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About this Guide

This guide is intended for system administratorswhowant to secure a cluster using data encryption, user authentication,
and authorization techniques. It provides conceptual overviews and how-to information about setting up various
Hadoop components for optimal security, including how to setup a gateway to restrict access. It includes installation,
configuration, and administration details for Cloudera Navigator Data Encryption mechanisms, including Cloudera
Navigator Encrypt and key management with Cloudera Navigator Key Trustee Server and Cloudera Navigator Key HSM.
This guide assumes that you have basic knowledge of Linux and systems administration practices.
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Cloudera Security Overview

As a system designed to support vast amounts and types of data, Cloudera clusters must meet ever-evolving security
requirements imposed by regulating agencies, governments, industries, and the general public. Cloudera clusters
comprise both Hadoop core and ecosystem components, all of which must be protected from a variety of threats to
ensure the confidentiality, integrity, and availability of all the cluster's services and data. This overview provides
introductions to:

Security Requirements
Goals for data management systems, such as confidentiality, integrity, and availability, require that the system be
secured across several dimensions. These can be characterized in terms of both general operational goals and technical
concepts, as shown in the figure below:

• Perimeter Access to the cluster must be protected from a variety of threats coming from internal and external
networks and from a variety of actors. Network isolation can be provided by proper configuration of firewalls,
routers, subnets, and the proper use of public and private IP addresses, for example. Authenticationmechanisms
ensure that people, processes, and applications properly identify themselves to the cluster and prove they are
who they say they are, before gaining access to the cluster.

• DataData in the clustermust always be protected fromunauthorized exposure. Similarly, communications between
the nodes in the cluster must be protected. Encryptionmechanisms ensure that even if network packets are
intercepted or hard-disk drives are physically removed from the system by bad actors, the contents are not usable.

• Access Access to any specific service or item of data within the cluster must be specifically granted. Authorization
mechanisms ensure that once users have authenticated themselves to the cluster, they can only see the data and
use the processes to which they have been granted specific permission.

• Visibility Visibility means that the history of data changes is transparent and capable of meeting data governance
policies. Auditingmechanisms ensure that all actions on data and its lineage—source, changes over time, and so
on—are documented as they occur.

Securing the cluster to meet specific organizational goals involves using security features inherent to the Hadoop
ecosystem as well as using external security infrastructure. The various security mechanisms can be applied in a range
of levels.

Security Levels
The figure below shows the range of security levels that can be implemented for a Cloudera cluster, from non-secure
(0) to most secure (3). As the sensitivity and volume of data on the cluster increases, so should the security level you
choose for the cluster.
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With level 3 security, your Cloudera cluster is ready for full compliance with various industry and regulatory mandates
and is ready for audit when necessary. The table below describes the levels in more detail:

CharacteristicsSecurityLevel

No security configured. Non-secure clusters should never be used in production
environments because they are vulnerable to any and all attacks and exploits.

Non-secure0

Configured for authentication, authorization, and auditing. Authentication is first
configured to ensure that users and services can access the cluster only after proving

Minimal1

their identities. Next, authorizationmechanisms are applied to assign privileges to users
and user groups. Auditing procedures keep track of who accesses the cluster (and how).

Sensitive data is encrypted. Keymanagement systems handle encryption keys. Auditing
has been setup for data in metastores. System metadata is reviewed and updated

More2

regularly. Ideally, cluster has been setup so that lineage for any data object can be
traced (data governance).

The secure enterprise data hub (EDH) is one in which all data, both data-at-rest and
data-in-transit, is encrypted and the keymanagement system is fault-tolerant. Auditing

Most3

mechanisms comply with industry, government, and regulatory standards (PCI, HIPAA,
NIST, for example), and extend from the EDH to the other systems that integrate with
it. Cluster administrators are well-trained, security procedures have been certified by
an expert, and the cluster can pass technical review.

Hadoop Security Architecture
The figure below is an example of some of the many components at work in a production Cloudera enterprise cluster.
The figure highlights the need to secure clusters that may ingest data from both internal and external data feeds, and
across possiblymultiple datacenters. Securing the cluster requires applying authentication and access controls throughout
these many inter- and intra-connections, as well as to all users who want to query, run jobs, or even view the data
held in the cluster.

• External data streams are authenticated by mechanisms in place for Flume and Kafka. Data from legacy databases
is ingested using Sqoop. Data scientists and BI analysts can use interfaces such as Hue to work with data on Impala
or Hive, for example, to create and submit jobs. Kerberos authentication can be leveraged to protect all these
interactions.

• Encryption can be applied to data at-rest using transparent HDFS encryption with an enterprise-grade Key Trustee
Server. Cloudera also recommends using Navigator Encrypt to protect data on a cluster associated with the
Cloudera Manager, Cloudera Navigator, Hive and HBase metastores, and any log files or spills.

• Authorization policies can be enforced using Sentry (for services such as Hive, Impala, and Search) as well as HDFS
Access Control Lists.
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• Auditing capabilities can be provided by using Cloudera Navigator.

Authentication Overview
Authentication is a basic security requirement for any computing environment. In simple terms, users and services
must prove their identity (authenticate) to the system before they can use system features to the degree authorized.
Authentication and authorization work hand-in-hand to protect system resources. Authorization is handled in many
different ways, from access control lists (ACLs), to HDFS extended ACLs, to role-based access controls (RBAC) using
Sentry. See Authorization Overview on page 29 for more information.

Several different mechanisms work together to authenticate users and services in a cluster. These vary depending on
the services configured on the cluster. Most CDH components, including Apache Hive, Hue, and Apache Impala can
use Kerberos for authentication. BothMIT andMicrosoft Active Directory Kerberos implementations can be integrated
for use with Cloudera clusters.

In addition, Kerberos credentials can be stored andmanaged in the LDAP-compliant identity service, such as OpenLDAP
and Microsoft Active Directory, a core component of Windows Server.

This section provides a brief overviewwith special focus on different deploymentmodels availablewhen usingMicrosoft
Active Directory for Kerberos authentication or when integrating MIT Kerberos and Microsoft Active Directory.

Cloudera does not provide a Kerberos implementation. Cloudera clusters can be configured to use Kerberos for
authentication, either MIT Kerberos or Microsoft Server Active Directory Kerberos, specifically the Key Distribution
Center or KDC. The Kerberos instance must be setup and operational before you can configure the cluster to use it.
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Gathering all the configuration details about the KDC—or having the Kerberos administrator available to help during
the setup process—is an important preliminary task involved with integrating the cluster and Kerberos regardless of
the deployment model.

Kerberos Overview

In simple terms, Kerberos is an authentication protocol that relies on cryptographic mechanisms to handle interactions
between a requesting client and server, greatly reducing the risk of impersonation. Passwords are not stored locally
nor sent over the network in the clear. The password users enter when logging in to their systems is used to unlock a
local mechanism that is then used in a subsequent interaction with a trusted third-party to grant a user a ticket (with
a limited lifetime) that is used to authenticate with requested services. After the client and server processes prove
their respective identities to each other, communications are encrypted to ensure privacy and data integrity.

The trusted third-party is the Kerberos Key Distribution Center (KDC), the focal point for Kerberos operations which
also provides the Authentication Service and the Ticket Granting Service (TGS) for the system. Briefly, the TGS issues
a ticket to the requesting user or service which is then presented to the requested service that proves the user (or
service) identity for the ticket lifetime (by default, 10 hours). There are many nuances to Kerberos, including defining
the principals that identify users and services for the system, ticket renewal, delegated token handling, to name a few.
See Kerberos Security Artifacts Overview on page 40.

Furthermore, these processes occur for the most part completely transparently. For example, business users of the
cluster simply enter their password when they log in, and the ticket-handling, encryption, and other details take place
automatically, behind the scenes. Additionally, users are authenticated not only to a single service target, but to the
network as a whole thanks to the tickets and other mechanisms at work in the Kerberos infrastructure.

Kerberos Deployment Models

Credentials needed for Kerberos authentication can be stored and managed in an LDAP-compliant identity/directory
service, such as OpenLDAP or Microsoft Active Directory.

At one time a stand-alone service offering from Microsoft, Active Directory services are now packaged as part of the
Microsoft Server Domain Services. In the early 2000s,Microsoft replaced its NT LANManager authenticationmechanism
with Kerberos. That means that sites running Microsoft Server can integrate their clusters with Active Directory for
Kerberos and have the credentials stored in the LDAP directory on the same server.

This section provides overviews of the different deployment models available for integrating Kerberos authentication
with Cloudera clusters, with some of the advantages and disadvantages of the available approaches.

Local MIT KDC

This approach uses anMIT KDC that is local to the cluster. Users and services authenticate to the local KDC before they
can interact with the CDH components on the cluster.

Architecture Summary

• An MIT KDC and a separate Kerberos realm is deployed locally to the CDH cluster. The local MIT KDC is typically
deployed on a Utility host. Additional replicated MIT KDCs for high-availability are optional.

• All cluster hosts must be configured to use the local MIT Kerberos realm using the krb5.conf file.
• All service and user principalsmust be created in the local MIT KDC and Kerberos realm.
• The local MIT KDC will authenticate both the service principals (using keytab files) and user principals (using

passwords).
• ClouderaManager connects to the localMIT KDC to create andmanage the principals for the CDH services running

on the cluster. To do this Cloudera Manager uses an admin principal and keytab that is created during the setup
process. This step has been automated by the Kerberos wizard. See Enabling Kerberos Authentication Using the
Wizard for details, or see How to Configure Clusters to Use Kerberos for Authentication for information about
creating an admin principal manually.

• The localMIT KDC administrator typically creates all other user principals. However, the ClouderaManager Kerberos
wizard can create the principals and keytab files automatically.
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ConsPros

This mechanism is not integrated with central
authentication system.

The authentication mechanism is isolated from the rest
of the enterprise.

User and service principals must be created in the local
MIT KDC, which can be time-consuming.

This is fairly easy to setup, especially if you use the
Cloudera Manager Kerberos wizard that automates
creation and distribution of service principals and keytab
files.

The local MIT KDC can be a single point of failure for the
cluster unless replicated KDCs can be configured for
high-availability.

The local MIT KDC is yet another authentication system
to manage.

Local MIT KDC with Active Directory Integration

This approach uses an MIT KDC and Kerberos realm that is local to the cluster. However, Active Directory stores the
user principals that will access the cluster in a central realm. Users will have to authenticate with this central AD realm
to obtain TGTs before they can interact with CDH services on the cluster. Note that CDH service principals reside only
in the local KDC realm.

Architecture Summary

• An MIT KDC and a distinct Kerberos realm is deployed locally to the CDH cluster. The local MIT KDC is typically
deployed on a Utility host and additional replicated MIT KDCs for high-availability are optional.

• All cluster hosts are configured with both Kerberos realms (local and central AD) using the krb5.conf file. The
default realm should be the local MIT Kerberos realm.
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• Service principals should be created in the localMIT KDC and the local Kerberos realm. ClouderaManager connects
to the local MIT KDC to create and manage the principals for the CDH services running on the cluster. To do this,
ClouderaManager uses an admin principal and keytab that is created during the security setup. This step has been
automated by the Kerberos wizard.

• A one-way, cross-realm trust must be set up from the local Kerberos realm to the central AD realm containing the
user principals that require access to the CDH cluster. There is no need to create the service principals in the
central AD realm and no need to create user principals in the local realm.

ConsPros

The local MIT KDC can be a single point of failure (SPOF)
for the cluster. Replicated KDCs can be configured for
high-availability.

The local MIT KDC serves as a shield for the central Active
Directory from the many hosts and services in a CDH
cluster. Service restarts in a large cluster create many
simultaneous authentication requests. If Active Directory
is unable to handle the spike in load, then the cluster can
effectively cause a distributed denial of service (DDOS)
attack.
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ConsPros

The local MIT KDC is yet another authentication system
to manage.

This is fairly easy to setup, especially if you use the
Cloudera Manager Kerberos wizard that automates
creation and distribution of service principals and keytab
files.

Active Directory administrators will only need to be
involved to configure the cross-realm trust during setup.

Integration with central Active Directory for user principal
authentication results in a more complete authentication
solution.

Allows for incremental configuration. Hadoop security can
be configured and verified using local MIT KDC
independently of integrating with Active Directory.

Using a Centralized Active Directory Service

This approach uses the central Active Directory as the KDC. No local KDC is required. Before you decide upon an AD
KDC deployment, make sure you are aware of the following possible ramifications of that decision.

Architecture Summary

• All service and user principals are created in the Active Directory KDC.
• All cluster hosts are configured with the central AD Kerberos realm using krb5.conf.
• Cloudera Manager connects to the Active Directory KDC to create and manage the principals for the CDH services

running on the cluster. To do this, Cloudera Manager uses a principal that has the privileges to create other
accounts within the given Organisational Unit (OU). (This step has been automated by the Kerberos wizard.)

• All service and user principals are authenticated by the Active Directory KDC.
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Note: If it is not possible to create the ClouderaManager admin principal with the required privileges
in the Active Directory KDC, then the CDH services principals will need to be created manually. The
corresponding keytab files should then be stored securely on the Cloudera Manager Server host.
Cloudera Manager's Custom Kerberos Keytab Retrieval script can be used to retrieve the keytab files
from the local filesystem.

Recommendations for Active Directory KDC

Several different subsystems are involved in servicing authentication requests, including the Key Distribution Center
(KDC), Authentication Service (AS), and Ticket Granting Service (TGS). The more nodes in the cluster and the more
services provided, the heavier the traffic between these services and the services running on the cluster.

As a general guideline, Cloudera recommends using a dedicated Active Directory instance (Microsoft Server Domain
Services) for every 100 nodes in the cluster. However, this is just a loose guideline. Monitor utilization and deploy
additional instances as needed to meet the demand.
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By default, Kerberos uses TCP for client/server communicationwhich guarantees delivery but is not as fast at delivering
packets as UDP. To override this setting and let Kerberos try UDP before TCP, modify the Kerberos configuration file
(krb5.conf) as follows:

[libdefaults]
udp_preference_limit = 1
...

This is especially useful if the domain controllers are not on the same subnet as the cluster or are separated by firewalls.

In general, Cloudera recommends setting up the Active Directory domain controller (Microsoft Server Domain Services)
on the same subnet as the cluster and never over a WAN connection. Separating the cluster from the KDC running on
the Active Directory domain controller results in considerable latency and affects cluster performance.

Troubleshooting cluster operations when Active Directory is being used for Kerberos authentication requires
administrative access to the Microsoft Server Domain Services instance. Administrators may need to enable Kerberos
event logging on the Microsoft Server KDC to resolve issues.

Deleting ClouderaManager roles or nodes requiresmanually deleting the associate Active Directory accounts. Cloudera
Manager cannot delete entries from Active Directory.

Identity Integration with Active Directory

A core requirement for enabling Kerberos security in the platform is that users have accounts on all cluster processing
nodes. Commercial products such as Centrify or Quest Authentication Services (QAS) provide integration of all cluster
hosts for user and group resolution to Active Directory. These tools support automated Kerberos authentication on
login by users to a Linux host with AD. For sites not using Active Directory, or sites wanting to use an open source
solution, the Site Security Services Daemon (SSSD) can be used with either AD or OpenLDAP compatible directory
services and MIT Kerberos for the same needs.

For third-party providers, you may have to purchase licenses from the respective vendors. This procedure requires
some planning as it takes time to procure these licenses and deploy these products on a cluster. Care should be taken
to ensure that the identity management product does not associate the service principal names (SPNs) with the host
principals when the computers are joined to the AD domain. For example, Centrify by default associates the HTTP SPN
with the host principal. So the HTTP SPN should be specifically excluded when the hosts are joined to the domain.

You will also need to complete the following setup tasks in AD:

• Active Directory Organizational Unit (OU) and OU user - A separate OU in Active Directory should be created
along with an account that has privileges to create additional accounts in that OU.

• Enable SSL for AD - Cloudera Manager should be able to connect to AD on the LDAPS (TCP 636) port.

• Principals and Keytabs - In a direct-to-AD deployment that is set up using the Kerberos wizard, by default, all
required principals and keytabs will be created, deployed and managed by Cloudera Manager. However, if for
some reason you cannot allow ClouderaManager tomanage your direct-to-AD deployment, then unique accounts
should be manually created in AD for each service running on each host and keytab files must be provided for the
same. These accounts should have the AD User Principal Name (UPN) set to service/fqdn@REALM, and the
Service Principal Name (SPN) set to service/fqdn. The principal name in the keytab files should be the UPN of
the account. The keytab files should follow the naming convention:  servicename_fqdn.keytab. The following
principals and keytab files must be created for each host they run on: Hadoop Users (user:group) and Kerberos
Principals on page 113.

• AD Bind Account - Create an AD account that will be used for LDAP bindings in Hue, Cloudera Manager and
Cloudera Navigator.

• AD Groups for Privileged Users - Create AD groups and add members for the authorized users, HDFS admins and
HDFS superuser groups.

• Authorized users – A group consisting of all users that need access to the cluster
• HDFS admins – Groups of users that will run HDFS administrative commands
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• HDFS super users – Group of users that require superuser privilege, that is, read/wwrite access to all data
and directories in HDFS

Putting regular users into the HDFS superuser group is not recommended. Instead, an account that
administrators escalate issues to, should be part of the HDFS superuser group.

• AD Groups for Role-Based Access to Cloudera Manager and Cloudera Navigator - Create AD groups and add
members to these groups so you can later configure role-based access to ClouderaManager and ClouderaNavigator.

• ADTest Users andGroups - At least one existing AD user and the group that the user belongs to should be provided
to test whether authorization rules work as expected.

Using TLS/SSL for Secure Keytab Distribution

The Kerberos keytab file is transmitted among the hosts in the Cloudera Manager cluster, between Cloudera Manager
Server and Cloudera Manager Agent hosts. To keep this sensitive data secure, configure Cloudera Manager Server and
the Cloudera Manager Agent hosts for encrypted communications using TLS/SSL. See Encrypting Data in Transit on
page 142 for details.

Using the Wizard or Manual Process to Configure Kerberos Authentication

Cloudera does not provide a Kerberos implementation but uses an existing Kerberos deployment to authenticate
services and users. The Kerberos server may be set up exclusively for use by the cluster (for example, Local MIT KDC
on page 17) or may be a distributed Kerberos deployment used by other applications in the organization.

Regardless of the deployment model, the Kerberos instance must be operational before the cluster can be configured
to use it. In addition, the cluster itself should also be operational and ideally, configured to use TLS/SSL for Cloudera
Manager Server and Cloudera Manager Agent hosts, as mentioned above.

When you are ready to integrate the cluster with your organization's MIT KDC or Active Directory KDC, you can do so
using the wizard provided in Cloudera Manager Server or by following a manual process, as follows:

• Enabling Kerberos Authentication for CDH on page 51
• How to Configure Clusters for Kerberos Authentication

Authentication Mechanisms used by Cluster Components

Authentication Mechanism SupportedComponent or Product

Kerberos (partial)Accumulo

Kerberos (used to authenticate Cloudera Manager to Kerberos-protected
services), LDAP, SAML

Backup and Disaster Recovery

Kerberos (used to authenticate Cloudera Manager to Kerberos-protected
services), LDAP, SAML

Cloudera Manager

Active Directory, OpenLDAP, SAMLCloudera Navigator

Kerberos (starting CDH 5.4)Flume

Kerberos, user-based authentication required for HBase Thrift and REST clientsHBase

Kerberos, SPNEGO (HttpFS)HDFS

NoneHiveServer

Kerberos, LDAP, Custom/pluggable authenticationHiveServer2

KerberosHive Metastore

Kerberos, LDAP, SAML, Custom/pluggable authenticationHue

Kerberos, LDAP, SPNEGO (Impala Web Console)Impala
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Authentication Mechanism SupportedComponent or Product

KerberosKudu

Kerberos (also see HDFS)MapReduce

Kerberos, SPNEGOOozie

KerberosPig

Kerberos, SPNEGOSearch

KerberosSentry

KerberosSpark

KerberosSqoop

Kerberos (as of CDH 5.4)Sqoop2

Kerberos (also see HDFS)YARN

KerberosZookeeper

Encryption Overview

Note: This page contains references to CDH 5 components or features that have been removed from
CDH6. These references are only applicable if you aremanaging a CDH5 clusterwith ClouderaManager
6. For more information, see Deprecated Items.

Encryption is a process that uses digital keys to encode various components—text, files, databases, passwords,
applications, or network packets, for example—so that only the appropriate entity (user, system process, and so on)
can decode (decrypt) the item and view, modify, or add to the data. Cloudera provides encryption mechanisms to
protect data persisted to disk or other storage media (data at rest encryption or simply, data encryption) and as it
moves over the network (data in transit encryption).

Data encryption is mandatory in government, health, finance, education, and many other environments. For example,
the Federal Information Security Management Act (FISMA) governs patient privacy concerns and the Payment Card
Industry Data Security Standard (PCI DSS) regulates information security for credit-card processors. These are just two
examples.

The vast quantity of data contained in Cloudera clusters, deployed usingmany different components,must nonetheless
support whatever degree of privacy, confidentiality, and data integrity is required by the use case. The encryption
mechanisms supported by Cloudera and discussed in this overview aim to do just that.

Protecting Data At-Rest

Protecting data at rest typically means encrypting the data when it is stored on disk and letting authorized users and
processes—and only authorized users and processes—to decrypt the data when needed for the application or task at
hand. With data-at-rest encryption, encryption keys must be distributed and managed, keys should be rotated or
changed on a regular basis (to reduce the risk of having keys compromised), and many other factors complicate the
process.

However, encrypting data alonemay not be sufficient. For example, administrators and others with sufficient privileges
may have access to personally identifiable information (PII) in log files, audit data, or SQL queries. Depending on the
specific use case—in hospital or financial environment, the PII may need to be redacted from all such files, to ensure
that users with privileges on the logs and queries that might contain sensitive data are nonetheless unable to view
that data when they should not.

Cloudera provides complementary approaches to encrypting data at rest, and provides mechanisms to mask PII in log
files, audit data, and SQL queries.
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Encryption Options Available

Cloudera provides severalmechanisms to ensure that sensitive data is secure. CDHprovides transparentHDFS encryption,
ensuring that all sensitive data is encrypted before being stored on disk. HDFS encryption when combined with the
enterprise-grade encryption key management of Navigator Key Trustee enables regulatory compliance for most
enterprises. For Cloudera Enterprise, HDFS encryption can be augmented by Navigator Encrypt to secure metadata,
in addition to data. Cloudera clusters that use these solutions run as usual and have very low performance impact,
given that data nodes are encrypted in parallel. As the cluster grows, encryption grows with it.

Additionally, this transparent encryption is optimized for the Intel chipset for high performance. Intel chipsets include
AES-NI co-processors, which provide special capabilities that make encryption workloads run extremely fast. Cloudera
leverages the latest Intel advances for even faster performance.

The Key Trustee KMS, used in conjunction with Key Trustee Server and Key HSM, provides HSM-based protection of
stored keymaterial. The Key Trustee KMS generates encryption zone keymaterial locally on the KMS and then encrypts
this key material using an HSM-generated key. Navigator HSM KMS services, in contrast, rely on the HSM for all
encryption zone key generation and storage. When using the Navigator HSM KMS, encryption zone key material
originates on the HSM and never leaves the HSM. This allows for the highest level of key isolation, but requires some
overhead for network calls to the HSM for key generation, encryption and decryption operations. The Key Trustee KMS
remains the recommended key management solution for HDFS encryption for most production scenarios.

The figure below shows an example deployment that uses:

• Cloudera Transparent HDFS Encryption to encrypt data stored on HDFS
• Navigator Encrypt for all other data (including metadata, logs, and spill data) associated with Cloudera Manager,

Cloudera Navigator, Hive, and HBase
• Navigator Key Trustee for robust, fault-tolerant key management

In addition to applying encryption to the data layer of a Cloudera cluster, encryption can also be applied at the network
layer, to encrypt communications among nodes of the cluster. See Encryption Mechanisms Overview on page 28 for
more information.

Encryption does not prevent administrators with full access to the cluster from viewing sensitive data. To obfuscate
sensitive data, including PII, the cluster can be configured for data redaction.
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Data Redaction for Cloudera Clusters

Redaction is a process that obscures data. It can help organizations comply with industry regulations and standards,
such as PCI (Payment Card Industry) and HIPAA, by obfuscating personally identifiable information (PII) so that is not
usable except by those whose jobs require such access. For example, HIPAA legislation requires that patient PII not be
available to anyone other than appropriate physician (and the patient), and that any patient's PII cannot be used to
determine or associate an individual's identity with health data. Data redaction is one process that can help ensure
this privacy, by transforming PII to meaningless patterns—for example, transforming U.S. social security numbers to
XXX-XX-XXXX strings.

Data redaction works separately from Cloudera encryption techniques, which do not preclude administrators with full
access to the cluster from viewing sensitive user data. It ensures that cluster administrators, data analysts, and others
cannot see PII or other sensitive data that is not within their job domain and at the same time, it does not prevent
users with appropriate permissions from accessing data to which they have privileges.

See How to Enable Sensitive Data Redaction for details.

Protecting Data In-Transit

For data-in-transit, implementing data protection and encryption is relatively easy. Wire encryption is built into the
Hadoop stack, such as SSL, and typically does not require external systems. This data-in-transit encryption is built using
session-level, one-time keys, by means of a session handshake with immediate and subsequent transmission. Thus,
data-in-transit avoids much of the key management issues associated with data-at-rest due the temporal nature of
the keys, but it does rely on proper authentication; a certificate compromise is an issue with authentication, but can
compromise wire encryption. As the name implies, data-in-transit covers the secure transfer and intermediate storage
of data. This applies to all process-to-process communication, within the same node or between nodes. There are
three primary communication channels:

• HDFS Transparent Encryption: Data encrypted using HDFS Transparent Encryption is protected end-to-end. Any
data written to and from HDFS can only be encrypted or decrypted by the client. HDFS does not have access to
the unencrypted data or the encryption keys. This supports both, at-rest encryption aswell as in-transit encryption.

• Data Transfer: The first channel is data transfer, including the reading and writing of data blocks to HDFS. Hadoop
uses a SASL-enabled wrapper around its native direct TCP/IP-based transport, called DataTransportProtocol,
to secure the I/O streams within an DIGEST-MD5 envelope (For steps, see Configuring Encrypted Transport for
HDFS on page 186). This procedure also employs secured HadoopRPC (see Remote Procedure Calls) for the key
exchange. The HttpFS REST interface, however, does not provide secure communication between the client and
HDFS, only secured authentication using SPNEGO.

For the transfer of data between DataNodes during the shuffle phase of a MapReduce job (that is, moving
intermediate results between the Map and Reduce portions of the job), Hadoop secures the communication
channel with HTTP Secure (HTTPS) using Transport Layer Security (TLS). See Configuring TLS/SSL for HDFS, YARN
and MapReduce on page 160.

• Remote Procedure Calls: The second channel is system calls to remote procedures (RPC) to the various systems
and frameworks within a Hadoop cluster. Like data transfer activities, Hadoop has its own native protocol for RPC,
called HadoopRPC, which is used for Hadoop API client communication, intra-Hadoop services communication,
as well as monitoring, heartbeats, and other non-data, non-user activity. HadoopRPC is SASL-enabled for secured
transport and defaults to Kerberos andDIGEST-MD5depending on the type of communication and security settings.
For steps, see Configuring Encrypted Transport for HDFS on page 186.

• User Interfaces: The third channel includes the various web-based user interfaces within a Hadoop cluster. For
secured transport, the solution is straightforward; these interfaces employ HTTPS.

TLS/SSL Certificates Overview

Certificates can be signed in one three different ways:

Usage NoteType

Recommended. Using certificates signedby a trusted public CA simplifies deployment because
the default Java client already trusts most public CAs. Obtain certificates from one of the

Public CA-signed
certificates
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Usage NoteType

trusted well-known (public) CAs, such as Symantec and Comodo, as detailed in Generate TLS
Certificates on page 151

Obtain certificates from your organization's internal CA if your organization has its own.
Using an internal CA can reduce costs (although cluster configurationmay require establishing

Internal CA-signed
certificates

the trust chain for certificates signed by an internal CA, depending on your IT infrastructure).
See Configuring TLS Encryption for Cloudera Manager on page 151 for information about
establishing trust as part of configuring a Cloudera Manager cluster.

Not recommended for production deployments. Using self-signed certificates requires
configuring each client to trust the specific certificate (in addition to generating and

Self-signed certificates

distributing the certificates). However, self-signed certificates are fine for non-production
(testing or proof-of-concept) deployments. See How to Use Self-Signed Certificates for TLS
on page 361 for details.

For more information on setting up SSL/TLS certificates, see Encrypting Data in Transit on page 142.

TLS/SSL Encryption for CDH Components

Cloudera recommends securing a cluster using Kerberos authentication before enabling encryption such as SSL on a
cluster. If you enable SSL for a cluster that does not already have Kerberos authentication configured, a warning will
be displayed.

Hadoop services differ in their use of SSL as follows:

• HDFS, MapReduce, and YARN daemons act as both SSL servers and clients.
• HBase daemons act as SSL servers only.
• Oozie daemons act as SSL servers only.
• Hue acts as an SSL client to all of the above.

Daemons that act as SSL servers load the keystores when starting up. When a client connects to an SSL server daemon,
the server transmits the certificate loaded at startup time to the client, which then uses its truststore to validate the
server’s certificate.

For information on setting up SSL/TLS for CDH services, see Configuring TLS/SSL Encryption for CDH Services on page
160.

Data Protection within Hadoop Projects

The table below lists the various encryption capabilities that can be leveraged by CDH components and Cloudera
Manager.

Encryption for Data-at-Rest

(HDFS Encryption + Navigator Encrypt +
Navigator Key Trustee)

Encryption for Data-in-TransitProject

YesSASL (RPC), SASL (DataTransferProtocol)HDFS

YesSASL (RPC), HTTPS (encrypted shuffle)MapReduce

YesSASL (RPC)YARN

YesPartial - Only for RPCs andWeb UI (Not directly
configurable in Cloudera Manager)

Accumulo

YesTLS (Avro RPC)Flume

YesSASL - For web interfaces, inter-component
replication, theHBase shell and the REST, Thrift
1 and Thrift 2 interfaces

HBase
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Encryption for Data-at-Rest

(HDFS Encryption + Navigator Encrypt +
Navigator Key Trustee)

Encryption for Data-in-TransitProject

YesSASL (Thrift), SASL (JDBC), TLS (JDBC, ODBC)HiveServer2

YesTLSHue

YesTLS or SASL between impalad and clients, and
between the Impala-related daemons running
on different nodes in the cluster

Impala

YesTLSOozie

YesN/APig

YesTLSSearch

YesSASL (RPC)Sentry

YesNoneSpark

YesPartial - Depends on theRDBMSdatabase driver
in use

Sqoop

YesPartial - You can encrypt the JDBC connection
depending on the RDBMS database driver

Sqoop2

NoSASL (RPC)ZooKeeper

YesTLS - Does not include monitoringCloudera Manager

YesTLS - Also see Cloudera ManagerCloudera Navigator

YesTLS - Also see Cloudera ManagerBackup and Disaster
Recovery

Encryption Mechanisms Overview

Data at rest and data in transit encryption function at different technology layers of the cluster:

DescriptionLayer

Applied by theHDFS client software, HDFS Transparent Encryption lets you encrypt specific
folders contained in HDFS. To securely store the required encryption keys, Cloudera

Application

recommends using Cloudera Navigator Key Trustee Server in conjunction with HDFS
encryption. See Enabling HDFS Encryption Using Navigator Key Trustee Server on page 200
for details.

Data stored temporarily on the local filesystemoutsideHDFS by CDH components (including
Impala, MapReduce, YARN, or HBase) can also be encrypted. See Configuring Encryption
for Data Spills on page 302 for details.

At the LinuxOS filesystem layer, encryption can be applied to an entire volume. For example,
Cloudera Navigator Encrypt can encrypt data inside and outside HDFS, such as temp/spill

Operating System

files, configuration files, and databases that store metadata associated with a CDH cluster.
Cloudera Navigator Encrypt operates as a Linux kernel module, part of the operating
system. Navigator Encrypt requires a license for Cloudera Navigator andmust be configured
to use Navigator Key Trustee Server.

Network communications between client processes and server processes (HTTP, RPC, or
TCP/IP services) can be encrypted using industry-standard TLS/SSL as detailed in Encrypting
Data in Transit on page 142.

Network
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Here are some good starting places for more information about encryption for Cloudera clusters:

• Data at rest encryption

– Cloudera Navigator Encrypt
– HDFS Transparent Encryption
– How to Configure Encryption for Amazon S3

• Data in transit encryption

– How to Configure TLS Encryption for Cloudera Manager (a complete step-by-step guide)

Authorization Overview

Note: This page contains references to CDH 5 components or features that have been removed from
CDH6. These references are only applicable if you aremanaging a CDH5 clusterwith ClouderaManager
6. For more information, see Deprecated Items.

Authorization is one of the fundamental security requirements of any computing environment. Its goal is to ensure
that only the appropriate people or processes can access, view, use, control, or change specific resources, services, or
data. In any cluster deployed to meet specific workloads using various CDH components (Hive, HDFS, Impala, and so
on), different authorization mechanisms can ensure that only authorized users or processes can access data, systems,
and other resources as needed. Ideally, authorization mechanisms can leverage the authentication mechanisms, so
that when users login to a system—a cluster, for example—they are transparently authorized based on their identity
across the system for the applications, data, and other resources they are authorized to use.

For example, Cloudera CDH clusters can be configured to leverage the user and group accounts that exist in the
organization's Active Directory (or other LDAP-accessible directory) instance.

The various possible configurations and integrations are discussed later in this guide.

Authorization Mechanisms in Hadoop

Hadoop supports several authorization mechanisms, including:

• Traditional POSIX-style permissions on files and directories. Each directory and file has a single owner and group
with basic permissions that can be set to read, write, execute (at the file level). Directories have an additional
permission that enables access to child directories.

• Access Control Lists (ACL) for management of services and resources. For example, Apache HBase uses ACLs to
authorize various operations (READ, WRITE, CREATE, ADMIN) by column, column family, and column family
qualifier. HBase ACLs are granted and revoked to users and groups. Fine-grained permissions can be applied to
HDFS files using HDFS Extended ACLs on page 127 which enable setting different permissions for specific named
users and named groups.

• Role-Based Access Control (RBAC) for certain services with advanced access controls to data. Apache Sentry
provides role-based access control for the cluster, including access to Hive, Impala, and Solr services. See
Authorization With Apache Sentry on page 132 for more information.

POSIX Permissions

Most services running on Hadoop clusters, such as the command-line interface (CLI) or client applications that use
Hadoop API, directly access data stored within HDFS. HDFS uses POSIX-style permissions for directories and files; each
directory and file is assigned a single owner and group. Each assignment has a basic set of permissions available; file
permissions are read, write, and execute, and directories have an additional permission to determine access to child
directories.

