
Apache Kafka Guide

Important Notice
© 2010-2021 Cloudera, Inc. All rights reserved.

Cloudera, the Cloudera logo, and any other product or
service names or slogans contained in this document are trademarks of Cloudera and
its suppliers or licensors, and may not be copied, imitated or used, in whole or in part,
without the prior written permission of Cloudera or the applicable trademark holder. If
this documentation includes code, including but not limited to, code examples, Cloudera
makes this available to you under the terms of the Apache License, Version 2.0, including
any required notices. A copy of the Apache License Version 2.0, including any notices,
is included herein. A copy of the Apache License Version 2.0 can also be found here:
https://opensource.org/licenses/Apache-2.0

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software
Foundation. All other trademarks, registered trademarks, product names and company
names or logosmentioned in this document are the property of their respective owners.
Reference to any products, services, processes or other information, by trade name,
trademark, manufacturer, supplier or otherwise does not constitute or imply
endorsement, sponsorship or recommendation thereof by us.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this documentmay be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Cloudera.

Cloudera may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subjectmatter in this document. Except as expressly
provided in anywritten license agreement fromCloudera, the furnishing of this document
does not give you any license to these patents, trademarks copyrights, or other
intellectual property. For information about patents covering Cloudera products, see
http://tiny.cloudera.com/patents.

The information in this document is subject to change without notice. Cloudera shall
not be liable for any damages resulting from technical errors or omissions which may
be present in this document, or from use of this document.

Cloudera, Inc.
395 Page Mill Road
Palo Alto, CA 94306
info@cloudera.com
US: 1-888-789-1488
Intl: 1-650-362-0488
www.cloudera.com

Release Information

Version: CDH 6.0.x
Date: August 2, 2021

Table of Contents

Apache Kafka Guide...8
Ideal Publish-Subscribe System..8

Kafka Architecture..8
Topics...9

Brokers...9

Records..10

Partitions..10

Record Order and Assignment...11

Logs and Log Segments..12

Kafka Brokers and ZooKeeper..13

Kafka Setup..15
Hardware Requirements..15
Brokers...15

ZooKeeper..15

Kafka Performance Considerations..16

Operating System Requirements..16
SUSE Linux Enterprise Server (SLES)...16

Kernel Limits ..16

Kafka in Cloudera Manager..17

Kafka Clients..18
Commands for Client Interactions..18

Kafka Producers..19

Kafka Consumers..20
Subscribing to a topic...20

Groups and Fetching..21

Protocol between Consumer and Broker...21

Rebalancing Partitions...23

Consumer Configuration Properties...24

Retries..24

Kafka Clients and ZooKeeper..24

Kafka Brokers...26

Single Cluster Scenarios...26
Leader Positions...26

In-Sync Replicas..27

Topic Configuration..27
Topic Creation..28

Topic Properties...28

Partition Management...28
Partition Reassignment..29

Adding Partitions...29

Choosing the Number of Partitions..29

Controller...29

Kafka Integration..31
Kafka Security...31
Client-Broker Security with TLS..31

Using Kafka’s Inter-Broker Security..34

Enabling Kerberos Authentication...35

Enabling Encryption at Rest...36

Topic Authorization with Kerberos and Sentry...37

Managing Multiple Kafka Versions...41
Kafka Feature Support in Cloudera Manager and CDH..41

Client/Broker Compatibility Across Kafka Versions..41

Upgrading your Kafka Cluster..42

Managing Topics across Multiple Kafka Clusters..43
Consumer/Producer Compatibility...44

Topic Differences between Clusters..44

Optimize Mirror Maker Producer Location..44

Destination Cluster Configuration..44

Kerberos and Mirror Maker...45

Setting up Mirror Maker in Cloudera Manager...45

Setting up an End-to-End Data Streaming Pipeline..45
Data Streaming Pipeline..45

Ingest Using Kafka with Apache Flume..46

Using Kafka with Apache Spark Streaming for Stream Processing..53

Developing Kafka Clients..54
Simple Client Examples..54

Moving Kafka Clients to Production...57

Kafka Metrics..59
Metrics Categories...59

Viewing Metrics...59

Building Cloudera Manager Charts with Kafka Metrics...60

Kafka Administration..61
Kafka Administration Basics...61
Broker Log Management...61

Record Management...61

Broker Garbage Log Collection and Log Rotation..62

Adding Users as Kafka Administrators...62

Migrating Brokers in a Cluster..62
Using rsync to Copy Files from One Broker to Another..63

Setting User Limits for Kafka..63

Quotas..63
Setting Quotas...64

Kafka Administration Using Command Line Tools..64
Unsupported Command Line Tools...64

Notes on Kafka CLI Administration...65

kafka-topics..66

kafka-configs..66

kafka-console-consumer..66

kafka-console-producer...67

kafka-consumer-groups...67

kafka-reassign-partitions...67

kafka-log-dirs...71

zookeeper-security-migration..72

kafka-delegation-tokens..73

kafka-*-perf-test..73

Enabling DEBUG or TRACE in command line scripts..74

Understanding the kafka-run-class Bash Script...74

Disk Management..74
Monitoring...74

Handling Disk Failures..75

Reassigning Replicas Between Log Directories ...76

Retrieving Log Directory Replica Assignment Information...76

JBOD...76
JBOD Setup and Migration...76

Kafka Delegation Tokens...79
Delegation Token Basics...80

Broker Configuration Settings..80

Enable Authentication with Delegation Tokens...81

Managing Individual Delegation Tokens..81

Rotating the Master Key/Secret...82

Client Authentication using Delegation Tokens..83

Kafka Security Hardening with Zookeeper ACLs ..84

Kafka Performance Tuning..86
Tuning Brokers..86

Tuning Producers..86

Tuning Consumers..87

Mirror Maker Performance..87

Kafka Tuning: Handling Large Messages...87

Kafka Cluster Sizing..88
Cluster Sizing - Network and Disk Message Throughput...88

Choosing the Number of Partitions for a Topic..89

Kafka Performance Broker Configuration...91
JVM and Garbage Collection..91

Network and I/O Threads..91

ISR Management...91

Log Cleaner..92

Kafka Performance: System-Level Broker Tuning...92
File Descriptor Limits..92

Filesystems...93

Virtual Memory Handling..93

Networking Parameters...93

Configuring JMX Ephemeral Ports...93

Kafka-ZooKeeper Performance Tuning...94

Kafka Reference...95
Metrics Reference..95

Useful Shell Command Reference..170
Hardware Information...170

Disk Space..170

I/O Activity and Utilization...170

File Descriptor Usage...171

Network Ports, States, and Connections..171

Process Information...171

Kernel Configuration..171

Kafka Public APIs..172

Kafka Frequently Asked Questions...173
Basics..173

Use Cases...175

References..181

Appendix: Apache License, Version 2.0...182

Apache Kafka Guide

Apache Kafka is a streaming message platform. It is designed to be high performance, highly available, and redundant.
Examples of applications that can use such a platform include:

• Internet of Things. TVs, refrigerators, washing machines, dryers, thermostats, and personal health monitors can
all send telemetry data back to a server through the Internet.

• Sensor Networks. Areas (farms, amusement parks, forests) and complex devices (engines) can be designed with
an array of sensors to track data or current status.

• Positional Data.Delivery trucks ormassivelymultiplayer online games can send location data to a central platform.
• Other Real-Time Data. Satellites and medical sensors can send information to a central area for processing.

Ideal Publish-Subscribe System
The ideal publish-subscribe system is straight-forward: Publisher A’s messages must make their way to Subscriber A,
Publisher B’s messages must make their way to Subscriber B, and so on.

Figure 1: Ideal Publish-Subscribe System

An ideal system has the benefit of:

• Unlimited Lookback. A new Subscriber A1 can read Publisher A’s stream at any point in time.
• Message Retention. No messages are lost.
• Unlimited Storage. The publish-subscribe system has unlimited storage of messages.
• No Downtime. The publish-subscribe system is never down.
• Unlimited Scaling. The publish-subscribe system can handle any number of publishers and/or subscribers with

constant message delivery latency.

Now let's see how Kafka’s implementation relates to this ideal system.

Kafka Architecture
As is the case with all real-world systems, Kafka's architecture deviates from the ideal publish-subscribe system. Some
of the key differences are:

• Messaging is implemented on top of a replicated, distributed commit log.
• The client has more functionality and, therefore, more responsibility.
• Messaging is optimized for batches instead of individual messages.
• Messages are retained even after they are consumed; they can be consumed again.

The results of these design decisions are:

• Extreme horizontal scalability
• Very high throughput
• High availability
• but, different semantics and message delivery guarantees

8 | Apache Kafka Guide

Apache Kafka Guide

The next few sections provide an overview of some of the more important parts, while later section describe design
specifics and operations in greater detail.

Topics

In the ideal system presented above, messages from one publisher would somehow find their way to each subscriber.
Kafka implements the concept of a topic. A topic allows easy matching between publishers and subscribers.

Figure 2: Topics in a Publish-Subscribe System

A topic is a queue of messages written by one or more producers and read by one or more consumers. A topic is
identified by its name. This name is part of a global namespace of that Kafka cluster.

Specific to Kafka:

• Publishers are called producers.
• Subscribers are called consumers.

As each producer or consumer connects to the publish-subscribe system, it can read from or write to a specific topic.

Brokers

Kafka is a distributed system that implements the basic features of the ideal publish-subscribe system described above.
Each host in the Kafka cluster runs a server called a broker that stores messages sent to the topics and serves consumer
requests.

Apache Kafka Guide | 9

Apache Kafka Guide

Figure 3: Brokers in a Publish-Subscribe System

Kafka is designed to run onmultiple hosts, with one broker per host. If a host goes offline, Kafka does its best to ensure
that the other hosts continue running. This solves part of the “No Downtime” and “Unlimited Scaling” goals from the
ideal publish-subscribe system.

Kafka brokers all talk to Zookeeper for distributed coordination, additional help for the "Unlimited Scaling" goal from
the ideal system.

Topics are replicated across brokers. Replication is an important part of “No Downtime,” “Unlimited Scaling,” and
“Message Retention” goals.

There is one broker that is responsible for coordinating the cluster. That broker is called the controller.

Asmentioned earlier, an ideal topic behaves as a queue ofmessages. In reality, having a single queue has scaling issues.
Kafka implements partitions for adding robustness to topics.

Records

In Kafka, a publish-subscribe message is called a record. A record consists of a key/value pair and metadata including
a timestamp. The key is not required, but can be used to identify messages from the same data source. Kafka stores
keys and values as arrays of bytes. It does not otherwise care about the format.

The metadata of each record can include headers. Headers may store application-specific metadata as key-value pairs.
In the context of the header, keys are strings and values are byte arrays.

For specific details of the record format, see the Record definition in the Apache Kafka documentation.

Partitions

Instead of all records handled by the system being stored in a single log, Kafka divides records into partitions. Partitions
can be thought of as a subset of all the records for a topic. Partitions help with the ideal of “Unlimited Scaling”.

Records in the same partition are stored in order of arrival.

When a topic is created, it is configured with two properties:

10 | Apache Kafka Guide

Apache Kafka Guide

http://kafka.apache.org/documentation/#record

partition count

The number of partitions that records for this topic will be spread among.

replication factor

The number of copies of a partition that are maintained to ensure consumers always have access to the queue of
records for a given topic.

Each topic has one leader partition. If the replication factor is greater than one, there will be additional follower
partitions. (For the replication factor = M, there will be M-1 follower partitions.)

Any Kafka client (a producer or consumer) communicates only with the leader partition for data. All other partitions
exist for redundancy and failover. Follower partitions are responsible for copying new records from their leader
partitions. Ideally, the follower partitions have an exact copy of the contents of the leader. Such partitions are called
in-sync replicas (ISR).

With N brokers and topic replication factor M, then

• If M < N, each broker will have a subset of all the partitions
• If M = N, each broker will have a complete copy of the partitions

In the following illustration, there are N = 2 brokers and M = 2 replication factor. Each producer may generate records
that are assigned across multiple partitions.

Figure 4: Records in a Topic are Stored in Partitions, Partitions are Replicated across Brokers

Partitions are the key to keeping good record throughput. Choosing the correct number of partitions and partition
replications for a topic

• Spreads leader partitions evenly on brokers throughout the cluster
• Makes partitions within the same topic are roughly the same size.
• Balances the load on brokers.

Record Order and Assignment

By default, Kafka assigns records to a partitions round-robin. There is no guarantee that records sent to multiple
partitions will retain the order in which they were produced. Within a single consumer, your program will only have
record ordering within the records belonging to the same partition. This tends to be sufficient for many use cases, but
does add some complexity to the stream processing logic.

Tip: Kafka guarantees that records in the same partition will be in the same order in all replicas of that partition.

Apache Kafka Guide | 11

Apache Kafka Guide

If the order of records is important, the producer can ensure that records are sent to the same partition. The producer
can include metadata in the record to override the default assignment in one of two ways:

• The record can indicate a specific partition.
• The record can includes an assignment key.

The hash of the key and the number of partitions in the topic determines which partition the record is assigned
to. Including the same key in multiple records ensures all the records are appended to the same partition.

Logs and Log Segments

Within each topic, each partition in Kafka stores records in a log structured format. Conceptually, each record is stored
sequentially in this type of “log”.

Figure 5: Partitions in Log Structured Format

Note: These references to “log” should not be confused with where the Kafka broker stores their
operational logs.

In actuality, each partition does not keep all the records sequentially in a single file. Instead, it breaks each log into log
segments. Log segments can be defined using a size limit (for example, 1 GB), as a time limit (for example, 1 day), or
both. Administration around Kafka records often occurs at the log segment level.

Each of the partitions is broken into segments, with Segment N containing the most recent records and Segment 1
containing the oldest retained records. This is configurable on a per-topic basis.

12 | Apache Kafka Guide

Apache Kafka Guide

https://en.wikipedia.org/wiki/Log-structured_file_system

Figure 6: Partition Log Segments

Kafka Brokers and ZooKeeper

The broker, topic, and partition information are maintained in Zookeeper. In particular, the partition information,
including partition and replica locations, updates fairly frequently. Because of frequent metadata refreshes, the
connection between the brokers and the Zookeeper cluster needs to be reliable. Similarly, if the Zookeeper cluster has
other intensive processes running on it, that can add sufficient latency to the broker/Zookeeper interactions to cause
issues.

• Kafka Controller maintains leadership via Zookeeper (shown in orange)
• Kafka Brokers also store other relevant metadata in Zookeeper (also in orange)
• Kafka Partitions maintain replica information in Zookeeper (shown in blue)

Apache Kafka Guide | 13

Apache Kafka Guide

Figure 7: Broker/ZooKeeper Dependencies

14 | Apache Kafka Guide

Apache Kafka Guide

Kafka Setup

Hardware Requirements
Kafka can function on a fairly small amount of resources, especially with some configuration tuning. Out of the box
configurations can run on little as 1 core and 1 GB memory with storage scaled based on data retention requirements.
These are the defaults for both broker and Mirror Maker in Cloudera Manager version 6.x.

Brokers

Kafka requires a fairly small amount of resources, especially with some configuration tuning. By default, Kafka, can run
on as little as 1 core and 1GB memory with storage scaled based on requirements for data retention.

CPU is rarely a bottleneck because Kafka is I/O heavy, but amoderately-sized CPUwith enough threads is still important
to handle concurrent connections and background tasks.

Kafka brokers tend to have a similar hardware profile to HDFS data nodes. How you build them depends on what is
important for your Kafka use cases. Use the following guidelines:

Adjust these parameters:To affect performance of these features:

Disk sizeMessage Retention

Network capacityClient Throughput (Producer & Consumer)

Disk I/OProducer throughput

MemoryConsumer throughput

A common choice for a Kafka node is as follows:

DiskCPUMemory/Java HeapComponent

12- 24 coresBroker • 1 HDD For operating
system

• RAM: 64 GB
• Recommended Java

heap: 4 GB • 1 HDD for Zookeeper
dataLogDir

Set this value using the Java
Heap Size of Broker Kafka
configuration property.

• 10- HDDs, using Raid
10, for Kafka data

See Other Kafka Broker
Properties table.

No disk space needed on
MirrorMaker instance.

1 core per 3-4 streams1 GB heap

Set this value using the Java
Heap Size of MirrorMaker

MirrorMaker

Destination brokers should
have sufficient disk space to

Kafka configuration
property.

store the topics being copied
over.

Networking requirements: Gigabit Ethernet or 10 Gigabit Ethernet. Avoid clusters that span multiple data centers.

ZooKeeper

It is common to run ZooKeeper on 3 broker nodes that are dedicated for Kafka. However, for optimal performance
Cloudera recommends the usage of dedicated Zookeeper hosts. This is especially true for larger, production
environments.

Apache Kafka Guide | 15

Kafka Setup

https://www.cloudera.com/documentation/enterprise/6/properties/6.0/topics/cm_props_cdh600_kafka.html#concept_6.0.0_kafkabroker_props__section_other_props
https://www.cloudera.com/documentation/enterprise/6/properties/6.0/topics/cm_props_cdh600_kafka.html#concept_6.0.0_kafkabroker_props__section_other_props

Kafka Performance Considerations
The simplest recommendation for running Kafka with maximum performance is to have dedicated hosts for the Kafka
brokers and a dedicated ZooKeeper cluster for the Kafka cluster. If that is not an option, consider these additional
guidelines for resource sharing with the Kafka cluster:

Do not run in VMs

It is common practice in modern data centers to run processes in virtual machines. This generally allows for better
sharing of resources. Kafka is sufficiently sensitive to I/O throughput that VMs interfere with the regular operation
of brokers. For this reason, it is highly recommended to not use VMs for Kafka; if you are running Kafka in a virtual
environment you will need to rely on your VM vendor for help optimizing Kafka performance.

Do not run other processes with Brokers or ZooKeeper

Due to I/O contention with other processes, it is generally recommended to avoid running other such processes on
the same hosts as Kafka brokers.

Keep the Kafka-ZooKeeper Connection Stable

Kafka relies heavily on having a stable ZooKeeper connection. Putting an unreliable network between Kafka and
ZooKeeper will appear as if ZooKeeper is offline to Kafka. Examples of unreliable networks include:

• Do not put Kafka/ZooKeeper nodes on separated networks
• Do not put Kafka/ZooKeeper nodes on the same network with other high network loads

Operating System Requirements

SUSE Linux Enterprise Server (SLES)

Unlike CentOS, SLES limits virtual memory by default. Changing this default requires adding the following entries to
the /etc/security/limits.conf file:

* hard as unlimited
* soft as unlimited

Kernel Limits

There are three settings you must configure properly for the kernel.

• File Descriptors

You can set these in Cloudera Manager via Kafka > Configuration >Maximum Process File Descriptors. We
recommend a configuration of 100000 or higher.

• Max Memory Map

You must configure this in your specific kernel settings. We recommend a configuration of 32000 or higher.

• Max Socket Buffer Size

Set the buffer size larger than any Kafka send buffers that you define.

16 | Apache Kafka Guide

Kafka Setup

Kafka in Cloudera Manager

Cloudera Manager is the recommended way to administer your cluster, including administering Kafka. When you open
the Kafka service from Cloudera Manager, you see the following dashboard:

Figure 8: Kafka Service in Cloudera Manager

Apache Kafka Guide | 17

Kafka in Cloudera Manager

Kafka Clients

Kafka clients are created to read data from and write data to the Kafka system. Clients can be producers, which publish
content to Kafka topics. Clients can be subscribers, which read content from Kafka topics.

Commands for Client Interactions
Assuming you have Kafka running on your cluster, here are some commands that describe the typical steps you would
need to exercise Kafka functionality:

Create a topic

kafka-topics --create --zookeeper zkinfo --replication-factor 1 --partitions 1 --topic
 test

where the ZooKeeper connect string zkinfo is a comma-separated list of the Zookeeper nodes in host: port
format.

Validate the topic was created successfully

kafka-topics --list --zookeeper zkinfo

Produce messages

The following command can be used to publish a message to the Kafka cluster. After the command, each typed line
is a message that is sent to Kafka. After the last message, send an EOF or stop the command with Ctrl-D.

$ kafka-console-producer --broker-list kafkainfo --topic test
My first message.
My second message.
^D

where kafkainfo is a comma-separated list of the Kafka brokers in host:port format. Using more than one
makes sure that the command can find a running broker.

Consume messages

The following command can be used to subscribe to a message from the Kafka cluster.

kafka-console-consumer --bootstrap-server kafkainfo --topic test --from-beginning

The output shows the same messages that you entered during your producer.

Set a ZooKeeper root node

It’s possible to use a root node (chroot) for all Kafka nodes in ZooKeeper by setting a value for zookeeper.chroot
in Cloudera Manager. Append this value to the end of your ZooKeeper connect string.

Set chroot in Cloudera Manager:

zookeeper.chroot=/kafka

Form the ZooKeeper connect string as follows:

--zookeeper zkinfo/kafka

18 | Apache Kafka Guide

Kafka Clients

If you set chroot and then use only the host and port in the connect string, you'll see the following exception:

InvalidReplicationFactorException: replication factor: 3 larger than available brokers:
 0

Kafka Producers
Kafka producers are the publishers responsible for writing records to topics. Typically, this means writing a program
using the KafkaProducer API. To instantiate a producer:

KafkaProducer<String, String> producer = new
KafkaProducer<>(producerConfig);

Most of the important producer settings, and mentioned below, are in the configuration passed by this constructor.

Serialization of Keys and Values

For each producer, there are two serialization properties that must be set, key.serializer (for the key) and
value.serializer (for the value). You canwrite custom code for serialization or use one of the ones already provided
by Kafka. Some of the more commonly used ones are:

• ByteArraySerializer: Binary data
• StringSerializer: String representations

Managing Record Throughput

There are several settings to control how many records a producer accumulates before actually sending the data to
the cluster. This tuning is highly dependent on the data source. Some possibilities include:

• batch.size: Combine this fixed number of records before sending data to the cluster.
• linger.ms: Always wait at least this amount of time before sending data to the cluster; then send howevermany

records has accumulated in that time.
• max.request.size: Put an absolute limit on data size sent. This technique prevents network congestion caused

by a single transfer request containing a large amount of data relative to the network speed.
• compression.type: Enable compression of data being sent.
• retries: Enable the client for retries based on transient network errors. Used for reliability.

Acknowledgments

The full write path for records from a producer is to the leader partition and then to all of the follower replicas. The
producer can control which point in the path triggers an acknowledgment. Depending on the acks setting, the producer
may wait for the write to propagate all the way through the system or only wait for the earliest success point.

Valid acks values are:

• 0: Do not wait for any acknowledgment from the partition (fastest throughput).
• 1: Wait only for the leader partition response.
• all: Wait for follower partitions responses to meet minimum (slowest throughput).

Partitioning

In Kafka, the partitioner determines how records map to partitions. Use the mapping to ensure the order of records
within a partition and manage the balance of messages across partitions. The default partitioner uses the entire key
to determine which partition a message corresponds to. Records with the same key are always mapped to the same
partition (assuming the number of partitions does not change for a topic). Consider writing a custom partitioner if you
have information about how your records are distributed that can produce more efficient load balancing across
partitions. A custom partitioner lets you take advantage of the other data in the record to control partitioning.

Apache Kafka Guide | 19

Kafka Clients

If a partitioner is not provided to the KafkaProducer, Kafka uses a default partitioner.

The ProducerRecord class is the actual object processed by the KafkaProducer. It takes the following parameters:

• Kafka Record: The key and value to be stored.
• Intended Destination: The destination topic and the specific partition (optional).

Kafka Consumers
Kafka consumers are the subscribers responsible for reading records fromone ormore topics and one ormore partitions
of a topic. Consumers subscribing to a topic can happen manually or automatically; typically, this means writing a
program using the KafkaConsumer API.

To instantiate a consumer:

KafkaConsumer<String, String> kafkaConsumer = new
KafkaConsumer<>(consumerConfig);

The KafkaConsumer class has two generic type parameters. Just as producers can send data (the values) with keys,
the consumer can read data by keys. In this example both the keys and values are strings. If you define different types,
you need to define a deserializer to accommodate the alternate types. For deserializers you need to implement the
org.apache.kafka.common.serialization.Deserializer interface.

The most important configuration parameters that we need to specify are:

• bootstrap.servers: A list of brokers to initially connect to. List 2 to 3 brokers; you don't needed to list the full
cluster.

• group.id: Every consumer belongs to a group. That way they’ll share the partitions of a topic.
• key.deserializer/value.deserializer: Specify how to convert the Java representation to a sequence of

bytes to send data through the Kafka protocol.

Subscribing to a topic

Subscribing to a topic using the subscribe()method call:

kafkaConsumer.subscribe(Collections.singletonList(topic), rebalanceListener);

Here we specify a list of topics that we want to consume from and a 'rebalance listener.' Rebalancing is an important
part of the consumer's life. Whenever the cluster or the consumers’ state changes, a rebalance will be issued. This will
ensure that all the partitions are assigned to a consumer.

After subscribing to a topic, the consumer polls to see if there are new records:

while (true) {
 data = kafkaConsumer.poll();
 // do something with 'data'
}

The poll returns multiple records that can be processed by the client. After processing the records the client commits
offsets synchronously, thus waiting until processing completes before continuing to poll.

The last important point is to save the progress. This can be done by thecommitSync() andcommitAsync() methods
respectively.

PLACEHOLDER FOR CODE SNIPPET

Auto commit is not recommended; manual commit is appropriate in the majority of use cases.

20 | Apache Kafka Guide

Kafka Clients

Groups and Fetching

Kafka consumers are usually assigned to a group. This happens statically by setting the group.id configuration property
in the consumer configuration. Consuming with groups will result in the consumers balancing the load in the group.
That means each consumer will have their fair share of partitions. Also it can never be more consumers than partitions
as that way there would be idling consumers.

As shown in the figure below, both consumer groups share the partitions and each partition multicasts messages to
both consumer groups. The consumers pull messages from the broker instead of the broker periodically pushing what
is available. This helps the consumer as it won’t be overloaded and it can query the broker at its own speed. Furthermore,
to avoid tight looping, it uses a so called “long-poll”. The consumer sends a fetch request to poll for data and receives
a reply only when enough data accumulates on the broker.

Figure 9: Consumer Groups and Fetching from Partitions

Protocol between Consumer and Broker

This section details how the protocol works, what messages are going on the wire and how that contributes to the
overall behavior of the consumer. When discussing the internals of the consumers, there are a couple of basic terms
to know:

Heartbeat

When the consumer is alive and is part of the consumer group, it sends heartbeats. These are short periodicmessages
that tell the brokers that the consumer is alive and everything is fine.

Session

Often one missing heartbeat is not a big deal, but how do you know if a consumer is not sending heartbeats for
long enough to indicate a problem? A session is such a time interval. If the consumer didn’t send any heartbeats
for longer than the session, the broker can consider the consumer dead and remove it from the group.

Coordinator

The special broker which manages the group on the broker side is called the coordinator. The coordinator handles
heartbeats and assigns the leader. Every group has a coordinator that organizes the startup of a consumer group
and assist whenever a consumer leaves the group.

Leader

The leader consumer is elected by the coordinator. Its job is to assign partitions to every consumer in the group at
startup or whenever a consumer leaves or joins the group. The leader holds the assignment strategy, it is decoupled
from the broker. That means consumers can reconfigure the partition assignment strategy without restarting the
brokers.

Apache Kafka Guide | 21

Kafka Clients

Startup Protocol

As mentioned before, the consumers are working usually in groups. So a major part of the startup process is spent
with figuring out the consumer group.

At startup, the first step is to match protocol versions. It is possible that the broker and the consumer are of different
versions (the broker is older and the consumer is newer, or vice versa). This matching is done by the API_VERSIONS
request.

Figure 10: Startup Protocol

The next step is to collect cluster information, such as the addresses of all the brokers (prior to this point we used the
bootstrap server as a reference), partition counts, and partition leaders. This is done in the METADATA request.

After acquiring the metadata, the consumer has the information needed to join the group. By this time on the broker
side, a coordinator has been selected per consumer group. The consumers must find their coordinator with the
FIND_COORDINATOR request.

After finding the coordinator, the consumer(s) are ready to join the group. Every consumer in the group sends their
own member-specific metadata to the coordinator in the JOIN_GROUP request. The coordinator waits until all the
consumers have sent their request, then assigns a leader for the group. At the response plus the collected metadata
are sent to the leader, so it knows about its group.

The remaining step is to assign partitions to consumers and propagate this state. Similar to the previous request, all
consumers send a SYNC_GROUP request to the coordinator; the leader provides the assignments in this request. After
it receives the sync request from each group member, the coordinator propagates this member state in the response.
By the end of this step, the consumers are ready and can start consuming.

Consumption Protocol

When consuming, the first step is to querywhere should the consumer start. This is done in the OFFSET_FETCH request.
This is not mandatory: the consumer can also provide the offset manually. After this, the consumer is free to pull data
from the broker. Data consumption happens in the FETCH requests. These are the long-pull requests. They are answered
only when the broker has enough data; the request can be outstanding for a longer period of time.

22 | Apache Kafka Guide

Kafka Clients

Figure 11: Consumption Protocol

From time to time, the application has to either manually or automatically save the offsets in an OFFSET_COMMIT
request and send heartbeats too in the HEARTBEAT requests. The first ensures that the position is saved while the
latter ensures that the coordinator knows that the consumer is alive.

Shutdown Protocol

The last step when the consumption is done is to shut down the consumer gracefully. This is done in one single step,
called the LEAVE_GROUP protocol.

Figure 12: Shutdown Protocol

Rebalancing Partitions

You may notice that there are multiple points in the protocol between consumers and brokers where failures can
occur. There are points in the normal operation of the system where you need to change the consumer group
assignments. For example, to consume a new partition or to respond to a consumer going offline. The process or
responding to cluster information changing is called rebalance. It can occur in the following cases:

• A consumer leaves. It can be a software failure where the session times out or a connection stalls for too long,
but it can also be a graceful shutdown.

• A consumer joins. It can be a new consumer but an old one that just recovered froma software failure (automatically
or manually).

• Partition is adjusted.A partition can simply go offline because of a broker failure or a partition coming back online.
Alternatively an administrator can add or remove partitions to/from the broker. In these cases the consumers
must reassign who is consuming.

• The cluster is adjusted.When a broker goes offline, the partitions that are lead by this broker will be reassigned.
In turn the consumers must rebalance so that they consume from the new leader. When a broker comes back,
then eventually a preferred leader election happens which restores the original leadership. The consumers must
follow this change as well.

Apache Kafka Guide | 23

Kafka Clients

On the consumer side, this rebalance is propagated to the client via the ConsumerRebalanceListener interface. It
has twomethods. The first, onPartitionsRevoked, will be invokedwhen any partition goes offline. This call happens
before the changes would reflect in any of the consumers, so this is the chance to save offsets if manual offset commit
is used. On the other hand onPartitionsAssigned is invoked after partition reassignment. This would allow for the
programmer to detect which partitions are currently assigned to the current consumer. Complete examples can be
found in the development section.

Consumer Configuration Properties

There are some very important configurations that any user of Kafka must know:

• heartbeat.interval.ms: The interval of the heartbeats. For example, if the heartbeat interval is set to 3
seconds, the consumer sends a short heartbeat message to the broker every 3 seconds to indicate that it is alive.

• session.timeout.ms: The consumer tells this timeout to the coordinator. This is used to control the heartbeats
and remove the dead consumers. If it’s set to 10 seconds, the consumer can miss sending 2 heartbeats, assuming
the previous heartbeat setting. If we increase the timeout, the consumer has more room for delays but the broker
notices lagging consumers later.

• max.poll.interval.ms: It is a very important detail: the consumers must maintain polling and should never
do long-running processing. If a consumer is taking too much time between two polls, it will be detached from
the consumer group. We can tune this configuration according to our needs. Note that if a consumer is stuck in
processing, it will be noticed later if the value is increased.

• request.timeout.ms: Generally every request has a timeout. This is an upper bound that the client waits for
the server’s response. If this timeout elapses, then retriesmight happen if the number of retries are not exhausted.

Retries

In Kafka retries typically happen on only for certain kinds of errors. When a retriable error is returned, the clients are
constrained by two facts: the timeout period and the backoff period.

The timeout period tells how long the consumer can retry the operation. The backoff period how often the consumer
should retry. There is no generic approach for "number of retries." Number of retries are usually controlled by timeout
periods.

Kafka Clients and ZooKeeper
The default consumer model provides the metadata for offsets in the Kafka cluster. There is a topic named
__consumer_offsets that the Kafka Consumers write their offsets to.

Figure 13: Kafka Consumer Dependencies

In releases before version 2.0 of CDK Powered by Apache Kafka, the same metadata was located in ZooKeeper. The
new model removes the dependency and load from Zookeeper. In the old approach:

• The consumers save their offsets in a "consumer metadata" section of ZooKeeper.
• Withmost Kafka setups, there are often a large number of Kafka consumers. The resulting client load on ZooKeeper

can be significant, therefore this solution is discouraged.

24 | Apache Kafka Guide

Kafka Clients

Figure 14: Kafka Consumer Dependencies (Old Approach)

Apache Kafka Guide | 25

Kafka Clients

Kafka Brokers

This section covers some of how a broker operates in greater detail. As we go over some of these details, we will
illustrate how these pieces can cause brokers to have issues.

Single Cluster Scenarios
The figure below shows a simplified version of a Kafka cluster in steady state. There are N brokers, two topics with
nine partitions each. The M replicated partitions are not shown for simplicity. This is going to be the baseline for
discussions in later sections.

Figure 15: Kafka Cluster in Steady State

Leader Positions

In the baseline example, each broker shown has three partitions per topic. In the figure above, the Kafka cluster has
well balanced leader partitions. Recall the following:

• Producer writes and consumer reads occur at the partition level
• Leader partitions are responsible for ensuring that the follower partitions keep their records in sync

In the baseline example, since the leader partitions were evenly distributed, most of the time the load to the overall
Kafka cluster will be relatively balanced.

In the example below, since a large chunk of the leaders for Topic A and Topic B are on Broker 1, a lot more of the
overall Kafkaworkloadwill occur at Broker 1. This will cause a backlog ofwork, which slows down the cluster throughput,
which will worsen the backlog.

26 | Apache Kafka Guide

Kafka Brokers

Figure 16: Kafka Cluster with Leader Partition Imbalance

Even if a cluster starts with perfectly balanced topics, failures of brokers can cause these imbalances: if leader of a
partition goes down one of the replicas will become the leader. When the original (preferred) leader comes back, it
will get back leadership only if automatic leader rebalancing is enabled; otherwise the node will become a replica and
the cluster gets imbalanced.

In-Sync Replicas

Let’s look at Topic A from the previous example with follower partitions:

• Broker 1 has six leader partitions, broker 2 has two leader partitions, and broker 3 has one leader partition.
• Assuming a replication factor of 3.

Assuming all replicas are in-sync, then any leader partition can be moved from Broker 1 to another broker without
issue. However, in the casewhere some of the follower partitions have not caught up, then the ability to change leaders
or have a leader election will be hampered.

Figure 17: Kafka Topic with Leader and Follower Partitions

Topic Configuration
We already introduced the concept of topics. When managing a Kafka cluster, configuring a topic can require some
planning. For small clusters or low record throughput, topic planning isn’t particularly tricky, but as you scale to the
large clusters and high record throughput, such planning becomes critical.

Apache Kafka Guide | 27

Kafka Brokers

Topic Creation

To be able to use a topic, it has to be created. This can happen automatically or manually. When enabled, the Kafka
cluster creates topics on demand.

Automatic Topic Creation

If auto.create.topics.enable is set to true and a client is requesting metadata about a non-existent topic, then
the broker will create a topic with the given name. In this case, its replication factor and partition count is derived from
the broker configuration. Corresponding configuration entries are default.replication.factor and
num.partitions. The default value for each these properties is 1. This means the topic will not scale well and will
not be tolerant to broker failure. It is recommended to set these default value higher or even better switching off this
feature and creating topics manually with configuration suited for the use case at hand.

Manual topic creation

You can create topics from the command linewith kafka-topics tool. Specify a replication factor and partition count,
with optional configuration overrides. Alternatively, for each partition, you can specify which brokers have to hold a
copy of that partition.

Topic Properties

There are numerous properties that influence how topics are handled by the cluster. These can be set with
kafka-topics tool on topic creation or later on with kafka-configs. The most commonly used properties are:

• min.insync.replicas: specifies howmany brokers have to replicate the records before the leader sends back
an acknowledgment to the producer (if producer property acks is set to all). With a replication factor of 3, a
minimum in-sync replicas of 2 guarantees a higher level of durability. It is not recommended that you set this
value equal to the replication factor as itmakes producing to the topic impossible if one of the brokers is temporarily
down.

• retention.bytes and retention.ms: determines when a record is considered outdated. When data stored
in one partition exceeds given limits, broker starts a cleanup to save disk space.

• segment.bytes and segment.ms: determines how much data is stored in the same log segment (that is, in the
same file). If any of these limits is reached, a new log segment is created.

• unclean.leader.election.enable: if true, replicas that are not in-syncmay be elected as new leaders. This
only happens when there are no live replicas in-sync. As enabling this feature may result in data loss, it should be
switched on only if availability is more important than durability.

• cleanup.policy: either delete or compact. If delete is set, old log segments will be deleted. Otherwise, only
the latest record is retained. This process is called log compaction. This is covered in greater detail in the Record
Management on page 61 section.

If you do not specify these properties, the prevailing broker level configuration will take effect. A complete list of
properties can be found in the Topic-Level Configs section of the Apache Kafka documentation.

Partition Management
Partitions are at the heart of how Kafka scales performance. Some of the administrative issues around partitions can
be some of the biggest challenges in sustaining high performance.

When creating a topic, you specify which brokers should have a copy of which partition or you specify replication factor
and number of partitions and the controller generates a replica assignment for you. If there are multiple brokers that
are assigned a partition, the first one in the list is always the preferred leader.

Whenever the leader of a partition goes down, Kafka moves leadership to another broker. Whether this is possible
depends on the current set of in-sync replicas and the value of unclean.leader.election.enable. However, no
new Kafka broker will start to replicate the partition to reach replication factor again. This is to avoid unnecessary load
on brokers when one of them is temporarily down. Kafka will regularly try to balance leadership between brokers by
electing the preferred leader. But this balance is based on number of leaderships and not throughput.

28 | Apache Kafka Guide

Kafka Brokers

https://kafka.apache.org/documentation/#topicconfigs

Partition Reassignment

In some cases require manual reassignment of partitions:

• If the initial distribution of partitions and leaderships creates an uneven load on brokers.
• If you want to add or remove brokers from the cluster.

Use kafka-reassign-partitions tool to move partitions between brokers. The typical workflow consist of the
following:

• Generate a reassignment file by specifying topics to move and which brokers to move to (by setting
--topic-to-move-json-file and --broker-list to --generate command).

• Optionally edit the reassignment file and verify it with the tool.
• Actually re-assigning partitions (with option --execute).
• Verify if the process has finished as intended (with option --verify).

Note: When specifying throttles for inter broker communication, make sure you use the command
with --verify option to remove limitations on replication speed.

Adding Partitions

You can use kafka-topics tool to increase the number of partitions in a given topic. However, note that adding
partitions will in most cases break the guarantee preserving the order of records with the same key, because it
changes which partition a record key is produced to. Although order of records is preserved for both the old partition
the key was produced to and the new one, it still might happen that records from the new partition are consumed
before records from the old one.

Choosing the Number of Partitions

When choosing the number of partitions for a topic, you have to consider the following:

• More partitions mean higher throughput.
• You should not have more than a few tens of thousands of partitions in a Kafka cluster.
• In case of an unclean shutdown of one of the brokers, the partitions it was leader for have to be led by other

brokers and moving leadership for a few thousand partitions one by one can take seconds of unavailability.
• Kafka keeps all log segment files open at all times. More partitions can mean more file handles to have open.
• More partitions can cause higher latency.

Controller

The controller is one of the brokers that has additional partition and replicamanagement responsibilities. It will control
/ be involved whenever partition metadata or state is changed, such as when:

• Topics or partitions are created or deleted.
• Brokers join or leave the cluster and partition leader or replica reassignment is needed.

It also tracks the list of in sync replicas (ISRs) and maintains broker, partition, and ISR data in Zookeeper.

Controller Election

Any of the brokers can play the role of the controller, but in a healthy cluster there is exactly one controller. Normally
this is the broker that started first, but there are certain situations when a re-election is needed:

• If the controller is shut down or crashes.
• If it loses connection to Zookeeper.

When a broker starts or participates in controller reelection, it will attempt to create an ephemeral node
(“/controller”) in ZooKeeper. If it succeeds, the broker becomes the controller. If it fails, there is already a controller,
but the broker will watch the node.

Apache Kafka Guide | 29

Kafka Brokers

If the controller loses connection to ZooKeeper or stops ZooKeeper will remove the ephemeral node and the brokers
will get a notification to start a controller election.

Every controller election will increase the “controller epoch”. The controller epoch is used to detect situations when
there are multiple active controllers: if a broker gets a message with a lower epoch than the result of the last election,
it can be safely ignored. It is also used to detect a “split brain” situation when multiple nodes believe that they are in
the controller role.

Having 0 or 2+ controllers means the cluster is in a critical state, as broker and partition state changes are blocked.
Therefore it’s important to ensure that the controller has a stable connection to ZooKeeper to avoid controller elections
as much as possible.

30 | Apache Kafka Guide

Kafka Brokers

Kafka Integration

Kafka Security

Client-Broker Security with TLS

Kafka allows clients to connect over TLS. By default, TLS is disabled, but can be turned on as needed.

