics of complex types, refer to the individual type topics when you need to refresh your
memory about syntax and examples:

e ARRAY Complex Type (CDH 5.5 or higher only) on page 109
e STRUCT Complex Type (CDH 5.5 or higher only) on page 131
e MAP Complex Type (CDH 5.5 or higher only) on page 125

Benefits of Impala Complex Types
The reasons for using Impala complex types include the following:

¢ You already have data produced by Hive or other non-Impala component that uses the complex type column
names. You might need to convert the underlying data to Parquet to use it with Impala.

¢ Your data model originates with a non-SQL programming language or a NoSQL data management system. For
example, if you are representing Python data expressed as nested lists, dictionaries, and tuples, those data
structures correspond closely to Impala ARRAY, MAP, and STRUCT types.

e Your analytic queries involving multiple tables could benefit from greater locality during join processing. By packing
more related data items within each HDFS data block, complex types let join queries avoid the network overhead
of the traditional Hadoop shuffle or broadcast join techniques.

The Impala complex type support produces result sets with all scalar values, and the scalar components of complex
types can be used with all SQL clauses, such as GROUP BY, ORDER BY, all kinds of joins, subqueries, and inline views.
The ability to process complex type data entirely in SQL reduces the need to write application-specific code in Java or
other programming languages to deconstruct the underlying data structures.

Overview of Impala Complex Types

The ARRAY and MAP types are closely related: they represent collections with arbitrary numbers of elements, where
each element is the same type. In contrast, STRUCT groups together a fixed number of items into a single element.
The parts of a STRUCT element (the fields) can be of different types, and each field has a name.

The elements of an ARRAY or MAP, or the fields of a STRUCT, can also be other complex types. You can construct
elaborate data structures with up to 100 levels of nesting. For example, you can make an ARRAY whose elements are
STRUCTSs. Within each STRUCT, you can have some fields that are ARRAY, MAP, or another kind of STRUCT. The Impala
documentation uses the terms complex and nested types interchangeably; for simplicity, it primarily uses the term
complex types, to encompass all the properties of these types.

When visualizing your data model in familiar SQL terms, you can think of each ARRAY or MAP as a miniature table, and
each STRUCT as a row within such a table. By default, the table represented by an ARRAY has two columns, PGS to
represent ordering of elements, and | TEMrepresenting the value of each element. Likewise, by default, the table
represented by a MAP encodes key-value pairs, and therefore has two columns, KEY and VALUE.

The | TEMand VALUE names are only required for the very simplest kinds of ARRAY and MAP columns, ones that hold
only scalar values. When the elements within the ARRAY or MAP are of type STRUCT rather than a scalar type, then the
result set contains columns with names corresponding to the STRUCT fields rather than | TEMor VALUE.

You write most queries that process complex type columns using familiar join syntax, even though the data for both
sides of the join resides in a single table. The join notation brings together the scalar values from a row with the values
from the complex type columns for that same row. The final result set contains all scalar values, allowing you to do all
the familiar filtering, aggregation, ordering, and so on for the complex data entirely in SQL or using business intelligence
tools that issue SQL queries.

Behind the scenes, Impala ensures that the processing for each row is done efficiently on a single host, without the
network traffic involved in broadcast or shuffle joins. The most common type of join query for tables with complex
type columnsis | NNER JA N, which returns results only in those cases where the complex type contains some elements.
Therefore, most query examples in this section use either the | NNER JO Nclause or the equivalent comma notation.

E,’ Note:

Although Impala can query complex types that are present in Parquet files, Impala currently cannot
create new Parquet files containing complex types. Therefore, the discussion and examples presume
that you are working with existing Parquet data produced through Hive, Spark, or some other source.
See Constructing Parguet Files with Complex Columns Using Hive on page 169 for examples of
constructing Parquet data files with complex type columns.

For learning purposes, you can create empty tables with complex type columns and practice query
syntax, even if you do not have sample data with the required structure.

Design Considerations for Complex Types

When planning to use Impala complex types, and designing the Impala schema, first learn how this kind of schema
differs from traditional table layouts from the relational database and data warehousing fields. Because you might
have already encountered complex types in a Hadoop context while using Hive for ETL, also learn how to write
high-performance analytic queries for complex type data using Impala SQL syntax.

How Complex Types Differ from Traditional Data Warehouse Schemas

Complex types let you associate arbitrary data structures with a particular row. If you are familiar with schema design
for relational database management systems or data warehouses, a schema with complex types has the following
differences:

e Logically, related values can now be grouped tightly together in the same table.
In traditional data warehousing, related values were typically arranged in one of two ways:

— Split across multiple normalized tables. Foreign key columns specified which rows from each table were
associated with each other. This arrangement avoided duplicate data and therefore the data was compact,
but join queries could be expensive because the related data had to be retrieved from separate locations.
(In the case of distributed Hadoop queries, the joined tables might even be transmitted between different
hosts in a cluster.)

— Flattened into a single denormalized table. Although this layout eliminated some potential performance
issues by removing the need for join queries, the table typically became larger because values were repeated.
The extra data volume could cause performance issues in other parts of the workflow, such as longer ETL
cycles or more expensive full-table scans during queries.

Complex types represent a middle ground that addresses these performance and volume concerns. By physically
locating related data within the same data files, complex types increase locality and reduce the expense of join
queries. By associating an arbitrary amount of data with a single row, complex types avoid the need to repeat
lengthy values such as strings. Because Impala knows which complex type values are associated with each row,
you can save storage by avoiding artificial foreign key values that are only used for joins. The flexibility of the
STRUCT, ARRAY, and MAP types lets you model familiar constructs such as fact and dimension tables from a data
warehouse, and wide tables representing sparse matrixes.

Physical Storage for Complex Types

Physically, the scalar and complex columns in each row are located adjacent to each other in the same Parquet data
file, ensuring that they are processed on the same host rather than being broadcast across the network when
cross-referenced within a query. This co-location simplifies the process of copying, converting, and backing all the
columns up at once. Because of the column-oriented layout of Parquet files, you can still query only the scalar columns
of a table without imposing the 1/O penalty of reading the (possibly large) values of the composite columns.

Within each Parquet data file, the constituent parts of complex type columns are stored in column-oriented format:

e Each field of a STRUCT type is stored like a column, with all the scalar values adjacent to each other and encoded,
compressed, and so on using the Parquet space-saving techniques.

e For an ARRAY containing scalar values, all those values (represented by the | TEMpseudocolumn) are stored
adjacent to each other.

e For a MAP, the values of the KEY pseudocolumn are stored adjacent to each other. If the VALUE pseudocolumn is
a scalar type, its values are also stored adjacent to each other.

¢ If an ARRAY element, STRUCT field, or MAP VALUE part is another complex type, the column-oriented storage
applies to the next level down (or the next level after that, and so on for deeply nested types) where the final
elements, fields, or values are of scalar types.

The numbers represented by the POS pseudocolumn of an ARRAY are not physically stored in the data files. They are
synthesized at query time based on the order of the ARRAY elements associated with each row.
File Format Support for Impala Complex Types

Currently, Impala queries support complex type data only in the Parquet file format. See Using the Parquet File Format
with Impala Tables on page 658 for details about the performance benefits and physical layout of this file format.

Because Impala does not parse the data structures containing nested types for unsupported formats such as text, Avro,
SequenceFile, or RCFile, you cannot use data files in these formats with Impala, even if the query does not refer to the
nested type columns. Also, if a table using an unsupported format originally contained nested type columns, and then
those columns were dropped from the table using ALTER TABLE ... DROP COLUMN, any existing data files in the
table still contain the nested type data and Impala queries on that table will generate errors.

The one exception to the preceding rule is COUNT(*) queries on RCFile tables that include complex types. Such queries
are allowed in CDH 5.8 / Impala 2.6 and higher.

You can perform DDL operations for tables involving complex types in most file formats other than Parquet. You cannot
create tables in Impala with complex types using text files.

You can have a partitioned table with complex type columns that uses a non-Parquet format, and use ALTER TABLE
to change the file format to Parquet for individual partitions. When you put Parquet data files into those partitions,
Impala can execute queries against that data as long as the query does not involve any of the non-Parquet partitions.

If you use the par quet -t ool s command to examine the structure of a Parquet data file that includes complex types,
you see that both ARRAY and MAP are represented as a Bag in Parquet terminology, with all fields marked Opt i onal
because Impala allows any column to be nullable.

Impala supports either 2-level and 3-level encoding within each Parquet data file. When constructing Parquet data
files outside Impala, use either encoding style but do not mix 2-level and 3-level encoding within the same data file.

Choosing Between Complex Types and Normalized Tables

Choosing between multiple normalized fact and dimension tables, or a single table containing complex types, is an
important design decision.

¢ If you are coming from a traditional database or data warehousing background, you might be familiar with how
to split up data between tables. Your business intelligence tools might already be optimized for dealing with this
kind of multi-table scenario through join queries.

¢ Ifyou are pulling data from Impala into an application written in a programming language that has data structures
analogous to the complex types, such as Python or Java, complex types in Impala could simplify data interchange
and improve understandability and reliability of your program logic.

¢ You might already be faced with existing infrastructure or receive high volumes of data that assume one layout
or the other. For example, complex types are popular with web-oriented applications, for example to keep
information about an online user all in one place for convenient lookup and analysis, or to deal with sparse or
constantly evolving data fields.

e |f some parts of the data change over time while related data remains constant, using multiple normalized tables
lets you replace certain parts of the data without reloading the entire data set. Conversely, if you receive related
data all bundled together, such as in JSON files, using complex types can save the overhead of splitting the related
items across multiple tables.

¢ From a performance perspective:

— In Parquet tables, Impala can skip columns that are not referenced in a query, avoiding the 1/0 penalty of
reading the embedded data. When complex types are nested within a column, the data is physically divided
at a very granular level; for example, a query referring to data nested multiple levels deep in a complex type
column does not have to read all the data from that column, only the data for the relevant parts of the column
type hierarchy.

— Complex types avoid the possibility of expensive join queries when data from fact and dimension tables is
processed in parallel across multiple hosts. All the information for a row containing complex types is typically
to be in the same data block, and therefore does not need to be transmitted across the network when joining
fields that are all part of the same row.

— The tradeoff with complex types is that fewer rows fit in each data block. Whether it is better to have more
data blocks with fewer rows, or fewer data blocks with many rows, depends on the distribution of your data
and the characteristics of your query workload. If the complex columns are rarely referenced, using them
might lower efficiency. If you are seeing low parallelism due to a small volume of data (relatively few data
blocks) in each table partition, increasing the row size by including complex columns might produce more
data blocks and thus spread the work more evenly across the cluster. See Scalability Considerations for Impala
on page 621 for more on this advanced topic.

Differences Between Impala and Hive Complex Types

Impala can query Parquet tables containing ARRAY, STRUCT, and MAP columns produced by Hive. There are some
differences to be aware of between the Impala SQL and HiveQL syntax for complex types, primarily for queries.

Impala supports a subset of the syntax that Hive supports for specifying ARRAY, STRUCT, and MAP types in the CREATE
TABLE statements.

Because Impala STRUCT columns include user-specified field names, you use the NAMED_STRUCT() constructor in
Hive rather than the STRUCT() constructor when you populate an Impala STRUCT column using a Hive | NSERT
statement.

The Hive UNI ON type is not currently supported in Impala.

While Impala usually aims for a high degree of compatibility with HiveQL query syntax, Impala syntax differs from Hive
for queries involving complex types. The differences are intended to provide extra flexibility for queries involving these
kinds of tables.

¢ Impala uses dot notation for referring to element names or elements within complex types, and join notation for
cross-referencing scalar columns with the elements of complex types within the same row, rather than the LATERAL
VI EWclause and EXPLODE() function of HiveQL.

e Using join notation lets you use all the kinds of join queries with complex type columns. For example, you can use
aLEFT QUTER JO N, LEFT ANTI JOA N, or LEFT SEM JO Nquery to evaluate different scenarios where the
complex columns do or do not contain any elements.

¢ You can include references to collection types inside subqueries and inline views. For example, you can construct
a FROMclause where one of the “tables” is a subquery against a complex type column, or use a subquery against
a complex type column as the argument to an | Nor EXI STS clause.

¢ The Impala pseudocolumn PCS lets you retrieve the position of elements in an array along with the elements
themselves, equivalent to the POSEXPLCODE() function of HiveQL. You do not use index notation to retrieve a
single array element in a query; the join query loops through the array elements and you use WHERE clauses to
specify which elements to return.

¢ Join clauses involving complex type columns do not require an ON or USI NGclause. Impala implicitly applies the
join key so that the correct array entries or map elements are associated with the correct row from the table.

¢ Impala does not currently support the UNI ON complex type.

Limitations and Restrictions for Complex Types
Complex type columns can only be used in tables or partitions with the Parquet file format.
Complex type columns cannot be used as partition key columns in a partitioned table.

When you use complex types with the ORDER BY, GROUP BY, HAVI NG, or WHERE clauses, you cannot refer to the
column name by itself. Instead, you refer to the names of the scalar values within the complex type, such as the | TEM
PGS, KEY, or VALUE pseudocolumns, or the field names from a STRUCT.

The maximum depth of nesting for complex types is 100 levels.

The maximum length of the column definition for any complex type, including declarations for any nested types, is
4000 characters.

For ideal performance and scalability, use small or medium-sized collections, where all the complex columns contain
at most a few hundred megabytes per row. Remember, all the columns of a row are stored in the same HDFS data
block, whose size in Parquet files typically ranges from 256 MB to 1 GB.

Including complex type columns in a table introduces some overhead that might make queries that do not reference
those columns somewhat slower than Impala queries against tables without any complex type columns. Expect at
most a 2x slowdown compared to tables that do not have any complex type columns.

Currently, the COVPUTE STATS statement does not collect any statistics for columns containing complex types. Impala
uses heuristics to construct execution plans involving complex type columns.

Currently, Impala built-in functions and user-defined functions cannot accept complex types as parameters or produce
them as function return values. (When the complex type values are materialized in an Impala result set, the result set
contains the scalar components of the values, such as the POS or | TEMfor an ARRAY, the KEY or VALUE for a MAP, or
the fields of a STRUCT; these scalar data items can be used with built-in functions and UDFs as usual.)

Impala currently cannot write new data files containing complex type columns. Therefore, although the SELECT
statement works for queries involving complex type columns, you cannot use a statement form that writes data to
complex type columns, such as CREATE TABLE AS SELECT or | NSERT ... SELECT. To create data files containing
complex type data, use the Hive | NSERT statement, or another ETL mechanism such as MapReduce jobs, Spark jobs,
Pig, and so on.

Currently, Impala can query complex type columns only from Parquet tables or Parquet partitions within partitioned
tables. Although you can use complex types in tables with Avro, text, and other file formats as part of your ETL pipeline,
for example as intermediate tables populated through Hive, doing analytics through Impala requires that the data
eventually ends up in a Parquet table. The requirement for Parquet data files means that you can use complex types
with Impala tables hosted on other kinds of file storage systems such as Isilon and Amazon S3, but you cannot use
Impala to query complex types from HBase tables. See File Format Support for Impala Complex Types on page 148 for
more details.

Using Complex Types in SQL

When using complex types through SQL in Impala, you learn the notation for < > delimiters for the complex type
columns in CREATE TABLE statements, and how to construct join queries to “unpack” the scalar values nested inside
the complex data structures. You might need to condense a traditional RDBMS or data warehouse schema into a
smaller number of Parquet tables, and use Hive, Spark, Pig, or other mechanism outside Impala to populate the tables
with data.

Complex Type Syntax for DDL Statements

The definition of data_type, as seen in the CREATE TABLEand ALTER TABLE statements, now includes complex types
in addition to primitive types:

prinmtive_type
| array_type

| map_type
| struct_type

Unions are not currently supported.

Array, struct,and map column type declarations are specified in the CREATE TABLE statement. You can also add
or change the type of complex columns through the ALTER TABLE statement.

Currently, Impala queries allow complex types only in tables that use the Parquet format. If an Impala query encounters
complex types in a table or partition using another file format, the query returns a runtime error.

You canuse ALTER TABLE ... SET FI LEFORMAT PARQUET to change the file format of an existing table containing
complex types to Parquet, after which Impala can query it. Make sure to load Parquet files into the table after changing
the file format, because the ALTER TABLE ... SET FI LEFORMAT statement does not convert existing data to the
new file format.

Partitioned tables can contain complex type columns. All the partition key columns must be scalar types.

Because use cases for Impala complex types require that you already have Parquet data files produced outside of
Impala, you can use the Impala CREATE TABLE LI KE PARQUET syntax to produce a table with columns that match
the structure of an existing Parquet file, including complex type columns for nested data structures. Remember to
include the STORED AS PARQUET clause in this case, because even with CREATE TABLE LI KE PARQUET, the default
file format of the resulting table is still text.

You cannot use the CREATE TABLE AS SELECT syntax to create a table with nested type columns because the
complex columns are omitted from the result set of an Impala SELECT * or SELECT col _name query, and because
Impala currently does not support writing Parquet files with complex type columns,

E,i Note:

Once you have a table set up with complex type columns, use the DESCRI BE and SHOW CREATE
TABLE statements to see the correct notation with <and > delimiters and comma and colon separators
within the complex type definitions. If you do not have existing data with the same layout as the table,
you can query the empty table to practice with the notation for the SELECT statement. In the SELECT
list, you use dot notation and pseudocolumns such as | TEM KEY, and VALUE for referring to items
within the complex type columns. In the FROMclause, you use join notation to construct table aliases
for any referenced ARRAY and MAP columns.

For example, when defining a table that holds contact information, you might represent phone numbers differently
depending on the expected layout and relationships of the data, and how well you can predict those properties in
advance.

Here are different ways that you might represent phone numbers in a traditional relational schema, with equivalent
representations using complex types.

The traditional, simplest way to represent phone numbers in a relational table is to store all contact info in a single
table, with all columns having scalar types, and each potential phone number represented as a separate column. In
this example, each person can only have these 3 types of phone numbers. If the person does not have a particular kind
of phone number, the corresponding column is NULL for that row.

CREATE TABLE cont acts_fi xed_phones
(

id BIGNT

name STRI NG

address STRI NG

honme_phone STRI NG

wor k_phone STRI NG

nobi | e_phone STRI NG

) STORED AS PARQUET;

)
1
)
1
)

Figure 1: Traditional Relational Representation of Phone Numbers: Single Table

Using a complex type column to represent the phone numbers adds some extra flexibility. Now there could be an
unlimited number of phone numbers. Because the array elements have an order but not symbolic names, you could
decide in advance that phone_number[0] is the home number, [1] is the work number, [2] is the mobile number, and
so on. (In subsequent examples, you will see how to create a more flexible naming scheme using other complex type
variations, such as a MAP or an ARRAY where each element is a STRUCT.)

CREATE TABLE contacts_array_of _phones

id BIG NT
, nane STRI NG
, address STRI NG
, phone_nunber ARRAY < STRI NG >
) STORED AS PARQUET;

Figure 2: An Array of Phone Numbers

Another way to represent an arbitrary set of phone numbers is with a MAP column. With a MAP, each element is
associated with a key value that you specify, which could be a numeric, string, or other scalar type. This example uses
a STRI NGkey to give each phone number a name, such as' hone' or' nobi | e' . A query could filter the data based
on the key values, or display the key values in reports.

CREATE TABLE contacts_unlimted_phones
id BIA NT, nane STRING address STRING phone_number MAP < STRI NG, STRI NG >

) STORED AS PARQUET,;

Figure 3: A Map of Phone Numbers

If you are an experienced database designer, you already know how to work around the limitations of the single-table
schema from Figure 1: Traditional Relational Representation of Phone Numbers: Single Table on page 152. By normalizing
the schema, with the phone numbers in their own table, you can associate an arbitrary set of phone numbers with
each person, and associate additional details with each phone number, such as whether it is a home, work, or mobile
phone.

The flexibility of this approach comes with some drawbacks. Reconstructing all the data for a particular person requires
ajoin query, which might require performance tuning on Hadoop because the data from each table might be transmitted
from a different host. Data management tasks such as backups and refreshing the data require dealing with multiple
tables instead of a single table.

This example illustrates a traditional database schema to store contact info normalized across 2 tables. The fact table
establishes the identity and basic information about person. A dimension table stores information only about phone
numbers, using an ID value to associate each phone number with a person ID from the fact table. Each person can
have 0, 1, or many phones; the categories are not restricted to a few predefined ones; and the phone table can contain
as many columns as desired, to represent all sorts of details about each phone number.

CREATE TABLE fact_contacts (id BIG NT, nane STRING address STRING STORED AS PARQUET,;
CREATE TABLE di m phones
(
contact _id BIG NT

, category STRI NG

, international _code STRI NG

, area_code STRING

, exchange STRI NG

, extension STRI NG

, nmobi | e BOOLEAN

, carrier STRI NG

, current BOOLEAN

, service_start_date TI MESTAW

, service_end_date TI MESTAMP

)
STORED AS PARQUET,;
Figure 4: Traditional Relational Representation of Phone Numbers: Normalized Tables

To represent a schema equivalent to the one from Figure 4: Traditional Relational Representation of Phone Numbers:
Normalized Tables on page 153 using complex types, this example uses an ARRAY where each array element is a STRUCT.
As with the earlier complex type examples, each person can have an arbitrary set of associated phone numbers. Making
each array element into a STRUCT lets us associate multiple data items with each phone number, and give a separate
name and type to each data item. The STRUCT fields of the ARRAY elements reproduce the columns of the dimension
table from the previous example.

You can do all the same kinds of queries with the complex type schema as with the normalized schema from the
previous example. The advantages of the complex type design are in the areas of convenience and performance. Now
your backup and ETL processes only deal with a single table. When a query uses a join to cross-reference the information
about a person with their associated phone numbers, all the relevant data for each row resides in the same HDFS data
block, meaning each row can be processed on a single host without requiring network transmission.

CREATE TABLE contacts_detail ed_phones

id BIG NT, nane STRING address STRI NG
, phone ARRAY < STRUCT <
category: STRI NG
, international _code: STRI NG
, area_code: STRING
, exchange: STRI NG

, extension: STRI NG

, nobile: BOOLEAN

, carrier: STRING

, current: BOOLEAN

, service_start _date: TIMESTAMP

, service_end_date: TI MESTAWP
>>

) STORED AS PARQUET;

Figure 5: Phone Numbers Represented as an Array of Structs

SQL Statements that Support Complex Types

The Impala SQL statements that support complex types are currently CREATE TABLE, ALTER TABLE, DESCRI BE,
LOAD DATA, and SELECT. That s, currently Impala can create or alter tables containing complex type columns, examine
the structure of a table containing complex type columns, import existing data files containing complex type columns
into a table, and query Parquet tables containing complex types.

Impala currently cannot write new data files containing complex type columns. Therefore, although the SELECT
statement works for queries involving complex type columns, you cannot use a statement form that writes data to
complex type columns, such as CREATE TABLE AS SELECT or | NSERT ... SELECT. To create data files containing
complex type data, use the Hive | NSERT statement, or another ETL mechanism such as MapReduce jobs, Spark jobs,
Pig, and so on.

DDL Statements and Complex Types

Column specifications for complex or nested types use < and > delimiters:

-- What goes inside the < > for an ARRAY is a single type, either a scalar or another
-- conpl ex type (ARRAY, STRUCT, or MAP).
CREATE TABLE array_t

id Bl G NT,

al ARRAY <STRI NG,

a2 ARRAY <BI G NT>,

a3 ARRAY <T| MESTAMVP>,

a4 ARRAY <STRUCT <fl: STRING f2: INT, f3: BOOLEAN>>

)
STORED AS PARQUET;,

-- What goes inside the < > for a MAP is two conma-separated types specifying the types
of the key-val ue pair:
-- a scalar type representing the key, and a scalar or conplex type representing the
val ue.
CREATE TABLE nmap_t
(
id Bl G NT,
MAP <STRI NG, STRI NG,
MAP <STRI NG, BI G NT>,
MAP <BI G NT, STRI NG,
MAP <BI G NT, BI G NT>,
MAP <STRI NG, ARRAY <STRI NG>>

FRIRR

)
STORED AS PARQUET;

-- What goes inside the < > for a STRUCT is a comma-separated |list of fields, each field
defined as
-- nane:type. The type can be a scal ar or a conplex type. The field nanes for each STRUCT
do not cl ash
-- with the nanes of table colums or fields in other STRUCTs. A STRUCT is nost often
used inside
-- an ARRAY or a MAP rather than as a top-Ilevel colum.
CREATE TABLE struct _t
(

id Bl G NT,

sl STRUCT <f1: STRING f2: Bl G NT>,

s2 ARRAY <STRUCT <f1: INT, f2: TIMESTAMP>>,

s3 MAP <BI G NT, STRUCT <nane: STRING birthday: TI MESTAMP>>

STORED AS PARQUET;

Queries and Complex Types

The result set of an Impala query always contains all scalar types; the elements and fields within any complex type
queries must be “unpacked” using join queries. A query cannot directly retrieve the entire value for a complex type
column. Impala returns an error in this case. Queries using SELECT * are allowed for tables with complex types, but
the columns with complex types are skipped.

The following example shows how referring directly to a complex type column returns an error, while SELECT * on
the same table succeeds, but only retrieves the scalar columns.

E,’ Note: Many of the complex type examples refer to tables such as CUSTOVER and REG ON adapted
from the tables used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with
Impala Complex Types on page 167 for the table definitions.

SELECT c_orders FROM custoner LIMT 1;

ERROR Anal ysi sException: Expr 'c_orders' in select list returns a conplex type

' ARRAY<STRUCT<o0_or derkey: Bl G NT, o_orderstatus: STRING ...

| _recei ptdate: STRING | _shi pi nstruct: STRING | _shi pnode: STRI NG | _coment : STRI NG>>>" .
Only scalar types are allowed in the select list.

-- Oiginal colum has several scalar and one conpl ex col um.
DESCRI BE cust omer ;

S o e e e e e e e e e e e e e e +

| nane | type

e e e o e e e e e e e e e e e e e e e e e +

| c_custkey | bigint |

| c_name | string |
c_orders array<struct<

o_orderstatus: string,

I I
| o_order key: bi gi nt, |
I I
[o_total price:deciml (12, 2), |

I
I
I
I
I | >> I

-- When we SELECT * fromthat table, only the scalar columms cone back in the result
set.
CREATE TABLE sel ect _star_custonmer STORED AS PARQUET AS SELECT * FROM cust oner;

-- The c_orders columm, being of conplex type, was not included in the SELECT * result
set.
DESC sel ect _star_cust omer;

S N +
| nane | type I
e e e S +
| c_custkey | bigint |
| c_name | string [
| c_address | string |
| c_nationkey | smallint

| c_phone | string |
| c_acct bal | decimal (12, 2)

| c_nmktsegnent | string |
| c_coment | string |

References to fields within STRUCT columns use dot notation. If the field name is unambiguous, you can omit qualifiers
such as table name, column name, or even the | TEMor VALUE pseudocolumn names for STRUCT elements inside an
ARRAY or a MAP.

SELECT id, address.city FROM customers WHERE address. zip = 94305;

References to elements within ARRAY columns use the | TEMpseudocolumn:

select r_nane, r_nations.itemn_nane fromregion, region.r_nations limt 7;

| r_nane | item n_nane |
Fomm e o e e ok +
| EURCPE | UNI TED KI NGDOM |
| EURCPE | RUSSI A

EURCPE	ROVANI A
EURCPE	GERMANY
EURCPE	FRANCE
ASIA	VIETNAM
ASIA	CH NA
Femmm e o e e ok +

References to fields within MAP columns use the KEY and VALUE pseudocolumns. In this example, once the query
establishes the alias MAP_FI ELD for a MAP column with a STRI NGkey and an | NT value, the query can refer to
MAP_FI ELD. KEY and MAP_FI ELD. VALUE, which have zero, one, or many instances for each row from the containing
table.

DESCRI BE t abl e_0;

R RS e +
| name | type I
R RS e +
| field 0| string |
| field_1 | map<string,int> |
SELECT field_0O, map_field. key, map_field.val ue
FROM table_0, table 0O0.field_1 AS map_field
WHERE | ength(field_0) =1
LIMT 10;
rmmmmena- oo Hommmm- +
| field 0| key | val ue |
Frmmmmeea - oo ommmm- +
b gshsgkvd NULL
b twtcxj 6 18
b 2vp5 39
b fhOs 13
v 2 41
Y 8b58nz 20
Y hw 16
Y 65l 388pyt 29
% 03k689g91z 30
Y r 2hl g5b NULL
R RS S tecoeaan +

When complex types are nested inside each other, you use a combination of joins, pseudocolumn names, and dot
notation to refer to specific fields at the appropriate level. This is the most frequent form of query syntax for complex
columns, because the typical use case involves two levels of complex types, such as an ARRAY of STRUCT elements.

SELECT i d, phone_nunbers. area_code FROM contact _i nfo_nany_structs |INNER JO N
contact _i nfo_many_structs. phone_nunbers phone_nunbers LIMT 3;

You can express relationships between ARRAY and MAP columns at different levels as joins. You include comparison
operators between fields at the top level and within the nested type columns so that Impala can do the appropriate
join operation.

E,i Note: Many of the complex type examples refer to tables such as CUSTOVER and REG ON adapted
from the tables used in the TPC-H benchmark. See Sample Schema and Data for Experimenting with
Impala Complex Types on page 167 for the table definitions.

For example, the following queries work equivalently. They each return customer and order data for customers that
have at least one order.

SELECT c.c_nane, o.0_orderkey FROM custoner ¢, c.c_orders o LIMT 5;
+

I +
| c_nane | o_orderkey |
o e e e e aaa - o m e e +
Custoner#000072578	558821
Custoner#000072578	2079810
Custoner#000072578	5768068
Custoner#000072578	1805604
Custoner#000072578	3436389
o e e e e aaa s o e e +

| c_nane | o_orderkey |
o e e e e e aa oo S +
Custoner#000072578	558821
Custoner#000072578	2079810
Custoner#000072578	5768068
Custoner#000072578	1805604
Custoner#000072578	3436389
o e e e e e aa oo S +

The following query using an outer join returns customers that have orders, plus customers with no orders (no entries
in the C_ORDERS array):

SELECT c. c_custkey, o.o0_orderkey
FROM customer ¢ LEFT QUTER JO N c.c_orders o

LIMT 5;

. Foeemme e +
| c_custkey | o_orderkey |
Foeemme e . +
60210	NuULL
147873	NULL
72578	558821
72578	2079810
72578	5768068 [
Foeemme e . +

The following query returns only customers that have no orders. (With LEFT ANTI JO Nor LEFT SEM JA N, the
query can only refer to columns from the left-hand table, because by definition there is no matching information in
the right-hand table.)

SELECT c. c_custkey, c.c_nane
FROM custoner ¢ LEFT ANTI JON c.c_orders o

LIMT 5

S o e e e e e e oo +
| c_custkey | c_nane [
S o e e e e e e e e e oo +
| 60210 | Custoner #000060210

| 147873 | Custoner#000147873

| 141576 | Custoner#000141576

| 85365 | Custoner #000085365

| 70998 | Custoner #000070998
S o e e e e e e e oo +

You can also perform correlated subqueries to examine the properties of complex type columns for each row in the
result set.

Count the number of orders per customer. Note the correlated reference to the table alias C. The COUNT(*) operation
applies to all the elements of the C_ORDERS array for the corresponding row, avoiding the need for a GROUP BY clause.

sel ect c_name, howrany FROM custoner c, (SELECT COUNT(*) howrany FROM c.c_orders) v
limt 5;

. Fommm e +
| c_nare | howmany |
e . +
| Custoner #000030065 | 15 |
| Custoner #000065455 | 18

| Custoner#000113644 | 21 |
| Custoner#000111078 | 0

| Custoner#000024621 | O |
e - +

Count the number of orders per customer, ignoring any customers that have not placed any orders:

SELECT c_nane, howrany_orders
FROM
custonmer c,
(SELECT COUNT(*) howmany_orders FROM c.c_orders) subql
WHERE howmany_orders > 0
LIMT 5;

| Custoner #000072578 | 7
| Custoner#000046378 | 2
| Custoner #000069815 | 1
| Custoner#000079058 | 1
I | 2

I
|
|
Cust omer #000092239 |

Count the number of line items in each order. The reference to C. C_ORDERS in the FROMclause is needed because
the O_ORDERKEY field is a member of the elements in the C_ORDERS array. The subquery labelled SUBQL is correlated:
it is re-evaluated for the C_ORDERS. O LI NEI TEMS array from each row of the CUSTOVERS table.

SELECT c_nane, o_orderkey, howrany_line_itens
FROM

customer c,

c.c_orders t2,

(SELECT COUNT(*) howmany_line_itens FROM c.c_orders. o_lineitens) subql
WHERE howmany_line_itens > 0

LIMT 5;

o eeee e e Fommme e e e . +
| c_name | o_orderkey | hownany_line_itens |
T Fommmee e e - +
| Custoner #000020890 | 1884930 | 95 [
Custoner #000020890	4570754	95
Custoner#000020890	3771072	95
Custoner #000020890	2555489	95
Custoner#000020890	919171	95
R R Fommmee e T +

Get the number of orders, the average order price, and the maximum items in any order per customer. For this example,
the subqueries labelled SUBQL and SUB@ are correlated: they are re-evaluated for each row from the original CUSTOVER
table, and only apply to the complex columns associated with that row.