Ownership and group membership for a given HDFS asset determines a user’s privileges. If a given user fails either of
these criteria, they are denied access. For services that may attempt to access more than one file, such asMapReduce,
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Cloudera Search, and others, data access is determined separately for each file access attempt. File permissions in
HDFS are managed by the NameNode.

Access Control Lists

Hadoop also maintains general access controls for the services themselves in addition to the data within each service
and in HDFS. Service access control lists (ACL) are typically defined within the global hadoop-policy.xml file and range
fromNameNode access to client-to-DataNode communication. In the context ofMapReduce and YARN, user and group
identifiers form the basis for determining permission for job submission or modification.

In addition, with MapReduce and YARN, jobs can be submitted using queues controlled by a scheduler, which is one
of the components comprising the resource management capabilities within the cluster. Administrators define
permissions to individual queues using ACLs. ACLs can also be defined on a job-by-job basis. Like HDFS permissions,
local user accounts and groups must exist on each executing server, otherwise the queues will be unusable except by
superuser accounts.

Apache HBase also uses ACLs for data-level authorization. HBase ACLs authorize various operations (READ, WRITE,
CREATE, ADMIN) by column, column family, and column family qualifier. HBase ACLs are granted and revoked to both
users and groups. Local user accounts are required for proper authorization, similar to HDFS permissions.

Apache ZooKeeper also maintains ACLs to the information stored within the DataNodes of a ZooKeeper data tree.

Role-Based Access Control with Apache Sentry

For fine-grained access to data accessible using schema—that is, data structures described by theApacheHiveMetastore
and used by computing engines like Hive and Impala, as well as collections and indices within Cloudera Search—CDH
supports Apache Sentry, which offers a role-based privilege model for this data and its given schema. Apache Sentry
is a role-based authorization module for Hadoop. Sentry lets you configure explicit privileges for authenticated users
and applications on a Hadoop cluster. Sentry is integrated natively with Apache Hive, Apache Solr, HDFS (for Hive table
data), Hive Metastore/HCatalog, and Impala.

Sentry comprises a pluggable authorization engine for Hadoop components. It lets you define authorization rules to
validate requests for access to resources from users or applications. The authorization holds the rules and privileges,
but it's the engines that apply the rules at runtime.

Architecture Overview

Sentry Components

The subsystems nvolved in the authorization process:

• Sentry Server—An RPC server that manages authorization metadata stored in a database. It supports interfaces
to securely retrieve and manipulate the metadata.

• Data Engine

This is a data processing application such as Hive or Impala that needs to authorize access to data or metadata
resources. The data engine loads the Sentry plugin and all client requests for accessing resources are intercepted
and routed to the Sentry plugin for validation.

• Sentry Plugin

The Sentry plugin runs in the data engine. It offers interfaces to manipulate authorization metadata stored in the
Sentry Server, and includes the authorization policy engine that evaluates access requests using the authorization
metadata retrieved from the server.
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Key Concepts

• Authentication - Verifying credentials to reliably identify a user
• Authorization - Limiting the user’s access to a given resource
• User - Individual identified by underlying authentication system
• Group - A set of users, maintained by the authentication system
• Privilege - An instruction or rule that allows access to an object
• Role - A set of privileges; a template to combine multiple access rules
• Authorization models - Defines the objects to be subject to authorization rules and the granularity of actions

allowed. For example, in the SQL model, the objects can be databases or tables, and the actions are SELECT,
INSERT, and CREATE. For the Search model, the objects are indexes, collections and documents; the access
modes are query and update.

User Identity and Group Mapping

Sentry relies on underlying authentication systems such as Kerberos or LDAP to identify the user. It also uses the group
mapping mechanism configured in Hadoop to ensure that Sentry sees the same group mapping as other components
of the Hadoop ecosystem.

Consider users Alice and Bob who belong to an Active Directory (AD) group called finance-department. Bob also
belongs to a group called finance-managers. In Sentry, you first create roles and then grant privileges to these roles.
For example, you can create a role called Analyst and grant SELECT on tables Customer and Sales to this role.

The next step is to join these authentication entities (users and groups) to authorization entities (roles). This can be
done by granting the Analyst role to the finance-department group. Now Bob and Alice who are members of the
finance-department group get SELECT privilege to the Customer and Sales tables.

Role-based access control (RBAC) is a powerful mechanism to manage authorization for a large set of users and data
objects in a typical enterprise. New data objects get added or removed, users join, move, or leave organisations all the
time. RBAC makes managing this a lot easier. Hence, as an extension of the discussed previously, if Carol joins the
Finance Department, all you need to do is add her to the finance-department group in AD. This will give Carol
access to data from the Sales and Customer tables.

Unified Authorization

Another important aspect of Sentry is the unified authorization. The access control rules once defined, work across
multiple data access tools. For example, being granted the Analyst role in the previous example will allow Bob, Alice,
and others in the finance-department group to access table data from SQL engines such as Hive and Impala, as
well as using MapReduce, Pig applications or metadata access using HCatalog.

Cloudera Security | 31

Cloudera Security Overview



Sentry Integration with the Hadoop Ecosystem

As illustrated above, Apache Sentry works with multiple Hadoop components. At the heart you have the Sentry Server
which stores authorization metadata and provides APIs for tools to retrieve and modify this metadata securely.

Note that the Sentry Server only facilitates the metadata. The actual authorization decision is made by a policy engine
which runs in data processing applications such as Hive or Impala. Each component loads the Sentry plugin which
includes the service client for dealingwith the Sentry service and the policy engine to validate the authorization request.

Hive and Sentry

Consider an example where Hive gets a request to access an object in a certain mode by a client. If Bob submits the
following Hive query:

select * from production.sales

Hive will identify that user Bob is requesting SELECT access to the Sales table. At this point Hive will ask the Sentry
plugin to validate Bob’s access request. The plugin will retrieve Bob’s privileges related to the Sales table and the policy
engine will determine if the request is valid.
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Impala and Sentry

Authorization processing in Impala is similar to that in Hive. The main difference is caching of privileges. Impala’s
Catalog server manages caching schema metadata and propagating it to all Impala server nodes. This Catalog server
caches Sentry metadata as well. As a result, authorization validation in Impala happens locally and much faster.

For detailed documentation, see Enabling Sentry Authorization for Impala.

Sentry-HDFS Synchronization

Sentry-HDFS authorization is focused on Hive warehouse data - that is, any data that is part of a table in Hive or Impala.
The real objective of this integration is to expand the same authorization checks to Hivewarehouse data being accessed
from any other components such as Pig, MapReduce or Spark. At this point, this feature does not replace HDFS ACLs.
Tables that are not associated with Sentry will retain their old ACLs.
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The mapping of Sentry privileges to HDFS ACL permissions is as follows:

• SELECT privilege -> Read access on the file.
• INSERT privilege -> Write access on the file.
• ALL privilege -> Read and Write access on the file.

The NameNode loads a Sentry plugin that caches Sentry privileges as well Hive metadata. This helps HDFS to keep file
permissions and Hive tables privileges in sync. The Sentry plugin periodically polls the Sentry and Metastore to keep
the metadata changes in sync.

For example, if Bob runs a Pig job that is reading from the Sales table data files, Pig will try to get the file handle from
HDFS. At that point the Sentry plugin on the NameNode will figure out that the file is part of Hive data and overlay
Sentry privileges on top of the file ACLs. As a result, HDFS will enforce the same privileges for this Pig client that Hive
would apply for a SQL query.

See Synchronizing HDFS ACLs and Sentry Permissions, for more details.

Search and Sentry

Sentry can apply a range of restrictions to various Search tasks, such accessing data or creating collections. These
restrictions are consistently applied, regardless of the way users attempt to complete actions. For example, restricting
access to data in a collection restricts that access whether queries come from the command line, from a browser, or
through the admin console.

With Search, Sentry stores its privilege policies in a policy file (for example, sentry-provider.ini) which is stored in an
HDFS location such as hdfs://ha-nn-uri/user/solr/sentry/sentry-provider.ini.

For detailed documentation, see Configuring Sentry Authorization for Cloudera Search.

Authorization Administration

The Sentry Server supports APIs to securely manipulate roles and privileges. Both Hive and Impala support SQL
statements tomanage privileges natively. Sentry assumes that HiveServer2 and Impala run as superusers, usually called
hive and impala. To initiate top-level permissions for Sentry, an admin must login as a superuser.You can use either
Beeline or the Impala shell to execute the following sample statement:

GRANT ROLE Analyst TO GROUP finance-managers

Using Hue to Manage Sentry Permissions

Hue supports a Security app tomanage Sentry authorization. This allows users to explore and change table permissions.
Here is a video blog that demonstrates its functionality.

Integration with Authentication Mechanisms for Identity Management

Like many distributed systems, Hadoop projects and workloads often consist of a collection of processes working in
concert. In some instances, the initial user process conducts authorization throughout the entirety of the workload or
job’s lifecycle. But for processes that spawn additional processes, authorization can pose challenges. In this case, the
spawned processes are set to execute as if they were the authenticated user, that is, setuid, and thus only have the
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privileges of that user. The overarching system requires a mapping to the authenticated principal and the user account
must exist on the local host system for the setuid to succeed.

Important:

• Cloudera strongly recommends against using Hadoop's LdapGroupsMapping provider.
LdapGroupsMapping should only be used in cases where OS-level integration is not possible.
Production clusters require an identity provider that works well with all applications, not just
Hadoop. Hence, often the preferred mechanism is to use tools such as SSSD, VAS or Centrify to
replicate LDAP groups.

• Cloudera does not support the use of Winbind in production environments. Winbind uses an
inefficient approach to user/groupmapping, whichmay lead to lowperformance or cluster failures
as the size of the cluster, and the number of users and groups increases.

Irrespective of the mechanism used, user/group mappings must be applied consistently across all
cluster hosts for ease with maintenance.

System and Service Authorization - Several Hadoop services are limited to inter-service interactions and are not
intended for end-user access. These services do support authentication to protect against unauthorized or malicious
users. However, any user or, more typically, another service that has login credentials and can authenticate to the
service is authorized to perform all actions allowed by the target service. Examples include ZooKeeper, which is used
by internal systems such as YARN, Cloudera Search, and HBase, and Flume, which is configured directly by Hadoop
administrators and thus offers no user controls.

The authenticated Kerberos principals for these “system” services are checked each time they access other services
such as HDFS, HBase, and MapReduce, and therefore must be authorized to use those resources. Thus, the fact that
Flume does not have an explicit authorization model does not imply that Flume has unrestricted access to HDFS and
other services; the Flume service principals still must be authorized for specific locations of the HDFS file system.
Hadoop administrators can establish separate system users for a services such as Flume to segment and impose access
rights to only the parts of the file system for a specific Flume application.

Authorization within Hadoop Projects

Authorization CapabilitiesProject

File Permissions, Sentry*HDFS

File Permissions, Sentry*MapReduce

File Permissions, Sentry*YARN

Accumulo

NoneFlume

HBase ACLsHBase

File Permissions, SentryHiveServer2

Hue authorization mechanisms (assigning permissions to Hue apps)Hue

SentryImpala

ACLsOozie

File Permissions, Sentry*Pig

File Permissions, SentrySearch

N/ASentry

File Permissions, Sentry*Spark

N/ASqoop
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Authorization CapabilitiesProject

NoneSqoop2

ACLsZooKeeper

Cloudera Manager rolesCloudera Manager

Cloudera Navigator rolesCloudera Navigator

N/ABackup and Disaster Recovery

* Sentry HDFS plug-in; when enabled, Sentry enforces its own access permissions over files that are part of tables
defined in the Hive Metastore.

Auditing and Data Governance Overview

Note: This page contains references to CDH 5 components or features that have been removed from
CDH6. These references are only applicable if you aremanaging a CDH5 clusterwith ClouderaManager
6. For more information, see Deprecated Items.

Organizations of all kinds want to understand where data in their clusters is coming from and how it is used. Cloudera
Navigator Data Management component is a fully integrated data management and security tool for the Hadoop
platform that has been designed to meet compliance, data governance, and auditing needs of global enterprises.
Without Cloudera Navigator, Hadoop clusters rely primarily on log files for auditing. However, log files are not an
enterprise-class real-time auditing or monitoring solution. For example, log files can be corrupted by a system crash
during a write commit.

Cloudera Navigator Data Management

Cloudera Navigator captures a complete and immutable record of all system activity. An audit trail can be used to
determine the particulars—the who, what, where, and when—of a data breach or attempted breach. Auditing can be
used to not only identify a rogue administrator who deleted user data, for example, but can also be used to recover
data from a backup. Enterprises that must prove they are in compliance with HIPAA (Health Insurance Portability and
Accountability Act), PCI (Payment Card Industry Data Security Standard), or other regulations associated with sensitive
or personally identifiable data (PII) are required to produce auditing records when asked by government or other
officials, such as banking regulators.

Auditing also serves to provide a historical record of data and context for data forensics. Data stewards and curators
can use auditing reports to determine consumption and use patterns across various data sets by different user
communities, for optimizing data access.

This section provides a brief overview of functionality of Cloudera Navigator. For complete details, see Cloudera
Navigator Data Management.

Auditing

While Hadoophas historically lacked centralized cross-component audit capabilities, products such as ClouderaNavigator
add secured, real-time audit components to key data and access frameworks. Using Cloudera Navigator, administrators
can configure, collect, and view audit events, to understand who accessed what data and how.

Cloudera Navigator also lets administrators generate reports that list the HDFS access permissions granted to groups.
Cloudera Navigator tracks access permissions and actual accesses to all entities in HDFS, Hive, HBase, Impala, Sentry,
and Solr, and the Cloudera NavigatorMetadata Server itself to help answer questions such as - who has access to which
entities, which entitieswere accessed by a user, whenwas an entity accessed and bywhom,what entitieswere accessed
using a service, and which device was used to access. Cloudera Navigator auditing supports tracking access to:

• HDFS entities accessed by HDFS, Hive, HBase, Impala, and Solr services
• HBase and Impala
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• Hive metadata
• Sentry
• Solr
• Cloudera Navigator Metadata Server

Data collected from these services also provides visibility into usage patterns for users, ability to see point-in-time
permissions and how they have changed (leveraging Sentry), and review and verify HDFS permissions. Cloudera
Navigator also provides out-of-the-box integration with leading enterprise metadata, lineage, and SIEM applications.

Metadata Management

Cloudera Navigator features completemetadata storage and supports data discovery. It consolidates technicalmetadata
for all cluster data and enables automatic tagging of data based on the external sources entering the cluster. The
consolidated metadata store is searchable through the Cloudera Navigator console, a web-based unified interface.

In addition, Cloudera Navigator supports user-defined metadata that can be applied to files, tables, and individual
columns, to identify data assets for business context. The result is that data stewards can devise appropriate classification
schemes for specific business purposes and data is more easily discovered and located by users.

Furthermore, policies can be used to automatically classify and applying metadata to cluster data based on arrival,
scheduled interval, or other trigger.

Lineage

Cloudera Navigator lineage is a visualization tool for tracing data and its transformations fromupstream to downstream
through the cluster. Lineage can show the transforms that produced upstream data sources and the effect the data
has on downstream artifacts, to the column level. Cloudera Navigator tracks lineage of HDFS files, datasets, and
directories, Hive tables and columns, MapReduce and YARN jobs, Hive queries, Impala queries, Pig scripts, Oozie
workflows, Spark jobs, and Sqoop jobs.
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Integration within the Enterprise

Monitoring and reporting are only part a subset of enterprise auditing infrastructure capabilities. Enterprise policies
may mandate that audit data route be able to integrate with existing enterprise SIEM (security information and event
management) applications and other tools. Toward that end, Cloudera Navigator can deliver or export audit data
through several mechanisms:

• Using syslog as a mediator between raw-event stream generated by Hadoop cluster and the SIEM tools.
• Using a REST API for custom enterprise tools.
• Exporting data to CSV or other text file.

Auditing and Components

The table below details auditing capabilities of Cloudera Manager and CDH components.

Auditing CapabilitiesComponent

Events captured by Cloudera Navigator (including security events)HDFS

Inferred through HDFSMapReduce

Inferred through HDFSYARN

Log Files - Partial inclusion of security events; does not include non-bulk writesAccumulo

Log FilesFlume

Audit events captured by Cloudera Navigator (including security events)HBase

Audit events captured by Cloudera NavigatorHiveServer2

Inferred through underlying componentsHue

Audit events captured by Cloudera NavigatorImpala

Log FilesKafka

Log FilesOozie
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Auditing CapabilitiesComponent

Inferred through HDFSPig

Log FilesSearch

Audit events captured by Cloudera NavigatorSentry

Inferred through HDFSSpark

Log FilesSqoop

Log Files (including security events)Sqoop2

Log FilesZooKeeper

Audit events captured by Cloudera Navigator (partial capture of security events)Cloudera Manager

Audit events captured by Cloudera Navigator itselfCloudera Navigator

NoneBackup and Disaster Recovery

Security Events

Security events include a machine readable log of the following activities:

• User data read
• User data written
• Permission changes
• Configuration changes
• Login attempts
• Escalation of privileges
• Session Tracking
• Key Operations (Key Trustee)
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Authentication

Authentication is a process that requires users and services to prove their identity when trying to access a system
resource. Organizations typically manage user identity and authentication through various time-tested technologies,
including Lightweight Directory Access Protocol (LDAP) for identity, directory, and other services, such as group
management, and Kerberos for authentication.

Cloudera clusters support integration with both of these technologies. For example, organizations with existing LDAP
directory services such as Active Directory (included inMicrosoftWindows Server as part of its suite of Active Directory
Services) can leverage the organization's existing user accounts and group listings instead of creating new accounts
throughout the cluster. Using an external system such as Active Directory or OpenLDAP is required to support the user
role authorization mechanism implemented in Cloudera Navigator.

For authentication, Cloudera supports integration with MIT Kerberos and with Active Directory. Microsoft Active
Directory supports Kerberos for authentication in addition to its identity management and directory functionality, that
is, LDAP.

Kerberos provides strong authentication, strongmeaning that cryptographic mechanisms—rather than passwords
alone—are used in the exchange between requesting process and service during the authentication process.

These systems are not mutually exclusive. For example, Microsoft Active Directory is an LDAP directory service that
also provides Kerberos authentication services, and Kerberos credentials can be stored and managed in an LDAP
directory service. Cloudera Manager Server, CDH nodes, and Cloudera Enterprise components, such as Cloudera
Navigator, Apache Hive, Hue, and Impala, can all make use of Kerberos authentication.

Note: Cloudera does not provide a Kerberos implementation but rather can use MIT Kerberos or
Microsoft Server Active Directory service and its KDC for authentication.

Configuring the cluster to use Kerberos requires having administrator privileges—and access to—the Kerberos server
Key Distribution Center (KDC). The process may require debugging issues between the Cloudera Manager cluster and
the KDC.

Note: Integrating clusters to use Microsoft Active Directory as a KDC requires the Windows registry
setting for AllowTgtSessionKey to be disabled (set to 0). If this registry key has already been
enabled, users and credentials are not created—despite the "Successful" message at the end of the
configuration/integration process. Before configuring Active Directory for use as KDC, check the value
of AllowTgtSessionKey on the Active Directory instance and reset to 0 if necessary. See Registry
Key to Allow Session Keys to Be Sent in Kerberos Ticket-Granting-Ticket at Microsoft for details.

On each host operating system underlying each node in a cluster, local Linux user:group accounts are created during
installation of Cloudera Server and CDH services. To apply per-node authentication and authorization mechanism
consistently across all the nodes of a cluster, local user:group accounts are mapped to user accounts and groups in
an LDAP-compliant directory service, such as Active Directory or OpenLDAP. See Configuring LDAP Group Mappings
on page 130 for details.

To facilitate the authentication process from each host system (node in the cluster) to the LDAP directory, Cloudera
recommends using additional software mechanisms such as SSSD (Systems Security Services Daemon) or Centrify
Server Suite. See the Centrify guide Identity and Access management for Cloudera for details.

Kerberos Security Artifacts Overview
Cloudera recommends using Kerberos for authentication because native Hadoop authentication alone checks only for
valid user:groupmembership in the context of HDFS, but does not authenticate users or services across all network
resources, as does Kerberos. Unlike other mechanisms that may be far easier to deploy (see Kerberos Deployment
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Models on page 17 for details), the Kerberos protocol authenticates a requesting user or service for a specific period
of time only, and each service that the user may want to use requires the appropriate Kerberos artifact in the context
of the protocol. This section describes how Cloudera clusters use some of these artifacts, such as Kerberos principals
and keytabs for user authentication, and how delegation tokens are used by the system to authenticate jobs on behalf
of authenticated users at runtime.

Kerberos Principals

Each user and service that needs to authenticate to Kerberos needs a principal, an entity that uniquely identifies the
user or service in the context of possibly multiple Kerberos servers and related subsystems. A principal includes up to
three pieces of identifying information, starting with the user or service name (called a primary). Typically, the primary
portion of the principal consists of the user account name from the operating system, such as jcarlos for the user's
Unix account or hdfs for the Linux account associated with the service daemon on the host underlying cluster node.

Principals for users typically consist solely of the primary and the Kerberos realm name. The realm is a logical grouping
of principals tied to the same Key Distribution Center (KDC) which is configured with many of the same properties,
such as supported encryption algorithms. Large organizations may use realms as means of delegating administration
to various groups or teams for specific sets of users or functions and distributing the authentication-processing tasks
across multiple servers.

Standard practice is to use your organization's domain name as the Kerberos realm name (in all uppercase characters)
to easily distinguish it as part of a Kerberos principal, as shown in this user principal pattern:

username@REALM.EXAMPLE.COM

The combination of the primary and the realm name can distinguish one user from another. For example,
jcarlos@SOME-REALM.EXAMPLE.COM and jcarlos@ANOTHER-REALM.EXAMPLE.COMmay be unique individuals
within the same organization.

For service role instance identities, the primary is the Unix account name used by Hadoop daemons (hdfs, mapred,
and so on) followed by an instance name that identifies the specific host on which the service runs. For example,
hdfs/hostname.fqdn.example.com@SOME-REALM.EXAMPLE.COM is an example of the principal for an HDFS
service instance. The forward slash (/) separates the primary and the instance names using this basic pattern:

service-name/hostname.fqdn.example.com@REALM.EXAMPLE.COM

The HTTP principal needed for Hadoop web service interfaces does not have a Unix local account for its primary but
rather is HTTP.

An instance name can also identify users with special roles, such as administrators. For example, the principal
jcarlos@SOME-REALM.COM and the principal jcarlos/admin@SOME-REALM.COM each have their own passwords
and privileges, and they may or may not be the same individual.

For example, the principal for the HDFS service role instance running on a cluster in an organization with realms for
each geographical location might be as follows:

hdfs/hostname.fqdn.example.com@OAKLAND.EXAMPLE.COM

Generally, the service name is the Unix account name used by the given service role instance, such as hdfs or mapred,
as shown above. The HTTP principal for securing web authentication to Hadoop service web interfaces has no Unix
account, so the primary for the principal is HTTP.

Kerberos Keytabs

A keytab is a file that contains the principal and the encrypted key for the principal. A keytab file for a Hadoop daemon
is unique to each host since the principal names include the hostname. This file is used to authenticate a principal on
a host to Kerberos without human interaction or storing a password in a plain text file. Because having access to the
keytab file for a principal allows one to act as that principal, access to the keytab files should be tightly secured.
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They should be readable by a minimal set of users, should be stored on local disk, and should not be included in host
backups, unless access to those backups is as secure as access to the local host.

Delegation Tokens

Users in a Hadoop cluster authenticate themselves to the NameNode using their Kerberos credentials. However, once
the user is authenticated, each job subsequently submitted must also be checked to ensure it comes from an
authenticated user. Since there could be a time gap between a job being submitted and the job being executed, during
which the user could have logged off, user credentials are passed to the NameNode using delegation tokens that can
be used for authentication in the future.

Delegation tokens are a secret key shared with the NameNode, that can be used to impersonate a user to get a job
executed. While these tokens can be renewed, new tokens can only be obtained by clients authenticating to the
NameNode using Kerberos credentials. By default, delegation tokens are only valid for a day. However, since jobs can
last longer than a day, each token specifies a NodeManager as a renewer which is allowed to renew the delegation
token once a day, until the job completes, or for a maximum period of 7 days. When the job is complete, the
NodeManager requests the NameNode to cancel the delegation token.

Token Format

The NameNode uses a random masterKey to generate delegation tokens. All active tokens are stored in memory with
their expiry date (maxDate). Delegation tokens can either expire when the current time exceeds the expiry date, or,
they can be canceled by the owner of the token. Expired or canceled tokens are then deleted from memory. The
sequenceNumber serves as a unique ID for the tokens. The following section describes how the Delegation Token is
used for authentication.

TokenID = {ownerID, renewerID, issueDate, maxDate, sequenceNumber}
TokenAuthenticator = HMAC-SHA1(masterKey, TokenID) 
Delegation Token = {TokenID, TokenAuthenticator}

Authentication Process

To begin the authentication process, the client first sends the TokenID to the NameNode. The NameNode uses this
TokenID and the masterKey to once again generate the corresponding TokenAuthenticator, and consequently, the
Delegation Token. If the NameNode finds that the token already exists in memory, and that the current time is less
than the expiry date (maxDate) of the token, then the token is considered valid. If valid, the client and the NameNode
will then authenticate each other by using the TokenAuthenticator that they possess as the secret key, and MD5 as
the protocol. Since the client and NameNode do not actually exchange TokenAuthenticators during the process, even
if authentication fails, the tokens are not compromised.

Token Renewal

Delegation tokens must be renewed periodically by the designated renewer (renewerID). For example, if a
NodeManager is the designated renewer, the NodeManager will first authenticate itself to the NameNode. It will then
send the token to be authenticated to the NameNode. The NameNode verifies the following information before
renewing the token:

• The NodeManager requesting renewal is the same as the one identified in the token by renewerID.
• The TokenAuthenticator generated by the NameNode using the TokenID and the masterKeymatches the one

previously stored by the NameNode.
• The current time must be less than the time specified by maxDate.

If the token renewal request is successful, the NameNode sets the new expiry date to min(current time+renew
period, maxDate). If the NameNode was restarted at any time, it will have lost all previous tokens from memory.
In this case, the tokenwill be saved tomemory once again, this timewith a newexpiry date. Hence, designated renewers
must renew all tokens with the NameNode after a restart, and before relaunching any failed tasks.

A designated renewer can also revive an expired or canceled token as long as the current time does not exceedmaxDate.
The NameNode cannot tell the difference between a token that was canceled, or has expired, and one that was erased
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from memory due to a restart, since only the masterKey persists in memory. The masterKeymust be updated
regularly.

Configuring Authentication in Cloudera Manager
Cloudera clusters can be configured to use Kerberos for authentication using a manual configuration process or by
using the configuration wizard available from the Cloudera Manager Admin Console. Cloudera recommends using the
wizard because it automates many of the configuration and deployment tasks. In addition, enabling Kerberos the
cluster using the wizard also enables Kerberos authentication for all CDH components set up on the cluster.

Important: Cloudera recommends configuring clusters to use Kerberos authentication after the
Cloudera Manager Server has been configured for TLS/SSL. See How to Configure TLS Encryption for
Cloudera Manager for details.

Cloudera Manager Kerberos Wizard Overview

The Cloudera Manager Kerberos wizard starts by verifying various details of the Kerberos instance that will be used
for the cluster. Before using the wizard, be sure to gather all the details about the Kerberos service or engage the
Kerberos administrator's help during this process. The details of the Kerberos instance are many and you will need to
enter them in the wizard's pages.

The wizard requires a working KDC, either an MIT KDC or an Active Directory KDC. For configuration ease, the KDC
should be set up and working prior to starting the wizard. Administrator-level privileges to the Kerberos instance are
required to complete the prompts of the wizard, so obtain help from the Kerberos administrator if you do not have
privileges.

Given the information provided to the wizard entry screens, the configuration wizard does the following:

• Configures the necessary properties in all configuration files—core-site.xml, hdfs-site.xml,
mapred-site.xml, and taskcontroller.cfg—to identify Kerberos as the authentication mechanism for the
cluster

• Configures the necessary properties in the oozie-site.xml and hue.ini files for Oozie and Hue for Kerberos
authentication

• Creates principal and keytab files for core system users, such as hdfs and mapred, and for CDH services
• Distributes the keytab files to each host in the cluster
• Creates keytab files for oozie and hue users and deploys to the appropriate hosts that support these client-focused

services
• Distributes a configured krb5.conf to all nodes in the cluster
• Stops all services
• Deploys client configurations
• Restarts all services throughout the cluster

PrincipalsKeytab file for...

hdfs, hosthdfs

mapred, hostmapred

oozie, HTTPoozie

huehue

The host principal is the same in both hdfs and mapred keytab files.

After making the configuration changes and deploying the keytabs, and configuration files to the appropriate nodes
in the cluster, Cloudera Manager starts all services to stand up the cluster.

• To use the Kerberos configuration wizard, see Enabling Kerberos Authentication for CDH on page 51.
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• To configure Kerberos authentication manually, see the Security How-To Guides on page 317.

Cloudera Manager User Accounts

Minimum Required Role: User Administrator (also provided by Full Administrator)

Access to ClouderaManager features is controlled by user accounts. A user account identifies howa user is authenticated
and determines what privileges are granted to the user.

When you are logged in to the Cloudera Manager Admin Console, the username you are logged in as is located at the

far right of the top navigation bar—for example, if you are logged in as admin you will see .

A user with the User Administrator or Full Administrator role manages user accounts through the Administration >
Users page. View active user sessions on the User Sessions tab.

User Authentication

Cloudera Manager provides several mechanisms for authenticating users. You can configure Cloudera Manager to
authenticate users against the Cloudera Manager database or against an external authentication service. The external
authentication service can be an LDAP server (Active Directory or an OpenLDAP compatible directory), or you can
specify another external service. ClouderaManager also supports using the Security AssertionMarkup Language (SAML)
to enable single sign-on.

If you are using LDAP or another external service, you can configure ClouderaManager so that it can use bothmethods
of authentication (internal database and external service), and you can determine the order in which it performs these
searches. If you select an external authenticationmechanism, Full Administrator users can always authenticate against
the Cloudera Manager database. This prevents locking everyone out if the authentication settings are misconfigured,
such as with a bad LDAP URL.

With external authentication, you can restrict login access tomembers of specific groups, and can specify groupswhose
members are automatically given Full Administrator access to Cloudera Manager.

Users accounts in the Cloudera Manager database page show Cloudera Manager in the User Type column. User
accounts in an LDAP directory or other external authentication mechanism show External in the User Type column.

User Roles

User accounts include the user's role, which determines the Cloudera Manager features visible to the user, the actions
the user can perform, and, for certain roles, what clusters actions can be performed on. All tasks in the Cloudera
Manager documentation indicate which role is required to perform the task. For more information about user roles,
see Cloudera Manager User Roles on page 121.

Determining the Role of the Currently Logged in User

1. Click the logged-in username at the far right of the top navigation bar.
2. SelectMy Profile. The role displays. For example:
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Changing the Logged-In Internal User Password

1. Click the logged-in username at the far right of the top navigation bar and select Change Password.
2. Enter the current password and a new password twice, and then click OK.

Adding an Internal User Account

1. Select Administration > Users.
2. Click the Add User button.
3. Enter a username and password.
4. In the Role drop-down menu, select a role for the new user.
5. Click Add.

Assigning User Roles

1. Select Administration > Users.
2. Check the checkbox next to one or more usernames.
3. Select Actions for Selected > Assign User Roles.
4. In the drop-down menu, select the role.
5. Click the Assign Role button.

Changing an Internal User Account Password

1. Select Administration > Users.
2. Click the Change Password button next to a username with User Type Cloudera Manager.
3. Type the new password and repeat it to confirm.
4. Click the Update button to make the change.

Deleting Internal User Accounts

1. Select Administration > Users.
2. Check the checkbox next to one or more usernames with User Type Cloudera Manager.
3. Select Actions for Selected > Delete.
4. Click the OK button. (There is no confirmation of the action.)

Viewing User Sessions

1. Select Administration > Users.
2. Click the tab User Sessions.
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Configuring External Authentication and Authorization for Cloudera Manager

Required Role: Full Administrator

Important: This feature requires a Cloudera Enterprise license. It is not available in Cloudera Express.
See Managing Licenses for more information.

Cloudera Manager supports user authentication against an internal database and against an external service. The
following sections describe how to configure the supported external services.

Configuring Authentication Using Active Directory

1. Log in to Cloudera Manager Admin Console.
2. Select Administration > Settings.
3. Select External Authentication for the Category filter to display the settings.
4. For Authentication Backend Order, select the order in which Cloudera Manager should look up authentication

credentials for login attempts.
5. For External Authentication Type, select Active Directory.
6. In the LDAP URL property, provide the URL of the Active Directory server.
7. In the Active Directory Domain property, provide the domain to authenticate against.

LDAP URL and Active Directory are the only settings required to allow anyone in Active Directory to log in to
Cloudera Manager.

For example, if you set LDAP URL to  ldap://adserver.example.com and the Active Directory Domain to
ADREALM.EXAMPLE.COM, users can log into Cloudera Manager using just their username, such as sampleuser.
They no longer require the complete string: sampleuser@ADREALM.EXAMPLE.COM.

8. Restart the Cloudera Manager Server.

After you configure authentication for Cloudera Manager, configure authorization for the authenticated users. This is
done bymapping the authenticated users to ClouderaManager user roles. Formore information, see ClouderaManager
User Roles on page 121.

Configuring Authentication Using an LDAP-compliant Identity Service

An LDAP-compliant identity/directory service, such as OpenLDAP, provides different options for enabling Cloudera
Manager to look-up user accounts and groups in the directory:

• Use a single Distinguished Name (DN) as a base and provide a pattern (Distinguished Name Pattern) for matching
user names in the directory, or

• Search filter options let you search for a particular user based on somewhat broader search criteria – for example
Cloudera Manager users could be members of different groups or organizational units (OUs), so a single pattern
does not find all those users. Search filter options also let you find all the groups to which a user belongs, to help
determine if that user should have login or admin access.

1. Log in to Cloudera Manager Admin Console.
2. Select Administration > Settings.
3. Select External Authentication for the Category filter to display the settings.
4. For Authentication Backend Order, select the order in which Cloudera Manager should look up authentication

credentials for login attempts.
5. For External Authentication Type, select LDAP.
6. In the LDAP URL property, provide the URL of the LDAP server and (optionally) the base Distinguished Name (DN)

(the search base) as part of the URL — for example ldap://ldap-server.corp.com/dc=corp,dc=com.
7. If your server does not allow anonymous binding, provide the user DN and password to be used to bind to the

directory. These are the LDAP Bind User Distinguished Name and LDAP Bind Password properties. By default,
Cloudera Manager assumes anonymous binding.

8. Use one of the following methods to search for users and groups:

46 | Cloudera Security

Authentication



You can search using User or Group search filters, using the LDAP User Search Base, LDAP User Search Filter,
LDAP Group Search Base and LDAP Group Search Filter settings. These allow you to combine a base DN with
a search filter to allow a greater range of search targets.