Step 1: Generating Keys and Certificates for Kafka Brokers

Generate the key and the certificate for each machine in the cluster using the Java keytool utility. See Generate TLS
Certificates.

Make sure that the common name (CN) matches the fully qualified domain name (FQDN) of your server. The client
compares the CN with the DNS domain name to ensure that it is connecting to the correct server.

Step 2: Creating Your Own Certificate Authority

You have generated a public-private key pair for each machine and a certificate to identify the machine. However, the
certificate is unsigned, so an attacker can create a certificate and pretend to be any machine. Sign certificates for each
machine in the cluster to prevent unauthorized access.

A Certificate Authority (CA) is responsible for signing certificates. A CA is similar to a government that issues passports.
A government stamps (signs) each passport so that the passport becomes difficult to forge. Similarly, the CA signs the
certificates, and the cryptography guarantees that a signed certificate is computationally difficult to forge. If the CA is
a genuine and trusted authority, the clients have high assurance that they are connecting to the authentic machines.

openssl req -new -x509 -keyout ca-key -out ca-cert -days 365

The generated CA is a public-private key pair and certificate used to sign other certificates.

Add the generated CA to the client truststores so that clients can trust this CA:

keytool -keystore {client.truststore.jks} -alias CARoot -import -file {ca-cert}

Note: If you configure Kafka brokers to require client authentication by setting ssl.client.auth
to be requested or required on the Kafka brokers config, you must provide a truststore for the Kafka
brokers as well. The truststore must have all the CA certificates by which the clients keys are signed.
The keystore created in step 1 stores each machine’s own identity. In contrast, the truststore of a
client stores all the certificates that the client should trust. Importing a certificate into a truststore
means trusting all certificates that are signed by that certificate. This attribute is called the chain of
trust. It is particularly useful when deploying SSL on a large Kafka cluster. You can sign all certificates
in the cluster with a single CA, and have all machines share the same truststore that trusts the CA.
That way, all machines can authenticate all other machines.

Step 3: Signing the Certificate

Now you can sign all certificates generated by step 1 with the CA generated in step 2.

1. Create a certificate request from the keystore:

keytool -keystore server.keystore.jks -alias localhost -certreq -file cert-file

where:

• keystore: the location of the keystore

Apache Kafka Guide | 31

Kafka Integration

https://www.cloudera.com/documentation/enterprise/latest/topics/how_to_configure_cm_tls.html#concept_gkg_xs3_lx
https://www.cloudera.com/documentation/enterprise/latest/topics/how_to_configure_cm_tls.html#concept_gkg_xs3_lx
http://kafka.apache.org/documentation/#brokerconfigs

• cert-file: the exported, unsigned certificate of the server

2. Sign the resulting certificate with the CA (in the real world, this can be done using a real CA):

openssl x509 -req -CA ca-cert -CAkey ca-key -in cert-file -out cert-signed -days validity
 -CAcreateserial -passin pass:ca-password

where:

• ca-cert: the certificate of the CA
• ca-key: the private key of the CA
• cert-signed: the signed certificate of the server
• ca-password: the passphrase of the CA

3. Import both the certificate of the CA and the signed certificate into the keystore:

keytool -keystore server.keystore.jks -alias CARoot -import -file ca-cert
keytool -keystore server.keystore.jks -alias localhost -import -file cert-signed

The following Bash script demonstrates the steps described above. One of the commands assumes a password of
SamplePassword123, so either use that password or edit the command before running it.

#!/bin/bash
#Step 1
keytool -keystore server.keystore.jks -alias localhost -validity 365 -genkey
#Step 2
openssl req -new -x509 -keyout ca-key -out ca-cert -days 365
keytool -keystore server.truststore.jks -alias CARoot -import -file ca-cert
keytool -keystore client.truststore.jks -alias CARoot -import -file ca-cert
#Step 3
keytool -keystore server.keystore.jks -alias localhost -certreq -file cert-file
openssl x509 -req -CA ca-cert -CAkey ca-key -in cert-file -out cert-signed -days 365
-CAcreateserial -passin pass:SamplePassword123
keytool -keystore server.keystore.jks -alias CARoot -import -file ca-cert
keytool -keystore server.keystore.jks -alias localhost -import -file cert-signed

Step 4: Configuring Kafka Brokers

Kafka Brokers support listening for connections on multiple ports. If SSL is enabled for inter-broker communication
(see below for how to enable it), both PLAINTEXT and SSL ports are required.

To configure the listeners from Cloudera Manager, perform the following steps:

1. In Cloudera Manager, go to Kafka > Instances.
2. Go to Kafka Broker > Configurations.
3. In the Kafka Broker Advanced Configuration Snippet (Safety Valve) for Kafka Properties, enter the following

information:

listeners=PLAINTEXT://kafka-broker-host-name:9092,SSL://kafka-broker-host-name:9093
advertised.listeners=PLAINTEXT://kafka-broker-host-name:9092,SSL://kafka-broker-host-name:9093

where kafka-broker-host-name is the FQDN of the broker that you selected from the Instances page in Cloudera
Manager. In the above sample configurations we used PLAINTEXT and SSL protocols for the SSL enabled brokers.

For information about other supported security protocols, see Using Kafka’s Inter-Broker Security on page 34.

4. Repeat the previous step for each broker.

The advertised.listeners configuration is needed to connect the brokers from external clients.

5. Deploy the above client configurations and rolling restart the Kafka service from Cloudera Manager.

32 | Apache Kafka Guide

Kafka Integration

Kafka CSD auto-generates listeners for Kafka brokers, depending on your SSL and Kerberos configuration. To enable
SSL for Kafka installations, do the following:

1. Turn on SSL for the Kafka service by turning on the ssl_enabled configuration for the Kafka CSD.
2. Set security.inter.broker.protocol as SSL, if Kerberos is disabled; otherwise, set it as SASL_SSL.

The following SSL configurations are required on each broker. Each of these values can be set in Cloudera Manager.
Be sure to replace this example with the truststore password.

For instructions, see Changing the Configuration of a Service or Role Instance.

ssl.keystore.location=/var/private/ssl/kafka.server.keystore.jks
ssl.keystore.password=SamplePassword123
ssl.key.password=SamplePassword123
ssl.truststore.location=/var/private/ssl/server.truststore.jks
ssl.truststore.password=SamplePassword123

Other configuration settings may also be needed, depending on your requirements:

• ssl.client.auth=none: Other options for client authentication are required, or requested, where clients
without certificates can still connect. The use of requested is discouraged, as it provides a false sense of security
and misconfigured clients can still connect.

• ssl.cipher.suites: A cipher suite is a named combination of authentication, encryption, MAC, and a key
exchange algorithm used to negotiate the security settings for a network connection using TLS or SSL network
protocol. This list is empty by default.

• ssl.enabled.protocols=TLSv1.2,TLSv1.1,TLSv1: Provide a list of SSL protocols that your brokers accept
from clients.

• ssl.keystore.type=JKS

• ssl.truststore.type=JKS

Communication between Kafka brokers defaults to PLAINTEXT. To enable secured communication, modify the broker
properties file by adding security.inter.broker.protocol=SSL.

For a list of the supported communication protocols, see Using Kafka’s Inter-Broker Security on page 34.

Note: Due to import regulations in some countries, Oracle implementation of JCA limits the strength
of cryptographic algorithms. If you need stronger algorithms, you must obtain the JCE Unlimited
Strength Jurisdiction Policy Files and install them in the JDK/JRE as described in JCA Providers
Documentation.

After SSL is configured your broker, logs should show an endpoint for SSL communication:

with addresses: PLAINTEXT -> EndPoint(192.168.1.1,9092,PLAINTEXT),SSL ->
EndPoint(192.168.1.1,9093,SSL)

You can also check the SSL communication to the broker by running the following command:

openssl s_client -debug -connect localhost:9093 -tls1

This check can indicate that the server keystore and truststore are set up properly.

Note: ssl.enabled.protocols should include TLSv1.

Apache Kafka Guide | 33

Kafka Integration

The output of this command should show the server certificate:

-----BEGIN CERTIFICATE-----
{variable sized random bytes}
-----END CERTIFICATE-----
subject=/C=US/ST=CA/L=Palo Alto/O=org/OU=org/CN=Franz Kafka
issuer=/C=US/ST=CA/L=Palo Alto
/O=org/OU=org/CN=kafka/emailAddress=kafka@your-domain.com

If the certificate does not appear, or if there are any other error messages, your keystore is not set up properly.

Step 5: Configuring Kafka Clients

SSL is supported only for the new Kafka producer and consumer APIs. The configurations for SSL are the same for both
the producer and consumer.

If client authentication is not required in the broker, the following example shows a minimal configuration:

security.protocol=SSL
ssl.truststore.location=/var/private/ssl/kafka.client.truststore.jks
ssl.truststore.password=SamplePassword123

If client authentication is required, a keystore must be created as in step 1, it needs to be signed by the CA as in step
3, and you must also configure the following properties:

ssl.keystore.location=/var/private/ssl/kafka.client.keystore.jks
ssl.keystore.password=SamplePassword123
ssl.key.password=SamplePassword123

Other configuration settings might also be needed, depending on your requirements and the broker configuration:

• ssl.provider (Optional). The name of the security provider used for SSL connections. Default is the default
security provider of the JVM.

• ssl.cipher.suites (Optional). A cipher suite is a named combination of authentication, encryption,MAC, and
a key exchange algorithmused to negotiate the security settings for a network connection using TLS or SSL network
protocol.

• ssl.enabled.protocols=TLSv1.2,TLSv1.1,TLSv1. This property should list at least one of the protocols
configured on the broker side.

• ssl.truststore.type=JKS

• ssl.keystore.type=JKS

Using Kafka’s Inter-Broker Security

Kafka can expose multiple communication endpoints, each supporting a different protocol. Supporting multiple
communication endpoints enables you to use different communication protocols for client-to-broker communications
and broker-to-broker communications. Set the Kafka inter-broker communication protocol using the
security.inter.broker.protocol property. Use this property primarily for the following scenarios:

• EnablingSSL encryption for client-broker communication but keeping broker-broker communication asPLAINTEXT.
Because SSL has performance overhead, you might want to keep inter-broker communication as PLAINTEXT if
your Kafka brokers are behind a firewall and not susceptible to network snooping.

• Migrating from a non-secure Kafka configuration to a secure Kafka configuration without requiring downtime.
Use a rolling restart and keep security.inter.broker.protocol set to a protocol that is supported by all
brokers until all brokers are updated to support the new protocol.

34 | Apache Kafka Guide

Kafka Integration

For example, if you have a Kafka cluster that needs to be configured to enable Kerberos without downtime, follow
these steps:

1. Set security.inter.broker.protocol to PLAINTEXT.
2. Update the Kafka service configuration to enable Kerberos.
3. Perform a rolling restart.
4. Set security.inter.broker.protocol to SASL_PLAINTEXT.

Kafka 2.0 and higher supports the combinations of protocols listed here.

KerberosSSL

NoNoPLAINTEXT

NoYesSSL

YesNoSASL_PLAINTEXT

YesYesSASL_SSL

These protocols can be defined for broker-to-client interaction and for broker-to-broker interaction. The property
security.inter.broker.protocol allows the broker-to-broker communication protocol to be different than the
broker-to-client protocol, allowing rolling upgrades from non-secure to secure clusters. In most cases, set
security.inter.broker.protocol to the protocol you are using for broker-to-client communication. Set
security.inter.broker.protocol to a protocol different than the broker-to-client protocol only when you are
performing a rolling upgrade from a non-secure to a secure Kafka cluster.

Enabling Kerberos Authentication

Apache Kafka supports Kerberos authentication, but it is supported only for the new Kafka Producer and Consumer
APIs.

If you already have a Kerberos server, you can add Kafka to your current configuration. If you do not have a Kerberos
server, install it before proceeding. See Enabling Kerberos Authentication for CDH.

If you already have configured the mapping from Kerberos principals to short names using the
hadoop.security.auth_to_local HDFS configuration property, configure the same rules for Kafka by adding the
sasl.kerberos.principal.to.local.rules property to the Advanced Configuration Snippet for Kafka Broker
Advanced Configuration Snippet using Cloudera Manager. Specify the rules as a comma separated list.

To enable Kerberos authentication for Kafka:

1. In Cloudera Manager, navigate to Kafka > Configuration.
2. Set SSL Client Authentication to none.
3. Set Inter Broker Protocol to SASL_PLAINTEXT.
4. Click Save Changes.
5. Restart the Kafka service (Action > Restart).
6. Make sure that listeners = SASL_PLAINTEXT is present in the Kafka broker logs, by default in

/var/log/kafka/server.log.
7. Create a jaas.conf file with either cached credentials or keytabs.

To use cached Kerberos credentials, where you use kinit first, use this configuration.

KafkaClient {
com.sun.security.auth.module.Krb5LoginModule required
useTicketCache=true;
};

Apache Kafka Guide | 35

Kafka Integration

If you use a keytab, use this configuration. To generate keytabs, see Step 6: Get or Create a Kerberos Principal for
Each User Account).

KafkaClient {
com.sun.security.auth.module.Krb5LoginModule required
useKeyTab=true
keyTab="/etc/security/keytabs/mykafkaclient.keytab"
principal="mykafkaclient/clients.hostname.com@EXAMPLE.COM";
};

8. Create the client.properties file containing the following properties.

security.protocol=SASL_PLAINTEXT
sasl.kerberos.service.name=kafka

9. Test with the Kafka console producer and consumer.

To obtain a Kerberos ticket-granting ticket (TGT):

kinit user

10. Verify that your topic exists.

This does not use security features, but it is a best practice.

kafka-topics --list --zookeeper zkhost:2181

11. Verify that the jaas.conf file is used by setting the environment.

export KAFKA_OPTS="-Djava.security.auth.login.config=/home/user/jaas.conf"

12. Run a Kafka console producer.

kafka-console-producer --broker-list anybroker:9092 --topic test1 --producer.config
client.properties

13. Run a Kafka console consumer.

kafka-console-consumer --new-consumer --topic test1 --from-beginning --bootstrap-server
anybroker:9092 --consumer.config client.properties

Enabling Encryption at Rest

Data encryption is increasingly recognized as an optimal method for protecting data at rest. You can encrypt Kafka
data using Cloudera Navigator Encrypt.

Perform the following steps to encrypt Kafka data that is not in active use.

1. Stop the Kafka service.
2. Archive the Kafka data to an alternate location, using TAR or another archive tool.
3. Unmount the affected drives.
4. Install and configure Navigator Encrypt.

See Installing Cloudera Navigator Encrypt.

5. Expand the TAR archive into the encrypted directories.

36 | Apache Kafka Guide

Kafka Integration

6. Restart the Kafka service.

Topic Authorization with Kerberos and Sentry

Apache Sentry includes a Kafka binding you can use to enable authorization in Kafka with Sentry. Formore information,
see Authorization With Apache Sentry.

Configuring Kafka to Use Sentry Authorization

The following steps describe how to configure Kafka to use Sentry authorization. These steps assume you have installed
Kafka and Sentry on your cluster.

Sentry requires that your cluster include HDFS. After you install and start Sentry with the correct configuration, you
can stop the HDFS service. For more information, see Installing and Upgrading the Sentry Service.

Note: Cloudera's distribution of Kafka can make use of LDAP-based user groups when the LDAP
directory is synchronized to Linux via tools such as SSSD. CDK does not support direct integration with
LDAP, either through direct Kafka's LDAP authentication, or via Hadoop's group mapping (when
hadoop.group.mapping is set to LdapGroupMapping). Formore information, see Configuring LDAP
Group Mappings.

To configure Sentry authentication for Kafka:

1. In Cloudera Manager, go to Kafka > Configuration.
2. Select Enable Kerberos Authentication.
3. Select a Sentry service in the Kafka service configuration.
4. Add superusers.

Superusers can perform any action on any resource in the Kafka cluster. The kafka user is added as a superuser
by default. Superuser requests are authorizedwithout going through Sentry,which provides enhancedperformance.

5. Select Enable Sentry Privileges Caching to enhance performance.
6. Restart the Sentry services.

Authorizable Resources

Authorizable resources are resources or entities in a Kafka cluster that require special permissions for a user to be able
to perform actions on them. Kafka has four authorizable resources.

• Cluster: controls who can perform cluster-level operations such as creating or deleting a topic. This resource can
only have one value, kafka-cluster, as one Kafka cluster cannot have more than one cluster resource.

• Topic: controls who can perform topic-level operations such as producing and consuming topics. Its value must
match exactly the topic name in the Kafka cluster.

With CDH 5.15.0 and CDK 3.1 and later, wildcards (*) can be used to refer to any topic in the privilege.

• Consumergroup: controls who can perform consumergroup-level operations such as joining or describing a
consumergroup. Its value must exactly match the group.id of a consumergroup.

With CDH5.14.1 and later, you can use awildcard (*) to refer to any consumer groups in the privilege. This resource
is useful when used with Spark Streaming, where a generated group.idmay be needed.

• Host: controls from where specific operations can be performed. Think of this as a way to achieve IP filtering in
Kafka. You can set the value of this resource to the wildcard (*), which represents all hosts.

Note: Only IP addresses should be specified in the host component of Kafka Sentry privileges,
hostnames are not supported.

• TransactionalId: controlswho can perform transaction related operations such as opening or closing a transaction.
The transactional id resource is configured by the transactional.id in the producer.

Apache Kafka Guide | 37

Kafka Integration

• DelegationToken: this resource represents delegation tokens in the cluster. Actions, such as describing delegation
tokens can be protected by a privilege on the DelegationToken resource.

Authorized Actions

You can perform multiple actions on each resource. The following operations are supported by Kafka, though not all
actions are valid on all resources.

• ALL is a wildcard action, and represents all possible actions on a resource.
• read

• write

• create

• delete

• alter

• describe

• clusteraction

• describeconfigs

• alterconfigs

• idempotentwrite

Authorizing Privileges

Privileges define what actions are allowed on a resource. A privilege is represented as a string in Sentry. The following
rules apply to a valid privilege.

• Can have at most one Host resource. If you do not specify a Host resource in your privilege string, Host=* is
assumed.

• Must have exactly one non-Host resource.
• Must have exactly one action specified at the end of the privilege string.

For example, the following are valid privilege strings:

Host=*->Topic=myTopic->action=ALL
Topic=test->action=ALL

Granting Privileges to a Role

The following examples grant privileges to the role test, so that users intestGroup can create a topic namedtestTopic
and produce to it.

The user executing these commands must be added to the Sentry parameter sentry.service.allow.connect
and also be a member of a group defined in sentry.service.admin.group.

Before you can assign the test role, you must first create it. To create the test role:

kafka-sentry -cr -r test

To confirm that the role was created, list the roles:

kafka-sentry -lr

If Sentry privileges caching is enabled, as recommended, the new privileges you assign take some time to appear in
the system. The time is the time-to-live interval of the Sentry privileges cache, which is set using
sentry.kafka.caching.ttl.ms. By default, this interval is 30 seconds. For test clusters, it is beneficial to have
changes appear within the system as fast as possible, therefore, Cloudera recommends that you either use a lower
time interval, or disable caching with sentry.kafka.caching.enable.

38 | Apache Kafka Guide

Kafka Integration

1. Allow users in testGroup towrite to testTopic from localhost, which allows users to produce to testTopic.
Users need both write and describe permissions.

kafka-sentry -gpr -r test -p "Host=127.0.0.1->Topic=testTopic->action=write"
kafka-sentry -gpr -r test -p "Host=127.0.0.1->Topic=testTopic->action=describe"

2. Assign the test role to the group testGroup:

kafka-sentry -arg -r test -g testGroup

3. Verify that the test role is part of the group testGroup:

kafka-sentry -lr -g testGroup

4. Create testTopic.

$ kafka-topics --create --zookeeper localhost:2181 \
 --replication-factor 1 \
 --partitions 1 --topic testTopic
kafka-topics --list --zookeeper localhost:2181 testTopic

Now you can produce to and consume from the Kafka cluster.

1. Produce to testTopic.

Note that you have to pass a configuration file, producer.properties, with information on JAAS configuration
and other Kerberos authentication related information. See SASL Configuration for Kafka Clients.

$ kafka-console-producer --broker-list localhost:9092 \
 --topic testTopic --producer.config producer.properties
 This is a message
 This is another message

2. Grant the create privilege to the test role.

$ kafka-sentry -gpr -r test -p
"Host=127.0.0.1->Cluster=kafka-cluster->action=create"

3. Allow users in testGroup to describe testTopic from localhost, which the user creates and uses.

$ kafka-sentry -gpr -r test -p
"Host=127.0.0.1->Topic=testTopic->action=describe"

4. Grant the describe privilege to the test role.

$ kafka-sentry -gpr -r test -p
"Host=127.0.0.1->Consumergroup=testconsumergroup->action=describe"

5. Allow users in testGroup to read from a consumer group, testconsumergroup, that it will start and join.

$ kafka-sentry -gpr -r test -p
"Host=127.0.0.1->Consumergroup=testconsumergroup->action=read"

6. Allow users in testGroup to read from testTopic from localhost and to consume from testTopic.

$ kafka-sentry -gpr -r test -p
"Host=127.0.0.1->Topic=testTopic->action=read"

7. Consume from testTopic.

Apache Kafka Guide | 39

Kafka Integration

http://kafka.apache.org/documentation.html#security_sasl_clientconfig

Note that you have to pass a configuration file, consumer.properties, with information on JAAS configuration
and other Kerberos authentication related information. The configuration file must also specify group.id as
testconsumergroup.

kafka-console-consumer --new-consumer --topic testTopic \
 --from-beginning --bootstrap-server anybroker-host:9092 \
 --consumer.config consumer.properties
 This is a message
 This is another message

Privileges for Idempotent and Transactional Clients

Idempotent and transactional clients require specific privileges to be set, otherwise they will not be able to read or
write data.

Consumers

Consumers require the following privileges. These privileges are needed regardless of what isolation.level is set
to.

HOST=*->CONSUMERGROUP=*->action=describe
HOST=*->CONSUMERGROUP=*->action=read
HOST=*->TOPIC=*->action=describe
HOST=*->TOPIC=*->action=read

Producers

The privileges you need to set for producers will depend on how transactional.id and enable.idempotency
are configured.

• If transactional.id is set and enable.idempotency is either true or false:

HOST=*->TOPIC=*->action=describe
HOST=*->TOPIC=*->action=write
HOST=*->TRANSACTIONALID=*->action=describe
HOST=*->TRANSACTIONALID=*->action=write

• If transactional.id is not set and enable.idempotency is true:

HOST=*->TOPIC=*->action=describe
HOST=*->TOPIC=*->action=write
HOST=*->CLUSTER=kafka-cluster->action=idempotentwrite

• If transactional.id is not set and enable.idempotency is false:

HOST=*->TOPIC=*->action=describe
HOST=*->TOPIC=*->action=write

Troubleshooting Kafka with Sentry

If Kafka requests are failing due to authorization, the following steps can provide insight into the error:

• Make sure you have run kinit as a user who has privileges to perform an operation.
• Identify which broker is hosting the leader of the partition you are trying to produce to or consume from, as this

leader is going to authorize your request against Sentry. One easy way of debugging is to just have one Kafka
broker. Change log level of the Kafka broker by adding the following entry to the Kafka Broker in Logging Advanced
Configuration Snippet (Safety Valve) and restart the broker:

log4j.logger.org.apache.sentry=DEBUG

Setting just Sentry to DEBUG mode avoids the debug output from undesired dependencies, such as Jetty.

40 | Apache Kafka Guide

Kafka Integration

• Run the Kafka client or Kafka CLI with the required arguments and capture the Kafka log, which should be similar
to:

/var/log/kafka/kafka-broker-host-name.log

• Look for the following information in the filtered logs:

– Groups that the Kafka client user or CLI is running as.
– Required privileges for the operation.
– Retrieved privileges from Sentry.
– Required and retrieved privileges comparison result.

This log information can provide insight into which privilege is not assigned to a user, causing a particular operation
to fail.

Managing Multiple Kafka Versions

Kafka Feature Support in Cloudera Manager and CDH

Using the latest features of Kafka sometimes requires a newer version of Cloudera Manager and/or CDH that supports
the feature. For the purpose of understanding upgrades, the table below includes several earlier versions where Kafka
was known as CDK Powered by Apache Kafka (CDK in the table).

Table 1: Kafka and CM/CDH Supported Versions Matrix

Minimum Supported Version

Apache Kafka
Version

CDH Kafka
Version Kafka Feature Notes

CDH
(with Sentry)

CDH
(No Security)

Cloudera
Manager

CDH 6.2.0CDH 6.2.0CM 6.2.02.1.0CDH 6.2.0

CDH 6.1.0CDH 6.1.0CM 6.1.02.0.0CDH 6.1.0

CDH 6.0.0CDH 6.0.0CM 6.0.01.0.1CDH 6.0.0

Sentry-HA supportedCDH 5.13.0CDH 5.13.0CM 5.13.01.0.1CDK 3.1.0

Sentry-HA not supportedCDH 5.13.0CDH 5.13.0CM 5.13.00.11.0CDK 3.0.0

CDH 5.9.0CDH 5.4.0CM 5.9.00.10.2CDK 2.2

Sentry AuthorizationCDH 5.9.0CDH 5.4.0CM 5.9.00.10.0CDK 2.1

Enhanced SecurityCDH 5.4.0CDH 5.4.0CM5.5.30.9.0CDK 2.0

Client/Broker Compatibility Across Kafka Versions

Maintaining compatibility across different Kafka clients and brokers is a common issue. Mismatches among client and
broker versions can occur as part of any of the following scenarios:

• Upgrading your Kafka cluster without upgrading your Kafka clients.
• Using a third-party application that produces to or consumes from your Kafka cluster.
• Having a client program communicating with two or more Kafka clusters (such as consuming from one cluster and

producing to a different cluster).
• Using Flume or Spark as a Kafka consumer.

In these cases, it is important to understand client/broker compatibility across Kafka versions. Here are general rules
that apply:

Apache Kafka Guide | 41

Kafka Integration

• Newer Kafka brokers can talk to older Kafka clients. The reverse is not true: older Kafka brokers cannot talk to
newer Kafka clients.

• Changes in either the major part or the minor part of the upstream versionmajor.minor determines whether the
client andbroker are compatible. Differences among themaintenance versions are not consideredwhendetermining
compatibility.

As a result, the general pattern for upgrading Kafka from version A to version B is:

1. Change Kafka server.properties to refer to version A.
2. Upgrade the brokers to version B and restart the cluster.
3. Upgrade the clients to version B.
4. After all the clients are upgraded, change the properties from the first step to version B and restart the cluster.

Upgrading your Kafka Cluster

At some point, you will want to upgrade your Kafka cluster. Or in some cases, when you upgrade to a newer CDH
distribution, then Kafka will be upgraded along with the full CDH upgrade. In either case, you may wish to read the
sections below before upgrading.

General Upgrade Information

Previously, Cloudera distributed Kafka as a parcel (CDK) separate from CDH. Installation of the separate Kafka required
Cloudera Manager 5.4 or higher. For a list of available parcels and packages, see CDK Powered By Apache Kafka®
Version and Packaging Information Kafka bundled along with CDH.

As of CDH 6, Cloudera distributes Kafka bundled along with CDH. Kafka is in the parcel itself. Installation requires
ClouderaManager 6.0 or higher. For installation instructions for Kafka using ClouderaManager, see Cloudera Installation
Guide.

Cloudera recommends that you deploy Kafka on dedicated hosts that are not used for other cluster roles.

Important: You cannot install an old Kafka parcel on a new CDH 6.x cluster.

Upgrading Kafka from CDH 6.0.0 to other CDH 6 versions

To ensure there is no downtime during an upgrade, these instructions describe performing a rolling upgrade.

Before upgrading, ensure that you set inter.broker.protocol.version and log.message.format.version
to the current Kafka version (see Table 1: Kafka and CM/CDH Supported Versions Matrix on page 41), and then unset
them after the upgrade. This is a good practice because the newer broker versions can write log entries that the older
brokers cannot read. If you need to rollback to the older version, and you have not set
inter.broker.protocol.version and log.message.format.version, data loss can occur.

From Cloudera Manager on the cluster to upgrade:

1. Explicitly set the Kafka protocol version to match what's being used currently among the brokers and clients.

Update server.properties on all brokers as follows:

a. Choose the Kafka service.
b. Click Configuration.
c. Use the Search field to find the Kafka Broker Advanced Configuration Snippet (Safety Valve) configuration

property.
d. Add the following properties to the safety valve:

inter.broker.protocol.version = current_Kafka_version
log.message.format.version = current_Kafka_version

42 | Apache Kafka Guide

Kafka Integration

Make sure you enter full Kafka version numbers with three values, such as 0.10.0. Otherwise, you'll see an
error similar to the following:

2018-06-14 14:25:47,818 FATAL kafka.Kafka$:
java.lang.IllegalArgumentException: Version `0.10` is not a valid version
 at kafka.api.ApiVersion$$anonfun$apply$1.apply(ApiVersion.scala:72)
 at kafka.api.ApiVersion$$anonfun$apply$1.apply(ApiVersion.scala:72)
 at scala.collection.MapLike$class.getOrElse(MapLike.scala:128)

e. Save your changes. The information is automatically copied to each broker.

2. Upgrade CDH. See Upgrading the CDH Cluster.

Do not restart the Kafka service, select Activate Only and click OK.

3. Perform a rolling restart.

Select Rolling Restart or Restart based on the downtime that you can afford.

At this point, the brokers are running in compatibility mode with older clients. It can run in this mode indefinitely. If
you do upgrade clients, after all clients are upgraded, remove the Safety Valve properties and restart the cluster.

Upstream Upgrade Instructions

The table below links to the upstreamApache Kafka documentation for detailed upgrade instructions. It is recommended
that you read the instructions for your specific upgrade to identify any additional steps that apply to your specific
upgrade path.

Table 2: Version-Specific Upgrade Instructions

Detailed Upstream Instructions
Upstream Kafka

VersionCDH Kafka Version

Upgrading from 0.8.x through 2.0.0.x to 2.1.02.1.0CDH 6.2.0

Upgrading from 0.8.x through 1.1.x to 2.0.02.0.0CDH 6.1.0

Upgrading from 0.8.x through 0.11.0.x to 1.0.01.0.1CDH 6.0.0

Upgrading from 0.8.x through 0.11.0.x to 1.0.01.0.1Kafka 3.1.0

Upgrading from 0.8.x through 0.10.2.x to 0.11.0.00.11.0Kafka 3.0.0

Upgrading from 0.8.x through 0.10.1.x to 0.10.2.00.10.2Kafka 2.2

Upgrading from 0.8.x through 0.9.x.to 0.10.0.00.10.0Kafka 2.1

Upgrading from 0.8.0 through 0.8.2.x to 0.9.0.00.9.0Kafka 2.0

Managing Topics across Multiple Kafka Clusters
You may have more than one Kafka cluster to support:

• Geographic distribution
• Disaster recovery
• Organizational requirements

You can distribute messages across multiple clusters. It can be handy to have a copy of one or more topics from other
Kafka clusters available to a client on one cluster.MirrorMaker is a tool that comes bundledwith Kafka to help automate
the process of mirroring or publishing messages from one cluster to another. "Mirroring" occurs between clusters
where "replication" distributes message within a cluster.

Apache Kafka Guide | 43

Kafka Integration

http://kafka.apache.org/documentation/#upgrade_2_1_0
http://kafka.apache.org/documentation/#upgrade_2_0_0
http://kafka.apache.org/documentation/#upgrade_1_0_0
http://kafka.apache.org/documentation/#upgrade_1_0_0
http://kafka.apache.org/documentation/#upgrade_11_0_0
http://kafka.apache.org/documentation/#upgrade_10_2_0
http://kafka.apache.org/documentation/#upgrade_10
http://kafka.apache.org/documentation/#upgrade_9

Figure 18: Mirror Maker Makes Topics Available on Multiple Clusters

While the diagram shows copying to one topic,MirrorMaker’smainmode of operation is running continuously, copying
one or more topics from the source cluster to the destination cluster.

Keep in mind the following design notes when configuring Mirror Maker:

• Mirror Maker runs as a single process.
• Mirror Maker can run with multiple consumers that read from multiple partitions in the source cluster.
• Mirror Maker uses a single producer to copy messages to the matching topic in the destination cluster.

Consumer/Producer Compatibility

The Mirror Maker consumer needs to be client compatible with the source cluster. The Mirror Maker producer needs
to be client compatible with the destination cluster.

See Client/Broker Compatibility Across Kafka Versions on page 41 for more details about what it means to be
"compatible."

Topic Differences between Clusters

Because messages are copied from the source cluster to the destination cluster—potentially throughmany consumers
funneling into a single producer—there is no guarantee of having identical offsets or timestamps between the two
clusters. In addition, as these copies occur over the network, there can be somemismatching due to retries or dropped
messages.

Optimize Mirror Maker Producer Location

Because Mirror Maker uses a single producer and since producers typically have more difficulty with high latency
and/or unreliable connections, it is better to have the producer run “closer” to the destination cluster, meaning in the
same data center or on the same rack.

Destination Cluster Configuration

Before starting Mirror Maker, make sure that the destination cluster is configured correctly:

• Make sure there is sufficient disk space to copy the topic from the source cluster to the destination cluster.

44 | Apache Kafka Guide

Kafka Integration

• Make sure the topic exists in the destination cluster or use the kafka-configs command to set the property
auto.create.topics.enable=true. See Kafka Administration Using Command Line Tools on page 64.

Kerberos and Mirror Maker

As mentioned earlier, Mirror Maker runs as a single process. The resulting consumers and producers rely on a single
configuration setup. Mirror Maker requires that the source cluster and the destination cluster belong to the same
Kerberos realm.

Setting up Mirror Maker in Cloudera Manager

Where Cloudera Manager is managing the destination cluster:

1. In Cloudera Manager, select the Kafka service.
2. Choose Action > Add Role Instances.
3. Under Kafka Mirror Maker, click Select hosts.
4. Select the host where Mirror Maker will run and click Continue.
5. Fill in the Destination Broker List and Source Broker List with your source and destination Kafka clusters.

Use host name, IP address, or fully qualified domain name.

6. Fill out the Topic Whitelist.

The whitelist is required.

7. Fill out the TLS/SSL sections if security needs to be enabled.
8. Start the Mirror Maker instance.

Settings to Avoid Data Loss

The Avoid Data Loss option from earlier releases has been removed in favor of automatically setting the following
properties. Also note that MirrorMaker starts correctly if you enter the numeric values in the configuration snippet
(rather than using "max integer" for retries and "max long" for max.block.ms).

Producer settings

• acks=all

• retries=2147483647

• max.block.ms=9223372036854775807

Consumer setting

• auto.commit.enable=false

MirrorMaker setting

• abort.on.send.failure=true

Setting up an End-to-End Data Streaming Pipeline

Data Streaming Pipeline

The data streaming pipeline as shown here is the most common usage of Kafka.

Apache Kafka Guide | 45

Kafka Integration

Figure 19: Data Streaming Pipeline Architecture

Some things to note about the data streaming pipeline model:

• Most systems have multiple data sources sending data over the Internet, such as per store or per device.
• The ingestion service usually saves older data to some form of long-term data storage.
• The stream processing service can perform near real-time computation on the data extracted from the message

service, such as processing transactions, detecting fraud, or alerting systems.
• The results of stream processing can be sent directly to another service (such as for reporting) or can be streamed

back into Kafka for one or more other services to do further real time processing.

The following sections show how other components in CDH map into the data streaming model.

Ingest Using Kafka with Apache Flume

Apache Flume is commonly used to collect Kafka topics into a long-term data store.

46 | Apache Kafka Guide

Kafka Integration

Figure 20: Collecting Kafka Topics using Flume

Note: Do not configure a Kafka source to send data to a Kafka sink. If you do, the Kafka source sets
the topic in the event header, overriding the sink configuration and creating an infinite loop, sending
messages back and forth between the source and sink. If you need to use both a Kafka source and a
sink, use an interceptor to modify the event header and set a different topic.

For information on configuring Kafka to securely communicate with Flume, see Configuring Flume Security with Kafka.
The following sections describe how to configure Kafka sub-components for directing topics to long-term storage:

Sources

Use the Kafka source to stream data in Kafka topics to Hadoop. The Kafka source can be combined with any Flume
sink, making it easy to write Kafka data to HDFS, HBase, and Solr.

The following Flume configuration example uses a Kafka source to send data to an HDFS sink:

tier1.sources = source1
tier1.channels = channel1
tier1.sinks = sink1

tier1.sources.source1.type = org.apache.flume.source.kafka.KafkaSource
tier1.sources.source1.zookeeperConnect = zk01.example.com:2181
tier1.sources.source1.topic = weblogs
tier1.sources.source1.groupId = flume
tier1.sources.source1.channels = channel1
tier1.sources.source1.interceptors = i1
tier1.sources.source1.interceptors.i1.type = timestamp
tier1.sources.source1.kafka.consumer.timeout.ms = 100

tier1.channels.channel1.type = memory
tier1.channels.channel1.capacity = 10000
tier1.channels.channel1.transactionCapacity = 1000

tier1.sinks.sink1.type = hdfs
tier1.sinks.sink1.hdfs.path = /tmp/kafka/%{topic}/%y-%m-%d
tier1.sinks.sink1.hdfs.rollInterval = 5
tier1.sinks.sink1.hdfs.rollSize = 0
tier1.sinks.sink1.hdfs.rollCount = 0
tier1.sinks.sink1.hdfs.fileType = DataStream

Apache Kafka Guide | 47

Kafka Integration

tier1.sinks.sink1.channel = channel1

For higher throughput, configure multiple Kafka sources to read from the same topic. If you configure all the sources
with the same groupID, and the topic contains multiple partitions, each source reads data from a different set of
partitions, improving the ingest rate.

The following table describes parameters that the Kafka source supports. Required properties are listed in bold.

DescriptionDefault ValueProperty Name

Must be set to org.apache.
flume.source.kafka.
KafkaSource.

type

The URI of the ZooKeeper server or
quorum used by Kafka. This can be a

zookeeperConnect

single host (for example, zk01.
example.com:2181) or a
comma-separated list of hosts in a
ZooKeeper quorum (for example,
zk01.example.
com:2181,zk02.example.
com:2181, zk03.example.
com:2181).

The Kafka topic fromwhich this source
reads messages. Flume supports only
one topic per source.

topic

The unique identifier of the Kafka
consumer group. Set the samegroupID

flumegroupID

in all sources to indicate that they
belong to the same consumer group.

The maximum number of messages
that can be written to a channel in a
single batch.

1000batchSize

The maximum time (in ms) before a
batch is written to the channel. The

1000batchDurationMillis

batch is written when the batchSize
limit or batchDurationMillis limit is
reached, whichever comes first.

Used to configure the Kafka consumer
used by the Kafka source. You can use

Other properties supported by the
Kafka consumer

any consumer properties supported
by Kafka. Prepend the consumer
property namewith the prefix kafka.
(for example,
kafka.fetch.min.bytes). See the
Apache Kafka documentation topic
Consumer Configs for the full list of
Kafka consumer properties.

Source Tuning Notes

The Kafka source overrides two Kafka consumer parameters:

48 | Apache Kafka Guide

Kafka Integration

http://kafka.apache.org/documentation.html#consumerconfigs

1. auto.commit.enable is set to false by the source, committing every batch. For improved performance, set
this parameter to true using the kafka.auto.commit.enable setting. Note that this change can lead to data
loss if the source goes down before committing.

2. consumer.timeout.ms is set to 10, so when Flume polls Kafka for new data, it waits no more than 10 ms for
the data to be available. Setting this parameter to a higher value can reduce CPU utilization due to less frequent
polling, but the trade-off is that it introduces latency in writing batches to the channel.

Kafka Sinks

Use the Kafka sink to send data to Kafka from a Flume source. You can use the Kafka sink in addition to Flume sinks,
such as HBase or HDFS.

The following Flume configuration example uses a Kafka sink with an exec source:

tier1.sources = source1
tier1.channels = channel1
tier1.sinks = sink1

tier1.sources.source1.type = exec
tier1.sources.source1.command = /usr/bin/vmstat 1
tier1.sources.source1.channels = channel1

tier1.channels.channel1.type = memory
tier1.channels.channel1.capacity = 10000
tier1.channels.channel1.transactionCapacity = 1000

tier1.sinks.sink1.type = org.apache.flume.sink.kafka.KafkaSink
tier1.sinks.sink1.topic = sink1
tier1.sinks.sink1.brokerList = kafka01.example.com:9092,kafka02.example.com:9092
tier1.sinks.sink1.channel = channel1
tier1.sinks.sink1.batchSize = 20

The following table describes parameters the Kafka sink supports. Required properties are listed in bold.

DescriptionDefault ValueProperty Name

Must be set to org.apache.
flume.sink.kafka.KafkaSink.

type

The brokers the Kafka sink uses to
discover topic partitions, formatted as

brokerList

a comma-separated list of
hostname:port entries. You do not
need to specify the entire list of
brokers, but you specify at least two
for high availability.

The Kafka topic towhichmessages are
published by default. If the event

default-flume-topictopic

header contains a topic field, the event
is published to the designated topic,
overriding the configured topic.

The number of messages to process
in a single batch. Specifying a larger

100batchSize

batchSize can improve throughput and
increase latency.

The number of replicas that must
acknowledge a message before it is

0request.required.acks

written successfully. Possible values
are:

Apache Kafka Guide | 49

Kafka Integration

DescriptionDefault ValueProperty Name

do notwait for an
acknowledgment

0

wait for the
leader to
acknowledgeonly

1

wait for all
replicas to
acknowledge

-1

To avoid potential loss of data in case
of a leader failure, set this to -1.