SELECT c_nane, howmrany, average_price, nost_itens

FROM
custoner c,
(SELECT COUNT(*) howmany, AVG o_total price) average price FROM c.c_orders) subql,
(SELECT MAX(Il _quantity) nost_itenms FROM c.c_orders.o_lineitens) subqg2

LIMT 5;

| Cust omer #000030065 | 15 | 128908. 34 | 50.00

| Customer #000088191 | 0 | NULL | NULL |
| Customer #000101555 | 10 | 164250. 31 | 50.00
| Customer #000022092 | 0 | NULL | NULL |
| Cust omer #000036277 | 27 | 166040. 06 | 50.00
o e e o ma oo oo o e oo +

For example, these queries show how to access information about the ARRAY elements within the CUSTOVER table
from the “nested TPC-H” schema, starting with the initial ARRAY elements and progressing to examine the STRUCT
fields of the ARRAY, and then the elements nested within another ARRAY of STRUCT:

-- How many orders does each custoner have?
-- The type of the ARRAY colum doesn't matter, this is just counting the el enents.
SELECT c_cust key, count(*)
FROM cust oner, customer.c_orders
GROUP BY c_cust key

LIMT 5;

S [SR, +
| c_custkey | count(*) |
R B S +
| 61081 | 21 [
| 115987 | 15 [
| 69685 | 19 [
| 109124 | 15 [
| 50491 | 12 [
S B S +

-- How many line itens are part of each custoner order?
-- Now we examne a field froma STRUCT nested inside the ARRAY.
SELECT c_custkey, c_orders.o_orderkey, count(*)

FROM cust oner, customer.c_orders c_orders, c_orders.o_lineitens
GROUP BY c_custkey, c_orders.o_orderkey

LIMT 5

S S [R, +
| c_custkey | o_orderkey | count(*) |
R R [+
63367	4985959	7
53989	1972230	2
143513	5750498	5
17849	4857989	1
89881	1046437	1
S S [+

-- What are the line itens in each custonmer order?
-- One of the STRUCT fields inside the ARRAY is another
-- ARRAY contai ning STRUCT el ements. The join finds
-- all the related itens fromboth | evels of ARRAY.
SELECT c_cust key, o_orderkey, | _partkey

FROM cust oner, customer.c_orders, c_orders.o_lineitens

LIMT 5;

Fom e e e e o e [+
| c_custkey | o_orderkey | |_partkey |
Fom e e T Ty

113644	2738497	175846
113644	2738497	27309
113644	2738497	175873
113644	2738497	88559
113644	2738497	8032
Fom e o e e o e e o +

Pseudocolumns for ARRAY and MAP Types

Each element in an ARRAY type has a position, indexed starting from zero, and a value. Each element in a MAP type
represents a key-value pair. Impala provides pseudocolumns that let you retrieve this metadata as part of a query, or
filter query results by including such things in a WHERE clause. You refer to the pseudocolumns as part of qualified
column names in queries:

e | TEM The value of an array element. If the ARRAY contains STRUCT elements, you can refer to either
array_nane. | TEM fi el d_nane or use the shorthand array_nane. fi el d_nane.

e PQCS: The position of an element within an array.

e KEY: The value forming the first part of a key-value pair in a map. It is not necessarily unique.
e VALUE: The data item forming the second part of a key-value pair in a map. If the VALUE part of the MAP element
isa STRUCT, you can refer to either map_nane. VALUE. fi el d_nane or use the shorthand map_nane. fi el d_nane.

ITEM and POS Pseudocolumns

When an ARRAY column contains STRUCT elements, you can refer to a field within the STRUCT using a qualified name
of the form array_col um. fi el d_nane. If the ARRAY contains scalar values, Impala recognizes the special name
array_col um. | TEMto represent the value of each scalar array element. For example, if a column contained an
ARRAY where each element was a STRI NG you would use ar r ay_nane. | TEMto refer to each scalar value in the
SELECT list, or the WHERE or other clauses.

This example shows a table with two ARRAY columns whose elements are of the scalar type STRI NG. When referring
to the values of the array elements in the SELECT list, WHERE clause, or ORDER BY clause, you use the | TEM
pseudocolumn because within the array, the individual elements have no defined names.

create TABLE persons_of _i nterest

(

person_i d Bl G NT,

al i ases ARRAY <STRI N&,
associ at es ARRAY <STRI NG,
real _name STRI NG

)
STORED AS PARQUET;

-- Get all the aliases of each person.
SELECT real _name, aliases.|TEM

FROM persons_of interest, persons_of interest.aliases
ORDER BY real _nane, aliases.item

-- Search for particul ar associates of each person.
SELECT real _nanme, associates.|TEM

FROM persons_of _interest, persons_of _interest.associates
VWHERE associates.item LIKE ' % MacQuffin';

Because an array is inherently an ordered data structure, Impala recognizes the special name arr ay_col um. PCS to
represent the numeric position of each element within the array. The PGS pseudocolumn lets you filter or reorder the
result set based on the sequence of array elements.

The following example uses a table from a flattened version of the TPC-H schema. The REG ONtable only has a few
rows, such as one row for Europe and one for Asia. The row for each region represents all the countries in that region
as an ARRAY of STRUCT elements:

[l ocal host: 21000] > desc region;

Fom e e e e S oo Lo oL L Lo +
| nane | type I
S s S oo oo oL Lo +
| r_regionkey | smallint |
| r_nane | string [
| r_coment | string |
| r_nations | array<struct<n_nationkey:snallint,n_nane:string, n_conmrent:string>> |
Frcmemeeeaa R T L L r T

To find the countries within a specific region, you use a join query. To find out the order of elements in the array, you
also refer to the PCS pseudocolumn in the select list:

[l ocal host:21000] > SELECT rl.r_name, r2.n_nanme, r2.PCS
> FROMregion rl INNER JON rl.r_nations r2
> VWHERE r1l.r_nane = 'ASIA';

Fomm e m e - o [[+
| r_name | n_nane | pos |
Fomm e e e - o B U Ho-mm - - +
| ASIA | VIETNAM | O [
| ASIA | CHI NA | 1 [
| ASIA | JAPAN | 2 |

3
| ASIA | INDIA | 4 |

Once you know the positions of the elements, you can use that information in subsequent queries, for example to
change the ordering of results from the complex type column or to filter certain elements from the array:

[l ocal host:21000] > SELECT rl.r_nane, r2.n_nane, r2.PCS
> FROM region rl INNER JON rl.r_nations r2
> WHERE r1.r_nanme = 'ASIA
>

ORDER BY r2. POS DESC,

Fomm e e oo [Homm - - +
| r_name | n_nane | pos |
Fomm e e e o - B Homm - - +
| ASIA | IND A | 4 [
| ASIA | INDONESIA | 3 [
| ASIA | JAPAN | 2 [
| ASIA | CHI NA | 1 [
| ASIA | VIETNAM | O [
Fomm o m e oo [Homm - - +

[l ocal host:21000] > SELECT rl.r_nanme, r2.n_nanme, r2.PCS
> FROMregion rl INNER JON rl.r_nations r2
> WHERE r1l.r_nane = 'ASIA" AND r2. PCS BETVEEN 1 and 3;

Fomm e e oo [Homm - - +
| r_name | n_nane | pos |
Fomm e e e o - B Homm - - +
| ASIA | CHI NA | 1 [
| ASIA | JAPAN | 2

| ASIA | INDONESIA | 3 [
Fomm o m e oo [Homm - - +

KEY and VALUE Pseudocolumns

The MAP data type is suitable for representing sparse or wide data structures, where each row might only have entries
for a small subset of named fields. Because the element names (the map keys) vary depending on the row, a query
must be able to refer to both the key and the value parts of each key-value pair. The KEY and VALUE pseudocolumns
let you refer to the parts of the key-value pair independently within the query, as map_col um. KEY and

map_col umm. VALUE.

The KEY must always be a scalar type, such as STRI NG Bl G NT, or TI MESTAMP. It can be NULL. Values of the KEY field
are not necessarily unique within the same MAP. You apply any required DI STI NCT, GROUP BY, and other clauses in
the query, and loop through the result set to process all the values matching any specified keys.

The VALUE can be either a scalar type or another complex type. If the VALUE is a STRUCT, you can construct a qualified
name map_col um. VALUE. st ruct _fi el d to refer to the individual fields inside the value part. If the VALUE is an
ARRAY or another MAP, you must include another join condition that establishes a table alias for map_col urm. VALUE,
and then construct another qualified name using that alias, for example t abl e_al i as. | TEMort abl e_al i as. KEY
andtabl e_al i as. VALUE

The following example shows different ways to access a MAP column using the KEY and VALUE pseudocolumns. The
DETAI LS column has a STRI NGfirst part with short, standardized values such as' Recurring',' Lucid', or

" Anxi ety' . This is the “key” that is used to look up particular kinds of elements from the MAP. The second part, also
a STRI NG is a longer free-form explanation. Impala gives you the standard pseudocolumn names KEY and VAL UE for
the two parts, and you apply your own conventions and interpretations to the underlying values.

E,i Note: If you find that the single-item nature of the VALUE makes it difficult to model your data

accurately, the solution is typically to add some nesting to the complex type. For example, to have
several sets of key-value pairs, make the column an ARRAY whose elements are MAP. To make a set
of key-value pairs that holds more elaborate information, make a MAP column whose VALUE part
contains an ARRAY or a STRUCT.

CREATE TABLE dr eam j our nal
(

dream.id Bl G NT,
detail s MAP <STRI NG, STRI N&

)
STORED AS PARQUET;

-- What are all the types of dreans that are recorded?
SELECT DI STI NCT details. KEY FROM dream journal, dreamjournal.details;

-- How many lucid dreans were recorded?
-- Because there is no GROUP BY, we count the 'Lucid keys across all rows.

SELECT COUNT(det ail s. KEY)
FROM dream journal , dreamjournal.details
WHERE details. KEY = 'Lucid';

-- Print a report of a subset of dreans, filtering based on both the | ookup key

-- and the detail ed val ue.
SELECT dream.id, details.KEY AS "Dream Type", details.VALUE AS "Dream Sunmary"

FROM dream journal , dreamjournal.details
VWHERE

details.KEY IN (' Happy', 'Pleasant', 'Joyous')

AND det ai | s. VALUE LI KE ' %hi | dhood% ;

The following example shows a more elaborate version of the previous table, where the VALUE part of the MAP entry
is a STRUCT rather than a scalar type. Now instead of referring to the VALUE pseudocolumn directly, you use dot
notation to refer to the STRUCT fields inside it.

CREATE TABLE better_dreamj ournal

dream.id Bl G NT,
details MAP <STRI NG STRUCT <summary: STRING when_happened: TI MESTAMP, durati on:

DECI MAL(5, 2), woke_up: BOOLEAN> >
)
STORED AS PARQUET;

-- Do nore elaborate reporting and filtering by examning nultiple attributes within

t he same dream
SELECT dream.id, details.KEY AS "Dream Type", details.VALUE. sunmary AS "Dream Sunmary",

details. VALUE. duration AS "Duration"
FROM better_dream journal, better_dreamjournal.details

VWHERE
details.KEY IN (' Anxiety', "N ghtnare')
AND det ai | s. VALUE. duration > 60
AND det ai | s. VALUE. woke_up = TRUE;

-- Renenber that if the ITEMor VALUE contains a STRUCT, you can reference
-- the STRUCT fields directly without the .ITEM or .VALUE qualifier.
SELECT dream.id, details.KEY AS "Dream Type", details.sunmary AS "Dream Sunmary",
details.duration AS "Duration"
FROM better_dream journal, better_dreamjournal.details

VWHERE
details.KEY IN (' Anxiety', "N ghtnare')
AND detail s. duration > 60
AND det ai | s. woke_up = TRUE;

Loading Data Containing Complex Types

Because the Impala | NSERT statement does not currently support creating new data with complex type columns, or
copying existing complex type values from one table to another, you primarily use Impala to query Parquet tables with
complex types where the data was inserted through Hive, or create tables with complex types where you already have

existing Parquet data files.
If you have created a Hive table with the Parquet file format and containing complex types, use the same table for

Impala queries with no changes. If you have such a Hive table in some other format, use a Hive CREATE TABLE AS
SELECT ... STORED AS PARQUET or I NSERT ... SELECT statement to produce an equivalent Parquet table that

Impala can query.

If you have existing Parquet data files containing complex types, located outside of any Impala or Hive table, such as
data files created by Spark jobs, you can use an Impala CREATE TABLE ... STORED AS PARQUET statement,
followed by an Impala LOAD DATA statement to move the data files into the table. As an alternative, you can use an
Impala CREATE EXTERNAL TABLE statement to create a table pointing to the HDFS directory that already contains
the data files.

Perhaps the simplest way to get started with complex type data is to take a denormalized table containing duplicated
values, and use an | NSERT ... SELECT statement to copy the data into a Parquet table and condense the repeated
values into complex types. With the Hive | NSERT statement, you use the COLLECT LI ST(), NAMED_STRUCT(), and
MAP() constructor functions within a GROUP BY query to produce the complex type values. COLLECT_LI ST() turns
a sequence of values into an ARRAY. NAMED_ STRUCT() uses the first, third, and so on arguments as the field names
for a STRUCT, to match the field names from the CREATE TABLE statement.

E,i Note: Because Hive currently cannot construct individual rows using complex types through the
I NSERT ... VALUES syntax, you prepare the data in flat form in a separate table, then copy it to
the table with complex columns using | NSERT ... SELECT and the complex type constructors. See
Constructing Parquet Files with Complex Columns Using Hive on page 169 for examples.

Using Complex Types as Nested Types

The ARRAY, STRUCT, and MAP types can be the top-level types for “nested type” columns. That is, each of these types
can contain other complex or scalar types, with multiple levels of nesting to a maximum depth of 100. For example,
you can have an array of structures, a map containing other maps, a structure containing an array of other structures,
and so on. At the lowest level, there are always scalar types making up the fields of a STRUCT, elements of an ARRAY,
and keys and values of a MAP.

Schemas involving complex types typically use some level of nesting for the complex type columns.

For example, to model a relationship like a dimension table and a fact table, you typically use an ARRAY where each
array element is a STRUCT. The STRUCT fields represent what would traditionally be columns in a separate joined
table. It makes little sense to use a STRUCT as the top-level type for a column, because you could just make the fields
of the STRUCT into regular table columns.

Perhaps the only use case for a top-level STRUCT would be to to allow STRUCT fields with the same name as columns
to coexist in the same table. The following example shows how a table could have a column named | D, and two separate
STRUCT fields also named | D. Because the STRUCT fields are always referenced using qualified names, the identical

I Dnames do not cause a conflict.

CREATE TABLE struct _nanespaces

id BIG NT
, 81 STRUCT < id: BIGNT, fieldl: STRING >
s2 STRUCT < id: BI G NT, when_happened: TI MESTAMP >

)
STORED AS PARQUET;

select id, sl.id, s2.id from struct_nanespaces;

It is common to make the value portion of each key-value pair in a MAP a STRUCT, ARRAY of STRUCT, or other complex
type variation. That way, each key in the MAP can be associated with a flexible and extensible data structure. The key
values are not predefined ahead of time (other than by specifying their data type). Therefore, the MAP can accommodate
a rapidly evolving schema, or sparse data structures where each row contains only a few data values drawn from a
large set of possible choices.

Although you can use an ARRAY of scalar values as the top-level column in a table, such a simple array is typically of
limited use for analytic queries. The only property of the array elements, aside from the element value, is the ordering
sequence available through the PCS pseudocolumn. To record any additional item about each array element, such as
a TI MESTAMP or a symbolic name, you use an ARRAY of STRUCT rather than of scalar values.

If you are considering having multiple ARRAY or MAP columns, with related items under the same position in each
ARRAY or the same key in each MAP, prefer to use a STRUCT to group all the related items into a single ARRAY or MAP.

Doing so avoids the additional storage overhead and potential duplication of key values from having an extra complex
type column. Also, because each ARRAY or MAP that you reference in the query SELECT list requires an additional join
clause, minimizing the number of complex type columns also makes the query easier to read and maintain, relying
more on dot notation to refer to the relevant fields rather than a sequence of join clauses.

For example, here is a table with several complex type columns all at the top level and containing only scalar types.
To retrieve every data item for the row requires a separate join for each ARRAY or MAP column. The fields of the STRUCT
can be referenced using dot notation, but there is no real advantage to using the STRUCT at the top level rather than
just making separate columns FI ELD1 and FI ELD2.

CREATE TABLE conpl ex_types_top_I evel

id Bl G NT,
al ARRAY<| NT>
a2 ARRAY<STRI NG>,
s STRUCT<fiel dl: INT, field2: STRI NG,
-- Nureric | ookup key for a string val ue.
ml MAP<I NT, STRI NG>,
-- String | ookup key for a numeric val ue.
m2 MAP<STRI NG | NT>

)
STORED AS PARQUET;

descri be conpl ex_types_top_| evel;
+

oo - oo
| name | type |
S S o +
id bi gi nt
al array<int>
a2 array<string>
S struct<
fieldl:int,
field2:string
>
mlL map<i nt, string>
ne map<string,int>
S S e +
sel ect
id,
al.item
a2.item
s.fieldl,
s.field2,
ml. key,
ml. val ue,
n2. key,
n2. val ue
from

conpl ex_types_top_| evel,

conpl ex_types_top_| evel . al,
conpl ex_types_top_l evel . a2,
conpl ex_types_top_| evel . mL,
conpl ex_types_top_l evel . n2;

For example, here is a table with columns containing an ARRAY of STRUCT, a MAP where each key value is a STRUCT,
and a MAP where each key value is an ARRAY of STRUCT.

CREATE TABLE nesting_denpo

user _id BI G NT,
fam ly_nenbers ARRAY < STRUCT < nanme: STRING enmil: STRING date_joined: TI MESTAMWP
>>,
foo map < STRING STRUCT < f1: INT, f2: INT, f3: TIMESTAWMP, f4: BOCLEAN >>,
ganmeplay MAP < STRING , ARRAY < STRUCT <
nane: STRING highest: BIGNT, lives_used: |INT, total _spent: DECI MAL(16, 2)
>>>

)

STORED AS PARQUET;

The DESCRI BE statement rearranges the < and > separators and the field names within each STRUCT for easy readability:

DESCRI BE nesti ng_deno;
S, o e m e e e e e e e e aao o +

user _id bi gi nt

fam |ly_nenbers array<struct<

nane: string,

emai |l :string,

date_j oi ned: ti mest anp

>>
f oo map<string, struct<
f1:int,
f2:int,
f3:ti mestanp,
f4: bool ean
>>
ganepl ay map<string, array<struct<

nane: string,

hi ghest : bi gi nt,

lives_used:int,

total _spent: deci mal (16, 2)
>>>

To query the complex type columns, you use join notation to refer to the lowest-level scalar values. If the value is an
ARRAY element, the fully qualified name includes the | TEMpseudocolumn. If the value is inside a MAP, the fully qualified
name includes the KEY or VALUE pseudocolumn. Each reference to a different ARRAY or MAP (even if nested inside
another complex type) requires an additional join clause.

SELECT
-- The lone scalar field doesn't require any dot notation or join clauses.
user _id

-- Retrieve the fields of a STRUCT inside an ARRAY.
-- The FAM LY_MEMBERS nane refers to the FAMLY_MEMBERS table alias defined later in
t he FROM cl ause.
, fam |y_menbers.item nane
, famly_nenbers.item enail
, fam |ly_menbers.item date_joi ned
-- Retrieve the KEY and VALUE fields of a MAP, with the val ue being a STRUCT consi sting
of nore fields.
-- The FOO nane refers to the FOO table alias defined later in the FROM cl ause.
, foo. key
, foo.value.f1
, foo.value.f2
, foo.value.f3
, foo.value.f4
-- Retrieve the KEY fields of a MAP, and expand the VALUE part into ARRAY itens consisting
of STRUCT fi el ds.
-- The GAMEPLAY nane refers to the GAMEPLAY table alias defined later in the FROM cl ause
(referring to the MAP iten).
-- The GAME_N name refers to the GAME_N table alias defined later in the FROM cl ause
(referring to the ARRAY
-- inside the MAP item s VALUE part.)
, gamepl ay. key
, game_n. name
, ganme_n. hi ghest
, ganme_n.lives_used
, ganme_n.total _spent

nesti ng_deno
, nesting_deno.fam |ly_menbers AS fam |y_menbers
, nesting_deno.foo AS foo
, hesting_deno. ganepl ay AS gamepl ay

, hesting_deno. ganepl ay. val ue AS gane_n;

Once you understand the notation to refer to a particular data item in the SELECT list, you can use the same qualified
name to refer to that data item in other parts of the query, such as the WHERE clause, ORDER BY or GROUP BY clauses,
or calls to built-in functions. For example, you might frequently retrieve the VALUE part of each MAP item in the SELECT
list, while choosing the specific MAP items by running comparisons against the KEY part in the WHERE clause.

Accessing Complex Type Data in Flattened Form Using Views

The layout of complex and nested types is largely a physical consideration. The complex type columns reside in the
same data files rather than in separate normalized tables, for your convenience in managing related data sets and
performance in querying related data sets. You can use views to treat tables with complex types as if they were
flattened. By putting the join logic and references to the complex type columns in the view definition, you can query
the same tables using existing queries intended for tables containing only scalar columns. This technique also lets you
use tables with complex types with Bl tools that are not aware of the data types and query notation for accessing
complex type columns.

For example, the variation of the TPC-H schema containing complex types has a table REG ON. This table has 5 rows,
corresponding to 5 regions such as NORTH AMERI CA and AFRI CA. Each row has an ARRAY column, where each array
item is a STRUCT containing details about a country in that region.

DESCRI BE r egi on;

S o m e e e e e e e e +
| name | type I
Fom e e e o m e e e e e e e e +

r_regi onkey smal | i nt

r_nane string

r_comment string

n_nati onkey: smal | int,
n_nane: string,
n_comment : string

I I I
| | |
I 1 I I
| r_nations | array<struct< |
I I I
| | |
I I I
| [>> |

The same data could be represented in traditional denormalized form, as a single table where the information about
each region is repeated over and over, alongside the information about each country. The nested complex types let
us avoid the repetition, while still keeping the data in a single table rather than normalizing across multiple tables.

To use this table with a JDBC or ODBC application that expected scalar columns, we could create a view that represented
the result set as a set of scalar columns (three columns from the original table, plus three more from the STRUCT fields
of the array elements). In the following examples, any column with an R_* prefix is taken unchanged from the original
table, while any column with an N_* prefix is extracted from the STRUCT inside the ARRAY.

CREATE VI EWregi on_vi ew AS
SELECT
r_regi onkey,
r_nane,
r_comment,
array_field.
array_field.
array_field.
FROM
region, region.r_nations AS array_field,

item n_nationkey AS n_nati onkey,
item n_name AS n_nane,
n_conmment AS n_comment

Then we point the application queries at the view rather than the original table. From the perspective of the view,
there are 25 rows in the result set, one for each nation in each region, and queries can refer freely to fields related to
the region or the nation.

-- Retrieve info such as the nation nane fromthe original R NATIONS array el enents.
sel ect n_name fromregion_view where r_nane in (' EUROPE , 'ASIA");

UNI TED KI NGDOM
RUSSI A
ROVANI A

JAPAN
| NDONESI A
I NDI A

-- UNITED STATES in AMERI CA and UNI TED Kl NGDOM i n EUROPE.
SELECT DI STINCT r_nane FROM regi on_vi ew WHERE n_nane LI KE ' UNI TED% ;

| r_nane |
B +
AVMERI CA |
| EURCPE |
B R +

-- For conciseness, we only list sone view colums in the SELECT I|i st.

-- SELECT * would bring back all the data, unlike SELECT *

-- queries on the original table with conplex type col ums.

SELECT r_regi onkey, r_nane, n_nationkey, n_nane FROMregion_view LIMT 7;
+ +

Fom e Sy +
| r_regionkey | r_name | n_nationkey | n_nane |
Fom e e e Fomm e m e - - S S +
3	EURCPE	23	UNI TED KI NGDOM
3	EURCPE	22	RUSSI A
3	EURCPE	19	ROVANI A
3	EURCPE	7	GERVANY
3	EUROCPE	6	FRANCE
2	ASIA	21	VI ETNAM
2	ASTA	18	CHI NA
S Fomm e m e - - SR S +

Tutorials and Examples for Complex Types
The following examples illustrate the query syntax for some common use cases involving complex type columns.
Sample Schema and Data for Experimenting with Impala Complex Types

The tables used for earlier examples of complex type syntax are trivial ones with no actual data. The more substantial
examples of the complex type feature use these tables, adapted from the schema used for TPC-H testing:

SHOW TABLES

| custoner |
| part I
| region [
| supplier |

S e e e e e i ciiaactcsscasaaease s seaaan +
| name | type
S e e e eeeie i ciiaactcsscasaaese s seaaan +

c_cust key bi gi nt

c_name string

c_address string

c_nati onkey smal | int

c_phone string

c_acct bal deci mal (12, 2)

c_nkt segnent string

c_coment string

c_orders array<struct<

o_order key: bi gi nt,

p_partkey
p_nane

p_nfgr
p_brand
p_type

p_size
p_cont ai ner
p_retailprice
p_conmment

| r_regionkey |
| r_nane

| r_coment |
| r_nations

s_suppkey
Ss_hane
s_address
s_nat i onkey
s_phone
s_acct bal
s_comment
S_partsupps

o_orderstatus:string,
o_total price:decimal (12, 2),
o_orderdate:string
o_orderpriority:string,
o_clerk:string,
o_shippriority:int,
o_coment: string,
o_lineitems:array<struct<
| _partkey: bigint,
| _suppkey: bi gi nt,
| _I'i nenunber:int,
| _quantity:decinmal (12, 2),
| _ext endedpri ce: deci nal (12, 2),
| _di scount:decinmal (12, 2),
| _tax:decimal (12, 2),
| _returnflag:string,
| _linestatus:string,
| _shi pdate: string,
| _commitdate:string
| _receiptdate:string
| _shipinstruct:string,
| _shi pnode: stri ng,
| _commrent:string
>>

strin

string

smal | i nt

string

string

array<struct <n_nationkey: smal | i nt, n_name: string, n_comrent: stri ng>>

string

smal i nt

string

deci mal (12, 2)

string

array<struct <ps_partkey: bi gi nt,

ps_avail qty:int, ps_suppl ycost: deci mal (12, 2),
ps_comment : string>>

The volume of data used in the following examples is:

SELECT count() FROM cust oner;

| count(*) |

I,

| count(*) |
B +
| 5 I
S +

Constructing Parquet Files with Complex Columns Using Hive

The following examples demonstrate the Hive syntax to transform flat data (tables with all scalar columns) into Parquet
tables where Impala can query the complex type columns. Each example shows the full sequence of steps, including
switching back and forth between Impala and Hive. Although the source table can use any file format, the destination
table must use the Parquet file format.

Create table with ARRAY in Impala, load data in Hive, query in Impala:

This example shows the cycle of creating the tables and querying the complex data in Impala, and using Hive (either
the hi ve shell or beel i ne) for the data loading step. The data starts in flattened, denormalized form in a text table.
Hive writes the corresponding Parquet data, including an ARRAY column. Then Impala can run analytic queries on the
Parquet table, using join notation to unpack the ARRAY column.

/* Initial DDL and | oading of flat, denornualized data happens in inpal a-shell */CREATE
TABLE flat_array (country STRING city STRING ;INSERT INTO flat_array VALUES
(' Canada', 'Toronto') , ('Canada', 'Vancouver') , ('Canada', "St. John\'s")

, (' Canada', 'Saint John') , ('Canada', 'Montreal') , ('Canada', 'Halifax')
, ("Canada', 'Wnnipeg') , ('Canada', 'Calgary') , ('Canada', 'Saskatoon')
, (' Canada', 'Gtawa') , ('Canada 'YeIIOV\knife') , ('France', 'Paris')

, ("France', "Nice') , ('Franc "Marseilles') , ('France', 'Cannes')

, ("Greece', '"Athens') , ('Greece "Piraeus') , ('Geece', 'Hania')

, ("Geece', "Heraklion') , (' Greece', "Rethymmon') , ('Geece', '"Fira);

CREATE TABLE conpl ex_array (country STRING city ARRAY <STRING>) STORED AS PARQUET;

/* Conversion to Parquet and conpl ex and/or nested col uims happens in Hve */

I NSERT | NTO conpl ex_array SELECT country, collect_list(city) FROMflat_array GROUP BY
country;

Query |1 D = dev_20151108160808_84477f f 2- 82bd- 4ba4- 9a77- 554f a7b8c0cb

Total jobs =1

Launching Job 1 out of 1

/* Back to inpal a-shell again for analytic queries */

REFRESH conpl ex_array;
SELECT country, city.item FROM conpl ex_array, conplex_array.city
+

F Fom e e m e

| country | item |

R Fom e e e e +
Canada Toronto
Canada Vancouver

Canada St. John's
Canada Sai nt John
Canada Mont r eal
Canada Hal i f ax
Canada W nni peg
Canada Cal gary
Canada Saskat oon
Canada atawa
Canada Yel | onkni f e

France Pari s
France N ce
France Marsei |l | es
France Cannes
Greece At hens
G eece Pi r aeus
Greece Hani a
G eece Her akl i on
G eece Ret hymmon
G eece Fira
R Fom e e e e +

Create table with STRUCT and ARRAY in Impala, load data in Hive, query in Impala:

This example shows the cycle of creating the tables and querying the complex data in Impala, and using Hive (either
the hi ve shell or beel i ne) for the data loading step. The data starts in flattened, denormalized form in a text table.
Hive writes the corresponding Parquet data, including a STRUCT column with an ARRAY field. Then Impala can run
analytic queries on the Parquet table, using join notation to unpack the ARRAY field from the STRUCT column.

/* Initial DDL and | oading of flat, denormalized data happens in inpal a-shell */

CREATE TABLE fl at_struct_array (continent STRING country STRING city STRI NG ;
I NSERT | NTO fl at_struct_array VALUES

(" North Anerica', 'Canada', 'Toronto')
("North America', 'Canada', "St. John\

, ("North Anerica', 'Canada', 'Vancouver')
"s") , ("North Anerica', 'Canada', ' Saint

John')
, ("North Anerica', 'Canada', 'Montreal') , ('North Anerica', 'Canada', 'Halifax')
, ("North Anerica', 'Canada', 'Wnnipeg') , ('North Anerica', 'Canada', 'Calgary')
, ("North Anerica', 'Canada', 'Saskatoon') , ('North Anerica', 'Canada', 'Otawa')
, ("North Anerica', 'Canada', 'Yellowknife') , ('Europe', 'France', 'Paris')
, ('Europe', 'France', "Nice') , ('Europe', 'France', 'Mrseilles")
, (' Europe', 'France', 'Cannes') , ('Europe', 'Geece', 'Athens')
, ('Europe', 'Geece', 'Piraeus') , ('Europe', 'Geece', 'Hania')
, (" Europe', 'Geece', '"Heraklion') , ('Europe', 'Geece, 'Rethymon')
, (' Europe', 'Geece', 'Fira');

CREATE TABLE conpl ex_struct_array (continent STRING country STRUCT <nane: STRING city:
ARRAY <STRING> >) STORED AS PARQUET;

/* Conversion to Parquet and conpl ex and/or nested col uims happens in Hive */

I NSERT | NTO conpl ex_struct_array SELECT conti nent, naned_struct('name', country, 'city',
collect_list(city)) FROMflat_array_array GROUP BY conti nent, country;

Query I D = dev_20151108163535_11a4f a53- 0003-4638- 97e6- ef 13cdb8e09e

Total jobs =1

Launching Job 1 out of 1

/* Back to inpal a-shell again for analytic queries */

REFRESH conpl ex_struct _array;
SELECT t1.continent, tl.country.nane, t2.item
FROM conpl ex_struct _array t1, tl.country.city t2

oo S N +
| continent | country.name | item |
o oo e +

Eur ope France Pari s

Eur ope France Ni ce

Eur ope France Marsei |l | es

Eur ope France Cannes

Eur ope G eece At hens

Eur ope G eece Pi raeus

Eur ope G eece Hani a

Eur ope G eece Her akl i on

Eur ope G eece Ret hymon

Eur ope G eece Fira

North Anerica Canada Toronto

North Anerica Canada Vancouver

North Anerica Canada St. John's

North Anerica Canada Sai nt John

North Anerica Canada Mont r eal

North Anerica Canada Hal i f ax

North Anerica Canada W nni peg

North Anerica Canada Cal gary

North Anerica Canada Saskat oon

North Anerica Canada atawa

North Anerica Canada Yel | owkni fe
o oo e +

Flattening Normalized Tables into a Single Table with Complex Types

One common use for complex types is to embed the contents of one table into another. The traditional technique of
denormalizing results in a huge number of rows with some column values repeated over and over. With complex types,
you can keep the same number of rows as in the original normalized table, and put all the associated data from the
other table in a single new column.

In this flattening scenario, you might frequently use a column that is an ARRAY consisting of STRUCT elements, where
each field within the STRUCT corresponds to a column name from the table that you are combining.

The following example shows a traditional normalized layout using two tables, and then an equivalent layout using
complex types in a single table.

/* Traditional relational design */

-- This table just stores nunbers, allowing us to | ook up details about the enpl oyee
-- and details about their vacation time using a three-table join query.

CREATE t abl e enpl oyee_vacati ons

enpl oyee_i d Bl G NT,
vacation_id Bl G NT

)
STORED AS PARQUET;

-- Each kind of information to track gets its own "fact table".
CREATE t abl e vacation_details

vacation_id Bl G NT,
vacation_start TI MESTAWP,
duration I NT

)

STORED AS PARQUET;

-- Any tine we print a human-readable report, we join with this table to
-- display info about enpl oyee #1234,

CREATE TABLE enpl oyee_cont act
(

enpl oyee_i d Bl G NT,

name STRI NG

addr ess STRI NG

phone STRI NG

emai | STRI NG

address_type STRING /* '"hone', 'work', 'remote', etc. */

)
STORED AS PARQUET;
/* Equivalent flattened schema using conplex types */

-- For analytic queries using conplex types, we can bundl e the dinension table
-- and multiple fact tables into a single table.
CREATE TABLE enpl oyee_vacati ons_nested_t ypes

-- W& might still use the enployee_id for other join queries.
-- The table needs at | east one scalar colum to serve as an identifier
-- for the conplex type col ums.

enpl oyee_i d Bl G NT,

-- Colums of the VACATI ON DETAILS table are folded into a STRUCT.
-- W drop the VACATION_I D col um because | npal a doesn't need
-- synthetic IDs to join a conplex type col um.
-- Each row from the VACATI ON_DETAILS tabl e becomes an array el enent.
vacati on ARRAY < STRUCT <
vacation_start: TI MESTAWP,
duration: | NT
>>
-- The ADDRESS_TYPE columm, with a small nunber of predefined values that are distinct
-- for each enpl oyee, makes the EMPLOYEE CONTACT table a good candidate to turn into a
MAP,
-- with each row represented as a STRUCT. The string val ue from ADDRESS TYPE becones
t he
-- "key" (the anonymous first field) of the NMAP.
contact MAP < STRING STRUCT <
address: STRI NG
phone: STRI NG
emai | : STRI NG
>>

)
STORED AS PARQUET;

Interchanging Complex Type Tables and Data Files with Hive and Other Components

You can produce Parquet data files through several Hadoop components and APIs, as explained in
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_parquet.html.

If you have a Hive-created Parquet table that includes ARRAY, STRUCT, or MAP columns, Impala can query that same
table in CDH 5.5 / Impala 2.3 and higher, subject to the usual restriction that all other columns are of data types
supported by Impala, and also that the file type of the table must be Parquet.