For example, if youwant to authenticate userswhomay be in one ofmultiple OUs, the search filtermechanism
will allow this. You can specify the User Search Base DN as dc=corp,dc=com and the user search filter as

•

uid={0}. Then Cloudera Manager will search for the user anywhere in the tree starting from the Base DN.
Suppose you have two OUs—ou=Engineering and ou=Operations—Cloudera Manager will find User
"foo" if it exists in either of these OUs, that is, uid=foo,ou=Engineering,dc=corp,dc=com or
uid=foo,ou=Operations,dc=corp,dc=com.

You can use a user search filter along with a DN pattern, so that the search filter provides a fallback if the DN
pattern search fails.

The Groups filters let you search to determine if a DN or username is a member of a target group. In this
case, the filter you provide can be something like member={0} where {0} will be replaced with the DN of
the user you are authenticating. For a filter requiring the username, {1}may be used, as memberUid={1}.
This will return a list of groups the user belongs to, which will be compared to the list in the group properties
discussed in

• Alternatively, specify a single baseDistinguishedName (DN) and then provide a "DistinguishedNamePattern"
in the LDAP Distinguished Name Pattern property.

Use {0} in the pattern to indicate where the username should go. For example, to search for a distinguished
name where the uid attribute is the username, you might provide a pattern similar to
uid={0},ou=People,dc=corp,dc=com. Cloudera Manager substitutes the name provided at login into
this pattern and performs a search for that specific user. So if a user provides the username "foo" at the
Cloudera Manager login page, Cloudera Manager will search for the DN
uid=foo,ou=People,dc=corp,dc=com.

If you provided a base DN along with the URL, the pattern only needs to specify the rest of the DN pattern.
For example, if the URL you provide is ldap://ldap-server.corp.com/dc=corp,dc=com, and the
pattern is uid={0},ou=People, then the search DN will be uid=foo,ou=People,dc=corp,dc=com.

9. Restart the Cloudera Manager Server.

Configuring Cloudera Manager to Use LDAPS

If the LDAP server certificate has been signed by a trusted Certificate Authority, steps 1 and 2 below may not be
necessary.

1. Copy the CA certificate file to the Cloudera Manager Server host.
2. Import the CA certificate(s) from the CA certificate file to the local truststore. The default truststore is located in

the $JAVA_HOME/jre/lib/security/cacerts file. This contains the default CA information shipped with the
JDK. Create an alternate default file called jssecacerts in the same location as the cacerts file. You can now
safely append CA certificates for any private or public CAs not present in the default cacerts file, while keeping
the original file intact.

For our example, we will follow this recommendation by copying the default cacerts file into the new
jssecacerts file, and then importing the CA certificate to this alternate truststore.

cp $JAVA_HOME/jre/lib/security/cacerts $JAVA_HOME/jre/lib/security/jssecacerts

$ /usr/java/latest/bin/keytool -import -alias nt_domain_name
-keystore /usr/java/latest/jre/lib/security/jssecacerts -file path_to_CA_cert

Note: The default password for the cacerts store is changeit. The -alias does not always
need to be the domain name.
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Alternatively, you can use the Java options: javax.net.ssl.trustStore and
javax.net.ssl.trustStorePassword. Open the /etc/default/cloudera-scm-server file and add the
following options:

export CMF_JAVA_OPTS="-Xmx2G -XX:MaxPermSize=256m -XX:+HeapDumpOnOutOfMemoryError 
-XX:HeapDumpPath=/tmp 
-Djavax.net.ssl.trustStore=/usr/java/default/jre/lib/security/jssecacerts 
-Djavax.net.ssl.trustStorePassword=changeit"

3. Configure the LDAP URL property to use ldaps://ldap_server instead of ldap://ldap_server.
4. Restart the Cloudera Manager Server.

Configuring Authentication Using an External Program

Cloudera Manager can use a custom external authentication program,. Typically, this may be a custom script that
interacts with a custom authentication service. Cloudera Manager will call the external program with the username
as the first command line argument. The password is passed over stdin. Each positive value exit code can be mapped
to Cloudera Manager user roles. A negative value is returned for failure to authenticate. Valid values for the exit code
are between 0 and 127.

and a negative value is returned for a failure to authenticate.

To configure authentication using an external program:

1. Log in to Cloudera Manager Admin Console.
2. Select Administration > Settings.
3. Select External Authentication for the Category filter to display the settings.
4. For External Authentication Type, select External Program.
5. Provide a path to the external program in the External Authentication Program Path property.

After you configure authentication for Cloudera Manager, configure authorization for the authenticated users. This is
done bymapping the authenticated users to ClouderaManager user roles. Formore information, see ClouderaManager
User Roles on page 121.

Configuring Authentication Using SAML

ClouderaManager supports the Security AssertionMarkup Language (SAML), an XML-basedopen standard data format
for exchanging authentication and authorization data between parties, in particular, between an identity provider
(IDP) and a service provider (SP). The SAML specification defines three roles: the principal (typically a user), the IDP,
and the SP. In the use case addressed by SAML, the principal (user agent) requests a service from the service provider.
The service provider requests and obtains an identity assertion from the IDP. On the basis of this assertion, the SP can
make an access control decision—in other words it can decide whether to perform some service for the connected
principal.

The primary SAML use case is called web browser single sign-on (SSO). A user wielding a user agent (usually a web
browser) requests a web resource protected by a SAML SP. The SP, wanting to know the identity of the requesting
user, issues an authentication request to a SAML IDP through the user agent. In the context of this terminology, Cloudera
Manager operates as a SP. This topic discusses the Cloudera Manager part of the configuration process; it assumes
that you are familiar with SAML and SAML configuration in a general sense, and that you have a functioning IDP already
deployed.
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Note:

• Cloudera Manager supports both SP- and IDP-initiated SSO.
• The logout action in Cloudera Manager will send a single-logout request to the IDP.
• SAML authentication has been tested with specific configurations of SiteMinder and Shibboleth.

While SAML is a standard, there is a great deal of variability in configuration between different
IDP products, so it is possible that other IDP implementations, or other configurations of SiteMinder
and Shibboleth, may not interoperate with Cloudera Manager.

• To bypass SSO if SAML configuration is incorrect or not working, you can login using a Cloudera
Manager local account using the URL: http://cm_host:7180/cmf/localLogin

Setting up Cloudera Manager to use SAML requires the following steps.

Preparing Files

You will need to prepare the following files and information, and provide these to Cloudera Manager:

• A Java keystore containing a private key for ClouderaManager to use to sign/encrypt SAMLmessages. For guidance
on creating Java keystores, see Understanding Keystores and Truststores on page 144.

• The SAML metadata XML file from your IDP. This file must contain the public certificates needed to verify the
sign/encrypt key used by your IDP per the SAML Metadata Interoperability Profile. For example, if you are using
the Shibboleth IdP, the metadata file is available at: https://<IdPHOST>:8080/idp/shibboleth.

Note: For guidance on how to obtain the metadata XML file from your IDP, either contact your
IDP administrator or consult the documentation for the version of the IDP you are using.

• The entity ID that should be used to identify the Cloudera Manager instance
• How the user ID is passed in the SAML authentication response:

– As an attribute. If so, what identifier is used.
– As the NameID.

• The method by which the Cloudera Manager role will be established:

– From an attribute in the authentication response:

– What identifier will be used for the attribute
– What values will be passed to indicate each role

– From an external script that will be called for each use:

– The script takes user ID as $1
– The script sets an exit code to reflect successful authentication. Valid values for the exit codes are between

0 and 127, and a negative value is returned for a failure to authenticate. These values are used in Cloudera
Manager to map authenticated users to user roles within Cloudera Manager.

Configuring Cloudera Manager

1. Log in to Cloudera Manager Admin Console.
2. Select Administration > Settings.
3. Select External Authentication for the Category filter to display the settings.
4. Set the External Authentication Type property to SAML (the Authentication Backend Order property is ignored

for SAML).
5. Set the Path to SAML IDP Metadata File property to point to the IDP metadata file.
6. Set the Path to SAML Keystore File property to point to the Java keystore prepared earlier.
7. In the SAML Keystore Password property, set the keystore password.
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8. In the Alias of SAML Sign/Encrypt Private Key property, set the alias used to identify the private key for Cloudera
Manager to use.

9. In the SAML Sign/Encrypt Private Key Password property, set the private key password.
10. Set the SAML Entity ID property if:

• There is more than one Cloudera Manager instance being used with the same IDP (each instance needs a
different entity ID).

• Entity IDs are assigned by organizational policy.

11. In the Source of User ID in SAML Response property, set whether the user ID will be obtained from an attribute
or the NameID.

If an attribute will be used, set the attribute name in the SAML attribute identifier for user ID property. The
default value is the normal OID used for user IDs and so may not need to be changed.

12. In the SAMLRole assignmentmechanism property, set whether the role assignmentwill be done from an attribute
or an external script.

• If an attribute will be used:

– In the SAML attribute identifier for user role property, set the attribute name if necessary. The default
value is the normal OID used for OrganizationalUnits and so may not need to be changed.

• If an external script will be used, set the path to that script in the Path to SAML Role Assignment Script
property. Make sure that the script is executable (an executable binary is fine - it does not need to be a shell
script).

13. Save the changes. Cloudera Manager will run a set of validations that ensure it can find the metadata XML and
the keystore, and that the passwords are correct. If you see a validation error, correct the problem before
proceeding.

14. Restart the Cloudera Manager Server.
15.

After you configure authentication for Cloudera Manager, configure authorization for the authenticated users. This is
done bymapping the authenticated users to ClouderaManager user roles. Formore information, see ClouderaManager
User Roles on page 121.

Configuring the IDP

After the Cloudera Manager Server is restarted, it will attempt to redirect to the IDP login page instead of showing the
normal CM page. This may or may not succeed, depending on how the IDP is configured. In either case, the IDP will
need to be configured to recognize CM before authentication will actually succeed. The details of this process are
specific to each IDP implementation - refer to your IDP documentation for details. If you are using the Shibboleth IdP,
information on configuring the IdP to communicate with a Service Provider is available here.

1. Download the Cloudera Manager’s SAML metadata XML file from http://hostname:7180/saml/metadata.
2. Inspect the metadata file and ensure that any URLs contained in the file can be resolved by users’ web browsers.

The IDP will redirect web browsers to these URLs at various points in the process. If the browser cannot resolve
them, authentication will fail. If the URLs are incorrect, you can manually fix the XML file or set the Entity Base
URL in the CM configuration to the right value, and then re-download the file.

3. Provide this metadata file to your IDP using whatever mechanism your IDP provides.
4. Ensure that the IDP has access to whatever public certificates are necessary to validate the private key that was

provided to Cloudera Manager earlier.
5. Ensure that the IDP is configured to provide the User ID and Role using the attribute names that ClouderaManager

was configured to expect, if relevant.
6. Ensure the changes to the IDP configuration have taken effect (a restart may be necessary).

Verifying Authentication and Authorization

1. Return to the Cloudera Manager Admin Console and refresh the login page.
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2. Attempt to log in with credentials for a user that is entitled. The authentication should complete and you should
see the Home > Status tab.

3. If authentication fails, you will see an IDP provided error message. Cloudera Manager is not involved in this part
of the process, and you must ensure the IDP is working correctly to complete the authentication.

4. If authentication succeeds but the user is not authorized to use Cloudera Manager, they will be taken to an error
page by Cloudera Manager that explains the situation. If an user who should be authorized sees this error, then
you will need to verify their role configuration, and ensure that it is being properly communicated to Cloudera
Manager, whether by attribute or external script. The Cloudera Manager log will provide details on failures to
establish a user’s role. If any errors occur during role mapping, Cloudera Manager will assume the user is
unauthorized.

Enabling Kerberos Authentication for CDH

Required Role: Cluster Administrator or Full Administrator

Cloudera Manager provides a wizard for integrating your organization's Kerberos instance with your cluster to provide
authentication services.

Kerberos must already be deployed in your organization and the Kerberos key distribution center (KDC) must be ready
to use, with a realm established. For Hue and Oozie, the Kerberos realm must support renewable tickets.

Important: Before integrating Kerberos with your cluster, configure TLS/SSL encryption between
Cloudera Manager Server and all Cloudera Manager Agent host systems in the cluster. During the
Kerberos integration process, Cloudera Manager Server sends keytab files to the Cloudera Manager
Agent hosts, and TLS/SSL encrypts the network communication so these files are protected. See
Configuring TLS Encryption for Cloudera Manager on page 151 for details.

Cloudera Manager clusters can be integrated with MIT Kerberos or with Microsoft Active Directory:

• See MIT Kerberos home and MIT Kerberos 5 Release 1.8.6 documentation for more information about MIT
Kerberos.

• See Using a Centralized Active Directory Service on page 20 and Microsoft Active Directory documentation for
more information about using Active Directory as a KDC.

For Active Directory, you must have administrative privileges to the Active Directory instance for initial setup and for
on-going management, or you will need to have the help of your AD administrator prior to and during the integration
process. For example, administrative access is needed to access the Active Directory KDC, create principals, and
troubleshoot Kerberos TGT/TGS-ticket-renewal and take care of any other issues that may arise.

Kerberos client OS-specific packages must be installed on all cluster hosts and client hosts that will authenticate using
Kerberos.

Packages RequiredOS

RHEL 7 Compatible, RHEL 6
Compatible

• openldap-clients on the Cloudera Manager Server host
• krb5-workstation, krb5-libs on ALL hosts

SLES • openldap2-client on the Cloudera Manager Server host
• krb5-client on ALL hosts

Ubuntu • ldap-utils on the Cloudera Manager Server host
• krb5-user on ALL hosts

Windows • krb5-workstation, krb5-libs on ALL hosts

See Before you Begin Using the Wizard on page 55 for more information.

Cloudera supports the Kerberos version that ships with each supported operating system listed in CDH and Cloudera
Manager Supported Operating Systems.
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Step 1: Install Cloudera Manager and CDH

Cloudera strongly recommends that you install and configure the Cloudera Manager Server and Cloudera Manager
Agents and CDH to set up a fully-functional CDH cluster before trying to configure Kerberos authentication for the
cluster.

Required user:group Settings for Security

When you install the CDH packages and the Cloudera Manager Agents on your cluster hosts, Cloudera Manager takes
some steps to provide system security such as creating the OS user:group accounts and setting directory permissions
as shown in the table below. These user accounts and directory permissions work with the Hadoop Kerberos security
requirements.

Runs These RolesThis User

NameNode, DataNodes, and Secondary NameNodehdfs

JobTracker and TaskTrackers (MR1) and Job History Server (YARN)mapred

ResourceManager and NodeManagers (YARN)yarn

Oozie Serveroozie

Hue Server, Beeswax Server, Authorization Manager, and Job Designerhue

The hdfs user has HDFS superuser privileges.

When you install the Cloudera Manager Server on the server host, a new Unix user account called cloudera-scm is
created automatically to support security. The Cloudera Manager Server uses this account to create host principals
and deploy the keytabs on your cluster.

Depending on whether you installed CDH and Cloudera Manager at the same time or not, use one of the following
sections for information on configuring directory ownerships on cluster hosts:

New Installation, Cloudera Manager and CDH Together

Installing a newClouderaManager cluster with CDH components at the same time can save you some of the user:group
configuration required if you install them separately. The installation process creates the necessary user accounts on
the Linux host system for the service daemons. At the end of the installation process when each cluster node starts
up, the Cloudera Manager Agent process on the host automatically configures the directory ownership as shown in
the table below, and the Hadoop daemons can then automatically set permissions for their respective directories. Do
not change the directory owners on the cluster. They must be configured exactly as shown below.

OwnerDirectory Specified in this Property

hdfs:hadoopdfs.name.dir

hdfs:hadoopdfs.data.dir

mapred:hadoopmapred.local.dir

mapred:hadoopmapred.system.dir in HDFS

yarn:yarnyarn.nodemanager.local-dirs

yarn:yarnyarn.nodemanager.log-dirs

oozie:oozieoozie.service.StoreService.jdbc.url (if using
Derby)

hue:hue[[database]] name

hue:huejavax.jdo.option.ConnectionURL
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Existing CDH Cluster Installed Before Cloudera Manager Installation

If you have been using HDFS and running MapReduce jobs in an existing installation of CDH before Cloudera Manager
was installed, youmust manually configure the directory ownership as shown in the table above to enable the Hadoop
daemons to set appropriate permissions on each directory. Configure directory user:group ownership exactly as shown
in the table.

Step 2: Installing JCE Policy File for AES-256 Encryption

Note: This step is not required when using JDK 1.8.0_161 or greater. JDK 1.8.0_161 enables unlimited
strength encryption by default.

By default, CentOS and Red Hat Enterprise Linux 5.5 (and higher) use AES-256 encryption for Kerberos tickets, so the
Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy File must be installed on all cluster hosts as
detailed below. Alternatively, the Kerberos instance can be modified to not use AES-256.

To install the JCE Policy file on the host system at the OS layer:

1. Download the jce_policy-x.zip.
2. Unzip the file.
3. Follow the steps in the README.txt to install it.

To use Cloudera Manager to install the JCE policy file:

1. Log in to the Cloudera Manager Admin Console.
2. Enter the following URL in the browser:

http://<Cloudera_Manager_server_host>:7180/cmf/upgrade-wizard/wizard

3. Select Install Oracle Java SE Development Kit (JDK 8).
4. Select Install Java Unlimited Strength Encryption Policy Files.
5. Click Continue.

Alternative: Disable AES-256 encryption from the Kerberos instance:

1. Remove aes256-cts:normal from the supported_enctypes field of the kdc.conf or krb5.conf file.
2. Restart the Kerberos KDC and the kadmin server so the changes take effect.

The keys of relevant principals, such as Ticket Granting Ticket principal (krbtgt/REALM@REALM),might need to change.

Note: If AES-256 remains in use despite disabling it, it may be because the aes256-cts:normal
setting existed when the Kerberos database was created. To resolve this issue, create a new Kerberos
database and then restart both the KDC and the kadmin server.

To verify the type of encryption used in your cluster:

1. For MIT KDC: On the local KDC host, type this command in the kadmin.local or kadmin shell to create a test
principal:

kadmin:  addprinc test

For Active Directory: Create a new AD account with the name, test.

2. On a cluster host, type this command to start a Kerberos session as test:

kinit test 

3. On a cluster host, type this command to view the encryption type in use:

klist -e 
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If AES is being used, output like the following is displayed after you type the klist command (note that AES-256
is included in the output):

Ticket cache: FILE:/tmp/krb5cc_0
Default principal: test@Cloudera Manager
Valid starting     Expires            Service principal
05/19/11 13:25:04  05/20/11 13:25:04  krbtgt/Cloudera Manager@Cloudera Manager
    Etype (skey, tkt): AES-256 CTS mode with 96-bit SHA-1 HMAC, AES-256 CTS mode with 
96-bit SHA-1 HMAC 

Step 3: Create the Kerberos Principal for Cloudera Manager Server

At the end of the integration process using the configurationwizard, ClouderaManager Serverwill create host principals
and deploy keytabs for all services configured on the cluster, which means that Cloudera Manager Server needs its
own principal and have privileges to create these other accounts.

Note: This task requires administrator privileges on the Kerberos instance. If you do not have
administrator privileges, ask your Kerberos administrator to setup the principal and password for you.
Youwill need to enter the principal name and password into thewizard later in the process (see Import
KDC Account Manager Credentials on page 57).

If an administrator principal to act on behalf of ClouderaManager cannot be created on the Kerberos KDC for whatever
reason, Cloudera Manager will not be able to create or manage principals and keytabs for CDH services. That means
these principals must be created manually on the Kerberos KDC and then imported (retrieved) by Cloudera Manager.
See Using a Custom Kerberos Keytab Retrieval Script on page 66 for details about this process.

Creating the Cloudera Manager Principal

The steps below summarize the process of adding a principal specifically for Cloudera Manager Server to an MIT KDC
and an Active Directory KDC. See documentation from MIT, Microsoft, or the appropriate vendor for more detailed
information.

Creating a Principal in Active Directory

Check yourMicrosoft documentation for specific details for your Active Directory KDC. The general process is as follows:

1. Create an Organizational Unit (OU) in your Active Directory KDC service that will contain the principals for use by
the CDH cluster.

2. Add a new user account to Active Directory, for example, username@EXAMPLE.COM. Set the password for the
user to never expire.

3. Use the Delegate Control wizard in Active Directory to grant this new user permission to Create, Delete, and
Manage User Accounts in the OU created in step 1. Make sure that these permissions are only applied to that
specific OU, and nowhere else.

Creating a Principal in an MIT KDC

For MIT Kerberos, administrator principals are defined in the /var/kerberos/krb5kdc/kadm5.acl file on the KDC
host. The default entry is:

*/admin@EXAMPLE.COM     *

In this example, principals that include the instance name admin designate a user account as an administrator, such
as jdoe/admin@EXAMPLE.COM.

If you modify the kadm5.acl file, such as replacing EXAMPLE.COM with your realm name, make sure to restart the
kadmin service:
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• RHEL 7 Compatible:

systemctl restart kadmin

• All Others:

service kadmin restart

Create the ClouderaManager Server administrator principal as shown below, using the admin instance name and your
realm name. If your kadm5.acl file defines a different pattern for administrators, make sure that the principal you
create matches that pattern.

For MIT Kerberos KDC on a remote host:

Note: To connect to a remote KDC using the kadmin command, your currently authenticated Kerberos
principal must be an existing Kerberos administrator. If you do not have an existing admin principal,
you must run kadmin.local as described below.

kadmin
kadmin: addprinc -pw password cloudera-scm/admin@EXAMPLE.COM

For MIT Kerberos KDC on the local host:

Note: The kadmin.local command must be run as root on the same host as the KDC.

kadmin.local
kadmin.local: addprinc -pw password cloudera-scm/admin@EXAMPLE.COM

Step 4: Enabling Kerberos Using the Wizard

Minimum Required Role: Full Administrator

To start the Kerberos wizard:

1. Go to the Cloudera Manager Admin Console and click to the right of the cluster for which you want to enable
Kerberos authentication.

2. Select Enable Kerberos.

Before you Begin Using the Wizard

The Welcome page lists steps you should have completed before starting the wizard.

• Set up a working KDC. Cloudera Manager supports authentication with MIT KDC and Active Directory.
• Configure the KDC to allow renewable tickets with non-zero ticket lifetimes.

Active Directory allows renewable tickets with non-zero lifetimes by default. You can verify this by checkingDomain
Security Settings > Account Policies > Kerberos Policy in Active Directory.

For MIT KDC, make sure you have the following lines in the kdc.conf.

max_life = 1d  
max_renewable_life = 7d

• If you are using Active Directory, make sure LDAP over TLS/SSL (LDAPS) is enabled for the Domain Controllers.
• Hostnamesmust be in lowercase. If you use uppercase letters in any hostname, the cluster services will not start

after enabling Kerberos.
• Install the OS-specific packages for your cluster listed in the table:
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Packages RequiredOS

RHEL 7 Compatible, RHEL
6 Compatible

• openldap-clients on the Cloudera Manager Server host
• krb5-workstation, krb5-libs on ALL hosts

SLES • openldap2-client on the Cloudera Manager Server host
• krb5-client on ALL hosts

Ubuntu • ldap-utils on the Cloudera Manager Server host
• krb5-user on ALL hosts

Windows • krb5-workstation, krb5-libs on ALL hosts

• Create an account for ClouderaManager that has the permissions to create other accounts in the KDC. This should
have been completed as part of Step 3: Create the Kerberos Principal for Cloudera Manager Server on page 54.

Important:

If YARN Resource Manager HA has been enabled in a non-secure cluster, before enabling Kerberos
you must clear the StateStore znode in ZooKeeper, as follows:

1. Go to the Cloudera Manager Admin Console home page, click to the right of the YARN service
and select Stop.

2. When you see a Finished status, the service has stopped.
3. Go to the YARN service and select Actions > Format State Store.
4. When the command completes, click Close.

Once you are able to check all the items on this list, click Continue.

KDC Information

On this page, select the KDC type you are using, MIT KDC or Active Directory, and complete the fields as applicable to
enable Cloudera Manager to generate principals/accounts for the CDH services running on the cluster.

Note:

• If you are using AD and havemultiple Domain Controllers behind a Load Balancer, enter the name
of the Load Balancer in the KDC Server Host field and any one of the Domain Controllers inActive
Directory Domain Controller Override. Hadoop daemons will use the Load Balancer for
authentication, but Cloudera Manager will use the override for creating accounts.

• If you have multiple Domain Controllers (in case of AD) or MIT KDC servers, only enter the name
of any one of them in the KDC Server Host field. Cloudera Manager will use that server only for
creating accounts. If you choose to use ClouderaManager tomanage krb5.conf, you can specify
the rest of the Domain Controllers using Safety Valve as explained below.

• Make sure the entries for the Kerberos Encryption Types field matches what your KDC supports.
• If you are using an Active Directory KDC, you can configure Active Directory account properties

such as objectClass and accountExpires directly from the Cloudera Manager UI. You can
also enable Cloudera Manager to delete existing AD accounts so that new ones can be created
when Kerberos credentials are being regenerated. See Viewing or Regenerating Kerberos
Credentials Using Cloudera Manager on page 66.

Click Continue to proceed.
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KRB5 Configuration

Manage krb5.conf through Cloudera Manager allows you to choose whether Cloudera Manager should deploy the
krb5.conf on your cluster or not. If left unchecked, you must ensure that the krb5.conf is deployed on all hosts in
the cluster, including the Cloudera Manager Server's host.

If you checkManage krb5.conf through Cloudera Manager, this page will let you configure the properties that will be
emitted in it. In particular, the safety valves on this page can be used to configure cross-realm authentication. More
information can be found at Configuring a Dedicated MIT KDC for Cross-Realm Trust on page 105.

Note: Cloudera Manager is unable to use a non-default realm. You must specify the default realm.

Click Continue to proceed.

Import KDC Account Manager Credentials

Enter the username and password for the user that can create principals for CDH cluster in the KDC. This is the
user/principal you created in Step 3: Create the Kerberos Principal for Cloudera Manager Server on page 54. Cloudera
Manager encrypts the username and password into a keytab and uses it as needed to create new principals.

Note: Enter the REALMportion of the principal in upper-case only to conform to Kerberos convention.

Note:

Many enterprises employ policies that require all passwords to be changed after a particular number
of days. If you must change the password in Cloudera Manager for the Account Manager, then:

1. In the Cloudera Manager Admin Console, select Administration > Security.
2. Go to the Kerberos Credentials tab and click Import Kerberos Account Manager Credentials.
3. In the Import Kerberos Account Manager Credentials dialog box, enter the username and

password for the user that can create principals for CDH cluster in the KDC.

Click Continue to proceed.

(Optional) Configuring Custom Kerberos Principals

You can configure custom service principals for CDH services. Before you begin making configuration changes, see
Customizing Kerberos Principals on page 62 for some additional configuration changes required and limitations.

Configure HDFS DataNode Ports

On this page, specify the privileged ports needed by the DataNode's Transceiver Protocol and the HTTP Web UI in a
secure cluster.

Use the checkbox to confirm you are ready to restart the cluster. Click Continue.

Enabling Kerberos

This page lets you track the progress made by the wizard as it first stops all services on your cluster, deploys the
krb5.conf, generates keytabs for other CDH services, deploys client configuration and finally restarts all services.
Click Continue.

Congratulations

The final page lists the cluster(s) for which Kerberos has been successfully enabled. Click Finish to return to the Cloudera
Manager Admin Console home page.
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Step 5: Create the HDFS Superuser

To be able to create homedirectories for users, youwill need access to theHDFS superuser account. (CDH automatically
created the HDFS superuser account on each cluster host during CDH installation.) When you enabled Kerberos for
the HDFS service, you lost access to the default HDFS superuser account using sudo -u hdfs commands. Cloudera
recommends you use a different user account as the superuser, not the default hdfs account.

Designating a Non-Default Superuser Group

To designate a different group of superusers instead of using the default hdfs account, follow these steps:

1. Go to the Cloudera Manager Admin Console and navigate to the HDFS service.
2. Click the Configuration tab.
3. Select Scope > HDFS (Service-Wide).
4. Select Category > Security.
5. Locate the Superuser Group property and change the value to the appropriate group name for your environment.

For example, <superuser>.
6. Enter a Reason for change, and then click Save Changes to commit the changes.
7. Restart the HDFS service.

To enable your access to the superuser account now that Kerberos is enabled, you must now create a Kerberos
principal or an Active Directory user whose first component is <superuser>:

If you are using Active Directory
Add a new user account to Active Directory, <superuser>@YOUR-REALM.COM. The password for this account should
be set to never expire.

If you are using MIT KDC

1. In the kadmin.local or kadmin shell, type the following command to create a Kerberos principal called
<superuser>:

kadmin:  addprinc <superuser>@YOUR-LOCAL-REALM.COM

This command prompts you to create a password for the <superuser> principal. You should use a strong password
because having access to this principal provides superuser access to all of the files in HDFS.

2. To run commands as the HDFS superuser, you must obtain Kerberos credentials for the <superuser> principal. To
do so, run the following command and provide the appropriate password when prompted.

kinit <superuser>@YOUR-LOCAL-REALM.COM

Step 6: Get or Create a Kerberos Principal for Each User Account

Now that Kerberos is configured and enabled on your cluster, you and every other Hadoop user must have a Kerberos
principal or keytab to obtain Kerberos credentials to be allowed to access the cluster and use the Hadoop services. In
the next step of this procedure, you will need to create your own Kerberos principals to verify that Kerberos security
is working on your cluster. If you and the other Hadoop users already have a Kerberos principal or keytab, or if your
Kerberos administrator can provide them, you can skip ahead to the next step.

The following instructions explain how to create a Kerberos principal for a user account.

If you are using Active Directory

Add a new AD user account for each new user that should have access to the cluster. You do not need to make any
changes to existing user accounts.
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If you are using MIT KDC

1. In the kadmin.local or kadmin shell, use the following command to create user principals by replacing
YOUR-LOCAL-REALM.COM with the name of your realm, and replacing USERNAME with a username:

kadmin:  addprinc USERNAME@YOUR-LOCAL-REALM.COM 

2. Enter and re-enter a password when prompted.

Step 7: Prepare the Cluster for Each User

Before you and other users can access the cluster, there are a few tasks you must do to prepare the hosts for each
user.

1. Make sure all hosts in the cluster have a Linux user account with the same name as the first component of that
user's principal name. For example, the Linux account joe should exist on every box if the user's principal name
is joe@YOUR-REALM.COM. You can use LDAP for this step if it is available in your organization.

Note: Each account must have a user ID that is greater than or equal to 1000. In the
/etc/hadoop/conf/taskcontroller.cfg file, the default setting for the banned.users
property is mapred, hdfs, and bin to prevent jobs from being submitted using those user
accounts. The default setting for the min.user.id property is 1000 to prevent jobs from being
submitted with a user ID less than 1000, which are conventionally Unix super users.

2. Create a subdirectory under /user on HDFS for each user account (for example, /user/joe). Change the owner
and group of that directory to be the user.

hadoop fs -mkdir /user/joe
hadoop fs -chown joe /user/joe

Note: sudo -u hdfs is not included in the commands above. This is because it is not required if
Kerberos is enabled on your cluster. You will, however, need to have Kerberos credentials for the
HDFS super user to successfully run these commands. For information on gaining access to the HDFS
super user account, see Step 5: Create the HDFS Superuser on page 58.

Step 8: Verify that Kerberos Security is Working

After you have Kerberos credentials, you can verify that Kerberos security is working on your cluster by trying to run
MapReduce jobs. To confirm, try launching a sleep or a pi job from the provided Hadoop examples
(/usr/lib/hadoop/hadoop-examples.jar).

Note:

This section assumes you have a fully-functional CDH cluster and you have been able to access HDFS
and run MapReduce jobs before you followed these instructions to configure and enable Kerberos
on your cluster. If you have not already done so, you should at a minimum use the Cloudera Manager
Admin Console to generate a client configuration file to enable you to access the cluster. For
instructions, see Deploying Client Configuration Files.

To verify that Kerberos security is working:

1. Acquire Kerberos credentials for your user account.

kinit USERNAME@YOUR-LOCAL-REALM.COM 

2. Enter a password when prompted.
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3. Submit a sample pi calculation as a test MapReduce job. Use the following command if you use a package-based
setup for Cloudera Manager:

$ hadoop jar /usr/lib/hadoop-0.20-mapreduce/hadoop-examples.jar pi 10 10000
Number of Maps = 10
Samples per Map = 10000
...
Job Finished in 38.572 seconds
Estimated value of Pi is 3.14120000000000000000

If you have a parcel-based setup, use the following command instead:

$ hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-0.20-mapreduce/hadoop-examples.jar pi
 10 10000
Number of Maps = 10
Samples per Map = 10000
...
Job Finished in 30.958 seconds
Estimated value of Pi is 3.14120000000000000000

You have now verified that Kerberos security is working on your cluster.

Important:

Running a MapReduce job will fail if you do not have a valid Kerberos ticket in your credentials cache.
You can examine the Kerberos tickets currently in your credentials cache by running the klist
command. You can obtain a ticket by running the kinit command and either specifying a keytab file
containing credentials, or entering the password for your principal. If you do not have a valid ticket,
you will receive an error such as:

11/01/04 12:08:12 WARN ipc.Client:
Exception encountered while connecting to the server :
javax.security.sasl.SaslException:GSS initiate failed 
[Caused by GSSException: No valid credentials provided (Mechanism level:
 Failed to find any
Kerberos tgt)]
Bad connection to FS. command aborted. exception: Call to 
nn-host/10.0.0.2:8020 failed on local exception:
java.io.IOException:javax.security.sasl.SaslException: GSS initiate 
failed
[Caused by GSSException: No valid credentials provided
(Mechanism level: Failed to find any Kerberos tgt)]

Step 9: (Optional) Enable Authentication for HTTP Web Consoles for Hadoop Roles

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Authentication for access to the HDFS,MapReduce, and YARN roles' web consoles can be enabled using a configuration
option for the appropriate service. To enable this authentication:

1. From the Clusters tab, select the service (HDFS,MapReduce, or YARN) forwhich youwant to enable authentication.
2. Click the Configuration tab.
3. Select Scope > service name Service-Wide.
4. Select Category > Security.
5. Type Enable Kerberos in the Search box.
6. Select Enable Kerberos Authentication for HTTP Web-Consoles.
7. Enter a Reason for change, and then click Save Changes to commit the changes.
8. When the command finishes, restart all roles of that service.

Enabling SPNEGO as an Authentication Backend for Hue

1. In Cloudera Manager, set the authentication backend to SpnegoDjangoBackend.
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Go to the Cloudera Manager Admin Console. From the Clusters tab, select the Hue service.a.
b. Click the Configuration tab.
c. Select Scope > Service-Wide.
d. Select Category > Security.
e. Locate theAuthenticationBackendproperty and selectdesktop.auth.backend.SpnegoDjangoBackend.
f. Click Save Changes.