Used to configure the Kafka producer
used by the Kafka sink. You can use

Other properties supported by the
Kafka producer

any producer properties supported by
Kafka. Prepend the producer property
name with the prefix kafka (for
example,
kafka.compression.codec). See
theApacheKafka documentation topic
Producer Configs for the full list of
Kafka producer properties.

The Kafka sink uses the topic and key properties from the FlumeEvent headers to determine where to send events
in Kafka. If the header contains the topic property, that event is sent to the designated topic, overriding the configured
topic. If the header contains the key property, that key is used to partition events within the topic. Events with the
same key are sent to the same partition. If the key parameter is not specified, events are distributed randomly to
partitions. Use these properties to control the topics and partitions to which events are sent through the Flume source
or interceptor.

Kafka Channels

CDH includes a Kafka channel to Flume in addition to the existing memory and file channels. You can use the Kafka
channel:

• To write to Hadoop directly from Kafka without using a source.
• To write to Kafka directly from Flume sources without additional buffering.
• As a reliable and highly available channel for any source/sink combination.

The following Flume configuration uses a Kafka channel with an exec source and HDFS sink:

tier1.sources = source1
tier1.channels = channel1
tier1.sinks = sink1

tier1.sources.source1.type = exec
tier1.sources.source1.command = /usr/bin/vmstat 1
tier1.sources.source1.channels = channel1

tier1.channels.channel1.type = org.apache.flume.channel.kafka.KafkaChannel
tier1.channels.channel1.capacity = 10000
tier1.channels.channel1.zookeeperConnect = zk01.example.com:2181
tier1.channels.channel1.parseAsFlumeEvent = false
tier1.channels.channel1.topic = channel2
tier1.channels.channel1.consumer.group.id = channel2-grp
tier1.channels.channel1.auto.offset.reset = earliest
tier1.channels.channel1.kafka.bootstrap.servers =

50 | Apache Kafka Guide

Kafka Integration

http://kafka.apache.org/documentation.html#producerconfigs

kafka02.example.com:9092,kafka03.example.com:9092
tier1.channels.channel1.transactionCapacity = 1000
tier1.channels.channel1.kafka.consumer.max.partition.fetch.bytes=2097152

tier1.sinks.sink1.type = hdfs
tier1.sinks.sink1.hdfs.path = /tmp/kafka/channel
tier1.sinks.sink1.hdfs.rollInterval = 5
tier1.sinks.sink1.hdfs.rollSize = 0
tier1.sinks.sink1.hdfs.rollCount = 0
tier1.sinks.sink1.hdfs.fileType = DataStream
tier1.sinks.sink1.channel = channel1

The following table describes parameters the Kafka channel supports. Required properties are listed in bold.

DescriptionDefault ValueProperty Name

Must be set to org.apache.
flume.channel.kafka.
KafkaChannel.

type

The brokers the Kafka channel uses to
discover topic partitions, formatted as

brokerList

a comma-separated list of
hostname:port entries. You do not
need to specify the entire list of
brokers, but you should specify at least
two for high availability.

The URI of the ZooKeeper server or
quorum used by Kafka. This can be a

zookeeperConnect

single host (for example,
zk01.example.com:2181) or a
comma-separated list of hosts in a
ZooKeeper quorum (for example,
zk01.example.
com:2181,zk02.example.
com:2181, zk03.example.
com:2181).

The Kafka topic the channel will use.flume-channeltopic

The unique identifier of the Kafka
consumer group the channel uses to
register with Kafka.

flumegroupID

Set to true if a Flume source is writing
to the channel and expects

trueparseAsFlumeEvent

AvroDataums with the FlumeEvent
schema (org.apache.flume.
source.avro.AvroFlumeEvent)
in the channel. Set to false if other
producers arewriting to the topic that
the channel is using.

What to do when there is no initial
offset in Kafka or if the current offset

latestauto.offset.reset

does not exist on the server (for
example, because the data is deleted).

• earliest: automatically reset
the offset to the earliest offset

Apache Kafka Guide | 51

Kafka Integration

DescriptionDefault ValueProperty Name

• latest: automatically reset the
offset to the latest offset

• none: throw exception to the
consumer if no previous offset is
found for the consumer's group

• anything else: throw exception to
the consumer.

Polling interval when writing to the
sink.

100kafka.consumer.timeout.ms

The maximum amount of data
per-partition the server will return.

1048576consumer.max.partition.fetch.bytes

Used to configure the Kafka producer.
You can use any producer properties

Other properties supported by the
Kafka producer

supported by Kafka. Prepend the
producer property name with the
prefix kafka. (for example,
kafka.compression.codec). See
theApacheKafka documentation topic
Producer Configs for the full list of
Kafka producer properties.

CDH Flume Kafka Compatibility

The section Client/Broker Compatibility Across Kafka Versions on page 41 covered the basics of Kafka client/broker
compatibility. Flume has an embedded Kafka client which it uses to talk to Kafka clusters. Since the generally accepted
practice is to have the broker running the same or newer version as the client, a CDH Flume version requires being
matched to a minimum Kafka version. This is illustrated in the table below.

Table 3: Flume Embedded Client and Kafka Compatibility

Minimum Supported CDH Kafka
Version (Remote or Local)Embedded Kafka Client VersionCDH Flume Version

CDH 6.0.01.0.1CDH 6.0.0

Kafka 2.20.10.2-kafka-2.2.0CDH 5.14.x

Kafka 2.00.9.0-kafka-2.0.2CDH 5.13.x

Kafka 2.00.9.0-kafka-2.0.2CDH 5.12.x

Kafka 2.00.9.0-kafka-2.0.2CDH 5.11.x

Kafka 2.00.9.0-kafka-2.0.2CDH 5.10.x

Kafka 2.00.9.0-kafka-2.0.2CDH 5.9.x

Kafka 2.00.9.0-kafka-2.0.0CDH 5.8.x

Kafka 2.00.9.0-kafka-2.0.0CDH 5.7.x

Securing Flume with Kafka

When using Flume with a secured Kafka service, you can use Cloudera Manager to generate security related Flume
agent configuration.

52 | Apache Kafka Guide

Kafka Integration

http://kafka.apache.org/documentation.html#producerconfigs

In ClouderaManager, on the Flume Configuration page, select the Kafka service youwant to connect to. This generates
the following files:

• flume.keytab

• jaas.conf

It also generates security protocol and Kerberos service name properties for the Flume agent configuration. If TLS/SSL
is also configured for Kafka brokers, the setting also adds SSL truststore properties to the beginning of the Flume agent
configuration.

Review the deployed agent configuration and if the defaults do not match your environment (such as the truststore
password), you can override the settings by adding the same property to the agent configuration.

Using Kafka with Apache Spark Streaming for Stream Processing

For real-time stream computation, Apache Spark is the tool of choice in CDH.

Figure 21: Data Streaming Pipeline with Spark

CDH Spark/Kafka Compatibility

The section Client/Broker Compatibility Across Kafka Versions on page 41 covered the basics of Kafka client/broker
compatibility. Spark maintains two embedded Kafka clients and can be configured to use either one. This table in the
Apache Spark documentation illustrates the two clients that are available.

For information on how to configure Spark Streaming to receive data from Kafka, refer to the Kafka version you are
using in the following table.

API Stability
Upstream Integration

Guide

Minimum
CDH Kafka
Version
(Remote
or Local)

Minimum
Apache
Kafka
Version

Embedded Kafka Client
(Choose based on Kafka

cluster)
CDHSpark
Version

StableSpark 2.2 + Kafka 0.10Kafka 2.10.10.0spark-streaming-kafka-0-10CDH 6.0

DeprecatedSpark 2.2 + Kafka 0.8Kafka 2.00.8.2.1spark-streaming-kafka-0-8CDH 6.0

ExperimentalSpark 2.2 + Kafka 0.10Kafka 2.10.10.0spark-streaming-kafka-0-10Spark 2.2

StableSpark 2.2 + Kafka 0.8Kafka 2.00.8.2.1spark-streaming-kafka-0-8Spark 2.2

Apache Kafka Guide | 53

Kafka Integration

https://spark.apache.org/docs/2.3.1/streaming-kafka-integration.html
https://spark.apache.org/docs/2.2.0/streaming-kafka-0-10-integration.html
https://spark.apache.org/docs/2.2.0/streaming-kafka-0-8-integration.html
https://spark.apache.org/docs/2.2.0/streaming-kafka-0-10-integration.html
https://spark.apache.org/docs/2.2.0/streaming-kafka-0-8-integration.html

API Stability
Upstream Integration

Guide

Minimum
CDH Kafka
Version
(Remote
or Local)

Minimum
Apache
Kafka
Version

Embedded Kafka Client
(Choose based on Kafka

cluster)
CDHSpark
Version

ExperimentalSpark 2.1 + Kafka 0.10Kafka 2.10.10.0spark-streaming-kafka-0-10Spark 2.1

StableSpark 2.1 + Kafka 0.8Kafka 2.00.8.2.1spark-streaming-kafka-0-8Spark 2.1

StableSpark 2.0 + KafkaKafka 2.00.8.2.?spark-streaming-kafka-0-8Spark 2.0

Validating Kafka Integration with Spark Streaming

To validate your Kafka integration with Spark Streaming, run the KafkaWordCount example in Spark.

If you installed Spark using parcels, use the following command:

/opt/cloudera/parcels/CDH/lib/spark/bin/run-example streaming.KafkaWordCount zkQuorum
group topics numThreads

If you installed Spark using packages, use the following command:

/usr/lib/spark/bin/run-example streaming.KafkaWordCount zkQuorum group topics numThreads

Replace the variables as follows:

• zkQuorum: ZooKeeper quorum URI used by Kafka For example:

zk01.example.com:2181,zk02.example.com:2181,zk03.example.com:2181

• group: Consumer group used by the application.
• topics: Kafka topic containing the data for the application.
• numThreads: Number of consumer threads reading the data. If this is higher than the number of partitions in the

Kafka topic, some threads will be idle.

Note: If multiple applications use the same group and topic, each application receives a subset of
the data.

Securing Spark with Kafka

Using Spark Streaming with a Kafka service that’s already secured requires configuration changes on the Spark side.
You can find a nice description of the required changes in the spark-dstream-secure-kafka-app sample project
on GitHub.

Developing Kafka Clients
Previously, examples were provided for producing messages to and consuming messages from a Kafka cluster using
the command line. For most cases, running Kafka producers and consumers using shell scripts and Kafka’s command
line scripts cannot be used in practice. In those cases, native Kafka client development is the generally accepted option.

Simple Client Examples

Let’s start with a simple working example of a producer/consumer program. This section includes the following code
examples:

54 | Apache Kafka Guide

Kafka Integration

https://spark.apache.org/docs/2.1.0/streaming-kafka-0-10-integration.html
https://spark.apache.org/docs/2.1.0/streaming-kafka-0-8-integration.html
https://spark.apache.org/docs/2.0.0/streaming-kafka-integration.html
https://github.com/gaborgsomogyi/spark-dstream-secure-kafka-app

pom.xml

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.cloudera.kafkaexamples</groupId>
 <artifactId>kafka-examples</artifactId>
 <packaging>jar</packaging>
 <version>1.0</version>
 <name>kafkadev</name>
 <url>http://maven.apache.org</url>
 <repositories>
 <repository>
 <id>cloudera</id>
 <url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
 </repository>
 </repositories>
 <dependencies>
 <dependency>
 <groupId>org.apache.kafka</groupId>
 <artifactId>kafka-clients</artifactId>
 <version>1.0.1-cdh6.0.0</version>
 <scope>compile</scope>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.7.0</version>
 <configuration>
 <source>1.8</source>
 <target>1.8</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

SimpleProducer.java

The example includes Java properties for setting up the client identified in the comments; the functional parts of the
code are in bold. This code is compatible with versions as old as the 0.9.0-kafka-2.0.0 version of Kafka.

package com.cloudera.kafkaexamples;

import java.util.Date;
import java.util.Properties;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.common.serialization.StringSerializer;

public class SimpleProducer {
 public static void main(String[] args) {
 // Generate total consecutive events starting with ufoId
 long total = Long.parseLong("10");
 long ufoId = Math.round(Math.random() * Integer.MAX_VALUE);

 // Set up client Java properties
 Properties props = new Properties();
 props.setProperty(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,
 "host1:9092,host2:9092,host3:9092");

Apache Kafka Guide | 55

Kafka Integration

 props.setProperty(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,
 StringSerializer.class.getName());
 props.setProperty(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,
 StringSerializer.class.getName());
 props.setProperty(ProducerConfig.ACKS_CONFIG, "1");

 try (KafkaProducer<String, String> producer = new KafkaProducer<>(props)) {
 for (long i = 0; i < total; i++) {
 String key = Long.toString(ufoId++);
 long runtime = new Date().getTime();
 double latitude = (Math.random() * (2 * 85.05112878)) - 85.05112878;
 double longitude = (Math.random() * 360.0) - 180.0;
 String msg = runtime + "," + latitude + "," + longitude;
 try {

ProducerRecord<String, String> data = new
 ProducerRecord<String, String>("ufo_sightings", key, msg);
 producer.send(data);
 long wait = Math.round(Math.random() * 25);
 Thread.sleep(wait);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
 }
}

SimpleConsumer.java

Note that this consumer is designed as an infinite loop. In normal operation of Kafka, all the producers could be idle
while consumers are likely to be still running.

The example includes Java properties for setting up the client identified in the comments; the functional parts of the
code are in bold. This code is compatible with versions as old as the 0.9.0-kafka-2.0.0 version of Kafka.

package com.cloudera.kafkaexamples;

import java.util.Arrays;
import java.util.Properties;

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.StringDeserializer;

public class SimpleConsumer {
 public static void main(String[] args) {

 // Set up client Java properties
 Properties props = new Properties();
 props.setProperty(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,
 "host1:9092,host2:9092,host3:9092");
 // Just a user-defined string to identify the consumer group
 props.put(ConsumerConfig.GROUP_ID_CONFIG, "test");
 // Enable auto offset commit
 props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
 props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
 props.setProperty(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
 StringDeserializer.class.getName());
 props.setProperty(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
 StringDeserializer.class.getName());

 try (KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props)) {
 // List of topics to subscribe to

consumer.subscribe(Arrays.asList("ufo_sightings"));
 while (true) {
 try {

ConsumerRecords<String, String> records = consumer.poll(100);
 for (ConsumerRecord<String, String> record : records) {

56 | Apache Kafka Guide

Kafka Integration

 System.out.printf("Offset = %d\n", record.offset());
 System.out.printf("Key = %s\n", record.key());
 System.out.printf("Value = %s\n", record.value());
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
 }
}

Moving Kafka Clients to Production

Now that you’ve seen the basic examples of a producer and consumer, prototyping your own designs shouldn’t be too
difficult. However, your codewill likely undergo several iterations that improve on scalability, debuggability, robustness,
and maintainability.

This section presents recommendations in the form of code snippets that illustrate some of the important ways to use
the producer and consumer APIs.

Reuse your Producer/Consumer object

In these examples, the consumer constructor should be called once and the poll()method called within a loop. If
this object is not reused, then a new connection to the broker is openedwith each new KafkaConsumer object created.

Recommended

KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);

while (true) {
 ConsumerRecords<String, String> records = consumer.poll(100);
}

Not Recommended

while (true) {
 KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
 ConsumerRecords<String, String> records = consumer.poll(100);
}

Similarly, it is recommended that you use one KafkaConsumer and/or KafkaProducer object per thread. Creating
more objects opens multiple ports per broker connection. Overusing ephemeral ports can cause performance issues.

In addition, Cloudera recommends to set and use a fixed client.id for producers and consumers when they are
connecting to the brokers. If this is not done, Kafkawill assign a new client id every time a new connection is established,
which can severely increase resource utilization (memory) on the broker side.

Each KafkaConsumer object requires calling poll() frequently

As explained in the Apache Kafka documentation topic New Consumer Configs, any consumer connected to a partition
will time out if poll() is not called within the period defined by max.poll.interval.ms.

In the example below, the call to myDataProcess.doStuff(records) can cause poll() to be called infrequently.
This could be due to a combination of reasons:

• Being a blocking method call.
• Doing work on a remote machine.
• Having highly variable processing time.
• Saving to storage that has highly variable I/O throughput.

In such cases, consider having another thread or process doing the actual work and making the handoff as lightweight
as possible.

Apache Kafka Guide | 57

Kafka Integration

http://kafka.apache.org/documentation/#newconsumerconfigs

Example: poll() gets KafkaException due to session timeout

while (true) {
 KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
 ConsumerRecords<String, String> records = consumer.poll(100);
 // the call below should return quickly in all cases
 myDataProcess.doStuff(records);
}

Catch all exceptions from poll()

From the poll() Javadoc page, you can see that the poll()method throws several exceptions. If the catch statements
(bold in the example) are not complete, then any uncaught exception will end up in the finally statement calling
KafkaConsumer#close(). This will not be the desired behavior in many cases.

while (true) {
 try {
 ConsumerRecords<String, String> records = consumer.poll(100);
 } catch (Exception e) {
 e.printStackTrace();
 } finally {
 consumer.close();
 }

Callback#onCompletion() should always exit without errors

The interface org.apache.kafka.clients.producer.Callback (Javadoc) is used to define a class that can be
used upon completion of a KafkaProducer#send() call. It allows for tracking, clean up, or other administrative code
to be called. An example of unintended usage is to call KafkaProducer#send() within the
Callback#onCompletion()method, essentiallymimicking a retry. Because theonCompletion()method is always
expected to return cleanly and the send()method makes no such guarantees, calling send() within the callback
could end up hanging the code in case of network or broker issues.

Check your API usage against the latest API

The documentation for the latest upstream release of Apache Kafka indicates if there have been any changes to how
the APIs are used (setup, read, write). Reviewing the latest information could help avoid upgrade-related changes
to your producer or consumer.

Some examples from past versions include:

New Class or PackageOld Class or Package

java.util.Propertieskafka.producer.ProducerConfig

kafka.api.*kafka.javaapi.*

kafka.clients.producer.ProducerRecordkafka.producer.KeyedMessage

Hidden Dependency on Network Availability

Network dependency is one of the more subtle issues. Given the consumer dependencies on Sentry and Zookeeper,
having a combination of frequent or prolonged DNS or network outages can also cause various session timeouts to
occur. Such timeouts will force partition rebalancing on the brokers, which will worsen general Kafka reliability.

Should these issues be common in your network, you may need to have a less straightforward design that can handle
such reliability issues outside of the Kafka client.

Read the Details Carefully in the Apache Kafka Javadoc

The following pages have additional details about Kafka client programming:

• KafkaConsumer Javadoc

58 | Apache Kafka Guide

Kafka Integration

https://kafka.apache.org/10/javadoc/org/apache/kafka/clients/consumer/KafkaConsumer.html#poll-long-
https://kafka.apache.org/10/javadoc/org/apache/kafka/clients/producer/Callback.html
https://kafka.apache.org/10/javadoc/index.html?org/apache/kafka/clients/consumer/KafkaConsumer.html

• KafkaProducer Javadoc

These Javadoc pages are quite dense with information. They assume you have sufficient background in reliable
computing, networking, multithreading, and distributed systems to use the APIs correctly. While the previous sections
point out many caveats in using the client APIs, the Javadoc (and ultimately the source code) provides a more detailed
explanation.

Kafka Metrics
Kafka uses Yammer metrics to record internal performance measurements. The metrics are exposed via Java
Management Extensions (JMX) and can be read with a JMX console.

Metrics Categories

There are metrics available in the various components of Kafka. In addition, there are some metrics specific to how
ClouderaManager and Kafka interact. This table has pointers to both the Apache Kafkametrics names and the Cloudera
Manager metric names.

Table 4: Metrics by Category

Apache Kafka Metrics DocCloudera Manager Metrics DocCategory

Base Metrics on page 95Cloudera Manager

Kafka Service

BrokerBroker Metrics on page 96

Broker Topic Metrics on page 164

Broker

Replica Metrics on page 169

ClientCommon

Client-to-BrokerProducer/Consumer

ProducerProducer

Producer Sender

Consumer GroupConsumer

Consumer Fetch

Same as Producer or Consumer tablesMirror Maker Metrics on page 168Mirror Maker

Viewing Metrics

Cloudera Manager records most of these metrics and makes them available via Chart Builder.

Because Cloudera Manager cannot track metrics on any clients (that is, producer or consumer), you may wish to use
an alternative JMX console program to check metrics. There are several JMX console options:

• The JDK comes with the jconsole utility.
• VisualVM has a MBeans plugin.

Apache Kafka Guide | 59

Kafka Integration

https://kafka.apache.org/10/javadoc/org/apache/kafka/clients/producer/KafkaProducer.html
https://kafka.apache.org/documentation/#monitoring
https://kafka.apache.org/documentation/#selector_monitoring
https://kafka.apache.org/documentation/#common_node_monitoring
https://kafka.apache.org/documentation/#producer_monitoring
https://kafka.apache.org/documentation/#producer_sender_monitoring
https://kafka.apache.org/documentation/#new_consumer_group_monitoring
https://kafka.apache.org/documentation/#new_consumer_fetch_monitoring
https://docs.oracle.com/javase/9/management/using-jconsole.htm
https://visualvm.github.io/

Building Cloudera Manager Charts with Kafka Metrics

The Charts edit menu looks like a small pencil icon in the Charts page of the Cloudera Manager console. From there,
choose Add from Chart Builder and enter a query for the appropriate metric.

SELECT
 metric
WHERE
 filter

Some specific examples of queries for Cloudera Metrics are:

Controllers across all brokers

This chart shows the active controller across all brokers. It is useful for checking active controller status (should be
one at any given time, transitions should be fast).

SELECT
 kafka_active_controller
WHERE
 roleType=KAFKA_BROKER

Network idle rate

>Chart showing the network processor idle rate across all brokers. If idle time is always zero, then probably the
num.network.threads property may need to be increased.

SELECT
 kafka_network_processor_avg_idle_rate
WHERE
 roleType=KAFKA_BROKER

Partitions per broker

Chart showing the number of partitions per broker. It is useful for detecting partition imbalances early.

SELECT
 kafka_partitions
WHERE
 roleType=KAFKA_BROKER

Partition activity

Chart tracking partition activity on a single broker.

SELECT
 kafka_partitions, kafka_under_replicated_partitions
WHERE
 hostname=host1.domain.com

Mirror Maker activity

Chart for tracking Mirror Maker behavior. Since Mirror Maker has one or more consumers and a single producer,
most consumer or metrics should be usable with this query.

SELECT
producer or consumer metric

WHERE
 roleType=KAFKA_MIRROR_MAKER

60 | Apache Kafka Guide

Kafka Integration

Kafka Administration

This section describes managing a Kafka cluster in production, including:

Kafka Administration Basics

Broker Log Management

Kafka brokers save their data as log segments in a directory. The logs are rotated depending on the size and time
settings.

The most common log retention settings to adjust for your cluster are shown below. These are accessible in Cloudera
Manager via the Kafka > Configuration tab.

• log.dirs: The location for the Kafka data (that is, topic directories and log segments).
• log.retention.{ms|minutes|hours}: The retention period for the entire log. Any older log segments are

removed.
• log.retention.bytes: The retention size for the entire log.

There are many more variables available for fine-tuning broker log management. For more detailed information, look
at the relevant variables in the Apache Kafka documentation topic Broker Configs.

• log.dirs

• log.flush.*

• log.retention.*

• log.roll.*

• log.segment.*

Record Management

There are two pieces to record management, log segments and log cleaner.

As part of the general data storage, Kafka rolls logs periodically based on size or time limits. Once either limit is hit, a
new log segment is created with the all new data being placed there, while older log segments should generally no
longer change. This helps limit the risk of data loss or corruption to a single segment instead of the entire log.

• log.roll.{ms|hours}: The time period for each log segment. Once the current segment is older than this
value, it goes through log segment rotation.

• log.segment.bytes: The maximum size for a single log segment.

There is an alternative to simply removing log segments for a partition. There is another feature based on the log
cleaner. When the log cleaner is enabled, individual records in older log segments can be managed differently:

• log.cleaner.enable: This is a global setting in Kafka to enable the log cleaner.
• cleanup.policy: This is a per-topic property that is usually set at topic creation time. There are two valid values

for this property, delete and compact.
• log.cleaner.min.compaction.lag.ms: This is the retention period for the “head” of the log. Only records

outside of this retention period will be compacted by the log cleaner.

The compact policy, also called log compaction, assumes that the "most recent Kafka record is important." Some
examples include tracking a current email address or tracking a current mailing address. With log compaction, older
records with the same key are removed from a log segment and the latest one is kept. This effectively removes some
offsets from the partition.

Apache Kafka Guide | 61

Kafka Administration

http://kafka.apache.org/documentation/#brokerconfigs

Broker Garbage Log Collection and Log Rotation

Both broker JVM garbage collection and JVM garbage log rotation is enabled by default in the Kafka version delivered
with CDH. Garbage collection logs are written in the agent process directory by default.

Example path:

/run/cloudera-scm-agent/process/99-kafka-KAFKA_BROKER/kafkaServer-gc.log

Changing the default directory of garbage collection logs is currently not supported. However, you can configure
properties related garbage log rotation with the Kafka Broker Environment Advanced Configuration Snippet (Safety
Valve) property.

1. In Cloudera Manager, go to the Kafka service and click Configuration.
2. Find the Kafka Broker Environment Advanced Configuration Snippet (Safety Valve) property.
3. Add the following line to the property:

Modify the values of as required.

KAFKA_GC_LOG_OPTS="-XX:+UseGCLogFileRotation -XX:NumberOfGCLogFiles=10
-XX:GCLogFileSize=100M"

The flags used are as follows:

• +UseGCLogFileRotation: Enables garbage log rotation.
• -XX:NumberOfGCLogFiles: Specifies the number of files to use when rotating logs.
• -XX:GCLogFileSize: Specifies the size when the log will be rotated.

4. Click on Save Changes.
5. Restart the Kafka service to apply the changes.

Adding Users as Kafka Administrators

In some cases, additional users besides the kafka account need administrator access. This can be done in Cloudera
Manager by going to Kafka > Configuration > Super users.

Migrating Brokers in a Cluster
Brokers can be moved to a new host in a Kafka cluster. This might be needed in the case of catastrophic hardware
failure. Make sure the following are true before starting:

• Make sure the cluster is healthy.
• Make sure all replicas are in sync.
• Perform the migration when there is minimal load on the cluster.

Brokers need to be moved one-by-one. There are two techniques available:

Using kafka-reassign-partitions tool

This method involves more manual work to modify JSON, but does not require manual edits to configuration files.
For more information, see kafka-reassign-partitions on page 67.

Modify the broker IDs in meta.properties

This technique involves less manual work, but requires modifying an internal configuration file.

1. Start up the new broker as a member of the old cluster.

This creates files in the data directory.

2. Stop both the new broker and the old broker that it is replacing.

62 | Apache Kafka Guide

Kafka Administration

3. Change broker.id of the new broker to the broker.id of the old one both in Cloudera Manager and in
data directory/meta.properties.

4. (Optional) Run rsync to copy files from one broker to another.

See Using rsync to Copy Files from One Broker to Another on page 63.

5. Start up the new broker.

It re-replicates data from the other nodes.

Note that data intensive administration operations such as rebalancing partitions, adding a broker, removing a broker,
or bootstrapping a new machine can cause significant additional load on the cluster.

To avoid performance degradation of business workloads, you can limit the resources that these background processes
can consume by specifying the -throttleparameter when running kafka-reassign-partitions.

Using rsync to Copy Files from One Broker to Another

You can run rsync command to copy over all data from an old broker to a new broker, preserving modification times
and permissions. Using rsync allows you to avoid having to re-replicate the data from the leader. You have to ensure
that the disk structures match between the two brokers, or you have to verify the meta.properties file between
the source and destination brokers (because there is one meta.properties file for each data directory).

Run the following command on destination broker:

rsync -avz
src_broker:src_data_dir
dest_data_dir

If you plan to change the broker ID, edit dest_data_dir/meta.properties.

Setting User Limits for Kafka
Kafka opens many files at the same time. The default setting of 1024 for the maximum number of open files on most
Unix-like systems is insufficient. Any significant load can result in failures and cause error messages such as
java.io.IOException...(Too many open files) to be logged in the Kafka or HDFS log files. You might also
notice errors such as this:

ERROR Error in acceptor (kafka.network.Acceptor)
java.io.IOException: Too many open files

Cloudera recommends setting the value to a relatively high starting point, such as 32,768.

You can monitor the number of file descriptors in use on the Kafka Broker dashboard. In Cloudera Manager:

1. Go to the Kafka service.
2. Select a Kafka Broker.
3. Open Charts Library > Process Resources and scroll down to the File Descriptors chart.

See Viewing Charts for Cluster, Service, Role, and Host Instances.

Quotas
For a quick video introduction to quotas, see Quotas.

In CDK 2.0 Powered by Apache Kafka and higher, Kafka can enforce quotas on produce and fetch requests. Producers
and consumers can use very high volumes of data. This can monopolize broker resources, cause network saturation,
and generally deny service to other clients and the brokers themselves. Quotas protect against these issues and are
important for large, multi-tenant clusters where a small set of clients using high volumes of data can degrade the user
experience.

Apache Kafka Guide | 63

Kafka Administration

https://youtu.be/zMAwFoPdcmM

Quotas are byte-rate thresholds, defined per client ID. A client ID logically identifies an application making a request.
A single client ID can span multiple producer and consumer instances. The quota is applied for all instances as a single
entity. For example, if a client ID has a produce quota of 10 MB/s, that quota is shared across all instances with that
same ID.

When running Kafka as a service, quotas can enforce API limits. By default, each unique client ID receives a fixed quota
in bytes per second, as configured by the cluster (quota.producer.default, quota.consumer.default). This
quota is defined on a per-broker basis. Each client can publish or fetch a maximum of X bytes per second per broker
before it gets throttled.

The broker does not return an error when a client exceeds its quota, but instead attempts to slow the client down.
The broker computes the amount of delay needed to bring a client under its quota and delays the response for that
amount of time. This approach keeps the quota violation transparent to clients (outside of client-side metrics). This
also prevents clients from having to implement special backoff and retry behavior.

Setting Quotas

You can override the default quota for client IDs that need a higher or lower quota. Themechanism is similar to per-topic
log configuration overrides. Write your client ID overrides to ZooKeeper under /config/clients. All brokers read
the overrides, which are effective immediately. You can change quotas without having to do a rolling restart of the
entire cluster.

By default, each client ID receives an unlimited quota. The following configuration sets the default quota per producer
and consumer client ID to 10 MB/s.

quota.producer.default=10485760
quota.consumer.default=10485760

To set quotas using ClouderaManager, open the Kafka Configuration page and search forQuota. Use the fields provided
to set the Default Consumer Quota or Default Producer Quota. For more information, see Modifying Configuration
Properties Using Cloudera Manager.

Kafka Administration Using Command Line Tools
In some situations, it is convenient to use the command line tools available in Kafka to administer your cluster. However,
it is important to note that not all tools available for Kafka are supported by Cloudera.Moreover, certain administration
tasks can be carried more easily and conveniently using Cloudera Manager. Therefore, before you continue, make sure
to review Unsupported Command Line Tools on page 64 and Notes on Kafka CLI Administration on page 65.

Note: Output examples in this document are cleaned and formatted for easier readability.

Unsupported Command Line Tools

The following tools can be found as part of the Kafka distribution, but their use is generally discouraged for various
reasons as documented here.

NotesTool

Kafka Connect is currently not supported.connect-distributed

connect-standalone

Cloudera recommends using Sentry to manage ACLs
instead of this tool.

kafka-acls

Primarily useful for Client-to-Broker protocol related
development.

kafka-broker-api-versions

64 | Apache Kafka Guide

Kafka Administration

http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cm_mc_mod_configs.html
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cm_mc_mod_configs.html

NotesTool

Use Cloudera Manager to adjust any broker or security
properties instead of the kafka-configs tool. This tool
should only be used to modify topic properties.

kafka-configs

Do not use with CDH.kafka-delete-records

Use Cloudera Manager to create any CDH Mirror Maker
instance.

kafka-mirror-maker

This tool causes leadership for each partition to be
transferred back to the 'preferred replica'. It can be used
to balance leadership among the servers.

It is recommended tousekafka-reassign-partitions
instead of kafka-preferred-replica-election.

kafka-preferred-replica-election

Can be used to “rename” a topic.kafka-replay-log-producer

Validates that all replicas for a set of topics have the same
data. This tool is a “heavy duty” version of the ISR column
of kafka-topics tool.

kafka-replica-verification

Use Cloudera Manager to manage any Kafka host.kafka-server-start

kafka-server-stop

Deprecated in Apache Kafka.kafka-simple-consumer-shell

Kafka Streams is currently not supported.kafka-streams-application-reset

These scripts are intended for system testing.kafka-verifiable-consumer

kafka-verifiable-producer

Use Cloudera Manager to manage any Zookeeper host.zookeeper-server-start

zookeeper-server-stop

Limit usage of this script to reading information from
Zookeeper.

zookeeper-shell

Notes on Kafka CLI Administration

Here are some additional points to be aware of regarding Kafka administration:

• Use Cloudera Manager to start and stop Kafka and Zookeeper services. Do not use the kafka-server-start,
kafka-server-stop, zookeeper-server-start, or zookeeper-server-stop commands.

• For a parcel installation, all Kafka command line tools are located in
/opt/cloudera/parcels/KAFKA/lib/kafka/bin/. For a package installation, all such tools can be found in
/usr/bin/.

• Ensure that the JAVA_HOME environment variable is set to your JDK installation directory before using the
command-line tools. For example:

export JAVA_HOME=/usr/java/jdk1.8.0_144-cloudera

• Using any Zookeeper commandmanually can be very difficult to get right when it comes to interaction with Kafka.
Cloudera recommends that you avoid doing any write operations or ACL modifications in Zookeeper.

Apache Kafka Guide | 65

Kafka Administration

kafka-topics

Use the kafka-topics tool to generate a snapshot of topics in the Kafka cluster.

kafka-topics --zookeeper zkhost --describe

Topic: topic-a1 PartitionCount:3 ReplicationFactor:3 Configs:
 Topic: topic-a1 Partition: 0 Leader: 64 Replicas: 64,62,63
 Isr: 64,62,63
 Topic: topic-a1 Partition: 1 Leader: 62 Replicas: 62,63,64
 Isr: 62,63,64
 Topic: topic-a1 Partition: 2 Leader: 63 Replicas: 63,64,62
 Isr: 63,64,62
Topic: topic-a2 PartitionCount:1 ReplicationFactor:3 Configs:
 Topic: topic-a2 Partition: 0 Leader: 64 Replicas: 64,62,63
 Isr: 64,62,63

The output lists each topic and basic partition information. Note the following about the output:

• Partition count: The more partitions, the higher the possible parallelism among consumers and producers.
• Replication factor: Shows 1 for no redundancy and higher for more redundancy.
• Replicas and in-sync replicas (ISR): Shows which broker ID’s have the partitions and which replicas are current.

There are situations where this tool shows an invalid value for the leader broker ID or the number of ISRs is fewer than
the number of replicas. In those cases, there may be something wrong with those specific topics.

It is possible to change topic configuration properties using this tool. Increasing the partition count, the replication
factor or both is not recommended.

kafka-configs

The kafka-configs tool allows you to set and unset properties to topics. Cloudera recommends that you use Cloudera
Manager instead of this tool to change properties on brokers, because this tool bypasses any Cloudera Manager safety
checks.

Setting a topic property:

kafka-configs --zookeeper zkhost --entity-type topics --entity-name topic --alter
--add-config property=value

Checking a topic property:

$ kafka-configs --zookeeper zkhost --entity-type
topics --entity-name topic --describe

Unsetting a topic property:

$ kafka-configs --zookeeper zkhost --entity-type
topics --entity-name topic --alter --delete-config property

The Apache Kafka documentation includes a complete list of topic properties.

kafka-console-consumer

The kafka-console-consumer tool can be useful in a couple of ways:

• Acting as an independent consumer of particular topics. This can be useful to compare results against a consumer
program that you’ve written.

• To test general topic consumption without the need to write any consumer code.

66 | Apache Kafka Guide

Kafka Administration

http://kafka.apache.org/10/documentation.html#topicconfigs

Examples of usage:

$ kafka-console-consumer --bootstrap-server <broker1>,<broker2>... --topic <topic>
--from-beginning
<record-earliest-offset>
<record-earliest-offset+1>

Note the following about the tool:

• This tool prints all records and keeps outputting as more records are written to the topic.
• If the kafka-console-consumer tool is given no flags, it displays the full help message.
• In older versions of Kafka, it may have been necessary to use the --new-consumer flag. As of Apache Kafka

version 0.10.2, this is no longer necessary.

kafka-console-producer

This tool is used to write messages to a topic. It is typically not as useful as the console consumer, but it can be useful
when the messages are in a text based format. In general, the usage will be something like:

cat file | kafka-console-producer args

kafka-consumer-groups

The basic usage of the kafka-consumer-groups tool is:

kafka-consumer-groups --bootstrap-server broker1,broker2... --describe --group GROUP_ID

This tool is primarily useful for debugging consumer offset issues. The output from the tool shows the log and consumer
offsets for each partition connected to the consumer group corresponding to GROUP_ID. You can see at a glance which
consumers are current with their partition andwhich ones are behind. From there, you can determinewhich partitions
(and likely the corresponding brokers) are slow.

Beyond this debugging usage, there are other more advanced options to this tool:

• --execute --reset-offsets SCENARIO_OPTION: Resets the offsets for a consumer group to a particular
value based on the SCENARIO_OPTION flag given.

Valid flags for SCENARIO_OPTION are:

– --to-datetime

– --by-period

– --to-earliest

– --to-latest

– --shift-by

– --from-file

– --to-current

You will likely want to set the --topic flag to restrict this change to a specific topic or a specific set of partitions
within that topic.

This tool can be used to reset all offsets on all topics. This is something you probably won’t ever want to do. It is highly
recommended that you use this command carefully.

kafka-reassign-partitions

This tool provides substantial control over partitions in a Kafka cluster. It is mainly used to balance storage loads across
brokers through the following reassignment actions:

Apache Kafka Guide | 67

Kafka Administration

• Change the ordering of the partition assignment list. Used to control leader imbalances between brokers.
• Reassign partitions from one broker to another. Used to expand existing clusters.
• Reassign partitions between log directories on the same broker. Used to resolve storage load imbalance among

available disks in the broker.
• Reassign partitions between log directories acrossmultiple brokers. Used to resolve storage load imbalance across

multiple brokers.

The tool uses two JSON files for input. Both of these are created by the user. The two files are the following:

• Topics-to-Move JSON on page 68
• Reassignment Configuration JSON on page 68

Topics-to-Move JSON

This JSON file specifies the topics that you want to reassign. This a simple file that tells the
kafka-reassign-partitions tool which partitions it should look at when generating a proposal for the
reassignment configuration. The user has to create the topics-to-move JSON file from scratch.

The format of the file is the following:

{"topics": [{"topic": "mytopic1"},
 {"topic": "mytopic2"}],
 "version":1
}

Reassignment Configuration JSON

This JSON file is a configuration file that contains the parameters used in the reassignment process. This file is
created by the user, however, a proposal for its contents is generated by the tool. When the
kafka-reasssign-partitions tool is executed with the --generate option, it generates a proposed
configuration which can be fine-tuned and saved as a JSON file. The file created this way is the reassignment
configuration JSON. To generate a proposal, the tool requires a topics-to-move file as input.

The format of the file is the following:

{"version":1,
 "partitions":
 [{"topic":"mytopic1","partition":3,"replicas":[4,5],"log_dirs":["any","any"]},
 {"topic":"mytopic1","partition":1,"replicas":[5,4],"log_dirs":["any","any"]},
 {"topic":"mytopic2","partition":2,"replicas":[6,5],"log_dirs":["any","any"]}]
}

The reassignment configuration contains multiple properties that each control and specify an aspect of the
configuration. The Reassignment Configuration Properties table lists each property and its description.

Table 5: Reassignment Configuration Properties

DescriptionProperty

Specifies the topic.topic

Specifies the partition.partition

Specifies the brokers that the selected partition is assigned
to. The brokers are listed in order, which means that the

replicas

first broker in the list is always the leader for that partition.
Change the order of brokers to resolve any leader
balancing issues among brokers. Change the broker IDs to
reassign partitions to different brokers.

Specifies the log directory of the brokers. The log
directories are listed in the same order as the brokers. By

log_dirs

68 | Apache Kafka Guide

Kafka Administration

DescriptionProperty

default any is specified as the log directory, which means
that the broker is free to choose where it places the
replica. By default, the current broker implementation
selects the log directory using a round-robin algorithm.
An absolute path beginning with a / can be used to
explicitly set where to store the partition replica.

Notes and Recommendations:

• Cloudera recommends that youminimize the volume of replica changes per command instance. Instead ofmoving
10 replicas with a single command, move two at a time in order to save cluster resources.

• This tool cannot be used to make an out-of-sync replica into the leader partition.
• Use this tool only when all brokers and topics are healthy.
• Anticipate system growth. Redistribute the load when the system is at 70% capacity. Waiting until redistribution

becomes necessary due to reaching resource limits canmake the redistribution process extremely time consuming.