If you have a Parquet data file produced outside of Impala, Impala can automatically deduce the appropriate table
structure using the syntax CREATE TABLE ... LIKE PARQUET ' hdfs_path_of parquet _file'.InCDH5.5/
Impala 2.3 and higher, this feature works for Parquet files that include ARRAY, STRUCT, or MAP types.

/* I'n inpala-shell, find the HDFS data directory of the original table.
DESCRI BE FORVATTED t pch_nest ed_par quet . cust oner;

i "Locat i on: | hdfs://1ocal host: 20500/t est - war ehouse/ t pch_nest ed_par quet . db/ cust oner
| NULL |

In the Unix shell, f
$ hdfs dfs -Is hdfs://
Found 4 itens

- T WXT - XT - X 3 dev supergroup 171298918 2015-09-22 23: 30

hdf s: //1 ocal host: 20500/ bl ah/t pch_nest ed_par quet . db/ cust oner/ 000000_0

ind the path of any Parquet data file in that HDFS directory.
| ocal host : 20500/ t est - war ehouse/ t pch_nest ed_par quet . db/ cust oner

http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_parquet.html

/* Back in inpal a-shell

CREATE TABLE customer _ctlp
LI KE PARQUET ' hdfs:/ /| ocal host: 20500/ bl ah/ t pch_nest ed_par quet . db/ cust orrer / 000000_0
STORED AS PARQUET;

/* Confirmthat old and new tabl es have the sane col um | ayout,

*/

c_cust key
c_nane
c_address
c_nati onkey
c_phone
c_acctba
c_nkt segnent
c_comment
c_orders

c_cust key
c_nhane
c_address
c_nati onkey
c_phone
c_acct bal
c_nkt segnent
c_comment
c_orders

g
deci mal (12, 2)
string
string
array<struct<
o_order key: bi gi nt,
o_orderstatus:string,
o_total price:deciml (12, 2),
o_orderdate:string
o_orderpriority:string,
o_clerk:string,
o_shippriority:int,
o_coment:string,
o_lineitens:array<struct<
| _partkey: bi gint,
| _suppkey: bi gi nt,
| _l'i nenunber:int,
| _quantity:deciml (12, 2),
| _ext endedpri ce: deci nal (12, 2),
| _di scount: decimal (12, 2),
| _tax:decimal (12, 2),
| _returnflag:string,
| _linestatus:string,
| _shipdate:string,
| _commitdate:string
| _receiptdate:string
| _shipinstruct:string,
| _shi pnode: string,
| _coment:string
>>
>>

ng

imal (12, 2)

i ng

string

array<struct<
o_order key: bi gi nt,
o_orderstatus:string,
o_total price:decimal (12, 2),
o_orderdate:string
o_orderpriority:string,
o_clerk:string,
o_shippriority:int,
o_coment:string,
o_lineitems:array<struct<

| _partkey: bi gint,

use the HDFS path in a CREATE TABLE LI KE PARQUET st at ement.

*/

i ncl udi ng conpl ex types.

nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred
nferred

from Par quet
from Par quet
from Par quet
from Par quet
from Par quet
from Par quet
from Par quet
from Par quet
from Par quet

POOODDD®DO

| _suppkey: bi gi nt,
| _I'i nenunber:int,
| _quantity:deciml (12, 2),
| _ext endedpri ce: deci nal (12, 2),
| _di scount:decimal (12, 2),
| _tax:decimal (12, 2),
| _returnflag:string,
| _linestatus:string,
| _shipdate:string,
| _commitdate:string,
| _receiptdate:string,
| _shipinstruct:string,
| _shi pnode: string,
| _coment:string
>>
>>

Literals

Each of the Impala data types has corresponding notation for literal values of that type. You specify literal values in
SQL statements, such as in the SELECT list or WHERE clause of a query, or as an argument to a function call. See Data
Types on page 108 for a complete list of types, ranges, and conversion rules.

Numeric Literals

To write literals for the integer types (T1 NYI NT, SMALLI NT, I NT, and Bl G NT), use a sequence of digits with optional
leading zeros.

To write literals for the floating-point types (DECI MAL, FLOAT, and DOUBLE), use a sequence of digits with an optional
decimal point (. character). To preserve accuracy during arithmetic expressions, Impala interprets floating-point literals
as the DECI MAL type with the smallest appropriate precision and scale, until required by the context to convert the
result to FLOAT or DOUBLE.

Integer values are promoted to floating-point when necessary, based on the context.

You can also use exponential notation by including an e character. For example, 1e6 is 1 times 10 to the power of 6
(2 million). A number in exponential notation is always interpreted as floating-point.

When Impala encounters a numeric literal, it considers the type to be the “smallest” that can accurately represent the
value. The type is promoted to larger or more accurate types if necessary, based on subsequent parts of an expression.

For example, you can see by the types Impala defines for the following table columns how it interprets the corresponding
numeric literals:

[l ocal host:21000] > create table ten as select 10 as x;

o e e e e i oo o - +
| summary |

o e e e e e e e oo n +

| I'nserted 1 rows) |

e e e e e e et . =

[l ocal host:21000] > desc ten;
R Fomm e e o Fomm e e o +
| name | type | conment |

Fomm oo - B ey +
| x | tinyint | |

Fomm oo - Fomm e e o [+

- +
| sunmmary |
. +
| I'nserted 1 rows) |
- +

[l ocal host:21000] > desc four_k;

[

[

----- B LT
nane | type | commrent |
________________________ +
X | smallint | |
----- B LT

__________________ +

sunmary |
__________________ +

Inserted 1 row(s) |
__________________ +

ocal host: 21000] > desc one_point _five;
----- T LI
nane | type | commrent |
----- B T
X | decimal (2,1) | |
----- B T

ocal host: 21000] > desc one_point_three_three_three;
+

------------------- Foemm e+
nane | type | comrent |
----- B e LR
X | decinmal (4,3) | |
----- B e LR

String Literals

String literals are quoted using either single or double quotation marks. You can use either kind of quotes for string
literals, even both kinds for different literals within the same statement.

Quoted literals are considered to be of type STRI NG. To use quoted literals in contexts requiring a CHAR or VARCHAR
value, CAST() the literal to a CHAR or VARCHAR of the appropriate length.

Escaping special characters:

To encode special characters within a string literal, precede them with the backslash (\) escape character:

\'t represents a tab.
\ n represents a newline or linefeed. This might cause extra line breaks ini npal a- shel | output.

\'r represents a carriage return. This might cause unusual formatting (making it appear that some content is
overwritten) in i npal a- shel | output.

\ b represents a backspace. This might cause unusual formatting (making it appear that some content is overwritten)
ini npal a- shel | output.

\ 0 represents an ASCIl nul character (not the same as a SQL NULL). This might not be visible in i npal a- shel |
output.

\ Z represents a DOS end-of-file character. This might not be visible in i npal a- shel | output.
\ %and \ _ can be used to escape wildcard characters within the string passed to the LI KE operator.

\ followed by 3 octal digits represents the ASCII code of a single character; for example, \ 101 is ASCII 65, the
character A.

Use two consecutive backslashes (\ \) to prevent the backslash from being interpreted as an escape character.
Use the backslash to escape single or double quotation mark characters within a string literal, if the literal is
enclosed by the same type of quotation mark.

If the character following the \ does not represent the start of a recognized escape sequence, the character is
passed through unchanged.

Quotes within quotes:

To include a single quotation character within a string value, enclose the literal with either single or double quotation
marks, and optionally escape the single quote asa\ ' sequence. Earlier releases required escaping a single quote inside
double quotes. Continue using escape sequences in this case if you also need to run your SQL code on older versions
of Impala.

To include a double quotation character within a string value, enclose the literal with single quotation marks, no
escaping is necessary in this case. Or, enclose the literal with double quotation marks and escape the double quote as
a\" sequence.

[l ocal host:21000] > select "What\'s happeni ng?" as single_w thin_double,

> "I\"mnot sure.' as single_wthin_single,

> "Honmer wote \"The Iliad\"." as doubl e _w thin_double,

> 'Honmer al so wote "The Qdyssey".' as doubl e_wi thin_single;
S S em e meeeeeeaaas IS +

| single_within_double | single_within_single | double_within_double [
doubl e_wi t hi n_si ngl e

S S e e e e +
| What's happeni ng? | 1'"mnot sure. | Homer wote "The Iliad". | Homer also
wote "The Gdyssey". |

A e e e +

Field terminator character in CREATE TABLE:

E’; Note: The CREATE TABLEclauses FI ELDS TERM NATED BY, ESCAPED BY, and LI NES TERM NATED
BY have special rules for the string literal used for their argument, because they all require a single
character. You can use a regular character surrounded by single or double quotation marks, an octal
sequence such as' \ 054" (representing a comma), or an integer in the range '-127'..'128' (with
quotation marks but no backslash), which is interpreted as a single-byte ASCII character. Negative
values are subtracted from 256; for example, FI ELDS TERM NATED BY ' - 2' sets the field delimiter
to ASCII code 254, the “Icelandic Thorn” character used as a delimiter by some data formats.

impala-shell considerations:

When dealing with output that includes non-ASCIl or non-printable characters such as linefeeds and backspaces, use
the i npal a- shel | options to save to a file, turn off pretty printing, or both rather than relying on how the output
appears visually. See impala-shell Configuration Options on page 556 for a list of i npal a- shel | options.

Boolean Literals
For BOOLEAN values, the literals are TRUE and FALSE, with no quotation marks and case-insensitive.

Examples:

sel ect true; _
select * fromtl where assertion = fal se;
sel ect case bool _col when true then 'yes' when false 'no' else "null' end fromtl,

Timestamp Literals

Impala automatically converts STRI NGliterals of the correct format into TI MESTAMP values. Timestamp values are
accepted in the format ' yyyy- Mt dd HH: nm ss. SSSSSS', and can consist of just the date, or just the time, with
or without the fractional second portion. For example, you can specify TI MESTAMP values such as' 1966- 07- 30',
' 08:30: 00", o0r'1985-09-25 17:45:30. 005".

Leading zeroes are not required in the numbers representing the date component, such as month and date, or the
time component, such as hour, minute, and second. For example, Impala accepts both' 2018-1-1 01: 02: 03' and
' 2018-01-01 1:2:3' asvalid.

In STRI NGto TI MESTANMP conversions, leading and trailing white spaces, such as a space, a tab, a newline, or a carriage
return, are ignored. For example, Impala treats the following as equivalent: '1999-12-01 01:02:03 ', ' 1999-12-01 01:02:03',
'1999-12-01 01:02:03\r\n\t'".

When you convert or cast a STRI NGliteral to TI MESTAMP, you can use the following separators between the date part
and the time part:

¢ One or more space characters
Example: CAST(' 2001- 01- 09 01:05: 01" AS TI MESTAMP)
e The character “T”
Example: CAST(' 2001- 01- 09T01: 05: 01' AS TI MESTAMP)
You can also use | NTERVAL expressions to add or subtract from timestamp literal values, such as

CAST(' 1966-07-30" AS TI MESTAMP) + | NTERVAL 5 YEARS + | NTERVAL 3 DAYS. See TIMESTAMP Data Type
on page 137 for details.

Depending on your data pipeline, you might receive date and time data as text, in notation that does not exactly match
the format for Impala TI MESTAMP literals. See Impala Date and Time Functions on page 430 for functions that can
convert between a variety of string literals (including different field order, separators, and timezone notation) and
equivalent TI MESTAMP or numeric values.

NULL

The notion of NULL values is familiar from all kinds of database systems, but each SQL dialect can have its own behavior
and restrictions on NULL values. For Big Data processing, the precise semantics of NULL values are significant: any
misunderstanding could lead to inaccurate results or misformatted data, that could be time-consuming to correct for
large data sets.

e NULL is a different value than an empty string. The empty string is represented by a string literal with nothing
inside, " " or

¢ In a delimited text file, the NULL value is represented by the special token \ N.

e When Impala inserts data into a partitioned table, and the value of one of the partitioning columns is NULL or the
empty string, the data is placed in a special partition that holds only these two kinds of values. When these values
are returned in a query, the result is NULL whether the value was originally NULL or an empty string. This behavior
is compatible with the way Hive treats NULL values in partitioned tables. Hive does not allow empty strings as
partition keys, and it returns a string value such as __HI VE_DEFAULT_PARTI Tl ON__ instead of NULL when such
values are returned from a query. For example:

create table t1 (i int) partitioned by (x int, y string);

-- Select an INT colum fromanother table, with all rows going into a special HDFS
subdirectory

-- nanmed __H VE_DEFAULT_PARTI TI ON__. Dependi ng on whet her one or both of the partitioning
keys

--are null, this special directory name occurs at different |levels of the physical data
directory

-- for the table.

insert into tl partition(x=NULL, y=NULL) select cl from sonme_other_tabl e;

insert intotl partition(x, y=NULL) select c1, c2 from sonme_other_tabl e;

insert into tl partition(x=NULL, y) select cl1, ¢3 from sonme_other_table;

e Thereis no NOT NULL clause when defining a column to prevent NULL values in that column.

e There is no DEFAULT clause to specify a non-NULL default value.

¢ If an | NSERT operation mentions some columns but not others, the unmentioned columns contain NULL for all
inserted rows.

¢ InImpala 1.2.1 and higher, all NULL values come at the end of the result set for ORDER BY ... ASCqueries, and
at the beginning of the result set for ORDER BY ... DESCqueries. In effect, NULL is considered greater than all
other values for sorting purposes. The original Impala behavior always put NULL values at the end, even for ORDER
BY ... DESCqueries. The new behavior in Impala 1.2.1 makes Impala more compatible with other popular
database systems. In Impala 1.2.1 and higher, you can override or specify the sorting behavior for NULL by adding
the clause NULLS FI RST or NULLS LAST at the end of the ORDER BY clause.

E,i Note: Because the NULLS FI RST and NULLS LAST keywords are not currently available in Hive
gueries, any views you create using those keywords will not be available through Hive.

¢ In all other contexts besides sorting with ORDER BY, comparing a NULL to anything else returns NULL, making
the comparison meaningless. For example, 10 > NULL produces NULL, 10 < NULL also produces NULL, 5
BETWEEN 1 AND NULL produces NULL, and so on.

Several built-in functions serve as shorthand for evaluating expressions and returning NULL, 0, or some other substitution
value depending on the expression result:i fnul I (),isnull (), nvI(),nullif(),nullifzero(),and
zeroi fnul | (). See Impala Conditional Functions on page 463 for details.

Kudu considerations:

Columns in Kudu tables have an attribute that specifies whether or not they can contain NULL values. A column with
a NULL attribute can contain nulls. A column with a NOT NULL attribute cannot contain any nulls, and an | NSERT,
UPDATE, or UPSERT statement will skip any row that attempts to store a null in a column designated as NOT NULL.
Kudu tables default to the NULL setting for each column, except columns that are part of the primary key.

In addition to columns with the NOT NULL attribute, Kudu tables also have restrictions on NULL values in columns that
are part of the primary key for a table. No column that is part of the primary key in a Kudu table can contain any NULL
values.

SQL Operators

SQL operators are a class of comparison functions that are widely used within the WHERE clauses of SELECT statements.

Arithmetic Operators

The arithmetic operators use expressions with a left-hand argument, the operator, and then (in most cases) a right-hand
argument.

Syntax:

| eft _hand_arg binary_operator right_hand_arg
unary_operator single_arg

e +and - : Can be used either as unary or binary operators.

— With unary notation, such as +5, - 2. 5, or - col _nane, they multiply their single numeric argument by +1
or - 1. Therefore, unary + returns its argument unchanged, while unary - flips the sign of its argument.
Although you can double up these operators in expressions such as ++5 (always positive) or - +2 or +- 2 (both
always negative), you cannot double the unary minus operator because - - is interpreted as the start of a
comment. (You can use a double unary minus operator if you separate the - characters, for example with a
space or parentheses.)

— With binary notation, such as 2+2,5- 2. 5,orcol 1 + col 2,they add or subtract respectively the right-hand
argument to (or from) the left-hand argument. Both arguments must be of numeric types.

e * and/ : Multiplication and division respectively. Both arguments must be of numeric types.

When multiplying, the shorter argument is promoted if necessary (such as SMALLI NT to | NT or Bl G NT, or FLOAT
to DOUBLE), and then the result is promoted again to the next larger type. Thus, multiplying a TI NYI NT and an

I NT produces a Bl G NT result. Multiplying a FLOAT and a FLOAT produces a DOUBLE result. Multiplying a FLOAT
and a DOUBLE or a DOUBLE and a DOUBLE produces a DECI MAL(38, 17) , because DECI MAL values can represent
much larger and more precise values than DOUBLE.

When dividing, Impala always treats the arguments and result as DOUBLE values to avoid losing precision. If you
need to insert the results of a division operation into a FLOAT column, use the CAST() function to convert the
result to the correct type.

e DI V: Integer division. Arguments are not promoted to a floating-point type, and any fractional result is discarded.
For example, 13 DIV 7 returns1,14 DIV 7 returns 2,and 15 DI V 7 returns 2. This operator is the same as
the QUOTI ENT() function.

* % Modulo operator. Returns the remainder of the left-hand argument divided by the right-hand argument. Both
arguments must be of one of the integer types.

e & |,~, and”: Bitwise operators that return the logical AND, logical OR, NOT, or logical XOR (exclusive OR) of their
argument values. Both arguments must be of one of the integer types. If the arguments are of different type, the
argument with the smaller type is implicitly extended to match the argument with the longer type.

You can chain a sequence of arithmetic expressions, optionally grouping them with parentheses.

The arithmetic operators generally do not have equivalent calling conventions using functional notation. For example,
prior to CDH 5.4 / Impala 2.2, there is no MOD() function equivalent to the %modulo operator. Conversely, there are
some arithmetic functions that do not have a corresponding operator. For example, for exponentiation you use the
POW) function, but there is no ** exponentiation operator. See Impala Mathematical Functions on page 404 for the
arithmetic functions you can use.

Complex type considerations:

To access a column with a complex type (ARRAY, STRUCT, or MAP) in an aggregation function, you unpack the individual
elements using join notation in the query, and then apply the function to the final scalar item, field, key, or value at
the bottom of any nested type hierarchy in the column. See Complex Types (CDH 5.5 or higher only) on page 146 for
details about using complex types in Impala.

The following example demonstrates calls to several aggregation functions using values from a column containing
nested complex types (an ARRAY of STRUCT items). The array is unpacked inside the query using join notation. The
array elements are referenced using the | TEMpseudocolumn, and the structure fields inside the array elements are
referenced using dot notation. Numeric values such as SUM) and AVE) are computed using the numeric R_NATI ONKEY
field, and the general-purpose MAX() and M N() values are computed from the string N_NAME field.

descri be region;

Fom e e o m e e e e e e e oo E +
| name | type | commrent |
S o e e e e e e e e e e oo B R +

r_regi onkey smal | i nt

r_name string

r_commrent string

n_nati onkey: smal | i nt,
n_nane: string,
n_comment : string

I I
I I
I 1 I
| r_nations | array<struct<
I I
I I
I I
| | >>

sel ect r_nanme, r_nations.itemn_nationkey

fromregion, region.r_nations as r_nations
order by r_name, r_nations.item n_nationkey;
+ +

_______________________________ +
| r_name | item n_nationkey |
Fom e e e T +

AFRI CA 0

AFRI CA 5

AFRI CA 14

AFRI CA 15

AFRI CA 16

AMERI CA 1

AMERI CA 2

AMERI CA 3

AMERI CA 17

AMERI CA 24

ASI A 8

ASI A 9

ASI A 12

ASI A 18

ASI A 21

EURCPE 6

EURCPE 7

EURCPE 19
EURCPE 22
EURCPE 23

M DDLE EAST | 4

M DDLE EAST 10
M DDLE EAST 11
M DDLE EAST 13
M DDLE EAST 20

sel ect
r_nane,
count (r_nations.itemn_nationkey) as count,
sun(r_nations.itemn_nati onkey) as sum
avg(r_nations.item n_nati onkey) as avg,
mn(r_nations.itemn_nanme) as m ni mum
max(r_nations.itemn_name) as maxi mum
ndv(r_nations.itemn_nationkey) as distinct_vals
from
region, region.r_nations as r_nations
group by r_nane
order by r_nane;
+

------------- T T ey
| r_nane | count | sum| avg | mnimum | maxinmm | distinct_vals |
B toema - +o-m - +oeem - Fommmeaaaaa - - +
AFRI CA	5	50	10	ALGERIA	MOZAMBI QUE	5
AMERI CA	5	47	9.4	ARGENTINA	UNITED STATES	5
ASIA	5	68	13.6	CHI NA	VI ETNAM	5
EURCPE	5	77	15.4	FRANCE	UNI TED KI NGDOM	5
MDDLE EAST	5	58	11.6	EGYPT	SAUDI ARABIA	5
B toema - +o-m - toeem - Fommmeaaaaa - . +

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP) directly in an operator. You can apply
operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY, or the key
or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot notation or

| TEM KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that is an item
within an ARRAY column. Once the scalar numeric value R_NATI ONKEY is extracted, it can be used in an arithmetic
expression, such as multiplying by 10:

-- The SMALLINT is a field within an array of structs.
descri be region;

Fem e e e e m e e e e e eee e oo Femm ek +
| name | type | conmment |
Fem e e oo e e m e e e e eeeeaan Femm ek +

r_regi onkey smal | i nt

r_name string

r_conment string

r_nations array<struct<

n_name: string,
n_conmment: string
>>

|
I
|
| n_nati onkey: snmal lint,
I
|
I

-- When we refer to the scal ar val ue using dot notation,

-- we can use arithmetic and conpari son operators on it

-- like any other nunber.

sel ect r_nanme, nation.itemn_name, nation.item n_nationkey * 10
fromregion, region.r_nations as nation

where nation.itemn_nationkey < 5;

Fom e e e S o e m e e e e e e e e emmaa— o +
| r_name | itemn_nane | nation.itemn_nationkey * 10 |
Fom e e e e Fom e e e o e m e e e e e e e e emmaa—an +
| AMERI CA | CANADA | 30 [
| AMERI CA | BRAZIL | 20 [
| AMERI CA | ARGENTINA | 10 [

| M DDLE EAST | EGYPT | 40 |
| AFRI CA | ALGER A | 0 |

BETWEEN Operator

In a WHERE clause, compares an expression to both a lower and upper bound. The comparison is successful is the
expression is greater than or equal to the lower bound, and less than or equal to the upper bound. If the bound values
are switched, so the lower bound is greater than the upper bound, does not match any values.

Syntax:
expressi on BETWEEN | ower _bound AND upper_bound

Data types: Typically used with numeric data types. Works with any data type, although not very practical for BOOLEAN
values. (BETWEEN f al se AND t rue will match all BOOLEAN values.) Use CAST() if necessary to ensure the lower
and upper bound values are compatible types. Call string or date/time functions if necessary to extract or transform
the relevant portion to compare, especially if the value can be transformed into a number.

Usage notes:

Be careful when using short string operands. A longer string that starts with the upper bound value will not be included,
because it is considered greater than the upper bound. For example, BETWEEN ' A' and ' M would not match the
stringvalue' M dway" . Use functions such as upper (), | ower (),substr(),tri nm(),andsoonif necessary to ensure
the comparison works as expected.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP) directly in an operator. You can apply
operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY, or the key
or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot notation or

| TEM KEY, or VALUE pseudocolumn names.

Examples:

-- Retrieve data for January through June, inclusive.
select cl1 fromtl where nonth between 1 and 6;

-- Retrieve data for nanes beginning with "A through 'M inclusive.

-- Only test the first letter to ensure all the values starting with 'M are nmatched.
-- Do a case-insensitive conparison to match nanes with various capitalization
conventi ons.

sel ect | ast_nane fromcustoners where upper(substr(last_nane,1,1)) between 'A" and 'M;

-- Retrieve data for only the first week of each nonth.
sel ect count(distinct visitor_id)) fromweb_traffic where dayof nont h(when_vi ewed) between
1 and 7,

The following example shows how to do a BETWEEN comparison using a numeric field of a STRUCT type that is an item
within an ARRAY column. Once the scalar numeric value R_NATI ONKEY is extracted, it can be used in a comparison
operator:

-- The SMALLINT is a field within an array of structs.
descri be region;

oo oo oo +
| name | type | comrent |
oo Frmmm s oo +

r_regi onkey smal i nt

r_nane string

r_conment string

n_nati onkey: smal | i nt,
n_name: string,

I I
I I
I 1 I
| r_nations | array<struct<
I I
| I ;
| | n_conmment: string

-- When we refer to the scal ar val ue using dot notation,
-- We can use arithmetic and conpari son operators on it

-- like any other nunber.

sel ect r_name, nation.item n_name, nation.item n_nationkey
fromregion, region.r_nations as nation

where nation.itemn_nati onkey between 3 and 5

S Fom e e o e e e e oo - o +
| r_name | itemn_nanme | item n_nationkey |
Fom e e e Fom e e T +
| AMERI CA | CANADA | 3 [
| M DDLE EAST | EGYPT 4 |
| AFRI CA | ETH OPI A | 5 |
S S o e e e e o oo +

Comparison Operators
Impala supports the familiar comparison operators for checking equality and sort order for the column data types:

Syntax:

| ef t _hand_expressi on conpari son_operator right_hand_expression

e = 1= <>:applyto all scalar types.
e <, <=, > >=:apply to all scalar types; for BOOLEAN, TRUE is considered greater than FALSE.

Alternatives:

The | Nand BETWEEN operators provide shorthand notation for expressing combinations of equality, less than, and
greater than comparisons with a single operator.

Because comparing any value to NULL produces NULL rather than TRUE or FALSE, use the | S NULL and | S NOT
NULL operators to check if a value is NULL or not.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP) directly in an operator. You can apply
operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY, or the key
or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot notation or

| TEM KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that is an item
within an ARRAY column. Once the scalar numeric value R_NATI ONKEY is extracted, it can be used with a comparison
operator such as <:

-- The SMALLINT is a field within an array of structs.
descri be region;

S o e e e e e e e E R +
| name | type | comrent |
S o e e e e e e e oo R +

r_regi onkey smal | i nt

r_name string

r_comrent string

n_nati onkey: smal | i nt,
n_nane: string,
n_comrent: string

I I
I I
I 1 I
| r_nations | array<struct<
I I
I I
I I
| | >>

-- When we refer to the scal ar val ue using dot notation,
-- we can use arithnetic and conparison operators on it

-- like any other nunber.

sel ect r_nane, nation.itemn_name, nation.item n_nationkey
fromregion, region.r_nations as nation

where nation.itemn_nationkey < 5

S Fom e e o e e e e oo - o +
| r_name | itemn_name | item n_nationkey |
Fom e e e Fom e e T +
| AMERI CA | CANADA | 3 [
AMERI CA	BRAZIL	2
AMERI CA	ARGENTINA	1
M DDLE EAST	EGYPT	4
AFRI CA	ALGERI A	O
S S o e e e e o oo +

EXISTS Operator

The EXI STS operator tests whether a subquery returns any results. You typically use it to find values from one table
that have corresponding values in another table.

The converse, NOT EXI STS, helps to find all the values from one table that do not have any corresponding values in
another table.

Syntax:

EXI STS (subquery)
NOT EXI STS (subquery)

Usage notes:

The subquery can refer to a different table than the outer query block, or the same table. For example, you might use
EXI STSor NOT EXI STSto check the existence of parent/child relationships between two columns of the same table.

You can also use operators and function calls within the subquery to test for other kinds of relationships other than
strict equality. For example, you might use a call to COUNT() in the subquery to check whether the number of matching
values is higher or lower than some limit. You might call a UDF in the subquery to check whether values in one table
matches a hashed representation of those same values in a different table.

NULL considerations:
If the subquery returns any value at all (even NULL), EXI STS returns TRUE and NOT EXI STS returns false.

The following example shows how even when the subquery returns only NULL values, EXI STS still returns TRUE and
thus matches all the rows from the table in the outer query block.

| ocal host:21000] > create table all_nulls (x int);

| ocal host:21000] > insert into all_nulls values (null), (null), (nul
| ocal host:21000] > select y fromt2 where exists (select x fromall
+-- -+

[y |

+-- -+

2 |

4 |

6 |

+-- -+

),
nul I s);

However, if the table in the subquery is empty and so the subquery returns an empty result set, EXI STSreturns FALSE:

[l ocal host:21000] > create table enmpty (x int);
[l ocal host:21000] > select y fromt2 where exists (select x fromenpty);
[l ocal host:21000] >

Added in: CDH 5.2.0 / Impala 2.0.0
Restrictions:
Correlated subqueries used in EXI STS and | N operators cannot include a LI M T clause.

Prior to CDH 5.8 / Impala 2.6, the NOT EXI STS operator required a correlated subquery. In CDH 5.8 / Impala 2.6 and
higher, NOT EXI STS works with uncorrelated queries also.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP) directly in an operator. You can apply
operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY, or the key
or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot notation or

| TEM KEY, or VALUE pseudocolumn names.

Examples:

The following examples refer to these simple tables containing small sets of integers or strings:

[l ocal host:21000] > create table t1 (x int);
[l ocal host:21000] > insert into tl values (1), (2), (3), (4), (5, (6);

[l ocal host:21000] > create table t2 (y int);
[l ocal host:21000] > insert into t2 values (2), (4), (6);

\

create table t3 (z int);

| ocal host: 21000]
o insert into t3 values (1), (3), (5);

cal host: 21000]

\%

cal host: 21000]

[lo create table nmonth_names (m string);
[l ocal host: 21000]

insert into nmonth_nanes val ues

(' January'), ('February'), ('March'),
("April'), ('My'), ('June’), ('July'),
(" August'), (' Septenmber'), ('Cctober'),
(' Novenber'), (' Decenber');

VVVYVVYV

The following example shows a correlated subquery that finds all the values in one table that exist in another table.
For each value X from T1, the query checks if the Y column of T2 contains an identical value, and the EXI STS operator
returns TRUE or FALSE as appropriate in each case.

| ocal host: 21000] > select x fromtl where exists (select y fromt2 where tl.x =vy);
+-- -+
| x|
+-- -+
| 2|
| 4|
| 6|
+-- -+

An uncorrelated query is less interesting in this case. Because the subquery always returns TRUE, all rows from T1 are
returned. If the table contents where changed so that the subquery did not match any rows, none of the rows from
T1 would be returned.

[l ocal host:21000] > select x fromtl where exists (select y fromt2 where y > 5);
+---+
| x|
+---+
| 1]

POORWN

—
—

The following example shows how an uncorrelated subquery can test for the existence of some condition within a
table. By using LI M T 1 or an aggregate function, the query returns a single result or no result based on whether the
subquery matches any rows. Here, we know that T1 and T2 contain some even numbers, but T3 does not.

[l ocal host:21000] > sel ect "contains an even nunber” fromtl where exists (select x from
tl where x %2 =0) limt 1;

[l ocal host:21000] > select "contains an even nunber"” as assertion fromtl where exists
(select x fromtl where x %2 =0) limt 1;

T +
| assertion |
B T +
| contains an even nunber |
B T +

[l ocal host: 21000] > select "contains an even nunber" as assertion fromt2 where exists
(select x fromt2 wherey %2 =0) limt 1;

ERROR Anal ysi sException: couldn't resolve colum reference: 'Xx'

[l ocal host:21000] > select "contains an even nunber" as assertion fromt2 where exists
(select y fromt2 wherey %2 =0) limt 1;

TS +
| assertion |
B T +
| contains an even nunber |
B T +

[l ocal host:21000] > select "contains an even nunber" as assertion fromt3 where exists
(select z fromt3 where z %2 =0) limt 1;
[l ocal host:21000] >

The following example finds numbers in one table that are 1 greater than numbers from another table. The EXI STS
notation is simpler than an equivalent CROSS JO Nbetween the tables. (The example then also illustrates how the
same test could be performed using an | Noperator.)

[l ocal host:21000] > select x fromtl where exists (select y fromt2 where x =y + 1);
+-- -+

| x|

+-- -+

| 3|

| 51

+-- -+

[l ocal host:21000] > select x fromtl where x in (select y + 1 fromt2);
+--- 4+

| x|

+-- -+

| 3|

| 5|

+-- -+

The following example finds values from one table that do not exist in another table.

[l ocal host:21000] > select x fromtl where not exists (select y fromt2 where x = vy);
+---+
| x|
+---+
| 1]
| 3|
| 5|
+---+

The following example uses the NOT EXI STS operator to find all the leaf nodes in tree-structured data. This simplified
“tree of life” has multiple levels (class, order, family, and so on), with each item pointing upward through a PARENT
pointer. The example runs an outer query and a subquery on the same table, returning only those items whose | D
value is not referenced by the PARENT of any other item.

"red kangaroo"),
"wal | abi es");

[l ocal host:21000] > create table tree (id int, parent int, name string);
[l ocal host:21000] > insert overwite tree val ues

> (0, null, "animls"),

> (1, 0, "placentals"),

> (2, 0, "marsupials"),

> (3, 1, "bats"),

> (4, 1, "cats"),

> (5, 2, "kangaroos"),

> (6, 4, "lions"),

> (7, 4, "tigers"),

> (8, 5

> (9, 2

[l ocal host:21000] > sel ect nane as "leaf node" fromtree one
> where not exists (select parent fromtree two where one.id =
two. parent);

S +
| leaf node |
e e e +
| bats |
| I'ions [
| tigers |
| red kangaroo |
| wal |l abi es [
e e e +

Related information:

Subqueries in Impala SELECT Statements on page 319

ILIKE Operator

A case-insensitive comparison operator for STRI NGdata, with basic wildcard capability using _ to match a single
character and %to match multiple characters. The argument expression must match the entire string value. Typically,
it is more efficient to put any %wildcard match at the end of the string.

This operator, available in CDH 5.7 / Impala 2.5 and higher, is the equivalent of the LI KE operator, but with
case-insensitive comparisons.

Syntax:

string_expression |LI KE w | dcard_expression
string_expression NOT | LIKE w | dcard_expression

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP) directly in an operator. You can apply
operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY, or the key
or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot notation or

| TEM KEY, or VALUE pseudocolumn names.