2. Restart the Hue service.
3. If you are using an external load balancer, perform the following steps, otherwise skip the remaining steps. Cloudera

Manager creates these configuration automatically:

a. On the host running the Hue Kerberos Ticket Renewer, switch to the KT_RENEWER process directory. For
example:

cd /var/run/cloudera-scm-agent/process/`ls -lrt /var/run/cloudera-scm-agent/process/  
  \
| awk '{print $9}' |grep KT_RENEWER| tail -1`/

b. Verify that the Hue keytab includes the HTTP principal.

klist -kte ./hue.keytab

Keytab name: FILE:./hue.keytab
KVNO Timestamp Principal
---- ----------------- --------------------------------------------------------
1 03/09/15 20:20:35 hue/host-10-16-8-168.openstacklocal@EXAMPLE.CLOUDERA.COM 
(aes128-cts-hmac-sha1-96)
1 03/09/15 20:20:36 HTTP/host-10-16-8-168.openstacklocal@EXAMPLE.CLOUDERA.COM 
(aes128-cts-hmac-sha1-96)

c. Copy the hue.keytab file to /var/lib/hue and change ownership to the hue user and group.

cp ./hue.keytab /var/lib/hue/
chown hue:hue /var/lib/hue/hue.keytab

d. Go to the Cloudera Manager Admin Console. From the Clusters tab, select the Hue service.
e. Click the Configuration tab.
f. Select Scope > Service-Wide.
g. Select Category > Advanced.
h. Locate the Hue Service Environment Advanced Configuration Snippet (Safety Valve) property and add the

following line:

KRB5_KTNAME=/var/lib/hue/hue.keytab

i. Enter a Reason for change, and then click Save Changes to commit the changes.
j. Restart the Hue service.

Kerberos Authentication for Non-Default Users

The steps described in this topic are only applicable if you are running one or more CDH services with non-default
users. This means if you have modified the default value for the System User property for any service in Cloudera
Manager, you must only perform the command (as described below) corresponding to that service, to be able to
successfully run jobs with the non-default user.

Configure the mapred.system.dir directory to be owned by the mapred user.

sudo -u hdfs hadoop fs -chown mapred:hadoop 
${mapred.system.dir}

MapReduce
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By default, mapred.system.dir is /tmp/mapred/system.

Give the hbase user ownership of the HBase root directory:

sudo -u hdfs hadoop fs -chown -R hbase ${hbase.rootdir}

HBase

By default, hbase.rootdir is /hbase.

Give the hive user ownership of the /user/hive directory.

sudo -u hdfs hadoop fs -chown hive /user/hive

Hive

For every NodeManager host, for each path in yarn.nodemanager.local-dirs, run:

rm -rf ${yarn.nodemanager.local-dirs}/usercache/*

YARN

This removes the /usercache directory that contains intermediate data stored for
previous jobs.

Customizing Kerberos Principals

Note: This page contains references to CDH 5 components or features that have been removed from
CDH6. These references are only applicable if you aremanaging a CDH5 clusterwith ClouderaManager
6. For more information, see Deprecated Items.

By default, the Cloudera Manager Kerberos wizard configures CDH services to use the same Kerberos principals as the
default process users. For example, the hdfs principal for the HDFS service, and the hive principal for the Hive service.
The advantage to this is that when Kerberos is enabled, no HDFS directory permissions need to be changed for the
new principals. You can configure custom service principals for CDH services.

Important Considerations

• Using different Kerberos principals for different services will make it easier to track the HDFS directories being
accessed by each service.

• If you are using ShellBasedUnixGroupsMapping to obtain user-group mappings, ensure you have the UNIX
accounts for the principals present on all hosts of the cluster.

Configuring Directory Permissions
Configure the following HDFS directories to give their corresponding custom service principals read, write and
execute permissions.

HDFS DirectoryService

Accumulo • HDFS Directory
• /user/principal

HBase Root DirectoryHBase

Hive • Hive Warehouse Directory
• /user/principal

/user/principalImpala

/tmp/mapredMapReduce v1

Oozie ShareLib Root DirectoryOozie

HDFS Data DirectorySolr

Spark on YARN • /user/principal
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HDFS DirectoryService

• Spark History Location
• Spark Jar Location

/user/principalSqoop2

Configuring CDH Services
The following services will require additional settings if you are using custom principals:

• HDFS - If you have enabled synchronization of HDFS and Sentry permissions, add the Hive and Impala principals
to the Sentry Authorization Provider Group property.

1. Go to the HDFS service.
2. Click Configuration.
3. Select Scope > HDFS Service-Wide.
4. Select Category > Security.
5. Locate the Sentry Authorization Provider Group property and add the custom Hive and Impala principals.
6. Click Save Changes.

• YARN - The principals used by YARN daemons should be part of hadoop group so that they are allowed to read
JobHistory Server data.

• Impala - If you are running the Hue service with a custom principal, configure Impala to allow the Hue principal
to impersonate other users.

1. Go to the Impala service.
2. Click Configuration.
3. Select Scope > Impala (Service-Wide).
4. Select Category > Policy File-Based Sentry.
5. Locate the Proxy User Configuration property and add the custom Hue principal.
6. Click Save Changes.

• Hive - If the Sentry service is enabled, allow the Kerberos principals used by Hive, Impala, Hue, HDFS and the
Service Monitor to bypass Sentry authorization in the Hive metastore.

1. Go to the Hive service.
2. Click Configuration.
3. Select Scope > Impala (Service-Wide).
4. Select Category > Policy File-Based Sentry.
5. Locate the Bypass Sentry Authorization Users property and add the custom Hive, Impala, Hue and HDFS

principals to the list.
6. Click Save Changes.

• Spark on YARN - The principal used by the Spark service should be part of the spark group.
• Sentry - Allow the Hive, Impala, Hue and HDFS principals to connect to the Sentry service.

1. Go to the Sentry service.
2. Click Configuration.
3. Search for theAllowed Connecting Users property and add the customHive, Impala, Hue andHDFS principals

to the list.
4. Search for the Admin Groups property and include the groups to which the Hive, Impala, and Hue principals

belong.
5. Click Save Changes.

• Cloudera Management Service - Configure the Reports Manager principal and the Navigator principal for HDFS
as HDFS superusers.

1. Go to the Cloudera Management Service.
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2. Click Configuration.
3. Search for kerberos.
4. Locate the Reports Manager Kerberos Principal property and set it to a principal with administrative and

superuser privileges on all HDFS services.
5. Locate the Navigator Kerberos Principal for HDFS property and set it to a principal with administrative and

superuser privileges on all HDFS services.
6. Click Save Changes.

Incompatibilities
The following features do not work with custom principals:

• Llama must always use the default Kerberos principal llama.
• If you are using MapReduce v1, the Activity Monitor and Cloudera Navigator should use the same principal as the

Hue service.
• If you are using the Java KeyStore KMS or KeyTrustee KMS with a custom principal, you will need to add the proxy

user for the custom principal to the kms-site.xml safety valve.

For example, if you’ve replaced the default oozie principal with oozieprinc, add the
hadoop.kms.proxyuser.oozieprinc.groupsandhadoop.kms.proxyuser.oozieprinc.hostsproperties
to the kms-site.xml safety valve.

Managing Kerberos Credentials Using Cloudera Manager

Minimum Required Role: Full Administrator

When Kerberos authentication is enabled for HDFS andMapReduce service instances, ClouderaManager starts creating
Kerberos principals for each role instance on the cluster at the end of the configuration process. Depending on the
number of hosts and the number of HDFS andMapReduce role instances in the cluster, the processmay take anywhere
from a few seconds to several minutes.

After the process completes, view the list of Kerberos principals created for the cluster by using the Cloudera Manager
Admin Console. Every host with HDFS and MapReduce role instances should have Kerberos principals.

If no principals have been created after 10 minutes, there may be an issue with the process. See Kerberos
Credential-Generation Issues on page 372 to troubleshoot.

Important:

• Do not regenerate the principals for your cluster unless you have made a global configuration
change, such as changing the encryption type.

• Regenerate principals using the ClouderaManager Admin Console only. Do not use kadmin shell.
• For an MIT KDC, Configuring a Dedicated MIT KDC for Cross-Realm Trust on page 105 to avoid

invalidating existing host keytabs.

Updating Kerberos Credentials in Cloudera Manager

If you change the user name or the password (or both) in the Active Directory KDC for the account used by Cloudera
Manager for Kerberos authentication, you must also change it in Cloudera Manager. These credentials were stored
during the Kerberos integration process (see Step 3: Add the Credentials for the Principal to the Cluster on page 330).

1. Log in to Cloudera Manager Admin Console.
2. Select Administration > Security.
3. Click the Kerberos Credentials tab.
4. Click the Import Kerberos Account Manager Credentials button.
5. Enter the new user and password for the principal added to the Kerberos KDC in Step 2. Create Principal for

Cloudera Manager Server in the Kerberos KDC on page 329.
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Managing Active Directory Account Properties

If you are using an Active Directory KDC, ClouderaManager lets you configure Active Directory accounts and customize
the credential regeneration process using the Cloudera Manager Admin Console. You can also use Cloudera Manager
to configure the encryption types to be used by your Active Directory account. Once you modify any Active Directory
account properties, you must regenerate Kerberos credentials to reflect those changes. The credential regeneration
process requires you to delete existing accounts before new ones are created.

By default, Cloudera Manager does not delete accounts in Active Directory, which means that to regenerate Kerberos
principals contained in Active Directory, you need to manually delete the existing Active Directory accounts. You can
either delete and regenerate all existing Active Directory accounts, or only delete those with the userPrincipalName
(or login name) that you will later manually select for regeneration. If the accounts haven't already been deleted
manually, the regeneration process will throw an error message saying that deletion of accounts is required before
you proceed.

Modifying Active Directory Account Properties Using Cloudera Manager

If you are using an Active Directory KDC, you can configure Active Directory account properties such as objectClass
and accountExpires directly from the Cloudera Manager Admin Console. Any changes to these properties will be
reflected in the regenerated Kerberos credentials.

To configure Active Diretory account properties:

1. Go to the Cloudera Manager Admin Console and click the Administration tab.
2. Select Administration > Settings.
3. Click the Kerberos category.
4. Locate the Active Directory Account Properties and edit as required. By default, the property will be set to:

accountExpires=0,objectClass=top,objectClass=person,objectClass=organizationalPerson,objectClass=user

5. Locate the Active Directory Password Properties and edit the field as needed. By default, the property will be set
to:

length=12,minLowerCaseLetters=2,minUpperCaseLetters=2,minDigits=2,minSpaces=0,minSpecialChars=0,specialChars=?.!$%̂ *()-_+=~

6. Click Save Changes.
7. Regenerate new credentials with the new properties.

Enabling Credential Regeneration for Active Directory Accounts Using Cloudera Manager

To avoid having to delete accounts manually, enable the Active Directory Delete Accounts on Credential Regeneration
property. By default, this property is disabled. After enabling this feature, Cloudera Manager will delete existing Active
Directory accounts automatically when new ones are created during regeneration.

1. Go to the Cloudera Manager Admin Console and click the Administration tab.
2. Select Administration > Settings.
3. Click the Kerberos category.
4. Locate the Active Directory Delete Accounts on Credential Regeneration and check the property to activate this

capability.
5. Click Save Changes.

Configuring Encryption Types for Active Directory KDC Using Cloudera Manager

Cloudera Manager allows you to configure the encryption types (or enctype) used by an Active Directory KDC to
protect its data. Cloudera supports the following encryption types:

• rc4-hmac

• aes128-cts

• aes256-cts

• des-cbc-crc

• des-cbc-md5
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To configure encryption types for an Active Directory KDC:

1. Go to the Cloudera Manager Admin Console and click the Administration tab.
2. Select Administration > Settings.
3. Click the Kerberos category.
4. Locate the Kerberos Encryption Types and click to add the encryption types you want Active Directory to use

(see the list above for supported encryption types enctypes).
5. Check the checkbox for theActive Directory Set Encryption Types property. This will automatically set the Cloudera

Manager AD account to use the encryption types configured in the previous step.
6. Click Save Changes.

Moving Kerberos Principals to Another OU Within Active Directory

If you have a Kerberized cluster configured with an Active Directory KDC, you can use the following steps to move the
Kerberos principals from one AD Organizational Unit (OU) to another.

1. Create the new OU on the Active Directory Server.
2. Use AD's Delegate Control wizard to set the permissions on the newOU such that the configured ClouderaManager

admin account has the ability to Create, Delete and Manage User Accounts within this OU.
3. Stop the cluster.
4. Stop the Cloudera Management Service.
5. In Active Directory, move all the Cloudera Manager and CDH components' user accounts to the new OU.
6. Go to Cloudera Manager and go to Administration > Security.
7. Go to the Kerberos Credentials tab and click Configuration.
8. Select Scope > Settings.
9. Select Category > Kerberos.
10. Locate the Active Directory Suffix property and edit the value to reflect the new OU name.
11. Click Save Changes.

Viewing or Regenerating Kerberos Credentials Using Cloudera Manager

To view Kerberos principals for the cluster from Cloudera Manager for either MIT Kerberos or Active Diretory:

1. Log in to Cloudera Manager Admin Console.
2. Select Administration > Security.
3. Click the Kerberos Credentials tab. The currently configured Kerberos principals for services running on the cluster

display, such as:

• For HDFS, principals hdfs/hostname and host/hostname
• For MapReduce, principals mapred/hostname and host/hostname

To regenerate any principals (if necessary):

• Select the principal from the list.
• Click Regenerate.

Running the Security Inspector

The Security Inspector uses the Host Inspector to run a security-related set of commands on the hosts in your cluster.
It reports on matters such as how Java is configured for encryption and on the default realms configured on each host:

1. Select Administration > Security.
2. Click Security Inspector. Cloudera Manager begins several tasks to inspect the managed hosts.
3. After the inspection completes, click Download Result Data or Show Inspector Results to review the results.

Using a Custom Kerberos Keytab Retrieval Script

The Cloudera Manager Kerberos setup procedure requires you to create an administrator account for the Cloudera
Manager user. Cloudera Manager will then connect to your KDC and use this admin account to generate principals and
keytabs for the remaining CDH services. If for some reason, you cannot create a Cloudera Manager administrator
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account on your KDC with the privileges to create other principals and keytabs for CDH services, then these will need
to be created manually.

Cloudera Manager gives you the option to use a custom script to retrieve keytabs from the local filesystem. To use a
custom Kerberos keytab retrieval script:

1. The KDC administrators should create the required principals and keytabs, and store them securely on the Cloudera
Manager Server host.

2. Create the keytab retrieval script. Your script should take two arguments: a full principal name for which it should
retrieve a keytab, and a destination towhich it canwrite the keytab. The scriptmust be executable by the Cloudera
Manager admin user, cloudera-scm. Depending on the principal name input by Cloudera Manager, the script
should locate the corresponding keytab on the Cloudera Manager Server host (stored in step 1), and copy it into
a location accessible to the cloudera-scm user. Here is a simple example:

#!/bin/bash

# Cloudera Manager will input a destination path
DEST="$1"

# Cloudera Manager will input the principal name in the format: <service>/<fqdn>@REALM
PRINC="$2"

# Assuming the '<service>_<fqdn>@REALM.keytab' naming convention for keytab files
IN=$(echo $PRINC | sed -e 's/\//_/')
SRC="/keytabs/${IN}.keytab"

# Copy the keytab to the destination input by Cloudera Manager
cp -v $SRC $DEST

Note that the script will change according to the keytab naming convention followed by your organization.

3. Configure the location for the script in Cloudera Manager:

a. Go to the Cloudera Manager Admin console.
b. Select Administration > Settings.
c. Select Category > Kerberos.
d. Locate the Custom Kerberos Keytab Retrieval Script and set it to point to the script created in step 2.
e. Click Save Changes.

4. Once the Custom Kerberos Keytab Retrieval Script property is set, whenever Cloudera Manager needs a keytab,
it will ignore all other Kerberos configuration and run the keytab retrieval script to copy the required keytab to
the desired destination.

5. Cloudera Manager can now distribute the keytab to the services that need access to it.

Note: The ClouderaNavigatorweb server accesses HDFS andHue using the keytabs corresponding
to those principals; however the custom script does not move these additional keytabs to the
Navigator Metadata Server. To complete the setup for Navigator, move keytabs for HDFS and
Hue principals to the Navigator Metadata Server host manually. See Configuring Navigator
Metadata Server for Kerberos and Custom Keytab Retrieval.

Adding Trusted Realms to the Cluster

The Kerberos instance associated with a given cluster has its REALM-NAME specified as the default_realm in the
Kerberos configuration file (krb5.conf) on the cluster's NameNode. Rules defined in the
hadoop.security.auth_to_local property translate the Kerberos principals to local account names at the host
level (see Hadoop Users (user:group) and Kerberos Principals on page 113 and Mapping Kerberos Principals to Short
Names on page 117). The default rules simply remove the @REALM portion of the Kerberos principal and leave the short
name.

To allow principals from other realms to use the cluster, the trusted realms must be specified in Cloudera Manager.
For example, the Kerberos realm used by your cluster may have a trust relationship to a central Active Directory or
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MIT Kerberos realm. Add the central realm to the cluster as detailed in the following steps so that Cloudera Manager
can apply the appropriate mapping rules to the principals from the trusted realm to access the cluster's services.

To specify trusted realms using Cloudera Manager:

1. Log in to the Cloudera Manager Admin Console.
2. Select Clusters > HDFS Service.
3. Click the Configuration tab.
4. Select HDFS (Service-Wide) for the Scope filter.
5. Select Security for the Category filter.
6. In the Search field, type Kerberos Realms to find the Trusted Kerberos Realms and Additional Rules to Map

Kerberos Principals to Short Names settings.
7. Add other Kerberos realms that the cluster's realm can trust. Use all upper-case letters to specify the REALMname

for MIT Kerberos or Active Directory realms:

ANOTHER-REALM.EXAMPLE.COM

To add multiple realms, click the plus (+) button.
8. Click Save Changes.

For each trusted realm identified in Trusted Kerberos Realms, default mapping rules automatically strip the REALM
name. To customize the mapping rules, specify additional rules in the Additional Rules to Map Kerberos Principals to
Short Names setting, one rule per line. Cloudera Manager will wrap each rule in the appropriate XML tags and add to
the generated core-site.xml file. To create custom rules and translate translate mixed-case Kerberos principals to
lower-case Hadoop usernames, see Mapping Rule Syntax on page 118.

If you specify custom mapping rules for a Kerberos realm using the Additional Rules to Map Kerberos Principals to
Short Names setting, ensure that the same realm is not specified in the Trusted Kerberos Realms setting. If it is, the
auto-generated rule (which only strips the realm from the principal and does no additional transformations) takes
precedent, and the custom rule is ignored.

For these changes to take effect, you must restart the cluster and redeploy the client configuration, as follows:

1. On the Cloudera Manager Admin Console, Clusters > Cluster-n to choose cluster-wide actions.
2. From the Actions drop-down button, select Deploy Client Configuration.

Using Auth-to-Local Rules to Isolate Cluster Users

By default, the Hadoop auth-to-local rules map a principal of the form <username>/<hostname>@<REALM> to
<username>. This means if there are multiple clusters in the same realm, then principals associated with hosts of one
cluster would map to the same user in all other clusters.

For example, if you have two clusters, cluster1-host-[1..4].example.com and cluster2-host-
[1..4].example.com, that are part of the same Kerberos realm, EXAMPLE.COM, then the cluster2 principal,
hdfs/cluster2-host1.example.com@EXAMPLE.COM, will map to the hdfs user even on cluster1 hosts.

To prevent this, use auth-to-local rules as follows to ensure only principals containing hostnames of cluster1 are
mapped to legitimate users.

1. Go to the HDFS Service > Configuration tab.
2. Select Scope > HDFS (Service-Wide).
3. Select Category > Security.
4. In the Search field, type Additional Rules to find the Additional Rules to Map Kerberos Principals to Short

Names settings.
5. Additional mapping rules can be added to the Additional Rules to Map Kerberos Principals to Short Names

property. These rules will be inserted before the rules generated from the list of trusted realms (configured above)
and before the default rule.

RULE:[2:$1/$2@$0](hdfs/cluster1-host1.example.com@EXAMPLE.COM)s/(.*)@EXAMPLE.COM/hdfs/
RULE:[2:$1/$2@$0](hdfs/cluster1-host2.example.com@EXAMPLE.COM)s/(.*)@EXAMPLE.COM/hdfs/
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RULE:[2:$1/$2@$0](hdfs/cluster1-host3.example.com@EXAMPLE.COM)s/(.*)@EXAMPLE.COM/hdfs/
RULE:[2:$1/$2@$0](hdfs/cluster1-host4.example.com@EXAMPLE.COM)s/(.*)@EXAMPLE.COM/hdfs/
RULE:[2:$1/$2@$0](hdfs.*@EXAMPLE.COM)s/(.*)@EXAMPLE.COM/nobody/

In the example, the principal hdfs/<hostname>@REALM is mapped to the hdfs user if <hostname> is one of
the cluster hosts. Otherwise it gets mapped to nobody, thus ensuring that principals from other clusters do not
have access to cluster1.

If the cluster hosts can be represented with a regular expression, that expression can be used to make the
configuration easier and more conducive to scaling. For example:

RULE:[2:$1/$2@$0](hdfs/cluster1-host[1-4].example.com@EXAMPLE.COM)s/(.*)@EXAMPLE.COM/hdfs/
RULE:[2:$1/$2@$0](hdfs.*@EXAMPLE.COM)s/(.*)@EXAMPLE.COM/nobody/

Note:

It is not possible to use alternatives in capturing or non-capturing groups within the matching
portion of the rule, because the use of round brackets in the expression is not currently supported.
For example, the following rule would result in an error:

RULE:[2:$1/$2@$0](hdfs/cluster1-(hosta|hostb|hostc).example.com@EXAMPLE.COM)s/(.*)@EXAMPLE.COM/hdfs/

6. Click Save Changes.
7. Restart the HDFS service and any dependent services.

Configuring Authentication for Cloudera Navigator
Cloudera Manager Server has an internal authentication mechanism, a database repository of user accounts that can
be used to create user accounts. As an alternative to using the internal database, Cloudera Manager and Cloudera
Navigator can be configured to use external authentication mechanisms.

Cloudera Manager Server and Cloudera Navigator each have their own user role schemes for granting privileges to
system features and functions. Cloudera Manager user roles can be applied to user accounts as they are created in
the internal repository. Cloudera Navigator user roles are applied to groups defined in the external system for use by
Cloudera Navigator. The only user role that can be effectively applied to an account created in the Cloudera Manager
internal repository is that of Navigator Administrator, which grants the user account privileges as a Full Administrator
on the Cloudera Navigator services (Navigator Metadata Server, Navigator Audit Server).

In other words, assigning Cloudera Navigator user roles to user accounts requires using an external authentication
mechanism.

Cloudera Navigator and External Authentication

To support its user role-based authorization scheme, Cloudera Navigator integrates with external authentication
mechanisms. External authentication mechanisms include:

• LDAP-compliant identity/authentication services, such as Active Directory and OpenLDAP
• SAML-based SSO solutions, such as Shibboleth and SiteMinder

Cloudera Manager Server has its own internal authentication mechanism, a database repository of user accounts.
However, the user accounts defined in the internal ClouderaManager account repository cannot be assigned Cloudera
Navigator user roles. The only user role that can be effectively applied to an account created in the Cloudera Manager
internal repository is that of Navigator Administrator. In other words, assigning Cloudera Navigator user roles to user
accounts requires using one of the external authentication mechanisms detailed in this section.

Cloudera Manager and Cloudera Navigator have their own distinct sets of user roles. Cloudera Manager and Cloudera
Navigator can be configured to use external authentication mechanisms. The organization may have a central Active
Directory or other LDAP-identity service used by ClouderaManager and Cloudera Navigator for external authentication,

Cloudera Security | 69

Authentication



but the relationship between each of these to the external system functions independently. That means a Cloudera
Manager user that successfully authenticates to the external LDAP system cannot log in to Cloudera Navigator using
that same authentication token.

How it Works: Cloudera Navigator and External Authentication

At runtime, the NavigatorMetadata Server role instance (the daemon) forwards login requests fromCloudera Navigator
users to the external authentication mechanismwhich has a repository containing user accounts and groups that have
been setup for Cloudera Navigator users. The groups have had specific Cloudera Navigator user role assigned to them,
so once users authenticate to the external system, they can use the features of Cloudera Navigator console as specified
for their group.

All this occurs transparently to Cloudera Navigator users, assuming Cloudera Navigator has been correctly configured
as detailed in the appropriate section for the external mechanism—Active Directory, OpenLDAP, or SAML—as detailed
in this section.

Configuring Cloudera Navigator for Active Directory

When users login using the Active Directory external authentication type, Navigator creates a principal name from the
user login to search for the user's LDAP object. Navigator creates a user principal name by prepending the login
username with @ and the configured value for the Active Directory domain. If your users' principal names differ in
format from their login names, you should use the LDAP authentication type to configure a more flexible model for
searching LDAP. For example, if user principal names have the form jane.doe@mydomain.com but the user login
name is jdoe, authentication will fail in the Active Directory configuration. See Configuring Cloudera Navigator for
LDAP on page 71.

To configure Cloudera Navigator for external authentication with Active Directory:

1. Log in to Cloudera Manager Admin Console.
2. Select Clusters > Cloudera Management Service.
3. Click the Configuration tab.
4. Select Navigator Metadata Server for the Scope filter.
5. Select External Authentication for the Category filter.
6. Leave theAuthentication BackendOrder set to the default value—ClouderaManagerOnly until after the external

system has been successfully configured for Cloudera Navigator (as detailed in these steps) and user accounts in
Active Directory instance are members of groups that have been granted Cloudera Navigator user role privileges.
When Cloudera Navigator receives a login request, it checks user repositories in the order specified. Checking
only the external system before having user accounts and roles configured can result in authentication failures.

• If user accounts and groups for Cloudera Navigator already exist in the Active Directory and a group with
privileges for Cloudera Manager Full Administrator or Navigator Administrator user roles contains user
accounts—so that the system can be managed—the order can be set to External then Cloudera Manager or
External Only.

7. Configure the remaining settings for the Active Directory instance as detailed in the table.

Description and usage noteProperty

Active DirectoryExternal Authentication Type

Full path to the Active Directory instance, including the protocol specifier,
ldap or ldaps (for TLS/SSL). Not necessary to specify port number if the

LDAP URL

Active Directory service is hosted using the default ports—389 (LDAP), 636
(LDAPS). For example:

ldap://ad-srv.ldap-srvs.subnet.example.com

The user name that connects to the Active Directory service to look up login
requests on behalf of Cloudera Navigator. Enter either the complete user

LDAP Bind User Distinguished
Name

principal name or just the short name. For example,
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Description and usage noteProperty

cn-admin@EXAMPLE.COM or cn-admin. For Active Directory, this
distinguished name (DN) corresponds to the sAMAcountName.

Enter the password used to log in to the Active Directory instance using the
DN specified for the bind user.

LDAP Bind Password

The fully-qualified domain name of the Active Directory domain controller
host system. This is the service to which the bind operation For example:

ldap-servs.subnet.example.com

Active Directory Domain

Leave blank if LDAP User Search Base is set.LDAP Distinguished Name Pattern

Specify the organizational unit (OU) and domain component (DC) properties
for the LDAP search tree. For example:

ou=nav_people,dc=ldap-srvs,dc=subnet,dc=example,dc=com

LDAP User Search Base

Optional.LDAP User Search Filter

ou=nav_groups,dc=ldap-srvs,dc=subnet,dc=example,dc=comLDAP Group Search Base

Optional.LDAP Group Search Filter For
Logged In User

(&(objectClass=groupOfNames)(cn=*{0}*))LDAP Groups Search Filter

8. Click Save Changes.
9. Restart the Navigator Metadata Service:

• From Cloudera Management Service, click the Instances tab.
• Select Navigator Metadata Service from among the instances listed.
• Click the Actions for Selected button and select Restart.

Configuring Cloudera Navigator for LDAP

There ismore than oneway to configure an LDAP-compatible identity/authentication service to authenticate Navigator
users and to allow Navigator to access group membership. The most commonly used LDAP authentication mode is
search-bind.

Alternatively, you can configure Navigator to use bind-direct LDAP authentication. Note that this method assumes all
users are in one directory tree; it doesn't have the flexibility to identify multiple LDAP directory trees.

Considerations for Configuring Navigator with LDAPS (TLS/SSL)

It is important that you configure TLS/SSL for Cloudera Manager as part of using LDAP for authenticating users. If you
don't have secure network communication, you risk exposing your LDAPDistinguishedName credentials on the network.

For information on how to generate and distribute certificate files, see Generate TLS Certificates on page 151.

Configuring LDAP as Navigator's External Authentication

1. Make sure that you have the TLS truststore for communicating with the LDAP server configured on the host where
the Navigator Metadata Server role is running.

2. Decide which LDAP authentication method you want to use to locate user entries in the directory.

In enterprise environments, the more common method is Search-Bind because it allows a flexible configuration
for determining the Distinguished Name based on a user's login. In some cases, Direct Bind may be used when all
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users must be under a single branch in the LDAP directory. There's more information about the requirements for
configuration properties for these modes in the table below.

3. Select Clusters > Cloudera Management Service.
4. Click the Configuration tab.
5. Select Scope > Navigator Metadata Server.
6. Select Category > External Authentication.
7. In the External Authentication Type property, select LDAP.
8. Configure the remaining settings for the LDAP server instance as detailed in the table.

Description and usage noteProperty

LDAPExternal Authentication Type

Full path to the LDAP server instance, including the protocol specifier, ldap
or ldaps (for TLS/SSL). It is not necessary to specify port number if the Active

LDAP URL

Directory service is hosted using the default ports—389 (LDAP), 636 (LDAPS).
For example:

ldaps://ldap-server.corp.com

If you have not configured TLS, the URL would start with ldap://.

To instruct Navigator to refer to the LDAP server to authenticate users, set
this property to External then Cloudera Manager or External Only. The

Authentication Backend Order

"External then Cloudera Manager" option allows administrators to log into
Navigator in the case where LDAP logins are failing. If you need to debug
connectivity issues without LDAP involved, you can log in with a Cloudera
Manager-only user account.

The LDAP account that has permission to query the LDAP database of user
accounts on behalf of Cloudera Navigator.

The bind user can be specified as the full distinguished name (DN)
(cn=account,ou=people,dc=corp,dc=region) or as only the common

LDAP Bind User Distinguished
Name

name (user@domain). Use the same format as the string used for Cloudera
Manager LDAP configuration.

This property is not required if your LDAP server accepts anonymous binding.

The password for the bind user.LDAP Bind Password

Specify the organizational unit (OU) and domain component (DC) properties
for the LDAP search tree where Navigator searches for groups. For example,

LDAP Group Search Base

this search base starts the group membership search to an organizational
unit configured specifically for Navigator users and Navigator searches this
subtree:

ou=nav_people,dc=ldap-srvs,dc=subnet,dc=example,dc=com

The Group Search Base is used for both the Groups Search Filter and the
Group Search Filter for Logged in User.

Optional. Specifies how a user is determined to be a member of a group.
Defaults to: member={0} where {0} is replaced with the DN of the user

LDAP Group Search Filter For
Logged In User

you are authenticating. For a filter requiring the username, use {1}, as
memberUid={1}.

Specify this filter to refine the scope of LDAP groups to associate with
Navigator roles. LDAP groups and users belonging to these groups inherit

LDAP Groups Search Filter

72 | Cloudera Security

Authentication



Description and usage noteProperty

the Navigator roles. The roles are then used for authorization. For example,
to limit the groups to groups with the current user as a member, specify

(&(objectClass=group)(cn=*{0}*))

The Groups Search Filter is combined with the Group Search Base to define
the group lookup.

Search-Bind Authentication Mode

Specify the organizational unit (OU) and domain component (DC) properties
for the LDAP search tree where Navigator searches to authenticate users.

LDAP User Search Base

You can also specify a User Search Filter to further reduce the scope of the
search. For example, the following User Search Base string limits Navigator
authentication to users inside the specified OU and DCs:

ou=nav_people,dc=ldap-srvs,dc=subnet,dc=example,dc=com

If you leave out OUs from the search base, Navigator authenticates users
from any OU. For example, with the User Search Base dc=corp,dc=com
and the user search filter as uid={0}, Navigator searches for the user
anywhere in the tree starting from the User Search Base. If LDAP includes
two OUs—ou=Engineering and ou=Operations—Navigator finds user
"foo" if it exists in either of these OUs, that is,
uid=foo,ou=Engineering,dc=corp,dc=com or
uid=foo,ou=Operations,dc=corp,dc=com.

Used with the User Search Base to further limit the scope of the search for
a directory entry that matches the credentials of the user logging into
Navigator.

Use a user search filter along with a DN pattern so that the search filter
provides a fallback if the DN pattern search fails. For example, set the filter

LDAP User Search Filter

to uid={0} to use the username provided at login. For Active Directory's
LDAP server, use sAMAccountName={0}.

Direct-Bind Authentication Mode

Direct-bind authentication can be used if search is not required to determine
the DN needed to bind to the LDAP server. Leave this property blank if LDAP
User Search Base is set.

To use this authentication mode, all users must be under a single branch in
the LDAP directory.

LDAP Distinguished Name Pattern

For example, to search for a distinguished name where the uid attribute is
the username at login, you might provide a pattern such as

uid={0},ou=People,dc=corp,dc=com

where {0} indicates the username of the authenticating user. If a user
provides the username "foo" at the Navigator login page, Navigator searches
for the DN uid=foo,ou=People,dc=corp,dc=com.

9. Click Save Changes.
10. Restart the Navigator Metadata Server.
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Configuring Cloudera Navigator for SAML

Cloudera Navigator supports SAML (Security Assertion Markup Language), an XML-based open standard data format
for exchanging authentication and authorization details between identity providers and service providers. One of the
main benefits of SAML is that it enables Single Sign-on (SSO) for browser-based clients, such as the Cloudera Navigator
console. That means that you can integrate Cloudera Navigator with SSO solutions such as Shibboleth or CA Single
Sign-On (formerly, SiteMinder).

Note: Not all SAML identity providers are interoperable. Cloudera Navigator has been tested with
Shibboleth and CA Single Sign-On.

Overview of SAML and SSO

The steps below assume you have a functioning SAML IDP already deployed. Here is a brief summary of some of the
high level details as background to the configuration tasks:

• An identity provider or IDP is one of the main functions provided by an organization's SAML/SSO solution. The
IDP provides identity assertions (tokens) to service providers that want to identify users when those users request
access. service.

• A service provider or SP, such as Cloudera Navigator, protects itself from unauthorized access by checking the
identity of users requesting the service against the IDP. When the SP gets back the assertion from the IDP, the
service gives the requesting user the level of access for that user.