Tool Usage

To reassign partitions, complete the following steps:

1. Create a topics-to-move JSON file that specifies the topics you want to reassign. Use the following format:

{"topics": [{"topic": "mytopic1"},
 {"topic": "mytopic2"}],
 "version":1
}

2. Generate the content for the reassignment configuration JSON with the following command:

kafka-reassign-partitions --zookeeper hostname:port --topics-to-move-json-file topics
to move.json --broker-list broker 1, broker 2 --generate

Running the command lists the distribution of partition replicas on your current brokers followed by a proposed
partition reassignment configuration.

Example output:

Current partition replica assignment
{"version":1,
 "partitions":
 [{"topic":"mytopic2","partition":1,"replicas":[2,3],"log_dirs":["any","any"]},
 {"topic":"mytopic1","partition":0,"replicas":[1,2],"log_dirs":["any","any"]},
 {"topic":"mytopic2","partition":0,"replicas":[1,2],"log_dirs":["any","any"]},
 {"topic":"mytopic1","partition":2,"replicas":[3,1],"log_dirs":["any","any"]},
 {"topic":"mytopic1","partition":1,"replicas":[2,3],"log_dirs":["any","any"]}]
}

Proposed partition reassignment configuration

{"version":1,
 "partitions":
 [{"topic":"mytopic1","partition":0,"replicas":[4,5],"log_dirs":["any","any"]},
 {"topic":"mytopic1","partition":2,"replicas":[4,5],"log_dirs":["any","any"]},
 {"topic":"mytopic2","partition":1,"replicas":[4,5],"log_dirs":["any","any"]},
 {"topic":"mytopic1","partition":1,"replicas":[5,4],"log_dirs":["any","any"]},
 {"topic":"mytopic2","partition":0,"replicas":[5,4],"log_dirs":["any","any"]}]
}

In this example, the tool proposed a configuration which reassigns existing partitions on broker 1, 2, and 3 to
brokers 4 and 5.

Apache Kafka Guide | 69

Kafka Administration

3. Copy and paste the proposed partition reassignment configuration into an empty JSON file.
4. Review, and if required, modify the suggested reassignment configuration.
5. Save the file.
6. Start the redistribution process with the following command:

kafka-reassign-partitions --zookeeper hostname:port --reassignment-json-file reassignment
 configuration.json --bootstrap-server hostname:port --execute

Note: Specifying a bootstrap server with the --bootstrap-server option is only required
when an absolute log directory path is specified for a replica in the reassignment configuration
JSON file.

The tool prints a list containing the original replica assignment and a message that reassignment has started.
Example output:

Current partition replica assignment

{"version":1,
 "partitions":
 [{"topic":"mytopic2","partition":1,"replicas":[2,3],"log_dirs":["any","any"]},
 {"topic":"mytopic1","partition":0,"replicas":[1,2],"log_dirs":["any","any"]},
 {"topic":"mytopic2","partition":0,"replicas":[1,2],"log_dirs":["any","any"]},
 {"topic":"mytopic1","partition":2,"replicas":[3,1],"log_dirs":["any","any"]},
 {"topic":"mytopic1","partition":1,"replicas":[2,3],"log_dirs":["any","any"]}]
}

Save this to use as the --reassignment-json-file option during rollback
Successfully started reassignment of partitions.

7. Verify the status of the reassignment with the following command:

kafka-reassign-partitions --zookeeper hostname:port --reassignment-json-file reassignment
 configuration.json --bootstrap-server hostname:port --verify

The tool prints the reassignment status of all partitions. Example output:

Status of partition reassignment:
Reassignment of partition mytopic2-1 completed successfully
Reassignment of partition mytopic1-0 completed successfully
Reassignment of partition mytopic2-0 completed successfully
Reassignment of partition mytopic1-2 completed successfully
Reassignment of partition mytopic1-1 completed successfully

Examples

There are multiple ways to modify the configuration file. The following list of examples shows how a user can modify
a proposed configuration and what these changes do. Changes to the original example are marked in bold.

Suppose that thekafka-reassign-partitions tool generated the following proposed reassignment configuration:

{"version":1,
 "partitions":
 [{"topic":"mytopic1","partition":0,"replicas":[1,2],"log_dirs":["any","any"]}]}

Reassign partitions between brokers

To reassign partitions from one broker to another, change the broker ID specified in replicas. For example:

{"topic":"mytopic1","partition":0,"replicas":[5,2],"log_dirs":["any","any"]}

This reassignment configuration moves partition mytopic1-0 from broker 1 to broker 5.

70 | Apache Kafka Guide

Kafka Administration

Reassign partitions to another log directory on the same broker

To reassign partitions between log directories on the same broker, change the appropriate any entry to an absolute
path. For example:

{"topic":"mytopic1","partition":0,"replicas":[1,2],"log_dirs":["/log/directory1","any"]}

This reassignment configuration moves partition mytopic1-0 to the /log/directory1 log directory.

Reassign partitions between log directories across multiple brokers

To reassign partitions between log directories across multiple brokers, change the broker ID specified in replicas
and the appropriate any entry to an absolute path. For example:

{"topic":"mytopic1","partition":0,"replicas":[5,2],"log_dirs":["/log/directory1","any"]}

This reassignment configuration moves partition mytopic1-0 to /log/directory1 on broker 5.

Change partition assignment order (elect a new leader)

To change the ordering of the partition assignment list, change the order of the brokers in replicas. For example:

{"topic":"mytopic1","partition":0,"replicas":[2,1],"log_dirs":["any","any"]}

This reassignment configuration elects broker 2 as the new leader.

kafka-log-dirs

The kafka-log-dirs tool allows user to query a list of replicas per log directory on a broker. The tool provides
information that is required for optimizing replica assignment across brokers.

On successful execution, the tool prints a list of partitions per log directory for the specified topics and brokers. The
list contains information on topic partition, size, offset lag, and reassignment state. Example output:

{
 "brokers": [
 {
 "broker": 86,
 "logDirs": [
 {
 "error": null,
 "logDir": "/var/local/kafka/data",
 "partitions": [
 {
 "isFuture": false,
 "offsetLag": 0,
 "partition": "mytopic1-2",
 "size": 0
 }
]
 }
]
 },
 ...
],
 "version": 1
}

The Contents of the kafka-log-dirs Output table gives an overview of the information provided by the kafka-log-dirs
tool.

Table 6: Contents of the kafka-log-dirs Output

DescriptionProperty

Displays the ID of the broker.broker

Apache Kafka Guide | 71

Kafka Administration

DescriptionProperty

Indicates if there is a problem with the disk that hosts the
topic partition. If an error is detected,

error

org.apache.kafka.common.errors.KafkaStorageException

is displayed. If no error is detected, the value is null.

Specifies the location of the log directory. Returns an
absolute path.

logDir

The reassignment state of the partition. This property
shows whether there is currently replica movement
underway between the log directories.

isfuture

Displays the offset lag of the partition.offsetLag

Displays the name of the partition.partition

Displays the size of the partition in bytes.size

Tool Usage

To retrieve replica assignment information, run the following command:

kafka-log-dirs --describe --bootstrap-server hostname:port --broker-list broker 1, broker
 2 --topic-list topic 1, topic 2

Important: On secure clusters the admin client config property file has to be specified with the
--command-config option. Otherwise, the tool fails to execute.

If no topic is specified with the --topic-list option, then all topics are queried. If no broker is specified with the
--broker-list option, then all brokers are queried. If a log directory is offline, the log directory will be marked
offline in the script output. Error example:

"error":"org.apache.kafka.common.errors.KafkaStorageException"

zookeeper-security-migration

The zookeeper-security-migration tool is used in the process of restricting or unrestricting access to metadata
stored in Zookeeper. When executed, the tool updates the ACLs of znodes based on the configuration specified by the
user.

Important: Running the zookeeper-security-migration tool is only one of the steps required
when restricting or unrestricting access. For full instructions, see Kafka Security Hardening with
Zookeeper ACLs on page 84.

Tool Usage

Set the ACLs on all existing Zookeeper znodes to secure with the following command:

zookeeper-security-migration --zookeeper.connect hostname:port --zookeeper.acl secure

Set the ACLs on all existing Zookeeper znodes to unsecure with the following command:

zookeeper-security-migration --zookeeper.connect hostname:port --zookeeper.acl unsecure

72 | Apache Kafka Guide

Kafka Administration

kafka-delegation-tokens

Thekafka-delegation-tokensprovides the userwith the functionality required for using andmanaging delegation
tokens.

Tool Usage

The tool can be used to issue, renew, expire, or describe delegation tokens.

Issue, and store for verification

The owner of the token is the currently authenticated principal. A renewer can be specified when requesting the
token.

kafka-delegation-tokens --bootstrap-server hostname:port --create
--max-life-time-period -1 --command-config client.properties --renewer-principal
User:user1

Renew

Only the owner and the principals that are renewers of the delegation token can extend its validity by renewing it
before it expires. A successful renewal extends the Delegation Token’s expiration time for another renew-interval,
until it reaches its max lifetime. Expired delegation tokens cannot be used to authenticate, the brokers will remove
expired delegation tokens from the broker’s cache and from Zookeeper.

kafka-delegation-tokens --bootstrap-server hostname:port --renew --renew-time-period
 -1 --command-config client.properties --hmac lAYYSFmLs4bTjf+lTZ1LCHR/ZZFNA==

Remove

Delegation tokens are removed when they are canceled by the client or when they expire.

kafka-delegation-tokens --bootstrap-server hostname:port --expire --expiry-time-period
 -1 --command-config client.properties --hmac lAYYSFmLs4bTjf+lTZ1LCHR/ZZFNA==

Describe

Tokens can be described by owners, renewers or the Kafka super user.

kafka-delegation-tokens --bootstrap-server hostname:port --describe --command-config
client.properties --owner-principal User:user1

Note: In Apache Kafka, principals that have the describe permission on the token resource can
also describe the token. At the moment, this functionality is not available in the Kafka-Sentry
binding.

kafka-*-perf-test

The kafka-*-perf-test tool can be used in several ways. In general, it is expected that these tools should be used
on a test or development cluster.

• Measuring read and/or write throughput.
• Stress testing the cluster based on specific parameters (such as message size).
• Load testing for the purpose of evaluating specific metrics or determining the impact of cluster configuration

changes.

The kafka-producer-perf-test script can either create a randomly generated byte record:

kafka-producer-perf-test --topic TOPIC --record-size SIZE_IN_BYTES

Apache Kafka Guide | 73

Kafka Administration

or randomly read from a set of provided records:

kafka-producer-perf-test --topic TOPIC --payload-delimiter DELIMITER --payload-file
INPUT_FILE

where the INPUT_FILE is a concatenated set of pre-generated messages separated by DELIMITER. This script keeps
producing messages or limited based on the --num-records flag.

The kafka-consumer-perf-test is:

kafka-consumer-perf-test --broker-list host1:port1,host2:port2,... --zookeeper
zk1:port1,zk2:port2,... --topic TOPIC

The flags of most interest for this command are:

• --group gid: If you run more than one instance of this test, you will want to set different ids for each instance.
• --num-fetch-threads: Defaults to 1. Increase if higher throughput testing is needed.
• --from-latest: To start consuming from the latest offset. May be needed for certain types of testing.

Enabling DEBUG or TRACE in command line scripts

In some cases, you may find it useful to produce extra debugging output from the Kafka client API. The DEBUG (shown
below) or TRACE levels can be set by replacing the setting in the log4j properties file as follows:

cp /etc/kafka/conf/tools-log4j.properties /var/tmp
sed -i -e 's/WARN/DEBUG/g' /var/tmp/tools-log4j.properties

export KAFKA_OPTS="-Dlog4j.configuration=file:/var/tmp/tools-log4j.properties"

Understanding the kafka-run-class Bash Script

Almost all the provided Kafka tools eventually call the kafka-run-class script. This script is generally not called
directly. However, if you are proficient with bash and want to understand certain features available in all Kafka scripts
aswell as somepotential debugging scenarios, familiaritywith thekafka-run-class script can prove highly beneficial.

For example, there are some useful environment variables that affect all the command line scripts:

• KAFKA_DEBUG allows a Java debugger to attach to the JVM launched by the particular script. Setting KAFKA_DEBUG
also allows some further debugging customization:

– JAVA_DEBUG_PORT sets the JVM debugging port.
– JAVA_DEBUG_OPTS can be used to override the default debugging arguments being passed to the JVM.

• KAFKA_HEAP_OPTS can be used to pass memory setting arguments to the JVM.
• KAFKA_JVM_PERFORMANCE_OPTS can be used to pass garbage collection flags to the JVM.

Disk Management

Monitoring

Cloudera recommends that administrators continuously monitor the following on a cluster:

Replication Status

Monitor replication status using ClouderaManager Health Tests. ClouderaManager automatically and continuously
monitors both the OfflineLogDirectoryCount and OfflineReplicaCountmetrics. Alters are raised when
failures are detected. For more information, see Cloudera Manager Health Tests.

74 | Apache Kafka Guide

Kafka Administration

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_ht.html

Disk Capacity

Monitor free space on mounted disks and open file descriptors. For more information, see Useful Shell Command
Reference on page 170. Reassign partitions or move log files around if necessary. For more information, see
kafka-reassign-partitions on page 67.

Handling Disk Failures

ClouderaManager has built inmonitoring functionalities that automatically trigger alertswhen disk failures are detected.
When a log directory fails, Kafka also detects the failure and takes the partitions stored in that directory offline.

Important: If there are no healthy log directories present in the system, the broker stops working.

The cause of disk failures can be analyzed with the help of the kafka-log-dirs on page 71 tool, or by reviewing the error
messages of KafkaStorageException entries in the Kafka broker log file.

To view the Kafka broker log file, complete the following steps:

1. In Cloudera Manager go to the Kafka service, select Instances and select the broker.
2. Go to Log Files > Role Log File.

In case of a disk failure, a Kafka administrator can carry out either of the following actions. The action taken depends
on the failure type and system environment:

• Replace the faulty disk with a new one.
• Remove the disk and redistribute data across remaining disks to restore the desired replication factor.

Note: Disk replacement and disk removal both require stopping the broker. Therefore, Cloudera
recommends that you perform these actions during a maintenance window.

Disk Replacement

To replace a disk, complete the following steps:

1. Stop the broker that has a faulty disk.

a. In Cloudera Manager, go to the Kafka service, select Instances and select the broker.
b. Go to Actions > Gracefully stop this Kafka Broker.

2. Replace the disk.
3. Mount the disk.
4. Set up the directory structure on the new disk the same way as it was set up on the previous disk.

Note: You can find the directory paths for the old disk in the Data Directories property of the
broker.

5. Start the broker.

a. In Cloudera Manager go to the Kafka service, selectInstances and select the broker.
b. Go to Actions > Start this Kafka Broker.

The Kafka broker re-creates topic partitions in the same directory by replicating data from other brokers.

Disk Removal

To remove a disk from the configuration, complete the following steps:

1. Stop the broker that has a faulty disk.

Apache Kafka Guide | 75

Kafka Administration

In Cloudera Manager, go to the Kafka service, select Instances and select the broker.a.
b. Go to Actions > Gracefully stop this Kafka Broker.

2. Remove the log directories on the faulty disk from the broker.

a. Go to Configuration and find the Data Directories property.
b. Remove the affected log directories with the Remove button.
c. Enter a Reason for change, and then click Save Changes to commit the changes.

3. Start the broker.

a. In Cloudera Manager go to the Kafka service, selectInstances and select the broker.
b. Go to Actions > Start this Kafka Broker.

The Kafka broker redistributes data across the cluster.

Reassigning Replicas Between Log Directories

Reassigning replicas between log directories can prove useful when you have multiple disks available, but one or more
of them is nearing capacity. Moving a replica from one disk to another ensures that the service will not go down due
to disks reaching capacity. To balance storage loads, the Kafka administrator has to continuously monitor the system
and reassign replicas between log directories on the same broker or across different brokers. These actions can be
carried out with the kafka-reassign-partitions tool.

For more information on tool usage, see the documentation for the kafka-reassign-partitions on page 67 tool.

Retrieving Log Directory Replica Assignment Information

To optimize replica assignment across log directories, the list of partitions per log directory and the size of each partition
is required. This information can be exposed with the kafka-log-dirs tool.

For more information on tool usage, see the documentation for the kafka-log-dirs on page 71 tool.

JBOD
As of CDH 6.1.0, Kafka clusters with nodes using JBOD configurations are supported by Cloudera.

JBOD refers to a system configuration where disks are used independently rather than organizing them into redundant
arrays (RAID). Using RAID usually results in more reliable hard disk configurations even if the individual disks are not
reliable. RAID setups like these are common in large scale big data environments built on top of commodity hardware.
RAID enabled configurations are more expensive and more complicated to set up. In a large number of environments,
JBOD configurations are preferred for the following reasons:

• Reduced storage cost: RAID-10 is recommended to protect against disk failures. However, scaling RAID-10
configurations can become excessively expensive. Storing the data redundantly on each node means that storage
space requirements have to be multiplied because the data is also replicated across nodes.

• Improved performance: Just like HDFS, the slowest disk in RAID-10 configuration limits overall throughput.Writes
need to go through a RAID controller. On the other hand, when using JBOD, IO performance is increased as a
result of isolated writes across disks without a controller.

JBOD Setup and Migration

Consider the following before using JBOD support in Kafka:

• Manual operation and administration:Monitoring offline directories and JBOD related metrics is done through
Cloudera Manager. However, identifying failed disks and rebalancing partitions between disks is done manually.

• Manual load balancing between disks: Unlike with RAID-10, JBOD does not automatically distribute data across
disks. The process is fully manual.

76 | Apache Kafka Guide

Kafka Administration

To provide robust JBOD support in Kafka, changes in the Kafka protocol have beenmade.When performing an upgrade
to a new version of Kafka, make sure that you follow the recommended rolling upgrade process.

For more information, see Upgrading the CDH Cluster.

For more information regarding the JBOD related Kafka protocol changes, see KIP-112 and KIP-113.

Setup

To set up JBOD in your Kafka environment, perform the following steps:

1. Mount the required number of disks on your system.
2. In Cloudera Manager, set up log directories for all Kafka brokers.

a. Go to the Kafka service, select Instances and select the broker.
b. Go to Configuration and find the Data Directories property.
c. Modify the path of the log directories so that they correspond with the newly mounted disks.

Note: Depending on your, setup you may need to add or remove multiple data directories.

d. Enter a Reason for change, and then click Save Changes to commit the changes.

3. Go to the Kafka service and select Configuration.
4. Find and configure the following properties depending on your system and use case.

• Number of I/O Threads
• Number of Network Threads
• Number of Replica Fetchers
• Minimum Number of Replicas in ISR

5. Set replication factor to at least 3.

Important: If you set replication factor to less than 3, your data will be at risk. In addition, in
case of a disk failure, disk maintenance cannot be carried out without system downtime.

6. Restart the service.

a. Return to the Home page by clicking the Cloudera Manager logo.
b. Go to the Kafka service and select Actions > Rolling Restart.
c. Check the Restart roles with stale configurations only checkbox and click Rolling restart.
d. Click Close when the restart has finished.

Migration

Migrating data from one disk to another is achieved with the kafka-reassign-partitions tool. The following
instructions focus on migrating existing Kafka partitions to JBOD configured disks. For a full tool description, see
kafka-reassign-partitions on page 67.

Note: Cloudera recommends that youminimize the volume of replica changes per command instance.
Instead of moving 10 replicas with a single command, move two at a time in order to save cluster
resources.

Prerequisites

• Set up JBOD in your Kafka environment. For more information, see Setup on page 77.
• Collect the log directory paths on the JBOD disks where you want to migrate existing data.
• Collect the broker IDs of the brokers you want to migrate data to.

Apache Kafka Guide | 77

Kafka Administration

https://www.cloudera.com/documentation/enterprise/upgrade/topics/ug_cdh_upgrade.html
https://cwiki.apache.org/confluence/display/KAFKA/KIP-112%3A+Handle+disk+failure+for+JBOD#KIP-112:HandlediskfailureforJBOD-Protocol
https://cwiki.apache.org/confluence/display/KAFKA/KIP-113%3A+Support+replicas+movement+between+log+directories#KIP-113:Supportreplicasmovementbetweenlogdirectories-Protocol

• Collect the name of the topics you want to migrate partitions from.

Steps

Note: Output examples in these instructions are cleaned and formatted tomake themeasily readable.

To migrate data to JBOD configured disks, perform the following steps:

1. Create a topics-to-move JSON file that specifies the topics you want to reassign. Use the following format:

{"topics": [{"topic": "mytopic1"},
 {"topic": "mytopic2"}],
 "version":1
}

2. Generate the content for the reassignment configuration JSON with the following command:

kafka-reassign-partitions --zookeeper hostname:port --topics-to-move-json-file topics
to move.json --broker-list broker 1, broker 2 --generate

Running the command lists the distribution of partition replicas on your current brokers followed by a proposed
partition reassignment configuration.

Example output:

Current partition replica assignment
{"version":1,
 "partitions":
 [{"topic":"mytopic2","partition":1,"replicas":[2,3],"log_dirs":["any","any"]},
 {"topic":"mytopic1","partition":0,"replicas":[1,2],"log_dirs":["any","any"]},
 {"topic":"mytopic2","partition":0,"replicas":[1,2],"log_dirs":["any","any"]},
 {"topic":"mytopic1","partition":2,"replicas":[3,1],"log_dirs":["any","any"]},
 {"topic":"mytopic1","partition":1,"replicas":[2,3],"log_dirs":["any","any"]}]
}

Proposed partition reassignment configuration

{"version":1,
 "partitions":
 [{"topic":"mytopic1","partition":0,"replicas":[4,5],"log_dirs":["any","any"]},
 {"topic":"mytopic1","partition":2,"replicas":[4,5],"log_dirs":["any","any"]},
 {"topic":"mytopic2","partition":1,"replicas":[4,5],"log_dirs":["any","any"]},
 {"topic":"mytopic1","partition":1,"replicas":[5,4],"log_dirs":["any","any"]},
 {"topic":"mytopic2","partition":0,"replicas":[5,4],"log_dirs":["any","any"]}]
}

In this example, the tool proposed a configuration which reassigns existing partitions on broker 1, 2, and 3 to
brokers 4 and 5.

3. Copy and paste the proposed partition reassignment configuration into an empty JSON file.
4. Modify the suggested reassignment configuration.

When migrating data you have two choices. You can move partitions to a different log directory on the same
broker, or move it to a different log directory on another broker.

a. To reassign partitions between log directories on the same broker, change the appropriate any entry to an
absolute path. For example:

{"topic":"mytopic1","partition":0,"replicas":[4,5],"log_dirs":["/JBOD-disk/directory1","any"]}

78 | Apache Kafka Guide

Kafka Administration

b. To reassign partitions between log directories across different brokers, change the broker ID specified in
replicas and the appropriate any entry to an absolute path. For example:

{"topic":"mytopic1","partition":0,"replicas":[6,5],"log_dirs":["/JBOD-disk/directory1","any"]}

5. Save the file.
6. Start the redistribution process with the following command:

kafka-reassign-partitions --zookeeper hostname:port --reassignment-json-file reassignment
 configuration.json --bootstrap-server hostname:port --execute

Important: The bootstrap server has to be specified with the --bootstrap-server option if
an absolute log directory path is specified for a replica in the reassignment configuration JSON
file.

The tool prints a list containing the original replica assignment and a message that reassignment has started.
Example output:

Current partition replica assignment

{"version":1,
 "partitions":
 [{"topic":"mytopic2","partition":1,"replicas":[2,3],"log_dirs":["any","any"]},
 {"topic":"mytopic1","partition":0,"replicas":[1,2],"log_dirs":["any","any"]},
 {"topic":"mytopic2","partition":0,"replicas":[1,2],"log_dirs":["any","any"]},
 {"topic":"mytopic1","partition":2,"replicas":[3,1],"log_dirs":["any","any"]},
 {"topic":"mytopic1","partition":1,"replicas":[2,3],"log_dirs":["any","any"]}]
}

Save this to use as the --reassignment-json-file option during rollback
Successfully started reassignment of partitions.

7. Verify the status of the reassignment with the following command:

kafka-reassign-partitions --zookeeper hostname:port --reassignment-json-file reassignment
 configuration.json --bootstrap-server hostname:port --verify

The tool prints the reassignment status of all partitions. Example output:

Status of partition reassignment:
Reassignment of partition mytopic2-1 completed successfully
Reassignment of partition mytopic1-0 completed successfully
Reassignment of partition mytopic2-0 completed successfully
Reassignment of partition mytopic1-2 completed successfully
Reassignment of partition mytopic1-1 completed successfully

Kafka Delegation Tokens
Delegation tokenswere introduced as a lightweight authenticationmethod to complement existing SASL authentication.
Kafka is designed to support a high number of clients. However, using Kerberos authentication might be difficult in
some environments due to the following reasons:

• With Kerberos authentication, all clients need access to a keytab or a TGT. Securely distributing the keytabs
requires a lot of effort and careful administration. When the TGT is compromised, it has a high blast radius,
especially when the same keytabs are used to access multiple services.

• With Kerberos, client authentication is centralized, and the high number of clients can put a high load on the KDC
(Key Distribution Center), resulting in a bottleneck.

Apache Kafka Guide | 79

Kafka Administration

Many Hadoop components use delegation tokens to mitigate these problems:

• Delegation tokens allow these components to secure distributed workloads with low administrative overhead

• It is not required to distribute a Kerberos TGT or keytab, which, if compromised, may grant access to all services.

• A Delegation token is strictly tied to its associated service causing less damage if exposed.

• Delegation tokens make credential renewal more lightweight. This is because the renewal is designed in such a
way that only the renewer and the service are involved in the renewal process. The token itself remains the same,
so parties already using the token do not have to be updated.

Delegation Token Basics

Kafka delegation tokens were modeled after Hadoop delegation tokens, and many of their mechanism are the same
or very similar. However, this does not mean that they are interchangeable.

Delegation tokens are generated and verified following the HMACmechanism. There are two basic parts of information
in a delegation Token:

• Public part (tokenID)
• Private part (HMAC value)

The following steps describe the basics of how delegation tokens are used:

1. The user initially authenticates with the Kafka cluster via SASL, and obtains a delegation token using either the
AdminClient APIs or the kafka-delegation-token tool. The principal that created the delegation token is
its owner.

2. The delegation token details are securely passed to Kafka clients. This can be achieved by sending the token data
over an SSL/TLS encrypted connection or writing them to a secure shared storage.

3. Instead of using Kerberos, the Kafka client uses the delegation tokens for subsequent authentication with the
brokers. See The Client authentication using delegation tokens.

4. The token is valid for a certain time period, but it can be:

Renewed

A delegation token can be renewed multiple times up until its maximum life before it expires. The token can be
renewed by the owner or any other principals the owner sets as “renewer” at time of creation.

Revoked

A delegation token can be revoked ahead of its expiry time.

Broker Configuration Settings

Certain delegation token properties can be configured on a service level in Cloudera Manager. Table 7: Delegation
Token Broker Configuration Settings on page 80gives an overview of these properties.

Table 7: Delegation Token Broker Configuration Settings

DefaultTypeDescriptionName

falsebooleanEnables authenticationwith
delegation tokens for this

delegation.token.enable

Kafka service. When
enabled, a secure password
is automatically generated
and used as the "delegation.
token.master.key" property
for Kafka Brokers. Only

80 | Apache Kafka Guide

Kafka Administration

https://en.wikipedia.org/wiki/Hash-based_message_authentication_code

allowed if Kerberos
authentication is enabled.

1 daytimeThe expiry time of a
delegation token. A

delegation.token.expiry.time.ms

delegation token can be
renewed before its expiry
time to extend its validity up
to its maximum lifetime. If it
is not renewed, it will expire
even if it has time remaining
from its maximum lifetime.

7 daystimeThe maximum amount of
time that a delegation token
can be valid for.

delegation.token.max.lifetime.ms

Enable Authentication with Delegation Tokens

Although the following steps enable authentication between clients and servers using the SASL/SCRAMmechanism,
it is only as a vehicle for delegation tokens. Using SCRAM credentials is not supported otherwise. Sensitive delegation
token metadata is stored in Zookeeper. It is recommended to restrict access on Zookeeper nodes to prevent access
to sensitive delegation token related data through Zookeeper. As the connection between Kafka and Zookeeper is not
encrypted, it is also recommended to use delegation tokens only if no unauthorized person can read and manipulate
the traffic between these services.

For more information on restricting Zookeeper access, see Kafka Security Hardening with Zookeeper ACLs on page
84.

Prerequisites

A secure Kafka cluster with Kerberos authentication enabled is required. For more information, see Enabling Kerberos
Authentication on page 35.

Steps

Enable Authentication with delegation tokens by completing the following steps:

1. In Cloudera Manager go to the Kafka service.

2. Select Configuration and find the Enable Delegation Tokens property.

3. Enable delegation tokens for all required services by checking the checkbox next to the name of the service.

4. Click Save Changes.

5. Perform a Rolling Restart.

a. Return to the Home page by clicking the Cloudera Manager logo.

b. Go to the Kafka service and select Actions > Rolling Restart.

c. Check the Restart roles with stale configurations only checkbox and click Rolling restart.

d. Click Close when the restart has finished.

Completing these steps generates the necessary secrets and settings for delegation tokens.

Managing Individual Delegation Tokens

The functionality that’s needed to manage and use delegation tokens is accessible using the AdminClient APIs or the
kafka-delegation-tokens tool. All of their operations are allowed only via SASL authenticated channels.

Apache Kafka Guide | 81

Kafka Administration

Both the API and the script provide the following actions:

Note: The examples presented show how these actions can be executed with the
kafka-delegation-tokens tool.

Issue, and store for verification

The owner of the token is the currently authenticated principal. A renewer can be specified when requesting the
token.

kafka-delegation-tokens --bootstrap-server hostname:port --create
--max-life-time-period -1 --command-config client.properties --renewer-principal
User:user1

Renew

Only the owner and the principals that are renewers of the delegation token can extend its validity by renewing it
before it expires. A successful renewal extends the Delegation Token’s expiration time for another renew-interval,
until it reaches its max lifetime. Expired delegation tokens cannot be used to authenticate, the brokers will remove
expired delegation tokens from the broker’s cache and from Zookeeper.

kafka-delegation-tokens --bootstrap-server hostname:port --renew --renew-time-period
 -1 --command-config client.properties --hmac lAYYSFmLs4bTjf+lTZ1LCHR/ZZFNA==

Remove

Delegation tokens are removed when they are canceled by the client or when they expire.

kafka-delegation-tokens --bootstrap-server hostname:port --expire --expiry-time-period
 -1 --command-config client.properties --hmac lAYYSFmLs4bTjf+lTZ1LCHR/ZZFNA==

Describe

Tokens can be described by owners, renewers or the Kafka super user.

kafka-delegation-tokens --bootstrap-server hostname:port --describe --command-config
client.properties --owner-principal User:user1

Note: In Apache Kafka, principals that have the describe permission on the token resource can
also describe the token. At the moment, this functionality is not available in the Kafka-Sentry
binding.

Rotating the Master Key/Secret

The brokers generate and verify delegation tokens using a secret calleddelegation.token.master.key. This secret
is generated by Cloudera Manager and securely passed to Kafka brokers when authentication with delegation tokens
is enabled. You can change the secret with the Cloudera Manager API. This should be done if the secret becomes
compromised, or simply as a precautionary measure.

To change the secret, complete these steps:

Important: Clients that were already connected to brokers before starting the process, will continue
to work even after the master key/secret is rotated. However, any new connections (authentication
requests), as well as renew and expire requests with old tokens can fail.

1. Expire existing tokens.

82 | Apache Kafka Guide

Kafka Administration

kafka-delegation-tokens example command:

kafka-delegation-tokens --bootstrap-server hostname:port --expire --expiry-time-period
 -1 --command-config client.properties --hmac lAYYSFmLs4bTjf+lTZ1LCHR/ZZFNA==

2. Generate a new master key

curl -X PUT -u "user" -H "content-type:application/json" -i "https://cloudera manager
host:7183/api/v31/clusters/cluster name/services/kafka service name/config" -d '{"items"
 : [{"name" : "delegation.token.master.key","value" : "'$(openssl rand -base64
24)'","sensitive" : true}]}'

3. Perform a Rolling Restart

a. In Cloudera Manager go to the Kafka service and select Actions > Rolling Restart.
b. Check the Restart roles with stale configurations only checkbox and click Rolling restart.
c. Click Close when the restart has finished.

4. Reauthenticate with all clients. This will generate the new tokens.

Client Authentication using Delegation Tokens

Brokers authenticate clients by verifying the delegation tokens provided by the client against the stored delegation
tokens. Delegation token authentication makes use of SASL/SCRAM authentication mechanism under the hood. You
can configure Kafka clients in two ways, to use individually assigned delegation tokens or to use a common delegation
token.

Configuring Clients on a Producer or Consumer Level

You can set up client authentication by configuring the JAAS configuration property for each client. The JAAS configuration
property can be set in theproducer.properties orconsumer.properties file of the client.With this configuration
method, you have the ability to specify different token details for each Kafka client within a JVM. As a result you can
configure Kafka clients in a way that each of them use a unique token for authentication.

Example Configuration:

sasl.jaas.config=org.apache.kafka.common.security.scram.ScramLoginModule required \
 username="tokenID" \
 password="lAYYSFmLs4bTjf+lTZ1LCHR/ZZFNA==" \
 tokenauth="true";

There are three options that need to be specified. These are the username, password and tokenauth options.

The username and password options specify the token ID and token HMAC. The tokenauth option expresses the
intent to use token authentication to the server.

Configure Clients on an Application Level

With this configuration method, you can set up all clients within a JVM to use the same delegation token for
authentication.

Configure Clients to use a common delegation token by completing these steps:

1. Add a KafkaClient entry with a login module item to your JAAS configuration file. The module has to specify the
username, password and tokenauth options.

Example:

KafkaClient {
org.apache.kafka.common.security.scram.ScramLoginModule required
 username="tokenID"
 password="lAYYSFmLs4bTjf+lTZ1LCHR/ZZFNA=="
 tokenauth="true";
}

Apache Kafka Guide | 83

Kafka Administration

2. Pass the location of your JAAS configuration file as a JVM parameter through a command line interface. This will
set the JAAS configuration on the Java process level.

export KAFKA_OPTS="-Djava.security.auth.login.config=path/to/jaas.conf"

Kafka Security Hardening with Zookeeper ACLs

Restricting Access to Kafka Metadata in Zookeeper

Locking down znodes in Zookeeper can be used to protect Kafka metadata against unauthorized access. Direct
manipulation of metadata in Zookeeper is not only dangerous for the health of the cluster, but can also serve as an
entry point for malicious users to gain elevated access who can then alter the owner or renewer of delegation tokens.

Prerequisites

A secure Kafka cluster with Kerberos authentication enabled is required. For more information see, Enabling Kerberos
Authentication on page 35.

Steps

Restrict access to Kafka metadata stored in ZooKeeper by completing the following steps:

1. Enable the use of secure ACLs by setting zookeeper.set.acl configuration parameter to true.

a. In Cloudera Manager go to the Kafka service.
b. Select Configuration and find the Kafka Broker Advanced Configuration Snippet (Safety Valve) for

kafka.properties property.
c. Add the following line to theKafka Broker Advanced Configuration Snippet (Safety Valve) for kafka.properties

property:

zookeeper.set.acl=true

2. Perform a Rolling Restart

a. Return to the Home page by clicking the Cloudera Manager logo.
b. Go to the Kafka service and select Actions Rolling Restart.
c. Check the Restart roles with stale configurations only checkbox and click Rolling restart.
d. Click Close when the restart has finished.

3. Pass the JAAS config file location as a JVM parameter through a command line interface. You can do this by setting
the value of the KAFKA_OPTS environment variable to
-Djava.security.auth.login.config=path/to/jaas.conf.

export KAFKA_OPTS="-Djava.security.auth.login.config=path/to/jaas.conf"

4. Run the zookeeper-security-migration tool with the zookeeper.acl option set to secure.

zookeeper-security-migration --zookeeper.connect hostname:port --zookeeper.acl secure

The tool traverses the corresponding sub-trees changing the ACLs of the znodes

5. Reset the ACLs on the root node to allow full access.

Resetting theACLS on the root node is required because thezookeeper-security-migration tool also changes
the ACLs on the root znode. This leads to the failure of the Zookeeper canary tests, which subsequently makes
the service display as unhealthy in Cloudera Manager.

Important: This step is only necessary if the zookeeper.chroot parameter of the broker is set
to /.

84 | Apache Kafka Guide

Kafka Administration

Note: Because the Kafka metadata at this point is already restricted, only authorized users or
Zookeeper super users can complete this step.

a. Change the JVMFLAGS environment variable to
-Djava.security.auth.login.config=path/to/jaas.conf

export JVMFLAGS="-Djava.security.auth.login.config=path/to/jaas.conf"

b. Start the zookeeper client

zookeeper-client -server $(hostname -f):2181

c. Enter the following to reset the ACLs of the root node:

setAcl / world:anyone:crdwa

Once Kafkametadata in Zookeeper is restricted via ACLS, administrative operations, for example topic creation, deletion,
any configuration changes and so on, can only be performed by authorized users.

Unlocking Kafka Metadata in Zookeeper
Prerequisites

A secure Kafka cluster with Kerberos authentication enabled is required. For more information see, Enabling Kerberos
Authentication on page 35.

Steps

In order to unrestrict access to Kafka metadata stored in Zookeeper by completing the following steps:

1. Disable the use of secure ACLs by setting zookeeper.set.acl configuration parameter to false.

a. In Cloudera Manager go to the Kafka service.
b. Select Configuration and find the Kafka Broker Advanced Configuration Snippet (Safety Valve) for

kafka.properties property.
c. Add the following line to theKafka Broker Advanced Configuration Snippet (Safety Valve) for kafka.properties

property:

zookeeper.set.acl=false

2. Perform a Rolling Restart

a. Return to the Home page by clicking the Cloudera Manager logo.
b. Go to the Kafka service and select Actions Rolling Restart.
c. Check the Restart roles with stale configurations only checkbox and click Rolling restart.
d. Click Close when the restart has finished.

3. Run the zookeeper-security-migration tool with the zookeeper.acl option set to unsecure.

zookeeper-security-migration --zookeeper.connect hostname:port --zookeeper.acl unsecure

The tool traverses the corresponding sub-trees changing the ACLs of the znodes.

Apache Kafka Guide | 85

Kafka Administration

Kafka Performance Tuning

Performance tuning involves two important metrics:

• Latency measures how long it takes to process one event.
• Throughput measures how many events arrive within a specific amount of time.

Most systems are optimized for either latency or throughput. Kafka is balanced for both. A well-tuned Kafka system
has just enough brokers to handle topic throughput, given the latency required to process information as it is received.

Tuning your producers, brokers, and consumers to send, process, and receive the largest possible batches within a
manageable amount of time results in the best balance of latency and throughput for your Kafka cluster.

The following sections introduce the concepts you'll need to be able to balance your Kafka workload and then provide
practical tuning configuration to address specific circumstances.

For a quick video introduction to tuning Kafka, see Tuning Your Apache Kafka Cluster.

There are a few concepts described here that will help you focus your tuning efforts. Additional topics in this section
provide practical tuning guidelines:

Tuning Brokers
Topics are divided into partitions. Each partition has a leader. Topics that are properly configured for reliability will
consist of a leader partition and 2 or more follower partitions. When the leaders are not balanced properly, one might
be overworked, compared to others.

Depending on your system and how critical your data is, you want to be sure that you have sufficient replication sets
to preserve your data. For each topic, Cloudera recommends starting with one partition per physical storage disk and
one consumer per partition.

Tuning Producers
Kafka uses an asynchronous publish/subscribemodel.When your producer calls send(), the result returned is a future.
The future provides methods to let you check the status of the information in process. When the batch is ready, the
producer sends it to the broker. The Kafka broker waits for an event, receives the result, and then responds that the
transaction is complete.

If you do not use a future, you could get just one record, wait for the result, and then send a response. Latency is very
low, but so is throughput. If each transaction takes 5 ms, throughput is 200 events per second — slower than the
expected 100,000 events per second.

When you use Producer.send(), you fill up buffers on the producer. When a buffer is full, the producer sends the
buffer to the Kafka broker and begins to refill the buffer.

Two parameters are particularly important for latency and throughput: batch size and linger time.

Batch Size

batch.sizemeasures batch size in total bytes instead of the number of messages. It controls how many bytes of
data to collect before sending messages to the Kafka broker. Set this as high as possible, without exceeding available
memory. The default value is 16384.

If you increase the size of your buffer, it might never get full. The Producer sends the information eventually, based
on other triggers, such as linger time in milliseconds. Although you can impair memory usage by setting the buffer
batch size too high, this does not impact latency.

86 | Apache Kafka Guide

Kafka Performance Tuning

https://youtu.be/6hFhf6LgEps

If your producer is sending all the time, you are probably getting the best throughput possible. If the producer is often
idle, you might not be writing enough data to warrant the current allocation of resources.

Linger Time

linger.ms sets the maximum time to buffer data in asynchronous mode. For example, the setting of 100 means that
it batches 100ms of messages to send at once. This improves throughput, but the buffering adds message delivery
latency.

By default, the producer does not wait. It sends the buffer any time data is available.

Instead of sending immediately, you can set linger.ms to 5 and sendmoremessages in one batch. This would reduce
the number of requests sent, but would add up to 5 milliseconds of latency to records sent, even if the load on the
system does not warrant the delay.

The farther away the broker is from the producer, themore overhead required to sendmessages. Increase linger.ms
for higher latency and higher throughput in your producer.

Tuning Consumers
Consumers can create throughput issues on the other side of the pipeline. The maximum number of consumers in a
consumer group for a topic is equal to the number of partitions. You need enough partitions to handle all the consumers
needed to keep up with the producers.