Examples:

In the following examples, strings that are the same except for differences in uppercase and lowercase match successfully
with I LI KE, but do not match with LI KE:

select 'fooBar' ilike ' FOOBAR ;
o m e e e e e e e e +
| 'foobar' ilike 'foobar' |
o m e e e e e e e e +
| true |
o m e e e e e e e e +

sel ect 'fooBar' |ike ' FOOBAR ;

TS +
| 'foobar' like 'foobar' |
s +
| false |
s +
select ' FOOBAR ilike '"f%;
T +
| 'foobar' ilike 'f% |
o e e e e e e e e +
| true |
o e e e e e e e e +

sel ect ' FOOBAR |ike '"f%;
| 'foobar' like "f% |

o e e e e e e e oo +
sel ect ' ABCXYZ' not ilike 'ab_xyz';
e +
| not 'abcxyz' ilike 'ab_xyz' |
B e +
| false |
B S +

sel ect ' ABCXYZ' not |ike 'ab_xyz';

o m e e e e e e e e e e aa oo +
| not 'abcxyz' like 'ab_xyz'

o e e e e e e e e e e e o a o +
| true |
o e e e e e e e e e aaa o +

Related information:

For case-sensitive comparisons, see LIKE Operator on page 193. For a more general kind of search operator using regular
expressions, see REGEXP Operator on page 196 or its case-insensitive counterpart IREGEXP Operator on page 189.

IN Operator

The | Noperator compares an argument value to a set of values, and returns TRUE if the argument matches any value
in the set. The NOT | Noperator reverses the comparison, and checks if the argument value is not part of a set of
values.

Syntax:

expression IN (expression [, expression])
expression I N (subquery)

expression NOT I N (expression [, expression])
expressi on NOT I N (subquery)

The left-hand expression and the set of comparison values must be of compatible types.

The left-hand expression must consist only of a single value, not a tuple. Although the left-hand expression is typically
a column name, it could also be some other value. For example, the WHERE clauses WHERE i d | N (5) and WHERE
5 I N (id) produce the same results.

The set of values to check against can be specified as constants, function calls, column names, or other expressions in
the query text. The maximum number of expressions in the | Nlist is 9999. (The maximum number of elements of a
single expression is 10,000 items, and the | Noperator itself counts as one.)

In Impala 2.0 and higher, the set of values can also be generated by a subquery. | Ncan evaluate an unlimited number
of results using a subquery.

Usage notes:

Any expression using the | Noperator could be rewritten as a series of equality tests connected with OR, but the I N
syntax is often clearer, more concise, and easier for Impala to optimize. For example, with partitioned tables, queries
frequently use I N clauses to filter data by comparing the partition key columns to specific values.

NULL considerations:

If there really is a matching non-null value, | Nreturns TRUE:

[l ocal host:21000] > select 1 in (1,null,2,3);
+

e e e e e e e e e e e -
| 2in (2, null, 2, 3) |
e e e e e e eaaa o +
| true |
e m e e e e e e aaa o +

[l ocal host:21000] > select 1 not in (1,null,2,3);
+

If the searched value is not found in the comparison values, and the comparison values include NULL, the result is
NULL:

[l ocal host:21000] > select 5 in (1,null,2,3);
+

e e e e e e e e e e e e e
| 5in (1, null, 2, 3) |

o e e e e e e aa oo +

| NULL [

o e e e e e e aaa oo +

[l ocal host:21000] > select 5 not in (1,null,2,3);
o e e e e e e e e e e aao o +

| 5not in (1, null, 2, 3) |

o e m e e e e e e aaaoos +

| NULL [

o e m e e e e e e e eaao o +

[l ocal host:21000] > select 1 in (null);

Fom e e e +

| 2in (null) |

Fom e e e +

| NULL |

Fom e e e +

[l ocal host:21000] > select 1 not in (null);
o e e e e e oo +

| 2 not in (null) |

o e e e e e +

| NULL |

o e e e e e +

If the left-hand argument is NULL, | Nalways returns NULL. This rule applies even if the comparison values include
NULL.

[l ocal host:21000] > select null in (1,2,3);

e eeeeeaa +
| null in (1, 2, 3) |

- +

| NULL |

- +

[l ocal host:21000] > select null not in (1,2,3);
e eeeee e e +

| null not in (1, 2, 3) |
e +

| NULL |
e +

[l ocal host:21000] > select null in (null);
e +

| null in (null) |

. +

| NULL |

e +

[l ocal host:21000] > select null not in (null);
T +

| null not in (null) |

T T . +

| NULL |

R R +

Added in: Available in earlier Impala releases, but new capabilities were added in CDH 5.2.0 / Impala 2.0.0
Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP) directly in an operator. You can apply
operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY, or the key
or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot notation or

| TEM KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that is an item
within an ARRAY column. Once the scalar numeric value R_NATI ONKEY is extracted, it can be used in an arithmetic
expression, such as multiplying by 10:

-- The SMALLINT is a field within an array of structs.
descri be region;

Fom e e o m e e e e e e e oo E +
| name | type | commrent |
S o e e e e e e e e e e oo B R +

r_regi onkey smal | i nt

r_name string

r_commrent string

n_nati onkey: smal | i nt,
n_nane: string,
n_comment : string

I I
I I
I 1 I
| r_nations | array<struct<
I I
I I
I I
| | >>

-- When we refer to the scal ar val ue using dot notation,
-- we can use arithnetic and conparison operators on it

-- like any other nunber.

sel ect r_nane, nation.itemn_name, nation.item n_nationkey
fromregion, region.r_nations as nation

where nation.itemn_nationkey in (1,3,5)

o B - +
| r_name | itemn_nane | item n_nationkey |
B B - +
AVERI CA	CANADA	3
AVERICA	ARGENTINA	1
AFRICA	ETH OPIA	5
Foemeeaaa B e +

Restrictions:
Correlated subqueries used in EXI STS and | N operators cannot include a LI M T clause.

Examples:

-- Using INis concise and sel f-docunenti ng.

SELECT * FROMt1 WHERE c1 IN (1, 2, 10);

-- Equivalent to series of = conparisons ORed together.
SELECT * FROMt1l WHERE c1 =1 ORcl =2 OR cl = 10;

SELECT c1 AS "starts with vowel" FROMt2 WHERE upper(substr(cl1,1,1)) IN
("AVE LT, TO LU,

SELECT COUNT(DI STINCT(visitor_id)) FROMweb_traffic WHERE nonth IN
(' January',"'June',"July');

Related information:

Subqueries in Impala SELECT Statements on page 319

IREGEXP Operator

Tests whether a value matches a regular expression, using case-insensitive string comparisons. Uses the POSIX regular
expression syntax where * and $ match the beginning and end of the string, . represents any single character, *
represents a sequence of zero or more items, + represents a sequence of one or more items, ? produces a non-greedy
match, and so on.

This operator, available in CDH 5.7 / Impala 2.5 and higher, is the equivalent of the REGEXP operator, but with
case-insensitive comparisons.

Syntax:

string_expressi on | REGEXP regul ar _expressi on

Usage notes:

The | symbol is the alternation operator, typically used within () to match different sequences. The () groups do not
allow backreferences. To retrieve the part of a value matched withina () section, use ther egexp_ext ract () built-in
function. (Currently, there is not any case-insensitive equivalent for the r egexp_ext ract () function.)

In Impala 1.3.1 and higher, the REGEXP and RLI KE operators now match a regular expression string that occurs

anywhere inside the target string, the same as if the regular expression was enclosed on each side by . *. See REGEXP
Operator on page 196 for examples. Previously, these operators only succeeded when the regular expression matched
the entire target string. This change improves compatibility with the regular expression support for popular database
systems. There is no change to the behavior of the r egexp_extract () andregexp_repl ace() built-in functions.

In Impala 2.0 and later, the Impala regular expression syntax conforms to the POSIX Extended Regular Expression syntax
used by the Google RE2 library. For details, see the RE2 documentation. It has most idioms familiar from regular
expressions in Perl, Python, and so on, including . * ? for non-greedy matches.

In Impala 2.0 and later, a change in the underlying regular expression library could cause changes in the way regular
expressions are interpreted by this function. Test any queries that use regular expressions and adjust the expression
patterns if necessary.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP) directly in an operator. You can apply
operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY, or the key
or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot notation or

| TEM KEY, or VALUE pseudocolumn names.

Examples:

The following examples demonstrate the syntax for the | REGEXP operator.

sel ect ' abcABCaabbcc' iregexp '~[a-c]+$';
+

e e meme e e meme e e e e e e e e e e e e, —em e m .-
| 'abcabcaabbcc' iregexp '[a-c]+ |
o m e e e e e e e e e e e e aa o n +
| true |
o m e e e e e e e e e e e e ao o n +

Related information:

REGEXP Operator on page 196

IS DISTINCT FROM Operator

The | S DI STI NCT FROMoperator, and its converse the | S NOT DI STI NCT FROMoperator, test whether or not
values are identical. 1 S NOT DI STI NCT FROMis similar to the = operator, and I S DI STI NCT FROMis similar to the
| = operator, except that NULL values are treated as identical. Therefore, | S NOT DI STI NCT FROMreturnstrue
rather than NULL, and I S DI STI NCT FROMreturns f al se rather than NULL, when comparing two NULL values. If
one of the values being compared is NULL and the otheris not, | S DI STI NCT FROMreturnstrue and| S NOT

DI STI NCT FROMreturns f al se, again instead of returning NULL in both cases.

Syntax:

expressionl |I'S DI STI NCT FROM expr essi on2

expressionl IS NOT DI STI NCT FROM expressi on2
expressi onl <=> expressi on2

The operator <=>is an alias for | S NOT DI STI NCT FROM lt is typically used as a NULL-safe equality operator in join
queries. Thatis, A <=> Bis true if Aequals B or if both Aand B are NULL.

Usage notes:

https://code.google.com/p/re2/

This operator provides concise notation for comparing two values and always producing at r ue or f al se result,
without treating NULL as a special case. Otherwise, to unambiguously distinguish between two values requires a
compound expression involving | S [NOT] NULL tests of both operands in addition to the = or ! = operator.

The <=> operator, used like an equality operator in a join query, is more efficient than the equivalent clause: A = B
OR (A IS NULL AND B IS NULL) . The <=> operator can use a hash join, while the OR expression cannot.

Examples:

The following examples show how | S DI STI NCT FROMgives output similar tothe ! = operator,and 1 S NOT DI STI NCT
FROMgives output similar to the = operator. The exception is when the expression involves a NULL value on one side
or both sides, where ! =and =return NULL butthe | S [NOT] DI STI NCT FROMoperators still returntrue orf al se.

select 1 is distinct fromO0O, 1 != 0;
e o - +

| 1 is distinct fromO | 1!=0 |
oo R +

| true | true |
oo R +

select 1 is distinct from1, 1 != 1;

o e e e e e e e e o oo Fom e e oo - +

| 1 is distinct from1l | 1!=1|

o e e e e e e e o oo Fom e e oo - +

| false | false |

o e e e e e e e o oo Fom e e oo - +

select 1 is distinct fromnull, 1 !'= null;
oo S +

| 1 is distinct fromnull | 1 != null |

o e S +

| true | NULL |

o e S +
select null is distinct fromnull, null !'= null;
o e e e e e e e e e e e aam o [SR +
| null is distinct fromnull | null !'= null |
o e e e e e e e e e aaa o SR +
| false | NULL |
o e e e e e e e e e aaa o SR +

T T +
| 2is not distinct fromO | 1 =0 |
B I +
| false | false |
B I +

o e e e e e e e e aa oo Fomm - +

| 1 is not distinct from1 | 1 =1 |

o e e e e e e e aa oo Fomm - +

| true | true |

o e e e e e e e aa oo Fomm - +

select 1 is not distinct fromnull, 1 = null;

R - +

| 1is not distinct fromnull | 1 = null |

R . +

| false | NULL |

R . +
select null is not distinct fromnull, null = null;
o mm e e e e e e e e e e aa oo [S +
| null is not distinct fromnull | null = null |
o m e e e e e e e e e e e me e aa oo SR +
| true | NULL |

The following example shows how I S DI STI NCT FROMconsiders CHAR values to be the same (not distinct from each
other) if they only differ in the number of trailing spaces. Therefore, sometimes the result ofan 1 S [NOT] DI STI NCT
FROMoperator differs depending on whether the values are STRI NG/VARCHAR or CHAR.

sel ect
"X'" is distinct from'x as string_wth_
cast('x' as char(5)) is distinct fromcas
char_with_trailing_spaces;

railing_spaces,
("x ' as char(5)) as

— —+

IS NULL Operator

The | S NULL operator, and its converse the | S NOT NULL operator, test whether a specified value is NULL. Because
using NULL with any of the other comparison operators such as = or ! = also returns NULL rather than TRUE or FALSE,
you use a special-purpose comparison operator to check for this special condition.

In CDH 5.14 / Impala 2.11 and higher, you can use the operators | S UNKNOMNand | S NOT UNKNOWN as synonyms for
I'S NULL and 'S NOT NULL, respectively.

Syntax:

expression |'S NULL
expression |'S NOT NULL
expression |'S UNKNOMN
expression |'S NOT UNKNOAN

Usage notes:

In many cases, NULL values indicate some incorrect or incomplete processing during data ingestion or conversion. You
might check whether any values in a column are NULL, and if so take some followup action to fill them in.

With sparse data, often represented in “wide” tables, it is common for most values to be NULL with only an occasional
non-NULL value. In those cases, you can use the | S NOT NULL operator to identify the rows containing any data at
all for a particular column, regardless of the actual value.

With a well-designed database schema, effective use of NULL values and I S NULL and I S NOT NULL operators can
save having to design custom logic around special values such as 0, -1, ' N A", empty string, and so on. NULL lets you
distinguish between a value that is known to be 0, false, or empty, and a truly unknown value.

Complex type considerations:

The | S [NOT] UNKNOWN operator, as with the | S [NOT] NULL operator, is not applicable to complex type columns
(STRUCT, ARRAY, or MAP). Using a complex type column with this operator causes a query error.

Examples:

-- If this value is non-zero, sonmething is wong.
sel ect count(*) from enpl oyees where enployee_id is null;

-- Wth data fromdi sparate sources, sone fields m ght be bl ank.
-- Not necessarily an error condition.
sel ect count(*) from census where househol d_incone is null;

-- Sonetines we expect fields to be null, and foll owp action
-- is needed when they are not.
select count(*) fromweb_traffic where weird_http_code is not null;

IS TRUE Operator

This variation of the | S operator tests for truth or falsity, with right-hand arguments [NOT] TRUE, [NOT] FALSE,
and [NOT] UNKNOWN.

Syntax:

expression IS TRUE
expression |'S NOT TRUE
expression | S FALSE
expression IS NOT FALSE

Usage notes:

This| S TRUEand | S FALSEforms are similar to doing equality comparisons with the Boolean values TRUE and FAL SE,
exceptthat! S TRUEand | S FALSE always return either TRUE or FALSE, even if the left-hand side expression returns
NULL

These operators let you simplify Boolean comparisons that must also check for NULL, for example X ! = 10 AND X
I'S NOT NULL is equivalentto (X !'= 10) IS TRUE.

In CDH 5.14 / Impala 2.11 and higher, you can use the operators | S [NOT] TRUEand| S [NOT] FALSEas equivalents
for the built-in functions | STRUE(), | SNOTTRUE(), | SFALSE(), and | SNOTFALSE() .

Complex type considerations:

Thel S [NOT] TRUEand| S [NOT] FALSE operators are not applicable to complex type columns (STRUCT, ARRAY,
or MAP). Using a complex type column with these operators causes a query error.

Added in: CDH 5.14.0 / Impala 2.11.0

Examples:

sel ect assertion, b, bis true, bis false, b is unknown
from bool ean_t est;

Fom e e e Fommmmm S S [+
| assertion | b | istrue(b) | isfalse(b) | bis null |
Fom e e e Fommmmm B T e [+
| 2 +2 =4 | true | true | false | false |
| 2+2 =5 | false | false | true | false [
| 1 = null | NULL | false | false | true [
| null =null | NULL | false | false | true [
. +

LIKE Operator

A comparison operator for STRI NG data, with basic wildcard capability using the underscore (_) to match a single
character and the percent sign (%4 to match multiple characters. The argument expression must match the entire string
value. Typically, it is more efficient to put any %wildcard match at the end of the string.

Syntax:

string_expression LIKE wi |l dcard_expression
string_expression NOT LIKE wi | dcard_expression

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP) directly in an operator. You can apply
operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY, or the key
or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot notation or

| TEM KEY, or VALUE pseudocolumn names.

Examples:

select distinct c_last _name fromcustoner where c_last _nane like "M% or c_last_nane
like 'Mac% ;

sel ect count(c_l ast_nanme) from customer where c_|last_nane |like ' Mt ;

sel ect c_enmil _address from custoner where c_enmil _address |like ' % edu';

-- W can find 4-letter nanes beginning with "M by calling functions...

select distinct c_last_name from custonmer where length(c_|last_nane) = 4 and
substr(c_last_nanme, 1,1) = 'M;

-- ...o0r in a nore readable way by matching M foll owed by exactly 3 characters.
sel ect distinct c_last_nane fromcustomer where c_last_name like "M __';

For case-insensitive comparisons, see |LIKE Operator on page 186. For a more general kind of search operator using
regular expressions, see REGEXP Operator on page 196 or its case-insensitive counterpart IREGEXP Operator on page
189.

Logical Operators

Logical operators return a BOOLEAN value, based on a binary or unary logical operation between arguments that are
also Booleans. Typically, the argument expressions use comparison operators.

Syntax:

bool ean_expressi on binary_l ogi cal _operator bool ean_expression
unary_| ogi cal _operator bool ean_expressi on

The Impala logical operators are:

e AND: A binary operator that returns t r ue if its left-hand and right-hand arguments both evaluate to t r ue, NULL
if either argument is NULL, and f al se otherwise.

e OR: Abinary operator that returnst r ue if either of its left-hand and right-hand arguments evaluate tot r ue, NULL
if one argument is NULL and the other is either NULL or f al se, and f al se otherwise.

e NOT: A unary operator that flips the state of a Boolean expression fromtrue tof al se, orf al se totrue. If the
argument expression is NULL, the result remains NULL. (When NOT is used this way as a unary logical operator, it
works differently than the | S NOT NULL comparison operator, which returnst r ue when applied to a NULL.)

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP) directly in an operator. You can apply
operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY, or the key
or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot notation or

| TEM KEY, or VALUE pseudocolumn names.

The following example shows how to do an arithmetic operation using a numeric field of a STRUCT type that is an item
within an ARRAY column. Once the scalar numeric value R_NATI ONKEY is extracted, it can be used in an arithmetic
expression, such as multiplying by 10:

-- The SMALLINT is a field within an array of structs.
descri be region;

Fem e e e e m e e e e e eee e oo Femm ek +
| name | type | conmment |
Fem e e oo e e m e e e e eeeeaan Femm ek +

r_regi onkey smal | i nt

r_name string

r_conment string

n_nati onkey: snmal lint,
n_name: string,
n_conmment: string

| |

| |

| r_nations | array<struct<
| |

I I

| |

| | >>

-- When we refer to the scalar val ue using dot notation,

-- We can use arithmetic and conpari son operators on it
-- like any other nunber.
sel ect r_name, nation.item n_name, nation.item n_nationkey
fromregion, region.r_nations as nation
wher e
nation.itemn_nati onkey between 3 and 5
or nation.item n_nationkey < 15;
+

S Ty +
| r_name | item n_nane | item n_nationkey |
Fom e e e Fom e e e e oo e e e e e oo o - +

EUROPE UNI TED KI NGDOM | 23

EURCPE RUSSI A 22

EUROPE ROVANI A 19

ASI A VI ETNAM 21

ASI A CHI NA 18

AMERI CA UNI TED STATES 24

AMERI CA PERU 17

AMERI CA CANADA 3

M DDLE EAST | SAUDI ARABI A 20

M DDLE EAST EGYPT 4

AFRI CA MOZAMBI QUE 16

AFRI CA ETH OPI A 5
. R e +
Examples:

These examples demonstrate the AND operator:

[l ocal host:21000] > select true and true;

o e e oo +
| true and true

o e e e m o +

| true |

o e e e m o +

[l ocal host:21000] > select true and fal se;
e e e o n +

| true and fal se

e e e oo n +

| false

e e e oo n +

[l ocal host:21000] > select false and fal se;
o e e a +

| false and fal se

Fom e e s +

| false |

Fom e e s +

[l ocal host:21000] > select true and null
o e e oo +

| true and null

o e e e m o +

| NULL |

o e e e m o +

[l ocal host:21000] > select (10 > 2) and (6 != 9);
o mm e e e eeaaaa o +

| (10 > 2) and (6 '= 9) |

e e e e eeaa o a o +

| true |

e m e e e eeaa o a o +

These examples demonstrate the OR operator:

[l ocal host:21000] > select true or true;
+

e e e e e e e e e e e e
| true or true |

S +

| true |

S +

[l ocal host:21000] > select true or false;
Feceemaaa e +

o e e e +
[l ocal host:21000] > select false or false;
Fom e e e e oo +

| false or false |

Fom e e e oo +

| false |

Fom e e e oo +

[l ocal host:21000] > select true or null;

e e e e +

| true or null |

e e e +

| true |

e e e +

[l ocal host:21000] > select null or true;

e e e e +

| null or true |

e e e +

| true |

e e e +

[l ocal host:21000] > select false or null;
o e e oo +

| false or null |

o e e e +

| NULL |

o e e e +

[l ocal host:21000] > select (1 =1) or (‘hello" = "world);
T +

| (1 =1) or (‘hello" = "world) |

o m e e e e e e e e e e me e aa oo +

| true |

o m e e e e e e e e e e e me e aa oo +

[l ocal host:21000] > select (2 + 2 !=4) or (-1 > 0);
o e e e e e e e aa oo +

| (2 +21!=4) or (-1 >0) |

o e e e e e e e e aa oo +

| false |

o e e e e e e e aa oo +

These examples demonstrate the NOT operator:

[l ocal host:21000] > select not true;

S +
| not true |

B S +

| false [

B S +

[l ocal host:21000] > sel ect not fal se;
Fom e e +

| not false |

S +

| true |

S +

[l ocal host:21000] > select not null;
S +

| not null |

B S +

| NULL [

B S +

[l ocal host:21000] > select not (1=1);
Fom e e e +

| not (1 =1) |

Fom e e e e +

| false |

Fom e e e +

REGEXP Operator

Tests whether a value matches a regular expression. Uses the POSIX regular expression syntax where * and $ match
the beginning and end of the string, . represents any single character, * represents a sequence of zero or more items,
+ represents a sequence of one or more items, ? produces a non-greedy match, and so on.

Syntax:
string_expressi on REGEXP regul ar_expression

Usage notes:
The RLI KE operator is a synonym for REGEXP.

The | symbolis the alternation operator, typically used within () to match different sequences. The () groups do not
allow backreferences. To retrieve the part of a value matched withina () section, use ther egexp_ext ract () built-in
function.

In Impala 1.3.1 and higher, the REGEXP and RLI KE operators now match a regular expression string that occurs

anywhere inside the target string, the same as if the regular expression was enclosed on each side by . *. See REGEXP
Operator on page 196 for examples. Previously, these operators only succeeded when the regular expression matched
the entire target string. This change improves compatibility with the regular expression support for popular database
systems. There is no change to the behavior of the r egexp_extract () andregexp_repl ace() built-in functions.

In Impala 2.0 and later, the Impala regular expression syntax conforms to the POSIX Extended Regular Expression syntax
used by the Google RE2 library. For details, see the RE2 documentation. It has most idioms familiar from regular
expressions in Perl, Python, and so on, including . * ? for non-greedy matches.

In Impala 2.0 and later, a change in the underlying regular expression library could cause changes in the way regular
expressions are interpreted by this function. Test any queries that use regular expressions and adjust the expression
patterns if necessary.

Complex type considerations:

You cannot refer to a column with a complex data type (ARRAY, STRUCT, or MAP) directly in an operator. You can apply
operators only to scalar values that make up a complex type (the fields of a STRUCT, the items of an ARRAY, or the key
or value portion of a MAP) as part of a join query that refers to the scalar value using the appropriate dot notation or

| TEM KEY, or VALUE pseudocolumn names.

Examples:

The following examples demonstrate the identical syntax for the REGEXP and RLI KE operators.

-- Find all custoners whose first nane starts with 'J', followed by 0 or nore of any
character.

select c_first_name, c_last_nane fromcustoner where c_first_nane regexp '~J.*";
select c_first_name, c_last_nane from customer where c_first_name rlike '~J.*";

-- Find 'Macdonal d', where the first 'a" is optional and the 'D can be upper- or

| ower case.

-- The ~...% are required, to match the start and end of the val ue.

select c_first_nane, c_|l ast_name fromcustonmer where c_| ast_nane regexp ' *Ma?c[Dd] onal d$'
select c_first_name, c_last_nanme fromcustoner where c_| ast_nane rlike ' *Ma?c[Dd] onal d$' ;

-- Match nultiple character sequences, either 'Mac' or 'M'.

select c_first_name, c_last_nane fromcustoner where c_| ast_nane regexp

' A(Mac| M) donal d$' ;

select c_first_name, c_last_nane fromcustomer where c_|l ast_nane rlike ' ~(Mac| M) donal d$'

-- Find nanes starting with 'S, then one or nore vowels, then 'r', then any other
characters.

-- Matches 'Searcy', 'Sorenson', 'Sauer'.

select c_first_name, c_last_nanme fromcustonmer where c_| ast _nane regexp '~S[aei ou] +r.*$';
select c_first_nanme, c_last_nanme fromcustoner where c_last_nane rlike '~S[aei ou] +r.*$";

-- Find names that end with 2 or nore vowels: letters fromthe set a,e,i,o,u.
select c_first_name, c_last_nanme fromcustoner where c_| ast_nane regexp '.*[aeiou]{2,}9%$';
select c_first_nane, c_last_nanme fromcustoner where c_last_nane rlike '.*[aeiou]{2,}9%

-- You can use letter ranges in the [] blocks, for exanple to find nanmes starting with
A B, or C

select c_first_nane,
select c_first_name,

c_last_nane from custoner where c_|last_nane regexp '"[A-C.*";
c_last _nane from customer where c_last_nane rlike "*"A-C.*";

https://code.google.com/p/re2/

-- If you are not sure about case, leading/trailing spaces, and so on, you can process
t he

-- columm using string functions first.

select c_first_nane, c_last_name from custonmer where |ower(trin(c_|last_nanme)) regexp

' Nde. *';

select c_first_nane, c_last_name from custonmer where lower(trin(c_last_nane)) rlike

‘Nde. ¥

Related information:

For regular expression matching with case-insensitive comparisons, see IREGEXP Operator on page 189.

RLIKE Operator

Synonym for the REGEXP operator. See REGEXP Operator on page 196 for details.
Examples:

The following examples demonstrate the identical syntax for the REGEXP and RLI KE operators.

-- Find all custoners whose first nanme starts with 'J', followed by 0 or nore of any
character.

select c_first_nane,
select c_first_nane,

c_last_nane from custoner where c_first_nane regexp '~J.*";
c_last _nanme fromcustoner where c_first _name rlike '""J.*';

-- Find 'Macdonal d', where the first 'a" is optional and the 'D can be upper- or

| ower case.

-- The ~...%$ are required, to match the start and end of the val ue.

sel ect c_first_nane, c_|l ast_name fromcustomer where c_| ast_nane regexp ' *Ma?c[Dd] onal d$'
select c_first_name, c_last_nane fromcustonmer where c_| ast_nane rlike ' *Ma?c[Dd] onal d$' ;

-- Match nultiple character sequences, either 'Mac' or 'M'.

select c_first_nane, c_|last_name from custonmer where c_| ast_nane regexp

' A(Mac| M) donal d$' ;

select c_first_nane, c_|l ast_name fromcustomer where c_last_nane rlike ' ~(Mc| M) donal d$'

-- Find nanmes starting with 'S, then one or nore vowels, then 'r', then any other
characters.

-- Matches 'Searcy', 'Sorenson', ' Sauer'.

select c_first_name, c_last_nane fromcustonmer where c_| ast _nane regexp '~S[aei ou] +r.*$';
sel ect c_first_nane, c_|l ast_nane fromcustonmer where c_|l ast_nane rlike '~S[aei ou] +r.*$";

-- Find names that end with 2 or nore vowels: letters fromthe set a,e,i,o,u.

select c_first_name, c_last_nane fromcustonmer where c_| ast_nane regexp '.*[aeiou]l{2,}9%$";

select c_first_nanme, c_last_nanme fromcustoner where c_last_nane rlike '.*[aeiou]{2,}$%$;

-- You can use letter ranges in the [] blocks, for exanple to find names starting with
A B, or C

select c_first_nane, c_|last_name from custonmer where c_|l ast_nane regexp ' A-C.*";

select c_first_name, c_last_nane fromcustonmer where c_last_nane rlike ""[A-C.*";

-- If you are not sure about case, leading/trailing spaces, and so on, you can process
t he

-- columm using string functions first.

select c_first_nane, c_last_name from custonmer where |ower(trin(c_|last_nane)) regexp

' Nde. *';

select c_first_nane, c_last_name from custonmer where |lower(trin(c_last_nane)) rlike

‘Nde. ¥

Impala Schema Objects and Object Names

With Impala, you work with schema objects that are familiar to database users: primarily databases, tables, views, and
functions. The SQL syntax to work with these objects is explained in Impala SQL Statements on page 210. This section
explains the conceptual knowledge you need to work with these objects and the various ways to specify their names.

Within a table, partitions can also be considered a kind of object. Partitioning is an important subject for Impala, with
its own documentation section covering use cases and performance considerations. See Partitioning for Impala Tables
on page 640 for details.

Impala does not have a counterpart of the “tablespace” notion from some database systems. By default, all the data
files for a database, table, or partition are located within nested folders within the HDFS file system. You can also
specify a particular HDFS location for a given Impala table or partition. The raw data for these objects is represented
as a collection of data files, providing the flexibility to load data by simply moving files into the expected HDFS location.

Information about the schema objects is held in the metastore database. This database is shared between Impala and
Hive, allowing each to create, drop, and query each other's databases, tables, and so on. When Impala makes a change
to schema objects through a CREATE, ALTER, DROP, | NSERT, or LOAD DATA statement, it broadcasts those changes
to all nodes in the cluster through the catalog service. When you make such changes through Hive or directly through
manipulating HDFS files, you use the REFRESH or INVALIDATE METADATA statements on the Impala side to recognize
the newly loaded data, new tables, and so on.

Overview of Impala Aliases

When you write the names of tables, columns, or column expressions in a query, you can assign an alias at the same
time. Then you can specify the alias rather than the original name when making other references to the table or column
in the same statement. You typically specify aliases that are shorter, easier to remember, or both than the original
names. The aliases are printed in the query header, making them useful for self-documenting output.

To set up an alias, add the AS al i as clause immediately after any table, column, or expression name in the SELECT
list or FROMIist of a query. The AS keyword is optional; you can also specify the alias immediately after the original
name.

-- Make the colum headers of the result set easier to understand.

SELECT c1 AS nane, c2 AS address, c3 AS phone FROM table_wi th_terse_col ums;
SELECT SUM ss_xyz_dollars_net) AS total _sales FROM table_w th_cryptic_col ums;
-- The alias can be a quoted string for extra readability.

SELECT c1 AS "Enployee ID', c2 AS "Date of hire" FROMt1;

-- The AS keyword is optional.

SELECT c1 "Enpl oyee ID', c2 "Date of hire" FROMt1;

-- The table aliases assigned in the FROM cl ause can be used both earlier
-- in the query (the SELECT list) and |later (the WHERE cl ause).
SELECT one. nane, two.address, three.phone
FROM census one, building_directory two, phonebook three
VHERE one.id = two.id and two.id = three.id;

-- The aliases cl1 and c2 let the query handl e colums with the sane nanes from2 joi ned
t abl es.
-- The aliases t1 and t2 let the query abbreviate references to long or cryptically
naned tabl es.
SELECT t1.colum_n AS c1, t2.colum_n AS c2 FROM | ong_nane_table AS t1,
very_l ong_nanme_table2 AS t2
WHERE c1 = c2;
SELECT t1.colum_n c1, t2.colum_n c2 FROMtablel t1, table2 t2
WHERE c1 = c2;

You can specify column aliases with or without the AS keyword, and with no quotation marks, single quotation marks,
or double quotation marks. Some kind of quotation marks are required if the column alias contains any spaces or other
problematic characters. The alias text is displayed in the i npal a- shel | output as all-lowercase. For example:

[l ocal host:21000] > select cl First_Colum fromt;
[l ocal host:21000] > select cl as First_Columm fromt;

[l ocal host:21000] > select cl1 'First Colum' fromt;
[l ocal host:21000] > select cl1 as 'First Colum' fromt;
+

| first colum |

[l ocal host:21000] > select cl1 "First Colum" fromt;
[l ocal host:21000] > select cl1 as "First Colum" fromt;

From Impala 3.0, the alias substitution logic in the GROUP BY, HAVI NG, and ORDER BY clauses has become more
consistent with standard SQL behavior, as follows. Aliases are now only legal at the top level, and not in subexpressions.
The following statements are allowed:

SELECT int_col / 2 AS x
FROM t
GROUP BY x;

SELECT int_col / 2 AS x
FROM t
ORDER BY x;

SELECT NOT bool _col AS nb
FROM t

GROUP BY nb

HAVI NG nb;

And the following statements are NOT allowed:

SELECT int_col / 2 AS x
FROM t
GROUP BY x [/ 2;

SELECT int_col / 2 AS x
FROM t
ORDER BY -x;

SELECT int_col / 2 AS x
FROM t

GROUP BY x

HAVI NG x > 3;

To use an alias name that matches one of the Impala reserved keywords (listed in Impala Reserved Words on page
743), surround the identifier with either single or double quotation marks, or * * characters (backticks).

Aliases follow the same rules as identifiers when it comes to case insensitivity. Aliases can be longer than identifiers
(up to the maximum length of a Java string) and can include additional characters such as spaces and dashes when
they are quoted using backtick characters.

Complex type considerations:

Queries involving the complex types (ARRAY, STRUCT, and MAP), typically make extensive use of table aliases. These
queries involve join clauses where the complex type column is treated as a joined table. To construct two-part or
three-part qualified names for the complex column elements in the FROMlist, sometimes it is syntactically required to
construct a table alias for the complex column where it is referenced in the join clause. See Complex Types (CDH 5.5
or higher only) on page 146 for details and examples.

Alternatives:

Another way to define different names for the same tables or columns is to create views. See Overview of Impala Views
on page 206 for details.

Overview of Impala Databases

In Impala, a database is a logical container for a group of tables. Each database defines a separate namespace. Within
a database, you can refer to the tables inside it using their unqualified names. Different databases can contain tables
with identical names.

Creating a database is a lightweight operation. There are minimal database-specific properties to configure, such as
LOCATI ONand COVIVENT.

You can change the owner of a database with the ALTER DATABASE statement.