• The service's users or principals obtain access to the SP when they open their browsers to the URL of the service.
Transparently to users, the SP—Cloudera Navigator, but specifically the web service hosted on the Navigator
Metadata Server—sends an authentication request to the IDP through the user agent (browser) and obtains an
identity assertion back from the IDP.

There are two properties that control whether the SSO process is initiated from the IDP or the SP (Navigator):

• SAML Login URL nav.saml.login.url
• Skip Authorization Check nav.auth.skip_saml_auth_check (set in Navigator Metadata Server Advanced

Configuration Snippet (Safety Valve) for cloudera-navigator.properties)

As shown in the following table, when SAML authentication is enabled, the default Navigator loginURL always produces
a service-provider initiated SSO process (SP initiated SSO); in this process, users log into the Navigator login page and
Navigator sends the authentication request to the identity provider. Specifying a SAML Login URL produces an identity
provider-initiated SSO process (IdP initiated SSO); in this process, users log into the identity provider's login page and
are redirected to the Navigator console and logged in.

/locallogin.html/login.htmlNo addition to the
login URL (/)

Skip Authorization
Check Property

SAML Login URL
Property

Login pageIdP initiated SSOSP initiated SSOTrueSet

IdP initiated SSOIdP initiated SSOSP initiated SSOFalseSet

Login pageSP initiated SSOSP initiated SSOTrueNot set

SP initiated SSOSP initiated SSOSP initiated SSOFalseNot set

See the OASIS SAML Wiki for more information about SAML.

Preparing Files

You must obtain the following files and information and provide to Cloudera Navigator:

• A Java keystore containing a private key for Cloudera Navigator to use to sign/encrypt SAML messages.
• The SAML metadata XML file from your IDP. This file must contain the public certificates needed to verify the

sign/encrypt key used by your IDP per the SAML Metadata Interoperability Profile.
• The entity ID that should be used to identify the Navigator Metadata Server instance.
• How the user ID is passed in the SAML authentication response:
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As an attribute. If so, what identifier is used.–
– As the NameID.

• The method by which the Cloudera Navigator role will be established:

– From an attribute in the authentication response:

– What identifier will be used for the attribute
– What values will be passed to indicate each role

– From an external script that will be called for each use:

– The script takes user ID as $1
– The script must assign an exit code to reflect successful authentication of the assigned role:

– 0 - Full Administrator
– 1 - User Administrator
– 2 - Auditing Viewer
– 4 - Lineage Viewer
– 8 - Metadata Administrator
– 16 - Policy Viewer
– 32 - Policy Administrator
– 64 - Custom Metadata Administrator
– A negative value is returned for a failure to authenticate

To assign more than one role, add the numbers for the roles. For example, to assign the Policy Viewer
and User Administrator roles, the exit code should be 17.

Configuring the Navigator Metadata Server

1. Select Clusters > Cloudera Management Service.
2. Click the Configuration tab.
3. Select Navigator Metadata Server from the Scope filter.
4. Select External Authentication from the Category filter.
5. Type SAML in the Search box to display only the SAML relevant settings.
6. Enter the values for the properties in the table based on your SAML implementation.

Description and usage noteProperty

Set to External then Cloudera Manager.Authentication Backend Order

SAMLExternal Authentication Type

Set to the location (complete path) of the metadata file obtained from the
IDP.

Path to SAML IDP Metadata File

Path to the Java keystore file containing the Cloudera Navigator private key
(prepared above).

Path to SAML Keystore File

Enter the SAML keystore password.SAML Keystore Password

Enter the alias used to identify the private key for Cloudera Navigator to
use.

Alias of SAML Sign/Encrypt Private
Key

Enter the password for the sign/encrypt private key.SAML Sign/Encrypt Private Key
Password

Default setting is clouderaNavigator. Leave set to the default unless
more than one Cloudera Navigator instance is using the same IDP. Each

SAML Entity ID

Cloudera Navigator instance needs a unique entity ID as assigned by
organizational policy.
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Description and usage noteProperty

SAML Entity Base URL

HTTP-Artifact (selected by default), or HTTP-PostSAML Response Binding

(IDP-initiated SSO only) If your IDP does not support SP-initiated SSO (very
uncommon), specify the user login URL for the IDP.

SAML Login URL

Attribute (selected by default), or NameID—Specifies the source of the user
ID, an attribute or NameID. For attribute, also set the attribute name in the
SAML Attribute Identifier for User ID property.

Source of User ID in SAML
Response

urn:oid:0.9.2342.19200300.100.1.1 (Default) The standard object
identifier (OID) for user IDs. This setting is used only when Source of User
ID in SAML Response specifies Attribute.

SAML Attribute Identifier for User
ID

Attribute (selected by default), or Script—Specifies how user roles are
assigned to authenticated user:

SAMLRole AssignmentMechanism

• Attribute—Set the SAML Attribute Identifier for User Role and the
SAML Attribute Values for Roles properties.

• Script—A binary or shell script executable that assigns user roles. Set
the path to the executable in Path to SAML Role Assignment Script.

urn:oid:2.5.4.11 (Default) The standard OID typically used for
OrganizationalUnits. Can be left to this setting.

SAML Attribute Identifier for User
Role

Set the attribute values that will be used to indicate the user roles. For more
than one role, the attribute can return comma-separated values, such as
"role1, role2".

SAML Attribute Values for Roles

Path to executable (binary or shell script) that assigns Cloudera Navigator
user roles upon authentication. Required when SAML Role Assignment
Mechanism specifies Script.

Path to SAML Role Assignment
Script

7. Click Save Changes.
8. Restart the Navigator Metadata Server role.

Configuring the Identity Provider

After Cloudera Navigator restarts, attempted logins to Cloudera Navigator are redirected to the identity provider's
login page. Authentication cannot succeed until the IDP is configured for Cloudera Navigator. The configuration details
are specific to the IDP, but in general you must download the SAML file from your Cloudera Navigator instance and
perform the other steps below.

1. Download Cloudera Navigator's SAML metadata XML file from your Cloudera Navigator instance:

http://hostname:7187/saml/metadata

2. Inspect the metadata file and ensure that any URLs contained in the file can be resolved by users’ web browsers.
The IDP will redirect web browsers to these URLs at various points in the process. If the browser cannot resolve
them, authentication will fail. If the URLs are incorrect, you can manually fix the XML file or set the SAML Entity
Base URL property in the Navigator Metadata Server configuration to the correct value, and then re-download
the file.

3. Provide this metadata file to your IDP using whatever mechanism your IDP provides.
4. Ensure that the IDP has access to whatever public certificates are necessary to validate the private key that was

provided by Cloudera Navigator earlier.
5. Ensure that the IDP is configured to provide the User ID and Role using the attribute names that Cloudera Navigator

was configured to expect, if relevant.
6. Ensure the changes to the IDP configuration have taken effect (a restart may be necessary).
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Testing Cloudera Navigator and the SSO Setup

1. Return to the Cloudera Navigator home page at: http://hostname:7187/.
2. Attempt to log in with credentials for a user that is entitled. The authentication should complete and you should

see the Home page.
3. If authentication fails, you will see an IDP provided error message. Cloudera Navigator is not involved in this part

of the process, and you must ensure the IDP is working correctly to complete the authentication.
4. If authentication succeeds but the user is not authorized to use Cloudera Navigator, they will be taken to an error

page that explains the situation. If a user who should be authorized sees this error, then you will need to verify
their role configuration, and ensure that it is being properly communicated to the Navigator Metadata Server,
whether by attribute or external script. The Cloudera Navigator log will provide details on failures to establish a
user’s role. If any errors occur during role mapping, Cloudera Navigator will assume the user is unauthorized.

Bypassing SAML SSO

The SAML-based SSO can be bypassed by accessing the Cloudera Navigator login page directly:

http://fqdn-1.example.com:7187/locallogin.html

You can turn off this bypass by setting the Skip Authorization Check property (nav.auth.skip_saml_auth_check)
in the Navigator Metadata Server Advanced Configuration Snippet (Safety Valve) for cloudera-navigator.properties.

Configuring Groups for Cloudera Navigator

Cloudera Navigator user role privileges are applied to groups contained in the external authentication mechanism. In
the external system using the appropriate management tool for the platform, create groups comprising all the user
accounts to which a specific set of privileges should apply. For example, create one group for auditors and another
group for data stewards. Create a different group for administrators. To each group, add the user accounts of people
who should have the same set of Cloudera Navigator privileges. The user accounts and groupsmust exist in the external
authentication mechanism before the user roles can be applied to them.

Once a group exists in the external authentication system, one or more Cloudera Navigator user roles can be assigned
to the group using the Cloudera Navigator console. See Configuring Navigator User Roles in the Cloudera Navigator
Data Management guide

Configuring Authentication for Other Components
The pages in this section provide configuration steps for many components that may or may not be configured by
default during Kerberos configuration. Some components use native authentication rather than or in addition to
Kerberos.

Flume Authentication

Flume agents can store data on an HDFS filesystem. For clusters configured to use Kerberos authentication, Flume
requires a Kerberos principal and keytab to authenticate to the cluster, which then interacts with HDFS, MapReduce,
and other cluster services on behalf of the Flume agent.

Enabling Flume to use Kerberos authentication on a cluster assumes that cluster has been configured to integrate with
Kerberos.

The steps belowhave been testedwith CDH5 andMIT Kerberos 5 only. The discussion includes an example of configuring
user flume for Kerberos authentication as an HDFS client. Configuring authentication between Flume agents is not
covered.

Configuring Kerberos for Flume Thrift Source and Sink Using Cloudera Manager

The Thrift source can be configured to start in secure mode by enabling Kerberos authentication. To communicate
with a secure Thrift source, the Thrift sink should also be operating in secure mode.

1. Open the Cloudera Manager Admin Console and go to the Flume service.

Cloudera Security | 77

Authentication



2. Click the Configuration tab.
3. Select Scope > Agent.
4. Select Category >Main.
5. Edit the Configuration File property and add the Thrift source and sink properties listed in the tables below to the

configuration file.

Table 1: Thrift Source Properties

DescriptionProperty

Set to true to enable Kerberos authentication. The
agent-principal and agent-keytab properties are required

kerberos

for successful authentication. The Thrift source in secure mode,
will accept connections only from Thrift sinks that have
Kerberos-enabled and are successfully authenticated to the KDC.

The Kerberos principal used by the Thrift Source to authenticate
to the KDC.

agent-principal

The path to the keytab file used by the Thrift Source in combination
with the agent-principal to authenticate to the KDC.

agent-keytab

Table 2: Thrift Sink Properties

DescriptionProperty

Set to true to enable Kerberos authentication. In Kerberos mode,
client-principal, client-keytab and server-principal are required for

kerberos

successful authentication and communication to a Kerberos enabled
Thrift Source.

The principal used by the Thrift Sink to authenticate to the Kerberos
KDC.

client-principal

The path to the keytab file used by the Thrift Sink in combination
with the client-principal to authenticate to the KDC.

client-keytab

The principal of the Thrift Source to which this Thrift Sink connects.server-principal

Note: Since Cloudera Manager generates the Flume keytab files for you, and the locations of
the keytab files cannot be known beforehand, substitution variables are required for Flume.
Cloudera Manager provides two Flume substitution variables called $KERBEROS_PRINCIPAL
and $KERBEROS_KEYTAB to configure the principal name and the keytab file path respectively
on each host.

Make sure you are configuring these properties for each Thrift source and sink instance managed by Cloudera
Manager. For example, for agent a1, source r1, and sink k1, you would add the following properties:

# Kerberos properties for Thrift source s1 
a1.sources.r1.kerberos=true
a1.sources.r1.agent-principal=<source_principal>
a1.sources.r1.agent-keytab=<path/to/source/keytab>

# Kerberos properties for Thrift sink k1 
a1.sinks.k1.kerberos=true
a1.sinks.k1.client-principal=<sink_principal>
a1.sinks.k1.client-keytab=<path/to/sink/keytab>
a1.sinks.k1.server-principal=<path/to/source/keytab>

6. Enter a Reason for change, and then click Save Changes to commit the changes.

78 | Cloudera Security

Authentication



7. Restart the Flume service.

Writing to a Secure HBase Cluster

Before you write to a secure HBase cluster, be aware of the following:

• Flume must be configured to use Kerberos security, and HBase must be configured to use Kerberos security as
documented in HBase Security Configuration.

• The hbase-site.xml file, which must be configured to use Kerberos security, must be in Flume's classpath or
HBASE_HOME/conf.

• HBase2Sink org.apache.flume.sink.hbase2.HBase2Sink supports secure HBase.
• The Flume HBase sink takes the kerberosPrincipal and kerberosKeytab parameters:

– kerberosPrincipal – specifies the Kerberos principal to be used
– kerberosKeytab – specifies the path to the Kerberos keytab
– These are defined as:

agent.sinks.hbase2Sink.kerberosPrincipal = 
flume/fully.qualified.domain.name@YOUR-REALM.COM
agent.sinks.hbase2Sink.kerberosKeytab = /etc/flume-ng/conf/flume.keytab

– You can use the $KERBEROS_PRINCIPAL and $KERBEROS_KEYTAB substitution variables to configure the
principal name and the keytab file path. See the following documentation for steps on how to configure the
substitution variables: Use Substitution Variables for the Kerberos Principal and Keytab.

• If HBase is running with the AccessController coprocessor, the flume user (or whichever user the agent is running
as) must have permissions to write to the same table and the column family that the sink is configured to write
to. You can grant permissions using the grant command from HBase shell as explained in HBase Security
Configuration.

• The Flume HBase Sink does not currently support impersonation; it will write to HBase as the user the agent is
being run as.

• If you want to use HDFS Sink and HBase Sink to write to HDFS and HBase from the same agent respectively, both
sinks have to use the same principal and keytab. If you want to use different credentials, the sinks have to be on
different agents.

• Each Flume agent machine that writes to HBase (using a configured HBase sink) needs a Kerberos principal of the
form:

flume/fully.qualified.domain.name@YOUR-REALM.COM

where fully.qualified.domain.name is the fully qualified domain name of the given Flume agent host
machine, and YOUR-REALM.COM is the Kerberos realm.

Using Substitution Variables for Flume Kerberos Principal and Keytab

Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Flume instances running on clusters that use Kerberos for authentication require the Kerberos principal and keytab
for the HDFS sink or HBase sink to be configured in the flume.conf file. Cloudera Manager generates Flume keytab
files automatically. However, the location of the files is not known in advance, so Cloudera Manager provides two
substitution variables to use for these Kerberos artifacts as shown in the table:

Substitution variableDescriptionKerberos

$KERBEROS_PRINCIPALFully qualified principal name, such as service/user@DOMAINkerberosPrincipal

$KERBEROS_KEYTABLocation on the host to keytabs for kerberos principalkerberosKeytab

Use the Flume substitution variables for the principal name and the keytab file path on each host. Here are some usage
examples:
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• HDFS Sink Example on page 80
• HBase Sink Example on page 80
• Configuring Flume Substitution Variables Using Cloudera Manager Admin Console on page 80

HDFS Sink Example

The following example shows an HDFS sink configuration in the flume.conf file (the majority of the HDFS sink
configuration options have been omitted):

agent.sinks.sink-1.type = HDFS
agent.sinks.sink-1.hdfs.kerberosPrincipal = flume/_HOST@YOUR-REALM.COM
agent.sinks.sink-1.hdfs.kerberosKeytab = /etc/flume-ng/conf/flume.keytab
agent.sinks.sink-1.hdfs.proxyUser = weblogs

The text below shows the same configuration options with the substitution variables:

agent.sinks.sink-1.type = hdfs
agent.sinks.sink-1.hdfs.kerberosPrincipal = $KERBEROS_PRINCIPAL
agent.sinks.sink-1.hdfs.kerberosKeytab = $KERBEROS_KEYTAB
agent.sinks.sink-1.hdfs.proxyUser = weblogs

HBase Sink Example

The following example shows an HBase sink configuration in the flume.conf file (the majority of the HBase sink
configuration options have been omitted):

agent.sinks.sink-1.type = hbase
agent.sinks.sink-1.kerberosPrincipal = flume/_HOST@YOUR-REALM.COM
agent.sinks.sink-1.kerberosKeytab = /etc/flume-ng/conf/flume.keytab

The text below shows the same configuration options with the substitution variables:

agent.sinks.sink-1.type = hbase
agent.sinks.sink-1.kerberosPrincipal = $KERBEROS_PRINCIPAL
agent.sinks.sink-1.kerberosKeytab = $KERBEROS_KEYTAB

Configuring Flume Substitution Variables Using Cloudera Manager Admin Console

Complete the following steps to have Cloudera Manager add these variables to the flume.conf file on every host
that Cloudera Manager manages.

1. Log in to the Cloudera Manager Admin Console.
2. Select Clusters > Flume service.
3. Click the Configuration tab.
4. Select Agent for the Scope filter.
5. In the Configuration File property, set the agent sinks used by your cluster equal to the substitution variables. For

example, for an HDFS sink, the values would be specified as follows:

agent.sinks.sink-1.type = hdfs
agent.sinks.sink-1.hdfs.kerberosPrincipal = $KERBEROS_PRINCIPAL
agent.sinks.sink-1.hdfs.kerberosKeytab = $KERBEROS_KEYTAB
agent.sinks.sink-1.hdfs.proxyUser = weblogs

6. Click Save Changes.

HBase Authentication

To configure HBase security, complete the following tasks:

1. Configure HBaseAuthentication: Youmust establish amechanism for HBase servers and clients to securely identify
themselves with HDFS, ZooKeeper, and each other. This ensures that hosts are who they claim to be.
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Note:

• To enable HBase to work with Kerberos security, you must perform the installation and
configuration steps in Enabling Kerberos Authentication for CDH on page 51 and ZooKeeper
Security Configuration.

• Although an HBase Thrift server can connect to a secured Hadoop cluster, access is not
secured from clients to the HBase Thrift server. To encrypt communication between clients
and the HBase Thrift Server, see Configuring TLS/SSL for HBase Thrift Server on page 164.

The following sections describe how to use Apache HBase and CDH 6 with Kerberos security:

• Configuring Kerberos Authentication for HBase on page 81
• Configuring Secure HBase Replication on page 82
• Configuring the HBase Client TGT Renewal Period on page 83

2. Configure HBase Authorization: You must establish rules for the resources that clients are allowed to access. For
more information, see Configuring HBase Authorization on page 137.

Using the Hue HBase App

Hue includes an HBase App that allows you to interact with HBase through a Thrift proxy server. Because Hue sits
between the Thrift server and the client, the Thrift server assumes that all HBase operations come from the hue user
and not the client. To ensure that users in Hue are only allowed to perform HBase operations assigned to their own
credentials, and not those of the hue user, you must enable HBase impersonation. For more information about the
how to enable doAs Impersonation for the HBase Browser Application, see Enabling the HBase Browser Application
with doAs Impersonation.

Configuring Kerberos Authentication for HBase

Using Kerberos for authentication for the HBase component requires that you also use Kerberos authentication for
ZooKeeper. This means that HBase Master, RegionServer, and client hosts must each have a Kerberos principal for
authenticating to the ZooKeeper ensemble. The steps below provide the details. Before you start, be sure that:

• Kerberos is enabled for the cluster, as detailed in Enabling Kerberos Authentication Using the Wizard.
• Kerberos principals for Cloudera Manager Server, HBase, and ZooKeeper hosts exist and are available for use. See

Managing Kerberos Credentials Using Cloudera Manager on page 64 for details.

Cloudera Manager automatically configures authentication between HBase to ZooKeeper and sets up the HBase Thrift
gateway to support impersonation (doAs). However, youmustmanually configure the HBase REST service for Kerberos
(it currently uses Simple authentication by default, instead of Kerberos). See Configure HBase REST Server for Kerberos
Authentication on page 82 for details.

Note: Impersonation (doAs) cannot be usedwith Thrift framed transport (TFramedTransport) because
SASL does not work with Thrift framed transport.

You can use either Cloudera Manager or the command line to configure Kerberos authentication for HBase. Using
Cloudera Manager simplifies the process, but both approaches are detailed below. This page includes these topics:

Configuring Kerberos Authentication for HBase Using Cloudera Manager

Cloudera Manager simplifies the task of configuring Kerberos authentication for HBase.

Configure HBase Servers to Authenticate with a Secure HDFS Cluster Using Cloudera Manager

Required Role: Cluster Administrator or Full Administrator

1. Log on to Cloudera Manager Admin Console.
2. Go to the HBase service (select Clusters > HBASE).
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3. Click the Configuration tab.
4. Under the Scope filter, click HBase (Service-Wide).
5. Under the Category filter, click Security.
6. Ensure the Kerberos principal for the HBase service was generated.
7. Find theHBase Secure Authentication property (type "HBase Secure" in the Search box, if necessary), and confirm

(or enter) the principal to use for HBase.
8. Select kerberos as the authentication type.
9. Click Save Changes.
10. Restart the role.
11. Restart the service. Select Restart from the Actions drop-down menu adjacent to HBASE-n (Cluster).

Configure HBase Servers and Clients to Authenticate with a Secure ZooKeeper

As mentioned above, secure HBase also requires secure ZooKeeper. The various HBase host systems—Master,
RegionServer, and client—must have a principal to use to authenticate to the secure ZooKeeper ensemble. This is
handled transparently by Cloudera Manager when you enable Kerberos as detailed above.

Configure HBase REST Server for Kerberos Authentication

Currently, the HBase REST Server uses Simple (rather than Kerberos) authentication by default. You must manually
modify the setting using the Cloudera Manager Admin Console, as follows:

1. Log on to Cloudera Manager Admin Console.
2. Select Clusters > HBASE.
3. Click the Configuration tab.
4. Under the Scope filter, click HBase (Service-Wide).
5. Under the Category filter, click Security.
6. Find the HBase REST Authentication property:

7. Click kerberos to select Kerberos instead of simple authentication.
8. Click Save Changes.
9. Restart the role.
10. Restart the service. Select Restart from the Actions drop-down menu adjacent to HBASE-n (Cluster).

Configuring Secure HBase Replication

If you are using HBase Replication and youwant tomake it secure, read this section for instructions. Before proceeding,
you should already have configured HBase Replication by following the instructions in HBase Replication.

To configure secure HBase replication, you must configure cross realm support for Kerberos, ZooKeeper, and Hadoop.

Note: HBase peer-to-peer replication from a non-Kerberized cluster to a Kerberized cluster is not
supported.

To configure secure HBase replication:

1. Create krbtgt principals for the two realms. For example, if you have two realms called EXAMPLE.COM and
COMPANY.TEST, you need to add the following principals: krbtgt/EXAMPLE.COM@COMPANY.TEST and
krbtgt/COMPANY.TEST@EXAMPLE.COM. Add these two principals at both realms. There must be at least one
common encryption mode between these two realms.

kadmin: addprinc -e "<enc_type_list>" krbtgt/EXAMPLE.COM@COMPANY.TEST
kadmin: addprinc -e "<enc_type_list>" krbtgt/COMPANY.TEST@EXAMPLE.COM
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2. Add rules for creating short names in Zookeeper. To do this, add a system level property in java.env, defined
in theconf directory. Here is an example rule that illustrates how to add support for the realm calledEXAMPLE.COM,
and have two members in the principal (such as service/instance@EXAMPLE.COM):

-Dzookeeper.security.auth_to_local=RULE:[2:\$1@\$0](.*@\\QEXAMPLE.COM\\E$)s/@\\QEXAMPLE.COM\\E$//DEFAULT

The above code example adds support for theEXAMPLE.COM realm in a different realm. So, in the case of replication,
you must add a rule for the primary cluster realm in the replica cluster realm. DEFAULT is for defining the default
rule.

3. Add rules for creating short names in the Hadoop processes. To do this, add the
hadoop.security.auth_to_local property in the core-site.xml file in the replica cluster. For example,
to add support for the EXAMPLE.COM realm:

<property>
  <name>hadoop.security.auth_to_local</name>
  <value>
    RULE:[2:$1@$0](.*@\QEXAMPLE.COM\E$)s/@\QEXAMPLE.COM\E$//
  DEFAULT
  </value>
</property>

For more information about adding rules, see Configuring the Mapping from Kerberos Principals to Short Names.

Configuring the HBase Client TGT Renewal Period

An HBase client user must also have a Kerberos principal which typically has a password that only the user knows. You
should configure the maxrenewlife setting for the client's principal to a value that allows the user enough time to
finish HBase client processes before the ticket granting ticket (TGT) expires. For example, if the HBase client processes
require up to four days to complete, you should create the user's principal and configure the maxrenewlife setting
by using this command:

kadmin: addprinc -maxrenewlife 4days

Hive Authentication

Hive authentication involves configuring Hive metastore, HiveServer2, and all Hive clients to use your deployment of
LDAP/Active Directory Kerberos on your cluster.

Here is a summary of the status of Hive authentication in CDH:

• HiveServer2 supports authentication of the Thrift client using Kerberos or user/password validation backed by
LDAP. For configuration instructions, see HiveServer2 Security Configuration.

• Earlier versions of HiveServer do not support Kerberos authentication for clients. However, theHiveMetaStoreServer
does support Kerberos authentication for Thrift clients.

See Using Hive to Run Queries on a Secure HBase Server on page 88

For authorization, Hive uses Apache Sentry to enable role-based, fine-grained authorization for HiveServer2. See Apache
Sentry Overview.

Important: Cloudera does not support Apache Ranger or Hive's native authorization frameworks for
configuring access control in Hive. Use Cloudera-supported Apache Sentry instead.

HiveServer2 Security Configuration

HiveServer2 supports authentication of the Thrift client using the following methods:

• Kerberos authentication
• LDAP authentication
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Starting with CDH 5.7 and later, clusters running LDAP-enabled HiveServer2 deployments also accept Kerberos
authentication. This ensures that users are not forced to enter usernames/passwords manually, and are able to
take advantage of the multiple authentication schemes SASL offers.

Kerberos authentication is supported between the Thrift client and HiveServer2, and between HiveServer2 and secure
HDFS. LDAP authentication is supported only between the Thrift client and HiveServer2.

To configure HiveServer2 to use one of these authenticationmodes, configure the hive.server2.authentication
configuration property.

Note: To configure dual authentication (both Kerberos and LDAP), configure Kerberos for HiveServer2
and set the hive.server2.authentication property to LDAP.

Enabling Kerberos Authentication for HiveServer2

If you configure HiveServer2 to use Kerberos authentication, HiveServer2 acquires a Kerberos ticket during startup.
HiveServer2 requires a principal and keytab file specified in the configuration. Client applications (for example, JDBC
or Beeline) must have a valid Kerberos ticket before initiating a connection to HiveServer2.

Configuring JDBC Clients for Kerberos Authentication with HiveServer2

JDBC-basedclientsmust includeprincipal=<hive.server2.authentication.principal> in the JDBCconnection
string. For example:

String url = 
"jdbc:hive2://node1:10000/default;principal=hive/HiveServer2Host@YOUR-REALM.COM"
Connection con = DriverManager.getConnection(url);

where hive is the principal configured in hive-site.xml and HiveServer2Host is the host where HiveServer2 is
running.

Download the Cloudera JDBC/ODBC database drivers from the Cloudera downloads web page.

Using Beeline to Connect to a Secure HiveServer2

Use the following command to start beeline and connect to a secure HiveServer2 process. In this example, the
HiveServer2 process is running on localhost at port 10000:

$ /usr/lib/hive/bin/beeline
beeline> !connect 
jdbc:hive2://localhost:10000/default;principal=hive/HiveServer2Host@YOUR-REALM.COM
0: jdbc:hive2://localhost:10000/default>

For more information about the Beeline CLI, see Using the Beeline CLI.

For instructions on encrypting communicationwith theODBC/JDBC drivers, see Configuring Encrypted Communication
Between HiveServer2 and Client Drivers on page 170.

Using LDAP Username/Password Authentication with HiveServer2

As an alternative to Kerberos authentication, you can configure HiveServer2 to use user and password validation backed
by LDAP. The client sends a username and password during connection initiation. HiveServer2 validates these credentials
using an external LDAP service.

You can enable LDAP Authentication with HiveServer2 using Active Directory or OpenLDAP.
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Important: When using LDAP username/password authenticationwith HiveServer2, youmust enable
encrypted communication between HiveServer2 and its client drivers to avoid sending cleartext
passwords. For instructions, see Configuring Encrypted Communication Between HiveServer2 and
Client Drivers on page 170. To avoid sending LDAP credentials over a network in cleartext, see
Configuring LDAPS Authentication with HiveServer2 on page 85.

Enabling LDAP Authentication with HiveServer2 using Active Directory

1. In the Cloudera Manager Admin Console, click Hive in the list of components, and then select the Configuration
tab.

2. Type "ldap" in the Search text box to locate the LDAP configuration fields.
3. Check Enable LDAP Authentication.
4. Enter the LDAP URL in the format ldap[s]://<host>:<port>
5. Enter the Active Directory Domain for your environment.
6. Click Save Changes.

Enabling LDAP Authentication with HiveServer2 using OpenLDAP

1. In the Cloudera Manager Admin Console, click Hive in the list of components, and then select the Configuration
tab.

2. Type "ldap" in the Search text box to locate the LDAP configuration fields.
3. Check Enable LDAP Authentication.
4. Enter the LDAP URL in the format ldap[s]://<host>:<port>
5. Enter the LDAP BaseDN for your environments. For example: ou=People,dc=example,dc=com
6. Click Save Changes.

Configuring JDBC Clients for LDAP Authentication with HiveServer2

The JDBC client requires a connection URL that includes the user name and password in the JDBC connection string.
For example:

String url ="jdbc:hive2://#<host>:#<port>/#<dbName>; \
          user=<user name>; \
          password=<password>"
          Connection con = DriverManager.getConnection(url);

Enabling LDAP Authentication for HiveServer2 in Hue

Enable LDAP authentication with HiveServer2 by setting the following properties under the [beeswax] section in
hue.ini.

LDAP username of Hue user to be authenticated.auth_username

LDAP password of Hue user to be authenticated.auth_password

Hive uses these login details to authenticate to LDAP. The Hive service trusts that Hue has validated the user being
impersonated.
Configuring LDAPS Authentication with HiveServer2

HiveServer2 supports LDAP username/password authentication for clients. Clients send LDAP credentials to HiveServer2
which in turn verifies them against the configured LDAP provider, such as OpenLDAP or Microsoft Active Directory.
Most implementations now support LDAPS (LDAP over TLS/SSL), an authentication protocol that uses TLS/SSL to encrypt
communication between the LDAP service and its client (in this case, HiveServer2) to avoid sending LDAP credentials
in cleartext.

To configure the LDAPS service with HiveServer2:
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1. Import the LDAP server CA certificate or the server certificate into a truststore on the HiveServer2 host. If you
import the CA certificate, HiveServer2 will trust any server with a certificate issued by the LDAP server's CA. If you
only import the server certificate, HiveServer2 trusts only that server. See Understanding Keystores and Truststores
on page 144 for more details.

2. Make sure the truststore file is readable by the hive user.
3. Set the hive.server2.authentication.ldap.url configuration property in hive-site.xml to the LDAPS

URL. For example, ldaps://sample.myhost.com.

Note: The URL scheme should be ldaps and not ldap.

4. In ClouderaManager, go to the Hive service and select Configuration. Under Category, select Security. In the right
panel, search for HiveServer2 TLS/SSL Certificate Trust Store File, and add the path to the truststore file that you
created in step 1.

5. Restart HiveServer2.

Pluggable Authentication

Pluggable authentication allows you to provide a custom authentication provider for HiveServer2.

To enable pluggable authentication:

1. In the Cloudera Manager Admin Console, click Hive in the list of components, and then select the Configuration
tab.

2. Type hive-site.xml in the Search text box to locate the configuration fields.
3. Add entries similar to the following toHive ServiceAdvancedConfiguration Snippet (Safety Valve) for hive-site.xml:

<property>
  <name>hive.server2.authentication</name>
  <value>CUSTOM</value>
  <description>Client authentication types.
  NONE: no authentication check
  LDAP: LDAP/AD based authentication
  KERBEROS: Kerberos/GSSAPI authentication
  CUSTOM: Custom authentication provider
  (Use with property hive.server2.custom.authentication.class)
  </description>
</property>

<property>
  <name>hive.server2.custom.authentication.class</name>
  <value>pluggable-auth-class-name</value>
  <description>
  Custom authentication class. Used when property
  'hive.server2.authentication' is set to 'CUSTOM'. Provided class
  must be a proper implementation of the interface
  org.apache.hive.service.auth.PasswdAuthenticationProvider. HiveServer2
  will call its Authenticate(user, passed) method to authenticate requests.
  The implementation may optionally extend the Hadoop's
  org.apache.hadoop.conf.Configured class to grab Hive's Configuration object.
  </description>
</property>

4. Make the class available in the CLASSPATH of HiveServer2.

Trusted Delegation with HiveServer2

HiveServer2 determines the identity of the connecting user from the authentication subsystem (Kerberos or LDAP).
Any new session started for this connection runs on behalf of this connecting user. If the server is configured to proxy
the user at the Hadoop level, then all MapReduce jobs and HDFS accesses will be performed with the identity of the
connecting user. If Apache Sentry is configured, then this connecting userid can also be used to verify access rights to
underlying tables and views.

86 | Cloudera Security

Authentication



Users with Hadoop superuser privileges can request an alternate user for the given session. HiveServer2 checks that
the connecting user can proxy the requested userid, and if so, runs the new session as the alternate user. For example,
the Hadoop superuser hue can request that a connection's session be run as user bob.

Alternate users for new JDBC client connections are specified by adding the
hive.server2.proxy.user=alternate_user_id property to the JDBC connection URL. For example, a JDBC
connection string that lets user hue run a session as user bob would be as follows:

# Login as super user Hue 
kinit hue -k -t hue.keytab hue@MY-REALM.COM

# Connect using following JDBC connection string 
# 
jdbc:hive2://myHost.myOrg.com:10000/default;principal=hive/_HOST@MY-REALM.COM;hive.server2.proxy.user=bob

The connecting user must have Hadoop-level proxy privileges over the alternate user.

HiveServer2 Impersonation

Important: This is not the recommendedmethod to implement HiveServer2 authorization. Cloudera
recommends you use Sentry to implement this instead.

HiveServer2 impersonation lets users execute queries and access HDFS files as the connected user rather than as the
super user. Access policies are applied at the file level using the HDFS permissions specified in ACLs (access control
lists). Enabling HiveServer2 impersonation bypasses Sentry from the end-to-end authorization process. Specifically,
although Sentry enforces access control policies on tables and views within the Hive warehouse, it does not control
access to the HDFS files that underlie the tables. This means that users without Sentry permissions to tables in the
warehousemay nonetheless be able to bypass Sentry authorization checks and execute jobs and queries against tables
in the warehouse as long as they have permissions on the HDFS files supporting the table.

To configure Sentry correctly, restrict ownership of the Hivewarehouse to hive:hive and disable Hive impersonation.

To enable impersonation in HiveServer2:

1. Add the following property to the/etc/hive/conf/hive-site.xml file and set the value totrue. (The default
value is false.)