Consumers in the same consumer group split the partitions among them. Adding more consumers to a group can
enhance performance (up to the number of partitions). Adding more consumer groups does not affect performance.

Mirror Maker Performance
Kafka Mirror Maker is a tool to replicate topics between data centers. It is best to run Mirror Maker at the destination
data center. Consuming messages from a distant cluster and writing them into a local cluster tends to be more safe
than producing over a long-distance network. Deploying the Mirror Maker in the source data center and producing
remotely has a higher risk of losing data. However, if you need this setup, make sure that you configure acks=all
with appropriate number of retries and min ISR.

• Encrypting data in transit with SSL has impact on performance of Kafka brokers.
• To reduce lag between clusters, you can improve performance by deployingmultipleMirrorMaker instances using

the same consumer group ID.
• Measure CPU utilization.
• Consider using compression for consumers andproducerswhenmirroring topics betweendata centers as bandwidth

can be a bottleneck.
• Monitor lag and metrics of Mirror Maker.

To properly sizeMirrorMaker, take expected throughput andmaximumallowed lag between data centers into account.

• num.streams parameter controls the number of consumer threads in Mirror Maker.
• kafka-producer-perf-test can be used to generate load on the source cluster. You can test and measure

performance of Mirror Maker with different num.streams values (start from 1 and increase it gradually).

Good performance can be achieved with proper consumer and producer settings and properly tuned OS properties,
such as networking and I/O related kernel settings.

Kafka Tuning: Handling Large Messages
Before configuring Kafka to handle large messages, first consider the following options to reduce message size:

Apache Kafka Guide | 87

Kafka Performance Tuning

• The Kafka producer can compress messages. For example, if the original message is a text-based format (such as
XML), in most cases the compressed message will be sufficiently small.

• Use the compression.type producer configuration parameters to enable compression. gzip, lz4 and Snappy
are supported.

• If shared storage (such as NAS, HDFS, or S3) is available, consider placing large files on the shared storage and
using Kafka to send a message with the file location. In many cases, this can be much faster than using Kafka to
send the large file itself.

• Split large messages into 1 KB segments with the producing client, using partition keys to ensure that all segments
are sent to the same Kafka partition in the correct order. The consuming client can then reconstruct the original
large message.

If you still need to send large messages with Kafka, modify the configuration parameters presented in the following
sections to match your requirements.

Table 8: Broker Configuration Properties

DescriptionDefault ValueProperty

Maximum message size the broker accepts.1000000

(1 MB)

message.max.bytes

Size of a Kafka data file. Must be larger than any single
message.

1073741824

(1 GiB)

log.segment.bytes

Maximum message size a broker can replicate. Must be
larger than message.max.bytes, or a broker can accept

1048576

(1 MiB)

replica.fetch.max.bytes

messages it cannot replicate, potentially resulting in data
loss.

Table 9: Consumer Configuration Properties

DescriptionDefault ValueProperty

The maximum amount of data per-partition the server
will return.

1048576

(10 MiB)

max.partition.fetch.bytes

The maximum amount of data the server should return
for a fetch request.

52428800

(50 MiB)

fetch.max.bytes

Note: The consumer is able to consume a message batch that is larger than the default value of the
max.partition.fetch.bytes or fetch.max.bytes property. However, the batch will be sent
alone, which can cause performance degradation.

Kafka Cluster Sizing

Cluster Sizing - Network and Disk Message Throughput

There aremany variables that go into determining the correct hardware footprint for a Kafka cluster. Themost accurate
way to model your use case is to simulate the load you expect on your own hardware. You can do this using the load
generation tools that ship with Kafka, kafka-producer-perf-test and kafka-consumer-perf-test. For more
information, see Kafka Administration Using Command Line Tools on page 64.

88 | Apache Kafka Guide

Kafka Performance Tuning

However, if you want to size a cluster without simulation, a very simple rule could be to size the cluster based on the
amount of disk-space required (which can be computed from the estimated rate at which you get data times the
required data retention period).

A slightly more sophisticated estimation can be done based on network and disk throughput requirements. To make
this estimation, let's plan for a use case with the following characteristics:

• W - MB/sec of data that will be written
• R - Replication factor
• C - Number of consumer groups, that is the number of readers for each write

Kafka is mostly limited by the disk and network throughput.

The volume of writing expected is W * R (that is, each replica writes each message). Data is read by replicas as part
of the internal cluster replication and also by consumers. Because every replicas but the master read each write, the
read volume of replication is (R-1) * W. In addition each of the C consumers reads each write, so there will be a read
volume of C * W. This gives the following:

• Writes: W * R
• Reads: (R+C- 1) * W

However, note that reads may actually be cached, in which case no actual disk I/O happens. We can model the effect
of caching fairly easily. If the cluster has MMBofmemory, then a write rate of WMB/second allows M/(W * R) seconds
of writes to be cached. So a server with 32 GB of memory taking writes at 50 MB/second serves roughly the last 10
minutes of data from cache. Readers may fall out of cache for a variety of reasons—a slow consumer or a failed server
that recovers and needs to catch up. An easy way tomodel this is to assume a number of lagging readers you to budget
for. To model this, let’s call the number of lagging readers L. A very pessimistic assumption would be that L = R +
C -1, that is that all consumers are lagging all the time. A more realistic assumption might be to assume nomore than
two consumers are lagging at any given time.

Based on this, we can calculate our cluster-wide I/O requirements:

• Disk Throughput (Read + Write): W * R + L * W
• Network Read Throughput: (R + C -1) * W
• Network Write Throughput: W * R

A single server provides a given disk throughput as well as network throughput. For example, if you have a 1 Gigabit
Ethernet card with full duplex, then that would give 125 MB/sec read and 125 MB/sec write; likewise 6 7200 SATA
drives might give roughly 300 MB/sec read + write throughput. Once we know the total requirements, as well as what
is provided by one machine, you can divide to get the total number of machines needed. This gives a machine count
running at maximum capacity, assuming no overhead for network protocols, as well as perfect balance of data and
load. Since there is protocol overhead as well as imbalance, you want to have at least 2x this ideal capacity to ensure
sufficient capacity.

Choosing the Number of Partitions for a Topic

Choosing the proper number of partitions for a topic is the key to achieving a high degree of parallelism with respect
to writes to and reads and to distribute load. Evenly distributed load over partitions is a key factor to have good
throughput (avoid hot spots).Making a good decision requires estimation based on the desired throughput of producers
and consumers per partition.

Apache Kafka Guide | 89

Kafka Performance Tuning

For example, if you want to be able to read 1 GB/sec, but your consumer is only able process 50 MB/sec, then you
need at least 20 partitions and 20 consumers in the consumer group. Similarly, if you want to achieve the same for
producers, and 1 producer can only write at 100MB/sec, you need 10 partitions. In this case, if you have 20 partitions,
you can maintain 1 GB/sec for producing and consuming messages. You should adjust the exact number of partitions
to number of consumers or producers, so that each consumer and producer achieve their target throughput.

So a simple formula could be:

#Partitions = max(NP, NC)

where:

• NP is the number of required producers determined by calculating: TT/TP
• NC is the number of required consumers determined by calculating: TT/TC
• TT is the total expected throughput for our system
• TP is the max throughput of a single producer to a single partition
• TC is the max throughput of a single consumer from a single partition

This calculation gives you a rough indication of the number of partitions. It's a good place to start. Keep in mind the
following considerations for improving the number of partitions after you have your system in place:

• The number of partitions can be specified at topic creation time or later.
• Increasing the number of partitions also affects the number of open file descriptors. So make sure you set file

descriptor limit properly.
• Reassigning partitions can be very expensive, and therefore it's better to over- than under-provision.
• Changing the number of partitions that are based on keys is challenging and involves manual copying (see Kafka

Administration on page 61).
• Reducing the number of partitions is not currently supported. Instead, create a new a topic with a lower number

of partitions and copy over existing data.
• Metadata about partitions are stored in ZooKeeper in the form of znodes. Having a large number of partitions

has effects on ZooKeeper and on client resources:

– Unneeded partitions put extra pressure on ZooKeeper (more network requests), and might introduce delay
in controller and/or partition leader election if a broker goes down.

– Producer and consumer clients need more memory, because they need to keep track of more partitions and
also buffer data for all partitions.

• As guideline for optimal performance, you should not have more than 4000 partitions per broker and not more
than 200,000 partitions in a cluster.

Make sure consumers don’t lag behind producers by monitoring consumer lag. To check consumers' position in a
consumer group (that is, how far behind the end of the log they are), use the following command:

$ kafka-consumer-groups --bootstrap-server BROKER_ADDRESS --describe --group
CONSUMER_GROUP --new-consumer

90 | Apache Kafka Guide

Kafka Performance Tuning

Kafka Performance Broker Configuration

JVM and Garbage Collection

Garbage collection has a huge impact on performance of JVM based applications. It is recommended to use the
Garbage-First (G1) garbage collector for Kafka broker. In Cloudera Manager specify the following under Additional
Broker Java Options in the Kafka service configuration:

-server -XX:+UseG1GC -XX:MaxGCPauseMillis=20
-XX:InitiatingHeapOccupancyPercent=35 -XX:+DisableExplicitGC
-Djava.awt.headless=true -Djava.net.preferIPv4Stack=true

Cloudera recommends to set 4-8 GB of JVM heap size memory for the brokers depending on your use case. As Kafka’s
performance depends heavily on the operating systems page cache, it is not recommended to collocate with other
memory-hungry applications.

• Large messages can cause longer garbage collection (GC) pauses as brokers allocate large chunks. Monitor the GC
log and the server log.

Add this to Broker Java Options:

 -XX:+PrintGC -XX:+PrintGCDetails
 -XX:+PrintGCTimeStamps
-Xloggc:</path/to/file.txt>

• If long GC pauses cause Kafka to abandon the ZooKeeper session, you may need to configure longer timeout
values, see Kafka-ZooKeeper Performance Tuning on page 94 for details.

Network and I/O Threads

Kafka brokers use network threads to handle client requests. Incoming requests (such as produce and fetch requests)
are placed into a requests queue from where I/O threads are taking them up and process them. After a request is
processed, the response is placed into an internal response queue from where a network thread picks it up and sends
response back to the client.

• num.network.threads is an important cluster-wide setting that determines the number of threads used for
handling network requests (that is, receiving requests and sending responses). Set this value mainly based on
number of producers, consumers and replica fetchers.

• queued.max.requests controls how many requests are allowed in the request queue before blocking network
threads.

• num.io.threads specifies the number of threads that a broker uses for processing requests from the request
queue (might include disk I/O).

ISR Management

An in-sync replica (ISR) set for a topic partition contains all follower replicas that are caught-upwith the leader partition,
and are situated on a broker that is alive.

• If a replica lags “too far” behind from the partition leader, it is removed from the ISR set. The definition of what
is too far is controlled by the configuration setting replica.lag.time.max.ms. If a follower hasn't sent any
fetch requests or hasn't consumed up to the leaders log end offset for at least this time, the leader removes the
follower from the ISR set.

• num.replica.fetchers is a cluster-wide configuration setting that controls how many fetcher threads are in
a broker. These threads are responsible for replicating messages from a source broker (that is, where partition
leader resides). Increasing this value results in higher I/O parallelism and fetcher throughput. Of course, there is
a trade-off: brokers use more CPU and network.

Apache Kafka Guide | 91

Kafka Performance Tuning

• replica.fetch.min.bytes controls the minimum number of bytes to fetch from a follower replica. If there
is not enough bytes, wait up to replica.fetch.wait.max.ms.

• replica.fetch.wait.max.ms controls how long to sleep before checking for new messages from a fetcher
replica. This value should be less than replica.lag.time.max.ms, otherwise the replica is kicked out of the
ISR set.

• To check the ISR set for topic partitions, run the following command:

kafka-topics --zookeeper ${ZOOKEEPER_HOSTNAME}:2181/kafka --describe --topic ${TOPIC}

• If a partition leader dies, a new leader is selected from the ISR set. There will be no data loss. If there is no ISR,
unclean leader election can be used with the risk of data-loss.

• Unclean leader election occurs if unclean.leader.election.enable is set to true. By default, this is set to
false.

Log Cleaner

As discussed in RecordManagement on page 61, the log cleaner implements log compaction. The following cluster-wide
configuration settings can be used to fine tune log compaction:

• log.cleaner.threads controls how many background threads are responsible for log compaction. Increasing
this value improves performance of log compaction at the cost of increased I/O activity.

• log.cleaner.io.max.bytes.per.second throttles log cleaner’s I/O activity so that the sum of its read and
write is less than this value on average.

• log.cleaner.dedupe.buffer.size specifies memory used for log compaction across all cleaner threads.
• log.cleaner.io.buffer.size controls totalmemory used for log cleaner I/O buffers across all cleaner threads.
• log.cleaner.min.compaction.lag.ms controls how long messages are left uncompacted.
• log.cleaner.io.buffer.load.factor controls log cleaner’s load factor for the dedupe buffer. Increasing

this value allows the system to clean more logs at once but increases hash collisions.
• log.cleaner.backoff.ms controls how long to wait until the next check if there is no log to compact.

Kafka Performance: System-Level Broker Tuning
Operating system related kernel parameters affect overall performance of Kafka. These parameters can be configured
via sysctl at runtime. To make kernel configuration changes persistent (that is, use adjusted parameters after a
reboot), edit /etc/sysctl.conf. The following sections describe some important kernel settings.

File Descriptor Limits

As Kafka works with many log segment files and network connections, the Maximum Process File Descriptors
setting may need to be increased in some cases in production deployments, if a broker hosts many partitions. For
example, a Kafka broker needs at least the following number of file descriptors to just track log segment files:

(number of partitions)*(partition size / segment size)

The broker needs additional file descriptors to communicate via network sockets with external parties (such as clients,
other brokers, Zookeeper, Sentry, and Kerberos).

The Maximum Process File Descriptors setting can be monitored in Cloudera Manager and increased if usage
requires a larger value than the default ulimit (often 64K). It should be reviewed for use case suitability.

• To review FD limit currently set for a running Kafka broker, run cat /proc/KAFKA_BROKER_PID/limits, and
look for Max open files.

• To see open file descriptors, run:

lsof -p KAFKA_BROKER_PID

92 | Apache Kafka Guide

Kafka Performance Tuning

Filesystems

Linux recordswhen a file was created (ctime), modified (mtime) and accessed (atime). The value noatime is a special
mount option for filesystems (such as EXT4) in Linux that tells the kernel not to update inode information every time
a file is accessed (that is, when it was last read). Using this option may result in write performance gain. Kafka is not
relying on atime. The value relatime is another mounting option that optimizes how atime is persisted. Access
time is only updated if the previous atime was earlier than the current modified time.

To view mounting options, run mount -l or cat /etc/fstab command.

Virtual Memory Handling

Kafka uses system page cache extensively for producing and consuming the messages. The Linux kernel parameter,
vm.swappiness, is a value from 0-100 that controls the swapping of application data (as anonymous pages) from
physicalmemory to virtualmemory on disk. The higher the value, themore aggressively inactive processes are swapped
out from physical memory. The lower the value, the less they are swapped, forcing filesystem buffers to be emptied.
It is an important kernel parameter for Kafka because the more memory allocated to the swap space, the less memory
can be allocated to the page cache. Cloudera recommends to set vm.swappiness value to 1.

• To check memory swapped to disk, run vmstat and look for the swap columns.

Kafka heavily relies on disk I/O performance. vm.dirty_ratio and vm.dirty_background_ratio are kernel
parameters that control how often dirty pages are flushed to disk. Higher vm.dirty_ratio results in less frequent
flushes to disk.

• To display the actual number of dirty pages in the system, run egrep "dirty|writeback" /proc/vmstat

Networking Parameters

Kafka is designed to handle a huge amount of network traffic. By default, the Linux kernel is not tuned for this scenario.
The following kernel settings may need to be tuned based on use case or specific Kafka workload:

• net.core.wmem_default: Default send socket buffer size.
• net.core.rmem_default: Default receive socket buffer size.
• net.core.wmem_max: Maximum send socket buffer size.
• net.core.rmem_max: Maximum receive socket buffer size.
• net.ipv4.tcp_wmem: Memory reserved for TCP send buffers.
• net.ipv4.tcp_rmem: Memory reserved for TCP receive buffers.
• net.ipv4.tcp_window_scaling: TCP Window Scaling option.
• net.ipv4.tcp_max_syn_backlog: Maximumnumber of outstanding TCP SYN requests (connection requests).
• net.core.netdev_max_backlog: Maximumnumber of queued packets on the kernel input side (useful to deal

with spike of network requests).

To specify the parameters, you can use Cloudera Enterprise Reference Architecture as a guideline.

Configuring JMX Ephemeral Ports

Kafka uses two high-numbered ephemeral ports for JMX. These ports are listed when you view netstat -anp

information for the Kafka broker process.

• You can change the number for the first port by adding a command similar to the following to the field Additional
Broker Java Options (broker_java_opts) in Cloudera Manager.

-Dcom.sun.management.jmxremote.rmi.port=port

• The JMX_PORT configuration maps to com.sun.management.jmxremote.port by default.

To access JMX via JConsole, run jconsole ${BROKER_HOST}:9393

• The second ephemeral port used for JMX communication is implemented for the JRMP protocol and cannot be
changed.

Apache Kafka Guide | 93

Kafka Performance Tuning

http://www.cloudera.com/documentation/other/reference-architecture/PDF/cloudera_ref_arch_metal.pdf

Kafka-ZooKeeper Performance Tuning
Kafka uses Zookeeper to store metadata information about topics, partitions, brokers and system coordination (such
as membership statuses). Unavailability or slowness of Zookeeper makes the Kafka cluster unstable, and Kafka brokers
do not automatically recover from it. Cloudera recommends to use a 3-5machines Zookeeper ensemble solely dedicated
to Kafka (co-location of applications can cause unwanted service disturbances).

• zookeeper.session.timeout.ms is a setting for Kafka that specifies how long Zookeeper shall wait for heartbeat
messages before it considers the client (the Kafka broker) unavailable. If this happens, metadata information
about partition leadership owned by the broker will be reassigned. If this setting is too high, then it might take a
long time for the system to detect a broker failure. On the other hand, if it is set to too small, it might result in
frequent leadership reassignments.

• jute.maxbuffer is a crucial Java system property for both Kafka and Zookeeper. It controls the maximum size
of the data a znode can contain. The default value, one megabyte, might be increased for certain production use
cases.

• There are cases where Zookeeper can require more connections. In those cases, it is recommended to increase
the maxClientCnxns parameter in Zookeeper.

• Note that old Kafka consumers store consumer offset commits in Zookeeper (deprecated). It is recommended to
use new consumers that store offsets in internal Kafka topics (reduces load on Zookeeper).

94 | Apache Kafka Guide

Kafka Performance Tuning

Kafka Reference

Metrics Reference
In addition to these metrics, many aggregate metrics are available. If an entity type has parents defined, you can
formulate all possible aggregate metrics using the formula base_metric_across_parents.

In addition, metrics for aggregate totals can be formed by adding the prefix total_ to the front of the metric name.

Use the type-ahead feature in the Cloudera Manager chart browser to find the exact aggregate metric name, in case
the plural form does not end in "s". For example, the following metric names may be valid for Kafka:

• alerts_rate_across_clusters

• total_alerts_rate_across_clusters

Some metrics, such as alerts_rate, apply to nearly every metric context. Others only apply to a certain service or
role.

For more information about metrics the Cloudera Manager, see Cloudera Manager Metrics and Metric Aggregation.

Note: The following sections are identical to the metrics listed with Cloudera Manager. Be sure to
scroll horizontally to see the full content in each table.

Base Metrics

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6clusterevents per
second

The number of alerts.alerts_rate

CDH 5, CDH 6clusterevents per
second

The number of critical events.events_critical_rate

CDH 5, CDH 6clusterevents per
second

Thenumber of important events.events_important_rate

CDH 5, CDH 6clusterevents per
second

The number of informational
events.

events_informational_
rate

CDH 5, CDH 6clusterseconds per
second

Percentage of Time with Bad
Health

health_bad_rate

CDH 5, CDH 6clusterseconds per
second

Percentage of Time with
Concerning Health

health_concerning_rate

CDH 5, CDH 6clusterseconds per
second

Percentage of Time with
Disabled Health

health_disabled_rate

CDH 5, CDH 6clusterseconds per
second

Percentage of Time with Good
Health

health_good_rate

CDH 5, CDH 6clusterseconds per
second

Percentage of Time with
Unknown Health

health_unknown_rate

Apache Kafka Guide | 95

Kafka Reference

Broker Metrics

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

events per
second

The number of alerts.alerts_rate

CDH 5, CDH 6cluster, kafka,
rack

seconds per
second

CPU usage of the role's cgroupcgroup_cpu_system_rate

CDH 5, CDH 6cluster, kafka,
rack

seconds per
second

User Space CPU usage of the
role's cgroup

cgroup_cpu_user_rate

CDH 5, CDH 6cluster, kafka,
rack

bytesPage cache usage of the role's
cgroup

cgroup_mem_page_cache

CDH 5, CDH 6cluster, kafka,
rack

bytesResident memory of the role's
cgroup

cgroup_mem_rss

CDH 5, CDH 6cluster, kafka,
rack

bytesSwap usage of the role's cgroupcgroup_mem_swap

CDH 5, CDH 6cluster, kafka,
rack

bytes per
second

Bytes read from all disks by the
role's cgroup

cgroup_read_bytes_rate

CDH 5, CDH 6cluster, kafka,
rack

ios per secondNumber of read I/O operations
from all disks by the role's
cgroup

cgroup_read_ios_rate

CDH 5, CDH 6cluster, kafka,
rack

bytes per
second

Bytes written to all disks by the
role's cgroup

cgroup_write_bytes_
rate

CDH 5, CDH 6cluster, kafka,
rack

ios per secondNumber of write I/O operations
to all disks by the role's cgroup

cgroup_write_ios_rate

CDH 5, CDH 6cluster, kafka,
rack

seconds per
second

Total System CPUcpu_system_rate

CDH 5, CDH 6cluster, kafka,
rack

seconds per
second

Total CPU user timecpu_user_rate

CDH 5, CDH 6cluster, kafka,
rack

events per
second

The number of critical events.events_critical_rate

CDH 5, CDH 6cluster, kafka,
rack

events per
second

Thenumber of important events.events_important_rate

CDH 5, CDH 6cluster, kafka,
rack

events per
second

The number of informational
events.

events_informational_
rate

CDH 5, CDH 6cluster, kafka,
rack

file descriptorsMaximum number of file
descriptors

fd_max

CDH 5, CDH 6cluster, kafka,
rack

file descriptorsOpen file descriptors.fd_open

CDH 5, CDH 6cluster, kafka,
rack

seconds per
second

Percentage of Time with Bad
Health

health_bad_rate

CDH 5, CDH 6cluster, kafka,
rack

seconds per
second

Percentage of Time with
Concerning Health

health_concerning_rate

CDH 5, CDH 6cluster, kafka,
rack

seconds per
second

Percentage of Time with
Disabled Health

health_disabled_rate

96 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

seconds per
second

Percentage of Time with Good
Health

health_good_rate

CDH 5, CDH 6cluster, kafka,
rack

seconds per
second

Percentage of Time with
Unknown Health

health_unknown_rate

CDH 5, CDH 6cluster, kafka,
rack

message.units.
controller

Will be 1 if this broker is the
active controller, 0 otherwise

kafka_active_
controller

CDH 5, CDH 6cluster, kafka,
rack

message.units.
state

The state the broker is in.kafka_broker_state

• 0 = NotRunning
• 1 = Starting
• 2 = RecoveringFrom
UncleanShutdown

• 3 = RunningAsBroker
• 4 =
RunningAsController

• 6 =
PendingControlled
Shutdown

• 7 =
BrokerShuttingDown

CDH 5, CDH 6cluster, kafka,
rack

bytes per
message.units.
singular.second

Amount of data consumers
fetched from this topic on this
broker: 15 Min Rate

kafka_bytes_fetched_
15min_rate

CDH 5, CDH 6cluster, kafka,
rack

bytes per
message.units.
singular.second

Amount of data consumers
fetched from this topic on this
broker: 1 Min Rate

kafka_bytes_fetched_
1min_rate

CDH 5, CDH 6cluster, kafka,
rack

bytes per
message.units.
singular.second

Amount of data consumers
fetched from this topic on this
broker: 5 Min Rate

kafka_bytes_fetched_
5min_rate

CDH 5, CDH 6cluster, kafka,
rack

bytes per
message.units.
singular.second

Amount of data consumers
fetched from this topic on this
broker: Avg Rate

kafka_bytes_fetched_
avg_rate

CDH 5, CDH 6cluster, kafka,
rack

bytes per
second

Amount of data consumers
fetched from this topic on this
broker

kafka_bytes_fetched_
rate

CDH 5, CDH 6cluster, kafka,
rack

bytes per
message.units.
singular.second

Amount of data written to topic
on this broker: 15 Min Rate

kafka_bytes_received_
15min_rate

CDH 5, CDH 6cluster, kafka,
rack

bytes per
message.units.
singular.second

Amount of data written to topic
on this broker: 1 Min Rate

kafka_bytes_received_
1min_rate

CDH 5, CDH 6cluster, kafka,
rack

bytes per
message.units.
singular.second

Amount of data written to topic
on this broker: 5 Min Rate

kafka_bytes_received_
5min_rate

CDH 5, CDH 6cluster, kafka,
rack

bytes per
message.units.
singular.second

Amount of data written to topic
on this broker: Avg Rate

kafka_bytes_received_
avg_rate

Apache Kafka Guide | 97

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

bytes per
second

Amount of data written to topic
on this broker

kafka_bytes_received_
rate

CDH 5, CDH 6cluster, kafka,
rack

bytes per
message.units.
singular.second

Amount of data in messages
rejected by broker for this topic:
15 Min Rate

kafka_bytes_rejected_
15min_rate

CDH 5, CDH 6cluster, kafka,
rack

bytes per
message.units.
singular.second

Amount of data in messages
rejected by broker for this topic:
1 Min Rate

kafka_bytes_rejected_
1min_rate

CDH 5, CDH 6cluster, kafka,
rack

bytes per
message.units.
singular.second

Amount of data in messages
rejected by broker for this topic:
5 Min Rate

kafka_bytes_rejected_
5min_rate

CDH 5, CDH 6cluster, kafka,
rack

bytes per
message.units.
singular.second

Amount of data in messages
rejected by broker for this topic:
Avg Rate

kafka_bytes_rejected_
avg_rate

CDH 5, CDH 6cluster, kafka,
rack

bytes per
second

Amount of data in messages
rejected by broker for this topic

kafka_bytes_rejected_
rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of expired delayed
consumer fetch requests: 15Min
Rate

kafka_consumer_
expires_15min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of expired delayed
consumer fetch requests: 1 Min
Rate

kafka_consumer_
expires_1min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of expired delayed
consumer fetch requests: 5 Min
Rate

kafka_consumer_
expires_5min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of expired delayed
consumer fetch requests: Avg
Rate

kafka_consumer_
expires_avg_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Number of expired delayed
consumer fetch requests

kafka_consumer_
expires_rate

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to ConsumerMetadata requests:
75th Percentile

kafka_consumer_
metadata_local_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to ConsumerMetadata requests:
999th Percentile

kafka_consumer_
metadata_local_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to ConsumerMetadata requests:
99th Percentile

kafka_consumer_
metadata_local_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to ConsumerMetadata requests:
Avg

kafka_consumer_
metadata_local_time_
avg

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to ConsumerMetadata requests:
Max

kafka_consumer_
metadata_local_time_
max

98 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to ConsumerMetadata requests:
50th Percentile

kafka_consumer_
metadata_local_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to ConsumerMetadata requests:
Min

kafka_consumer_
metadata_local_time_
min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Local Time spent in responding
to ConsumerMetadata requests:
Samples

kafka_consumer_
metadata_local_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to ConsumerMetadata requests:
Standard Deviation

kafka_consumer_
metadata_local_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to
ConsumerMetadata requests:
75th Percentile

kafka_consumer_
metadata_remote_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to
ConsumerMetadata requests:
999th Percentile

kafka_consumer_
metadata_remote_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to
ConsumerMetadata requests:
99th Percentile

kafka_consumer_
metadata_remote_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to
ConsumerMetadata requests:
Avg

kafka_consumer_
metadata_remote_time_
avg

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to
ConsumerMetadata requests:
Max

kafka_consumer_
metadata_remote_time_
max

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to
ConsumerMetadata requests:
50th Percentile

kafka_consumer_
metadata_remote_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to
ConsumerMetadata requests:
Min

kafka_consumer_
metadata_remote_time_
min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Remote Time spent in
responding to
ConsumerMetadata requests:
Samples

kafka_consumer_
metadata_remote_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to
ConsumerMetadata requests:
Standard Deviation

kafka_consumer_
metadata_remote_time_
stddev

Apache Kafka Guide | 99

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to
ConsumerMetadata requests:
75th Percentile

kafka_consumer_
metadata_request_
queue_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to
ConsumerMetadata requests:
999th Percentile

kafka_consumer_
metadata_request_
queue_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to
ConsumerMetadata requests:
99th Percentile

kafka_consumer_
metadata_request_
queue_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to
ConsumerMetadata requests:
Avg

kafka_consumer_
metadata_request_
queue_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to
ConsumerMetadata requests:
Max

kafka_consumer_
metadata_request_
queue_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to
ConsumerMetadata requests:
50th Percentile

kafka_consumer_
metadata_request_
queue_time_median

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to
ConsumerMetadata requests:
Min

kafka_consumer_
metadata_request_
queue_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Request Queue Time spent in
responding to
ConsumerMetadata requests:
Samples

kafka_consumer_
metadata_request_
queue_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to
ConsumerMetadata requests:
Standard Deviation

kafka_consumer_
metadata_request_
queue_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of ConsumerMetadata
requests: 15 Min Rate

kafka_consumer_
metadata_requests_
15min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of ConsumerMetadata
requests: 1 Min Rate

kafka_consumer_
metadata_requests_
1min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of ConsumerMetadata
requests: 5 Min Rate

kafka_consumer_
metadata_requests_
5min_rate

100 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of ConsumerMetadata
requests: Avg Rate

kafka_consumer_
metadata_requests_avg_
rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Number of ConsumerMetadata
requests

kafka_consumer_
metadata_requests_rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to
ConsumerMetadata requests:
75th Percentile

kafka_consumer_
metadata_response_
queue_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to
ConsumerMetadata requests:
999th Percentile

kafka_consumer_
metadata_response_
queue_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to
ConsumerMetadata requests:
99th Percentile

kafka_consumer_
metadata_response_
queue_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to
ConsumerMetadata requests:
Avg

kafka_consumer_
metadata_response_
queue_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to
ConsumerMetadata requests:
Max

kafka_consumer_
metadata_response_
queue_time_max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to
ConsumerMetadata requests:
50th Percentile

kafka_consumer_
metadata_response_
queue_time_median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to
ConsumerMetadata requests:
Min

kafka_consumer_
metadata_response_
queue_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Queue Time spent in
responding to
ConsumerMetadata requests:
Samples

kafka_consumer_
metadata_response_
queue_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to
ConsumerMetadata requests:
Standard Deviation

kafka_consumer_
metadata_response_
queue_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to
ConsumerMetadata requests:
75th Percentile

kafka_consumer_
metadata_response_
send_time_75th_
percentile

Apache Kafka Guide | 101

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to
ConsumerMetadata requests:
999th Percentile

kafka_consumer_
metadata_response_
send_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to
ConsumerMetadata requests:
99th Percentile

kafka_consumer_
metadata_response_
send_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to
ConsumerMetadata requests:
Avg

kafka_consumer_
metadata_response_
send_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to
ConsumerMetadata requests:
Max

kafka_consumer_
metadata_response_
send_time_max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to
ConsumerMetadata requests:
50th Percentile

kafka_consumer_
metadata_response_
send_time_median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to
ConsumerMetadata requests:
Min

kafka_consumer_
metadata_response_
send_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Send Time spent in
responding to
ConsumerMetadata requests:
Samples

kafka_consumer_
metadata_response_
send_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to
ConsumerMetadata requests:
Standard Deviation

kafka_consumer_
metadata_response_
send_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to ConsumerMetadata requests:
75th Percentile

kafka_consumer_
metadata_total_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to ConsumerMetadata requests:
999th Percentile

kafka_consumer_
metadata_total_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to ConsumerMetadata requests:
99th Percentile

kafka_consumer_
metadata_total_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to ConsumerMetadata requests:
Avg

kafka_consumer_
metadata_total_time_
avg

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to ConsumerMetadata requests:
Max

kafka_consumer_
metadata_total_time_
max

102 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to ConsumerMetadata requests:
50th Percentile

kafka_consumer_
metadata_total_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to ConsumerMetadata requests:
Min

kafka_consumer_
metadata_total_time_
min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Total Time spent in responding
to ConsumerMetadata requests:
Samples

kafka_consumer_
metadata_total_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to ConsumerMetadata requests:
Standard Deviation

kafka_consumer_
metadata_total_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
toControlledShutdown requests:
75th Percentile

kafka_controlled_
shutdown_local_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
toControlledShutdown requests:
999th Percentile

kafka_controlled_
shutdown_local_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
toControlledShutdown requests:
99th Percentile

kafka_controlled_
shutdown_local_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
toControlledShutdown requests:
Avg

kafka_controlled_
shutdown_local_time_
avg

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
toControlledShutdown requests:
Max

kafka_controlled_
shutdown_local_time_
max

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
toControlledShutdown requests:
50th Percentile

kafka_controlled_
shutdown_local_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
toControlledShutdown requests:
Min

kafka_controlled_
shutdown_local_time_
min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Local Time spent in responding
toControlledShutdown requests:
Samples

kafka_controlled_
shutdown_local_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
toControlledShutdown requests:
Standard Deviation

kafka_controlled_
shutdown_local_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to
ControlledShutdown requests:
75th Percentile

kafka_controlled_
shutdown_remote_time_
75th_percentile

Apache Kafka Guide | 103

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to
ControlledShutdown requests:
999th Percentile

kafka_controlled_
shutdown_remote_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to
ControlledShutdown requests:
99th Percentile

kafka_controlled_
shutdown_remote_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to
ControlledShutdown requests:
Avg

kafka_controlled_
shutdown_remote_time_
avg

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to
ControlledShutdown requests:
Max

kafka_controlled_
shutdown_remote_time_
max

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to
ControlledShutdown requests:
50th Percentile

kafka_controlled_
shutdown_remote_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to
ControlledShutdown requests:
Min

kafka_controlled_
shutdown_remote_time_
min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Remote Time spent in
responding to
ControlledShutdown requests:
Samples

kafka_controlled_
shutdown_remote_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to
ControlledShutdown requests:
Standard Deviation

kafka_controlled_
shutdown_remote_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to
ControlledShutdown requests:
75th Percentile

kafka_controlled_
shutdown_request_
queue_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to
ControlledShutdown requests:
999th Percentile

kafka_controlled_
shutdown_request_
queue_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to
ControlledShutdown requests:
99th Percentile

kafka_controlled_
shutdown_request_
queue_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to
ControlledShutdown requests:
Avg

kafka_controlled_
shutdown_request_
queue_time_avg

104 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to
ControlledShutdown requests:
Max

kafka_controlled_
shutdown_request_
queue_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to
ControlledShutdown requests:
50th Percentile

kafka_controlled_
shutdown_request_
queue_time_median

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to
ControlledShutdown requests:
Min

kafka_controlled_
shutdown_request_
queue_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Request Queue Time spent in
responding to
ControlledShutdown requests:
Samples

kafka_controlled_
shutdown_request_
queue_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to
ControlledShutdown requests:
Standard Deviation

kafka_controlled_
shutdown_request_
queue_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of ControlledShutdown
requests: 15 Min Rate

kafka_controlled_
shutdown_requests_
15min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of ControlledShutdown
requests: 1 Min Rate

kafka_controlled_
shutdown_requests_
1min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of ControlledShutdown
requests: 5 Min Rate

kafka_controlled_
shutdown_requests_
5min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of ControlledShutdown
requests: Avg Rate

kafka_controlled_
shutdown_requests_avg_
rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Number of ControlledShutdown
requests

kafka_controlled_
shutdown_requests_rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to
ControlledShutdown requests:
75th Percentile

kafka_controlled_
shutdown_response_
queue_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to
ControlledShutdown requests:
999th Percentile

kafka_controlled_
shutdown_response_
queue_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to
ControlledShutdown requests:
99th Percentile

kafka_controlled_
shutdown_response_
queue_time_99th_
percentile

Apache Kafka Guide | 105

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to
ControlledShutdown requests:
Avg

kafka_controlled_
shutdown_response_
queue_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to
ControlledShutdown requests:
Max

kafka_controlled_
shutdown_response_
queue_time_max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to
ControlledShutdown requests:
50th Percentile

kafka_controlled_
shutdown_response_
queue_time_median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to
ControlledShutdown requests:
Min

kafka_controlled_
shutdown_response_
queue_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Queue Time spent in
responding to
ControlledShutdown requests:
Samples

kafka_controlled_
shutdown_response_
queue_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to
ControlledShutdown requests:
Standard Deviation

kafka_controlled_
shutdown_response_
queue_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to
ControlledShutdown requests:
75th Percentile

kafka_controlled_
shutdown_response_
send_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to
ControlledShutdown requests:
999th Percentile

kafka_controlled_
shutdown_response_
send_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to
ControlledShutdown requests:
99th Percentile

kafka_controlled_
shutdown_response_
send_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to
ControlledShutdown requests:
Avg

kafka_controlled_
shutdown_response_
send_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to
ControlledShutdown requests:
Max

kafka_controlled_
shutdown_response_
send_time_max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to
ControlledShutdown requests:
50th Percentile

kafka_controlled_
shutdown_response_
send_time_median

106 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to
ControlledShutdown requests:
Min

kafka_controlled_
shutdown_response_
send_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Send Time spent in
responding to
ControlledShutdown requests:
Samples

kafka_controlled_
shutdown_response_
send_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to
ControlledShutdown requests:
Standard Deviation

kafka_controlled_
shutdown_response_
send_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
toControlledShutdown requests:
75th Percentile

kafka_controlled_
shutdown_total_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
toControlledShutdown requests:
999th Percentile

kafka_controlled_
shutdown_total_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
toControlledShutdown requests:
99th Percentile

kafka_controlled_
shutdown_total_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
toControlledShutdown requests:
Avg

kafka_controlled_
shutdown_total_time_
avg

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
toControlledShutdown requests:
Max

kafka_controlled_
shutdown_total_time_
max

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
toControlledShutdown requests:
50th Percentile

kafka_controlled_
shutdown_total_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
toControlledShutdown requests:
Min

kafka_controlled_
shutdown_total_time_
min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Total Time spent in responding
toControlledShutdown requests:
Samples

kafka_controlled_
shutdown_total_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
toControlledShutdown requests:
Standard Deviation

kafka_controlled_
shutdown_total_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

threadsJVM daemon thread countkafka_daemon_thread_
count

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to FetchConsumer requests:
75th Percentile

kafka_fetch_consumer_
local_time_75th_
percentile

Apache Kafka Guide | 107

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to FetchConsumer requests:
999th Percentile

kafka_fetch_consumer_
local_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to FetchConsumer requests:
99th Percentile

kafka_fetch_consumer_
local_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to FetchConsumer requests: Avg

kafka_fetch_consumer_
local_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to FetchConsumer requests:Max

kafka_fetch_consumer_
local_time_max

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to FetchConsumer requests:
50th Percentile

kafka_fetch_consumer_
local_time_median

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to FetchConsumer requests:Min

kafka_fetch_consumer_
local_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Local Time spent in responding
to FetchConsumer requests:
Samples

kafka_fetch_consumer_
local_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to FetchConsumer requests:
Standard Deviation

kafka_fetch_consumer_
local_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to FetchConsumer
requests: 75th Percentile

kafka_fetch_consumer_
remote_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to FetchConsumer
requests: 999th Percentile

kafka_fetch_consumer_
remote_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to FetchConsumer
requests: 99th Percentile

kafka_fetch_consumer_
remote_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to FetchConsumer
requests: Avg

kafka_fetch_consumer_
remote_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to FetchConsumer
requests: Max

kafka_fetch_consumer_
remote_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to FetchConsumer
requests: 50th Percentile

kafka_fetch_consumer_
remote_time_median

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to FetchConsumer
requests: Min

kafka_fetch_consumer_
remote_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Remote Time spent in
responding to FetchConsumer
requests: Samples

kafka_fetch_consumer_
remote_time_rate

108 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to FetchConsumer
requests: Standard Deviation

kafka_fetch_consumer_
remote_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to FetchConsumer
requests: 75th Percentile

kafka_fetch_consumer_
request_queue_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to FetchConsumer
requests: 999th Percentile

kafka_fetch_consumer_
request_queue_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to FetchConsumer
requests: 99th Percentile

kafka_fetch_consumer_
request_queue_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to FetchConsumer
requests: Avg

kafka_fetch_consumer_
request_queue_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to FetchConsumer
requests: Max

kafka_fetch_consumer_
request_queue_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to FetchConsumer
requests: 50th Percentile

kafka_fetch_consumer_
request_queue_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to FetchConsumer
requests: Min

kafka_fetch_consumer_
request_queue_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Request Queue Time spent in
responding to FetchConsumer
requests: Samples

kafka_fetch_consumer_
request_queue_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to FetchConsumer
requests: Standard Deviation

kafka_fetch_consumer_
request_queue_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of FetchConsumer
requests: 15 Min Rate

kafka_fetch_consumer_
requests_15min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of FetchConsumer
requests: 1 Min Rate