Typically, you create a separate database for each project or application, to avoid naming conflicts between tables and
to make clear which tables are related to each other. The USE statement lets you switch between databases. Unqualified
references to tables, views, and functions refer to objects within the current database. You can also refer to objects
in other databases by using qualified names of the form dbnane. obj ect _nane.

Each database is physically represented by a directory in HDFS. When you do not specify a LOCATI ON attribute, the
directory is located in the Impala data directory with the associated tables managed by Impala. When you do specify
a LOCATI ONattribute, any read and write operations for tables in that database are relative to the specified HDFS
directory.

There is a special database, named def aul t , where you begin when you connect to Impala. Tables created in def aul t
are physically located one level higher in HDFS than all the user-created databases.

Impalaincludes another predefined database, i npal a_bui | ti ns, that serves as the location for the built-in functions.
To see the built-in functions, use a statement like the following:

S;

show functions in _inmpala_builtin
builtins like '*substring*';

show functions in _inpala_

Related statements:

CREATE DATABASE Statement on page 233, DROP DATABASE Statement on page 269, USE Statement on page 391, SHOW
DATABASES on page 375

Overview of Impala Functions

Functions let you apply arithmetic, string, or other computations and transformations to Impala data. You typically
use them in SELECT lists and WHERE clauses to filter and format query results so that the result set is exactly what you
want, with no further processing needed on the application side.

Scalar functions return a single result for each input row. See Impala Built-In Functions on page 398.

[l ocal host:21000] > sel ect nane, popul ation fromcountry where continent = 'North Arerica’
order by popul ation desc lint 4;

[l ocal host:21000] > sel ect upper(nane), population fromcountry where continent = 'North
Anerica' order by population desc limt 4;

S S +

| upper(nane) | popul ation |

Fom e e S +

| USA | 320000000 |

| MEXI CO | 122000000 |

| CANADA | 25000000 |

| GUATEMALA | 16000000 [

B . +

Aggregate functions combine the results from multiple rows: either a single result for the entire table, or a separate
result for each group of rows. Aggregate functions are frequently used in combination with GROUP BY and HAVI NG
clauses in the SELECT statement. See Impala Aggregate Functions on page 486.

[l ocal host:21000] > sel ect continent, sum(popul ation) as howrany from country group by
continent order by howrany desc;
+

S SR
| continent | howmrany [
o e e e e e T +
Asia	4298723000
Africa	1110635000
Europe	742452000
North America	565265000
South America	406740000
Cceania	38304000 [

User-defined functions (UDFs) let you code your own logic. They can be either scalar or aggregate functions. UDFs let
you implement important business or scientific logic using high-performance code for Impala to automatically parallelize.
You can also use UDFs to implement convenience functions to simplify reporting or porting SQL from other database
systems. See User-Defined Functions (UDFs) on page 532.

[l ocal host:21000] > select rot13('Hello world!') as 'Wak obfuscation';
+

e,
| weak obfuscation |
B R +
| Uyyb jbeyq! |
o e e e e o oo +

[l ocal host: 21000] > sel ect I|ikelihood_of _new subatom c_particl e(sensorl, sensor2, sensor3)
as probability
> from experinental _results group by experiment;

Each function is associated with a specific database. For example, if you issue a USE sonedb statement followed by
CREATE FUNCTI ON sonef unc, the new function is created in the sonedb database, and you could refer to it through
the fully qualified name sonedb. sonef unc. You could then issue another USE statement and create a function with
the same name in a different database.

Impala built-in functions are associated with a special database named _i npal a_bui | ti ns, which lets you refer to
them from any database without qualifying the name.

[l ocal host:21000] > show dat abases;

| _inpala_builtins |
| analytic_functions |
| avro_testing |
| data_file_size |

[I ocal host : 21000] > show functions in _inpala_builtins |ike '*subs*';

Fom e e e o e m e e e e e e e e e e e e memeem +
| return type | signature |
Fom e e e o e m e e e e e e e e e e e e mem e +
STRI NG	substr(STRING BI G NT)
STRI NG	substr(STRING BIG NT, BIGd NT)
STRI NG	substring(STRING BI G NT)

substring(STRING BIG NT, BIG NT)

Related statements: CREATE FUNCTION Statement on page 235, DROP FUNCTION Statement on page 270

Overview of Impala Identifiers

Identifiers are the names of databases, tables, or columns that you specify in a SQL statement. The rules for identifiers
govern what names you can give to things you create, the notation for referring to names containing unusual characters,
and other aspects such as case sensitivity.

e The minimum length of an identifier is 1 character.
e The maximum length of an identifier is currently 128 characters, enforced by the metastore database.

¢ Anidentifier must start with an alphanumeric or underscore character. The remainder can contain any combination
of alphanumeric characters and underscores. Quoting the identifier with backticks has no effect on the allowed
characters in the name.

¢ An identifier can contain only ASCII characters.

¢ To use an identifier name that matches one of the Impala reserved keywords (listed in Impala Reserved Words
on page 743), surround the identifier with * * characters (backticks). Quote the reserved word even if it is part of
a fully qualified name. The following example shows how a reserved word can be used as a column name if it is

quoted with backticks in the CREATE TABLE statement, and how the column name must also be quoted with
backticks in a query:

[l ocal host:21000] > create table reserved ("data’ string);

[l ocal host:21000] > select data fromreserved;
ERROR: Anal ysi sException: Syntax error in line 1:

sel ect data fromreserved
N

Encount ered: DATA

Expected: ALL, CASE, CAST, DI STINCT, EXISTS, FALSE, |F, |NTERVAL, NOT, NULL,
STRAI GHT_JO N, TRUE, | DENTI FI ER

CAUSED BY: Exception: Syntax error

[l ocal host: 21000] > select reserved.data fromreserved;
ERROR Anal ysi sException: Syntax error in line 1:
sel ect reserved. data fromreserved

N

Encount ered: DATA
Expect ed: | DENTI FlI ER
CAUSED BY: Exception: Syntax error

[l ocal host:21000] > select reserved. data’ fromreserved;

[l ocal host:21000] >

Important: Because the list of reserved words grows over time as new SQL syntax is added,

o consider adopting coding conventions (especially for any automated scripts or in packaged
applications) to always quote all identifiers with backticks. Quoting all identifiers protects your
SQL from compatibility issues if new reserved words are added in later releases.

¢ Impala identifiers are always case-insensitive. That is, tables named t 1 and T1 always refer to the same table,
regardless of quote characters. Internally, Impala always folds all specified table and column names to lowercase.
This is why the column headers in query output are always displayed in lowercase.

See Overview of Impala Aliases on page 199 for how to define shorter or easier-to-remember aliases if the original
names are long or cryptic identifiers. Aliases follow the same rules as identifiers when it comes to case insensitivity.
Aliases can be longer than identifiers (up to the maximum length of a Java string) and can include additional characters
such as spaces and dashes when they are quoted using backtick characters.

Another way to define different names for the same tables or columns is to create views. See Overview of Impala Views
on page 206 for details.

Overview of Impala Tables

Tables are the primary containers for data in Impala. They have the familiar row and column layout similar to other
database systems, plus some features such as partitioning often associated with higher-end data warehouse systems.

Logically, each table has a structure based on the definition of its columns, partitions, and other properties.

Physically, each table that uses HDFS storage is associated with a directory in HDFS. The table data consists of all the
data files underneath that directory:

e |Internal tables are managed by Impala, and use directories inside the designated Impala work area.

e External tables use arbitrary HDFS directories, where the data files are typically shared between different Hadoop
components.

e large-scale data is usually handled by partitioned tables, where the data files are divided among different HDFS
subdirectories.

Impala tables can also represent data that is stored in HBase, or in the Amazon S3 filesystem (CDH 5.4 / Impala 2.2 or
higher). See Using Impala to Query HBase Tables on page 699 and Using Impala with the Amazon S3 Filesystem on page
707.

Impala queries ignore files with extensions commonly used for temporary work files by Hadoop tools. Any files with
extensions . t np or . copyi ng are not considered part of the Impala table. The suffix matching is case-insensitive, so
for example Impala ignores both . copyi ng and . COPYI NGsuffixes.

Related statements: CREATE TABLE Statement on page 241, DROP TABLE Statement on page 275, ALTER TABLE Statement
on page 212 INSERT Statement on page 284, LOAD DATA Statement on page 295, SELECT Statement on page 301

Internal Tables

The default kind of table produced by the CREATE TABLE statement is known as an internal table. (Its counterpart is
the external table, produced by the CREATE EXTERNAL TABLE syntax.)

* Impala creates a directory in HDFS to hold the data files.
e You can create data in internal tables by issuing | NSERT or LOAD DATA statements.

¢ If you add or replace data using HDFS operations, issue the REFRESHcommand ini npal a- shel | so that Impala
recognizes the changes in data files, block locations, and so on.

e When you issue a DROP TABLE statement, Impala physically removes all the data files from the directory.

¢ To see whether a table is internal or external, and its associated HDFS location, issue the statement DESCRI BE
FORMATTED t abl e_nane. The Tabl e Type field displays MANAGED_TABLE for internal tables and
EXTERNAL_TABLE for external tables. The Locat i on field displays the path of the table directory as an HDFS
URI.

e When you issue an ALTER TABLE statement to rename an internal table, all data files are moved into the new
HDFS directory for the table. The files are moved even if they were formerly in a directory outside the Impala data
directory, for example in an internal table with a LOCATI ON attribute pointing to an outside HDFS directory.

Examples:

You can switch a table from internal to external, or from external to internal, by using the ALTER TABLE statement:

-- Switch a table frominternal to external.
ALTER TABLE tabl e_nanme SET TBLPROPERTI ES(' EXTERNAL' =' TRUE') ;

-- Switch a table fromexternal to internal.
ALTER TABLE tabl e_name SET TBLPROPERTI ES(' EXTERNAL' =' FALSE') ;

Related information:

External Tables on page 204, CREATE TABLE Statement on page 241, DROP TABLE Statement on page 275, ALTER TABLE
Statement on page 212, DESCRIBE Statement on page 258

External Tables

The syntax CREATE EXTERNAL TABLE sets up an Impala table that points at existing data files, potentially in HDFS
locations outside the normal Impala data directories.. This operation saves the expense of importing the data into a
new table when you already have the data files in a known location in HDFS, in the desired file format.

e You can use Impala to query the data in this table.
¢ You can create data in external tables by issuing | NSERT or LOAD DATA statements.

¢ If you add or replace data using HDFS operations, issue the REFRESHcommand in i npal a- shel | so that Impala
recognizes the changes in data files, block locations, and so on.

e When you issue a DROP TABLE statement in Impala, that removes the connection that Impala has with the
associated data files, but does not physically remove the underlying data. You can continue to use the data files
with other Hadoop components and HDFS operations.

¢ To see whether a table is internal or external, and its associated HDFS location, issue the statement DESCRI BE
FORVATTED t abl e_nane. The Tabl e Type field displays MANAGED TABLE for internal tables and

EXTERNAL_TABLE for external tables. The Locat i on field displays the path of the table directory as an HDFS
URL.

e When you issue an ALTER TABLE statement to rename an external table, all data files are left in their original
locations.

¢ You can point multiple external tables at the same HDFS directory by using the same LOCATI ONattribute for each
one. The tables could have different column definitions, as long as the number and types of columns are compatible
with the schema evolution considerations for the underlying file type. For example, for text data files, one table
might define a certain column as a STRI NGwhile another defines the same column as a Bl G NT.

Examples:

You can switch a table from internal to external, or from external to internal, by using the ALTER TABLE statement:

-- Switch a table frominternal to external.
ALTER TABLE t abl e_name SET TBLPROPERTI ES(' EXTERNAL' =' TRUE') ;

-- Switch a table fromexternal to internal.
ALTER TABLE tabl e_nane SET TBLPROPERTI ES(' EXTERNAL' =' FALSE') ;

Related information:

Internal Tables on page 204, CREATE TABLE Statement on page 241, DROP TABLE Statement on page 275, ALTER TABLE
Statement on page 212, DESCRIBE Statement on page 258

File Formats

Each table has an associated file format, which determines how Impala interprets the associated data files. See How
Impala Works with Hadoop File Formats on page 649 for details.

You set the file format during the CREATE TABLE statement, or change it later using the ALTER TABLE statement.
Partitioned tables can have a different file format for individual partitions, allowing you to change the file format used
in your ETL process for new data without going back and reconverting all the existing data in the same table.

Any | NSERT statements produce new data files with the current file format of the table. For existing data files, changing
the file format of the table does not automatically do any data conversion. You must use TRUNCATE TABLE or | NSERT
OVERWRI TE to remove any previous data files that use the old file format. Then you use the LOAD DATA statement,

I NSERT ... SELECT, or other mechanism to put data files of the correct format into the table.

The default file format, text, is the most flexible and easy to produce when you are just getting started with Impala.
The Parquet file format offers the highest query performance and uses compression to reduce storage requirements;
therefore, where practical, use Parquet for Impala tables with substantial amounts of data. Also, the complex types
(ARRAY, STRUCT, and MAP) available in CDH 5.5 / Impala 2.3 and higher are currently only supported with the Parquet
file type. Based on your existing ETL workflow, you might use other file formats such as Avro, possibly doing a final
conversion step to Parquet to take advantage of its performance for analytic queries.

Kudu Tables

Tables stored in Apache Kudu are treated specially, because Kudu manages its data independently of HDFS files. Some
information about the table is stored in the metastore database for use by Impala. Other table metadata is managed
internally by Kudu.

When you create a Kudu table through Impala, it is assigned an internal Kudu table name of the form

i mpal a: : db_nane. t abl e_nane. You can see the Kudu-assigned name in the output of DESCRI BE FORMATTED, in
the kudu. t abl e_nane field of the table properties. The Kudu-assigned name remains the same even if you use ALTER
TABLE to rename the Impala table or move it to a different Impala database. You can issue the statement ALTER
TABLE i npal a_name SET TBLPROPERTI ES(' kudu. t abl e_nane' = 'different_kudu_tabl e_nane') for
the external tables created with the CREATE EXTERNAL TABLE statement. Changingthe kudu. t abl e_nane property
of an external table switches which underlying Kudu table the Impala table refers to. The underlying Kudu table must
already exist.

In practice, external tables are typically used to access underlying Kudu tables that were created outside of Impala,
that is, through the Kudu API.

The SHOW TABLE STATS output for a Kudu table shows Kudu-specific details about the layout of the table. Instead
of information about the number and sizes of files, the information is divided by the Kudu tablets. For each tablet, the
output includes the fields # Rows (although this number is not currently computed), St art Key, St op Key, Leader
Replica,and# Replicas. The output of SHOW COLUWN STATS, illustrating the distribution of values within each
column, is the same for Kudu tables as for HDFS-backed tables.

The distinction between internal and external tables has some special details for Kudu tables. Tables created entirely
through Impala are internal tables. The table name as represented within Kudu includes notation such asani npal a: :
prefix and the Impala database name. External Kudu tables are those created by a non-Impala mechanism, such as a
user application calling the Kudu APIs. For these tables, the CREATE EXTERNAL TABLE syntax lets you establish a
mapping from Impala to the existing Kudu table:

CREATE EXTERNAL TABLE i npal a_nane STORED AS KUDU
TBLPROPERTI ES(' kudu. t abl e_nane' = 'origi nal _kudu_nange');

External Kudu tables differ in one important way from other external tables: adding or dropping a column or range
partition changes the data in the underlying Kudu table, in contrast to an HDFS-backed external table where existing
data files are left untouched.

Overview of Impala Views

Views are lightweight logical constructs that act as aliases for queries. You can specify a view name in a query (a SELECT
statement or the SELECT portion of an | NSERT statement) where you would usually specify a table name.

A view lets you:

¢ Issue complicated queries with compact and simple syntax:

into a CREATE VIEW st atenent. ..
1 group by c¢3 order by c1 desc limt 10;
1 line of code.

-- Take a conplicated reporting query, plug it
create view vl as select c1, c2, avg(c3) fromt
-- ... and now you can produce the report with
select * fromvli;

¢ Reduce maintenance, by avoiding the duplication of complicated queries across multiple applications in multiple
languages:

create view v2 as select tl.cl1, tl.c2, t2.c3 fromtl joint2 on (tl.id =t2.id);

-- This sinple query is safer to enbed in reporting applications than the |onger query
above.

-- The view definition can remain stable even if the structure of the underlying tables
changes.

select cl1, c2, c3 fromvz;

e Build a new, more refined query on top of the original query by adding new clauses, select-list expressions, function
calls, and so on:

create view average_price_by_category as sel ect category, avg(price) as avg_price from
products group by category;

create view expensive_categories as select category, avg_price from
average_price_by_category order by avg_price desc linmit 10000;

create view top_10_expensi ve_categories as sel ect category, avg_price from
expensive_categories limt 10;

This technique lets you build up several more or less granular variations of the same query, and switch between
them when appropriate.

e Set up aliases with intuitive names for tables, columns, result sets from joins, and so on:

-- The original tables mght have cryptic names inherited froma |egacy system
create view action_itens as select rrptsk as assignee, treq as due_date, dm sc as notes

fromvxy_t1 br;
-- You can | eave original names for conpatibility, build new applications using nore
intuitive ones.
sel ect assignee, due_date, notes from action_itens;

e Swap tables with others that use different file formats, partitioning schemes, and so on without any downtime
for data copying or conversion:

create table slow (x int, s string) stored as textfile;

create view report as select s fromslow where x between 20 and 30;

-- Query is kind of slow due to inefficient table definition, but it works.
select * fromreport;

create table fast (s string) partitioned by (x int) stored as parquet;
-- ...Copy data from SLONto FAST. Queries agai nst REPORT view continue to work...

-- After changing the view definition, queries will be faster due to partitioning,
-- binary format, and conpression in the new table.

alter viewreport as select s fromfast where x between 20 and 30;

select * fromreport;

¢ Avoid coding lengthy subqueries and repeating the same subquery text in many other queries.

e Set up fine-grained security where a user can query some columns from a table but not other columns. Because
CDH 5.5 / Impala 2.3 and higher support column-level authorization, this technique is no longer required. If you
formerly implemented column-level security through views, see Hive SQL Syntax for Use with Sentry for details
about the column-level authorization feature.

The SQL statements that configure views are CREATE VIEW Statement on page 255, ALTER VIEW Statement on page
225, and DROP VIEW Statement on page 277. You can specify view names when querying data (SELECT Statement on
page 301) and copying data from one table to another (INSERT Statement on page 284). The WITH clause creates an
inline view, that only exists for the duration of a single query.

| ocal host:21000] > create viewtrivial as select * from custoner;

| ocal host: 21000] > create view sone_colums as select c_first_name, c_last_nane, c_|login
from cust omer;

[l ocal host:21000] > select * fromsone_colums limt 5;

Query finished, fetching results ...

[
[

e e o n B [T +
| c_first_name | c_last_name | c_login |
o e e o - S Fom e +
Javier	Lewi s	
Any	Moses	
Latisha	Ham lton	
M chael	Wiite [[
Robert	Moran	
o e e o - S Fom e +

[l ocal host:21000] > create view ordered_results as select * from sone_col ums order by
c_last_nane desc, c_first_name desc limt 1000;

[l ocal host:21000] > select * fromordered_results limt 5;

Query: select * fromordered_results linmt 5

Query finished, fetching results ...

e e o n B [T +
| c_first_nanme | c_last_nanme | c_login

o e e o - S Fom e +
| Thomnas | Zuni ga | |
| Sarah | Zuni ga [[
| Norma | Zuni ga | |
| LI oyd | Zuni ga [[
| Lisa | Zuni ga | |
o e e o - R Fom e +

Returned 5 row(s) in 0.48s

https://www.cloudera.com/documentation/enterprise/latest/topics/sg_hive_sql.html

The previous example uses descending order for ORDERED RESULTS because in the sample TPCD-H data, there are
some rows with empty strings for both C_FI RST_NAMEand C_LAST_NAME, making the lowest-ordered names unuseful
in a sample query.

create view visitors_by day as sel ect day,
web_traffic group by day;

create view top_10_days as sel ect day,
limt 10;

select * fromtop_10_days;

count (di stinct visitors) as howrany from

howmany from visitors_by_day order by howrany

Usage notes:

To see the definition of a view, issue a DESCRI BE FORMATTED statement, which shows the query from the original
CREATE VI EWstatement:

[l ocal host:21000] > create view vl as select * fromti;
[l ocal host:21000] > describe formatted vi;
Query finished, fetching results ...

o e e e e e e e e e emmaaoan o mm e e e e e e e e e e aeo—a S +
| name | type | conment
o m e e e e e e e e emmaaoan o e m e e e e e e e em e emaaooa S +
col _name data_type conment
NULL NULL
X i nt None
y i nt None
S string None
NULL NULL
Detail ed Table Information NULL NULL
Dat abase: Vi ews NULL
Onner : doc_denp NULL
CreateTi nme: Mon Jul 08 15:56:27 EDT 2013 NULL
Last AccessTi ne: UNKNOWN NULL
Protect Mde: None NULL
Ret enti on: 0 NULL
Tabl e Type: VI RTUAL_VI EW NULL
Tabl e Paraneters: NULL NULL
transi ent _| astDdl Ti ne 1373313387
NULL NULL
Storage Information NULL NULL
SerDe Library: nul | NULL
| nput For mat : nul | NULL
Qut put For mat : nul | NULL
Conpr essed: No NULL
Num Bucket s: 0 NULL
Bucket Col umms: [1 NULL
Sort Col ums: [1 NULL
NULL NULL
View I nformation NULL NULL
View Original Text: SELECT * FROM t1 NULL
Vi ew Expanded Text: SELECT * FROMt1 NULL

Prior to Impala 1.4.0, it was not possible to use the CREATE TABLE LI KE vi ew_nane syntax. In Impala 1.4.0 and
higher, you can create a table with the same column definitions as a view using the CREATE TABLE LI KE technique.
Although CREATE TABLE LI KE normally inherits the file format of the original table, a view has no underlying file
format, so CREATE TABLE LI KE vi ew_nane produces a text table by default. To specify a different file format,
include a STORED AS fil e_format clause at the end of the CREATE TABLE LI KE statement.

Complex type considerations:

For tables containing complex type columns (ARRAY, STRUCT, or MAP), you typically use join queries to refer to the
complex values. You can use views to hide the join notation, making such tables seem like traditional denormalized
tables, and making those tables queryable by business intelligence tools that do not have built-in support for those
complex types. See Accessing Complex Type Data in Flattened Form Using Views on page 166 for details.

The STRAI GHT_JO N hint affects the join order of table references in the query block containing the hint. It does not
affect the join order of nested queries, such as views, inline views, or WHERE-clause subqueries. To use this hint for
performance tuning of complex queries, apply the hint to all query blocks that need a fixed join order.

Restrictions:

¢ You cannot insert into an Impala view. (In some database systems, this operation is allowed and inserts rows into
the base table.) You can use a view name on the right-hand side of an | NSERT statement, in the SELECT part.

e If aview applies to a partitioned table, any partition pruning considers the clauses on both the original query and
any additional WHERE predicates in the query that refers to the view. Prior to Impala 1.4, only the WHERE clauses
on the original query from the CREATE VI EWstatement were used for partition pruning.

¢ An ORDER BY clause without an additional LI M T clause is ignored in any view definition. If you need to sort the
entire result set from a view, use an ORDER BY clause in the SELECT statement that queries the view. You can
still make a simple “top 10” report by combining the ORDER BY and LI M T clauses in the same view definition:

[l ocal host:21000] > create table unsorted (x bigint);
[l ocal host:21000] > insert into unsorted values (1), (9), (3), (7), (5), (8), (4), (6),
(2);
[l ocal host:21000] > create view sorted_view as select x fromunsorted order by x;
[l ocal host:21000] > select x fromsorted_view, -- ORDER BY cl ause in view has no effect.
+-- -+
| x|
+---+
1
9
3
7
5
8
4
6
2
+---+
[l ocal host:21000] > select x fromsorted_view order by x; -- View query requires ORDER
BY at outernost |evel.
+--- 4
| x|
+--- 4+
1
2
3
4
5
6
7
8
9
+--- 4+

[l ocal host:21000] > create view top_3_view as select x fromunsorted order by x limt
3;

[l ocal host:21000] > select x fromtop_3 view, -- ORDER BY and LIMT together in view
definition are preserved.

+-- -+

| x|

+---+

| 1]

| 2|

| 3|

+---+

e The TABLESAMPLE clause of the SELECT statement does not apply to a table reference derived from a view, a
subquery, or anything other than a real base table. This clause only works for tables backed by HDFS or HDFS-like
data files, therefore it does not apply to Kudu or HBase tables.

Related statements: CREATE VIEW Statement on page 255, ALTER VIEW Statement on page 225, DROP VIEW Statement
on page 277

Impala SQL Statements

The Impala SQL dialect supports a range of standard elements, plus some extensions for Big Data use cases related to
data loading and data warehousing.

E,i Note:

In the i mpal a- shel | interpreter, a semicolon at the end of each statement is required. Since the
semicolon is not actually part of the SQL syntax, we do not include it in the syntax definition of each
statement, but we do show it in examples intended to be runini npal a- shel | .

DDL Statements

DDL refers to “Data Definition Language”, a subset of SQL statements that change the structure of the database schema
in some way, typically by creating, deleting, or modifying schema objects such as databases, tables, and views. Most
Impala DDL statements start with the keywords CREATE, DROP, or ALTER.

The Impala DDL statements are:

e ALTER TABLE Statement on page 212

e ALTER VIEW Statement on page 225

e COMPUTE STATS Statement on page 227

e CREATE DATABASE Statement on page 233

e CREATE FUNCTION Statement on page 235

e CREATE ROLE Statement (CDH 5.2 or higher only) on page 241
e CREATE TABLE Statement on page 241

e CREATE VIEW Statement on page 255

e DROP DATABASE Statement on page 269

e DROP FUNCTION Statement on page 270

e DROP ROLE Statement (CDH 5.2 or higher only) on page 272
e DROP TABLE Statement on page 275

e DROP VIEW Statement on page 277

e GRANT Statement (CDH 5.2 or higher only) on page 280

e REVOKE Statement (CDH 5.2 or higher only) on page 300

After Impala executes a DDL command, information about available tables, columns, views, partitions, and so on is
automatically synchronized between all the Impala nodes in a cluster. (Prior to Impala 1.2, you had to issue a REFRESH
or | NVALI DATE METADATA statement manually on the other nodes to make them aware of the changes.)

If the timing of metadata updates is significant, for example if you use round-robin scheduling where each query could
be issued through a different Impala node, you can enable the SYNC _DDL query option to make the DDL statement
wait until all nodes have been notified about the metadata changes.

See Using Impala with the Amazon S3 Filesystem on page 707 for details about how Impala DDL statements interact
with tables and partitions stored in the Amazon S3 filesystem.

Although the | NSERT statement is officially classified as a DML (data manipulation language) statement, it also involves
metadata changes that must be broadcast to all Impala nodes, and so is also affected by the SYNC _DDL query option.

Because the SYNC _DDL query option makes each DDL operation take longer than normal, you might only enable it
before the last DDL operation in a sequence. For example, if you are running a script that issues multiple of DDL
operations to set up an entire new schema, add several new partitions, and so on, you might minimize the performance
overhead by enabling the query option only before the last CREATE, DROP, ALTER, or | NSERT statement. The script
only finishes when all the relevant metadata changes are recognized by all the Impala nodes, so you could connect to
any node and issue queries through it.

The classification of DDL, DML, and other statements is not necessarily the same between Impala and Hive. Impala
organizes these statements in a way intended to be familiar to people familiar with relational databases or data
warehouse products. Statements that modify the metastore database, such as COVPUTE STATS, are classified as DDL.
Statements that only query the metastore database, such as SHOWor DESCRI BE, are put into a separate category of
utility statements.

E,i Note: The query types shown in the Impala debug web user interface might not match exactly the
categories listed here. For example, currently the USE statement is shown as DDL in the debug web
Ul. The query types shown in the debug web Ul are subject to change, for improved consistency.

Related information:

The other major classifications of SQL statements are data manipulation language (see DML Statements on page 211)
and queries (see SELECT Statement on page 301).

DML Statements

DML refers to “Data Manipulation Language”, a subset of SQL statements that modify the data stored in tables. Because
Impala focuses on query performance and leverages the append-only nature of HDFS storage, currently Impala only
supports a small set of DML statements:

e DELETE Statement (CDH 5.10 or higher only) on page 256. Works for Kudu tables only.
e |NSERT Statement on page 284.

e LOAD DATA Statement on page 295. Does not apply for HBase or Kudu tables.

e UPDATE Statement (CDH 5.10 or higher only) on page 389. Works for Kudu tables only.
e UPSERT Statement (CDH 5.10 or higher only) on page 390. Works for Kudu tables only.

I NSERT in Impala is primarily optimized for inserting large volumes of data in a single statement, to make effective
use of the multi-megabyte HDFS blocks. This is the way in Impala to create new data files. If you intend to insert one
or a few rows at a time, such as using the | NSERT ... VALUES syntax, that technique is much more efficient for
Impala tables stored in HBase. See Using Impala to Query HBase Tables on page 699 for details.

LOAD DATA moves existing data files into the directory for an Impala table, making them immediately available for
Impala queries. This is one way in Impala to work with data files produced by other Hadoop components. (CREATE
EXTERNAL TABLE s the other alternative; with external tables, you can query existing data files, while the files remain
in their original location.)

In CDH 5.10 / Impala 2.8 and higher, Impala does support the UPDATE, DELETE, and UPSERT statements for Kudu
tables. For HDFS or S3 tables, to simulate the effects of an UPDATE or DELETE statement in other database systems,
typically you use | NSERT or CREATE TABLE AS SELECT to copy data from one table to another, filtering out or
changing the appropriate rows during the copy operation.

You can also achieve a result similar to UPDATE by using Impala tables stored in HBase. When you insert a row into an
HBase table, and the table already contains a row with the same value for the key column, the older row is hidden,
effectively the same as a single-row UPDATE.

Impala can perform DML operations for tables or partitions stored in the Amazon S3 filesystem with CDH 5.8 / Impala
2.6 and higher. See Using Impala with the Amazon S3 Filesystem on page 707 for details.

Related information:

The other major classifications of SQL statements are data definition language (see DDL Statements on page 210) and
queries (see SELECT Statement on page 301).

ALTER DATABASE Statement
The ALTER DATABASE statement changes the characteristics of a database.

Use the SET OWNER clause to transfer the ownership of the database from the current owner to another user or a
role.

The database owner is originally set to the user who creates the database. When object ownership is enabled in Sentry,
an owner of a database can have the ALL with GRANT or ALL without GRANT privilege. The term OMER is used to
differentiate between the ALL privilege that is explicitly granted via the GRANT statement and a privilege that is implicitly
granted by the CREATE DATABASE statement.

Syntax:

ALTER DATABASE dat abase_nanme SET OMER USER user _nane;
ALTER DATABASE dat abase _nanme SET OMER ROLE rol e_nane;

Statement type: DDL
Cancellation: Cannot be cancelled.

Added in: CDH 6.1 / Impala 3.1

ALTER TABLE Statement
The ALTER TABLE statement changes the structure or properties of an existing Impala table.

In Impala, this is primarily a logical operation that updates the table metadata in the metastore database that Impala
shares with Hive. Most ALTER TABLE operations do not actually rewrite, move, and so on the actual data files. (The
RENAME TOclause is the one exception; it can cause HDFS files to be moved to different paths.) When you do an ALTER
TABLE operation, you typically need to perform corresponding physical filesystem operations, such as rewriting the
data files to include extra fields, or converting them to a different file format.

Syntax:

ALTER TABLE [ol d_db_nane.] ol d_t abl e_nane RENAME TO [new_db_nane.] new_t abl e_nane

ALTER TABLE nane ADD [I F NOT EXI STS] COLUWNS (col _spec[, col_spec ...])
ALTER TABLE nane REPLACE COLUWNS (col _spec[, col _spec ...])

ALTER TABLE name ADD COLUWN [I F NOT EXI STS] col _spec
ALTER TABLE nane DROP [COLUMN] col utm_nane
ALTER TABLE nanme CHANGCE col utm_nane col _spec

ALTER TABLE nanme SET OMNER USER user nane
ALTER TABLE nane SET OWNER ROLE rol e_nane

-- Kudu tables only.
ALTER TABLE nane ALTER [COLUWMN] col um_nane
{ SET kudu_storage_attr attr_val ue
| DROP DEFAULT }

kudu_storage_attr ::= { DEFAULT | BLOCK SIZE | ENCODI NG | COVPRESSI ON }

-- Non-Kudu tables only.
ALTER TABLE nane ALTER [COLUMN] col umm_nanmne
SET COWMENT ' comrent _text'

ALTER TABLE name ADD [IF NOT EXI STS] PARTITION (partition_spec)
[l ocation_spec]
[cache_spec]
ALTER TABLE nane ADD [I F NOT EXI STS] RANGE PARTI Tl ON kudu_partition_spec

ALTER TABLE nane DROP [I F EXI STS] PARTI TION (partition_spec)
[PURCE]
ALTER TABLE nane DROP [| F EXI STS] RANGE PARTI TI ON kudu_partition_spec

ALTER TABLE nanme RECOVER PARTI TI ONS

ALTER TABLE nane [PARTITION (partition_spec)]
SET { FILEFORMAT file_format
ROW FORMAT row_f or mat
| LOCATION ' hdfs_path_of _directory’
| TBLPROPERTI ES (tabl e_properties)

| SERDEPROPERTI ES (serde_properties) }

ALTER TABLE nane col nane
('statsKey'='val, ...)

statsKey ::= numDVs | numNulls | avgSize | maxSize

ALTER TABLE nane [PARTITION (partition_spec)] SET { CACHED IN ' pool _nane' [WTH
REPLI CATI ON = i nteger] | UNCACHED }

new_nane ::= [new_dat abase.]new_t abl e_nane

col _spec ::= col _nane type_nane COWENT 'col um-conmrent' [kudu_attri butes]

kudu_attributes ::= { [NOT] NULL | ENCODI NG codec | COVWPRESSI ON al gorithm |

DEFAULT constant | BLOCK_SI ZE nunber }

partition_spec ::= sinple_partition_spec | conplex_partition_spec

sinple_partition_spec ::= partition_col =constant_val ue

conpl ex_partition_spec ::= conparison_expression_on_partition_col

kudu_partition_spec ::= constant range_operator VALUES range_operator constant | VALUE
= const ant

cache_spec ::= CACHED IN ' pool _nane' [WTH REPLI CATION = integer] | UNCACHED

| ocation_spec ::= LOCATION ' hdfs_pat h_of _directory’

tabl e_properties ::= 'nanme'='value'[, 'name' ='value' ...]

serde_properties ::= "name' ='value'[, 'nane' ='value' ...]

file format ::= { PARQUET | TEXTFILE | RCFILE | SEQUENCEFILE | AVRO }

row format ::= DELIM TED

[FI ELDS TERM NATED BY ' char' [ESCAPED BY 'char']]
[LI NES TERM NATED BY ' char']

Statement type: DDL
Complex type considerations:

In CDH 5.5 / Impala 2.3 and higher, the ALTER TABLE statement can change the metadata for tables containing
complex types (ARRAY, STRUCT, and MAP). For example, you can use an ADD COLUWMNS, DROP COLUMN, or CHANGE
clause to modify the table layout for complex type columns. Although Impala queries only work for complex type
columns in Parquet tables, the complex type support in the ALTER TABLE statement applies to all file formats. For
example, you can use Impala to update metadata for a staging table in a non-Parquet file format where the data is
populated by Hive. Or you can use ALTER TABLE SET FI LEFORMAT to change the format of an existing table to
Parquet so that Impala can query it. Remember that changing the file format for a table does not convert the data files
within the table; you must prepare any Parquet data files containing complex types outside Impala, and bring them
into the table using LOAD DATA or updating the table's LOCATI ON property. See Complex Types (CDH 5.5 or higher
only) on page 146 for details about using complex types.