<property>
  <name>hive.server2.enable.impersonation</name>
  <description>Enable user impersonation for HiveServer2</description>
  <value>true</value>
</property>

2. In HDFS or MapReduce configurations, add the following property to the core-site.xml file:

<property>
  <name>hadoop.proxyuser.hive.hosts</name>
  <value>*</value>
</property>
<property>
  <name>hadoop.proxyuser.hive.groups</name>
  <value>*</value>
</property>

See also File System Permissions.

Securing the Hive Metastore

Note: This is not the recommended method to protect the Hive Metastore. Cloudera recommends
you use Sentry to implement this instead.
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To prevent users from accessing the Hive metastore and the Hive metastore database using any method other than
through HiveServer2, the following actions are recommended:

• Add a firewall rule on the metastore service host to allow access to the metastore port only from the HiveServer2
host. You can do this using iptables.

• Grant access to the metastore database only from the metastore service host. This is specified for MySQL as:

GRANT ALL PRIVILEGES ON metastore.* TO 'hive'@'metastorehost';

where metastorehost is the host where the metastore service is running.

• Make sure users who are not admins cannot log on to the host on which HiveServer2 runs.

Using Hive to Run Queries on a Secure HBase Server

To use Hive to run queries on a secure HBase Server, you must set the following HIVE_OPTS environment variable:

env HIVE_OPTS="-hiveconf hbase.security.authentication=kerberos -hiveconf 
hbase.master.kerberos.principal=hbase/_HOST@YOUR-REALM.COM -hiveconf 
hbase.regionserver.kerberos.principal=hbase/_HOST@YOUR-REALM.COM -hiveconf 
hbase.zookeeper.quorum=zookeeper1,zookeeper2,zookeeper3" hive

where:

• You replace YOUR-REALM with the name of your Kerberos realm
• You replace zookeeper1,zookeeper2,zookeeper3 with the names of your ZooKeeper servers. The

hbase.zookeeper.quorum property is configured in the hbase-site.xml file.
• The special string _HOST is replaced at run-time by the fully qualified domain name of the host machine where

the HBase Master or RegionServer is running. This requires that reverse DNS is properly working on all the hosts
configured this way.

In the following, _HOST is the name of the host where the HBase Master is running:

-hiveconf hbase.master.kerberos.principal=hbase/_HOST@YOUR-REALM.COM

In the following, _HOST is the hostname of the HBase RegionServer that the application is connecting to:

-hiveconf hbase.regionserver.kerberos.principal=hbase/_HOST@YOUR-REALM.COM

Note:

You can also set the HIVE_OPTS environment variable in your shell profile.

HttpFS Authentication

This section describes how to configure HttpFS CDH 6 with Kerberos security on a Hadoop cluster.

Important:

To enable HttpFS to work with Kerberos security on your Hadoop cluster, make sure you perform the
installation and configuration steps in Enabling Kerberos Authentication for CDH on page 51.
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Important:

If the NameNode, Secondary NameNode, DataNode, JobTracker, TaskTrackers, ResourceManager,
NodeManagers, HttpFS, or Oozie services are configured to use Kerberos HTTP SPNEGOauthentication,
and two or more of these services are running on the same host, then all of the running services must
use the same HTTP principal and keytab file used for their HTTP endpoints.

Using curl to access an URL Protected by Kerberos HTTP SPNEGO

Important:

Your version of curlmust support GSS and be capable of running curl -V.

To configure curl to access an URL protected by Kerberos HTTP SPNEGO:

1. Run curl -V:

$ curl -V
curl 7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7 OpenSSL/0.9.8l
zlib/1.2.3
Protocols: tftp ftp telnet dict ldap http file https ftps
Features: GSS-Negotiate IPv6 Largefile NTLM SSL libz

2. Login to the KDC using kinit.

$ kinit
Please enter the password for tucu@LOCALHOST:

3. Use curl to fetch the protected URL:

$ curl --cacert
              /path/to/truststore.pem --negotiate -u : -b ~/cookiejar.txt -c 
~/cookiejar.txt https://localhost:14000/webhdfs/v1/?op=liststatus

where:

• The --cacert option is required if you are using TLS/SSL certificates that curl does not recognize by default.
• The --negotiate option enables SPNEGO in curl.
• The -u : option is required but the username is ignored (the principal that has been specified for kinit is

used).
• The -b and -c options are used to store and send HTTP cookies.
• Cloudera does not recommend using the -k or --insecure option as it turns off curl's ability to verify the

certificate.

Hue Authentication

This page describes properties in the Hue configuration file, hue.ini, that support authentication and Hue security
in general.

For information on configuring Hue with Kerberos encrypting session communication, and enabling single sign-on with
SAML, see:

• Enabling Kerberos Authentication for CDH on page 51
• Authenticate Hue Users with LDAP and Synchronize Hue with LDAP Server
• Authenticate Hue Users with SAML
• Authorize Hue User Groups with Sentry
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Enabling LDAP Authentication with HiveServer2 and Impala

LDAP authentication with HiveServer2 and Impala can be enabled by setting the following properties under their
respective sections in hue.ini, [beeswax] and [impala].

LDAP username of Hue user to be authenticated.auth_username

LDAP password of Hue user to be authenticated.auth_password

These login details are only used by Impala and Hive to authenticate to LDAP. The Impala and Hive services trust Hue
to have already validated the user being impersonated, rather than simply passing on the credentials.

Securing Sessions

When a session expires, the screen blurs and the user is automatically logged out of the HueWebUI. Logging on returns
the user to same location.

Session Timeout

User sessions are controlled with the ttl (time-to-live) property under [desktop]> [[session]] in hue.ini. After
n seconds, the session expires whether active or not.

The cookie with the users session ID expires after n seconds.ttl

Default: ttl=1209600 which is 60*60*24*14 seconds or 2 weeks

Idle Session Timeout

Idle sessions are controlled with the idle_session_timeout property under [desktop] > [[auth]] in hue.ini.
Sessions that are idle for n seconds, expire. You can disable this property by setting it to a negative value.

User session IDs expire after idle for n seconds. A negative value means idle
sessions do not expire.

idle_session_timeout

idle_session_timeout=900means that sessions expire after being idle
for 15 minutes

idle_session_timeout=-1means that idle sessions do not expire (until
ttl)

Secure Login

Login properties are set in hue.ini under [desktop] > [[auth]]. They are based on django-axes 1.5.0.

If true, users must change password on first login.

Must enable
backend=desktop.auth.backend.AllowFirstUserDjangoBackend

change_default_password

User accounts are disabled n seconds after logout. If negative, user sessions
never expire.

expires_after

Apply expires_after to superusers.expire_superusers

Failed logins are forgotten after n seconds.login_cooloff_time

Number of login attempts allowed before a record is created for failed logins.login_failure_limit

If true, lock out IP after exceeding login_failure_limit.

If login_lock_out_by_combination_user_and_ip=true, lock out IP
and user.

login_lock_out_at_failure

If login_lock_out_use_user_agent=true, also lock out user agent.
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If true, lock out IP and user.login_lock_out_by_combination_user_and_ip

If true, lock out user agent (such as a browser).login_lock_out_use_user_agent

Secure Cookies

Secure session cookies can be enabled by specifying the secure configuration property under the [desktop]>
[[session]] section in hue.ini. Additionally, you can set the http_only flag for cookies containing users' session
IDs.

The cookie with the user session ID is secure. Should only be enabled with
HTTPS.

secure

Default: false

The cookie with the user session ID uses the HTTP only flag.http_only

Default: true

If the HttpOnly flag is included in the HTTP response header, the cookie cannot
be accessed through a client side script.

Use session-length cookies. Logs out the user when the browser window is
closed.

expire_at_browser_close

Default: false

Allowed HTTP Methods

You can specify the HTTP request methods that the server should respond to using the http_allowed_methods
property under the [desktop] section in hue.ini.

Default: options,get,head,post,put,delete,connecthttp_allowed_methods

Restricting the Cipher List

Cipher list support with HTTPS can be restricted by specifying the ssl_cipher_list configuration property under
the [desktop] section in hue.ini.

Default: !aNULL:!eNULL:!LOW:!EXPORT:!SSLv2ssl_cipher_list

URL Redirect Whitelist

Restrict the domains or pages to which Hue can redirect users. The redirect_whitelist property can be found
under the [desktop] section in hue.ini.

For example, to restrict users to your local domain and FQDN, the following
value can be used: ^\/.*$,^http:\/\/www.mydomain.com\/.*$

redirect_whitelist

Oozie Permissions

Access to theOozie dashboard and editor can be individually controlled in the HueWebUI underUser Admin >Groups.

DescriptionGroups Property in UI

Enable Oozie Dashboard read-only access for all jobs.

Default: true

oozie.dashboard_jobs_access

Disable Oozie Editor access.

Default: false

oozie.disable_editor_access
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Enable Hue to Use Kerberos for Authentication

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

For Hue to work properly with a Cloudera cluster that uses Kerberos for authentication, the Kerberos Ticket Renewer
must be added to the Hue service. Use the Cloudera Manager Admin Console to add the Kerberos Ticket Renewer role
to each host with a Hue Server role instance.

The Hue Kerberos Ticket Renewer renews only those tickets created for the Hue service principal,
hue/hostname@REALM-NAME. The Hue principal impersonates other users for applications within Hue such as the
Job Browser, File Browser and so on. Other services, such as HDFS andMapReduce, do not use the Hue Kerberos Ticket
Renewer but rather handle ticket renewal as needed using their own mechanisms.

Adding a Kerberos Ticket Renewer role instance in Cloudera Manager:

1. Go to the Hue service.
2. Click the Instances tab.
3. Click the Add Role Instances button.
4. Assign the Kerberos Ticket Renewer role instance to the same host as the Hue server.

When the wizard status is Finished, the Kerberos Ticket Renewer role instance is configured. The Hue service now
works with the secure Hadoop cluster.

5. Repeat these steps for each Hue Server role.

Troubleshooting the Kerberos Ticket Renewer:

If the Hue Kerberos Ticket Renewer does not start, check the configuration of your Kerberos Key Distribution Center
(KDC). Look at the ticket renewal property, maxrenewlife, to ensure that the principals, hue/<hostname> and
krbtgt, are renewable. If these principals are not renewable, run the following commands on the KDC to enable them:

kadmin.local: modprinc -maxrenewlife 90day krbtgt/YOUR_REALM.COM
kadmin.local: modprinc -maxrenewlife 90day +allow_renewable hue/<hostname>@YOUR-REALM.COM

Impala Authentication

Authentication is the mechanism to ensure that only specified hosts and users can connect to Impala. It also verifies
that when clients connect to Impala, they are connected to a legitimate server. This feature prevents spoofing such as
impersonation (setting up a phony client system with the same account and group names as a legitimate user) and
man-in-the-middle attacks (intercepting application requests before they reach Impala and eavesdropping on sensitive
information in the requests or the results).

Impala supports authentication using either Kerberos or LDAP.

Note: Regardless of the authenticationmechanism used, Impala always creates HDFS directories and
data files owned by the same user (typically impala). To implement user-level access to different
databases, tables, columns, partitions, and so on, use the Sentry authorization feature, as explained
in Enabling Sentry Authorization for Impala.

Once you are finished setting up authentication, move on to authorization, which involves specifying what databases,
tables, HDFS directories, and so on can be accessed by particular userswhen they connect through Impala. See Enabling
Sentry Authorization for Impala for details.

Enabling Kerberos Authentication for Impala

Impala supports Kerberos authentication. For background information on enabling Kerberos authentication, see
Enabling Kerberos Authentication for CDH on page 51.

When using Impala in a managed environment, Cloudera Manager automatically completes Kerberos configuration.

In Impala 2.0 and later, user() returns the full Kerberos principal string, such as user@example.com, in a Kerberized
environment.

92 | Cloudera Security

Authentication



Note: Regardless of the authenticationmechanism used, Impala always creates HDFS directories and
data files owned by the same user (typically impala). To implement user-level access to different
databases, tables, columns, partitions, and so on, use the Sentry authorization feature, as explained
in Enabling Sentry Authorization for Impala.

An alternative form of authentication you can use is LDAP, described in Enabling LDAP Authentication for Impala on
page 94.

Requirements for Using Impala with Kerberos

Important:

• If you plan to use Impala in your cluster, you must configure your KDC to allow tickets to be
renewed, and you must configure krb5.conf to request renewable tickets. Typically, you can
do this by adding the max_renewable_life setting to your realm in kdc.conf, and by adding
the renew_lifetime parameter to the libdefaults section of krb5.conf.

For more information about renewable tickets, see the Kerberos documentation.

• The Impala Web UI does not support Kerberos authentication.

• You cannot use the Impala resource management feature on a cluster that has Kerberos
authentication enabled.

Impala supports the Cloudera ODBC driver and the Kerberos interface provided. To use Kerberos through the ODBC
driver, the host type must be set depending on the level of the ODBD driver:

• SecImpala for the ODBC 1.0 driver.
• SecBeeswax for the ODBC 1.2 driver.
• Blank for the ODBC 2.0 driver or higher, when connecting to a secure cluster.
• HS2NoSasl for the ODBC 2.0 driver or higher, when connecting to a non-secure cluster.

To enable Kerberos in the Impala shell, start the impala-shell command using the -k flag.

Configuring Impala to Support Kerberos Security

Enabling Kerberos authentication for Impala involves steps that can be summarized as follows:

• Creating service principals for Impala and the HTTP service. Principal names take the form:
serviceName/fully.qualified.domain.name@KERBEROS.REALM

• Creating, merging, and distributing key tab files for these principals.
• Editing /etc/default/impala (in cluster not managed by Cloudera Manager), or editing the Security settings

in the Cloudera Manager interface, to accommodate Kerberos authentication.

Enabling Kerberos for Impala with a Proxy Server

A common configuration for Impala with High Availability is to use a proxy server to submit requests to the actual
impalad daemons on different hosts in the cluster. This configuration avoids connection problems in case of machine
failure, because the proxy server can route new requests through one of the remaining hosts in the cluster. This
configuration also helps with load balancing, because the additional overhead of being the “coordinator node” for
each query is spread across multiple hosts.

Although you can set up a proxy serverwith orwithout Kerberos authentication, typically users set up a secure Kerberized
configuration. For information about setting up a proxy server for Impala, including Kerberos-specific steps, see Using
Impala through a Proxy for High Availability.

Enabling Impala Delegation for Kerberos Users

See Configuring Impala Delegation for Hue and BI Tools on page 97 for details about the delegation feature that lets
certain users submit queries using the credentials of other users.
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Using TLS/SSL with Business Intelligence Tools

You can use Kerberos authentication, TLS/SSL encryption, or both to secure connections from JDBCandODBCapplications
to Impala. See Configuring Impala to Work with JDBC and Configuring Impala to Work with ODBC for details.

Prior to CDH 5.7 / Impala 2.5, the Hive JDBC driver did not support connections that use both Kerberos authentication
and SSL encryption. If your cluster is running an older release that has this restriction, to use both of these security
features with Impala through a JDBC application, use the Cloudera JDBC Connector as the JDBC driver.

Enabling Access to Internal Impala APIs for Kerberos Users

For applications that need direct access to Impala APIs, without going through the HiveServer2 or Beeswax interfaces,
you can specify a list of Kerberos users who are allowed to call those APIs. By default, the impala and hdfs users are
the only ones authorized for this kind of access. Any users not explicitly authorized through the
internal_principals_whitelist configuration setting are blocked from accessing the APIs. This setting applies
to all the Impala-related daemons, although currently it is primarily used for HDFS to control the behavior of the catalog
server.

Mapping Kerberos Principals to Short Names for Impala

In CDH 5.8 / Impala 2.6 and higher, Impala recognizes the auth_to_local setting, specified through the Cloudera
Manager setting Additional Rules to Map Kerberos Principals to Short Names. This feature is disabled by default, to
avoid an unexpected change in security-related behavior. To enable it, select the Use HDFS Rules to Map Kerberos
Principals to Short Names checkbox to enable the service-wide --load_auth_to_local_rules configuration
setting. Then restart the Impala service. See Using Auth-to-Local Rules to Isolate Cluster Users on page 68 for general
information about this feature.

Enabling LDAP Authentication for Impala

Authentication is the process of allowing only specified named users to access the server (in this case, the Impala
server). This feature is crucial for any production deployment, to prevent misuse, tampering, or excessive load on the
server. Impala uses LDAP for authentication, verifying the credentials of each userwho connects throughimpala-shell,
Hue, a Business Intelligence tool, JDBC or ODBC application, etc.

Note: Regardless of the authenticationmechanism used, Impala always creates HDFS directories and
data files owned by the same user (typically impala). To implement user-level access to different
databases, tables, columns, partitions, and so on, use the Sentry authorization feature, as explained
in Enabling Sentry Authorization for Impala.

An alternative formof authentication you can use is Kerberos, described in Enabling Kerberos Authentication for Impala
on page 92.

Requirements for Using Impala with LDAP

Authentication against LDAP servers is available in Impala 1.2.2 and higher. Impala 1.4.0 added the support for secure
LDAP authentication through SSL and TLS.

The Impala LDAP support lets you use Impala with systems such as Active Directory that use LDAP behind the scenes.

Consideration for Connections Between Impala Components

Only the connections between clients and Impala can be authenticated by LDAP.

You must use the Kerberos authentication mechanism for connections between internal Impala components, such as
between the impalad, statestored, and catalogd daemons. See Enabling Kerberos Authentication for Impala on
page 92 on how to set up Kerberos for Impala.

Enabling LDAP in Command Line Interface

To enable LDAP authentication via a command line interface, start the impalad with the following startup options
for:
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--enable_ldap_auth

Enables LDAP-based authentication between the client and Impala.

--ldap_uri

Sets the URI of the LDAP server to use. Typically, the URI is prefixed with ldap://. You can specify secure SSL-based
LDAP transport by using the prefix ldaps://. The URI can optionally specify the port, for example:
ldap://ldap_server.example.com:389 or ldaps://ldap_server.example.com:636. (389 and 636 are
the default ports for non-SSL and SSL LDAP connections, respectively.)

Support for Custom Bind Strings

When Impala connects to LDAP it issues a bind call to the LDAP server to authenticate as the connected user. Impala
clients, including the Impala shell, provide the short name of the user to Impala. This is necessary so that Impala can
use Sentry for role-based access, which uses short names.

However, LDAP servers often require more complex, structured usernames for authentication. Impala supports three
ways of transforming the short name (for example, 'henry') to a more complicated string. If necessary, specify one
of the following configuration options when starting the impalad daemon.

--ldap_domain

Replaces the username with a string username@ldap_domain.

--ldap_baseDN

Replaces the username with a “distinguished name” (DN) of the form: uid=userid,ldap_baseDN. (This is
equivalent to a Hive option).

--ldap_bind_pattern

This is the most general option, and replaces the username with the string ldap_bind_pattern where all instances
of the string #UID are replaced with userid. For example, an ldap_bind_pattern of
"user=#UID,OU=foo,CN=bar" with a username of henry will construct a bind name of
"user=henry,OU=foo,CN=bar".

The above options are mutually exclusive, and Impala does not start if more than one of these options are specified.

Secure LDAP Connections

To avoid sending credentials over the wire in cleartext, you must configure a secure connection between both the
client and Impala, and between Impala and the LDAP server. The secure connection could use SSL or TLS.

Secure LDAP connections through SSL:

For SSL-enabled LDAP connections, specify a prefix of ldaps:// instead of ldap://. Also, the default port for
SSL-enabled LDAP connections is 636 instead of 389.

Secure LDAP connections through TLS:

TLS, the successor to the SSL protocol, is supported by most modern LDAP servers. Unlike SSL connections, TLS
connections can be made on the same server port as non-TLS connections. To secure all connections using TLS, specify
the following flags as startup options to the impalad daemon:

--ldap_tls

Tells Impala to start a TLS connection to the LDAP server, and to fail authentication if it cannot be done.

--ldap_ca_certificate="/path/to/certificate/pem"

Specifies the location of the certificate in standard .PEM format. Store this certificate on the local filesystem, in a
location that only the impala user and other trusted users can read.

Enabling LDAP in Cloudera Manager

To enable LDAP authentication in Cloudera Manager:

1. In the Impala service, click the Configuration tab.
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2. In the search box, type ldap.
3. Specify the values for the option fields. Each field lists the corresponding Impala startup flag. See the sections

above for the corresponding flag if you need more information on a particular field.
4. Click Save Changes.
5. Restart the Impala service.

LDAP Authentication for impala-shell

To connect to Impala using LDAP authentication, you specify command-line options to the impala-shell command
interpreter and enter the password when prompted.

-l

Enables LDAP authentication.

-u

Sets the user. Per Active Directory, the user is the short username, not the full LDAP distinguished name. If your
LDAP settings include a search base, use the --ldap_bind_pattern on the impalad daemon to translate the
short user name from impala-shell automatically to the fully qualified name.

impala-shell automatically prompts for the password.

See Configuring Impala toWork with JDBC for the format to use with the JDBC connection string for servers using LDAP
authentication.

Enabling LDAP for Impala in Hue

1. Go to the Hue service.
2. Click the Configuration tab.
3. Select Scope > Hue Server.
4. Select Category > Advanced.
5. Add the following properties to the Hue Server Advanced Configuration Snippet (Safety Valve) for

hue_safety_valve_server.ini property.

[impala]
auth_username=<LDAP username of Hue user to be authenticated>
auth_password=<LDAP password of Hue user to be authenticated>

6. Click Save Changes.

Enabling Impala Delegation for LDAP Users

See Configuring Impala Delegation for Hue and BI Tools on page 97 for details about the delegation feature that lets
certain users submit queries using the credentials of other users.

LDAP Restrictions for Impala

The LDAP support is preliminary. It currently has only been tested against Active Directory.

Using Multiple Authentication Methods with Impala

Impala 2.0 and later automatically handles both Kerberos and LDAP authentication. Each impalad daemon can accept
both Kerberos and LDAP requests through the same port. No special actions need to be taken if some users authenticate
through Kerberos and some through LDAP.

Prior to Impala 2.0, you had to configure each impalad to listen on a specific port depending on the kind of
authentication, then configure your network load balancer to forward each kind of request to a DataNode that was
set up with the appropriate authentication type. Once the initial request was made using either Kerberos or LDAP
authentication, Impala automatically handled theprocess of coordinating thework acrossmultiple nodes and transmitting
intermediate results back to the coordinator node.
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Configuring Impala Delegation for Hue and BI Tools

When users submit Impala queries through a separate application, such as Hue or a business intelligence tool, typically
all requests are treated as coming from the same user. In Impala 1.2 and higher, Impala supports “delegation” where
users whose names you specify can delegate the execution of a query to another user. The query runswith the privileges
of the delegated user, not the original authenticated user.

Starting in Impala 3.1 and higher, you can delegate using groups. Instead of listing a large number of delegated users,
you can create a group of those users and specify the delegated group name in the Impalad startup option. The client
sends the delegated user name, and Impala performs an authorization to see if the delegated user belongs to a delegated
group.

The name of the delegated user is passed using the HiveServer2 protocol configuration property impala.doas.user
when the client connects to Impala.

Currently, the delegation feature is available only for Impala queries submitted through application interfaces such as
Hue and BI tools. For example, Impala cannot issue queries using the privileges of the HDFS user.

The delegation feature is enabled by the startup options for impalad: --authorized_proxy_user_config and
--authorized_proxy_group_config. See Enabling Delegation in Cloudera Manager on page 98 for enabling
delegation in Cloudera Manager.

• The list of authorized users/groups are delimited with ;
• The list of delegated users/groups are delimited with , by default.
• Use the --authorized_proxy_user_config_delimiter startup option to override the default user delimiter

(the comma character) to another character.
• Use the --authorized_proxy_group_config_delimiter startup option to override the default group

delimiter (the comma character) to another character.
• A wildcard (*) is supported to delegated to any users or any groups, e.g.

--authorized_proxy_group_config=hue=*. Make sure to use single quotes or escape characters to ensure
that any * characters do not undergo wildcard expansion when specified in command-line arguments.

When you start Impala with the --authorized_proxy_user_config=authenticated_user=delegated_user
or --authorized_proxy_group_config=authenticated_user=delegated_group option:

• Authentication is based on the user on the left hand side (authenticated_user).
• Authorization is based on the right hand side user(s) or group(s) (delegated_user, delegated_group).
• When opening a client connection, the client must provide a delegated username via the HiveServer2 protocol

property,impala.doas.user or DelegationUID.
• It is not necessary for authenticated_user to have the permission to access/edit files.
• It is not necessary for the delegated users to have access to the service via Kerberos.
• delegated_user and delegated_groupmust exist in the OS.
• For group delegation, use the JNI-based mapping providers for group delegation, such as

JniBasedUnixGroupsMappingWithFallback and JniBasedUnixGroupsNetgroupMappingWithFallback.
• ShellBasedUnixGroupsNetgroupMapping and ShellBasedUnixGroupsMapping Hadoop group mapping providers

are not supported in Impala group delegation.
• In Impala,user() returns authenticated_user andeffective_user() returns the delegated user that the client

specified.

The user or group delegation process works as follows:

1. The Impalad daemon starts with one or both of the following options:

• --authorized_proxy_user_config=authenticated_user=delegated_user

• --authorized_proxy_group_config=authenticated_user=delegated_group

2. A client connects to Impala via the HiveServer2 protocol with the impala.doas.user configuration property,
e.g. connected user is authenticated_user with impala.doas.user=delegated_user.

3. The client user authenticated_user sends a request to Impala as the delegated user delegated_user.
4. Impala checks authorization:
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In user delegation, Impala checks if delegated_user is in the list of authorized delegate users for the user
authenticated_user.

•

• In group delegate, Impala checks if delegated_user belongs to one of the delegated groups for the user
authenticated_user, delegated_group in this example.

5. If the user is an authorized delegated user for authenticated_user, the request is executed as the delegate
user delegated_user.

See Modifying Impala Startup Options for details about adding or changing impalad startup options.

See this blog post for background information about the delegation capability in HiveServer2.

To set up authentication for the delegated users:

• On the server side, configure either user/password authentication through LDAP, or Kerberos authentication, for
all the delegated users. See Enabling LDAPAuthentication for Impala on page 94 or Enabling Kerberos Authentication
for Impala on page 92 for details.

• On the client side, to learn how to enable delegation, consult the documentation for the ODBC driver you are
using.

Enabling Delegation in Cloudera Manager

To enable delegation in Cloudera Manager:

1. Navigate to Clusters > Impala > Configuration > Policy File-Based Sentry.
2. In the Proxy User Configuration field, type the a semicolon-separated list of key=value pairs of authorized proxy

users to the user(s) they can impersonate. The list of delegated short user names are delimited with a comma,
e.g. hue=user1, user2.

The short user names should be specified. The user names are case-sensitive.

3. In the Proxy Group Configuration field, type the a semicolon-separated list of key=value pairs of authorized proxy
users to the group(s) they can impersonate. The list of delegated groups are delimited with a comma, e.g.
hue=group1, group2.

The group names are case-sensitive.

4. Click Save Changes and restart the Impala service.

Cloudera Search Authentication

This section describes how to configure Solr to enable authentication.

When authentication is enabled, only specified hosts and users can connect to Solr. Authentication also verifies that
clients connect to legitimate servers. This feature prevents spoofing such as impersonation and man-in-the-middle
attacks. Search supports Kerberos and LDAP authentication.

Cloudera Search supports a variety of combinations of authentication protocols:

Table 3: Authentication Protocol Combinations

Use CaseSolr Authentication

Insecure clusterNo authentication

TheHadoop cluster has Kerberos turned on and every user
(or client) connecting to Solr has a Kerberos principal.

Kerberos only

The Hadoop cluster has Kerberos turned on. External Solr
users (or clients) do not have Kerberos principals but do

Kerberos and LDAP

have identities in the LDAP server. Client authentication
using LDAP requires that Kerberos is enabled for the
cluster. Using LDAP alone is not supported.
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Once you are finished setting up authentication, configure Sentry authorization. Authorization involves specifying
which resources can be accessed by particular users when they connect through Search. For more information, see
Configuring Sentry Authorization for Cloudera Search.

Enabling Kerberos Authentication for Cloudera Search

Solr supports Kerberos authentication. All necessary packages are installedwhen you install Search. To enable Kerberos,
see Configuring Authentication in Cloudera Manager.

Enabling LDAP Authentication for Cloudera Search

Before continuing, make sure that you have completed the steps in Enabling Kerberos Authentication for Cloudera
Search on page 99. Solr supports LDAP authentication for external Solr client including:

• Command-line tools
• curl
• Web browsers
• Solr Java clients

In some cases, Solr does not support LDAP authentication. Use Kerberos authentication instead in these cases. Solr
does not support LDAP authentication with:

• Search indexing components including the MapReduce indexer, Lily HBase indexer, or Flume.
• Solr internal requests such as those for replication or querying.
• Hadoop delegation token management requests such as GETDELEGATIONTOKEN or RENEWDELEGATIONTOKEN.

Configuring LDAP Authentication for Cloudera Search

You can configure LDAP-based authentication using Cloudera Manager at the Solr service level.

1. Go to the Solr service.
2. Click the Configuration tab.
3. Select Scope > Solr
4. Select Category > Security
5. Select Enable LDAP.
6. Enter the LDAP URI in the LDAP URI property.
7. Configure only one of following mutually exclusive parameters:

• LDAP BaseDN: Replaces the username with a "distinguished name" (DN) of the form:
uid=userid,ldap_baseDN. Typically used for OpenLDAP server installation.

-OR-

• Active Directory Domain: Replaces the username with a string username@ldap_domain. Typically used for
Active Directory server installation.

Securing LDAP Connections

You can secure communications using LDAP-based encryption.

To avoid sending credentials over the wire in clear-text, you must configure a secure connection between both the
client and Solr, and between Solr and the LDAP server. The secure connection could use SSL or TLS.

Secure LDAP connections through SSL:

For SSL-enabled LDAP connections, specify a prefix of ldaps:// instead of ldap://. Also, the default port for
SSL-enabled LDAP connections is 636 instead of 389.

Secure LDAP connections through TLS:

TLS, the successor to the SSL protocol, is supported by most modern LDAP servers. Unlike SSL connections, TLS
connections can bemade on the same server port as non-TLS connections. You can enable xxx using ClouderaManager.

1. Go to the Solr service.
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2. Click the Configuration tab.
3. Select Scope > Solr
4. Select Category > Security
5. Select Enable LDAP TLS.
6. Import the LDAP server security certificate in the Solr Trust Store file:

a. Enter the location for the Solr Trust Store File in Solr TLS/SSL Certificate Trust Store File.
b. Enter the password for the Solr Trust Store File in Solr TLS/SSL Certificate Trust Store Password.

Using Kerberos with Cloudera Search

The process of enabling Solr clients to authenticatewith a secure Solr is specific to the client. This section demonstrates:

Secure Solr requires that the CDH components that it interacts with are also secure. Secure Solr interacts with HDFS,
ZooKeeper and optionally HBase, MapReduce, and Flume.

Using Kerberos with curl

You can use Kerberos authenticationwith clients such ascurl. To usecurl, begin by acquiring valid Kerberos credentials
and then run the desired command. For example, you might use commands similar to the following:

kinit jdoe@EXAMPLE.COM

curl --negotiate -u foo:bar http://solrserver:8983/solr/

Note: Depending on the tool used to connect, additional parameters may be required. For example,
with curl, the --negotiate and -u parameters are required. The username and password specified
with -u is ignored when Kerberos is used, but it is still required. As a result, you can use any dummy
text you like, such as foo:bar, as long as the colon (:) is included. You can also omit the user and
password text, and use a single colon as follows:

curl --negotiate -u : http://solrserver:8983/solr/

Using Kerberos with solrctl

If you are using solrctl to manage your deployment in an environment that requires Kerberos authentication, you
must have valid Kerberos credentials, which you can obtain using the kinit command. For example:

kinit jdoe@EXAMPLE.COM

For more information about solrctl, see solrctl Reference.

Configuring a jaas.conf File

Some applications, such as those using the SolrJ library, require a Java Authentication and Authorization Service (JAAS)
configuration file. You can use a file name other than jaas.conf.

Creating a JAAS configuration file:

• If you are authenticating using kinit to obtain credentials, you can configure the client to use your credential
cache by creating a jaas.conf file with the following contents:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=false
 useTicketCache=true
 principal="<user>@EXAMPLE.COM";
 };

Replace <user> with your username, and EXAMPLE.COM with your Kerberos realm.
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• If you want the client application to authenticate using a keytab, modify jaas-client.conf as follows:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/path/to/user.keytab"
 storeKey=true
 useTicketCache=false
 principal="<user>@EXAMPLE.COM";
};

Replace /path/to/user.keytab with the keytab file you want to use and <user>@EXAMPLE.COM with the
principal in the keytab. If you are using a service principal that includes the hostname,make sure that it is included
in the jaas.conf file (for example, solr/solr01.example.com@EXAMPLE.COM).

Using the JAAS configuration file:

• Command line

Set the property when invoking the program. For example, if you were using a jar, you might use:

java -Djava.security.auth.login.config=/home/user/jaas.conf -jar app.jar

• Java applications

Set the Java system property java.security.auth.login.config. For example, if the JAAS configuration file
is located on the filesystem as /home/user/jaas-client.conf. The Java system property
java.security.auth.login.configmust be set to point to this file. Setting a Java system property can be
done programmatically, for example using a call such as:

System.setProperty("java.security.auth.login.config", "/home/user/jaas.conf");

• MapReduceIndexerTool

The MapReduceIndexerTool uses SolrJ to pass the JAAS configuration file. Using the MapReduceIndexerTool in a
secure environment requires the use of the HADOOP_OPTS variable to specify the JAAS configuration file. For
example, you might issue a command such as the following:

HADOOP_OPTS="-Djava.security.auth.login.config=/home/user/jaas.conf" \
hadoop jar MapReduceIndexerTool

• hbase-indexer command

Certain hbase-indexer CLI commands such as replication-status attempt to read ZooKeeper hosts owned
by HBase. To successfully use these commands in Solr in a secure environment, specify a JAAS configuration file
with the HBase principal in the HBASE_INDEXER_OPTS environment variable. For example, you might issue a
command such as the following:

HBASE_INDEXER_OPTS="-Djava.security.auth.login.config=/home/user/hbase-jaas.conf" \
hbase-indexer replication-status

Using Kerberos with Flume Morphline Solr Sink

Repeat this process on all Flume hosts:

1. If you have not created a keytab file, do so now at /etc/flume-ng/conf/flume.keytab. This file should
contain the service principal flume/<fully.qualified.domain.name>@<YOUR-REALM>. See Flume
Authentication on page 77 for more information.
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2. Create a JAAS configuration file for flume at/etc/flume-ng/conf/jaas-client.conf. The file should appear
as follows:

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 useTicketCache=false
 keyTab="/etc/flume-ng/conf/flume.keytab"
 principal="flume/<fully.qualified.domain.name>@<YOUR-REALM>";
};

3. Add the flume JAAS configuration to the JAVA_OPTS in /etc/flume-ng/conf/flume-env.sh. For example,
you might change:

JAVA_OPTS="-Xmx500m"

to:

JAVA_OPTS="-Xmx500m -Djava.security.auth.login.config=/etc/flume-ng/conf/jaas-client.conf"

Spark Authentication

Spark has an internal mechanism that authenticates executors with the driver controlling a given application. This
mechanism is enabled using the Cloudera Manager Admin Console, as detailed in Enabling Spark Authentication.