kafka_fetch_consumer_
requests_1min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of FetchConsumer
requests: 5 Min Rate

kafka_fetch_consumer_
requests_5min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of FetchConsumer
requests: Avg Rate

kafka_fetch_consumer_
requests_avg_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Number of FetchConsumer
requests

kafka_fetch_consumer_
requests_rate

Apache Kafka Guide | 109

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to FetchConsumer
requests: 75th Percentile

kafka_fetch_consumer_
response_queue_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to FetchConsumer
requests: 999th Percentile

kafka_fetch_consumer_
response_queue_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to FetchConsumer
requests: 99th Percentile

kafka_fetch_consumer_
response_queue_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to FetchConsumer
requests: Avg

kafka_fetch_consumer_
response_queue_time_
avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to FetchConsumer
requests: Max

kafka_fetch_consumer_
response_queue_time_
max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to FetchConsumer
requests: 50th Percentile

kafka_fetch_consumer_
response_queue_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to FetchConsumer
requests: Min

kafka_fetch_consumer_
response_queue_time_
min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Queue Time spent in
responding to FetchConsumer
requests: Samples

kafka_fetch_consumer_
response_queue_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to FetchConsumer
requests: Standard Deviation

kafka_fetch_consumer_
response_queue_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to FetchConsumer
requests: 75th Percentile

kafka_fetch_consumer_
response_send_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to FetchConsumer
requests: 999th Percentile

kafka_fetch_consumer_
response_send_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to FetchConsumer
requests: 99th Percentile

kafka_fetch_consumer_
response_send_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to FetchConsumer
requests: Avg

kafka_fetch_consumer_
response_send_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to FetchConsumer
requests: Max

kafka_fetch_consumer_
response_send_time_max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to FetchConsumer
requests: 50th Percentile

kafka_fetch_consumer_
response_send_time_
median

110 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to FetchConsumer
requests: Min

kafka_fetch_consumer_
response_send_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Send Time spent in
responding to FetchConsumer
requests: Samples

kafka_fetch_consumer_
response_send_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to FetchConsumer
requests: Standard Deviation

kafka_fetch_consumer_
response_send_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to FetchConsumer requests:
75th Percentile

kafka_fetch_consumer_
total_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to FetchConsumer requests:
999th Percentile

kafka_fetch_consumer_
total_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to FetchConsumer requests:
99th Percentile

kafka_fetch_consumer_
total_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to FetchConsumer requests: Avg

kafka_fetch_consumer_
total_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to FetchConsumer requests:Max

kafka_fetch_consumer_
total_time_max

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to FetchConsumer requests:
50th Percentile

kafka_fetch_consumer_
total_time_median

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to FetchConsumer requests:Min

kafka_fetch_consumer_
total_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Total Time spent in responding
to FetchConsumer requests:
Samples

kafka_fetch_consumer_
total_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to FetchConsumer requests:
Standard Deviation

kafka_fetch_consumer_
total_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to FetchFollower requests: 75th
Percentile

kafka_fetch_follower_
local_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to FetchFollower requests: 999th
Percentile

kafka_fetch_follower_
local_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to FetchFollower requests: 99th
Percentile

kafka_fetch_follower_
local_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to FetchFollower requests: Avg

kafka_fetch_follower_
local_time_avg

Apache Kafka Guide | 111

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to FetchFollower requests: Max

kafka_fetch_follower_
local_time_max

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to FetchFollower requests: 50th
Percentile

kafka_fetch_follower_
local_time_median

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to FetchFollower requests: Min

kafka_fetch_follower_
local_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Local Time spent in responding
to FetchFollower requests:
Samples

kafka_fetch_follower_
local_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to FetchFollower requests:
Standard Deviation

kafka_fetch_follower_
local_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to FetchFollower
requests: 75th Percentile

kafka_fetch_follower_
remote_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to FetchFollower
requests: 999th Percentile

kafka_fetch_follower_
remote_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to FetchFollower
requests: 99th Percentile

kafka_fetch_follower_
remote_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to FetchFollower
requests: Avg

kafka_fetch_follower_
remote_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to FetchFollower
requests: Max

kafka_fetch_follower_
remote_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to FetchFollower
requests: 50th Percentile

kafka_fetch_follower_
remote_time_median

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to FetchFollower
requests: Min

kafka_fetch_follower_
remote_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Remote Time spent in
responding to FetchFollower
requests: Samples

kafka_fetch_follower_
remote_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to FetchFollower
requests: Standard Deviation

kafka_fetch_follower_
remote_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to FetchFollower
requests: 75th Percentile

kafka_fetch_follower_
request_queue_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to FetchFollower
requests: 999th Percentile

kafka_fetch_follower_
request_queue_time_
999th_percentile

112 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to FetchFollower
requests: 99th Percentile

kafka_fetch_follower_
request_queue_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to FetchFollower
requests: Avg

kafka_fetch_follower_
request_queue_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to FetchFollower
requests: Max

kafka_fetch_follower_
request_queue_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to FetchFollower
requests: 50th Percentile

kafka_fetch_follower_
request_queue_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to FetchFollower
requests: Min

kafka_fetch_follower_
request_queue_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Request Queue Time spent in
responding to FetchFollower
requests: Samples

kafka_fetch_follower_
request_queue_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to FetchFollower
requests: Standard Deviation

kafka_fetch_follower_
request_queue_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of FetchFollower
requests: 15 Min Rate

kafka_fetch_follower_
requests_15min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of FetchFollower
requests: 1 Min Rate

kafka_fetch_follower_
requests_1min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of FetchFollower
requests: 5 Min Rate

kafka_fetch_follower_
requests_5min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of FetchFollower
requests: Avg Rate

kafka_fetch_follower_
requests_avg_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Number of FetchFollower
requests

kafka_fetch_follower_
requests_rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to FetchFollower
requests: 75th Percentile

kafka_fetch_follower_
response_queue_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to FetchFollower
requests: 999th Percentile

kafka_fetch_follower_
response_queue_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to FetchFollower
requests: 99th Percentile

kafka_fetch_follower_
response_queue_time_
99th_percentile

Apache Kafka Guide | 113

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to FetchFollower
requests: Avg

kafka_fetch_follower_
response_queue_time_
avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to FetchFollower
requests: Max

kafka_fetch_follower_
response_queue_time_
max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to FetchFollower
requests: 50th Percentile

kafka_fetch_follower_
response_queue_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to FetchFollower
requests: Min

kafka_fetch_follower_
response_queue_time_
min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Queue Time spent in
responding to FetchFollower
requests: Samples

kafka_fetch_follower_
response_queue_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to FetchFollower
requests: Standard Deviation

kafka_fetch_follower_
response_queue_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to FetchFollower
requests: 75th Percentile

kafka_fetch_follower_
response_send_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to FetchFollower
requests: 999th Percentile

kafka_fetch_follower_
response_send_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to FetchFollower
requests: 99th Percentile

kafka_fetch_follower_
response_send_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to FetchFollower
requests: Avg

kafka_fetch_follower_
response_send_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to FetchFollower
requests: Max

kafka_fetch_follower_
response_send_time_max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to FetchFollower
requests: 50th Percentile

kafka_fetch_follower_
response_send_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to FetchFollower
requests: Min

kafka_fetch_follower_
response_send_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Send Time spent in
responding to FetchFollower
requests: Samples

kafka_fetch_follower_
response_send_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to FetchFollower
requests: Standard Deviation

kafka_fetch_follower_
response_send_time_
stddev

114 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to FetchFollower requests: 75th
Percentile

kafka_fetch_follower_
total_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to FetchFollower requests: 999th
Percentile

kafka_fetch_follower_
total_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to FetchFollower requests: 99th
Percentile

kafka_fetch_follower_
total_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to FetchFollower requests: Avg

kafka_fetch_follower_
total_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to FetchFollower requests: Max

kafka_fetch_follower_
total_time_max

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to FetchFollower requests: 50th
Percentile

kafka_fetch_follower_
total_time_median

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to FetchFollower requests: Min

kafka_fetch_follower_
total_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Total Time spent in responding
to FetchFollower requests:
Samples

kafka_fetch_follower_
total_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to FetchFollower requests:
Standard Deviation

kafka_fetch_follower_
total_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Fetch requests: 75th
Percentile

kafka_fetch_local_
time_75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Fetch requests: 999th
Percentile

kafka_fetch_local_
time_999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Fetch requests: 99th
Percentile

kafka_fetch_local_
time_99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Fetch requests: Avg

kafka_fetch_local_
time_avg

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Fetch requests: Max

kafka_fetch_local_
time_max

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Fetch requests: 50th
Percentile

kafka_fetch_local_
time_median

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Fetch requests: Min

kafka_fetch_local_
time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Local Time spent in responding
to Fetch requests: Samples

kafka_fetch_local_
time_rate

Apache Kafka Guide | 115

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Fetch requests: Standard
Deviation

kafka_fetch_local_
time_stddev

CDH 5, CDH 6cluster, kafka,
rack

requestsNumber of requests delayed in
the fetch purgatory

kafka_fetch_purgatory_
delayed_requests

CDH 5, CDH 6cluster, kafka,
rack

requestsRequests waiting in the fetch
purgatory. This depends on value
of fetch.wait.max.ms in the
consumer

kafka_fetch_purgatory_
size

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Fetch requests:
75th Percentile

kafka_fetch_remote_
time_75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Fetch requests:
999th Percentile

kafka_fetch_remote_
time_999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Fetch requests:
99th Percentile

kafka_fetch_remote_
time_99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Fetch requests:
Avg

kafka_fetch_remote_
time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Fetch requests:
Max

kafka_fetch_remote_
time_max

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Fetch requests:
50th Percentile

kafka_fetch_remote_
time_median

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Fetch requests:
Min

kafka_fetch_remote_
time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Remote Time spent in
responding to Fetch requests:
Samples

kafka_fetch_remote_
time_rate

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Fetch requests:
Standard Deviation

kafka_fetch_remote_
time_stddev

CDH 5, CDH 6cluster, kafka,
rack

message.units.
fetch_requests
per message.

Number of data read requests
from consumers that brokers
failed to process for this topic:
15 Min Rate

kafka_fetch_request_
failures_15min_rate

units.singular.
second

CDH 5, CDH 6cluster, kafka,
rack

message.units.
fetch_requests
per message.

Number of data read requests
from consumers that brokers
failed to process for this topic: 1
Min Rate

kafka_fetch_request_
failures_1min_rate

units.singular.
second

116 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

message.units.
fetch_requests
per message.

Number of data read requests
from consumers that brokers
failed to process for this topic: 5
Min Rate

kafka_fetch_request_
failures_5min_rate

units.singular.
second

CDH 5, CDH 6cluster, kafka,
rack

message.units.
fetch_requests
per message.

Number of data read requests
from consumers that brokers
failed to process for this topic:
Avg Rate

kafka_fetch_request_
failures_avg_rate

units.singular.
second

CDH 5, CDH 6cluster, kafka,
rack

message.units.
fetch_requests
per second

Number of data read requests
from consumers that brokers
failed to process for this topic

kafka_fetch_request_
failures_rate

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Fetch requests:
75th Percentile

kafka_fetch_request_
queue_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Fetch requests:
999th Percentile

kafka_fetch_request_
queue_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Fetch requests:
99th Percentile

kafka_fetch_request_
queue_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Fetch requests:
Avg

kafka_fetch_request_
queue_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Fetch requests:
Max

kafka_fetch_request_
queue_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Fetch requests:
50th Percentile

kafka_fetch_request_
queue_time_median

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Fetch requests:
Min

kafka_fetch_request_
queue_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Request Queue Time spent in
responding to Fetch requests:
Samples

kafka_fetch_request_
queue_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Fetch requests:
Standard Deviation

kafka_fetch_request_
queue_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of Fetch requests: 15
Min Rate

kafka_fetch_requests_
15min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of Fetch requests: 1Min
Rate

kafka_fetch_requests_
1min_rate

Apache Kafka Guide | 117

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of Fetch requests: 5Min
Rate

kafka_fetch_requests_
5min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of Fetch requests: Avg
Rate

kafka_fetch_requests_
avg_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Number of Fetch requestskafka_fetch_requests_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Fetch requests:
75th Percentile

kafka_fetch_response_
queue_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Fetch requests:
999th Percentile

kafka_fetch_response_
queue_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Fetch requests:
99th Percentile

kafka_fetch_response_
queue_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Fetch requests:
Avg

kafka_fetch_response_
queue_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Fetch requests:
Max

kafka_fetch_response_
queue_time_max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Fetch requests:
50th Percentile

kafka_fetch_response_
queue_time_median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Fetch requests:
Min

kafka_fetch_response_
queue_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Queue Time spent in
responding to Fetch requests:
Samples

kafka_fetch_response_
queue_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Fetch requests:
Standard Deviation

kafka_fetch_response_
queue_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Fetch requests:
75th Percentile

kafka_fetch_response_
send_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Fetch requests:
999th Percentile

kafka_fetch_response_
send_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Fetch requests:
99th Percentile

kafka_fetch_response_
send_time_99th_
percentile

118 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Fetch requests:
Avg

kafka_fetch_response_
send_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Fetch requests:
Max

kafka_fetch_response_
send_time_max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Fetch requests:
50th Percentile

kafka_fetch_response_
send_time_median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Fetch requests:
Min

kafka_fetch_response_
send_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Send Time spent in
responding to Fetch requests:
Samples

kafka_fetch_response_
send_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Fetch requests:
Standard Deviation

kafka_fetch_response_
send_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Fetch requests: 75th
Percentile

kafka_fetch_total_
time_75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Fetch requests: 999th
Percentile

kafka_fetch_total_
time_999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Fetch requests: 99th
Percentile

kafka_fetch_total_
time_99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Fetch requests: Avg

kafka_fetch_total_
time_avg

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Fetch requests: Max

kafka_fetch_total_
time_max

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Fetch requests: 50th
Percentile

kafka_fetch_total_
time_median

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Fetch requests: Min

kafka_fetch_total_
time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Total Time spent in responding
to Fetch requests: Samples

kafka_fetch_total_
time_rate

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Fetch requests: Standard
Deviation

kafka_fetch_total_
time_stddev

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of expired delayed
follower fetch requests: 15 Min
Rate

kafka_follower_
expires_15min_rate

Apache Kafka Guide | 119

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of expired delayed
follower fetch requests: 1 Min
Rate

kafka_follower_
expires_1min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of expired delayed
follower fetch requests: 5 Min
Rate

kafka_follower_
expires_5min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of expired delayed
follower fetch requests: Avg Rate

kafka_follower_
expires_avg_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Number of expired delayed
follower fetch requests

kafka_follower_
expires_rate

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Heartbeat requests: 75th
Percentile

kafka_heartbeat_local_
time_75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Heartbeat requests: 999th
Percentile

kafka_heartbeat_local_
time_999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Heartbeat requests: 99th
Percentile

kafka_heartbeat_local_
time_99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Heartbeat requests: Avg

kafka_heartbeat_local_
time_avg

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Heartbeat requests: Max

kafka_heartbeat_local_
time_max

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Heartbeat requests: 50th
Percentile

kafka_heartbeat_local_
time_median

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Heartbeat requests: Min

kafka_heartbeat_local_
time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Local Time spent in responding
to Heartbeat requests: Samples

kafka_heartbeat_local_
time_rate

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Heartbeat requests: Standard
Deviation

kafka_heartbeat_local_
time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Heartbeat
requests: 75th Percentile

kafka_heartbeat_
remote_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Heartbeat
requests: 999th Percentile

kafka_heartbeat_
remote_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Heartbeat
requests: 99th Percentile

kafka_heartbeat_
remote_time_99th_
percentile

120 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Heartbeat
requests: Avg

kafka_heartbeat_
remote_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Heartbeat
requests: Max

kafka_heartbeat_
remote_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Heartbeat
requests: 50th Percentile

kafka_heartbeat_
remote_time_median

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Heartbeat
requests: Min

kafka_heartbeat_
remote_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Remote Time spent in
responding to Heartbeat
requests: Samples

kafka_heartbeat_
remote_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Heartbeat
requests: Standard Deviation

kafka_heartbeat_
remote_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Heartbeat
requests: 75th Percentile

kafka_heartbeat_
request_queue_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Heartbeat
requests: 999th Percentile

kafka_heartbeat_
request_queue_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Heartbeat
requests: 99th Percentile

kafka_heartbeat_
request_queue_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Heartbeat
requests: Avg

kafka_heartbeat_
request_queue_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Heartbeat
requests: Max

kafka_heartbeat_
request_queue_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Heartbeat
requests: 50th Percentile

kafka_heartbeat_
request_queue_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Heartbeat
requests: Min

kafka_heartbeat_
request_queue_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Request Queue Time spent in
responding to Heartbeat
requests: Samples

kafka_heartbeat_
request_queue_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Heartbeat
requests: Standard Deviation

kafka_heartbeat_
request_queue_time_
stddev

Apache Kafka Guide | 121

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of Heartbeat requests:
15 Min Rate

kafka_heartbeat_
requests_15min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of Heartbeat requests:
1 Min Rate

kafka_heartbeat_
requests_1min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of Heartbeat requests:
5 Min Rate

kafka_heartbeat_
requests_5min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of Heartbeat requests:
Avg Rate

kafka_heartbeat_
requests_avg_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Number of Heartbeat requestskafka_heartbeat_
requests_rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Heartbeat
requests: 75th Percentile

kafka_heartbeat_
response_queue_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Heartbeat
requests: 999th Percentile

kafka_heartbeat_
response_queue_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Heartbeat
requests: 99th Percentile

kafka_heartbeat_
response_queue_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Heartbeat
requests: Avg

kafka_heartbeat_
response_queue_time_
avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Heartbeat
requests: Max

kafka_heartbeat_
response_queue_time_
max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Heartbeat
requests: 50th Percentile

kafka_heartbeat_
response_queue_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Heartbeat
requests: Min

kafka_heartbeat_
response_queue_time_
min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Queue Time spent in
responding to Heartbeat
requests: Samples

kafka_heartbeat_
response_queue_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Heartbeat
requests: Standard Deviation

kafka_heartbeat_
response_queue_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Heartbeat
requests: 75th Percentile

kafka_heartbeat_
response_send_time_
75th_percentile

122 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Heartbeat
requests: 999th Percentile

kafka_heartbeat_
response_send_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Heartbeat
requests: 99th Percentile

kafka_heartbeat_
response_send_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Heartbeat
requests: Avg

kafka_heartbeat_
response_send_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Heartbeat
requests: Max

kafka_heartbeat_
response_send_time_max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Heartbeat
requests: 50th Percentile

kafka_heartbeat_
response_send_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Heartbeat
requests: Min

kafka_heartbeat_
response_send_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Send Time spent in
responding to Heartbeat
requests: Samples

kafka_heartbeat_
response_send_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Heartbeat
requests: Standard Deviation

kafka_heartbeat_
response_send_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Heartbeat requests: 75th
Percentile

kafka_heartbeat_total_
time_75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Heartbeat requests: 999th
Percentile

kafka_heartbeat_total_
time_999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Heartbeat requests: 99th
Percentile

kafka_heartbeat_total_
time_99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Heartbeat requests: Avg

kafka_heartbeat_total_
time_avg

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Heartbeat requests: Max

kafka_heartbeat_total_
time_max

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Heartbeat requests: 50th
Percentile

kafka_heartbeat_total_
time_median

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Heartbeat requests: Min

kafka_heartbeat_total_
time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Total Time spent in responding
to Heartbeat requests: Samples

kafka_heartbeat_total_
time_rate

Apache Kafka Guide | 123

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Heartbeat requests: Standard
Deviation

kafka_heartbeat_total_
time_stddev

CDH 5, CDH 6cluster, kafka,
rack

message.units.
expansions per
message.units.
singular.second

Number of times ISR for a
partition expanded: 15Min Rate

kafka_isr_expands_
15min_rate

CDH 5, CDH 6cluster, kafka,
rack

message.units.
expansions per
message.units.
singular.second

Number of times ISR for a
partition expanded: 1 Min Rate

kafka_isr_expands_
1min_rate

CDH 5, CDH 6cluster, kafka,
rack

message.units.
expansions per
message.units.
singular.second

Number of times ISR for a
partition expanded: 5 Min Rate

kafka_isr_expands_
5min_rate

CDH 5, CDH 6cluster, kafka,
rack

message.units.
expansions per
message.units.
singular.second

Number of times ISR for a
partition expanded: Avg Rate

kafka_isr_expands_avg_
rate

CDH 5, CDH 6cluster, kafka,
rack

message.units.
expansions per
second

Number of times ISR for a
partition expanded

kafka_isr_expands_rate

CDH 5, CDH 6cluster, kafka,
rack

message.units.
shrinks per
message.units.
singular.second

Number of times ISR for a
partition shrank: 15 Min Rate

kafka_isr_shrinks_
15min_rate

CDH 5, CDH 6cluster, kafka,
rack

message.units.
shrinks per
message.units.
singular.second

Number of times ISR for a
partition shrank: 1 Min Rate

kafka_isr_shrinks_
1min_rate

CDH 5, CDH 6cluster, kafka,
rack

message.units.
shrinks per
message.units.
singular.second

Number of times ISR for a
partition shrank: 5 Min Rate

kafka_isr_shrinks_
5min_rate

CDH 5, CDH 6cluster, kafka,
rack

message.units.
shrinks per
message.units.
singular.second

Number of times ISR for a
partition shrank: Avg Rate

kafka_isr_shrinks_avg_
rate

CDH 5, CDH 6cluster, kafka,
rack

message.units.
shrinks per
second

Number of times ISR for a
partition shrank

kafka_isr_shrinks_rate

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to JoinGroup requests: 75th
Percentile

kafka_join_group_
local_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to JoinGroup requests: 999th
Percentile

kafka_join_group_
local_time_999th_
percentile

124 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to JoinGroup requests: 99th
Percentile

kafka_join_group_
local_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to JoinGroup requests: Avg

kafka_join_group_
local_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to JoinGroup requests: Max

kafka_join_group_
local_time_max

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to JoinGroup requests: 50th
Percentile

kafka_join_group_
local_time_median

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to JoinGroup requests: Min

kafka_join_group_
local_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Local Time spent in responding
to JoinGroup requests: Samples

kafka_join_group_
local_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to JoinGroup requests: Standard
Deviation

kafka_join_group_
local_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to JoinGroup
requests: 75th Percentile

kafka_join_group_
remote_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to JoinGroup
requests: 999th Percentile

kafka_join_group_
remote_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to JoinGroup
requests: 99th Percentile

kafka_join_group_
remote_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to JoinGroup
requests: Avg

kafka_join_group_
remote_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to JoinGroup
requests: Max

kafka_join_group_
remote_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to JoinGroup
requests: 50th Percentile

kafka_join_group_
remote_time_median

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to JoinGroup
requests: Min

kafka_join_group_
remote_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Remote Time spent in
responding to JoinGroup
requests: Samples

kafka_join_group_
remote_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to JoinGroup
requests: Standard Deviation

kafka_join_group_
remote_time_stddev

Apache Kafka Guide | 125

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to JoinGroup
requests: 75th Percentile

kafka_join_group_
request_queue_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to JoinGroup
requests: 999th Percentile

kafka_join_group_
request_queue_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to JoinGroup
requests: 99th Percentile

kafka_join_group_
request_queue_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to JoinGroup
requests: Avg

kafka_join_group_
request_queue_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to JoinGroup
requests: Max

kafka_join_group_
request_queue_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to JoinGroup
requests: 50th Percentile

kafka_join_group_
request_queue_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to JoinGroup
requests: Min

kafka_join_group_
request_queue_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Request Queue Time spent in
responding to JoinGroup
requests: Samples

kafka_join_group_
request_queue_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to JoinGroup
requests: Standard Deviation

kafka_join_group_
request_queue_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of JoinGroup requests:
15 Min Rate

kafka_join_group_
requests_15min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of JoinGroup requests:
1 Min Rate

kafka_join_group_
requests_1min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of JoinGroup requests:
5 Min Rate

kafka_join_group_
requests_5min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of JoinGroup requests:
Avg Rate

kafka_join_group_
requests_avg_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Number of JoinGroup requestskafka_join_group_
requests_rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to JoinGroup
requests: 75th Percentile

kafka_join_group_
response_queue_time_
75th_percentile

126 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to JoinGroup
requests: 999th Percentile

kafka_join_group_
response_queue_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to JoinGroup
requests: 99th Percentile

kafka_join_group_
response_queue_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to JoinGroup
requests: Avg

kafka_join_group_
response_queue_time_
avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to JoinGroup
requests: Max

kafka_join_group_
response_queue_time_
max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to JoinGroup
requests: 50th Percentile

kafka_join_group_
response_queue_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to JoinGroup
requests: Min

kafka_join_group_
response_queue_time_
min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Queue Time spent in
responding to JoinGroup
requests: Samples

kafka_join_group_
response_queue_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to JoinGroup
requests: Standard Deviation

kafka_join_group_
response_queue_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to JoinGroup
requests: 75th Percentile

kafka_join_group_
response_send_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to JoinGroup
requests: 999th Percentile

kafka_join_group_
response_send_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to JoinGroup
requests: 99th Percentile

kafka_join_group_
response_send_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to JoinGroup
requests: Avg

kafka_join_group_
response_send_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to JoinGroup
requests: Max

kafka_join_group_
response_send_time_max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to JoinGroup
requests: 50th Percentile

kafka_join_group_
response_send_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to JoinGroup
requests: Min

kafka_join_group_
response_send_time_min

Apache Kafka Guide | 127

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Send Time spent in
responding to JoinGroup
requests: Samples

kafka_join_group_
response_send_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to JoinGroup
requests: Standard Deviation

kafka_join_group_
response_send_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to JoinGroup requests: 75th
Percentile

kafka_join_group_
total_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to JoinGroup requests: 999th
Percentile

kafka_join_group_
total_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to JoinGroup requests: 99th
Percentile

kafka_join_group_
total_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to JoinGroup requests: Avg

kafka_join_group_
total_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to JoinGroup requests: Max

kafka_join_group_
total_time_max

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to JoinGroup requests: 50th
Percentile

kafka_join_group_
total_time_median

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to JoinGroup requests: Min

kafka_join_group_
total_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Total Time spent in responding
to JoinGroup requests: Samples

kafka_join_group_
total_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to JoinGroup requests: Standard
Deviation

kafka_join_group_
total_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to LeaderAndIsr requests: 75th
Percentile

kafka_leader_and_isr_
local_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to LeaderAndIsr requests: 999th
Percentile

kafka_leader_and_isr_
local_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to LeaderAndIsr requests: 99th
Percentile

kafka_leader_and_isr_
local_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to LeaderAndIsr requests: Avg

kafka_leader_and_isr_
local_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to LeaderAndIsr requests: Max

kafka_leader_and_isr_
local_time_max

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to LeaderAndIsr requests: 50th
Percentile

kafka_leader_and_isr_
local_time_median

128 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to LeaderAndIsr requests: Min

kafka_leader_and_isr_
local_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Local Time spent in responding
to LeaderAndIsr requests:
Samples

kafka_leader_and_isr_
local_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to LeaderAndIsr requests:
Standard Deviation

kafka_leader_and_isr_
local_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to LeaderAndIsr
requests: 75th Percentile

kafka_leader_and_isr_
remote_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to LeaderAndIsr
requests: 999th Percentile

kafka_leader_and_isr_
remote_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to LeaderAndIsr
requests: 99th Percentile

kafka_leader_and_isr_
remote_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to LeaderAndIsr
requests: Avg

kafka_leader_and_isr_
remote_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to LeaderAndIsr
requests: Max

kafka_leader_and_isr_
remote_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to LeaderAndIsr
requests: 50th Percentile

kafka_leader_and_isr_
remote_time_median

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to LeaderAndIsr
requests: Min

kafka_leader_and_isr_
remote_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Remote Time spent in
responding to LeaderAndIsr
requests: Samples

kafka_leader_and_isr_
remote_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to LeaderAndIsr
requests: Standard Deviation

kafka_leader_and_isr_
remote_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to LeaderAndIsr
requests: 75th Percentile

kafka_leader_and_isr_
request_queue_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to LeaderAndIsr
requests: 999th Percentile

kafka_leader_and_isr_
request_queue_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to LeaderAndIsr
requests: 99th Percentile

kafka_leader_and_isr_
request_queue_time_
99th_percentile

Apache Kafka Guide | 129

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to LeaderAndIsr
requests: Avg

kafka_leader_and_isr_
request_queue_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to LeaderAndIsr
requests: Max

kafka_leader_and_isr_
request_queue_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to LeaderAndIsr
requests: 50th Percentile

kafka_leader_and_isr_
request_queue_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to LeaderAndIsr
requests: Min

kafka_leader_and_isr_
request_queue_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Request Queue Time spent in
responding to LeaderAndIsr
requests: Samples

kafka_leader_and_isr_
request_queue_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to LeaderAndIsr
requests: Standard Deviation

kafka_leader_and_isr_
request_queue_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of LeaderAndIsr
requests: 15 Min Rate

kafka_leader_and_isr_
requests_15min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of LeaderAndIsr
requests: 1 Min Rate

kafka_leader_and_isr_
requests_1min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of LeaderAndIsr
requests: 5 Min Rate

kafka_leader_and_isr_
requests_5min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of LeaderAndIsr
requests: Avg Rate

kafka_leader_and_isr_
requests_avg_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Number of LeaderAndIsr
requests

kafka_leader_and_isr_
requests_rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to LeaderAndIsr
requests: 75th Percentile

kafka_leader_and_isr_
response_queue_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to LeaderAndIsr
requests: 999th Percentile

kafka_leader_and_isr_
response_queue_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to LeaderAndIsr
requests: 99th Percentile

kafka_leader_and_isr_
response_queue_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to LeaderAndIsr
requests: Avg

kafka_leader_and_isr_
response_queue_time_
avg

130 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to LeaderAndIsr
requests: Max

kafka_leader_and_isr_
response_queue_time_
max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to LeaderAndIsr
requests: 50th Percentile

kafka_leader_and_isr_
response_queue_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to LeaderAndIsr
requests: Min

kafka_leader_and_isr_
response_queue_time_
min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Queue Time spent in
responding to LeaderAndIsr
requests: Samples

kafka_leader_and_isr_
response_queue_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to LeaderAndIsr
requests: Standard Deviation

kafka_leader_and_isr_
response_queue_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to LeaderAndIsr
requests: 75th Percentile

kafka_leader_and_isr_
response_send_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to LeaderAndIsr
requests: 999th Percentile

kafka_leader_and_isr_
response_send_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to LeaderAndIsr
requests: 99th Percentile

kafka_leader_and_isr_
response_send_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to LeaderAndIsr
requests: Avg

kafka_leader_and_isr_
response_send_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to LeaderAndIsr
requests: Max

kafka_leader_and_isr_
response_send_time_max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to LeaderAndIsr
requests: 50th Percentile

kafka_leader_and_isr_
response_send_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to LeaderAndIsr
requests: Min

kafka_leader_and_isr_
response_send_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Send Time spent in
responding to LeaderAndIsr
requests: Samples

kafka_leader_and_isr_
response_send_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to LeaderAndIsr
requests: Standard Deviation

kafka_leader_and_isr_
response_send_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to LeaderAndIsr requests: 75th
Percentile

kafka_leader_and_isr_
total_time_75th_
percentile

Apache Kafka Guide | 131

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to LeaderAndIsr requests: 999th
Percentile

kafka_leader_and_isr_
total_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to LeaderAndIsr requests: 99th
Percentile

kafka_leader_and_isr_
total_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to LeaderAndIsr requests: Avg

kafka_leader_and_isr_
total_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to LeaderAndIsr requests: Max

kafka_leader_and_isr_
total_time_max

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to LeaderAndIsr requests: 50th
Percentile

kafka_leader_and_isr_
total_time_median

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to LeaderAndIsr requests: Min

kafka_leader_and_isr_
total_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Total Time spent in responding
to LeaderAndIsr requests:
Samples

kafka_leader_and_isr_
total_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to LeaderAndIsr requests:
Standard Deviation

kafka_leader_and_isr_
total_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

message.units.
elections per
message.units.
singular.second

Leader elections: 15 Min Ratekafka_leader_election_
15min_rate

CDH 5, CDH 6cluster, kafka,
rack

message.units.
elections per
message.units.
singular.second

Leader elections: 1 Min Ratekafka_leader_election_
1min_rate

CDH 5, CDH 6cluster, kafka,
rack

message.units.
elections per
message.units.
singular.second

Leader elections: 5 Min Ratekafka_leader_election_
5min_rate

CDH 5, CDH 6cluster, kafka,
rack

msLeader elections: 75th Percentilekafka_leader_election_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLeader elections: 999th
Percentile

kafka_leader_election_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLeader elections: 99th Percentilekafka_leader_election_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLeader elections: Avgkafka_leader_election_
avg

CDH 5, CDH 6cluster, kafka,
rack

msLeader elections: Maxkafka_leader_election_
max

CDH 5, CDH 6cluster, kafka,
rack

msLeader elections: 50th Percentilekafka_leader_election_
median

132 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msLeader elections: Minkafka_leader_election_
min

CDH 5, CDH 6cluster, kafka,
rack

message.units.
elections per
second

Leader elections: Sampleskafka_leader_election_
rate

CDH 5, CDH 6cluster, kafka,
rack

msLeader elections: Standard
Deviation

kafka_leader_election_
stddev

CDH 5, CDH 6cluster, kafka,
rack

replicasNumber of leader replicas on
broker

kafka_leader_replicas

CDH 5, CDH 6cluster, kafka,
rack

message.units.
flushes per
message.units.
singular.second

Rate of flushing Kafka logs to
disk: 15 Min Rate

kafka_log_flush_15min_
rate

CDH 5, CDH 6cluster, kafka,
rack

message.units.
flushes per
message.units.
singular.second

Rate of flushing Kafka logs to
disk: 1 Min Rate

kafka_log_flush_1min_
rate

CDH 5, CDH 6cluster, kafka,
rack

message.units.
flushes per
message.units.
singular.second

Rate of flushing Kafka logs to
disk: 5 Min Rate

kafka_log_flush_5min_
rate

CDH 5, CDH 6cluster, kafka,
rack

msRate of flushing Kafka logs to
disk: 75th Percentile

kafka_log_flush_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRate of flushing Kafka logs to
disk: 999th Percentile

kafka_log_flush_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRate of flushing Kafka logs to
disk: 99th Percentile

kafka_log_flush_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRate of flushing Kafka logs to
disk: Avg

kafka_log_flush_avg

CDH 5, CDH 6cluster, kafka,
rack

msRate of flushing Kafka logs to
disk: Max

kafka_log_flush_max

CDH 5, CDH 6cluster, kafka,
rack

msRate of flushing Kafka logs to
disk: 50th Percentile

kafka_log_flush_median

CDH 5, CDH 6cluster, kafka,
rack

msRate of flushing Kafka logs to
disk: Min

kafka_log_flush_min

CDH 5, CDH 6cluster, kafka,
rack

message.units.
flushes per
second

Rate of flushing Kafka logs to
disk: Samples

kafka_log_flush_rate

CDH 5, CDH 6cluster, kafka,
rack

msRate of flushing Kafka logs to
disk: Standard Deviation

kafka_log_flush_stddev

CDH 5, CDH 6cluster, kafka,
rack

messagesMaximum replication lag on
broker, across all fetchers, topics
and partitions

kafka_max_replication_
lag

CDH 5, CDH 6cluster, kafka,
rack

bytesJVM heap committed memorykafka_memory_heap_
committed

Apache Kafka Guide | 133

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

bytesJVM heap initial memorykafka_memory_heap_init

CDH 5, CDH 6cluster, kafka,
rack

bytesJVM heap max used memorykafka_memory_heap_max

CDH 5, CDH 6cluster, kafka,
rack

bytesJVM heap used memorykafka_memory_heap_used

CDH 5, CDH 6cluster, kafka,
rack

bytesJVM heap and non-heap
committed memory

kafka_memory_total_
committed

CDH 5, CDH 6cluster, kafka,
rack

bytesJVM heap and non-heap initial
memory

kafka_memory_total_
init

CDH 5, CDH 6cluster, kafka,
rack

bytesJVM heap and non-heap max
initial memory

kafka_memory_total_max

CDH 5, CDH 6cluster, kafka,
rack

bytesJVM heap and non-heap used
memory

kafka_memory_total_
used

CDH 5, CDH 6cluster, kafka,
rack

messages per
message.units.
singular.second

Number of messages written to
topic on this broker: 15Min Rate

kafka_messages_
received_15min_rate

CDH 5, CDH 6cluster, kafka,
rack

messages per
message.units.
singular.second

Number of messages written to
topic on this broker: 1 Min Rate

kafka_messages_
received_1min_rate

CDH 5, CDH 6cluster, kafka,
rack

messages per
message.units.
singular.second

Number of messages written to
topic on this broker: 5 Min Rate

kafka_messages_
received_5min_rate

CDH 5, CDH 6cluster, kafka,
rack

messages per
message.units.
singular.second

Number of messages written to
topic on this broker: Avg Rate

kafka_messages_
received_avg_rate

CDH 5, CDH 6cluster, kafka,
rack

messages per
second

Number of messages written to
topic on this broker

kafka_messages_
received_rate

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Metadata requests: 75th
Percentile

kafka_metadata_local_
time_75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Metadata requests: 999th
Percentile

kafka_metadata_local_
time_999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Metadata requests: 99th
Percentile

kafka_metadata_local_
time_99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Metadata requests: Avg

kafka_metadata_local_
time_avg

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Metadata requests: Max

kafka_metadata_local_
time_max

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Metadata requests: 50th
Percentile

kafka_metadata_local_
time_median

134 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Metadata requests: Min

kafka_metadata_local_
time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Local Time spent in responding
to Metadata requests: Samples

kafka_metadata_local_
time_rate

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Metadata requests: Standard
Deviation

kafka_metadata_local_
time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Metadata
requests: 75th Percentile

kafka_metadata_remote_
time_75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Metadata
requests: 999th Percentile

kafka_metadata_remote_
time_999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Metadata
requests: 99th Percentile

kafka_metadata_remote_
time_99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Metadata
requests: Avg

kafka_metadata_remote_
time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Metadata
requests: Max

kafka_metadata_remote_
time_max

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Metadata
requests: 50th Percentile

kafka_metadata_remote_
time_median

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Metadata
requests: Min

kafka_metadata_remote_
time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Remote Time spent in
responding to Metadata
requests: Samples

kafka_metadata_remote_
time_rate

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Metadata
requests: Standard Deviation

kafka_metadata_remote_
time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Metadata
requests: 75th Percentile

kafka_metadata_
request_queue_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Metadata
requests: 999th Percentile

kafka_metadata_
request_queue_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Metadata
requests: 99th Percentile

kafka_metadata_
request_queue_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Metadata
requests: Avg

kafka_metadata_
request_queue_time_avg

Apache Kafka Guide | 135

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Metadata
requests: Max

kafka_metadata_
request_queue_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Metadata
requests: 50th Percentile

kafka_metadata_
request_queue_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Metadata
requests: Min

kafka_metadata_
request_queue_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Request Queue Time spent in
responding to Metadata
requests: Samples

kafka_metadata_
request_queue_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Metadata
requests: Standard Deviation

kafka_metadata_
request_queue_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of Metadata requests:
15 Min Rate

kafka_metadata_
requests_15min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of Metadata requests:
1 Min Rate

kafka_metadata_
requests_1min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of Metadata requests:
5 Min Rate

kafka_metadata_
requests_5min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of Metadata requests:
Avg Rate

kafka_metadata_
requests_avg_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Number of Metadata requestskafka_metadata_
requests_rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Metadata
requests: 75th Percentile

kafka_metadata_
response_queue_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Metadata
requests: 999th Percentile

kafka_metadata_
response_queue_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Metadata
requests: 99th Percentile

kafka_metadata_
response_queue_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Metadata
requests: Avg

kafka_metadata_
response_queue_time_
avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Metadata
requests: Max

kafka_metadata_
response_queue_time_
max

136 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Metadata
requests: 50th Percentile

kafka_metadata_
response_queue_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Metadata
requests: Min

kafka_metadata_
response_queue_time_
min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Queue Time spent in
responding to Metadata
requests: Samples

kafka_metadata_
response_queue_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Metadata
requests: Standard Deviation

kafka_metadata_
response_queue_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Metadata
requests: 75th Percentile

kafka_metadata_
response_send_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Metadata
requests: 999th Percentile

kafka_metadata_
response_send_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Metadata
requests: 99th Percentile

kafka_metadata_
response_send_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Metadata
requests: Avg

kafka_metadata_
response_send_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Metadata
requests: Max

kafka_metadata_
response_send_time_max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Metadata
requests: 50th Percentile

kafka_metadata_
response_send_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Metadata
requests: Min

kafka_metadata_
response_send_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Send Time spent in
responding to Metadata
requests: Samples

kafka_metadata_
response_send_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Metadata
requests: Standard Deviation

kafka_metadata_
response_send_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Metadata requests: 75th
Percentile

kafka_metadata_total_
time_75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Metadata requests: 999th
Percentile

kafka_metadata_total_
time_999th_percentile

Apache Kafka Guide | 137

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Metadata requests: 99th
Percentile

kafka_metadata_total_
time_99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Metadata requests: Avg

kafka_metadata_total_
time_avg

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Metadata requests: Max

kafka_metadata_total_
time_max

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Metadata requests: 50th
Percentile

kafka_metadata_total_
time_median

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Metadata requests: Min

kafka_metadata_total_
time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Total Time spent in responding
to Metadata requests: Samples

kafka_metadata_total_
time_rate

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Metadata requests: Standard
Deviation

kafka_metadata_total_
time_stddev

CDH 5, CDH 6cluster, kafka,
rack

message.units.
fetch_requests
per message.