Usage notes:

Whenever you specify partitionsin an ALTER TABLE statement, through the PARTI TI ON (partiti on_spec) clause,
you must include all the partitioning columns in the specification.

Most of the ALTER TABLE operations work the same for internal tables (managed by Impala) as for external tables
(with data files located in arbitrary locations). The exception is renaming a table; for an external table, the underlying
data directory is not renamed or moved.

To drop or alter multiple partitions:

In CDH 5.10 / Impala 2.8 and higher, the expression for the partition clause with a DROP or SET operation can include
comparison operators such as <, I N, or BETVEEN, and Boolean operators such as ANDand OR.

For example, you might drop a group of partitions corresponding to a particular date range after the data “ages out”:

alter table historical _data drop partition (year < 1995);
alter table historical _data drop partition (year = 1996 and nonth between 1 and 6);

For tables with multiple partition keys columns, you can specify multiple conditions separated by commas, and the
operation only applies to the partitions that match all the conditions (similar to using an AND clause):

alter table historical _data drop partition (year < 1995, last_nane like 'A%);

This technique can also be used to change the file format of groups of partitions, as part of an ETL pipeline that
periodically consolidates and rewrites the underlying data files in a different file format:

alter table fast_growi ng_data partition (year = 2016, nonth in (10,11, 12)) set fileformat
par quet ;

E,i Note:

The extended syntax involving comparison operators and multiple partitions applies to the SET

FI LEFORVAT, SET TBLPROPERTI ES, SET SERDEPROPERTI ES, and SET [UN] CACHED clauses. You
can also use this syntax with the PARTI TI ONclause in the COVPUTE | NCREMENTAL STATSstatement,
and with the PARTI TI ON clause of the SHOW FI LES statement. Some forms of ALTER TABLE still
only apply to one partition at a time: the SET LOCATI ONand ADD PARTI Tl ONclauses. The PARTI TI ON
clauses in the LOAD DATA and | NSERT statements also only apply to one partition at a time.

A DDL statement that applies to multiple partitions is considered successful (resulting in no changes)
even if no partitions match the conditions. The results are the same as if the | F EXI STS clause was
specified.

The performance and scalability of this technique is similar to issuing a sequence of single-partition
ALTER TABLE statements in quick succession. To minimize bottlenecks due to communication with
the metastore database, or causing other DDL operations on the same table to wait, test the effects
of performing ALTER TABLE statements that affect large numbers of partitions.

Amazon S3 considerations:

You can specify an s3a: / / prefix on the LOCATI ON attribute of a table or partition to make Impala query data from
the Amazon S3 filesystem. In CDH 5.8 / Impala 2.6 and higher, Impala automatically handles creating or removing the
associated folders when you issue ALTER TABLE statements with the ADD PARTI TI ONor DROP PARTI TI ONclauses.

In CDH 5.8 / Impala 2.6 and higher, Impala DDL statements such as CREATE DATABASE, CREATE TABLE, DROP
DATABASE CASCADE, DROP TABLE, and ALTER TABLE [ADD| DROP] PARTI Tl ON can create or remove folders as
needed in the Amazon S3 system. Prior to CDH 5.8 / Impala 2.6, you had to create folders yourself and point Impala
database, tables, or partitions at them, and manually remove folders when no longer needed. See Using Impala with
the Amazon S3 Filesystem on page 707 for details about reading and writing S3 data with Impala.

HDFS caching (CACHED IN clause):

If you specify the CACHED | Nclause, any existing or future data files in the table directory or the partition subdirectories
are designated to be loaded into memory with the HDFS caching mechanism. See Using HDFS Caching with Impala
(CDH 5.3 or higher only) on page 610 for details about using the HDFS caching feature.

In CDH 5.4 / Impala 2.2 and higher, the optional W TH REPLI CATI ONclause for CREATE TABLE and ALTER TABLE
lets you specify a replication factor, the number of hosts on which to cache the same data blocks. When Impala
processes a cached data block, where the cache replication factor is greater than 1, Impala randomly selects a host

that has a cached copy of that data block. This optimization avoids excessive CPU usage on a single host when the
same cached data block is processed multiple times. Cloudera recommends specifying a value greater than or equal
to the HDFS block replication factor.

If you connect to different Impala nodes within ani npal a- shel | session for load-balancing purposes, you can enable
the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata
has been received by all the Impala nodes. See SYNC_DDL Query Option on page 367 for details.

The following sections show examples of the use cases for various ALTER TABLE clauses.
To rename a table (RENAME TO clause):
The RENAME TOclause lets you change the name of an existing table, and optionally which database it is located in.

For internal tables, this operation physically renames the directory within HDFS that contains the data files; the original
directory name no longer exists. By qualifying the table names with database names, you can use this technique to
move an internal table (and its associated data directory) from one database to another. For example:

creat e dat abase di;

create database d2;

creat e dat abase d3;

use di;

create table mobile (x int);

use d2;

-- Move table from anot her database to the current one.
alter table dl1.nobile renane to nobil e;

use di;

-- Move table fromone dat abase to anot her.
alter table d2.nobile renane to d3. npbil e;

To change the owner of a table:

ALTER TABLE nane SET OMNER USER user _nane;
ALTER TABLE nanme SET OANER RCLE rol e_narne;

The table owner is originally set to the user who creates the table. When object ownership is enabled in Sentry, an
owner of a table can have the ALL with GRANT or ALL without GRANT privilege. The term OMNER s used to differentiate
between the ALL privilege that is explicitly granted via the GRANT statement and a privilege that is implicitly granted
by the CREATE TABLE statement.

Use the ALTER TABLE SET OWNERto transfer the ownership from the current owner to another user or a role.

To change the physical location where Impala looks for data files associated with a table or partition:
ALTER TABLE t abl e_nanme [PARTI TION (partition_spec)] SET LOCATI ON' hdfs_path_of _directory';

The path you specify is the full HDFS path where the data files reside, or will be created. Impala does not create any
additional subdirectory named after the table. Impala does not move any data files to this new location or change any
data files that might already exist in that directory.

To set the location for a single partition, include the PARTI TI ON clause. Specify all the same partitioning columns for
the table, with a constant value for each, to precisely identify the single partition affected by the statement:

create table pl (s string) partitioned by (nmonth int, day int);

-- Each ADD PARTI TI ON cl ause creates a subdirectory in HDFS.

alter table pl add partition (nmonth=1, day=1);

alter table pl add partition (nonth=1, day=2);

alter table pl add partition (nmonth=2, day=1);

alter table pl add partition (nonth=2, day=2);

-- Redirect queries, INSERT, and LOAD DATA for one partition

-- to a specific different directory.

alter table pl partition (nmonth=1, day=1) set location '/usr/external data/ new years_day';

E,i Note: If you are creating a partition for the first time and specifying its location, for maximum efficiency,
use a single ALTER TABLE statement including both the ADD PARTI TI ONand LOCATI ONclauses,
rather than separate statements with ADD PARTI TI ONand SET LOCATI ONclauses.

To automatically detect new partition directories added through Hive or HDFS operations:

In CDH 5.5 / Impala 2.3 and higher, the RECOVER PARTI TI ONS clause scans a partitioned table to detect if any new
partition directories were added outside of Impala, such as by Hive ALTER TABLE statements or by hdf s df s or
hadoop fs commands. The RECOVER PARTI Tl ONS clause automatically recognizes any data files present in these
new directories, the same as the REFRESH statement does.

For example, here is a sequence of examples showing how you might create a partitioned table in Impala, create new
partitions through Hive, copy data files into the new partitions with the hdf s command, and have Impala recognize
the new partitions and new data:

In Impala, create the table, and a single partition for demonstration purposes:

create database recover_partitions;

use recover_partitions;

create table t1 (s string) partitioned by (yy int, mmint);

insert into tl partition (yy = 2016, mm= 1) values ('Partition exists');
show files in t1;

o E S oo +

| Path | Size | Partition
I

e m m m e mmmmmmemao- [S +

| /user/hivel/warehouse/recover_partitions.db/t1/yy=2016/ m¥1l/data.txt | 17B |

yy=2016/ m¥1 |
o E S oo +

In Hive, create some new partitions. In a real use case, you might create the partitions and populate them with data
as the final stages of an ETL pipeline.

hi ve> use recover_partitions;

K
hive> alter table t1 add partition (yy = 2016, mm = 2);
K
hive> alter table t1 add partition (yy = 2016, mm = 3);
K

hi ve> quit;

For demonstration purposes, manually copy data (a single row) into these new partitions, using manual HDFS operations:

$ hdfs dfs -Is /user/hivel/warehouse/recover_partitions.db/t1l/yy=2016/
Found 3 itens

drwxr-xr-x - impala hive 0 2016-05-09 16: 06

[user/ hi ve/ war ehouse/ recover_partitions.db/t1l/yy=2016/ nm=1
drwxr-xr-x - jrussell hive 0 2016-05-09 16:14

[user/ hi ve/ war ehouse/ recover_partitions.db/t1l/yy=2016/ nm=2
drwxr-xr-x - jrussell hive 0 2016-05-09 16:13

[user/ hi ve/ war ehouse/ recover_partitions.db/t1l/yy=2016/ nm=3

$ hdfs dfs -cp /user/hivel/warehouse/recover_partitions.db/t1/yy=2016/ m¥1l/data.txt \
/ user/ hi ve/ war ehouse/ recover _partitions.db/t1l/yy=2016/ nm=2/ dat a. t xt
$ hdfs dfs -cp /user/hivel/warehouse/recover_partitions.db/t1/yy=2016/ m¥1l/data.txt \

/user/ hi ve/ war ehouse/ recover_partitions.db/t1l/yy=2016/ nm=3/ dat a. t xt

hive> select * fromt1;
K

Partition exists 2016 1
Partition exists 2016 2
Partition exists 2016 3
hi ve> quit;

In Impala, initially the partitions and data are not visible. Running ALTER TABLE with the RECOVER PARTI Tl ONS
clause scans the table data directory to find any new partition directories, and the data files inside them:

select * fromt1;

oo ommo-- oot
| s l'yy | mm|
oo oo - oot
| Partition exists | 2016 | 1 |
oo S oot

alter table t1 recover partitions;
select * fromtl;

Partition exists	2016	1
Partition exists	2016	3
Partition exists	2016	2
oo oo - +----t

To change the key-value pairs of the TBLPROPERTIES and SERDEPROPERTIES fields:

ALTER TABLE tabl e_name SET TBLPROPERTI ES (' keyl' ='valuel', 'key2' ='value2'[, ...]);
ALTER TABLE tabl e_name SET SERDEPROPERTIES (' keyl' ='val uel', 'key2' ='value2'[, ...]);

The TBLPROPERTI ES clause is primarily a way to associate arbitrary user-specified data items with a particular table.

The SERDEPROPERTI ES clause sets up metadata defining how tables are read or written, needed in some cases by
Hive but not used extensively by Impala. You would use this clause primarily to change the delimiter in an existing text
table or partition, by settingthe' seri al i zati on. format' and' fi el d. del i mi property values to the new delimiter
character. The SERDEPROPERTI ES clause does not change the existing data in the table. The change only affects the
future inserts into the table.

Use the DESCRI BE FORMATTED statement to see the current values of these properties for an existing table.

See CREATE TABLE Statement on page 241 for more details about these clauses.

To manually set or update table or column statistics:

Although for most tables the COVPUTE STATS or COMPUTE | NCREMENTAL STATS statement is all you need to keep
table and column statistics up to date for a table, sometimes for a very large table or one that is updated frequently,
the length of time to recompute all the statistics might make it impractical to run those statements as often as needed.
As a workaround, you can use the ALTER TABLE statement to set table statistics at the level of the entire table or a
single partition, or column statistics at the level of the entire table.

You can set the nunr ows value for table statistics by changing the TBLPROPERTI ES setting for a table or partition.
For example:

create table analysis_data stored as parquet as select * fromraw data;
I nserted 1000000000 rows in 181.98s

conput e stats anal ysi s_dat a;

insert into analysis_data select * fromsmaller_table_we_forgot_before;
Inserted 1000000 rows in 15.32s

-- Now there are 1001000000 rows. W can update this sin
alter table anal ysis_data set tblproperties(' nunRows' ='1
' STATS_GENERATED VI A_STATS TASK ="true');

gle data point in the stats.
001000000 ,

-- If the table originally contained 1 mllion rows, and we add another partition with
30 thousand rows,

-- change the nunRows property for the partition and the overall table.

alter table partitioned_data partition(year=2009, nonth=4) set tbl properties

(" nunRows' =" 30000', ' STATS_GENERATED VI A STATS TASK' ='true');

alter table partitioned_data set tblproperties ('nunmRows'='1030000',

' STATS_GENERATED VI A_STATS _TASK ='true');

See Setting Table Statistics on page 601 for details.

In CDH 5.8 / Impala 2.6 and higher, you can use the SET COLUWN STATS clause to set a specific stats value for a
particular column.

You specify a case-insensitive symbolic name for the kind of statistics: nunDVs, numNul | s, avgSi ze, maxSi ze. The
key names and values are both quoted. This operation applies to an entire table, not a specific partition. For example:

create table t1 (x int, s string);
insert into tl values (1, 'one'), (2, 'two'), (2, 'deux');
show colum stats t1;

S RS Foemmaaaa S Foemmaaaa R S [R, +
| Colum | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
S RS L S Foemmaaaa R S [R +
| x | INT | -1 | -1 | 4 | 4 I
| s | STRING| -1 | -1 | -1 | -1 |
ommmmmn - o oo o e oo oo +

alter table t1 set colum stats x (' nunDVs'
alter table t1 set colum stats s (' nundvs'
show colum stats t1;

2", numNul Is'='0");
"3, maxsize' ='4");

- R —_ Fom e R —_ Fommmmea - +
| Colum | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
- S R —_ oo R Fommmmma - +
| x I NT | 2 | O | 4 | 4 |
| s | STRNG| 3 | -1 | 4 | -1 |
Fomm e m e o m e e e e e e e e aa - o m e e e Fom e e o o e e e +

To reorganize columns for a table:

You can add multiple columns at a time using the ALTER TABLE statement. If you specify the | F NOT EXI STSclause,
Impala silently ignores the ADD request and does not return an error if a column with the same name exists in the
table.

When you replace columns, all the original column definitions are discarded.

You might use these statements if you receive a new set of data files with different data types or columns in a different
order. The data files are retained, so if the new columns are incompatible with the old ones, use | NSERT OVERWRI TE
or LOAD DATA OVERWRI TE to replace all the data before issuing any further queries.

For example, here is how you might add columns to an existing table. The first ALTER TABLE adds two new columns,
and the second ALTER TABLE adds one new column. A single Impala query reads both the old and new data files,
containing different numbers of columns. For any columns not present in a particular data file, all the column values
are considered to be NULL.

create table t1 (x int);
insert into tl values (1), (2);

alter table t1 add columms (s string, t tinmestanp);
insert intotl values (3, '"three', now));

alter table t1 add columms (b bool ean);
insert into tl values (4, 'four', now(), true);

select * fromtl order by x;

o e o e e e e e meeeeaoaao- Fommm o +
| x| s |t | b I
o e o e e e e e eeeeaoaaos Fommm o +
[1] NULL | NULL | NULL |
2] NULL	NULL	NULL	
3	three	2016-05-11 11:19:45. 054457000	NULL
4	four	2016-05-11 11:20:20.260733000	true
oo oo e e e e e S +

You might use the CHANGE clause to rename a single column, or to treat an existing column as a different type than
before, such as to switch between treating a column as STRI NGand Tl MESTAMP, or between | NT and Bl G NT. You
can only drop a single column at a time; to drop multiple columns, issue multiple ALTER TABLE statements, or define
the new set of columns with a single ALTER TABLE ... REPLACE COLUM\S statement.

The following examples show some safe operations to drop or change columns. Dropping the final column in a table
lets Impala ignore the data causing any disruption to existing data files. Changing the type of a column works if existing
data values can be safely converted to the new type. The type conversion rules depend on the file format of the
underlying table. For example, in a text table, the same value can be interpreted as a STRI NGor a numeric value, while
in a binary format such as Parquet, the rules are stricter and type conversions only work between certain sizes of
integers.

create table optional _colums (x int, y int, z int, al int, a2 int);
insert into optional_colums values (1,2,3,0,0), (2,3,4,100,100);

-- When the last colum in the table is dropped, Inpala ignores the
-- values that are no | onger needed. (Dropping Al but |eaving A2

-- woul d cause problens, as we will see in a subsequent exanple.)
alter table optional _colums drop colum a2;

alter table optional _colums drop colum al;

select * from optional _col ums;
B e

[x|yl z]
e
| 1] 2] 3]
[2] 3] 4]

R S

create table int_to_string (s string, x int);
insert intoint_to_string values (‘one', 1), ('tw', 2);

-- What was an INT colum will now be interpreted as STRI NG

-- This technique works for text tables but not other file formats.

-- The second X represents the new name of the columm, which we keep the sane.
alter table int_to_string change x x string;

-- Once the type is changed, we can insert non-integer values into the X colum
-- and treat that colum as a string, for exanple by uppercasing or concatenating.

insert into int_to_string values ('three', '"trois');
select s, upper(x) fromint_to_string;
ommmm- oo +
| s | upper(x) |
ommmm- oo +
| one | 1
t wo | 2
| three | TROS [
ommmm- oo +

Remember that Impala does not actually do any conversion for the underlying data files as a result of ALTER TABLE
statements. If you use ALTER TABLE to create a table layout that does not agree with the contents of the underlying
files, you must replace the files yourself, such as using LOAD DATAto load a new set of data files, or | NSERT OVERWRI TE
to copy from another table and replace the original data.

The following example shows what happens if you delete the middle column from a Parquet table containing three
columns. The underlying data files still contain three columns of data. Because the columns are interpreted based on
their positions in the data file instead of the specific column names, a SELECT * query now reads the first and second
columns from the data file, potentially leading to unexpected results or conversion errors. For this reason, if you expect
to someday drop a column, declare it as the last column in the table, where its data can be ignored by queries after
the column is dropped. Or, re-run your ETL process and create new data files if you drop or change the type of a column
in a way that causes problems with existing data files.

-- Parquet table showi ng how dropping a colum can produce unexpected results.
create table pl (sl string, s2 string, s3 string) stored as parquet;

insert into pl values ('one', 'un', 'uno'), ('twd', 'deux', 'dos'),
("three', "trois', 'tres');

select * from pil;

E E R R, +

| s1 | s2 | s3 |

B B Fomm o - +

| one | un | uno |
t wo | deux | dos |

| three | trois | tres |

B B Fomm o - +

alter table pl drop colum s2;

-- The S3 col um contai ns unexpected results.

-- Because S2 and S3 have conpatible types, the query reads

-- values fromthe dropped S2, because the existing data files

-- still contain those values as the second col um.
select * from pil;
E E +
| s1 | s3 |
B B +
| one | un |
two | deux |
| three | trois |
B B +

-- Parquet table showi ng how dropping a colum can produce conversion errors.
create table p2 (sl string, x int, s3 string) stored as parquet;

insert into p2 values (‘one', 1, 'uno'), ('two', 2, 'dos'), ('three', 3, '"tres');
select * from p2;

E B S S +
| s1 | x| s3 [
Fomm o B S +
| one | 2] uno |

two | 2] dos |
| three | 3| tres |
Fomm o B S +

alter table p2 drop col um x;

select * from p2;

WARNI NGS:

File 'hdfs_fil enanme' has an i nconpatibl e Parquet schema for colum 'add_col ums. p2.s3'.
Col umm type: STRING Parquet schema:

optional int32 x [i:1 d:1 r:0]

File 'hdfs_fil ename' has an i nconpatibl e Parquet schema for colum 'add_col ums. p2.s3".
Col umm type: STRING Parquet schenm:
optional int32 x [i:1 d:1 r:0]

In CDH 5.8 / Impala 2.6 and higher, if an Avro table is created without column definitions in the CREATE TABLE
statement, and columns are later added through ALTER TABLE, the resulting table is now queryable. Missing values
from the newly added columns now default to NULL.

To change the file format that Impala expects data to be in, for a table or partition:

Use an ALTER TABLE ... SET FI LEFORMAT clause. You can include an optional PARTI TI ON (col 1=val 1,
col 2=val 2, ... clause so that the file format is changed for a specific partition rather than the entire table.

Because this operation only changes the table metadata, you must do any conversion of existing data using regular
Hadoop techniques outside of Impala. Any new data created by the Impala | NSERT statement will be in the new
format. You cannot specify the delimiter for Text files; the data files must be comma-delimited.

To set the file format for a single partition, include the PARTI Tl ON clause. Specify all the same partitioning columns
for the table, with a constant value for each, to precisely identify the single partition affected by the statement:

create table pl (s string) partitioned by (month int, day int);
-- Each ADD PARTI TI ON cl ause creates a subdirectory in HDFS.
alter table pl add partition (nonth=1, day=1);

alter table pl add partition (nonth=1, day=2);

alter table pl add partition (nonth=2, day=1);

alter table pl add partition (nmonth=2, day=2);

-- Queries and INSERT statenents will read and wite files

-- inthis format for this specific partition.

alter table pl partition (nonth=2, day=2) set fileformat parquet;

To change the row format with different delimiter characters:

Use the SET ROW FORMAT DELI M TEDclause to ingest data files that use a different delimiter character or a different
line end character. When specifying delimiter and line end characters with the FI ELDS TERM NATED BY, ESCAPED
BY, and LI NES TERM NATED BY clauses, you can use the following:

e Aregular ASCIl character surrounded by single or double quotation marks.
¢ An octal sequence, such as' \ 054' representinga commaor'\ 0" for ASCIl null (hex 00).
e Special characters, such as:

— "\t fortab
— '\n' for newline or linefeed
— "\r' for carriage return

e Aninteger in the range '-127'..'128' (with quotation marks but no backslash)

Negative values are subtracted from 256. For example, FI ELDS TERM NATED BY ' - 2' sets the field delimiter
to ASCII code 254.

For more examples of text tables, see Using Text Data Files with Impala Tables on page 650.

For the ESCAPED BY clause, choose an escape character that is not used anywhere else in the file. The character
following the escape character is taken literally as part of a field value.

Surrounding field values with quotation marks does not help Impala to parse fields with embedded delimiter characters
as the quotation marks are considered to be part of the column value.

If you want to use \ as the escape character, specify the clause ini npal a- shel | as ESCAPED BY '\\"'.

To add or drop partitions for a table, the table must already be partitioned (that is, created with a PARTI TI ONED BY
clause). The partition is a physical directory in HDFS, with a name that encodes a particular column value (the partition
key). The Impala | NSERT statement already creates the partition if necessary, so the ALTER TABLE ... ADD

PARTI TI ONis primarily useful for importing data by moving or copying existing data files into the HDFS directory
corresponding to a partition. (You can use the LOAD DATA statement to move files into the partition directory, or
ALTER TABLE ... PARTITION (...) SET LOCATI ONto point a partition at a directory that already contains data
files.

The DROP PARTI TI ONclause is used to remove the HDFS directory and associated data files for a particular set of
partition key values; for example, if you always analyze the last 3 months worth of data, at the beginning of each month
you might drop the oldest partition that is no longer needed. Removing partitions reduces the amount of metadata
associated with the table and the complexity of calculating the optimal query plan, which can simplify and speed up
queries on partitioned tables, particularly join queries. Here is an example showing the ADD PARTI TI ONand DROP
PARTI Tl ONclauses.

To avoid errors while adding or dropping partitions whose existence is not certain, add the optional | F [NOT] EXI STS
clause between the ADD or DROP keyword and the PARTI Tl ON keyword. That is, the entire clause becomes ADD | F
NOT EXI STS PARTI TI ONor DROP | F EXI STS PARTI TI ON. The following example shows how partitions can be
created automatically through | NSERT statements, or manually through ALTER TABLE statements. The | F [NOT]

EXI STSclauses let the ALTER TABLE statements succeed even if a new requested partition already exists, or a partition
to be dropped does not exist.

Inserting 2 year values creates 2 partitions:

create table partition_t (s string) partitioned by (y int);

insert into partition_t (s,y) values ('two thousand', 2000), ('nineteen ninety', 1990);
show partltlons partition_t;

SRR B LT T T e . +
|y | #Rows | #Files | Si ze | Bytes Cached | Cache Repli catl on | Forrrat | I'ncrenental
stats

+------|-+ ------- Fomm e e - - Fom - - S S Fom e e oo - E +

| 1990 | -1 | 1 | 16B | NOT CACHED | NOT CACHED | TEXT | false |

| 2000 | -1 | 1 | 13B | NOT CACHED | NOT CACHED | TEXT | false |

| Total | -1 | 2 | 29B | OB | | | |

B B Fomm e m e - - Hom - - Fom e e Fom e e e e e Fom e e oo - B +

Without the | F NOT EXI STS clause, an attempt to add a new partition might fail:

alter table partition_t add partition (y=2000);
ERROR Anal ysi sException: Partition spec already exists: (y=2000).

The | F NOT EXI STS clause makes the statement succeed whether or not there was already a partition with the
specified key value:

alter table partition_t add if not exists partition (y=2000);
alter table partition_t add if not exists partition (y=2010);
show partltlons partition_t;

Fommm e B Tk T T e e e +
|y | #Rows | #Files | Si ze | Bytes Cached | Cache Repli catl on | Format | I'ncrenental
stats

+------|-+ ------- S RS L e S E e Foemmaaaa tecomaan +
| 1990 | -1 | 1 | 16B | NOT CACHED | NOT CACHED | TEXT | false |

| 2000 | -1 | 1 | 13B | NOT CACHED | NOT CACHED | TEXT | false |

| 2010 | -1 | 0 | OB | NOT CACHED | NOT CACHED | TEXT | false |

| Total | -1 | 2 | 29B | OB | | | |

tommm - - tomm e - - tommm - LI B e LTI tomm - - +

Likewise, the | F EXI STS clause lets DROP PARTI Tl ON succeed whether or not the partition is already in the table:

alter table partition_t drop if exists partition (y=2000);
alter table partition_t drop if exists partition (y=1950);
show partitions partition_t;

Fomm e B Fommm o T LT Fom e +
| vy | #Rows | #Files | Size | Bytes Cached | Cache Repli catl on | Format | Increnental
stats
Hommm o - l S . . S . . T o S +
1990	-1	1	16B	NOT CACHED	NOT CACHED	TEXT	false
2010	-1	O	OB	NOT CACHED	NOT CACHED	TEXT	false
Total	-1	1	16B	OB			
. S . oo - oo - . N N - . +

The optional PURGE keyword, available in CDH 5.5 / Impala 2.3 and higher, is used with the DROP PARTI Tl ONclause
to remove associated HDFS data files immediately rather than going through the HDFS trashcan mechanism. Use this
keyword when dropping a partition if it is crucial to remove the data as quickly as possible to free up space, or if there

is a problem with the trashcan, such as the trash cannot being configured or being in a different HDFS encryption zone
than the data files.

-- Create an enpty table and define the partitioning schemne.

create table part_t (x int) partitioned by (nonth int);

-- Create an enpty partition into which you could copy data files fromsone ot her source.
alter table part_t add partition (nonth=1);

-- After changing the underlying data, issue a REFRESH statenent to nake the data visible
in |npala.

refresh part_t;

-- Later, do the sane for the next nonth.

alter table part_t add partition (nonth=2);

-- Now you no | onger need the ol der data.

alter table part_t drop partition (nonth=1);

-- If the table was partitioned by nonth and year, you would issue a statenent |ike:
-- alter table part_t drop partition (year=2003, nont h=1);

-- which would require 12 ALTER TABLE statements to renmove a year's worth of data.

-- If the data files for subsequent nmonths were in a different file format,
-- you could set a different file format for the new partition as you create it.
alter table part_t add partition (nonth=3) set fil eformat=parquet;

The value specified for a partition key can be an arbitrary constant expression, without any references to columns. For
example:

alter table tinme_data add partition (nonth=concat (' Deceni,'ber'));
alter table sales_data add partition (zipcode = cast(9021 * 10 as string));

E,i Note:

An alternative way to reorganize a table and its associated data files is to use CREATE TABLEto create
a variation of the original table, then use | NSERT to copy the transformed or reordered data to the
new table. The advantage of ALTER TABLE is that it avoids making a duplicate copy of the data files,
allowing you to reorganize huge volumes of data in a space-efficient way using familiar Hadoop
techniques.

To switch a table between internal and external:

You can switch a table from internal to external, or from external to internal, by using the ALTER TABLE statement:

-- Switch a table frominternal to external.
ALTER TABLE t abl e_name SET TBLPROPERTI ES(' EXTERNAL' =' TRUE') ;

-- Switch a table fromexternal to internal.
ALTER TABLE tabl e_nane SET TBLPROPERTI ES(' EXTERNAL' =' FALSE') ;

Cancellation: Cannot be cancelled.
HDFS permissions:

Most ALTER TABLE clauses do not actually read or write any HDFS files, and so do not depend on specific HDFS
permissions. For example, the SET FI LEFORMAT clause does not actually check the file format existing data files or
convert them to the new format, and the SET LOCATI ONclause does not require any special permissions on the new
location. (Any permission-related failures would come later, when you actually query or insert into the table.)

In general, ALTER TABLE clauses that do touch HDFS files and directories require the same HDFS permissions as
corresponding CREATE, | NSERT, or SELECT statements. The permissions allow the user ID that the i npal ad daemon
runs under, typically the i npal a user, to read or write files or directories, or (in the case of the execute bit) descend
into a directory. The RENAME TOclause requires read, write, and execute permission in the source and destination
database directories and in the table data directory, and read and write permission for the data files within the table.
The ADD PARTI TI ONand DROP PARTI Tl ONclauses require write and execute permissions for the associated partition
directory.

Kudu considerations:

Because of the extra constraints and features of Kudu tables, such as the NOT NULL and DEFAULT attributes for
columns, ALTER TABLE has specific requirements related to Kudu tables:

e Inan ADD COLUMNS operation, you can specify the NULL, NOT NULL, and DEFAULT def aul t _val ue column
attributes.

¢ InCDH5.12 /Impala 2.9 and higher, you can also specify the ENCODI NG COVPRESSI ON, and BLOCK_SI ZE attributes
when adding a column.

e If you add a column with a NOT NULL attribute, it must also have a DEFAULT attribute, so the default value can
be assigned to that column for all existing rows.

e The DROP COLUMN clause works the same for a Kudu table as for other kinds of tables.

¢ Although you can change the name of a column with the CHANGE clause, you cannot change the type of a column
in a Kudu table.

¢ You cannot change the nullability of existing columns in a Kudu table.

e InCDH 5.13 / Impala 2.10, you can change the default value, encoding, compression, or block size of existing
columns in a Kudu table by using the SET clause.

* You cannot use the REPLACE COLUMNS clause with a Kudu table.

e The RENAME TOclause for a Kudu table only affects the name stored in the metastore database that Impala uses
to refer to the table. To change which underlying Kudu table is associated with an Impala table name, you must
change the TBLPROPERTI ES property of the table: SET
TBLPROPERTI ES(' kudu. t abl e_nane' = kudu_t bl _nane) . You can only change underlying Kudu tables for
the external tables.

The following are some examples of using the ADD COLUMNS clause for a Kudu table:

CREATE TABLE t1 (x INT, PRI MARY KEY (x))
PARTI TI ON BY HASH (x) PARTITIONS 16
STORED AS KUDU

ALTER TABLE t1 ADD COLUMNS (y STRI NG ENCODI NG prefi x_encodi ng);

ALTER TABLE t1 ADD COLUMNS (z | NT DEFAULT 10);

ALTER TABLE t1 ADD COLUWMNS (a STRI NG NOT NULL DEFAULT '', t TI MESTAMP COWPRESSI ON
defaul t _conpression);

The following are some examples of modifying column defaults and storage attributes for a Kudu table:

create table kt (x bigint primary key, s string default 'yes', t timestanp)

stored as kudu;

-- You can change the default value for a columm, which affects any rows
-- inserted after this change is made.
alter table kt alter colum s set default 'no';

-- You can renove the default value for a columm, which affects any rows
-- inserted after this change is made. If the colum is nullable, any

-- future inserts default to NULL for this colum. If the colum is marked
-- NOT NULL, any future inserts must specify a value for the col um.

alter table kt alter colum s drop default;

insert into kt values (1, 'foo', now());

-- Because of the DROP DEFAULT above, omtting S fromthe insert
-- gives it a value of NULL.

insert into kt (x, t) values (2, now));

select * fromkt;

| 2| NULL | 2017-10-02 00: 03: 40. 652156000 |
| 1| foo | 2017-10-02 00:03: 04. 346185000 |

-- Other storage-related attributes can al so be changed for col ums.
-- These changes take effect for any newWy inserted rows, or rows
-- rearranged due to conpaction after deletes or updates.

alter table kt alter colum s set encodi ng prefix_encodi ng;

-- The COLUW keyword is optional in the syntax.

alter table kt alter x set block _size 2048;

alter table kt alter colum t set conpression zlib;

desc kt;
e . S TR - R S S R R . +
| name | type | comrent | prinary_key | nullable | default_value | encoding
| conpression | block_size |
B —— [SRR, B SR [SRR [I m e mm e Ry [SRR +
| x | bigint | | true | fal se | | AUTO_ENCODI NG
| DEFAULT_COWPRESSI ON | 2048
| s | string | | false | true | | PREFI X_ENCODI NG
| DEFAULT_COWPRESSION | O |
t | tinestanmp | | false | true | | AUTO_ENCODI NG
| zLIB | 0 |
Hommnen S R drmmmmeeas S S - R R . +

Kudu tables all use an underlying partitioning mechanism. The partition syntax is different than for non-Kudu tables.
You can use the ALTER TABLE statement to add and drop range partitions from a Kudu table. Any new range must
not overlap with any existing ranges. Dropping a range removes all the associated rows from the table. See Partitioning
for Kudu Tables on page 690 for details.