When Spark on YARN is running on a secure cluster, users must authenticate to Kerberos before submitting jobs, as
detailed in Running Spark Applications on Secure Clusters.

Enabling Spark Authentication

Minimum Required Role: Security Administrator (also provided by Full Administrator)

Spark has an internal mechanism that authenticates executors with the driver controlling a given application. This
mechanism is enabled using the Cloudera Manager Admin Console, as detailed below. Cluster administrators can
enable the spark.authenticatemechanism to authenticate the various processes that support a Spark application.

To enable this feature on the cluster:

1. Log into the Cloudera Manager Admin Console.
2. Select Clusters > Spark (or Clusters > Spark_on_YARN).
3. Click the Configurationmenu.
4. Scroll down to the Spark Authentication setting, or search for spark.authenticate to find it.
5. In the Spark Authentication setting, click the checkbox next to the Spark (Service-Wide) property to activate the

setting.
6. Click Save Changes.

Note: If your cluster supports Spark 2, you must make the same change to the Spark 2 setting.
For example:

7. Restart YARN:

• Select Clusters > YARN.
• Select Restart from the Actions drop-down selector.

8. Re-deploy the client configurations:

• Select Clusters > Cluster_name
• Select Deploy Client Configurations from the Actions drop-down selector.
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Running Spark Applications on Secure Clusters

Secure clusters are clusters that use Kerberos for authentication. For secure clusters, Spark History Server automatically
uses Kerberos, so there's nothing to configure.

Users running Spark applications must first authenticate to Kerberos, using kinit, as follows:

$ kinit
ldap@EXAMPLE-REALM.COM:'s password:

After authenticating to Kerberos, users can submit their applications using spark-submit as usual, as shown below.
This command submits one of the default Spark sample jobs using an environment variable as part of the path, so
modify as needed for your own use:

$ spark-submit --class org.apache.spark.examples.SparkPi --master yarn \
--deploy-mode cluster $SPARK_HOME/lib/spark-examples.jar 10

Sqoop1 Authentication

Sqoop1 does not support TLS/SSL connections to Oracle, MySQL, or other databases.

ZooKeeper Authentication

ZooKeeper supports mutual server-to-server (quorum peer) authentication using SASL (Simple Authentication and
Security Layer), which provides a layer aroundKerberos authentication. Server to server authentication among ZooKeeper
servers in an ensemblemitigates the risk of spoofing by a rogue server on an unsecured network. Formore information
about quorum peer authentication and how the feature leverages ZooKeeper's SASL support, see the Cloudera
Engineering Blog post, Hardening Apache ZooKeeper Security.

Follow the steps in Configuring ZooKeeper Server for Kerberos Authentication on page 103 and Configuring ZooKeeper
Client Shell for Kerberos Authentication on page 104 to configure ZooKeeper to use client-to-server SASL-based
authentication.

To configure client-server or server-server authentication for ZooKeeper, follow the appropriate steps below:

Requirements

Configuring ZooKeeper to use Kerberos for client-server or server-server authentication requires that your organization's
Kerberos instance (MIT Kerberos, Microsoft Active Directory) be up and running, and reachable by the ZooKeeper
server or client during the configuration processes detailed below.

Before enabling mutual authentication, the ZooKeeper servers in the cluster must be configured to authenticate using
Kerberos.

Note: Cloudera recommends that you ensure your ZooKeeper ensemble is working properly, before
you attempt to integrate Kerberos authentication.

Configuring ZooKeeper Server for Kerberos Authentication

You can configure the ZooKeeper server for Kerberos authentication in Cloudera Manager.

Using Cloudera Manager to Configure ZooKeeper Server for Kerberos Authentication

To set up the ZooKeeper server for Kerberos authentication in Cloudera Manager, complete the following steps:

1. In Cloudera Manager, open the ZooKeeper service.
2. Click the Configuration tab.
3. Enter Kerberos in the in the Search bar.
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4. Find the Enable Kerberos Authentication property and select the check-box next to the ZooKeeper services that
you want to configure for Kerberos authentication.

Configuring ZooKeeper Client Shell for Kerberos Authentication

In addition to configuring ZooKeeper Server hosts to use Kerberos for authentication, you should also configure the
ZooKeeper client shell (the ZooKeeper CLI) to authenticate to the ZooKeeper service using Kerberos credentials. As
with the ZooKeeper Server, you must create a Kerberos principal for the client, as detailed below:

1. Create a Kerberos principal for the zookeeper-client, zkcli@YOUR-REALM, replacing YOUR-REALM with the
name of your organization's Kerberos realm:

kadmin: addprinc -randkey zkcli@YOUR-REALM

2. Create a keytab file for the ZooKeeper client shell using the -norandkey option.

Note: Not all versions of kadmin support the -norandkey option, in which case, simply omit
this option from the command. Using the kadmin command without the -norandkey option
invalidates previously exported keytabs and generates a new password.

$ kadmin
kadmin: xst -norandkey -k zkcli.keytab zkcli@YOUR-REALM

3. On the host running the ZooKeeper client shell, set up JAAS (Java Authentication and Authorization Service) in
the configuration directory: /etc/zookeeper/conf/.

4. Create a jaas.conf file containing the following settings:

Client {
  com.sun.security.auth.module.Krb5LoginModule required
  useKeyTab=true
  keyTab="/path/to/zkcli.keytab"
  storeKey=true
  useTicketCache=false
  principal="zkcli@YOUR-REALM";
};

5. In this same configuration directory, add the following setting to the java.env file, creating the file if necessary.

export JVMFLAGS="-Djava.security.auth.login.config=/etc/zookeeper/conf/jaas.conf"

Verifying the Configuration

After enabling Kerberos authentication and restarting the ZooKeeper cluster, you can verify that the authentication is
working correctly by following these steps:

1. Start the ZooKeeper client, passing to it the name of a ZooKeeper server:

zookeeper-client -server fqdn.example.com:port

2. From the ZooKeeper CLI, create a protected znode using your ZooKeeper client principal:

create /znode1 znode1data sasl:zkcli@{{YOUR-REALM}}:cdwra

3. Verify the znode is created and the ACL is set correctly:

getAcl /znode1

The getAcl command returns the znode's scheme and permissions values. Verify that these are as expected.
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Enabling Server-Server Mutual Authentication

Support for mutual authentication between ZooKeeper Servers can be enabled through the Cloudera Manager Admin
Console. For secured networks, server-to-server authentication is considered an optional security enhancement, so
the capability is disabled by default:

Server-to-server SASL authentication requires all servers in the ZooKeeper ensemble to authenticate using Kerberos,
as detailed in Configuring ZooKeeper Server for Kerberos Authentication on page 103.

Assuming your cluster is already configured to authenticate using Kerberos, you can enable mutual authentication as
follows:

1. Log into the Cloudera Manager Admin Console.
2. Select Clusters > ZOOKEEPER-n.
3. Click the Configuration tab.
4. Select Category > Security under the Filters menu to display the security properties.
5. Click the Enable Server to Server SASL Authentication box to select it.
6. Click Save.
7. Select Restart from the Actions drop-down to restart the cluster with this setting.

To disable server-to-server SASL authentication, simply return to the Cloudera Manager Admin Console page shown
above, de-select Enable Server to Server SASL Authentication (by clicking the checked box), and restart the cluster.

Configuring a Dedicated MIT KDC for Cross-Realm Trust
Using Cloudera Manager to configure Kerberos authentication for the cluster creates several principals and keytabs
automatically. ClouderaManager also deploys the keytab files to every host in the cluster. SeeHadoopUsers (user:group)
and Kerberos Principals on page 113 for complete listing.

Note: The example below is specific for creating and deploying principals and keytab files for MIT
Kerberos. See the appropriate documentation for other Kerberos implementations, such asMicrosoft
Active Directory, as needed.

Local and Remote Kerberos Admin Tools

Kerberos administrator commands can be run directly on the KDC server host or remotely, as shown in the table:
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Requires root access or Kerberos admin account. Use to log on directly to the KDC host.kadmin.local

Use the logon to the KDC host system from another remote host over the network.kadmin

• To run Kerberos administration commands locally on the KRB host system:

sudo kadmin.local

Enter your Linux system password (for the sudo).
• To run Kerberos administration commands from any host:

kadmin

Enter your Kerberos administrator password.

Note: Commands shown for the kadmin shell can also be run at the kadmin.local shell.

Setting up a Cluster-Dedicated KDC and Default Realm for the Hadoop Cluster

Cloudera has tested the following configuration approaches to Kerberos security for clusters managed by Cloudera
Manager. For administration teams that are just getting started with Kerberos security, we recommend starting with
these approaches to the configuration of KDC services for a number of reasons.

The number of Service Principal Names (SPNs) that are created and managed by the Cloudera Manager server for a
CDH cluster can be significant, so it is important to realize the potential impact on cluster uptime and overall operations
if you choose to manage keytabs manually instead. The Cloudera Manager server manages the creation of service
keytabs on the proper hosts based on the current configuration of the database. Manual keytab management can be
error prone and introduce delays when deploying ormoving services within the cluster, especially under time-sensitive
conditions.

Cloudera Manager creates SPNs within a KDC that it can access with the kadmin command based on configuration of
the /etc/krb5.conf file on the Cloudera Manager host. SPNs are created with the format
service-name/host.fqdn.name@EXAMPLE.COM where service-name is the relevant CDH service name such as
hue or hbase or hdfs.

If your site already has a working KDC, and any existing principals share the same name as any of the principals that
Cloudera Manager creates, the Cloudera Manager Server generates a new randomized key for those principals, and
consequently causes existing keytabs to become invalid.

This is why Cloudera recommends using a dedicated local MIT Kerberos KDC and realm for the Hadoop cluster. You
can set up a one-way cross-realm trust from the cluster-dedicated KDC and realm to your existing central MIT Kerberos
KDC, or to an existing Active Directory realm. Using this method, there is no need to create Hadoop service principals
in the centralMIT Kerberos KDC or in Active Directory, but principals (users) in the centralMIT KDC or in Active Directory
can be authenticated to Hadoop. The steps to implement this approach are as follows:

1. Install and configure a cluster-dedicatedMIT Kerberos KDC that will bemanaged by ClouderaManager for creating
and storing principals for the services supported by the cluster.

Note: The krb5-server package includes a logrotate policy file to rotate log files monthly.
To take advantage of this, install the logrotate package. No additional configuration is necessary.

2. See the example kdc.conf and krb5.conf files in Sample Kerberos Configuration Files on page 376 for
configuration considerations for the KDC and Kerberos clients.

3. Configure a default Kerberos realm for the cluster you want Cloudera Manager to manage and set up one-way
cross-realm trust between the cluster-dedicated KDC and either your central KDC or Active Directory, using the
appropriate steps:
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Using a Cluster-Dedicated KDC with a Central MIT KDC on page 107•
• Using a Cluster-Dedicated MIT KDC with Active Directory on page 108

Cloudera strongly recommends the method above because:

• It requires minimal configuration in Active Directory.
• It is comparatively easy to script the creation of many principals and keytabs. A principal and keytab must be

created for every daemon in the cluster, and in a large cluster this can be extremely onerous to do directly in
Active Directory.

• There is no need to involve central Active Directory administrators to get service principals created.
• It allows for incremental configuration. The Hadoop administrator can completely configure and verify the

functionality the cluster independently of integrating with Active Directory.

Using a Cluster-Dedicated KDC with a Central MIT KDC

Important: If you plan to use Oozie or the Hue Kerberos Ticket Renewer in your cluster, you must
configure your KDC to allow tickets to be renewed, and you must configure krb5.conf to request
renewable tickets. Typically, you can do this by adding the max_renewable_life setting to your
realm in kdc.conf, and by adding the renew_lifetime parameter to the libdefaults section
of krb5.conf. about renewable tickets, see the Kerberos documentation. See the Sample Kerberos
Configuration Files on page 376 for an example of configuration for ticket renewal.

1. In the /var/kerberos/krb5kdc/kdc.conf file on the local dedicated KDC server host, configure the default
realm for the Hadoop cluster by substituting your Kerberos realm in the following realms property:

[realms]
 HADOOP.EXAMPLE.COM = {

2. In the /etc/krb5.conf file on all cluster hosts and all Hadoop client user hosts, configure the default realm for
the Hadoop cluster by substituting your Kerberos realm in the following realms property. Also specify the local
dedicated KDC server hostname in the /etc/krb5.conf file (for example, kdc01.example.com).

[libdefaults]
  default_realm = HADOOP.EXAMPLE.COM
[realms]
  HADOOP.EXAMPLE.COM = {
    kdc = kdc01.hadoop.example.com:88
    admin_server = kdc01.hadoop.example.com:749
    default_domain = hadoop.example.com
  }
  EXAMPLE.COM = {
    kdc = kdc01.example.com:88
    admin_server = kdc01.example.com:749
    default_domain = example.com
  }
[domain_realm]
  .hadoop.example.com = HADOOP.EXAMPLE.COM
  hadoop.example.com = HADOOP.EXAMPLE.COM
  .example.com = EXAMPLE.COM
  example.com = EXAMPLE.COM

3. To set up the cross-realm trust in the cluster-dedicated KDC, type the following command in the kadmin.local
or kadmin shell on the cluster-dedicated KDC host to create a krbtgt principal. Substitute your cluster-dedicated
KDC realm for HADOOP.EXAMPLE.COM, and substitute your central KDC realm for EXAMPLE.COM. Enter a trust
password when prompted. Note the password because you will need to enter the exact same password in the
central KDC in the next step.

kadmin:  addprinc krbtgt/HADOOP.EXAMPLE.COM@EXAMPLE.COM 

4. Each of your Hadoop client users must also place this information in their local core-site.xml file. The easiest
way to do so is by using the Cloudera Manager Admin Console to generate a client configuration file.
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5. To set up the cross-realm trust in the central KDC, type the same command in the kadmin.local or kadmin
shell on the central KDC host to create the exact same krbtgt principal and password.

kadmin:  addprinc krbtgt/HADOOP.EXAMPLE.COM@EXAMPLE.COM 

Important: For a cross-realm trust to operate properly, both KDCs must have the same krbtgt
principal and password, and both KDCs must be configured to use the same encryption type.

6. To properly translate principal names from the central KDC realm into the cluster-dedicated KDC realm for the
Hadoop cluster, configure the Trusted Kerberos Realms property of the HDFS service.

a. Open the Cloudera Manager Admin Console.
b. Go to the HDFS service.
c. Click the Configuration tab.
d. Select Scope > HDFS (Service Wide)
e. Select Category > Security.
f. Type Kerberos in the Search box.
g. Edit the Trusted Kerberos Realms property to add the name of your central KDC realm. If you need to use

more advanced mappings which do more than just allow principals from another domain, you may enter
them in the Additional Rules to Map Kerberos Principals to Short Names property. For more information
about name mapping rules, see Mapping Kerberos Principals to Short Names on page 117.

7. Each of your Hadoop client users must also place this information in their local core-site.xml file. The easiest
way to do so is by using the Cloudera Manager Admin Console to generate a client configuration file.

8. Later in this procedure, you will restart the services to have the configuration changes in core-site.xml take
effect.

Using a Cluster-Dedicated MIT KDC with Active Directory

For Cloudera Manager clusters, the openldap-clients package must be installed on the Cloudera Manager Server
host before configuring the cluster to use Kerberos for authentication.

On the Active Directory Server

1. On the Active Directory server host, type the following command to add the local realm trust to Active Directory:

netdom trust HADOOP.EXAMPLE.COM /Domain:EXAMPLE.COM /add /realm /passwordt:TrustPassword

2. On the Active Directory server host, type the following command to set the proper encryption type:

Windows 2003 RC2

Windows 2003 server installations do not support AES encryption for Kerberos. Therefore RC4 should be used.
Please see the Microsoft reference documentation for more information.

ktpass /MITRealmName HADOOP.EXAMPLE.COM /TrustEncryp RC4

Windows 2008

ksetup /SetEncTypeAttr HADOOP.EXAMPLE.COM <enc_type>

Where the <enc_type> parameter can be replacedwith parameter strings for AES, DES, or RC4 encryptionmodes.
For example, for AES encryption, replace <enc_type> with AES256-CTS-HMAC-SHA1-96 or
AES128-CTS-HMAC-SHA1-96 and for RC4 encryption, replace with RC4-HMAC-MD5. See theMicrosoft reference
documentation for more information.
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Important: Make sure that the encryption type you specify is supported on both your version
of Windows Active Directory and your version of MIT Kerberos.

On the MIT KDC Server

1. In the /var/kerberos/krb5kdc/kdc.conf file on the local dedicated KDC server host, configure the default
realm for the Hadoop cluster by substituting your Kerberos realm in the following realms property:

[realms]
 HADOOP.EXAMPLE.COM = {

2. Each of your Hadoop client users must also place this information in their local core-site.xml file. The easiest
way to do so is by using the Cloudera Manager Admin Console to generate a client configuration file.

3. On the local MIT KDC server host, type the following command in the kadmin.local or kadmin shell to add the
cross-realm krbtgt principal:

kadmin:  addprinc -e "<keysalt_list>" krbtgt/HADOOP.EXAMPLE.COM@EXAMPLE.COM

where the <keysalt_list> parameter specifies the types of keys and their salt to be used for encryption of the
password for this cross-realm krbtgt principal. It can be set to AES, or RC4 keytypes with a salt value of :normal.
Note that DES is deprecated and should no longer be used. You can specify multiple keysalt types using the
parameter in the command above. Make sure that at least one of the encryption types corresponds to the
encryption types found in the tickets granted by the KDC in the remote realm. For an example of the values to
use, see the examples based on the Active Directory functional domain level, below.

Examples by Active Directory Domain or Forest "Functional level"

Active Directory will, based on the Domain or Forest functional level, use encryption types supported by that
release of the Windows Server operating system. It is not possible to use AES encryption types with an AD 2003
functional level. If you notice that DES encryption types are being used when authenticating or requesting service
tickets to Active Directory then it might be necessary to enable weak encryption types in the /etc/krb5.conf.
See Sample Kerberos Configuration Files on page 376 for an example.

• Windows 2003

kadmin: addprinc -e "rc4-hmac:normal" krbtgt/HADOOP.EXAMPLE.COM@EXAMPLE.COM

• Windows 2008

kadmin: addprinc -e "aes256-cts:normal aes128-cts:normal rc4-hmac:normal" 
krbtgt/HADOOP.EXAMPLE.COM@EXAMPLE.COM

Note: The cross-realm krbtgt principal that you add in this step must have at least one entry
that uses the same encryption type as the tickets that are issued by the remote KDC. If there are
no matching encryption types, principals in the local realm can successfully access the Hadoop
cluster, but principals in the remote realm are unable to.

On All Cluster Hosts

1. In the /etc/krb5.conf file on all cluster hosts and all Hadoop client user hosts, configure both Kerberos realms.
Note that default_realm should be configured as the local MIT Kerberos realm for the cluster. Your krb5.conf
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may contain more configuration properties than those demonstrated below. This example is provided to clarify
configuration parameters. See Sample Kerberos Configuration Files on page 376 for more information.

[libdefaults]
  default_realm = HADOOP.EXAMPLE.COM
[realms]
  EXAMPLE.COM = {
    kdc = dc01.example.com:88
    admin_server = dc01.example.com:749
  }
  HADOOP.EXAMPLE.COM = {
    kdc = kdc01.hadoop.example.com:88
    admin_server = kdc01.hadoop.example.com:749
  }
[domain_realm]
  .hadoop.example.com = HADOOP.EXAMPLE.COM
  hadoop.example.com = HADOOP.EXAMPLE.COM
  .example.com = EXAMPLE.COM
  example.com = EXAMPLE.COM

2. To properly translate principal names from the Active Directory realm into the cluster-dedicated KDC realm for
the Hadoop cluster, configure the Trusted Kerberos realms property of the HDFS service:

a. Open the Cloudera Manager Admin Console.
b. Go to the HDFS service.
c. Click the Configuration tab.
d. Select Scope > HDFS (Service Wide)
e. Select Category > Security.
f. Type Kerberos in the Search box.
g. Edit the Trusted Kerberos Realms property to add the name of your central KDC realm. If you need to use

more advanced mappings which do more than just allow principals from another domain, you may enter
them in the Additional Rules to Map Kerberos Principals to Short Names property. For more information
about name mapping rules, see Mapping Kerberos Principals to Short Names on page 117.

Integrating MIT Kerberos and Active Directory
Several different subsystems are involved in servicing authentication requests, including the Key Distribution Center
(KDC), Authentication Service (AS), and Ticket Granting Service (TGS). The more nodes in the cluster and the more
services provided, the heavier the traffic between these services and the services running on the cluster.

As a general guideline, Cloudera recommends using a dedicated Active Directory instance (Microsoft Server Domain
Services) for every 100-200 nodes in the cluster. However, this is just a loose guideline. Monitor utilization and deploy
additional instances as needed to meet the demand.

By default, Kerberos uses UDP for client/server communication which is typically faster at delivering packets than TCP,
but does not guarantee delivery. Additionally, using UDP packets that get too large are frequently dropped, as is the
case when a user is a member of a large number of groups. To avoid this problem, force Kerberos to use TCP by
modifying the Kerberos configuration file (krb5.conf) as follows:

[libdefaults]
udp_preference_limit = 1
...

This is especially useful if the domain controllers are not on the same subnet as the cluster or are separated by firewalls.

In general, Cloudera recommends setting up the Active Directory domain controller (Microsoft Server Domain Services)
on the same subnet as the cluster and never over a WAN connection which results in considerable latency and affects
cluster performance.
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Troubleshooting cluster operations when Active Directory is being used for Kerberos authentication requires
administrative access to the Microsoft Server Domain Services instance. Administrators may need to enable Kerberos
event logging on the Microsoft Server KDC to resolve issues.

Deleting ClouderaManager roles or nodes requiresmanually deleting the associate Active Directory accounts. Cloudera
Manager cannot delete entries from Active Directory.

Integrating MIT Kerberos and Active Directory

Prior to release 5.1, clustersmanaged by ClouderaManager could not integrate directlywith aMicrosoft Active Directory
KDC. Rather, integrating the Cloudera Manager cluster with an Active Directory KDC required the additional setup of
a local MIT KDC (local, meaning in the same subnet as the cluster).

Note: The configuration process detailed below is not needed for Cloudera Manager clusters as of
release 5.1 (and higher). To integrate the cluster with an Active Directory KDC, see Enabling Kerberos
Authentication for CDH on page 51.

The steps below can be used for Cloudera Manager clusters prior to release 5.1, or if the Active Directory KDC cannot
be accessed directly for whatever reason. The setup process assumes that:

• AnMIT Kerberos KDC is running in the same subnet as the cluster and that a Kerberos REALM is local to the cluster
• A Microsoft Server Active Directory instance (Microsoft Server Domain Services) is running elsewhere on the

network, in its own Kerberos realm.

Given these two systems, you can then:

1. Create principals for all services running on the cluster in the MIT Kerberos realm local to the cluster.
2. Set up one-way cross-realm trust from the MIT Kerberos realm to the Active Directory realm, as detailed in

Configuring a Local MIT Kerberos Realm to Trust Active Directory on page 111

The result of this setup is that Active Directory principals (users) can authenticate to the clusterwithout needing service
principals.

Configuring a Local MIT Kerberos Realm to Trust Active Directory
On the Active Directory Server

1. Add the local realm trust to Active Directory with this command:

netdom trust YOUR-LOCAL-REALM.COMPANY.COM /Domain:AD-REALM.COMPANY.COM /add /realm 
/passwordt:<TrustPassword>

2. Set the proper encryption type with this command:

OnWindows 2003 RC2:

ktpass /MITRealmName YOUR-LOCAL-REALM.COMPANY.COM /TrustEncryp <enc_type>

OnWindows 2008:

ksetup /SetEncTypeAttr YOUR-LOCAL-REALM.COMPANY.COM <enc_type>

The <enc_type> parameter specifies AES, DES, or RC4 encryption. Refer to the documentation for your version of
Windows Active Directory to find the <enc_type> parameter string to use.

3. Get and verify the list of encryption types set with this command:

OnWindows 2008:

ksetup /GetEncTypeAttr YOUR-LOCAL-REALM.COMPANY.COM
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Important: Make sure the encryption type you specify is supported on both your version of
Windows Active Directory and your version of MIT Kerberos.

On the MIT KDC Server

Type the following command in the kadmin.local or kadmin shell to add the cross-realm krbtgt principal. Use the same
password you used in the netdom command on the Active Directory Server.

kadmin:  addprinc -e "enc_type_list" 
krbtgt/YOUR-LOCAL-REALM.COMPANY.COM@AD-REALM.COMPANY.COM

where the enc_type_list parameter specifies the types of encryption this cross-realm krbtgt principal can support—AES,
DES, or RC4. You can specify multiple encryption types using the parameter in the command above, what's important
is that at least one of the encryption types corresponds to the encryption type found in the tickets granted by the KDC
in the remote realm. For example:

kadmin:  addprinc -e "rc4-hmac:normal des3-hmac-sha1:normal" 
krbtgt/YOUR-LOCAL-REALM.COMPANY.COM@AD-REALM.COMPANY.COM

Note: The cross-realm krbtgt principal that you add in this step must have at least one entry that
uses the same encryption type as the tickets that are issued by the remote KDC. If no entries have the
same encryption type, then the problem you will see is that authenticating as a principal in the local
realm will allow you to successfully run Hadoop commands, but authenticating as a principal in the
remote realm will not allow you to run Hadoop commands.

On All of the Cluster Hosts

1. Verify that both Kerberos realms are configured on all of the cluster hosts. Note that the default realm and the
domain realm should remain set as the MIT Kerberos realm which is local to the cluster.

[realms]
  AD-REALM.CORP.FOO.COM = {
    kdc = ad.corp.foo.com:88
    admin_server = ad.corp.foo.com:749
    default_domain = foo.com
  }
  CLUSTER-REALM.CORP.FOO.COM = {
    kdc = cluster01.corp.foo.com:88
    admin_server = cluster01.corp.foo.com:749
    default_domain = foo.com
  }

2. To properly translate principal names from the Active Directory realm into local names within Hadoop, you must
configure the hadoop.security.auth_to_local setting in the core-site.xml file on all of the cluster
machines. The following example translates all principal names with the realm AD-REALM.CORP.FOO.COM into
the first component of the principal name only. It also preserves the standard translation for the default realm
(the cluster realm).

<property>
  <name>hadoop.security.auth_to_local</name>
  <value>
    RULE:[1:$1@$0](^.*@AD-REALM\.CORP\.FOO\.COM$)s/^(.*)@AD-REALM\.CORP\.FOO\.COM$/$1/g

    RULE:[2:$1@$0](^.*@AD-REALM\.CORP\.FOO\.COM$)s/^(.*)@AD-REALM\.CORP\.FOO\.COM$/$1/g

    DEFAULT
  </value>
</property>

For more information about name mapping rules, see Mapping Kerberos Principals to Short Names on page 117.
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Hadoop Users (user:group) and Kerberos Principals
During the ClouderaManager/CDH installation process, several Linux user accounts and groups are created by default.
These are listed in the table below. Integrating the cluster to use Kerberos for authentication requires creating Kerberos
principals and keytabs for these user accounts.

Table 4: Users and Groups

FunctionalityGroupsUnix User IDComponent
(Version)

Clustersmanaged by ClouderaManager run Cloudera
Manager Server,monitoring roles, and other Cloudera
Server processes as cloudera-scm.

Requires keytab file named cmf.keytab because
name is hard-coded in Cloudera Manager.

cloudera-scmcloudera-scmClouderaManager
(all versions)

Accumulo processes run as this user.accumuloaccumuloApache Accumulo

The sink that writes to HDFS as user must have write
privileges.

flumeflumeApache Flume

The Master and the RegionServer processes run as
this user.

hbasehbaseApache HBase

The NameNode and DataNodes run as this user, and
theHDFS root directory aswell as the directories used
for edit logs should be owned by it.

hdfs, hadoophdfsHDFS

The HiveServer2 process and the Hive Metastore
processes run as this user.

hivehiveApache Hive

A user must be defined for Hive access to its
Metastore DB (for example, MySQL or Postgres) but
it can be any identifier and does not correspond to a
Unix uid. This is
javax.jdo.option.ConnectionUserName in
hive-site.xml.

The WebHCat service (for REST access to Hive
functionality) runs as the hive user.

hivehiveApache HCatalog

The HttpFS service runs as this user. See HttpFS
Security Configuration for instructions on how to
generate the merged httpfs-http.keytab file.

httpfshttpfsHttpFS

Hue services run as this user.huehueHue

The Hue Load balancer has a dependency on the
apache2 package that uses the apache user name.

apacheapacheHue Load Balancer

Cloudera Manager does not run processes using this
user ID.

Impala services run as this user.impala, hiveimpalaImpala

Kafka brokers and mirror makers run as this user.kafkakafkaApache Kafka

The Java KeyStore KMS service runs as this user.kmskmsJava KeyStore KMS

The Key Trustee KMS service runs as this user.kmskmsKey Trustee KMS

Cloudera Security | 113

Authentication



FunctionalityGroupsUnix User IDComponent
(Version)

The Key Trustee Server service runs as this user.keytrusteekeytrusteeKey Trustee Server

Kudu services run as this user.kudukuduKudu

Without Kerberos, the JobTracker and tasks run as
this user. The LinuxTaskController binary is owned by
this user for Kerberos.

mapred, hadoopmapredMapReduce

The Oozie service runs as this user.oozieoozieApache Oozie

No special users.~~Parquet

No special users.~~Apache Pig

The Solr processes run as this user.solrsolrCloudera Search

The Spark History Server process runs as this user.sparksparkApache Spark

The Sentry service runs as this user.sentrysentryApache Sentry

This user is only for the Sqoop1 Metastore, a
configuration option that is not recommended.

sqoopsqoopApache Sqoop

Without Kerberos, all YARN services and applications
run as this user. The LinuxContainerExecutor binary
is owned by this user for Kerberos.

yarn, hadoopyarnYARN

The ZooKeeper processes run as this user. It is not
configurable.

zookeeperzookeeperApache ZooKeeper

Keytabs and Keytab File Permissions

Linux user accounts, such as hdfs, flume, or mapred are mapped to the username portion of the Kerberos principal
names, as follows:

username/host.example.com@EXAMPLE.COM

For example, the Kerberos principal for Apache Flume would be:

flume/host.example.com@EXAMPLE.COM

Keytabs that contain multiple principals are merged automatically from individual keytabs by Cloudera Manager. If
you do not use Cloudera Manager, you must merge the keytabs manually.

The table below lists the usernames to use for Kerberos principal names.

Table 5: Clusters Managed by Cloudera Manager

File
Permission
(octal)

Keytab File
Group

Keytab File
Owner

Filename (*.
keytab)

Kerberos
Principals

ServiceComponent (Unix
User ID)

600cloudera-scmcloudera-scmcmfcloudera-scmNACloudera Manager
(cloudera-scm)

600cloudera-scmcloudera-scmheadlamphdfscloudera-mgmt-
REPORTSMANAGER

Cloudera
Management
Service
(cloudera-scm)
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File
Permission
(octal)

Keytab File
Group

Keytab File
Owner

Filename (*.
keytab)

Kerberos
Principals

ServiceComponent (Unix
User ID)

600cloudera-scmcloudera-scmcmonhuecloudera-mgmt-
SERVICEMONITOR,

Cloudera
Management

cloudera-mgmt-
ACTIVITYMONITOR

Service
(cloudera-scm)

N/AN/AN/AN/AN/Acloudera-mgmt-
HOSTMONITOR

Cloudera
Management
Service
(cloudera-scm)

600cloudera-scmcloudera-scmaccumulo16accumuloaccumulo16-ACCUMULO16_MASTERApache Accumulo
(accumulo)

accumulo16-ACCUMULO16_TRACER

accumulo16-ACCUMULO16_MONITOR

accumulo16-ACCUMULO16_GC

accumulo16-ACCUMULO16_TSERVER

600cloudera-scmcloudera-scmflumeflumeflume-AGENTFlume (flume)

600cloudera-scmcloudera-scmHTTPHTTPhbase-HBASETHRIFTSERVERHBase (hbase)

hbasehbasehbase-REGIONSERVER

hbase-HBASERESTSERVER

hbase-MASTER

600cloudera-scmcloudera-scmhdfshdfs, HTTPhdfs-NAMENODEHDFS (hdfs)

hdfs-DATANODE

hdfs-
SECONDARYNAMENODE

600cloudera-scmcloudera-scmhivehivehive-HIVESERVER2Hive (hive)

HTTPHTTPhive-WEBHCAT

hivehivehive-HIVEMETASTORE

600cloudera-scmcloudera-scmhttpfshttpfshdfs-HTTPFSHttpFS (httpfs)

600cloudera-scmcloudera-scmhuehuehue-KT_RENEWERHue (hue)

600cloudera-scmcloudera-scmimpalaimpalaimpala-STATESTOREImpala (impala)

impala-CATALOGSERVER

impala-IMPALAD

600cloudera-scmcloudera-scmkmsHTTPkms-KMSJava KeyStore KMS
(kms)

600kafkakafkakafkakafkakafka-KAFKA_BROKERApache Kafka
(kafka)

600kafkakafkakafkakafka_mirror_makerkafka-KAFKA_MIRROR_MAKERApache Kafka
(kafka)

600cloudera-scmcloudera-scmkeytrusteeHTTPkeytrustee-KMS_KEYTRUSTEEKey Trustee KMS
(kms)
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File
Permission
(octal)

Keytab File
Group

Keytab File
Owner

Filename (*.
keytab)

Kerberos
Principals

ServiceComponent (Unix
User ID)

600cloudera-scmcloudera-scmmapredmapred,
HTTP

mapreduce-JOBTRACKERMapReduce
(mapred)

mapreduce- TASKTRACKER

600kudukudukudukudukudu-KUDU_MASTERApache Kudu
(kudu)

kudu-KUDU_TSERVER

600cloudera-scmcloudera-scmoozieoozie, HTTPoozie-OOZIE_SERVEROozie (oozie)

600cloudera-scmcloudera-scmsolrsolr, HTTPsolr-SOLR_SERVERSearch (solr)

600cloudera-scmcloudera-scmsentrysentrysentry-SENTRY_SERVERSentry (sentry)

600cloudera-scmcloudera-scmsparksparkspark_on_yarn-
SPARK_YARN_HISTORY_SERVER

Spark (spark)

644cloudera-scmcloudera-scmyarnyarn, HTTPyarn-NODEMANAGERYARN (yarn)

600yarn- RESOURCEMANAGER

600mapredmapredyarn-JOBHISTORY

600cloudera-scmcloudera-scmzookeeperzookeeperzookeeper-serverZooKeeper
(zookeeper)

Table 6: CDH Clusters Not Managed by Cloudera Manager

File
Permission
(octal)

Keytab File
Group

Keytab File
Owner

Filename
(*.keytab)

Kerberos
Principals

ServiceComponent (Unix
User ID)

600accumuloaccumuloaccumulo16accumuloaccumulo16-ACCUMULO16_MASTERApacheAccumulo
(accumulo)

accumulo16-ACCUMULO16_TRACER

accumulo16-ACCUMULO16_MONITOR

accumulo16-ACCUMULO16_GC

accumulo16-ACCUMULO16_TSERVER

600flumeflumeflumeflumeflume-AGENTFlume (flume)

600hbasehbaseHTTPHTTPhbase-HBASETHRIFTSERVERHBase (hbase)

hbasehbasehbase-REGIONSERVER

hbase-HBASERESTSERVER

hbase-MASTER

600hdfshdfshdfshdfs, HTTPhdfs-NAMENODEHDFS (hdfs)

hdfs-DATANODE

hdfs- SECONDARYNAMENODE

600hivehivehivehivehive-HIVESERVER2Hive (hive)

HTTPHTTPhive-WEBHCAT

hivehivehive-HIVEMETASTORE

600httpfshttpfshttpfshttpfshdfs-HTTPFSHttpFS (httpfs)

116 | Cloudera Security

Authentication



File
Permission
(octal)

Keytab File
Group

Keytab File
Owner

Filename
(*.keytab)

Kerberos
Principals

ServiceComponent (Unix
User ID)

600huehuehuehuehue-KT_RENEWERHue (hue)

600impalaimpalaimpalaimpalaimpala-STATESTOREImpala (impala)

impala-CATALOGSERVER

impala-IMPALAD

600kmskmskmsHTTPkms-KMSJava KeyStore
KMS (kms)

600kafkakafkakafkakafkakafka-KAFKA_BROKERApache Kafka
(kafka)

600kafkakafkakafkakafka_mirror_makerkafka-MIRROR_MAKERApache Kafka
(kafka)

600kmskmskmsHTTPkms-KEYTRUSTEEKey Trustee KMS
(kms)

600hadoopmapredmapredmapred,
HTTP

mapreduce-JOBTRACKERMapReduce
(mapred)

mapreduce- TASKTRACKER

600kudukudukudukudukudu-KUDU_MASTERApache Kudu

kudu-KUDU_TSERVER

600oozieoozieoozieoozie,
HTTP

oozie-OOZIE_SERVEROozie (oozie)

600solrsolrsolrsolr, HTTPsolr-SOLR_SERVERSearch (solr)

600sentrysentrysentrysentrysentry-SENTRY_SERVERSentry (sentry)

600sparksparksparksparkspark_on_yarn-
SPARK_YARN_HISTORY_SERVER

Spark (spark)

644hadoopyarnyarnyarn, HTTPyarn-NODEMANAGERYARN (yarn)

600yarn- RESOURCEMANAGER

600mapredmapredmapredyarn-JOBHISTORY

600zookeeperzookeeperzookeeperzookeeperzookeeper-serverZooKeeper
(zookeeper)

Mapping Kerberos Principals to Short Names
You configure the mapping from Kerberos principals to short names in the hadoop.security.auth_to_local
property setting in the core-site.xml file. Kerberos has this support natively, and Hadoop's implementation uses
Kerberos's configuration language to specify the mapping.