Minimumreplication rate, across
all fetchers, topics and partitions.
Measured in average fetch

kafka_min_replication_
rate

units.singular.
second

requests per sec in the last
minute

CDH 5, CDH 6cluster, kafka,
rack

message.units.
percent_idle
per message.

The average free capacity of the
network processors: 15Min Rate

kafka_network_
processor_avg_idle_
15min_rate

units.singular.
nanoseconds

CDH 5, CDH 6cluster, kafka,
rack

message.units.
percent_idle
per message.

The average free capacity of the
network processors: 1 Min Rate

kafka_network_
processor_avg_idle_
1min_rate

units.singular.
nanoseconds

CDH 5, CDH 6cluster, kafka,
rack

message.units.
percent_idle
per message.

The average free capacity of the
network processors: 5 Min Rate

kafka_network_
processor_avg_idle_
5min_rate

units.singular.
nanoseconds

CDH 5, CDH 6cluster, kafka,
rack

message.units.
percent_idle
per message.

The average free capacity of the
network processors: Avg Rate

kafka_network_
processor_avg_idle_
avg_rate

units.singular.
nanoseconds

CDH 5, CDH 6cluster, kafka,
rack

message.units.
percent_idle
per second

The average free capacity of the
network processors

kafka_network_
processor_avg_idle_
rate

CDH 5, CDH 6cluster, kafka,
rack

partitionsNumber of unavailable partitionskafka_offline_
partitions

138 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to OffsetCommit requests: 75th
Percentile

kafka_offset_commit_
local_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
toOffsetCommit requests: 999th
Percentile

kafka_offset_commit_
local_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to OffsetCommit requests: 99th
Percentile

kafka_offset_commit_
local_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to OffsetCommit requests: Avg

kafka_offset_commit_
local_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to OffsetCommit requests: Max

kafka_offset_commit_
local_time_max

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to OffsetCommit requests: 50th
Percentile

kafka_offset_commit_
local_time_median

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to OffsetCommit requests: Min

kafka_offset_commit_
local_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Local Time spent in responding
to OffsetCommit requests:
Samples

kafka_offset_commit_
local_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to OffsetCommit requests:
Standard Deviation

kafka_offset_commit_
local_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to OffsetCommit
requests: 75th Percentile

kafka_offset_commit_
remote_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to OffsetCommit
requests: 999th Percentile

kafka_offset_commit_
remote_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to OffsetCommit
requests: 99th Percentile

kafka_offset_commit_
remote_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to OffsetCommit
requests: Avg

kafka_offset_commit_
remote_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to OffsetCommit
requests: Max

kafka_offset_commit_
remote_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to OffsetCommit
requests: 50th Percentile

kafka_offset_commit_
remote_time_median

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to OffsetCommit
requests: Min

kafka_offset_commit_
remote_time_min

Apache Kafka Guide | 139

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Remote Time spent in
responding to OffsetCommit
requests: Samples

kafka_offset_commit_
remote_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to OffsetCommit
requests: Standard Deviation

kafka_offset_commit_
remote_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to OffsetCommit
requests: 75th Percentile

kafka_offset_commit_
request_queue_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to OffsetCommit
requests: 999th Percentile

kafka_offset_commit_
request_queue_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to OffsetCommit
requests: 99th Percentile

kafka_offset_commit_
request_queue_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to OffsetCommit
requests: Avg

kafka_offset_commit_
request_queue_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to OffsetCommit
requests: Max

kafka_offset_commit_
request_queue_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to OffsetCommit
requests: 50th Percentile

kafka_offset_commit_
request_queue_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to OffsetCommit
requests: Min

kafka_offset_commit_
request_queue_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Request Queue Time spent in
responding to OffsetCommit
requests: Samples

kafka_offset_commit_
request_queue_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to OffsetCommit
requests: Standard Deviation

kafka_offset_commit_
request_queue_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of OffsetCommit
requests: 15 Min Rate

kafka_offset_commit_
requests_15min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of OffsetCommit
requests: 1 Min Rate

kafka_offset_commit_
requests_1min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of OffsetCommit
requests: 5 Min Rate

kafka_offset_commit_
requests_5min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of OffsetCommit
requests: Avg Rate

kafka_offset_commit_
requests_avg_rate

140 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Number of OffsetCommit
requests

kafka_offset_commit_
requests_rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to OffsetCommit
requests: 75th Percentile

kafka_offset_commit_
response_queue_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to OffsetCommit
requests: 999th Percentile

kafka_offset_commit_
response_queue_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to OffsetCommit
requests: 99th Percentile

kafka_offset_commit_
response_queue_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to OffsetCommit
requests: Avg

kafka_offset_commit_
response_queue_time_
avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to OffsetCommit
requests: Max

kafka_offset_commit_
response_queue_time_
max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to OffsetCommit
requests: 50th Percentile

kafka_offset_commit_
response_queue_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to OffsetCommit
requests: Min

kafka_offset_commit_
response_queue_time_
min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Queue Time spent in
responding to OffsetCommit
requests: Samples

kafka_offset_commit_
response_queue_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to OffsetCommit
requests: Standard Deviation

kafka_offset_commit_
response_queue_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to OffsetCommit
requests: 75th Percentile

kafka_offset_commit_
response_send_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to OffsetCommit
requests: 999th Percentile

kafka_offset_commit_
response_send_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to OffsetCommit
requests: 99th Percentile

kafka_offset_commit_
response_send_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to OffsetCommit
requests: Avg

kafka_offset_commit_
response_send_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to OffsetCommit
requests: Max

kafka_offset_commit_
response_send_time_max

Apache Kafka Guide | 141

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to OffsetCommit
requests: 50th Percentile

kafka_offset_commit_
response_send_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to OffsetCommit
requests: Min

kafka_offset_commit_
response_send_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Send Time spent in
responding to OffsetCommit
requests: Samples

kafka_offset_commit_
response_send_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to OffsetCommit
requests: Standard Deviation

kafka_offset_commit_
response_send_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to OffsetCommit requests: 75th
Percentile

kafka_offset_commit_
total_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
toOffsetCommit requests: 999th
Percentile

kafka_offset_commit_
total_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to OffsetCommit requests: 99th
Percentile

kafka_offset_commit_
total_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to OffsetCommit requests: Avg

kafka_offset_commit_
total_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to OffsetCommit requests: Max

kafka_offset_commit_
total_time_max

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to OffsetCommit requests: 50th
Percentile

kafka_offset_commit_
total_time_median

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to OffsetCommit requests: Min

kafka_offset_commit_
total_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Total Time spent in responding
to OffsetCommit requests:
Samples

kafka_offset_commit_
total_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to OffsetCommit requests:
Standard Deviation

kafka_offset_commit_
total_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to OffsetFetch requests: 75th
Percentile

kafka_offset_fetch_
local_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to OffsetFetch requests: 999th
Percentile

kafka_offset_fetch_
local_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to OffsetFetch requests: 99th
Percentile

kafka_offset_fetch_
local_time_99th_
percentile

142 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to OffsetFetch requests: Avg

kafka_offset_fetch_
local_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to OffsetFetch requests: Max

kafka_offset_fetch_
local_time_max

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to OffsetFetch requests: 50th
Percentile

kafka_offset_fetch_
local_time_median

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to OffsetFetch requests: Min

kafka_offset_fetch_
local_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Local Time spent in responding
toOffsetFetch requests: Samples

kafka_offset_fetch_
local_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to OffsetFetch requests:
Standard Deviation

kafka_offset_fetch_
local_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to OffsetFetch
requests: 75th Percentile

kafka_offset_fetch_
remote_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to OffsetFetch
requests: 999th Percentile

kafka_offset_fetch_
remote_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to OffsetFetch
requests: 99th Percentile

kafka_offset_fetch_
remote_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to OffsetFetch
requests: Avg

kafka_offset_fetch_
remote_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to OffsetFetch
requests: Max

kafka_offset_fetch_
remote_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to OffsetFetch
requests: 50th Percentile

kafka_offset_fetch_
remote_time_median

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to OffsetFetch
requests: Min

kafka_offset_fetch_
remote_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Remote Time spent in
responding to OffsetFetch
requests: Samples

kafka_offset_fetch_
remote_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to OffsetFetch
requests: Standard Deviation

kafka_offset_fetch_
remote_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to OffsetFetch
requests: 75th Percentile

kafka_offset_fetch_
request_queue_time_
75th_percentile

Apache Kafka Guide | 143

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to OffsetFetch
requests: 999th Percentile

kafka_offset_fetch_
request_queue_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to OffsetFetch
requests: 99th Percentile

kafka_offset_fetch_
request_queue_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to OffsetFetch
requests: Avg

kafka_offset_fetch_
request_queue_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to OffsetFetch
requests: Max

kafka_offset_fetch_
request_queue_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to OffsetFetch
requests: 50th Percentile

kafka_offset_fetch_
request_queue_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to OffsetFetch
requests: Min

kafka_offset_fetch_
request_queue_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Request Queue Time spent in
responding to OffsetFetch
requests: Samples

kafka_offset_fetch_
request_queue_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to OffsetFetch
requests: Standard Deviation

kafka_offset_fetch_
request_queue_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number ofOffsetFetch requests:
15 Min Rate

kafka_offset_fetch_
requests_15min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number ofOffsetFetch requests:
1 Min Rate

kafka_offset_fetch_
requests_1min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number ofOffsetFetch requests:
5 Min Rate

kafka_offset_fetch_
requests_5min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number ofOffsetFetch requests:
Avg Rate

kafka_offset_fetch_
requests_avg_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Number of OffsetFetch requestskafka_offset_fetch_
requests_rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to OffsetFetch
requests: 75th Percentile

kafka_offset_fetch_
response_queue_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to OffsetFetch
requests: 999th Percentile

kafka_offset_fetch_
response_queue_time_
999th_percentile

144 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to OffsetFetch
requests: 99th Percentile

kafka_offset_fetch_
response_queue_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to OffsetFetch
requests: Avg

kafka_offset_fetch_
response_queue_time_
avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to OffsetFetch
requests: Max

kafka_offset_fetch_
response_queue_time_
max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to OffsetFetch
requests: 50th Percentile

kafka_offset_fetch_
response_queue_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to OffsetFetch
requests: Min

kafka_offset_fetch_
response_queue_time_
min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Queue Time spent in
responding to OffsetFetch
requests: Samples

kafka_offset_fetch_
response_queue_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to OffsetFetch
requests: Standard Deviation

kafka_offset_fetch_
response_queue_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to OffsetFetch
requests: 75th Percentile

kafka_offset_fetch_
response_send_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to OffsetFetch
requests: 999th Percentile

kafka_offset_fetch_
response_send_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to OffsetFetch
requests: 99th Percentile

kafka_offset_fetch_
response_send_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to OffsetFetch
requests: Avg

kafka_offset_fetch_
response_send_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to OffsetFetch
requests: Max

kafka_offset_fetch_
response_send_time_max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to OffsetFetch
requests: 50th Percentile

kafka_offset_fetch_
response_send_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to OffsetFetch
requests: Min

kafka_offset_fetch_
response_send_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Send Time spent in
responding to OffsetFetch
requests: Samples

kafka_offset_fetch_
response_send_time_
rate

Apache Kafka Guide | 145

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to OffsetFetch
requests: Standard Deviation

kafka_offset_fetch_
response_send_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to OffsetFetch requests: 75th
Percentile

kafka_offset_fetch_
total_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to OffsetFetch requests: 999th
Percentile

kafka_offset_fetch_
total_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to OffsetFetch requests: 99th
Percentile

kafka_offset_fetch_
total_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to OffsetFetch requests: Avg

kafka_offset_fetch_
total_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to OffsetFetch requests: Max

kafka_offset_fetch_
total_time_max

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to OffsetFetch requests: 50th
Percentile

kafka_offset_fetch_
total_time_median

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to OffsetFetch requests: Min

kafka_offset_fetch_
total_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Total Time spent in responding
toOffsetFetch requests: Samples

kafka_offset_fetch_
total_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to OffsetFetch requests:
Standard Deviation

kafka_offset_fetch_
total_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

groupsThe size of the offsets cachekafka_offsets

CDH 5, CDH 6cluster, kafka,
rack

groupsThe number of consumer groups
in the offsets cache

kafka_offsets_groups

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Offsets requests: 75th
Percentile

kafka_offsets_local_
time_75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Offsets requests: 999th
Percentile

kafka_offsets_local_
time_999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Offsets requests: 99th
Percentile

kafka_offsets_local_
time_99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Offsets requests: Avg

kafka_offsets_local_
time_avg

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Offsets requests: Max

kafka_offsets_local_
time_max

146 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Offsets requests: 50th
Percentile

kafka_offsets_local_
time_median

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Offsets requests: Min

kafka_offsets_local_
time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Local Time spent in responding
to Offsets requests: Samples

kafka_offsets_local_
time_rate

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Offsets requests: Standard
Deviation

kafka_offsets_local_
time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Offsets requests:
75th Percentile

kafka_offsets_remote_
time_75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Offsets requests:
999th Percentile

kafka_offsets_remote_
time_999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Offsets requests:
99th Percentile

kafka_offsets_remote_
time_99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Offsets requests:
Avg

kafka_offsets_remote_
time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Offsets requests:
Max

kafka_offsets_remote_
time_max

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Offsets requests:
50th Percentile

kafka_offsets_remote_
time_median

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Offsets requests:
Min

kafka_offsets_remote_
time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Remote Time spent in
responding to Offsets requests:
Samples

kafka_offsets_remote_
time_rate

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Offsets requests:
Standard Deviation

kafka_offsets_remote_
time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Offsets requests:
75th Percentile

kafka_offsets_request_
queue_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Offsets requests:
999th Percentile

kafka_offsets_request_
queue_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Offsets requests:
99th Percentile

kafka_offsets_request_
queue_time_99th_
percentile

Apache Kafka Guide | 147

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Offsets requests:
Avg

kafka_offsets_request_
queue_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Offsets requests:
Max

kafka_offsets_request_
queue_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Offsets requests:
50th Percentile

kafka_offsets_request_
queue_time_median

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Offsets requests:
Min

kafka_offsets_request_
queue_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Request Queue Time spent in
responding to Offsets requests:
Samples

kafka_offsets_request_
queue_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Offsets requests:
Standard Deviation

kafka_offsets_request_
queue_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of Offsets requests: 15
Min Rate

kafka_offsets_
requests_15min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of Offsets requests: 1
Min Rate

kafka_offsets_
requests_1min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of Offsets requests: 5
Min Rate

kafka_offsets_
requests_5min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of Offsets requests: Avg
Rate

kafka_offsets_
requests_avg_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Number of Offsets requestskafka_offsets_
requests_rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Offsets requests:
75th Percentile

kafka_offsets_
response_queue_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Offsets requests:
999th Percentile

kafka_offsets_
response_queue_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Offsets requests:
99th Percentile

kafka_offsets_
response_queue_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Offsets requests:
Avg

kafka_offsets_
response_queue_time_
avg

148 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Offsets requests:
Max

kafka_offsets_
response_queue_time_
max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Offsets requests:
50th Percentile

kafka_offsets_
response_queue_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Offsets requests:
Min

kafka_offsets_
response_queue_time_
min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Queue Time spent in
responding to Offsets requests:
Samples

kafka_offsets_
response_queue_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Offsets requests:
Standard Deviation

kafka_offsets_
response_queue_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Offsets requests:
75th Percentile

kafka_offsets_
response_send_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Offsets requests:
999th Percentile

kafka_offsets_
response_send_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Offsets requests:
99th Percentile

kafka_offsets_
response_send_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Offsets requests:
Avg

kafka_offsets_
response_send_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Offsets requests:
Max

kafka_offsets_
response_send_time_max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Offsets requests:
50th Percentile

kafka_offsets_
response_send_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Offsets requests:
Min

kafka_offsets_
response_send_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Send Time spent in
responding to Offsets requests:
Samples

kafka_offsets_
response_send_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Offsets requests:
Standard Deviation

kafka_offsets_
response_send_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Offsets requests: 75th
Percentile

kafka_offsets_total_
time_75th_percentile

Apache Kafka Guide | 149

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Offsets requests: 999th
Percentile

kafka_offsets_total_
time_999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Offsets requests: 99th
Percentile

kafka_offsets_total_
time_99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Offsets requests: Avg

kafka_offsets_total_
time_avg

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Offsets requests: Max

kafka_offsets_total_
time_max

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Offsets requests: 50th
Percentile

kafka_offsets_total_
time_median

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Offsets requests: Min

kafka_offsets_total_
time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Total Time spent in responding
to Offsets requests: Samples

kafka_offsets_total_
time_rate

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Offsets requests: Standard
Deviation

kafka_offsets_total_
time_stddev

CDH 5, CDH 6cluster, kafka,
rack

partitionsNumber of partitions (lead or
follower replicas) on broker

kafka_partitions

CDH 5, CDH 6cluster, kafka,
rack

partitionsNumber of partitions where the
lead replica is not the preferred
replica

kafka_preferred_
replica_imbalance

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Produce requests: 75th
Percentile

kafka_produce_local_
time_75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Produce requests: 999th
Percentile

kafka_produce_local_
time_999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Produce requests: 99th
Percentile

kafka_produce_local_
time_99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Produce requests: Avg

kafka_produce_local_
time_avg

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Produce requests: Max

kafka_produce_local_
time_max

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Produce requests: 50th
Percentile

kafka_produce_local_
time_median

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Produce requests: Min

kafka_produce_local_
time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Local Time spent in responding
to Produce requests: Samples

kafka_produce_local_
time_rate

150 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to Produce requests: Standard
Deviation

kafka_produce_local_
time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Produce requests:
75th Percentile

kafka_produce_remote_
time_75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Produce requests:
999th Percentile

kafka_produce_remote_
time_999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Produce requests:
99th Percentile

kafka_produce_remote_
time_99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Produce requests:
Avg

kafka_produce_remote_
time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Produce requests:
Max

kafka_produce_remote_
time_max

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Produce requests:
50th Percentile

kafka_produce_remote_
time_median

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Produce requests:
Min

kafka_produce_remote_
time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Remote Time spent in
responding to Produce requests:
Samples

kafka_produce_remote_
time_rate

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to Produce requests:
Standard Deviation

kafka_produce_remote_
time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Produce requests:
75th Percentile

kafka_produce_request_
queue_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Produce requests:
999th Percentile

kafka_produce_request_
queue_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Produce requests:
99th Percentile

kafka_produce_request_
queue_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Produce requests:
Avg

kafka_produce_request_
queue_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Produce requests:
Max

kafka_produce_request_
queue_time_max

Apache Kafka Guide | 151

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Produce requests:
50th Percentile

kafka_produce_request_
queue_time_median

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Produce requests:
Min

kafka_produce_request_
queue_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Request Queue Time spent in
responding to Produce requests:
Samples

kafka_produce_request_
queue_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to Produce requests:
Standard Deviation

kafka_produce_request_
queue_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of Produce requests: 15
Min Rate

kafka_produce_
requests_15min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of Produce requests: 1
Min Rate

kafka_produce_
requests_1min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of Produce requests: 5
Min Rate

kafka_produce_
requests_5min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of Produce requests:
Avg Rate

kafka_produce_
requests_avg_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Number of Produce requestskafka_produce_
requests_rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Produce requests:
75th Percentile

kafka_produce_
response_queue_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Produce requests:
999th Percentile

kafka_produce_
response_queue_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Produce requests:
99th Percentile

kafka_produce_
response_queue_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Produce requests:
Avg

kafka_produce_
response_queue_time_
avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Produce requests:
Max

kafka_produce_
response_queue_time_
max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Produce requests:
50th Percentile

kafka_produce_
response_queue_time_
median

152 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Produce requests:
Min

kafka_produce_
response_queue_time_
min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Queue Time spent in
responding to Produce requests:
Samples

kafka_produce_
response_queue_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to Produce requests:
Standard Deviation

kafka_produce_
response_queue_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Produce requests:
75th Percentile

kafka_produce_
response_send_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Produce requests:
999th Percentile

kafka_produce_
response_send_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Produce requests:
99th Percentile

kafka_produce_
response_send_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Produce requests:
Avg

kafka_produce_
response_send_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Produce requests:
Max

kafka_produce_
response_send_time_max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Produce requests:
50th Percentile

kafka_produce_
response_send_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Produce requests:
Min

kafka_produce_
response_send_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Send Time spent in
responding to Produce requests:
Samples

kafka_produce_
response_send_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to Produce requests:
Standard Deviation

kafka_produce_
response_send_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Produce requests: 75th
Percentile

kafka_produce_total_
time_75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Produce requests: 999th
Percentile

kafka_produce_total_
time_999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Produce requests: 99th
Percentile

kafka_produce_total_
time_99th_percentile

Apache Kafka Guide | 153

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Produce requests: Avg

kafka_produce_total_
time_avg

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Produce requests: Max

kafka_produce_total_
time_max

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Produce requests: 50th
Percentile

kafka_produce_total_
time_median

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Produce requests: Min

kafka_produce_total_
time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Total Time spent in responding
to Produce requests: Samples

kafka_produce_total_
time_rate

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to Produce requests: Standard
Deviation

kafka_produce_total_
time_stddev

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of expired delayed
producer requests: 15 Min Rate

kafka_producer_
expires_15min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of expired delayed
producer requests: 1 Min Rate

kafka_producer_
expires_1min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of expired delayed
producer requests: 5 Min Rate

kafka_producer_
expires_5min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of expired delayed
producer requests: Avg Rate

kafka_producer_
expires_avg_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Number of expired delayed
producer requests

kafka_producer_
expires_rate

CDH 5, CDH 6cluster, kafka,
rack

requestsNumber of requests delayed in
the producer purgatory

kafka_producer_
purgatory_delayed_
requests

CDH 5, CDH 6cluster, kafka,
rack

requestsRequestswaiting in the producer
purgatory. This should be
non-zero when acks = -1 is used
in producers

kafka_producer_
purgatory_size

CDH 5, CDH 6cluster, kafka,
rack

message.units.
message_batches
per message.

Numberofmessagebatches sent
by producers that the broker
rejected for this topic: 15 Min
Rate

kafka_rejected_
message_batches_15min_
rate

units.singular.
second

CDH 5, CDH 6cluster, kafka,
rack

message.units.
message_
batches per

Numberofmessagebatches sent
by producers that the broker
rejected for this topic: 1 Min
Rate

kafka_rejected_
message_batches_1min_
rate

message.units.
singular.second

154 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

message.units.
message_
batches per

Numberofmessagebatches sent
by producers that the broker
rejected for this topic: 5 Min
Rate

kafka_rejected_
message_batches_5min_
rate

message.units.
singular.second

CDH 5, CDH 6cluster, kafka,
rack

message.units.
message_
batches per

Numberofmessagebatches sent
by producers that the broker
rejected for this topic: Avg Rate

kafka_rejected_
message_batches_avg_
rate

message.units.
singular.second

CDH 5, CDH 6cluster, kafka,
rack

message.units.
message_
batches per
second

Numberofmessagebatches sent
by producers that the broker
rejected for this topic

kafka_rejected_
message_batches_rate

CDH 5, CDH 6cluster, kafka,
rack

message.units.
percent_idle
per message.

The average free capacity of the
request handler: 15 Min Rate

kafka_request_handler_
avg_idle_15min_rate

units.singular.
nanoseconds

CDH 5, CDH 6cluster, kafka,
rack

message.units.
percent_idle
per message.

The average free capacity of the
request handler: 1 Min Rate

kafka_request_handler_
avg_idle_1min_rate

units.singular.
nanoseconds

CDH 5, CDH 6cluster, kafka,
rack

message.units.
percent_idle
per message.

The average free capacity of the
request handler: 5 Min Rate

kafka_request_handler_
avg_idle_5min_rate

units.singular.
nanoseconds

CDH 5, CDH 6cluster, kafka,
rack

message.units.
percent_idle
per message.

The average free capacity of the
request handler: Avg Rate

kafka_request_handler_
avg_idle_avg_rate

units.singular.
nanoseconds

CDH 5, CDH 6cluster, kafka,
rack

message.units.
percent_idle
per second

The average free capacity of the
request handler

kafka_request_handler_
avg_idle_rate

CDH 5, CDH 6cluster, kafka,
rack

requestsRequest Queue Sizekafka_request_queue_
size

CDH 5, CDH 6cluster, kafka,
rack

message.units.
responses

Response Queue Sizekafka_response_queue_
size

CDH 5, CDH 6cluster, kafka,
rack

message.units.
responses

The number of responses being
sent by the network processors

kafka_responses_being_
sent

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to StopReplica requests: 75th
Percentile

kafka_stop_replica_
local_time_75th_
percentile

Apache Kafka Guide | 155

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to StopReplica requests: 999th
Percentile

kafka_stop_replica_
local_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to StopReplica requests: 99th
Percentile

kafka_stop_replica_
local_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to StopReplica requests: Avg

kafka_stop_replica_
local_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to StopReplica requests: Max

kafka_stop_replica_
local_time_max

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to StopReplica requests: 50th
Percentile

kafka_stop_replica_
local_time_median

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to StopReplica requests: Min

kafka_stop_replica_
local_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Local Time spent in responding
to StopReplica requests: Samples

kafka_stop_replica_
local_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to StopReplica requests:
Standard Deviation

kafka_stop_replica_
local_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to StopReplica
requests: 75th Percentile

kafka_stop_replica_
remote_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to StopReplica
requests: 999th Percentile

kafka_stop_replica_
remote_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to StopReplica
requests: 99th Percentile

kafka_stop_replica_
remote_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to StopReplica
requests: Avg

kafka_stop_replica_
remote_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to StopReplica
requests: Max

kafka_stop_replica_
remote_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to StopReplica
requests: 50th Percentile

kafka_stop_replica_
remote_time_median

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to StopReplica
requests: Min

kafka_stop_replica_
remote_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Remote Time spent in
responding to StopReplica
requests: Samples

kafka_stop_replica_
remote_time_rate

156 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to StopReplica
requests: Standard Deviation

kafka_stop_replica_
remote_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to StopReplica
requests: 75th Percentile

kafka_stop_replica_
request_queue_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to StopReplica
requests: 999th Percentile

kafka_stop_replica_
request_queue_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to StopReplica
requests: 99th Percentile

kafka_stop_replica_
request_queue_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to StopReplica
requests: Avg

kafka_stop_replica_
request_queue_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to StopReplica
requests: Max

kafka_stop_replica_
request_queue_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to StopReplica
requests: 50th Percentile

kafka_stop_replica_
request_queue_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to StopReplica
requests: Min

kafka_stop_replica_
request_queue_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Request Queue Time spent in
responding to StopReplica
requests: Samples

kafka_stop_replica_
request_queue_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to StopReplica
requests: Standard Deviation

kafka_stop_replica_
request_queue_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of StopReplica requests:
15 Min Rate

kafka_stop_replica_
requests_15min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of StopReplica requests:
1 Min Rate

kafka_stop_replica_
requests_1min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of StopReplica requests:
5 Min Rate

kafka_stop_replica_
requests_5min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of StopReplica requests:
Avg Rate

kafka_stop_replica_
requests_avg_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Number of StopReplica requestskafka_stop_replica_
requests_rate

Apache Kafka Guide | 157

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to StopReplica
requests: 75th Percentile

kafka_stop_replica_
response_queue_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to StopReplica
requests: 999th Percentile

kafka_stop_replica_
response_queue_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to StopReplica
requests: 99th Percentile

kafka_stop_replica_
response_queue_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to StopReplica
requests: Avg

kafka_stop_replica_
response_queue_time_
avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to StopReplica
requests: Max

kafka_stop_replica_
response_queue_time_
max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to StopReplica
requests: 50th Percentile

kafka_stop_replica_
response_queue_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to StopReplica
requests: Min

kafka_stop_replica_
response_queue_time_
min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Queue Time spent in
responding to StopReplica
requests: Samples

kafka_stop_replica_
response_queue_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to StopReplica
requests: Standard Deviation

kafka_stop_replica_
response_queue_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to StopReplica
requests: 75th Percentile

kafka_stop_replica_
response_send_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to StopReplica
requests: 999th Percentile

kafka_stop_replica_
response_send_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to StopReplica
requests: 99th Percentile

kafka_stop_replica_
response_send_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to StopReplica
requests: Avg

kafka_stop_replica_
response_send_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to StopReplica
requests: Max

kafka_stop_replica_
response_send_time_max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to StopReplica
requests: 50th Percentile

kafka_stop_replica_
response_send_time_
median

158 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to StopReplica
requests: Min

kafka_stop_replica_
response_send_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Send Time spent in
responding to StopReplica
requests: Samples

kafka_stop_replica_
response_send_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to StopReplica
requests: Standard Deviation

kafka_stop_replica_
response_send_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to StopReplica requests: 75th
Percentile

kafka_stop_replica_
total_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to StopReplica requests: 999th
Percentile

kafka_stop_replica_
total_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to StopReplica requests: 99th
Percentile

kafka_stop_replica_
total_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to StopReplica requests: Avg

kafka_stop_replica_
total_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to StopReplica requests: Max

kafka_stop_replica_
total_time_max

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to StopReplica requests: 50th
Percentile

kafka_stop_replica_
total_time_median

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to StopReplica requests: Min

kafka_stop_replica_
total_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Total Time spent in responding
to StopReplica requests: Samples

kafka_stop_replica_
total_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to StopReplica requests:
Standard Deviation

kafka_stop_replica_
total_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

threadsJVM daemon and non-daemon
thread count

kafka_thread_count

CDH 5, CDH 6cluster, kafka,
rack

message.units.
elections per
message.units.
singular.second

Unclean leader elections.
Cloudera recommends disabling
unclean leader elections, to
avoid potential data loss, so this
should be 0: 15 Min Rate

kafka_unclean_leader_
elections_15min_rate

CDH 5, CDH 6cluster, kafka,
rack

message.units.
elections per
message.units.
singular.second

Unclean leader elections.
Cloudera recommends disabling
unclean leader elections, to
avoid potential data loss, so this
should be 0: 1 Min Rate

kafka_unclean_leader_
elections_1min_rate

Apache Kafka Guide | 159

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

message.units.
elections per
message.units.
singular.second

Unclean leader elections.
Cloudera recommends disabling
unclean leader elections, to
avoid potential data loss, so this
should be 0: 5 Min Rate

kafka_unclean_leader_
elections_5min_rate

CDH 5, CDH 6cluster, kafka,
rack

message.units.
elections per
message.units.
singular.second

Unclean leader elections.
Cloudera recommends disabling
unclean leader elections, to
avoid potential data loss, so this
should be 0: Avg Rate

kafka_unclean_leader_
elections_avg_rate

CDH 5, CDH 6cluster, kafka,
rack

message.units.
elections per
second

Unclean leader elections.
Cloudera recommends disabling
unclean leader elections, to
avoid potential data loss, so this
should be 0

kafka_unclean_leader_
elections_rate

CDH 5, CDH 6cluster, kafka,
rack

partitionsNumber of partitions with
unavailable replicas

kafka_under_
replicated_partitions

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to UpdateMetadata requests:
75th Percentile

kafka_update_metadata_
local_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to UpdateMetadata requests:
999th Percentile

kafka_update_metadata_
local_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to UpdateMetadata requests:
99th Percentile

kafka_update_metadata_
local_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to UpdateMetadata requests:
Avg

kafka_update_metadata_
local_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to UpdateMetadata requests:
Max

kafka_update_metadata_
local_time_max

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to UpdateMetadata requests:
50th Percentile

kafka_update_metadata_
local_time_median

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to UpdateMetadata requests:
Min

kafka_update_metadata_
local_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Local Time spent in responding
to UpdateMetadata requests:
Samples

kafka_update_metadata_
local_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msLocal Time spent in responding
to UpdateMetadata requests:
Standard Deviation

kafka_update_metadata_
local_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to UpdateMetadata
requests: 75th Percentile

kafka_update_metadata_
remote_time_75th_
percentile

160 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to UpdateMetadata
requests: 999th Percentile

kafka_update_metadata_
remote_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to UpdateMetadata
requests: 99th Percentile

kafka_update_metadata_
remote_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to UpdateMetadata
requests: Avg

kafka_update_metadata_
remote_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to UpdateMetadata
requests: Max

kafka_update_metadata_
remote_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to UpdateMetadata
requests: 50th Percentile

kafka_update_metadata_
remote_time_median

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to UpdateMetadata
requests: Min

kafka_update_metadata_
remote_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Remote Time spent in
responding to UpdateMetadata
requests: Samples

kafka_update_metadata_
remote_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msRemote Time spent in
responding to UpdateMetadata
requests: Standard Deviation

kafka_update_metadata_
remote_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to UpdateMetadata
requests: 75th Percentile

kafka_update_metadata_
request_queue_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to UpdateMetadata
requests: 999th Percentile

kafka_update_metadata_
request_queue_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to UpdateMetadata
requests: 99th Percentile

kafka_update_metadata_
request_queue_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to UpdateMetadata
requests: Avg

kafka_update_metadata_
request_queue_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to UpdateMetadata
requests: Max

kafka_update_metadata_
request_queue_time_max

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to UpdateMetadata
requests: 50th Percentile

kafka_update_metadata_
request_queue_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to UpdateMetadata
requests: Min

kafka_update_metadata_
request_queue_time_min

Apache Kafka Guide | 161

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Request Queue Time spent in
responding to UpdateMetadata
requests: Samples

kafka_update_metadata_
request_queue_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msRequest Queue Time spent in
responding to UpdateMetadata
requests: Standard Deviation

kafka_update_metadata_
request_queue_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of UpdateMetadata
requests: 15 Min Rate

kafka_update_metadata_
requests_15min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of UpdateMetadata
requests: 1 Min Rate

kafka_update_metadata_
requests_1min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of UpdateMetadata
requests: 5 Min Rate

kafka_update_metadata_
requests_5min_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
message.units.
singular.second

Number of UpdateMetadata
requests: Avg Rate

kafka_update_metadata_
requests_avg_rate

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Number of UpdateMetadata
requests

kafka_update_metadata_
requests_rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to UpdateMetadata
requests: 75th Percentile

kafka_update_metadata_
response_queue_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to UpdateMetadata
requests: 999th Percentile

kafka_update_metadata_
response_queue_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to UpdateMetadata
requests: 99th Percentile

kafka_update_metadata_
response_queue_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to UpdateMetadata
requests: Avg

kafka_update_metadata_
response_queue_time_
avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to UpdateMetadata
requests: Max

kafka_update_metadata_
response_queue_time_
max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to UpdateMetadata
requests: 50th Percentile

kafka_update_metadata_
response_queue_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to UpdateMetadata
requests: Min

kafka_update_metadata_
response_queue_time_
min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Queue Time spent in
responding to UpdateMetadata
requests: Samples

kafka_update_metadata_
response_queue_time_
rate

162 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msResponse Queue Time spent in
responding to UpdateMetadata
requests: Standard Deviation

kafka_update_metadata_
response_queue_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to UpdateMetadata
requests: 75th Percentile

kafka_update_metadata_
response_send_time_
75th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to UpdateMetadata
requests: 999th Percentile

kafka_update_metadata_
response_send_time_
999th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to UpdateMetadata
requests: 99th Percentile

kafka_update_metadata_
response_send_time_
99th_percentile

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to UpdateMetadata
requests: Avg

kafka_update_metadata_
response_send_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to UpdateMetadata
requests: Max

kafka_update_metadata_
response_send_time_max

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to UpdateMetadata
requests: 50th Percentile

kafka_update_metadata_
response_send_time_
median

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to UpdateMetadata
requests: Min

kafka_update_metadata_
response_send_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Response Send Time spent in
responding to UpdateMetadata
requests: Samples

kafka_update_metadata_
response_send_time_
rate

CDH 5, CDH 6cluster, kafka,
rack

msResponse Send Time spent in
responding to UpdateMetadata
requests: Standard Deviation

kafka_update_metadata_
response_send_time_
stddev

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to UpdateMetadata requests:
75th Percentile

kafka_update_metadata_
total_time_75th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to UpdateMetadata requests:
999th Percentile

kafka_update_metadata_
total_time_999th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to UpdateMetadata requests:
99th Percentile

kafka_update_metadata_
total_time_99th_
percentile

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to UpdateMetadata requests:
Avg

kafka_update_metadata_
total_time_avg

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to UpdateMetadata requests:
Max

kafka_update_metadata_
total_time_max

Apache Kafka Guide | 163

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to UpdateMetadata requests:
50th Percentile

kafka_update_metadata_
total_time_median

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to UpdateMetadata requests:
Min

kafka_update_metadata_
total_time_min

CDH 5, CDH 6cluster, kafka,
rack

requests per
second

Total Time spent in responding
to UpdateMetadata requests:
Samples

kafka_update_metadata_
total_time_rate

CDH 5, CDH 6cluster, kafka,
rack

msTotal Time spent in responding
to UpdateMetadata requests:
Standard Deviation

kafka_update_metadata_
total_time_stddev

CDH 5, CDH 6cluster, kafka,
rack

bytesResident memory usedmem_rss

CDH 5, CDH 6cluster, kafka,
rack

bytesAmount of swap memory used
by this role's process.

mem_swap

CDH 5, CDH 6cluster, kafka,
rack

bytesVirtual memory usedmem_virtual

CDH 5, CDH 6cluster, kafka,
rack

exits per
second

The number of times the role's
backing process was killed due
to an OutOfMemory error. This

oom_exits_rate

counter is only incremented if
the Cloudera Manager "Kill
When Out of Memory" option is
enabled.

CDH 5, CDH 6cluster, kafka,
rack

bytes per
second

The number of bytes read from
the device

read_bytes_rate

CDH 5, CDH 6cluster, kafka,
rack

exits per
second

The number of times the role's
backing process exited
unexpectedly.

unexpected_exits_rate

CDH 5, CDH 6cluster, kafka,
rack

secondsFor a host, the amount of time
since the host was booted. For a
role, the uptime of the backing
process.

uptime

CDH 5, CDH 6cluster, kafka,
rack

bytes per
second

The number of bytes written to
the device

write_bytes_rate

Broker Topic Metrics

CDH VersionParentsUnitDescriptionMetric Name

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

bytes per
message.
units.
singular.
second

Amount of data consumers
fetched from this topic on
this broker: 15 Min Rate

kafka_bytes_
fetched_15min_rate

164 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

bytes per
message.
units.
singular.
second

Amount of data consumers
fetched from this topic on
this broker: 1 Min Rate

kafka_bytes_
fetched_1min_rate

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

bytes per
message.
units.
singular.
second

Amount of data consumers
fetched from this topic on
this broker: 5 Min Rate

kafka_bytes_
fetched_5min_rate

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

bytes per
message.
units.
singular.
second

Amount of data consumers
fetched from this topic on
this broker: Avg Rate

kafka_bytes_
fetched_avg_rate

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

bytes per
second

Amount of data consumers
fetched from this topic on
this broker

kafka_bytes_
fetched_rate

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

bytes per
message.
units.
singular.
second

Amount of data written to
topic on this broker: 15 Min
Rate

kafka_bytes_
received_15min_rate

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

bytes per
message.
units.
singular.
second

Amount of data written to
topic on this broker: 1 Min
Rate

kafka_bytes_
received_1min_rate

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

bytes per
message.
units.
singular.
second

Amount of data written to
topic on this broker: 5 Min
Rate

kafka_bytes_
received_5min_rate

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

bytes per
message.
units.
singular.
second

Amount of data written to
topic on this broker: Avg
Rate

kafka_bytes_
received_avg_rate

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

bytes per
second

Amount of data written to
topic on this broker

kafka_bytes_
received_rate

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

bytes per
message.
units.
singular.
second

Amount of data inmessages
rejected by broker for this
topic: 15 Min Rate

kafka_bytes_
rejected_15min_rate

Apache Kafka Guide | 165

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

bytes per
message.
units.
singular.
second

Amount of data inmessages
rejected by broker for this
topic: 1 Min Rate

kafka_bytes_
rejected_1min_rate

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

bytes per
message.
units.
singular.
second

Amount of data inmessages
rejected by broker for this
topic: 5 Min Rate

kafka_bytes_
rejected_5min_rate

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

bytes per
message.
units.
singular.
second

Amount of data inmessages
rejected by broker for this
topic: Avg Rate

kafka_bytes_
rejected_avg_rate

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

bytes per
second

Amount of data inmessages
rejected by broker for this
topic

kafka_bytes_
rejected_rate

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

message.
units.
fetch_requests
permessage.

Number of data read
requests from consumers
that brokers failed to
process for this topic: 15
Min Rate

kafka_fetch_
request_failures_
15min_rate

units.
singular.
second

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

message.
units.
fetch_requests
permessage.

Number of data read
requests from consumers
that brokers failed to
process for this topic: 1 Min
Rate

kafka_fetch_
request_failures_
1min_rate

units.
singular.
second

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

message.
units.
fetch_requests
permessage.

Number of data read
requests from consumers
that brokers failed to
process for this topic: 5 Min
Rate

kafka_fetch_
request_failures_
5min_rate

units.
singular.
second

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

message.
units.
fetch_requests
permessage.