Related information:

Overview of Impala Tables on page 203, CREATE TABLE Statement on page 241, DROP TABLE Statement on page 275,
Partitioning for Impala Tables on page 640, Internal Tables on page 204, External Tables on page 204

ALTER VIEW Statement
The ALTER VI EWstatement changes the characteristics of a view.

Because a view is a logical construct, an alias for a query, with no physical data behind it, ALTER VI EWonly involves
changes to metadata in the metastore database, not any data files in HDFS.

To see the definition of the updated view, issue a DESCRI BE FORMATTED statement.

Syntax:

ALTER VI EW [dat abase_nane.] vi ew_name
[(col um_name [COMMVENT 'colum_comrent'][, ...])]
AS sel ect _statenent;

ALTER VI EW [dat abase_nane.] vi ew_nane
RENAME TO [dat abase_nane.] vi ew_nane;

ALTER VI EW [dat abase_nane.] vi ew_nanme SET OMER USER user _nane;
ALTER VI EW [dat abase_nane.] vi ew_name SET OMNER ROLE rol e_nane;

e The AS clause associates the view with a different query.
An optional list of column names can be specified with or without the column-level comments.

For example:
ALTER VIEWv1 AS SELECT x, UPPER(s) s FROMt 2;

ALTER VIEW V1 (cl1, c2) AS SELECT x, UPPER(s) s FROMt2;
ALTER VIEW vVv7 (cl1 COWENT ' Coment for cl', c2) AS SELECT tl.cl, t1l.c2 FROM1t1;

¢ The RENAME TOclause changes the name of the view, moves the view to a different database, or both.

For example:
ALTER VI EWdbl. vl RENAME TO db2.v2; -- Myve the viewto a different database with a new
nane.
ALTER VI EW dbl. vl RENAME TO dbl.v2; -- Renane the view in the sane dat abase.
ALTER VI EWdbl. vl RENAME TO db2.vl1l; -- Moive the viewto a difference database with the

same Vi ew nane.

e The SET OANER clause transfers the ownership of the view from the current owner to another user or a role.

The view owner is originally set to the user who creates the view. When object ownership is enabled in Sentry,
an owner of a view can have the ALL with GRANT or ALL without GRANT privilege. The term OANER is used to
differentiate between the ALL privilege that is explicitly granted via the GRANT statement and a privilege that is
implicitly granted by the CREATE VI EWstatement.

Statement type: DDL

If you connect to different Impala nodes withinani npal a- shel | session for load-balancing purposes, you can enable
the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata
has been received by all the Impala nodes. See SYNC_DDL Query Option on page 367 for details.

Security considerations:

If these statements in your environment contain sensitive literal values such as credit card numbers or tax identifiers,
Impala can redact this sensitive information when displaying the statements in log files and other administrative
contexts. See http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/sg_redaction.html
for details.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

Overview of Impala Views on page 206, CREATE VIEW Statement on page 255, DROP VIEW Statement on page 277

COMMENT Statement
The COMMENT statement adds, changes, or removes a comment about a database, a table, or a column.
You can alternatively use the CREATE and ALTER statements to add comments to the objects.
You can view the comment on a database, a table, or a column using the SHOWor DESCRI BE statement.

Syntax:

COMMENT ON DATABASE db_nane 1S {'comment' | NULL}

COMMENT ON TABLE [db_nane.]table_name IS {'conment' | NULL}

COVMMENT ON COLUWN [db_nane.]tabl e_nane.colum_nanme |S {' comment' | NULL}

Parameters:

e db_name: Specify the database name if not for the current database.
e NULL: If given for the comment, removes the existing comment.
e The comment string can be up to 256 characters long.

Privileges required:

To add a comment, the ALTER privilege on the object is required.

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/sg_redaction.html

To view a comment, the SELECT, | NSERT, or REFRESH on the object is required.
Usage notes:

Added in: CDH 6.1

COMPUTE STATS Statement

The COMPUTE STATS statement gathers information about volume and distribution of data in a table and all associated
columns and partitions. The information is stored in the metastore database, and used by Impala to help optimize
queries. For example, if Impala can determine that a table is large or small, or has many or few distinct values it can
organize and parallelize the work appropriately for a join query or insert operation. For details about the kinds of
information gathered by this statement, see Table and Column Statistics on page 592.

Syntax:

COWPUTE STATS [db_nane.]table_nane [(columm_list)] [TABLESAMPLE SYSTEM per cent age)
[REPEATABLE(seed)]]

colum_list ::= colum_nane [, colum_nane, ...]

COVPUTE | NCREMENTAL STATS [db_nane.]tabl e_nanme [PARTITION (partition_spec)]

partition_spec ::= partition_col =constant_val ue

partition_spec ::= sinple_partition_spec | conplex_partition_spec
sinple_partition_spec ::= partition_col =constant_val ue

conpl ex_partition_spec ::= conparison_expression_on_partition_col

The PARTI Tl ONclause is only allowed in combination with the | NCREMENTAL clause. It is optional for COVPUTE

| NCREMENTAL STATS, and required for DROP | NCREMENTAL STATS. Whenever you specify partitions through the
PARTI TI ON (partition_spec) clauseina COVPUTE | NCREVENTAL STATSor DROP | NCREMENTAL STATS
statement, you must include all the partitioning columns in the specification, and specify constant values for all the
partition key columns.

Usage notes:

Originally, Impala relied on users to run the Hive ANALYZE TABLE statement, but that method of gathering statistics
proved unreliable and difficult to use. The Impala COVPUTE STATS statement was built to improve the reliability and
user-friendliness of this operation. COVPUTE STATS does not require any setup steps or special configuration. You
only run a single Impala COVPUTE STATS statement to gather both table and column statistics, rather than separate
Hive ANALYZE TABLE statements for each kind of statistics.

For non-incremental COMPUTE STATS statement, the columns for which statistics are computed can be specified with
an optional comma-separate list of columns.

If no column list is given, the COVPUTE STATS statement computes column-level statistics for all columns of the table.
This adds potentially unneeded work for columns whose stats are not needed by queries. It can be especially costly
for very wide tables and unneeded large string fields.

COVPUTE STATS returns an error when a specified column cannot be analyzed, such as when the column does not
exist, the column is of an unsupported type for COMPUTE STATS, e.g. colums of complex types, or the column is a
partitioning column.

If an empty column list is given, no column is analyzed by COVPUTE STATS.

In CDH 5.15 / Impala 2.12 and higher, an optional TABLESAMPLE clause immediately after a table reference specifies
that the COMPUTE STATS operation only processes a specified percentage of the table data. For tables that are so
large that a full COVPUTE STATS operation is impractical, you can use COVPUTE STATS with a TABLESAMPLE clause
to extrapolate statistics from a sample of the table data. See Table and Column Statistics about the experimental stats
extrapolation and sampling features.

The COVPUTE | NCREMENTAL STATS variation is a shortcut for partitioned tables that works on a subset of partitions
rather than the entire table. The incremental nature makes it suitable for large tables with many partitions, where a
full COVPUTE STATS operation takes too long to be practical each time a partition is added or dropped. See Generating
Table and Column Statistics on page 595 for full usage details.

Important:

For a particular table, use either COVPUTE STATS or COVPUTE | NCREMENTAL STATS. The two kinds
of stats do not interoperate with each other at the table level. Without dropping the stats, if you run
COVPUTE | NCREMENTAL STATSI t will overwrite the full compute stats or if you run COVPUTE STATS
it will drop all incremental stats for consistency.

When you run COVPUTE | NCREMENTAL STATSon a table for the first time, the statistics are computed
again from scratch regardless of whether the table already has statistics. Therefore, expect a one-time
resource-intensive operation for scanning the entire table when running COVPUTE | NCREMENTAL
STATS for the first time on a given table.

In Impala 3.0 and lower, approximately 400 bytes of metadata per column per partition are needed
for caching. Tables with a big number of partitions and many columns can add up to a significant
memory overhead as the metadata must be cached on the cat al ogd host and on every i npal ad
host that is eligible to be a coordinator. If this metadata for all tables exceeds 2 GB, you might
experience service downtime. In Impala 3.1 and higher, the issue was alleviated with an improved
handling of incremental stats.

COVPUTE | NCREMENTAL STATS only applies to partitioned tables. If you use the | NCREMENTAL clause for an
unpartitioned table, Impala automatically uses the original COVPUTE STATS statement. Such tables display f al se
under the | ncrenent al st at s column of the SHOW TABLE STATS output.

E,i Note:

Because many of the most performance-critical and resource-intensive operations rely on table and
column statistics to construct accurate and efficient plans, COVPUTE STATS is an important step at
the end of your ETL process. Run COMPUTE STATS on all tables as your first step during performance
tuning for slow queries, or troubleshooting for out-of-memory conditions:

e Accurate statistics help Impala construct an efficient query plan for join queries, improving
performance and reducing memory usage.

e Accurate statistics help Impala distribute the work effectively for insert operations into Parquet
tables, improving performance and reducing memory usage.

e Accurate statistics help Impala estimate the memory required for each query, which is important
when you use resource management features, such as admission control and the YARN resource
management framework. The statistics help Impala to achieve high concurrency, full utilization
of available memory, and avoid contention with workloads from other Hadoop components.

¢ In CDH 5.10 / Impala 2.8 and higher, when you run the COVPUTE STATS or COVPUTE
| NCREMENTAL STATS statement against a Parquet table, Impala automatically applies the query
option setting M _DOP=4 to increase the amount of intra-node parallelism during this
CPU-intensive operation. See MT_DOP Query Option on page 352 for details about what this query
option does and how to use it with CPU-intensive SELECT statements.

Computing stats for groups of partitions:

In CDH 5.10 / Impala 2.8 and higher, you can run COVPUTE | NCREMENTAL STATS on multiple partitions, instead of
the entire table or one partition at a time. You include comparison operators other than = in the PARTI TI ONclause,
and the COVPUTE | NCREMENTAL STATS statement applies to all partitions that match the comparison expression.

For example, the | NT_PARTI Tl ONS table contains 4 partitions. The following COVPUTE | NCREMENTAL STATS
statements affect some but not all partitions, as indicated by the Updat ed n partiti on(s) messages. The partitions

that are affected depend on values in the partition key column X that match the comparison expression in the PARTI TI ON
clause.

show partitions int_partitions;

toeme - toemem o toee e Fomm - - B . Fommm e +
| x | #Rows | #Files | Size | Bytes Cached | Cache Replication | Format |
toeme - toema - toeme oo Fomm - - B - - +
| 99 | -1 | O | OB | NOT CACHED | NOT CACHED | PARQUET |
| 120 | -1 | O | OB | NOT CACHED | NOT CACHED | TEXT

150	-1	O	OB	NOT CACHED	NOT CACHED	TEXT
200	-1	0	OB	NOT CACHED	NOT CACHED	TEXT
Total	-1	O	oB	OB		
toeme - toema - toeme oo Fomm - - B . - +

conpute incremental stats int_partitions partition (x < 100);

o m e e e e e e e e e e e e e e e e e e +
| sunmary |
o mm e e e e e e e e e e e e e e e e e e +
| Updated 1 partition(s) and 1 colum(s). |
o +
conpute increnmental stats int_partitions partition (x in (100, 150, 200));
. +
| sunmmary |
B s +
| Updated 2 partition(s) and 1 colum(s). |
B s +

conpute incremental stats int_partitions partition (x between 100 and 175);

o m e e e e e e e e e e e e e e e e e e +
| summary |

o mm e e e e e e e e e e e e e e e e e e +

| Updated 2 partition(s) and 1 colum(s). |
o +

conpute incremental stats int_partitions partition (x in (100, 150, 200) or x < 100);
O +

| sunmmary |
e +

| Updated 3 partition(s) and 1 colum(s). |
N e .~ +

conpute increnmental stats int_partitions partition (x != 150);

o m e e e e e e e e e e e e e e e e e e +

| summary |

o mm e e e e e e e e e e e e e e e e e e +

| Updated 3 partition(s) and 1 colum(s). |
o +

Complex type considerations:

Currently, the statistics created by the COVPUTE STATS statement do not include information about complex type
columns. The column stats metrics for complex columns are always shown as -1. For queries involving complex type
columns, Impala uses heuristics to estimate the data distribution within such columns.

HBase considerations:

COVPUTE STATS works for HBase tables also. The statistics gathered for HBase tables are somewhat different than
for HDFS-backed tables, but that metadata is still used for optimization when HBase tables are involved in join queries.

Amazon S3 considerations:

COVPUTE STATS also works for tables where data resides in the Amazon Simple Storage Service (S3). See Using Impala
with the Amazon S3 Filesystem on page 707 for details.

Performance considerations:

The statistics collected by COVPUTE STATS are used to optimize join queries | NSERT operations into Parquet tables,
and other resource-intensive kinds of SQL statements. See Table and Column Statistics on page 592 for details.

For large tables, the COVPUTE STATS statement itself might take a long time and you might need to tune its
performance. The COMPUTE STATS statement does not work with the EXPLAI Nstatement, or the SUMMARY command
ini npal a- shel | . You can use the PROFI LE statement in i npal a- shel | to examine timing information for the
statement as a whole. If a basic COVPUTE STATS statement takes a long time for a partitioned table, consider switching
to the COVPUTE | NCREMENTAL STATS syntax so that only newly added partitions are analyzed each time.

Examples:

This example shows two tables, T1 and T2, with a small number distinct values linked by a parent-child relationship
between T1. | Dand T2. PARENT. T1 is tiny, while T2 has approximately 100K rows. Initially, the statistics includes
physical measurements such as the number of files, the total size, and size measurements for fixed-length columns
such as with the | NT type. Unknown values are represented by -1. After running COVPUTE STATS for each table, much
more information is available through the SHOW STATS statements. If you were running a join query involving both
of these tables, you would need statistics for both tables to get the most effective optimization for the query.

[l ocal host:21000] > show table stats t1;
Query: showtable stats t1

e e Fomm - - toeme oo +
| #Rows | #Files | Size | Format |
toeme - toeme oo Fomm - - toeme oo +
| -1 | 1 | 33B | TEXT

toeme - toeme oo Fomm - - toeme oo +

Returned 1 row(s) in 0.02s
[l ocal host:21000] > show table stats t2;
Query showtable stats t2

--------------- F T LT T
| #Rows | #Files | Size | Format |
toeme - toeme oo Fommemaaaa toeme oo +
| -1 | 28 | 960.00KB | TEXT

toeme - toeme oo e +

Returned 1 row(s) in 0.01s
[l ocal host:21000] > show colum stats t1;
Query: show colum stats t1

R LT - Fommm e - Fomeemaaaa +
| Col um | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
toeme oo Fommm e o e Fommm - - Fomeemaaaa

| id | I'NT | -1 | -1 | 4 | 4 |
| s | STRING| -1 | -1 | -1 | -1 |
Fomm e m e - - Fom e e oo - o e e e e o oo Fom e e oo - B S [R, +

Returned 2 row(s) in 1.71s
[l ocal host:21000] > show columm stats t2;
QJery show colum stats t2

---------------- T T
| Col um | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
e T o e e e e o oo Fom e e oo - B S [+
| parent | I NT | -1 | -1 | 4 | 4 |
s | STRING | -1 | -1 | -1 | -1 |
oo - N e N - . N +

Returned 2 row(s) |n 0. 01s
[l ocal host:21000] > conpute stats t1;
Query conmpute stats t1l

___ +
| sunmmary |

B s +

| Updated 1 partition(s) and 2 colum(s). |

e m e — .- =

Returned 1 row(s) in 5.30s

[l ocal host:21000] > show table stats t1;

Query showtable stats t1

--------------- B

| #Rows| #Files | Size | Format |

toeme - toeme oo Fomm - - toeme oo +

| 3 | 1 | 33B | TEXT |

toeme - toeme oo Fomm - - toeme oo +

Returned 1 row(s) in 0.01s

[l ocal host:21000] > show columm stats t1;

Query show colum stats t1

---------------- S T N e
| Col um | Type | #Distinct Val ues | #Nul | s | Max Size | Avg Size |

id | I'NT | 3 | -1 | 4 | 4 |
| s | STRING | 3 | -1

oo - N - T N - . N +
Returned 2 row(s) in 0.02s

[l ocal host:21000] > conpute stats t2;

Query: compute stats t2

Returned 1 row(s) in 5.70s
[l ocal host:21000] > show table stats t2;
Query: show table stats t2

L toeme oo Fommemaaaa toeme oo +
| #Rows | #Files | Size | Format |
toeme - toeme oo Fommemaaaa toeme oo +
| 98304 | 1 | 960.00KB | TEXT |
toeme - toeme oo Fommemaaaa toeme oo +

Returned 1 row(s) in 0.03s
[l ocal host:21000] > show colum stats t2;
Query: show columm stats t2

+

R LT - Fommm e - Fomeemaaaa +
| Colum | Type | #Distinct Values | #Nulls | Max Size | Avg Size |
toeme oo Fommm e o e Fommm - B Ty

| parent | INT | 3 | -1 | 4 | 4

| s | STRING| 6 | -1 | 14 | 9.3 |
Fomm e m e - - Fom e e oo - o e e e e o oo Fom e e oo - B S [R, +

Returned 2 row(s) in 0.01s

The following example shows how to use the | NCREMENTAL clause, available in Impala 2.1.0 and higher. The COVPUTE
| NCREMENTAL STATS syntax lets you collect statistics for newly added or changed partitions, without rescanning the
entire table.

-- Initially the table has no increnental stats, as indicated
-- 'false' under Increnental stats.
show table stats item partitioned;

Fem e e oo R Fomm e [R e e e e o n [e
| i_category | #Rows | #Files | Size | Bytes Cached | Format | Increnmental stats
Fem e e oo Fomme oo n Femm e S e e e e e o n Fom e o e aea

Books -1 1 223. 74KB NOT CACHED PARQUET fal se

Chi | dren -1 1 230. 05KB NOT CACHED PARQUET fal se

El ectronics -1 1 232. 67KB NOT CACHED PARQUET fal se

Horre -1 1 232. 56KB NOT CACHED PARQUET fal se

Jewel ry -1 1 223. 72KB | NOT CACHED PARQUET | fal se

Men -1 1 231. 25KB NOT CACHED PARQUET fal se

Musi ¢ -1 1 237. 90KB NOT CACHED PARQUET fal se

Shoes -1 1 234. 90KB NOT CACHED PARQUET fal se

Sports -1 1 227.97KB | NOT CACHED PARQUET | fal se

Wonren -1 1 226. 27KB NOT CACHED PARQUET fal se

Tot al -1 10 2.25MB 0B
Fem e e oo Fomme oo n Femm e S e e e e o n Fom e o e aea

-- After the first COVPUTE | NCREMENTAL STATS,
-- all partitions have stats. The first

-- COWUTE | NCREMENTAL STATS scans the whol e
-- table, discarding any previous stats from
-- a traditional COWUTE STATS st atenent.
conpute incremental stats itempartitioned;

o m m eeaaoa- +
| summary |

o o m eeeaoa o +

| Updated 10 partition(s) and 21 colum(s). |

o e m eeaaoa - +

show table stats item partitioned;

Fem e e oo R Fomm e [R e e e e o n [e
| i_category | #Rows | #Files | Size | Bytes Cached | Format | Increnmental stats
Fem e e oo Fomme oo n Femm e S e e e e e o n Fom e o e aea
| Books | 1733 | 1 | 223.74KB | NOT CACHED | PARQUET | true

| Children | 1786 | 1 | 230.05KB | NOT CACHED | PARQUET | true

| Electronics | 1812 | 1 | 232.67KB | NOT CACHED | PARQUET | true

| Home | 1807 | 1 | 232.56KB | NOT CACHED | PARQUET | true

| Jewel ry | 1740 | 1 | 223.72KB | NOT CACHED | PARQUET | true

| Men | 1811 | 1 | 231.25KB | NOT CACHED | PARQUET | true

| Music | 1860 | 1 | 237.90KB | NOT CACHED | PARQUET | true

| Shoes | 1835 | 1 | 234.90KB | NOT CACHED | PARQUET | true

| Sports | 1783 | 1 | 227.97KB | NOT CACHED | PARQUET | true

| Wnen | 1790 | 1 | 226.27KB | NOT CACHED | PARQUET | true

| Total | 17957 | 10 | 2.25MB | OB | |

oo oo oo oo oo o oo

-- Add a new partition...

alter table itempartitioned add partition (i_category="Canping');

-- Add or replace files in HDFS outside of Inpala,

-- rendering the stats for a partition obsolete.

linmport _data_into_sports_partition.sh

refresh itempartitioned;

drop increnental stats itempartitioned partition (i_category=" Sports');
-- Now sone partitions have increnmental stats

-- and sone do not.

show table stats itempartitioned;

S E SR Fomm e e - - [R, S [e
| i_category | #Rows | #Files | Size | Bytes Cached | Format | Increnental stats
Fom e e B Fomm e m e - - [e e e e [e e e e a oo -

Books 1733 1 223.74KB | NOT CACHED PARQUET | true

Canpi ng -1 1 408. 02KB | NOT CACHED PARQUET | fal se

Chi I dren 1786 1 230. 05KB | NOT CACHED PARQUET | true

El ectronics 1812 1 232. 67KB NOT CACHED PARQUET true

Hone 1807 1 232.56KB | NOT CACHED PARQUET | true

Jewel ry 1740 1 223. 72KB NOT CACHED PARQUET true

Men 1811 1 231. 25KB | NOT CACHED PARQUET | true

Musi ¢ 1860 1 237.90KB | NOT CACHED PARQUET | true

Shoes 1835 1 234.90KB | NOT CACHED PARQUET | true

Sports -1 1 227.97KB NOT CACHED PARQUET fal se

Worren 1790 1 226.27KB | NOT CACHED PARQUET | true

Tot al 17957 11 2. 65MB 0B
. . oo - - . N .

-- After another COVPUTE | NCREMENTAL STATS,

-- all partitions have increnental stats, and only the 2
-- partitions without increnental stats were scanned.
conpute incremental stats itempartitioned;

T +
| sunmmary |
T +
| Updated 2 partition(s) and 21 columm(s). |
e
show table stats item partitioned;
S R toeme oo Fommemaaaa B Fommm e B
| i_category | #Rows | #Files | Size | Bytes Cached | Format | Incremental stats
B toeme oo Fommemaaaa B - B T

Books 1733 1 223. 74KB NOT CACHED PARQUET true

Canpi ng 5328 1 408. 02KB NOT CACHED PARQUET true

Chil dren 1786 1 230. 05KB NOT CACHED PARQUET true

El ectronics 1812 1 232. 67KB NOT CACHED PARQUET true

Home 1807 1 232. 56KB NOT CACHED PARQUET true

Jewel ry 1740 1 223. 72KB NOT CACHED PARQUET true

Men 1811 1 231. 25KB NOT CACHED PARQUET true

Musi c 1860 1 237. 90KB NOT CACHED PARQUET true

Shoes 1835 1 234.90KB | NOT CACHED PARQUET | true

Sports 1783 1 227.97KB NOT CACHED PARQUET true

Wonen 1790 1 226. 27KB NOT CACHED PARQUET true

Tot al 17957 11 2. 65MB 0B
S B Fomm e m e - - [e e e [e e e e a oo -

File format considerations:

The COVPUTE STATS statement works with tables created with any of the file formats supported by Impala. See How
Impala Works with Hadoop File Formats on page 649 for details about working with the different file formats. The
following considerations apply to COVPUTE STATS depending on the file format of the table.

The COVPUTE STATS statement works with text tables with no restrictions. These tables can be created through either
Impala or Hive.

The COVPUTE STATS statement works with Parquet tables. These tables can be created through either Impala or Hive.

The COVPUTE STATS statement works with Avro tables without restriction in CDH 5.4 / Impala 2.2 and higher. In
earlier releases, COVPUTE STATS worked only for Avro tables created through Hive, and required the CREATE TABLE
statement to use SQL-style column names and types rather than an Avro-style schema specification.

The COVPUTE STATS statement works with RCFile tables with no restrictions. These tables can be created through
either Impala or Hive.

The COVPUTE STATS statement works with SequenceFile tables with no restrictions. These tables can be created
through either Impala or Hive.

The COVPUTE STATS statement works with partitioned tables, whether all the partitions use the same file format, or
some partitions are defined through ALTER TABLE to use different file formats.

Statement type: DDL

Cancellation: Certain multi-stage statements (CREATE TABLE AS SELECT and COVMPUTE STATS) can be cancelled
during some stages, when running | NSERT or SELECT operations internally. To cancel this statement, use Ctrl-C from
thei npal a- shel | interpreter, the Cancel button from the Watch page in Hue, Actions > Cancel from the Queries
list in Cloudera Manager, or Cancel from the list of in-flight queries (for a particular node) on the Queries tab in the
Impala web Ul (port 25000).

Restrictions:

E,i Note: Prior to Impala 1.4.0, COMPUTE STATS counted the number of NULL values in each column

and recorded that figure in the metastore database. Because Impala does not currently use the NULL
count during query planning, Impala 1.4.0 and higher speeds up the COMPUTE STATS statement by
skipping this NULL counting.

Internal details:

Behind the scenes, the COMPUTE STATS statement executes two statements: one to count the rows of each partition
in the table (or the entire table if unpartitioned) through the COUNT(*) function, and another to count the approximate
number of distinct values in each column through the NDV() function. You might see these queries in your monitoring
and diagnostic displays. The same factors that affect the performance, scalability, and execution of other queries (such
as parallel execution, memory usage, admission control, and timeouts) also apply to the queries run by the COVPUTE
STATS statement.

HDFS permissions:

The user ID that the i npal ad daemon runs under, typically the i npal a user, must have read permission for all affected
files in the source directory: all files in the case of an unpartitioned table or a partitioned table in the case of COVPUTE
STATS; or all the files in partitions without incremental stats in the case of COVPUTE | NCREMENTAL STATS. It must
also have read and execute permissions for all relevant directories holding the data files. (Essentially, COVPUTE STATS
requires the same permissions as the underlying SELECT queries it runs against the table.)

Kudu considerations:

The COVPUTE STATS statement applies to Kudu tables. Impala does not compute the number of rows for each partition
for Kudu tables. Therefore, you do not need to re-run the operation when you see -1 in the # Rows column of the
output from SHOW TABLE STATS. That column always shows -1 for all Kudu tables.

Related information:

DROP STATS Statement on page 272, SHOW TABLE STATS Statement on page 379, SHOW COLUMN STATS Statement
on page 381, Table and Column Statistics on page 592

CREATE DATABASE Statement
Creates a new database.

In Impala, a database is both:

¢ Alogical construct for grouping together related tables, views, and functions within their own namespace. You
might use a separate database for each application, set of related tables, or round of experimentation.

e A physical construct represented by a directory tree in HDFS. Tables (internal tables), partitions, and data files are
all located under this directory. You can perform HDFS-level operations such as backing it up and measuring space
usage, or remove it with a DROP DATABASE statement.

Syntax:

CREATE (DATABASE| SCHEMA) [F NOT EXI STS] dat abase_nane[COWWENT ' dat abase_comment ']
[LOCATI ON hdfs_path];

Statement type: DDL
Usage notes:

A database is physically represented as a directory in HDFS, with a filename extension . db, under the main Impala
data directory. If the associated HDFS directory does not exist, it is created for you. All databases and their associated
directories are top-level objects, with no physical or logical nesting.

After creating a database, to make it the current database within an i npal a- shel | session, use the USE statement.
You can refer to tables in the current database without prepending any qualifier to their names.

When you first connect to Impala through i npal a- shel |, the database you start in (before issuing any CREATE
DATABASE or USE statements) is named def aul t .

Impalaincludes another predefined database, _i npal a_bui | ti ns, that serves as the location for the built-in functions.
To see the built-in functions, use a statement like the following:

show functions in _inpala_

buil tins;
show functions in _inpala_built

ins like '*substring*';

After creating a database, your i npal a- shel | session or another i npal a- shel | connected to the same node can
immediately access that database. To access the database through the Impala daemon on a different node, issue the
| NVALI DATE METADATA statement first while connected to that other node.

Setting the LOCATI ON attribute for a new database is a way to work with sets of files in an HDFS directory structure
outside the default Impala data directory, as opposed to setting the LOCATI ON attribute for each individual table.

If you connect to different Impala nodes withinani npal a- shel | session for load-balancing purposes, you can enable
the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata
has been received by all the Impala nodes. See SYNC_DDL Query Option on page 367 for details.

Hive considerations:

When you create a database in Impala, the database can also be used by Hive. When you create a database in Hive,
issue an | NVALI DATE METADATA statement in Impala to make Impala permanently aware of the new database.

The SHOW DATABASES statement lists all databases, or the databases whose name matches a wildcard pattern. In
CDH 5.7 / Impala 2.5 and higher, the SHOW DATABASES output includes a second column that displays the associated
comment, if any, for each database.

Amazon S3 considerations:

To specify that any tables created within a database reside on the Amazon S3 system, you caninclude ans3a: / / prefix
on the LOCATI ON attribute. In CDH 5.8 / Impala 2.6 and higher, Impala automatically creates any required folders as
the databases, tables, and partitions are created, and removes them when they are dropped.

In CDH 5.8 / Impala 2.6 and higher, Impala DDL statements such as CREATE DATABASE, CREATE TABLE, DROP
DATABASE CASCADE, DROP TABLE, and ALTER TABLE [ADD| DROP] PARTI Tl ONcan create or remove folders as
needed in the Amazon S3 system. Prior to CDH 5.8 / Impala 2.6, you had to create folders yourself and point Impala
database, tables, or partitions at them, and manually remove folders when no longer needed. See Using Impala with
the Amazon S3 Filesystem on page 707 for details about reading and writing S3 data with Impala.

Cancellation: Cannot be cancelled.

HDFS permissions:

The user ID that the i npal ad daemon runs under, typically the i npal a user, must have write permission for the
parent HDFS directory under which the database is located.

Examples:

create database first_db;
use first_db;
create table t1 (x int);

create database second_db;

use second_db;

-- Each database has its own nanespace for tables.

-- You can reuse the sane table nanes in each dat abase.
create table t1 (s string);

create database tenp;

-- You can either USE a database after creating it,
-- or qualify all references to the table name with the name of the database.
-- Here, tables T2 and T3 are both created in the TEMP dat abase.

create table tenp.t2 (x int, y int);
use dat abase tenp;
create table t3 (s string);

-- You cannot drop a database while it is selected by the USE statenent.
drop dat abase tenp;
ERROR Anal ysi sException: Cannot drop current default database: tenp

-- The al ways-avail abl e database 'default' is a convenient one to USE
-- before dropping a database you created.
use defaul t;

-- Before dropping a database, first drop all the tables inside it,

-- or in COH 5.5/ Inpala 2.3 and higher use the CASCADE cl ause.

drop dat abase tenp;

ERROR: | npal aRunt | meExcepti on: Error nmaking 'dropDatabase’ RPC to Hi ve Metastore:
CAUSED BY: | nvalidQperationException: Database tenp is not enpty

show tables in tenp;

+oemm - +
| nane |
+o-mm - +
| t3 |
+o-mm - +

-- CDH 5.5/ Inpala 2.3 and hi gher:
drop dat abase tenp cascade;

-- Earlier rel eases:

drop table tenp.t3;
drop dat abase tenp;

Related information:

Overview of Impala Databases on page 200, DROP DATABASE Statement on page 269, USE Statement on page 391, SHOW
DATABASES on page 375, Overview of Impala Tables on page 203

CREATE FUNCTION Statement

Creates a user-defined function (UDF), which you can use to implement custom logic during SELECT or | NSERT
operations.

Syntax:

The syntax is different depending on whether you create a scalar UDF, which is called once for each row and implemented
by a single function, or a user-defined aggregate function (UDA), which is implemented by multiple functions that
compute intermediate results across sets of rows.

In CDH 5.7 / Impala 2.5 and higher, the syntax is also different for creating or dropping scalar Java-based UDFs. The
statements for Java UDFs use a new syntax, without any argument types or return type specified. Java-based UDFs
created using the new syntax persist across restarts of the Impala catalog server, and can be shared transparently
between Impala and Hive.

To create a persistent scalar C++ UDF with CREATE FUNCTI ON:

CREATE FUNCTION [I F NOT EXI STS] [db_nane.]function_nane([arg_type[, arg_type...])
RETURNS return_type
LOCATI ON ' hdf s_path_t o_dot _so'
SYMBOL=' synbol _nane'

To create a persistent Java UDF with CREATE FUNCTI ON:

CREATE FUNCTION [I F NOT EXI STS] [db_nane.]functi on_nane
LOCATI ON ' hdfs_path_to_jar'
SYMBOL=' ¢l ass_nane'

To create a persistent UDA, which must be written in C++, issue a CREATE AGGREGATE FUNCTI ONstatement:

CREATE [AGGREGATE] FUNCTION [I F NOT EXI STS] [db_name.]function_nanme([arg_type[,

arg_type...])
RETURNS return_type

[| NTERMVEDI ATE type_spec]
LOCATI ON ' hdf s_pat h'

[NI T_EN=' function]
UPDATE_FN=' functi on
MERGE_FN=' functi on

[PREPARE_FN=' f uncti on]

[CLOSEFN=' funct i on]

[SERI ALI ZE_FN=' functi on]
[FI NALI ZE_FN=' functi on]

Statement type: DDL

Varargs notation:

E’; Note:

Variable-length argument lists are supported for C++ UDFs, but currently not for Java UDFs.

If the underlying implementation of your function accepts a variable number of arguments:

e The variable arguments must go last in the argument list.
¢ The variable arguments must all be of the same type.
¢ You must include at least one instance of the variable arguments in every function call invoked from SQL.

¢ You designate the variable portion of the argument list in the CREATE FUNCTI ON statement by including . . .
immediately after the type name of the first variable argument. For example, to create a function that accepts an
I NT argument, followed by a BOOLEAN, followed by one or more STRI NGarguments, your CREATE FUNCTI ON
statement would look like:

CREATE FUNCTI ON func_name (I NT, BOOLEAN, STRING ...)
RETURNS type LOCATION 'path' SYMBOL='entry_point';

See Variable-Length Argument Lists on page 538 for how to code a C++ UDF to accept variable-length argument lists.

Scalar and aggregate functions:

The simplest kind of user-defined function returns a single scalar value each time it is called, typically once for each
row in the result set. This general kind of function is what is usually meant by UDF. User-defined aggregate functions
(UDAs) are a specialized kind of UDF that produce a single value based on the contents of multiple rows. You usually

use UDAs in combination with a GROUP BY clause to condense a large result set into a smaller one, or even a single
row summarizing column values across an entire table.

You create UDAs by using the CREATE AGGREGATE FUNCTI ONsyntax. The clauses | NI T_FN, UPDATE_FN, MERGE_FN,
SERI ALI ZE_FN, FI NALI ZE_FN, and | NTERVMEDI ATE only apply when you create a UDA rather than a scalar UDF.

The * _FNclauses specify functions to call at different phases of function processing.

e |Initialize: The function you specify with the | Nl T_FNclause does any initial setup, such as initializing member
variables in internal data structures. This function is often a stub for simple UDAs. You can omit this clause and a
default (no-op) function will be used.

e Update: The function you specify with the UPDATE_FNclause is called once for each row in the original result set,
that is, before any GROUP BY clause is applied. A separate instance of the function is called for each different
value returned by the GROUP BY clause. The final argument passed to this function is a pointer, to which you
write an updated value based on its original value and the value of the first argument.

e Merge: The function you specify with the MERGE_FN clause is called an arbitrary number of times, to combine
intermediate values produced by different nodes or different threads as Impala reads and processes data files in
parallel. The final argument passed to this function is a pointer, to which you write an updated value based on its
original value and the value of the first argument.

¢ Serialize: The function you specify with the SERI ALI ZE_FNclause frees memory allocated to intermediate results.
It is required if any memory was allocated by the Allocate function in the Init, Update, or Merge functions, or if
the intermediate type contains any pointers. See the UDA code samples for details.

¢ Finalize: The function you specify with the FI NALI ZE_FNclause does any required teardown for resources acquired
by your UDF, such as freeing memory, closing file handles if you explicitly opened any files, and so on. This function
is often a stub for simple UDAs. You can omit this clause and a default (no-op) function will be used. It is required
in UDAs where the final return type is different than the intermediate type. or if any memory was allocated by
the Allocate function in the Init, Update, or Merge functions. See the UDA code samples for details.

If you use a consistent naming convention for each of the underlying functions, Impala can automatically determine
the names based on the first such clause, so the others are optional.

For end-to-end examples of UDAs, see User-Defined Functions (UDFs) on page 532.

Complex type considerations:

Currently, Impala UDFs cannot accept arguments or return values of the Impala complex types (STRUCT, ARRAY, or
MAP).

Usage notes:
e When authorization is enabled, the CREATE FUNCTI ON statement requires:

— The CREATE privilege on the database.
— The ALL privilege on two URIs where the URlIs are:

— The JAR file on the file system. For example:

GRANT ALL ON URI 'file:///path_to_ny.jar' TO RCLE ny_rol e;

— The JAR on HDFS. For example:

GRANT ALL ON URI 'hdfs:///path/to/jar' TO ROLE ny_role

e You can write Impala UDFs in either C++ or Java. C++ UDFs are new to Impala, and are the recommended format
for high performance utilizing native code. Java-based UDFs are compatible between Impala and Hive, and are
most suited to reusing existing Hive UDFs. (Impala can run Java-based Hive UDFs but not Hive UDAs.)

e CDH 5.7 / Impala 2.5 introduces UDF improvements to persistence for both C++ and Java UDFs, and better
compatibility between Impala and Hive for Java UDFs. See User-Defined Functions (UDFs) on page 532 for details.

https://github.com/cloudera/impala-udf-samples/blob/master/uda-sample.cc
https://github.com/cloudera/impala-udf-samples/blob/master/uda-sample.cc

e The body of the UDF is represented by a. so or. j ar file, which you store in HDFS and the CREATE FUNCTI ON
statement distributes to each Impala node.

¢ Impala calls the underlying code during SQL statement evaluation, as many times as needed to process all the
rows from the result set. All UDFs are assumed to be deterministic, that is, to always return the same result when
passed the same argument values. Impala might or might not skip some invocations of a UDF if the result value
is already known from a previous call. Therefore, do not rely on the UDF being called a specific number of times,
and do not return different result values based on some external factor such as the current time, a random number
function, or an external data source that could be updated while an Impala query is in progress.

¢ The names of the function arguments in the UDF are not significant, only their number, positions, and data types.

¢ You can overload the same function name by creating multiple versions of the function, each with a different
argument signature. For security reasons, you cannot make a UDF with the same name as any built-in function.

¢ Inthe UDF code, you represent the function return result as a st ruct . This st r uct contains 2 fields. The first
field is a bool ean representing whether the value is NULL or not. (When this field is t r ue, the return value is
interpreted as NULL.) The second field is the same type as the specified function return type, and holds the return
value when the function returns something other than NULL.

¢ Inthe UDF code, you represent the function arguments as an initial pointer to a UDF context structure, followed
by references to zero or more st r uct s, corresponding to each of the arguments. Each st r uct has the same 2
fields as with the return value, a bool ean field representing whether the argument is NULL, and a field of the
appropriate type holding any non-NULL argument value.

e For sample code and build instructions for UDFs, see the sample UDFs in the Impala github repo.

e Because the file representing the body of the UDF is stored in HDFS, it is automatically available to all the Impala
nodes. You do not need to manually copy any UDF-related files between servers.

e Because Impala currently does not have any ALTER FUNCTI ON statement, if you need to rename a function,
move it to a different database, or change its signature or other properties, issue a DROP FUNCTI ON statement
for the original function followed by a CREATE FUNCTI ON with the desired properties.

e Because each UDF is associated with a particular database, either issue a USE statement before doing any CREATE
FUNCTI ON statements, or specify the name of the function as db_nane. f uncti on_nane.

If you connect to different Impala nodes within ani npal a- shel | session for load-balancing purposes, you can enable
the SYNC_DDL query option to make each DDL statement wait before returning, until the new or changed metadata
has been received by all the Impala nodes. See SYNC_DDL Query Option on page 367 for details.

Compatibility:

Impala can run UDFs that were created through Hive, as long as they refer to Impala-compatible data types (not
composite or nested column types). Hive can run Java-based UDFs that were created through Impala, but not Impala
UDFs written in C++.

The Hive cur rent _user () function cannot be called from a Java UDF through Impala.
Persistence:

In CDH 5.7 / Impala 2.5 and higher, Impala UDFs and UDAs written in C++ are persisted in the metastore database.
Java UDFs are also persisted, if they were created with the new CREATE FUNCTI ON syntax for Java UDFs, where the
Java function argument and return types are omitted. Java-based UDFs created with the old CREATE FUNCTI ONsyntax
do not persist across restarts because they are held in the memory of the cat al ogd daemon. Until you re-create such
Java UDFs using the new CREATE FUNCTI ONsyntax, you must reload those Java-based UDFs by running the original
CREATE FUNCTI ONstatements again each time you restart the cat al ogd daemon. Prior to CDH 5.7 / Impala 2.5 the
requirement to reload functions after a restart applied to both C++ and Java functions.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Examples:

For additional examples of all kinds of user-defined functions, see User-Defined Functions (UDFs) on page 532.

https://github.com/cloudera/impala/tree/master/be/src/udf_samples

The following example shows how to take a Java jar file and make all the functions inside one of its classes into UDFs
under a single (overloaded) function name in Impala. Each CREATE FUNCTI ONor DROP FUNCTI ONstatement applies
to all the overloaded Java functions with the same name. This example uses the signatureless syntax for CREATE
FUNCTI ONand DROP FUNCTI ON, which is available in CDH 5.7 / Impala 2.5 and higher.

At the start, the jar file is in the local filesystem. Then it is copied into HDFS, so that it is available for Impala to reference
through the CREATE FUNCTI ON statement and queries that refer to the Impala function name.

$ jar -tvf udf-exanpl es-cdh570.j ar
0 Mon Feb 22 04:06:50 PST 2016 META-1 NF/
122 Mon Feb 22 04:06: 48 PST 2016 META- | NF/ MANI FEST. M
0 Mon Feb 22 04:06:46 PST 2016 conl
0 Mon Feb 22 04:06: 46 PST 2016 coni cl oudera/
0 Mon Feb 22 04:06:46 PST 2016 com cl oudera/i npal a/
2460 Mon Feb 22 04:06:46 PST 2016 coni cl oudera/inpal a/ | nconmpati bl eUdf Test. cl ass
541 Mon Feb 22 04:06: 46 PST 2016 coni cl ouder a/i npal a/ Test Udf Excepti on. cl ass
3438 Mon Feb 22 04:06: 46 PST 2016 com cl oudera/i npal a/ JavaUdf Test. cl ass
5872 Mon Feb 22 04: 06:46 PST 2016 coni cl oudera/i npal a/ Test Udf. cl ass
$ hdfs dfs -put udf-exanpl es-cdh570.jar /user/inpal a/udfs
$ hdfs dfs -1s /user/inpal a/udfs
Found 2 itens

STWr--T-- 3 jrussel |l supergroup 853 2015-10-09 14:05
/user/inpal a/ udfs/hell o_world.jar
STWr--T-- 3 jrussel |l supergroup 7366 2016-06-08 14:25

/user/inpal a/ udf s/ udf - exanpl es- cdh570. j ar

Ini npal a- shel | , the CREATE FUNCTI ONrefers to the HDFS path of the jar file and the fully qualified class name
inside the jar. Each of the functions inside the class becomes an Impala function, each one overloaded under the
specified Impala function name.

[l ocal host:21000] > create function testudf |ocation
"/ user/inpal a/ udf s/ udf - exanpl es-cdh570. jar' synbol = com cl ouder a. i npal a. Test Udf "' ;
[l ocal host: 21000] > show functi ons;

Fom e e e o e m e e e e e e e e e e e e e e e ememm—aaon Fom e e e e S +
| return type | signature | binary type | is persistent |
Fom e e e o e e e e e e e e e e e e e e e mememm—aaon Fom e e e o e e e e +

Bl G NT t est udf (Bl G NT) JAVA true

BOCOLEAN t est udf (BOOLEAN) JAVA true

BOOLEAN t est udf (BOOLEAN, BOOLEAN) JAVA true

BOOLEAN t est udf (BOOLEAN, BOCLEAN, BOCLEAN) JAVA true

DOUBLE t est udf (DOUBLE) JAVA true

DOUBLE t est udf (DOUBLE, DOUBLE) JAVA true

DOUBLE t est udf (DOUBLE, DOUBLE, DOUBLE) JAVA true

FLOAT t est udf (FLOAT) JAVA true

FLOAT t est udf (FLOAT, FLOAT) JAVA true

FLOAT t est udf (FLOAT, FLQOAT, FLOAT) JAVA true

I NT t est udf (1 NT) JAVA true

DOUBLE testudf (I NT, DOUBLE) JAVA true

I NT testudf (I NT, | NT) JAVA true

I NT testudf (I NT, INT, INT) JAVA true

SMALLI NT t est udf (SMALLI NT) JAVA true

SMALLI NT test udf (SMALLI NT, SMALLI NT) JAVA true

SMALLI NT testudf (SMALLI NT, SMALLI NT, SMALLI NT) JAVA true

STRI NG t est udf (STRI NG JAVA true

STRI NG testudf (STRING STRI NG JAVA true

STRI NG testudf (STRING STRING STRI NG JAVA true

TI NYI NT t est udf (TI NYI NT) JAVA true
Fom e e e o e m e e e e e e e e e e e e e ememm—aaon Fom e e e o e e e e +

These are all simple functions that return their single arguments, or sum, concatenate, and so on their multiple
arguments. Impala determines which overloaded function to use based on the number and types of the arguments.

insert into bigint_x values (1), (2), (4), (3);
sel ect testudf(x) from bigint_x;
+

| udfs.testudf(x) |

insert into int_x values (1), (2), (4),
sel ect testudf(x, x+1, x*x) fromint_x;

| udfs.testudf(x) |
+

o e e e e e e e oo +
| oneone |
| twotwo |
| fourfour |
| threethree

oo +

(3):

The previous example used the same Impala function name as the name of the class. This example shows how the
Impala function name is independent of the underlying Java class or function names. A second CREATE FUNCTI ON
statement results in a set of overloaded functions all named ny_f unc, to go along with the overloaded functions all

namedt est udf .

create function ny_func | ocation '/user/inpal a/udfs/udf-exanpl es-cdh570.jar’
synbol =' com cl ouder a. i npal a. Test Udf " ;

show functi ons;

Fem e e oo o m m e e e e e e e e e e e emm e eaaaa
| return type | signature

Fem e e m o oo e e e e e e e e e e e e em e e e eaaaa
| BI G NT | my_func(BI G NT)

| BOOLEAN | my_func(BOOLEAN)

| BOOLEAN | my_func(BOCOLEAN, BOOLEAN)

| BI G NT | testudf (Bl A NT)

| BOOLEAN | testudf(BOOLEAN)

| BOOLEAN | testudf(BOOLEAN, BOOLEAN)

____________________________ +
JAVA | true |
JAVA | true |
JAVA | true |
JAVA | true |
JAVA | true |
JAVA | true |

The corresponding DROP FUNCTI ON statement with no signature drops all the overloaded functions with that name.

drop function ny_func;
show functi ons;

| BIG NT | testudf (Bl G NT)
| BOOLEAN | testudf(BOOLEAN)

JAVA | true |
JAVA | true |

| BOOLEAN | testudf(BOOLEAN, BOOLEAN) | JAVA | true |

The signatureless CREATE FUNCTI ON syntax for Java UDFs ensures that the functions shown in this example remain
available after the Impala service (specifically, the Catalog Server) are restarted.

Related information:

User-Defined Functions (UDFs) on page 532 for more background information, usage instructions, and examples for
Impala UDFs; DROP FUNCTION Statement on page 270

CREATE ROLE Statement (CDH 5.2 or higher only)

The CREATE ROLE statement creates a role to which privileges can be granted. Privileges can be granted to roles,
which can then be assigned to users. A user that has been assigned a role will only be able to exercise the privileges
of that role. Only users that have administrative privileges can create/drop roles. By default, the hi ve, i npal a and
hue users have administrative privileges in Sentry.

Syntax:
CREATE ROLE rol e_nane

Required privileges:

Only administrative users (those with ALL privileges on the server, defined in the Sentry policy file) can use this
statement.
Compatibility:

Impala makes use of any roles and privileges specified by the GRANT and REVOKE statements in Hive, and Hive makes
use of any roles and privileges specified by the GRANT and REVOKE statements in Impala. The Impala GRANT and REVOKE
statements for privileges do not require the ROLE keyword to be repeated before each role name, unlike the equivalent
Hive statements.

Cancellation: Cannot be cancelled.

HDFS permissions: This statement does not touch any HDFS files or directories, therefore no HDFS permissions are
required.

Related information:

Enabling Sentry Authorization for Impala on page 92, GRANT Statement (CDH 5.2 or higher only) on page 280, REVOKE
Statement (CDH 5.2 or higher only) on page 300, DROP ROLE Statement (CDH 5.2 or higher only) on page 272, SHOW
Statement on page 370

CREATE TABLE Statement
Creates a new table and specifies its characteristics. While creating a table, you optionally specify aspects such as:

e Whether the table is internal or external.

e The columns and associated data types.

e The columns used for physically partitioning the data.
¢ The file format for data files.

e The HDFS directory where the data files are located.

Syntax:
The general syntax for creating a table and specifying its columns is as follows:

Explicit column definitions:

CREATE [EXTERNAL] TABLE [IF NOT EXI STS] [db_nane.]tabl e_name
(col _name data_type
[COMMENT ' col _comment ']

[...

PARTI TI ONED BY (col _name data_type [COMENT 'col _comrent'], ...)]
SORT BY ([colum [, colum ...]])]

COWMENT ' tabl e_conment ']

ROW FORMAT row_f or mat]

W TH SERDEPROPERTI ES (' keyl' =" val uel', 'key2'="value2', ...)]
STORED AS file_format]

LOCATI ON ' hdfs_pat h']

CACHED I N ' pool _nane' [W TH REPLI CATION = integer] | UNCACHED]
TBLPROPERTI ES (' keyl' =" val uel', 'key2'='"value2', ...)]

CREATE TABLE AS SELECT:

CREATE [EXTERNAL] TABLE [I F NOT EXI STS] db_nane.]tabl e_nane
[PARTI TI ONED BY (col _name[, ...]
[SORT BY ([colum [, colum ...]])]
[COMWENT ' tabl e_conment ']
+ [ROW FORMAT r ow_f or mat]
[WTH SERDEPROPERTI ES (' keyl' ='val uel', 'key2' ='value2', ...)]
+ [STORED AS ctas_file_format]
[LOCATI ON ' hdf s_pat h']
+ [CACHED I N ' pool _nanme' [W TH REPLI CATION = integer] | UNCACHED]
[TBLPROPERTI ES (' keyl' ='val uel', 'key2'='value2', 1
AS
sel ect _st at enent

E,i Note: If creating a partitioned table, the partition key columns must be listed last in the SELECT
columns list, in the same order as in the PARTI TI ONED BY clause. Otherwise, you will receive an

error about a column name mismatch.

primtive_type:
TI NYI NT
SMALLI NT

I NT

Bl G NT
BOCOLEAN
FLOAT
DOUBLE
DECI MAL
STRI NG
CHAR
VARCHAR
TI MESTAMP

conpl ex_type:
struct_type

| array_type

| map_type

struct _type: STRUCT < name : primtive_or_conplex_type [COMENT 'comrent_string'],
>

array_type: ARRAY < primtive_or_conplex_type >
map_type: MAP < primtive_type, primtive_or_conplex_type >

row_format:
DELI M TED [FI ELDS TERM NATED BY ' char' [ESCAPED BY ' char']]
[LI NES TERM NATED BY ' char']

file_format:
PARQUET
| TEXTFI LE
| AVRO
| SEQUENCEFI LE
| RCFILE

ctas_file_format:

PARQUET
| TEXTFILE

Column definitions inferred from data file:

CREATE [EXTERNAL] TABLE [IF NOT EXI STS] [db_nane.]tabl e_nane
LI KE PARQUET ' hdfs_pat h_of _parquet _file'
PARTI TI ONED BY (col _name data_type [COMMENT 'col _comrent'], ...)]
SORT BY ([colum [, colum ...]])]
COWMMENT 'tabl e_conment ']
ROW FORMAT row_f or mat]
W TH SERDEPROPERTI ES (' keyl' =" val uel', 'key2'="value2', ...)]
STORED AS file_format]
LOCATI ON ' hdfs_pat h']
CACHED I N ' pool _nane' [W TH REPLI CATI ON = integer] | UNCACHED]
TBLPROPERTI ES (' keyl' ="' val uel', 'key2'="value2', ...)]
data_type:
prinmtive_type
array_type
map_t ype
struct_type

Kudu tables:

CREATE TABLE [I F NOT EXI STS] [db_nane.]tabl e_nane
(col _name data_type
[kudu_colum_attribute ...]
[COMVENT ' col _comment ']

{i:’Ri iviA]RY KEY (col _nane[, ...])]

)

[PARTI TI ON BY kudu_partition_cl ause]

[COMVENT ' tabl e_comrent ']

STORED AS KUDU

[TBLPROPERTI ES (' keyl' ='val uel', 'key2'='"value2', ...)]

Kudu column attributes:

PRI MARY KEY
| [NOT] NULL
| ENCODI NG codec
| COWPRESSI ON al gorithm
| DEFAULT const ant
| BLOCK_SI ZE nunber

kudu_partition_clause:

kudu_partition_clause ::=[hash_clause [, ...]] [, range_cl ause]

hash_cl ause ::=
HASH [(pk_col [, ...])]
PARTI TI ONS n

range_cl ause :: =
RANGE [(pk_col [, ...])]

PARTI TI ON const ant _expressi on range_conpari son_operat or VALUES
range_conpari son_oper at or constant _expressi on
| PARTITI ON VALUE = constant _expression_or_tuple

}
[...
)

range_conpari son_operator ::={ < | <=}

External Kudu tables:

CREATE EXTERNAL TABLE [IF NOT EXI STS] [db_nane.]tabl e_nane
[COMMVENT 'tabl e_coment']
STORED AS KUDU
[TBLPROPERTI ES (' kudu. tabl e_nane' =" i nternal _kudu_nane')]

CREATE TABLE AS SELECT for Kudu tables:

CREATE TABLE [I F NOT EXI STS] db_nane.]tabl e_name

[PRI MARY KEY (col _nare[, ...])]

[PARTI TI ON BY kudu_partition_cl ause]

[COWWENT ' tabl e_conment']

STORED AS KUDU

[TBLPROPERTI ES (' keyl' ='val uel', 'key2'='value2', ...)]
AS

sel ect _st at enent

Statement type: DDL
Column definitions:
Depending on the form of the CREATE TABLE statement, the column definitions are required or not allowed.

With the CREATE TABLE AS SELECT and CREATE TABLE LI KE syntax, you do not specify the columns at all; the
column names and types are derived from the source table, query, or data file.

With the basic CREATE TABLE syntax, you must list one or more columns, its name, type, and optionally a comment,
in addition to any columns used as partitioning keys. There is one exception where the column list is not required:
when creating an Avro table with the STORED AS AVROclause, you can omit the list of columns and specify the same
metadata as part of the TBLPROPERTI ES clause.

Complex type considerations:

The Impala complex types (STRUCT, ARRAY, or MAP) are available in CDH 5.5 / Impala 2.3 and higher. Because you can
nest these types (for example, to make an array of maps or a struct with an array field), these types are also sometimes
referred to as nested types. See Complex Types (CDH 5.5 or higher only) on page 146 for usage details.

Impala can create tables containing complex type columns, with any supported file format. Because currently Impala
can only query complex type columns in Parquet tables, creating tables with complex type columns and other file
formats such as text is of limited use. For example, you might create a text table including some columns with complex
types with Impala, and use Hive as part of your to ingest the nested type data and copy it to an identical Parquet table.
Or you might create a partitioned table containing complex type columns using one file format, and use ALTER TABLE
to change the file format of individual partitions to Parquet; Impala can then query only the Parquet-format partitions
in that table.

Partitioned tables can contain complex type columns. All the partition key columns must be scalar types.

Internal and external tables (EXTERNAL and LOCATION clauses):

|)I

By default, Impala creates an “internal” table, where Impala manages the underlying data files for the table, and
physically deletes the data files when you drop the table. If you specify the EXTERNAL clause, Impala treats the table
as an “external” table, where the data files are typically produced outside Impala and queried from their original
locations in HDFS, and Impala leaves the data files in place when you drop the table. For details about internal and
external tables, see Overview of Impala Tables on page 203.

Typically, for an external table you include a LOCATI ONclause to specify the path to the HDFS directory where Impala
reads and writes files for the table. For example, if your data pipeline produces Parquet files in the HDFS directory
/user/etl/destination, you might create an external table as follows:

CREATE EXTERNAL TABLE external _parquet (cl INT, c2 STRING c¢3 TI MESTAWP)
STORED AS PARQUET LOCATION '/user/etl/destination';

Although the EXTERNAL and LOCATI ONclauses are often specified together, LOCATI ONis optional for external tables,
and you can also specify LOCATI ON for internal tables. The difference is all about whether Impala “takes control” of

the underlying data files and moves them when you rename the table, or deletes them when you drop the table. For
more about internal and external tables and how they interact with the LOCATI ON attribute, see Overview of Impala
Tables on page 203.

Partitioned tables (PARTITIONED BY clause):

The PARTI TI ONED BY clause divides the data files based on the values from one or more specified columns. Impala
queries can use the partition metadata to minimize the amount of data that is read from disk or transmitted across
the network, particularly during join queries. For details about partitioning, see Partitioning for Impala Tables on page
640.

E,i Note:

All Kudu tables require partitioning, which involves different syntax than non-Kudu tables. See the
PARTI TI ON BY clause, rather than PARTI TI ONED BY, for Kudu tables.

In CDH 5.13 / Impala 2.10 and higher, the PARTI TI ON BY clause is optional for Kudu tables. If the
clause is omitted, Impala automatically constructs a single partition that is not connected to any
column. Because such a table cannot take advantage of Kudu features for parallelized queries and
query optimizations, omitting the PARTI TI ON BY clause is only appropriate for small lookup tables.

Prior to CDH 5.7 / Impala 2.5, you could use a partitioned table as the source and copy data from it, but could not
specify any partitioning clauses for the new table. In CDH 5.7 / Impala 2.5 and higher, you can now use the PARTI TI ONED
BY clause with a CREATE TABLE AS SELECT statement. See the examples under the following discussion of the
CREATE TABLE AS SELECT syntax variation.

Sorted tables (SORT BY clause):

The optional SORT BY clause lets you specify zero or more columns that are sorted in the data files created by each
Impala | NSERT or CREATE TABLE AS SELECT operation. Creating data files that are sorted is most useful for Parquet
tables, where the metadata stored inside each file includes the minimum and maximum values for each column in the
file. (The statistics apply to each row group within the file; for simplicity, Impala writes a single row group in each file.)
Grouping data values together in relatively narrow ranges within each data file makes it possible for Impala to quickly
skip over data files that do not contain value ranges indicated in the WHERE clause of a query, and can improve the
effectiveness of Parquet encoding and compression.

This clause is not applicable for Kudu tables or HBase tables. Although it works for other HDFS file formats besides
Parquet, the more efficient layout is most evident with Parquet tables, because each Parquet data file includes statistics
about the data values in that file.

The SORT BY columns cannot include any partition key columns for a partitioned table, because those column values
are not represented in the underlying data files.

Because data files can arrive in Impala tables by mechanisms that do not respect the SORT BY clause, such as LOAD
DATA or ETL tools that create HDFS files, Impala does not guarantee or rely on the data being sorted. The sorting aspect
is only used to create a more efficient layout for Parquet files generated by Impala, which helps to optimize the
processing of those Parquet files during Impala queries. During an | NSERT or CREATE TABLE AS SELECT operation,
the sorting occurs when the SORT BY clause applies to the destination table for the data, regardless of whether the
source table has a SORT BY clause.

For example, when creating a table intended to contain census data, you might define sort columns such as last name
and state. If a data file in this table contains a narrow range of last names, for example from Smi t h to Syt he, Impala
can quickly detect that this data file contains no matches for a WHERE clause such as WHERE | ast _nanme = ' Jones'

and avoid reading the entire file.

CREATE TABLE census_data (last_nane STRING first_nane STRING state STRING address
STRI NG

SORT BY (| ast_nane, state)

STORED AS PARQUET,;

Likewise, if an existing table contains data without any sort order, you can reorganize the data in a more efficient way
by using | NSERT or CREATE TABLE AS SELECT to copy that data into a new table with a SORT BY clause:

CREATE TABLE sorted census_data
SORT BY (| ast_nane, state)
STORED AS PARQUET
AS SELECT | ast_nane, first_name, state, address
FROM unsorted _census_dat a;

The metadata for the SORT BY clause is stored in the TBLPROPERTI ES fields for the table. Other SQL engines that
can interoperate with Impala tables, such as Hive and Spark SQL, do not recognize this property when inserting into a
table that has a SORT BY clause.

Kudu considerations:

Because Kudu tables do not support clauses related to HDFS and S3 data files and partitioning mechanisms, the syntax
associated with the STORED AS KUDU clause is shown separately in the above syntax descriptions. Kudu tables have
their own syntax for CREATE TABLE, CREATE EXTERNAL TABLE, and CREATE TABLE AS SELECT. Prior to CDH
5.13 / Impala 2.10, all internal Kudu tables require a PARTI TI ON BY clause, different than the PARTI TI ONED BY
clause for HDFS-backed tables.

Here are some examples of creating empty Kudu tables:

-- Single partition. Only for CDH 5.13 / Inpala 2.10 and hi gher.
-- Only suitable for small | ookup tables.
CREATE TABLE kudu_no_partition_by_cl ause

id bigint PRIMARY KEY, s STRING b BOOLEAN
)
STORED AS KUDU,

-- Single-colum primary key.
CREATE TABLE kudu_t1 (id BIG NT PRI MARY key, s STRING b BOOLEAN)
PARTI TI ON BY HASH (i d) PARTITIONS 20 STORED AS KUDY;

-- Miulti-colum primry key.
CREATE TABLE kudu_t2 (id BIG NT, s STRING b BOOLEAN, PRI MARY KEY (id,s))
PARTI TI ON BY HASH (s) PARTI TIONS 30 STORED AS KUDY,

-- Meaningful primary key colum is good for range partitioning.
CREATE TABLE kudu_t3 (id BIG NT, year INT, s STRING
b BOOLEAN, PRI MARY KEY (i d,year))
PARTI TI ON BY HASH (i d) PARTITIONS 20,
RANGE (year) (PARTITION 1980 <= VALUES < 1990,
PARTI TI ON 1990 <= VALUES < 2000,
PARTI TI ON VALUE = 2001,
PARTI TI ON 2001 < VALUES)
STORED AS KUDU,

Here is an example of creating an external Kudu table:

-- Inherits colum definitions fromoriginal table.
-- For tables created through Inpala, the kudu.tabl e_nanme property
-- conmes from DESCRI BE FORMATTED out put fromthe original table.
CREATE EXTERNAL TABLE external _t1 STORED AS KUDU

TBLPROPERTI ES (' kudu. t abl e_nane' =" kudu_t bl _created_via_api');

Here is an example of CREATE TABLE AS SELECT syntax for a Kudu table:

-- The CTAS statenent defines the primary key and partitioning schene.
-- The rest of the columm definitions are derived fromthe select |ist.
CREATE TABLE ctas_t1

PRI MARY KEY (id) PARTITION BY HASH (id) PARTITIONS 10

STORED AS KUDU
AS SELECT id, s FROM kudu_t 1;

The following CREATE TABLE clauses are not supported for Kudu tables:

e PARTI TI ONED BY (Kudu tables use the clause PARTI TI ON BY instead)
e LOCATI ON

e RONFORVAT

e CACHED I N | UNCACHED

e W TH SERDEPROPERTI ES

For more on the PRI MARY KEY clause, see Primary Key Columns for Kudu Tables on page 686 and PRIMARY KEY Attribute
on page 687.

For more on creating a Kudu table with a specific replication factor, see Kudu Replication Factor on page 686.

For more on the NULL and NOT NULL attributes, see NULL | NOT NULL Attribute on page 688.

For more on the ENCODI NGattribute, see ENCODING Attribute on page 689.

For more on the COMPRESSI ON attribute, see COMPRESSION Attribute on page 690.

For more on the DEFAULT attribute, see DEFAULT Attribute on page 688.

For more on the BLOCK_SI ZE attribute, see BLOCK SIZE Attribute on page 690.

Partitioning for Kudu tables (PARTITION BY clause)

For Kudu tables, you specify logical partitioning across one or more columns using the PARTI TI ON BY clause. In
contrast to partitioning for HDFS-based tables, multiple values for a partition key column can be located in the same
partition. The optional HASH clause lets you divide one or a set of partition key columns into a specified number of
buckets. You can use more than one HASHclause, specifying a distinct set of partition key columns for each. The optional
RANGE clause further subdivides the partitions, based on a set of comparison operations for the partition key columns.

Here are some examples of the PARTI TI ON BY HASH syntax:

-- Apply hash function to 1 primary key col um.

create table hash_t1l (x bigint, y bigint, s string, primary key (x,y))
partition by hash (x) partitions 10
stored as kudu;

-- Apply hash function to a different prinmary key col um.

create table hash_t2 (x bigint, y bigint, s string, primary key (x,y))
partition by hash (y) partitions 10
stored as kudu;

-- Apply hash function to both primary key col ums.

-- In this case, the total nunber of partitions is 10.

create table hash_t3 (x bigint, y bigint, s string, primary key (x,y))
partition by hash (x,y) partitions 10
stored as kudu;

-- When the colum list is onmtted, apply hash function to all primary key col ums.
create table hash_t4 (x bigint, y bigint, s string, primary key (x,y))

partition by hash partitions 10

stored as kudu;

-- Hash the X val ues independently fromthe Y val ues.

-- In this case, the total nunmber of partitions is 10 x 20.

create table hash_t5 (x bigint, y bigint, s string, primary key (x,y))
partition by hash (x) partitions 10, hash (y) partitions 20
stored as kudu;

Here are some examples of the PARTI TI ON BY RANGE syntax:

-- Create partitions that cover every possible value of X

-- Ranges that span nultiple values use the keyword VALUES bet ween

-- a pair of < and <= conpari sons.

create table range_t1 (x bigint, s string, s2 string, primary key (x, s))
partition by range (x)

partition 0 <= values <= 49, partition 50 <= val ues <= 100,
partition values < 0, partition 100 < val ues

stored as kudu;
-- Create partitions that cover sone possible values of X
-- Val ues outside the covered range(s) are rejected.
-- New range partitions can be added through ALTER TABLE.
create table range_t2 (x bigint, s string, s2 string, primary key (x, s))
partition by range (x)
partition 0 <= values <= 49, partition 50 <= values <= 100
stored as kudu;
-- A range can al so specify a single specific value, using the keyword VALUE
-- with an = conpari son.
create table range_t3 (x bigint, s string, s2 string, primary key (x, s))
partition by range (s)
partition value = 'Yes', partition value = 'No', partition value = 'Maybe'
)
stored as kudu;
-- Using nultiple colums in the RANGE cl ause and tuples inside the partition spec
-- only works for partitions specified with the VALUE= synt ax.
create table range_t4 (x bigint, s string, s2 string, primary key (x, s))
partition by range (x,s)

partition value = (0,'zero'), partition value = (1,'one'), partition value =
(2,"two")

stored as kudu;
Here are some examples combining both HASH and RANGE syntax for the PARTI TI ON BY clause:

-- Val ues fromeach range partition are hashed into 10 associ ated buckets.

-- Total nunber of partitions in this case is 10 x 2.

create table conbined_tl1l (x bigint, s string, s2 string, primary key (X, S))
partition by hash (x) partitions 10, range (Xx)

partition 0 <= values <= 49, partition 50 <= values <= 100
)
stored as kudu;
-- The hash partitioning and range partitioning can apply to different col umms.
-- But all the columms used in either partitioning schene nmust be fromthe primary key.
create table conbined t2 (x bigint, s string, s2 string, primary key (x, s))
partition by hash (s) partitions 10, range (