Number of data read
requests from consumers
that brokers failed to
process for this topic: Avg
Rate

kafka_fetch_
request_failures_
avg_rate

units.
singular.
second

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

message.
units.
fetch_requests
per second

Number of data read
requests from consumers
that brokers failed to
process for this topic

kafka_fetch_
request_failures_
rate

166 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

messagesper
message.
units.
singular.
second

Numberofmessageswritten
to topic on this broker: 15
Min Rate

kafka_messages_
received_15min_rate

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

messagesper
message.
units.
singular.
second

Numberofmessageswritten
to topic on this broker: 1
Min Rate

kafka_messages_
received_1min_rate

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

messagesper
message.
units.
singular.
second

Numberofmessageswritten
to topic on this broker: 5
Min Rate

kafka_messages_
received_5min_rate

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

messagesper
message.
units.
singular.
second

Numberofmessageswritten
to topic on this broker: Avg
Rate

kafka_messages_
received_avg_rate

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

messagesper
second

Numberofmessageswritten
to topic on this broker

kafka_messages_
received_rate

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

message.
units.
message_batches
permessage.

Number ofmessage batches
sent by producers that the
broker rejected for this
topic: 15 Min Rate

kafka_rejected_
message_batches_
15min_rate

units.
singular.
second

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

message.
units.
message_batches
permessage.

Number ofmessage batches
sent by producers that the
broker rejected for this
topic: 1 Min Rate

kafka_rejected_
message_batches_
1min_rate

units.
singular.
second

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

message.
units.
message_batches
permessage.

Number ofmessage batches
sent by producers that the
broker rejected for this
topic: 5 Min Rate

kafka_rejected_
message_batches_
5min_rate

units.
singular.
second

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

message.
units.
message_batches
permessage.

Number ofmessage batches
sent by producers that the
broker rejected for this
topic: Avg Rate

kafka_rejected_
message_batches_
avg_rate

units.

Apache Kafka Guide | 167

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

singular.
second

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,
kafka_topic, rack

message.
units.
message_batches
per second

Number ofmessage batches
sent by producers that the
broker rejected for this topic

kafka_rejected_
message_batches_
rate

Mirror Maker Metrics

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

events per
second

The number of alerts.alerts_rate

CDH 5, CDH 6cluster, kafka,
rack

seconds per
second

CPU usage of the role's cgroupcgroup_cpu_system_rate

CDH 5, CDH 6cluster, kafka,
rack

seconds per
second

User Space CPU usage of the
role's cgroup

cgroup_cpu_user_rate

CDH 5, CDH 6cluster, kafka,
rack

bytesPage cache usage of the role's
cgroup

cgroup_mem_page_cache

CDH 5, CDH 6cluster, kafka,
rack

bytesResident memory of the role's
cgroup

cgroup_mem_rss

CDH 5, CDH 6cluster, kafka,
rack

bytesSwap usage of the role's cgroupcgroup_mem_swap

CDH 5, CDH 6cluster, kafka,
rack

bytes per
second

Bytes read from all disks by the
role's cgroup

cgroup_read_bytes_rate

CDH 5, CDH 6cluster, kafka,
rack

ios per secondNumber of read I/O operations
from all disks by the role's
cgroup

cgroup_read_ios_rate

CDH 5, CDH 6cluster, kafka,
rack

bytes per
second

Bytes written to all disks by the
role's cgroup

cgroup_write_bytes_
rate

CDH 5, CDH 6cluster, kafka,
rack

ios per secondNumber of write I/O operations
to all disks by the role's cgroup

cgroup_write_ios_rate

CDH 5, CDH 6cluster, kafka,
rack

seconds per
second

Total System CPUcpu_system_rate

CDH 5, CDH 6cluster, kafka,
rack

seconds per
second

Total CPU user timecpu_user_rate

CDH 5, CDH 6cluster, kafka,
rack

events per
second

The number of critical events.events_critical_rate

CDH 5, CDH 6cluster, kafka,
rack

events per
second

Thenumber of important events.events_important_rate

CDH 5, CDH 6cluster, kafka,
rack

events per
second

The number of informational
events.

events_informational_
rate

CDH 5, CDH 6cluster, kafka,
rack

file descriptorsMaximum number of file
descriptors

fd_max

168 | Apache Kafka Guide

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

CDH 5, CDH 6cluster, kafka,
rack

file descriptorsOpen file descriptors.fd_open

CDH 5, CDH 6cluster, kafka,
rack

seconds per
second

Percentage of Time with Bad
Health

health_bad_rate

CDH 5, CDH 6cluster, kafka,
rack

seconds per
second

Percentage of Time with
Concerning Health

health_concerning_rate

CDH 5, CDH 6cluster, kafka,
rack

seconds per
second

Percentage of Time with
Disabled Health

health_disabled_rate

CDH 5, CDH 6cluster, kafka,
rack

seconds per
second

Percentage of Time with Good
Health

health_good_rate

CDH 5, CDH 6cluster, kafka,
rack

seconds per
second

Percentage of Time with
Unknown Health

health_unknown_rate

CDH 5, CDH 6cluster, kafka,
rack

bytesResident memory usedmem_rss

CDH 5, CDH 6cluster, kafka,
rack

bytesAmount of swap memory used
by this role's process.

mem_swap

CDH 5, CDH 6cluster, kafka,
rack

bytesVirtual memory usedmem_virtual

CDH 5, CDH 6cluster, kafka,
rack

exits per
second

The number of times the role's
backing process was killed due
to an OutOfMemory error. This

oom_exits_rate

counter is only incremented if
the Cloudera Manager "Kill
When Out of Memory" option is
enabled.

CDH 5, CDH 6cluster, kafka,
rack

bytes per
second

The number of bytes read from
the device

read_bytes_rate

CDH 5, CDH 6cluster, kafka,
rack

exits per
second

The number of times the role's
backing process exited
unexpectedly.

unexpected_exits_rate

CDH 5, CDH 6cluster, kafka,
rack

secondsFor a host, the amount of time
since the host was booted. For a
role, the uptime of the backing
process.

uptime

CDH 5, CDH 6cluster, kafka,
rack

bytes per
second

The number of bytes written to
the device

write_bytes_rate

Replica Metrics

CDH VersionParentsUnitDescriptionMetric Name

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,

message.
units.offset

The offset of the next
message that will be
appended to the log

kafka_log_end_
offset

kafka_broker_topic,
kafka_topic, rack

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,

message.
units.offset

The earliest message offset
in the log

kafka_log_start_
offset

Apache Kafka Guide | 169

Kafka Reference

CDH VersionParentsUnitDescriptionMetric Name

kafka_broker_topic,
kafka_topic, rack

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,

message.
units.
segments

The number of segments in
the log

kafka_num_log_
segments

kafka_broker_topic,
kafka_topic, rack

CDH5, CDH 6cluster, kafka,
kafka-kafka_broker,

bytesThe size of the logkafka_size

kafka_broker_topic,
kafka_topic, rack

Useful Shell Command Reference

Hardware Information

There are many ways to get information about hardware:

cat /proc/cpuinfo
lscpu

CPU

cat /proc/meminfo
vmstat -s
free -m or free -g

Memory

ip link show
netstat -i

Network interface

lsblk -d
fdisk -l

I/O device (hard drive)

virt-whatVirtual environment

Disk Space

df or mount show the disks mounted and can be used to show disk space.

On a file or directory level, the du command is useful for seeing how much disk space is being used.

I/O Activity and Utilization

iostat and sar come with Linux package sysstat-9.0.4-27. iostat is used for tracking I/O performance. The
recommended options are:

• -d for disk utilization
• -m for calculations in MB/sec
• -x for extended report
• -t sec to repeat statistics every sec seconds

sar has several forms of output:

• -b for I/O and transfer rate statistics
• -d for block device activity

170 | Apache Kafka Guide

Kafka Reference

• -n for network statistics
• -v for various file system statistics

File Descriptor Usage

lsof is used to identify mapping between processes and open files. By passing multiple arguments, lsof can be used
to help isolate the output:

• lsof <filename> to list processes that have <filename> open.
• lsof -p <pid> to list all files opened by the process corresponding to <pid>.
• lsof -r <secs> to keep producing output with a period of <secs>.

Network Ports, States, and Connections

• nc (netcat) or ss (socket statistics) are good for showing network activity.
• netstat is the Swiss-army knife tool for network interfaces.
• tcpdump or Wireshark with Kafka filter should be good for packet sniffing.

Process Information

• top shows a sorted list of processes.
• ps shows a snapshot list of processes. Arguments can be used to filter the output.
• ps -o min_flt,maj_flt pid shows page fault information.

Kernel Configuration

• ulimit -a is used to display kernel limits and shows which flags affect which kernel settings.
• ulimit -n FD to set a limit on open file descriptors.

Apache Kafka Guide | 171

Kafka Reference

http://mail-archives.apache.org/mod_mbox/kafka-users/201408.mbox/%3C20140812180358.GA24108@idrathernotsay.com%3E

Kafka Public APIs

What is a Public API

The following parts of Apache Kafka in CDH are considered as public APIs:

• Kafka wire protocol format: the format itself might change, but brokers will be able to use the old format as long
as documentation and upgrade instructions are followed properly.

• Binary log format: the format itself might change, but brokers will be able to use the old format as long as
documentation and upgrade instructions are followed properly.

• Interfaces and classes in the following packages:

– org/apache/kafka/common/serialization
– org/apache/kafka/common/errors
– org/apache/kafka/clients/producer
– org/apache/kafka/clients/consumer

• Command-line admin tools: arguments, except ZooKeeper related options, that are subject to change and/or
removal.

• HttpMetricsReporter: existing fields will stay backward compatible, but new fields may be introduced. The
only public API of HttpMetricsReporter is the /api/metrics REST endpoint. For a list of supported metrics, see
Kafka Metrics.

• Properties, excluding their default values
• Config file content and format, and the effect of configuration attributes
• Endpoints

What is NOT a public API

There are structures that third parties might regard as an interface but Cloudera Kafka distributions do not consider
them public APIs. In general, any API that is not listed as public in theWhat is a Public API section should be considered
private, and client code should not rely on behavior/data content or format. Some examples are:

• Data structures in ZooKeeper: the content and formatwhat Kafka stores in ZooKeeper are internal implementation
details.

• Authorizer interface: the only supported authorizer in CHD is the Sentry one.
• AdminClient: it is a new and rapidly evolving part of Kafka, so Cloudera can’t provide the same guarantees as for

other interfaces.
• Interfaces marked with the @Evolving or @Unstable annotations in the Kafka source code
• Index files generated by Kafka
• Application log file content and format (for example what Log4J/SLF4J/… produces)
• Any classes used for testing
• Relying on transitive dependencies: any dependency pulled in by Kafka
• Any other interfaces not listed above
• Anything that Cloudera does not support, even if it fits the definition of a public API

172 | Apache Kafka Guide

Kafka Public APIs

Kafka Frequently Asked Questions

This is intended to be an easy to understand FAQ on the topic of Kafka. One part is for beginners, one for advanced
users and use cases. We hope you find it fruitful. If you are missing a question, please send it to your favorite Cloudera
representative and we’ll populate this FAQ over time.

Basics

What is Kafka?

Kafka is a streaming message platform. Breaking it down a bit further:

“Streaming”: Lots ofmessages (think tens or hundreds of thousands) being sent frequently by publishers ("producers").
Message polling occurring frequently by lots of subscribers ("consumers").

“Message”: From a technical standpoint, a key value pair. From a non-technical standpoint, a relatively small number
of bytes (think hundreds to a few thousand bytes).

If this isn’t your planned use case, Kafkamay not be the solution you are looking for. Contact your favorite Cloudera
representative to discuss and find out. It is better to understand what you can and cannot do upfront than to go ahead
based on some enthusiastic arbitrary vendor message with a solution that will not meet your expectations in the end.

What is Kafka designed for?

Kafka was designed at LinkedIn to be a horizontally scaling publish-subscribe system. It offers a great deal of
configurability at the system- andmessage-level to achieve these performance goals. There are well documented cases
(Uber and LinkedIn) that showcase how well Kafka can scale when everything is done right.

What is Kafka not well fitted for (or what are the tradeoffs)?

It’s very easy to get caught up in all the things that Kafka can be used for without considering the tradeoffs. Kafka
configuration is also not automatic. You need to understand each of your use cases to determine which configuration
properties can be used to tune (and retune!) Kafka for each use case.

Some more specific examples where you need to be deeply knowledgeable and careful when configuring are:

• Using Kafka as your microservices communication hub

Kafka can replace both themessage queue and the services discovery part of your software infrastructure. However,
this is generally at the cost of some added latency as well as the need to monitor a new complex system (i.e. your
Kafka cluster).

• Using Kafka as long-term storage

While Kafka does have a way to configure message retention, it’s primarily designed for low latency message
delivery. Kafka does not have any support for the features that are usually associated with filesystems (such as
metadata or backups). As such, using some form of long-term ingestion, such as HDFS, is recommended instead.

• Using Kafka as an end-to-end solution

Kafka is only part of a solution. There are a lot of best practices to follow and support tools to build before you
can get the most out of it (see this wise LinkedIn post).

• Deploying Kafka without the right support

Uber has given some numbers for their engineering organization. These numbers could help give you an ideawhat
it takes to reach that kind of scale: 1300 microservers, 2000 engineers.

Apache Kafka Guide | 173

Kafka Frequently Asked Questions

https://www.slideshare.net/Hadoop_Summit/how-uber-scaled-its-real-time-infrastructure-to-trillion-events-per-day
https://techcrunch.com/2017/08/28/linkedin-announces-new-automated-load-balancing-tool-to-keep-kafka-clusters-running/
https://engineering.linkedin.com/kafka/kafka-linkedin-current-and-future
https://www.theserverside.com/feature/How-microservices-patterns-helped-Uber-systems-perform-better
http://highscalability.com/blog/2016/10/12/lessons-learned-from-scaling-uber-to-2000-engineers-1000-ser.html

Where can I get a general Kafka overview?

The first four sections (Introduction, Setup, Clients, Brokers) of the CDH 6 Kafka Documentation cover the basics and
design of Kafka. This should serve as a good starting point. If you have any remaining questions after reading that
documentation, come to this FAQ or talk to your favorite Cloudera representative about training or a best practices
deep dive.

Where does Kafka fit well into an Analytic DB solution?

ADB deployments benefit from Kafka by utilizing it for data ingest. Data can then populate tables for various analytics
workloads. For ad hoc BI the real-time aspect is less critical, but the ability to utilize the same data used in real time
applications, in BI and analytics as well, is a benefit that Cloudera’s platform provides, as you will have Kafka for both
purposes, already integrated, secured, governed and centrally managed.

Where does Kafka fit well into an Operational DB solution?

Kafka is commonly used in the real-time, mission-critical world of Operational DB deployments. It is used to ingest
data and allow immediate serving to other applications and services via Kudu or HBase. The benefit of utilizing Kafka
in the Cloudera platform for ODB is the integration, security, governance and central management. You avoid the risks
and costs of siloed architecture and “yet another solution” to support.

What is a Kafka consumer?

If Kafka is the system that stores messages, then a consumer is the part of your system that reads those messages
from Kafka.

While Kafka does come with a command line tool that can act as a consumer, practically speaking, you will most likely
write Java code using the KafkaConsumer API for your production system.

What is a Kafka producer?

While consumers read from a Kafka cluster, producers write to a Kafka cluster.

Similar to the consumer (see previous question), your producer is also custom Java code for your particular use case.

Your producer may need some tuning for write performance and SLA guarantees, but will generally be simpler (fewer
error cases) to tune than your consumer.

What functionality can I call in my Kafka Java code?

The best way to get more information on what functionality you can call in your Kafka Java code is to look at the Java
docs. And read very carefully!

What’s a good size of a Kafka record if I care about performance and stability?

There is an older blog post from 2014 from LinkedIn titled: Benchmarking Apache Kafka: 2 Million Writes Per Second
(On Three Cheap Machines). In the “Effect of Message Size” section, you can see two charts which indicate that Kafka
throughput starts being affected at a record size of 100 bytes through 1000 bytes and bottoming out around 10000
bytes. In general, keeping topics specific and keeping message sizes deliberately small helps you get the most out of
Kafka.

Excerpting from Deploying Apache Kafka: A Practical FAQ:

How to send large messages or payloads through Kafka?

Cloudera benchmarks indicate that Kafka reaches maximum throughput with message sizes of around 10 KB. Larger
messages show decreased throughput. However, in certain cases, users need to send messages much larger than 10
KB.

If the message payload sizes are in the order of 100s of MB, consider exploring the following alternatives:

174 | Apache Kafka Guide

Kafka Frequently Asked Questions

https://www.cloudera.com/documentation/enterprise/latest/topics/kafka.html
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
http://blog.cloudera.com/blog/2015/07/deploying-apache-kafka-a-practical-faq/

• If shared storage is available (HDFS, S3, NAS), place the large payload on shared storage and use Kafka just to
send a message with the payload location.

• Handle large messages by chopping them into smaller parts before writing into Kafka, using a message key to
make sure all the parts are written to the same partition so that they are consumed by the same Consumer, and
re-assembling the large message from its parts when consuming.

Where can I get Kafka training?

You have many options. Cloudera provides training as listed in the next two questions. You can also ask your Resident
Solution Architect to do a deep dive on Kafka architecture and best practices. And you could always engage in the
community to get insight and expertise on specific topics.

Where can I get basic Kafka training?

Cloudera training offers a basic on-demand training for Kafka1.

This covers basics of Kafka architecture, messages, ordering, and a few slides (code examples) of (to my knowledge)
an older version of the Java API. It also covers using Flume + Kafka.

Where can I get Kafka developer training?

Kafka developer training is included in Cloudera’s Developer Training for Apache Spark and Hadoop2.

Use Cases
Likemost Open Source projects, Kafka provides a lot of configuration options tomaximize performance. In some cases,
it is not obvious how best to map your specific use case to those configuration options. We attempt to address some
of those situations below.

What can I do to ensure that I never lose a Kafka event?

This is a simple question which has lots of far-reaching implications for your entire Kafka setup. A complete answer
includes the next few related FAQs and their answers.

What is the recommended node hardware for best reliability?

Operationally, you need to make sure your Kafka cluster meets the following hardware setup:

1. Have a 3 or 5 node cluster only running Zookeeper (higher only necessary at largest scales).
2. Have at least a 3 node cluster only running Kafka.
3. Have the disks on the Kafka cluster running in RAID 10. (Required for resiliency against disk failure.)
4. Have sufficient memory for both the Kafka and Zookeeper roles in the cluster. (Recommended: 4GB for the broker,

the rest of memory automatically used by the kernel as file cache.)
5. Have sufficient disk space on the Kafka cluster.
6. Have a sufficient number of disks to handle the bandwidth requirements for Kafka and Zookeeper.
7. You need a number of nodes greater than or equal to the highest replication factor you expect to use.

What are the network requirements for best reliability?

Kafka expects a reliable, low-latency connection between the brokers and the Zookeeper nodes.

1. The number of network hops between the Kafka cluster and the Zookeeper cluster is relatively low.
2. Have highly reliable network services (such as DNS).

Apache Kafka Guide | 175

Kafka Frequently Asked Questions

https://ondemand.cloudera.com/courses/course-v1:Cloudera+Kafka+201601/info
https://ondemand.cloudera.com/courses/course-v1:Cloudera+DevSH+201709/info

What are the system software requirements for best reliability?

Assuming you’re following the recommendations of the previous two questions, the actual system outside of Kafka
must be configured properly.

1. The kernel must be configured for maximum I/O usage that Kafka requires.

a. Large page cache
b. Maximum file descriptions
c. Maximum file memory map limits

2. Kafka JVM configuration settings:

a. Brokers generally don’t need more than 4GB-8GB of heap space.
b. Run with the +G1GC garbage collection using Java 8 or later.

How can I configure Kafka to ensure that events are stored reliably?

The following recommendations for Kafka configuration settings make it extremely difficult for data loss to occur.

1. Producer

a. block.on.buffer.full=true
b. retries=Long.MAX_VALUE
c. acks=all
d. max.in.flight.requests.per.connections=1
e. Remember to close the producer when it is finished or when there is a long pause.

2. Broker

a. Topic replication.factor >= 3
b. Min.insync.replicas = 2
c. Disable unclean leader election

3. Consumer

a. Disable enable.auto.commit
b. Commit offsets after messages are processed by your consumer client(s).

If you have more than 3 hosts, you can increase the broker settings appropriately on topics that need more protection
against data loss.

Once I’ve followed all the previous recommendations, my cluster should never lose data, right?

Kafka does not ensure that data loss never occurs. There are the following tradeoffs:

1. Throughput vs. reliability. For example, the higher the replication factor, the more resilient your setup will be
against data loss. However, to make those extra copies takes time and can affect throughput.

2. Reliability vs. free disk space. Extra copies due to replication use up disk space that would otherwise be used for
storing events.

Beyond the above design tradeoffs, there are also the following issues:

• To ensure events are consumed you need tomonitor your Kafka brokers and topics to verify sufficient consumption
rates are sustained to meet your ingestion requirements.

• Ensure that replication is enabled on any topic that requires consumption guarantees. This protects against Kafka
broker failure and host failure.

• Kafka is designed to store events for a defined duration after which the events are deleted. You can increase the
duration that events are retained up to the amount of supporting storage space.

• You will always run out of disk space unless you add more nodes to the cluster.

176 | Apache Kafka Guide

Kafka Frequently Asked Questions

My Kafka events must be processed in order. How can I accomplish this?

After your topic is configuredwith partitions, Kafka sends each record (based on key/value pair) to a particular partition
based on key. So, any given key, the corresponding records are “in order” within a partition.

For global ordering, you have two options:

1. Your topicmust consist of one partition (but a higher replication factor could be useful for redundancy and failover).
However, this will result in very limited message throughput.

2. You configure your topicwith a small number of partitions and perform the ordering after the consumer has pulled
data. This does not result in guaranteed ordering, but, given a large enough timewindow, will likely be equivalent.

Conversely, it is best to take Kafka’s partitioning design into consideration when designing your Kafka setup rather
than rely on global ordering of events.

How do I size my topic? Alternatively: What is the “right” number of partitions for a topic?

Choosing the proper number of partitions for a topic is the key to achieving a high degree of parallelism with respect
to writes to and reads and to distribute load. Evenly distributed load over partitions is a key factor to have good
throughput (avoid hot spots).Making a good decision requires estimation based on the desired throughput of producers
and consumers per partition.

For example, if you want to be able to read 1 GB/sec, but your consumer is only able process 50 MB/sec, then you
need at least 20 partitions and 20 consumers in the consumer group. Similarly, if you want to achieve the same for
producers, and 1 producer can only write at 100MB/sec, you need 10 partitions. In this case, if you have 20 partitions,
you can maintain 1 GB/sec for producing and consuming messages. You should adjust the exact number of partitions
to number of consumers or producers, so that each consumer and producer achieve their target throughput.

So a simple formula could be:

#Partitions = max(NP, NC)

where:

• NP is the number of required producers determined by calculating: TT/TP
• NC is the number of required consumers determined by calculating: TT/TC
• TT is the total expected throughput for our system

• TP is the max throughput of a single producer to a single partition

• TC is the max throughput of a single consumer from a single partition

This calculation gives you a rough indication of the number of partitions. It's a good place to start. Keep in mind the
following considerations for improving the number of partitions after you have your system in place:

• The number of partitions can be specified at topic creation time or later.
• Increasing the number of partitions also affects the number of open file descriptors. So make sure you set file

descriptor limit properly.
• Reassigning partitions can be very expensive, and therefore it's better to over- than under-provision.
• Changing the number of partitions that are based on keys is challenging and involves manual copying (see Kafka

Administration on page 61).

Apache Kafka Guide | 177

Kafka Frequently Asked Questions

• Reducing the number of partitions is not currently supported. Instead, create a new a topic with a lower number
of partitions and copy over existing data.

• Metadata about partitions are stored in ZooKeeper in the form of znodes. Having a large number of partitions
has effects on ZooKeeper and on client resources:

– Unneeded partitions put extra pressure on ZooKeeper (more network requests), and might introduce delay
in controller and/or partition leader election if a broker goes down.

– Producer and consumer clients need more memory, because they need to keep track of more partitions and
also buffer data for all partitions.

• As guideline for optimal performance, you should not have more than 4000 partitions per broker and not more
than 200,000 partitions in a cluster.

Make sure consumers don’t lag behind producers by monitoring consumer lag. To check consumers' position in a
consumer group (that is, how far behind the end of the log they are), use the following command:

$ kafka-consumer-groups --bootstrap-server BROKER_ADDRESS --describe --group
CONSUMER_GROUP --new-consumer

How can I scale a topic that's already deployed in production?

Recall the following facts about Kafka:

• When you create a topic, you set the number of partitions. The higher the partition count, the better the parallelism
and the better the events are spread somewhat evenly through the cluster.

• In most cases, as events go to the Kafka cluster, events with the same key go to the same partition. This is a
consequence of using a hash function to determine which key goes to which partition.

Now, you might assume that scaling means increasing the number of partitions in a topic. However, due to the way
hashing works, simply increasing the number of partitions means that you will lose the "events with the same key go
to the same partition" fact.

Given that, there are two options:

1. Your cluster may not be scaling well because the partition loads are not balanced properly (for example, one
broker has four very active partitions, while another has none). In those cases, you can use the
kafka-reassign-partitions script to manually balance partitions.

2. Create a new topic with more partitions, pause the producers, copy data over from the old topic, and then move
the producers and consumers over to the new topic. This can be a bit tricky operationally.

How do I rebalance my Kafka cluster?

This one comes up when new nodes or disks are added to existing nodes. Partitions are not automatically balanced.
If a topic already has a number of nodes equal to the replication factor (typically 3), then adding disks does not help
with rebalancing.

Using the kafka-reassign-partitions command after adding new hosts is the recommended method.

Caveats

There are several caveats to using this command:

• It is highly recommended that you minimize the volume of replica changes to make sure the cluster remains
healthy. Say, instead of moving ten replicas with a single command, move two at a time.

• It is not possible to use this command to make an out-of-sync replica into the leader partition.
• If too many replicas are moved, then there could be serious performance impact on the cluster. When using the

kafka-reassign-partitions command, look at the partition counts and sizes. From there, you can test various
partition sizes along with the --throttle flag to determine what volume of data can be copied without affecting
broker performance significantly.

• Given the earlier restrictions, it is best to use this command only when all brokers and topics are healthy.

178 | Apache Kafka Guide

Kafka Frequently Asked Questions

How do I monitor my Kafka cluster?

As of Cloudera Enterprise 5.14, Cloudera Manager has monitoring for a Kafka cluster.

Currently, there are three GitHub projects as well that provide additional monitoring functionality:

• Doctor Kafka3 (Pinterest, Apache 2.0 License)
• Kafka Manager4 (Yahoo, Apache 2.0 License)
• Cruise Control5 (LinkedIn, BSD 2-clause License)

These projects are Apache-compatible licensed, but are not Open Source (no community, bug filing, or transparency).

What are the best practices concerning consumer group.id?

The group.id is just a string that helps Kafka track which consumers are related (by having the same group id).

• In general, timestamps as part of group.id are not useful. Because each group.id corresponds to multiple
consumers, you cannot have a unique timestamp for each consumer.

• Add any helpful identifiers. This could be related to a group (for example, transactions,marketing), purpose (fraud,
alerts), or technology (Flume, Spark).

How do I monitor consumer group lag?

This is typically done using the kafka-consumer-groups command line tool. Copying directly from the upstream
documentation6, we have this example output (reformatted for readability):

$ bin/kafka-consumer-groups.sh --bootstrap-server localhost:9092 --describe --group
 my-group
TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG CONSUMER-ID HOST
CLIENT-ID
my-topic 0 2 4 2 consumer-1-69d6 /127.0.0.1
consumer-1
my-topic 1 2 3 1 consumer-1-69d6 /127.0.0.1
consumer-1
my-topic 2 2 3 1 consumer-2-9bb2 /127.0.0.1
consumer-2

In general, if everything is going well with a particular topic, each consumer’s CURRENT-OFFSET should be up-to-date
or nearly up-to-date with the LOG-END-OFFSET. From this command, you can determine whether a particular host
or a particular partition is having issues keeping up with the data rate.

How do I reset the consumer offset to an arbitrary value?

This is also done using the kafka-consumer-groups command line tool. This is generally an administration feature
used to get around corrupted records, data loss, or recovering from failure of the broker or host. Aside from those
special cases, using the command line tool for this purpose is not recommended.

By using the --execute --reset-offsets flags, you can change the consumer offsets for a consumer group (or
even all groups) to a specific setting based on each partitions log’s beginning/end or a fixed timestamp. Typing the
kafka-consumer-groups command with no arguments will give you the complete help output.

How do I configure MirrorMaker for bi-directional replication across DCs?

Mirror Maker is a one way copy of one or more topics from a Source Kafka Cluster to a Destination Kafka Cluster. Given
this restriction on Mirror Maker, you need to run two instances, one to copy from A to B and another to copy from B
to A.

In addition, consider the following:

• Cloudera recommends using the "pull" model for Mirror Maker, meaning that the Mirror Maker instance that is
writing to the destination is running on a host "near" the destination cluster.

• The topics must be unique across the two clusters being copied.

Apache Kafka Guide | 179

Kafka Frequently Asked Questions

http://github.com/pinterest/doctorkafka
http://github.com/yahoo/kafka-manager
http://github.com/linkedin/cruise-control
http://kafka.apache.org/documentation/#basic_ops_consumer_lag
http://kafka.apache.org/documentation/#basic_ops_consumer_lag

• On secure clusters, the source cluster and destination cluster must be in the same Kerberos realm.

How does the consumer max retries vs timeout work?

With the newer versions of Kafka, consumers have two ways they communicate with brokers.

• Retries: This is generally related to reading data. When a consumer reads from a brokers, it’s possible for that
attempt to fail due to problems such as intermittent network outages or I/O issues on the broker. To improve
reliability, the consumer retries (up to the configured max.retries value) before actually failing to read a log
offset.

• Timeout. This term is a bit vague because there are two timeouts related to consumers:

– Poll Timeout: This is the timeout between calls to KafkaConsumer.poll(). This timeout is set based on
whatever read latency requirements your particular use case needs.

– Heartbeat Timeout: The newer consumer has a “heartbeat thread” which give a heartbeat to the broker
(actually the Group Coordinator within a broker) to let the broker know that the consumer is still alive. This
happens on a regular basis and if the broker doesn’t receive at least one heartbeat within the timeout period,
it assumes the consumer is dead and disconnects it.

How do I size my Kafka cluster?

There are several considerations for sizing your Kafka cluster.

• Disk space

Disk space will primarily consist of your Kafka data and broker logs. When in debug mode, the broker logs can get
quite large (10s to 100s of GB), so reserving a significant amount of space could save you some future headaches.

For Kafka data, you need to performestimates onmessage size, number of topics, and redundancy. Also remember
that you will be using RAID10 for Kafka’s data, so half your hard drives will go towards redundancy. From there,
you can calculate how many drives will be needed.

In general, you will want to have more hosts than the minimum suggested by the number of drives. This leaves
room for growth and some scalability headroom.

• Zookeeper nodes

One node is fine for a test cluster. Three is standard for most Kafka clusters. At large scale, five nodes is fairly
common for reliability.

• Looking at leader partition count/bandwidth usage

This is likely the metric with the highest variability. Any Kafka broker will be overloaded if it has too many leader
partitions. In the worst cases, each leader partition requires high bandwidth, high message rates, or both. For
other topics, leader partitionswill be a tiny fraction ofwhat a broker can handle (limited by software and hardware).
To estimate an average that works on a per-host basis, try grouping topics by partition data throughput
requirements, such as 2 high bandwidth data partitions, 4mediumbandwidth data partitions, 20 small bandwidth
data partitions. From there, you can determine how many hosts are needed.

How can I combine Kafka with Flume to ingest into HDFS?

We have two blog posts on using Kafka with Flume:

• The original post: Flafka: Apache Flume Meets Apache Kafka for Event Processing
• This updated version for CDH 5.8/Apache Kafka 0.9/Apache Flume 1.7: New in Cloudera Enterprise 5.8: Flafka

Improvements for Real-Time Data Ingest

How can I build a Spark streaming application that consumes data from Kafka?

You will need to set up your development environment to use both Spark libraries and Kafka libraries:

• Building Spark Applications

180 | Apache Kafka Guide

Kafka Frequently Asked Questions

http://blog.cloudera.com/blog/2014/11/flafka-apache-flume-meets-apache-kafka-for-event-processing/
https://blog.cloudera.com/blog/2016/08/new-in-cloudera-enterprise-5-8-flafka-improvements-for-real-time-data-ingest/
https://blog.cloudera.com/blog/2016/08/new-in-cloudera-enterprise-5-8-flafka-improvements-for-real-time-data-ingest/
https://www.cloudera.com/documentation/enterprise/latest/topics/spark_building.html

• The kafka-examples directory on Cloudera’s public GitHub has an example pom.xml.

From there, you should be able to read data using the KafkaConsumer class and using Spark libraries for real-time data
processing. The blog post Reading data securely fromApache Kafka to Apache Spark has a pointer to a GitHub repository
that contains a word count example.

For further background, read the blog post Architectural Patterns for Near Real-Time Data Processing with Apache
Hadoop.

References
1. Kafka basic training: https://ondemand.cloudera.com/courses/course-v1:Cloudera+Kafka+201601/info
2. Kafka developer training: https://ondemand.cloudera.com/courses/course-v1:Cloudera+DevSH+201709/info
3. Doctor Kafka: http://github.com/pinterest/doctorkafka
4. Kafka manager: http://github.com/yahoo/kafka-manager
5. Cruise control: http://github.com/linkedin/cruise-control
6. Upstream documentation: http://kafka.apache.org/documentation/#basic_ops_consumer_lag

Apache Kafka Guide | 181

Kafka Frequently Asked Questions

https://github.com/cloudera/kafka-examples
http://blog.cloudera.com/blog/2017/05/reading-data-securely-from-apache-kafka-to-apache-spark/
http://blog.cloudera.com/blog/2015/06/architectural-patterns-for-near-real-time-data-processing-with-apache-hadoop/
http://blog.cloudera.com/blog/2015/06/architectural-patterns-for-near-real-time-data-processing-with-apache-hadoop/
https://ondemand.cloudera.com/courses/course-v1:Cloudera+Kafka+201601/info
https://ondemand.cloudera.com/courses/course-v1:Cloudera+DevSH+201709/info
http://github.com/pinterest/doctorkafka
http://github.com/yahoo/kafka-manager
http://github.com/linkedin/cruise-control
http://kafka.apache.org/documentation/#basic_ops_consumer_lag

Appendix: Apache License, Version 2.0

SPDX short identifier: Apache-2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through
9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of
fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

"Object" form shall mean any form resulting frommechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole,
an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or
additions to thatWork or DerivativeWorks thereof, that is intentionally submitted to Licensor for inclusion in theWork
by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of
discussing and improving theWork, but excluding communication that is conspicuouslymarked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whoma Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare DerivativeWorks of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license tomake, havemade,
use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims

182 | Cloudera

Appendix: Apache License, Version 2.0

licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated
within theWork constitutes direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and
2. You must cause any modified files to carry prominent notices stating that You changed the files; and
3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,

and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part
of the Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along
with the DerivativeWorks; or, within a display generated by the DerivativeWorks, if andwherever such third-party
notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify
the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be
construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as
a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an "AS IS" BASIS,WITHOUTWARRANTIES OR CONDITIONSOF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required
by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable
to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure ormalfunction, or any and all other commercial damages or losses), even
if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

Cloudera | 183

Appendix: Apache License, Version 2.0

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
"[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class name and description of
purpose be included on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

184 | Cloudera

Appendix: Apache License, Version 2.0

	Table of Contents
	Apache Kafka Guide
	Ideal Publish-Subscribe System
	Kafka Architecture
	Topics
	Brokers
	Records
	Partitions
	Record Order and Assignment
	Logs and Log Segments
	Kafka Brokers and ZooKeeper

	Kafka Setup
	Hardware Requirements
	Brokers
	ZooKeeper

	Kafka Performance Considerations
	Operating System Requirements
	SUSE Linux Enterprise Server (SLES)
	Kernel Limits

	Kafka in Cloudera Manager
	Kafka Clients
	Commands for Client Interactions
	Kafka Producers
	Kafka Consumers
	Subscribing to a topic
	Groups and Fetching
	Protocol between Consumer and Broker
	Rebalancing Partitions
	Consumer Configuration Properties
	Retries

	Kafka Clients and ZooKeeper

	Kafka Brokers
	Single Cluster Scenarios
	Leader Positions
	In-Sync Replicas

	Topic Configuration
	Topic Creation
	Topic Properties

	Partition Management
	Partition Reassignment
	Adding Partitions
	Choosing the Number of Partitions
	Controller

	Kafka Integration
	Kafka Security
	Client-Broker Security with TLS
	Step 1: Generating Keys and Certificates for Kafka Brokers
	Step 2: Creating Your Own Certificate Authority
	Step 3: Signing the Certificate
	Step 4: Configuring Kafka Brokers
	Step 5: Configuring Kafka Clients

	Using Kafka’s Inter-Broker Security
	Enabling Kerberos Authentication
	Enabling Encryption at Rest
	Topic Authorization with Kerberos and Sentry
	Configuring Kafka to Use Sentry Authorization
	Authorizable Resources
	Authorized Actions
	Authorizing Privileges
	Granting Privileges to a Role
	Privileges for Idempotent and Transactional Clients
	Troubleshooting Kafka with Sentry

	Managing Multiple Kafka Versions
	Kafka Feature Support in Cloudera Manager and CDH
	Client/Broker Compatibility Across Kafka Versions
	Upgrading your Kafka Cluster
	General Upgrade Information
	Upgrading Kafka from CDH 6.0.0 to other CDH 6 versions
	Upstream Upgrade Instructions

	Managing Topics across Multiple Kafka Clusters
	Consumer/Producer Compatibility
	Topic Differences between Clusters
	Optimize Mirror Maker Producer Location
	Destination Cluster Configuration
	Kerberos and Mirror Maker
	Setting up Mirror Maker in Cloudera Manager

	Setting up an End-to-End Data Streaming Pipeline
	Data Streaming Pipeline
	Ingest Using Kafka with Apache Flume
	Sources
	Kafka Sinks
	Kafka Channels
	CDH Flume Kafka Compatibility
	Securing Flume with Kafka

	Using Kafka with Apache Spark Streaming for Stream Processing
	CDH Spark/Kafka Compatibility
	Validating Kafka Integration with Spark Streaming
	Securing Spark with Kafka

	Developing Kafka Clients
	Simple Client Examples
	Moving Kafka Clients to Production
	Reuse your Producer/Consumer object
	Each KafkaConsumer object requires calling poll() frequently
	Catch all exceptions from poll()
	Callback#onCompletion() should always exit without errors
	Check your API usage against the latest API
	Hidden Dependency on Network Availability
	Read the Details Carefully in the Apache Kafka Javadoc

	Kafka Metrics
	Metrics Categories
	Viewing Metrics
	Building Cloudera Manager Charts with Kafka Metrics

	Kafka Administration
	Kafka Administration Basics
	Broker Log Management
	Record Management
	Broker Garbage Log Collection and Log Rotation
	Adding Users as Kafka Administrators

	Migrating Brokers in a Cluster
	Using rsync to Copy Files from One Broker to Another

	Setting User Limits for Kafka
	Quotas
	Setting Quotas

	Kafka Administration Using Command Line Tools
	Unsupported Command Line Tools
	Notes on Kafka CLI Administration
	kafka-topics
	kafka-configs
	kafka-console-consumer
	kafka-console-producer
	kafka-consumer-groups
	kafka-reassign-partitions
	Tool Usage
	Examples

	kafka-log-dirs
	Tool Usage

	zookeeper-security-migration
	Tool Usage

	kafka-delegation-tokens
	Tool Usage

	kafka-*-perf-test
	Enabling DEBUG or TRACE in command line scripts
	Understanding the kafka-run-class Bash Script

	Disk Management
	Monitoring
	Handling Disk Failures
	Disk Replacement
	Disk Removal

	Reassigning Replicas Between Log Directories
	Retrieving Log Directory Replica Assignment Information

	JBOD
	JBOD Setup and Migration
	Setup
	Migration
	Prerequisites
	Steps

	Kafka Delegation Tokens
	Delegation Token Basics
	Broker Configuration Settings
	Enable Authentication with Delegation Tokens
	Prerequisites
	Steps

	Managing Individual Delegation Tokens
	Rotating the Master Key/Secret
	Client Authentication using Delegation Tokens
	Configuring Clients on a Producer or Consumer Level
	Configure Clients on an Application Level

	Kafka Security Hardening with Zookeeper ACLs
	Restricting Access to Kafka Metadata in Zookeeper
	Prerequisites
	Steps

	Unlocking Kafka Metadata in Zookeeper
	Prerequisites
	Steps

	Kafka Performance Tuning
	Tuning Brokers
	Tuning Producers
	Tuning Consumers
	Mirror Maker Performance
	Kafka Tuning: Handling Large Messages
	Kafka Cluster Sizing
	Cluster Sizing - Network and Disk Message Throughput
	Choosing the Number of Partitions for a Topic

	Kafka Performance Broker Configuration
	JVM and Garbage Collection
	Network and I/O Threads
	ISR Management
	Log Cleaner

	Kafka Performance: System-Level Broker Tuning
	File Descriptor Limits
	Filesystems
	Virtual Memory Handling
	Networking Parameters
	Configuring JMX Ephemeral Ports

	Kafka-ZooKeeper Performance Tuning

	Kafka Reference
	Metrics Reference
	Useful Shell Command Reference
	Hardware Information
	Disk Space
	I/O Activity and Utilization
	File Descriptor Usage
	Network Ports, States, and Connections
	Process Information
	Kernel Configuration

	Kafka Public APIs
	Kafka Frequently Asked Questions
	Basics
	Use Cases
	References

	Appendix: Apache License, Version 2.0