A mapping consists of a set of rules that are evaluated in the order listed in the hadoop.security.auth_to_local
property. The first rule that matches a principal name is used to map that principal name to a short name. Any later
rules in the list that match the same principal name are ignored.
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You specify the mapping rules on separate lines in the hadoop.security.auth_to_local property as follows:

<property>
  <name>hadoop.security.auth_to_local</name>
  <value>
  RULE:[<principal translation>](<acceptance filter>)<short name substitution>
  RULE:[<principal translation>](<acceptance filter>)<short name substitution>
  DEFAULT
  </value>
</property>

Note: You can also set auth_to_local rules in krb5.conf using MIT Kerberos. If you do, be aware
that the format is different, and the rules described below will fail if used in this context. For details
about the correct krb5.conf format, see MIT Kerberos krb5.conf.

Mapping Rule Syntax

To specify a mapping rule, use the prefix string RULE: followed by three sections—principal translation, acceptance
filter, and short name substitution—described in more detail below. The syntax of a mapping rule is:

RULE:[<principal translation>](<acceptance filter>)<short name substitution>

Principal Translation

The first section of a rule, <principal translation>, performs the matching of the principal name to the rule. If
there is a match, the principal translation also does the initial translation of the principal name to a short name. In the
<principal translation> section, you specify the number of components in the principal name and the pattern
you want to use to translate those principal component(s) and realm into a short name. In Kerberos terminology, a
principal name is a set of components separated by slash ("/") characters.

The principal translation is composed of two parts that are both specified within "[ ]" using the following syntax:

[<number of components in principal name>:<initial specification of short name>]

where:

<number of components in principal name> – This first part specifies the number of components in the principal name
(not including the realm) and must be 1 or 2. A value of 1 specifies principal names that have a single component (for
example, hdfs), and 2 specifies principal names that have two components (for example,
hdfs/fully.qualified.domain.name). A principal name that has only one component will only match
single-component rules, and a principal name that has two components will only match two-component rules.

<initial specification of short name> – This second part specifies a pattern for translating the principal component(s)
and the realm into a short name. The variable $0 translates the realm, $1 translates the first component, and $2
translates the second component.

Here are some examples of principal translation sections. These examples use atm@YOUR-REALM.COM and
atm/fully.qualified.domain.name@YOUR-REALM.COM as principal name inputs:

Translates atm/fully.qualified.domain.name@YOUR-REALM.COM
into this short name

Translates atm@YOUR-REALM.
COM into this short name

This Principal
Translation

Rule does not match1atm@YOUR-REALM.COM[1:$1@$0]

Rule does not match1atm[1:$1]

Rule does not match1atm.foo[1:$1.foo]

atm/fully.qualified.domain.name@YOUR-REALM.COMRule does not match2[2:$1/$2@$0]

atm/fully.qualified.domain.nameRule does not match2[2:$1/$2]
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Translates atm/fully.qualified.domain.name@YOUR-REALM.COM
into this short name

Translates atm@YOUR-REALM.
COM into this short name

This Principal
Translation

atm@YOUR-REALM.COMRule does not match2[2:$1@$0]

atmRule does not match2[2:$1]

Footnotes:
1Rule does not match because there are two components in principal name
atm/fully.qualified.domain.name@YOUR-REALM.COM

2Rule does not match because there is one component in principal name atm@YOUR-REALM.COM

Acceptance Filter

The second section of a rule, (<acceptance filter>), matches the translated short name from the principal
translation (that is, the output from the first section). The acceptance filter is specified in "( )" characters and is a
standard regular expression. A rulematches only if the specified regular expressionmatches the entire translated short
name from the principal translation. That is, there's an implied ^ at the beginning of the pattern and an implied $ at
the end.

Short Name Substitution

The third and final section of a rule is the (<short name substitution>). If there is a match in the second section,
the acceptance filter, the (<short name substitution>) section does a final translation of the short name from
the first section. This translation is a sed replacement expression (s/.../.../g) that translates the short name from
the first section into the final short name string. The short name substitution section is optional. In many cases, it is
sufficient to use the first two sections only.

Converting Principal Names to Lowercase

In someorganizations, naming conventions result inmixed-case usernames (for example, John.Doe) or even uppercase
usernames (for example, JDOE) in Active Directory or LDAP. This can cause a conflict when the Linux username and
HDFS home directory are lowercase.

To convert principal names to lowercase, append /L to the rule.

Example Rules

Suppose all of your service principals are either of the form
App.service-name/fully.qualified.domain.name@YOUR-REALM.COM or
App.service-name@YOUR-REALM.COM, and you want to map these to the short name string service-name. To do
this, your rule set would be:

<property>
  <name>hadoop.security.auth_to_local</name>
  <value>
 RULE:[1:$1](App\..*)s/App\.(.*)/$1/g
  RULE:[2:$1](App\..*)s/App\.(.*)/$1/g
  DEFAULT
  </value>
</property>

The first $1 in each rule is a reference to the first component of the full principal name, and the second $1 is a regular
expression back-reference to text that is matched by (.*).

In the following example, suppose your company's naming scheme for user accounts in Active Directory is
FirstnameLastname (for example, JohnDoe), but user home directories in HDFS are /user/firstnamelastname.
The following rule set converts user accounts in the CORP.EXAMPLE.COM domain to lowercase.

<property>
  <name>hadoop.security.auth_to_local</name>
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  <value>
  RULE:[2:$1@$0](HTTP@\QCORP.EXAMPLE.COM\E$)s/@\QCORP.EXAMPLE.COM\E$//
  RULE:[1:$1@$0](.*@\QCORP.EXAMPLE.COM\E$)s/@\QCORP.EXAMPLE.COM\E$///L
  RULE:[2:$1@$0](.*@\QCORP.EXAMPLE.COM\E$)s/@\QCORP.EXAMPLE.COM\E$///L
  DEFAULT
  </value>
</property>

In this example, the JohnDoe@CORP.EXAMPLE.COM principal becomes the johndoe HDFS user.

Default Rule

You can specify an optional default rule called DEFAULT (see example above). The default rule reduces a principal
namedown to its first component only. For example, the default rule reduces the principal namesatm@YOUR-REALM.COM
or atm/fully.qualified.domain.name@YOUR-REALM.COM down to atm, assuming that the default domain is
YOUR-REALM.COM.

The default rule applies only if the principal is in the default realm.

If a principal name does not match any of the specified rules, the mapping for that principal name will fail.

Testing Mapping Rules

You can test mapping rules for a long principal name by running:

hadoop org.apache.hadoop.security.HadoopKerberosName name1 name2 name3
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Authorization

Authorization is concerned with who or what has access or control over a given resource or service. Since Hadoop
merges together the capabilities of multiple varied, and previously separate IT systems as an enterprise data hub that
stores andworks on all datawithin an organization, it requiresmultiple authorization controls with varying granularities.
In such cases, Hadoop management tools simplify setup and maintenance by:

• Tying all users to groups, which can be specified in existing LDAP or AD directories.
• Providing role-based access control for similar interaction methods, like batch and interactive SQL queries. For

example, Apache Sentry permissions apply to Hive (HiveServer2) and Impala.

CDH currently provides the following forms of access control:

• Traditional POSIX-style permissions for directories and files, where each directory and file is assigned a single
owner and group. Each assignment has a basic set of permissions available; file permissions are simply read, write,
and execute, and directories have an additional permission to determine access to child directories.

• Extended Access Control Lists (ACLs) for HDFS that provide fine-grained control of permissions for HDFS files by
allowing you to set different permissions for specific named users or named groups.

• Apache HBase uses ACLs to authorize various operations (READ, WRITE, CREATE, ADMIN) by column, column
family, and column family qualifier. HBase ACLs are granted and revoked to both users and groups.

• Role-based access control with Apache Sentry.

Important: Cloudera does not support Apache Ranger or Hive's native authorization frameworks
for configuring access control in Hive. Use Cloudera-supported Apache Sentry instead.

Cloudera Manager User Roles
Access to Cloudera Manager features is controlled by user accounts that specify an authentication mechanism and
one or more user roles. User roles determine the tasks that an authenticated user can perform and the features visible
to the user in the Cloudera Manager Admin Console. In addition to the default user roles, you can create user roles
that apply only to specific clusters.

Documentation for Cloudera Manager administration and management tasks indicate user roles required to perform
the task.

Note: All possible user roles are available with Cloudera Enterprise. Cloudera Express provides
Read-Only and Full Administrator user roles only. When a Cloudera Enterprise Data Hub Edition trial
license expires, only users with Read-Only and Full Administrator roles can log in to ClouderaManager.
A Full Administrator must change user accounts with other roles to Read-Only or Full Administrator
before such users can log in.

Displaying Your Roles

To view your roles, perform the following step:

1. In the Cloudera Manager Admin Console, select <username> >My Profile.

Default User Roles

By default, Cloudera Manager ships with user roles that have privileges for all clusters managed by Cloudera Manager.
You can create roles that are a combination of a default user role and privileges on a specific cluster. Formore information
about this type of role, see User Roles with Privileges for a Cluster on page 124.

The following list describes the actions each user role can perform:
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• Auditor

– View configuration and monitoring information in Cloudera Manager.
– View audit events.

• Read-Only

– View configuration and monitoring information in Cloudera Manager.
– View service and monitoring information.
– View events and logs.
– View replication jobs and snapshot policies.
– View YARN applications and Impala queries.

The Read-Only role does not allow the user to:

• Add services or take any actions that affect the state of the cluster.
• Use the HDFS file browser.
• Use the HBase table browser.
• Use the Solr Collection Statistics browser.

• Dashboard

– Create, edit, or remove dashboards that belong to the user.
– Add an existing chart or create a new chart to add to a dashboard that belongs to the user.
– Perform the same actions as the Read-Only role.

• Limited Operator

– View configuration and monitoring information in Cloudera Manager.
– View service and monitoring information.
– Decommission hosts (except hosts running Cloudera Management Service roles).
– Perform the same actions as the Read-Only role.

The Limited Operator role does not allow the user to add services or take any other actions that affect the state
of the cluster.

• Operator

– View configuration and monitoring information in Cloudera Manager.
– View service and monitoring information.
– Stop, start, and restart clusters, services (except the Cloudera Management Service), and roles.
– Decommission and recommission hosts (except hosts running Cloudera Management Service roles).
– Decommission and recommission roles (except Cloudera Management Service roles).
– Start, stop, and restart KMS.
– Perform the same actions as the Read-Only role.

The Operator role does not allow the user to add services, roles, or hosts, or take any other actions that affect
the state of the cluster.

• Configurator

– View configuration and monitoring information in Cloudera Manager.
– Perform all Operator operations.
– Configure services (except the Cloudera Management Service).
– Enter and exit maintenance mode.
– Manage dashboards (including Cloudera Management Service dashboards).
– Start, stop, and restart KMS
– Perform the same actions as the Read-Only role.
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• Cluster Administrator - Use all of the functionality available in Cloudera Manager and perform all actions except
the following:

– Administer Cloudera Navigator.
– View replication schedules and snapshot policies.
– View audit events.
– Manage user accounts and configuration of external authentication.
– Manage Full Administrator accounts.
– Configure HDFS encryption, administer Key Trustee Server, and manage encryption keys.
– Use the HDFS file browser, the HBase table browser, and the Solr Collection browser.
– View the Directory Usage Report
– View the HBase Statistics Page

Unless otherwise noted above, the Cluster Administrator can view the data related to Cloudera Manager, such
as file metadata. The Cluster Administrator cannot see things like the content of files stored by HDFS and other
components.

• BDR Administrator

– View configuration and monitoring information in Cloudera Manager.
– View service and monitoring information.
– Perform replication and define snapshot operations.
– Use the HDFS file browser, the HBase table browser, and the Solr Collection browser.
– View the Directory Usage Report
– View the HBase Table Statistics Page
– Perform the same actions as the Read-Only role.

• Navigator Administrator

– View configuration and monitoring information in Cloudera Manager.
– View service and monitoring information.
– Administer Cloudera Navigator.
– View audit events.
– Use the HDFS file browser, the HBase table browser, and the Solr Collection browser.
– Perform the same actions as the Read-Only role.

• User Administrator

– View configuration and monitoring information in Cloudera Manager.
– View service and monitoring information.
– Manage user accounts and configuration of external authentication.
– Use the HDFS file browser, the HBase table browser, and the Solr Collection browser.
– Perform the same actions as the Read-Only role.

• Key Administrator

– View configuration and monitoring information in Cloudera Manager.
– Configure HDFS encryption, administer Key Trustee Server, and manage encryption keys.
– Start, stop, and restart KMS
– Configure KMS ACLs
– Use the HDFS file browser, the HBase table browser, and the Solr Collection browser.
– Perform the same actions as the Read-Only role.

• Full Administrator - Full Administrators have permissions to use all of the functionality available in Cloudera
Manager and perform all actions on all clusters. Additionally, the Full Administrator can view the data related to
ClouderaManager, such as filemetadata, snapshots, quotas, and file size. The Full Administrator cannot see things
like the content of files stored by HDFS or other components.
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User Roles with Privileges for a Cluster

In addition to the default user roles, you can create user roles that apply only to specific clusters. Creating this new
role is done by assigning a privilege for a specific cluster to a default role. When a user account has multiple roles, the
privileges are the union of all the roles.

For example, the user account milton has the Limited Operator role and Read-Only role with a scope of Cluster 1.
Additionally, milton has the Configurator role on Cluster 2.

On Cluster 1, milton can perform all the actions that a Limited Operator and Read-Only can.

On Cluster 2, milton can perform all the actions that a Configurator can.

The user account milton cannot perform these or any other actions on the other clusters that aremanaged by Cloudera
Manager because the account does not have any other roles.

Another user account, edith, has the Configurator role with privileges for all clusters. This means that edith can
perform the actions of the Configurator role on all clusters that Cloudera Manager manages since the scope is all
clusters.

You can assign privileges for a specific cluster to the following user roles:

• Cluster Administrator
• Configurator
• Limited Operator
• Operator
• Read-Only

User roles that cannot be assigned privileges for a specific cluster apply to all clusters. For example, if edith has the
Key Administrator user role, she can perform the actions of a Key Administrator on all clusters.

View a video about how to setup permissions for a specific cluster. .

Adding a User Role for a Specific Cluster

To create a role that has privileges for a specific cluster, perform the following steps:

1. In the Cloudera Manager Admin Console, navigate to Administration > Users & Roles > Roles.
2. Click Add Role.
3. Specify the following:

• Privilege: The user role and cluster you want to assign privileges for.
• Users: The users you want to assign to this new role. You can assign users now or at a later time.
• LDAP Group/External Program Exit Codes/SAML Attributes/SAML Script Exit Codes: The external mapping

you want to assign this new role to. You can assign external mappings now or at a later time with the process
described in Mapping External Authentication to a Role on page 125.

This field is based on your authentication mode and does not appear for local users.

Valid values for the External Program Exit Code and SAML Script Exit Code are between 0 and 127. You defined
what users you want to associate with theses values when you configure your external authentication. For
more information,

If you are upgrading to Cloudera Manager 6 from Cloudera Manager 5, existing mappings are imported from
Cloudera Manager 5. These imported mappings can be changed.

The following list describes the LDAP groups imported from Cloudera Manager 5:

• LDAP Full Administrator Groups
• LDAP User Administrator Groups
• LDAP Cluster Administrator Groups
• LDAP BDR Administrator Groups
• LDAP Configurator Groups
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• LDAP Key Administrator Groups
• LDAP Navigator Administrator Groups
• LDAP Operator Groups
• LDAP Limited Operator Groups
• LDAP Auditor Groups

The following list describes the SAML and External Program codes imported from Cloudera Manager 5:

• 0 - Full Administrator
• 1 - Read-Only
• 2 - Limited Operator
• 3 - Operator
• 4 - Configurator
• 5 - Cluster Administrator
• 6 - BDR Administrator
• 7 - Navigator Administrator
• 8 - User Administrator
• 9 - Auditor
• 10 - Key Administrator
• 11 - Dashboard User

4. Click Add.

Mapping External Authentication to a Role

If you are using an external authentication, such as a SAML Script, you must map its information to Cloudera Manager
user roles. Before you can map a role though, make sure that it exists. If it does not exist, create it by completing the
steps described in Adding a User Role for a Specific Cluster on page 124.

For example, you are using a SAML Script and want to assign user accounts that correspond with exit code 15 to a
Cluster Administrator role with privileges for a cluster named cluster1.

To accomplish this, perform the following steps in the Cloudera Manager Admin Console:

1. Navigate to Administration > Users & Roles > Roles.
2. Based on your authenticationmethod, select LDAPGroups, SAMLAttributes, SAML Scripts, or External Programs.
3. Click Add <authentication method> Mapping.
4. Fill in the value for your authentication method, such as SAML Script Exit Code, and select the role you want to

map to that value from the dropdown menu.

For SAML Scripts and External Programs, valid values are between 0 and 127.

5. Click Save.
6. Repeat this process for all the roles you want to map.

If you are upgrading to Cloudera Manager 6 from Cloudera Manager 5, existing mappings are imported from Cloudera
Manager 5. These imported mappings can be changed.

The following list describes the LDAP groups imported from Cloudera Manager 5:

• LDAP Full Administrator Groups
• LDAP User Administrator Groups
• LDAP Cluster Administrator Groups
• LDAP BDR Administrator Groups
• LDAP Configurator Groups
• LDAP Key Administrator Groups
• LDAP Navigator Administrator Groups
• LDAP Operator Groups
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• LDAP Limited Operator Groups
• LDAP Auditor Groups

The following list describes the SAML and External Program codes imported from Cloudera Manager 5:

• 0 - Full Administrator
• 1 - Read-Only
• 2 - Limited Operator
• 3 - Operator
• 4 - Configurator
• 5 - Cluster Administrator
• 6 - BDR Administrator
• 7 - Navigator Administrator
• 8 - User Administrator
• 9 - Auditor
• 10 - Key Administrator
• 11 - Dashboard User

Assigning Users to a Role

In addition to mapping groups, such as LDAP groups, to a user role, you can also assign individual users to a user role.
If you do not assign a role, the local user defaults to no access. This means that the user cannot perform any actions
on the cluster.

To add a user account to a role, perform the following steps:

1. In the Cloudera Manager Admin Console, navigate to Administration > Users & Roles > Roles.
2. Click Assign for the role you want to modify.
3. Specify the Users or <Authentication Method Value> groups you want to assign to the role.
4. Save the changes.

Removing a User or External Mapping from a User Role

Perform the following steps to remove a user account or external mapping from a user role:

1. In the Cloudera Manager Admin Console, navigate to Administration > Users & Roles > Roles.
2. Click Assign for the role you want to modify.
3. Click the X for each user or external mapping you want to remove from the user role and click Save.

Removing a Role

To remove a role with a specific privilege, you must first remove all the user accounts that have that role. Note that
you cannot remove the default roles that Cloudera Manager ships with.

The following steps describe how to remove users and then delete the role:

1. In the Cloudera Manager Admin Console, navigate to Administration > Users & Roles > Roles.
2. Click Assign for the role you want to modify.
3. Click the X for each user or external mapping you want to remove from the user role and click Save.
4. Click Remove.

Removing the Full Administrator User Role

Minimum Required Role: User Administrator (also provided by Full Administrator)

In some organizations, security policies may prohibit the use of the Full Administrator role. The Full Administrator role
is created during Cloudera Manager installation, but you can remove it as long as you have at least one remaining user
account with User Administrator privileges.

To remove the Full Administrator user role, perform the following steps.
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1. Add at least one user account with User Administrator privileges, or ensure that at least one such user account
already exists.

2. Ensure that there is only a single user account with Full Administrator privileges.
3. While logged in as the single remaining Full Administrator user, select your own user account and either delete

it or assign it a new user role.

Warning: After you delete the last Full Administrator account, you will be logged out immediately
and will not be able to log in unless you have access to another user account. Also, it will no longer
be possible to create or assign Full Administrators.

A consequence of removing the Full Administrator role is that some tasks may require collaboration between two or
more users with different user roles. For example:

• If the machine that the Cloudera Navigator roles are running on needs to be replaced, the Cluster Administrator
will want to move all the roles running on that machine to a different machine. The Cluster Administrator can
move any non-Navigator roles by deleting and re-adding them, but would need a Navigator Administrator to
perform the stop, delete, add, and start actions for the Cloudera Navigator roles.

• In order to take HDFS snapshots, snapshots must be enabled on the cluster by a Cluster Administrator, but the
snapshots themselves must be taken by a BDR Administrator.

HDFS Extended ACLs
HDFS supports POSIX Access Control Lists (ACLs), as well as the traditional POSIX permissionsmodel already supported.
ACLs control access of HDFS files by providing a way to set different permissions for specific named users or named
groups. They enhance the traditional permissions model by allowing users to define access control for arbitrary
combinations of users and groups instead of a single owner/user or a single group.

Enabling HDFS Access Control Lists

By default, HDFS access control lists (ACLs) are disabled on a cluster. You can enable them using either Cloudera
Manager or the command line.

The default ACL applies only to a directory, and all subdirectories and files created in that directory inherit the default
ACL of the parent directory.

For example, if a directory has a default ACL entry of default:group:analysts:rwx, then all files created in the
directory get a group:analysts:rwx entry, and subdirectories get both the default ACL and the access ACL copied
over. To set a default ACL, simply prepend default: to the user or group entry in the setfacl command (see HDFS
Extended ACL Example on page 128).

There is a maximum number/limit of 32 entries in a single HDFS extended ACL. If you attempt to add ACL entries
exceeding themaximumof 32, youwill get an error. An excessive number of ACL entries indicates that the requirements
are better implemented by defining additional groups or users. ACLs with a very high number of entries also require
additional memory and storage, and take longer to evaluate upon each permission check.

Important: Ensure that all users and groups resolve on the NameNode for ACLs to work as expected.

Enabling HDFS ACLs Using Cloudera Manager

1. Go to the Cloudera Manager Admin Console and navigate to the HDFS service.
2. Click the Configuration tab.
3. Select Scope > Service_name (Service-Wide)
4. Select Category > Security
5. Locate the Enable Access Control Lists property and select its checkbox to enable HDFS ACLs.
6. Enter a Reason for change, and then click Save Changes to commit the changes.
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Commands

To set and get file access control lists (ACLs), use the file system shell commands, setfacl and getfacl.

getfacl

hdfs dfs -getfacl [-R] <path>

<!-- COMMAND OPTIONS
<path>: Path to the file or directory for which ACLs should be listed.
-R: Use this option to recursively list ACLs for all files and directories.
-->

Examples:

<!-- To list all ACLs for the file located at /user/hdfs/file -->
hdfs dfs -getfacl /user/hdfs/file

<!-- To recursively list ACLs for /user/hdfs/file -->
hdfs dfs -getfacl -R /user/hdfs/file

setfacl

hdfs dfs -setfacl [-R] [-b|-k -m|-x <acl_spec> <path>]|[--set <acl_spec> <path>]

<!-- COMMAND OPTIONS
<path>: Path to the file or directory for which ACLs should be set.
-R: Use this option to recursively list ACLs for all files and directories.
-b: Revoke all permissions except the base ACLs for user, groups and others.
-k: Remove the default ACL.
-m: Add new permissions to the ACL with this option. Does not affect existing permissions.
-x: Remove only the ACL specified.
<acl_spec>: Comma-separated list of ACL permissions.
--set: Use this option to completely replace the existing ACL for the path specified. 
       Previous ACL entries will no longer apply. If the ACL spec contains only access
       entries, then the existing default entries are retained. If the ACL spec contains

       only default entries, then the existing access entries are retained. If the ACL
       spec contains both access and default entries, then the existing default and 
access 
       entries are replaced.-->

Examples:

<!-- To give user ben read & write permission over /user/hdfs/file -->
hdfs dfs -setfacl -m user:ben:rw- /user/hdfs/file

<!-- To remove user alice's ACL entry for /user/hdfs/file -->
hdfs dfs -setfacl -x user:alice /user/hdfs/file

<!-- To give user hadoop read & write access, and group or others read-only access -->
hdfs dfs -setfacl --set user::rw-,user:hadoop:rw-,group::r--,other::r-- /user/hdfs/file

For more information on using HDFS ACLs, see the HDFS Permissions Guide on the Apache website.

HDFS Extended ACL Example

This example demonstrates how a user ("alice"), shares folder accesswith colleagues fromanother team ("hadoopdev"),
so that the hadoopdev team can collaborate on the content of that folder; this is accomplished by updating the default
extended ACL of that directory:

1. Make the files and sub-directories created within the content directory readable by team "hadoopdev":

hdfs dfs -setfacl -m group:hadoopdev:r-x /project
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2. Set the default ACL setting for the parent directory:

hdfs dfs -setfacl -m default:group:hadoopdev:r-x /project

3. Create a sub-directory for the content you wish to share:

hdfs dfs -mkdir /project/dev

4. Inspect the new sub-directory ACLs to verify that HDFS has applied the new default values:

$ hdfs dfs -getfacl -R /project

file: /project
owner: alice
group: appdev
user::rwx
group::r-x
other::r-x
default:user::rwx
default:group::r-x
default:group:hadoopdev:r-x
default:mask::r-x
default:other::r-x

file: /project/dev
owner: alice
group: appdev
user::rwx
group::r-x
group:hadoopdev:r-x
mask::r-x
other::r-x
default:user::rwx
default:group::r-x
default:group:hadoopdev:r-x
default:mask::r-x
default:other::r-x

Note: At the time it is created, the default ACL is copied from the parent directory to the child directory.
Subsequent changes to the parent directory default ACL do not change the ACLs of the existing child
directories.

Enabling Authorization for HDFS Web UIs
You can enforce authorization for the following HDFS web UIs: the NameNode, DataNode, and JournalNode. To do so,
you must have Kerberos authentication for HTTP web consoles and Hadoop Secure Authorization enabled. When both
configurations are set, only the hdfs user can access the HDFS web UIs by default. Any other user who attempts to
access the web UI will encounter an HTTP 403 error because the user is not authorized to access the page.

For users and groups other than hdfs to access the web UIs, you must add them to hdfs-site.xml with an HDFS
Service Advanced Configuration Snippet (Safety Valve).

Perform the following steps to enforce authorization for the HDFS web UIs:

1. In the Cloudera Manager Admin Console, go to Clusters > <HDFS service>.
2. Navigate to the Configurations tab and search for the following property: HDFS Service Advanced

Configuration Snippet (Safety Valve) for hdfs-site.xml.
3. Add the following property:

• Name: dfs.cluster.administrators
• Value: <comma separated list of user names and/or group names>
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For example, a sample property might look like this:

• Name: dfs.cluster.administrators
• Value: hdfs,admin_user_milton,HTTP,hue,admin_group

These valueswould allow the usershdfs,admin_user_milton,HTTP, andhue aswell as the groupadmin_group
to the following web UIs: NameNode, DataNode, and JournalNode.

If you perform the steps under Additional Configuration on page 130 to restrict access to the /jmx, /stack, /conf,
and /metrics servlets, you must add the HTTP user and the Service Monitor Kerberos Principal so that Cloudera
Manager can access the /jmx and /metrics servlets.

You can view the ServiceMonitor Kerberos Principal by navigating toClouderaManagement Service >Configuration
and searching for Role-Specific Kerberos Principal. The default Service Monitor Kerberos Principal is
hue.

4. Save the configuration.
5. Restart all stale HDFS services.

Additional Configuration

For a higher level of security, you can enforce authorization for the following HDFS web UI servlets, which may contain
sensitive data: /jmx, /stack, /conf, and /metrics. When you enforce authorization for the servlets, only the users listed
in the dfs.cluster.administrators property can access them.

Cloudera Manager requires access to the /jmx and /metrics servlets and uses the HTTP user as well as the Service
Monitor Kerberos Principal to access them. Make sure to add both users to dfs.cluster.administrators as
described in Enabling Authorization for HDFS Web UIs on page 129.

Perform the following steps to enforce authorization for the servlets:

1. In the Cloudera Manager Admin Console, go to Clusters > <HDFS service>.
2. Navigate to the Configurations tab and search for the following property: HDFS Service Advanced

Configuration Snippet (Safety Valve) for hdfs-site.xml.
3. Add the following property:

• Name: hadoop.security.instrumentation.requires.admin
• Value: true

4. Save the configuration.
5. Restart all stale HDFS services.

Configuring LDAP Group Mappings
Each host that comprises a node in a Cloudera cluster runs an operating system, such as CentOS or Oracle Linux. At
the OS-level, there are user:group accounts created during installation that map to the services running on that
specific node of the cluster. The default shell-based group mapping provider,
org.apache.hadoop.security.ShellBasedUnixGroupsMapping, handles the mapping from the local host
system (the OS) to the specific cluster service, such as HDFS. The hosts authenticate using these local OS accounts
before processes are allowed to run on the node.

For clusters integrated with Kerberos for authentication, the hosts must also provide Kerberos tickets before processes
can run on the node. The cluster can use the organization's LDAP directory service to provide the login credentials,
including Kerberos tickets, to authenticate transparently while the system runs. Thatmeans that the local user:group
accounts on each host must be mapped to LDAP accounts. To map local user:group accounts to an LDAP service:

• Use tools such as SSSD (Systems Security Services Daemon) or Centrify Server Suite (see Identity and Access
management for Cloudera).

• The Hadoop LdapGroupsMapping group mapping mechanism. The LdapGroupsMapping library may not be as
robust a solution needed for large organizations in terms of scalability andmanageability, especially for organizations
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managing identity across multiple systems and not exclusively for Hadoop clusters. Support for the
LdapGroupsMapping library is not consistent across all operating systems.

• Do not use Winbind to map Linux user:group accounts to Active Directory. It cannot scale, impedes cluster
performance, and is not supported.

• Use the same user:groupmappings across all cluster nodes, for ease of management.
• Use either Cloudera Manager or the command-line process detailed below.

The local user:group accounts must be mapped to LDAP for group mappings in Hadoop. You must create the users
and groups for your Hadoop services in LDAP.

To integrate the cluster with an LDAP service, the user:group relationships must be contained in the LDAP directory.
The admin must create the user accounts and define groups for user:group relationships on each host.

The user and group names listed in the table are the default user:group values for CDH services.

Note: If the defaults have been changed for any service, use the custom values to create the users
and configure the group for that service in the LDAP server, rather than the defaults listed in the table
below. For example, you changed the defaults in the Cloudera Manager Admin Console to customize
the System User or System Group setting for the service.

Note: This page contains references to CDH 5 components or features that have been removed from
CDH6. These references are only applicable if you aremanaging a CDH5 clusterwith ClouderaManager
6. For more information, see Deprecated Items.

GroupUserCloudera Product or Component

cloudera-scmcloudera-scmCloudera Manager

accumuloaccumuloApache Accumulo

(No default)(No default)Apache Avro

flumeflumeApache Flume (sink writing to HDFS needs write privileges)

hbasehbaseApache HBase (Master, RegionServer processes)

hivehiveApache HCatalog, WebHCat service

hivehiveApache Hive (HiveServer2, Hive Metastore)

kafkakafkaApache Kafka

(No default)(No default)Apache Mahout

oozieoozieApache Oozie

(No default)(No default)Apache Pig

sentrysentryApache Sentry

sparksparkApache Spark

sqoopsqoopApache Sqoop1

sqoop, sqoop2sqoop2Apache Sqoop2

(No default)(No default)Apache Whirr

zookeeperzookeeperApache ZooKeeper

impala, hiveimpalaImpala

solrsolrCloudera Search

hdfs, hadoophdfsHDFS (NameNode, DataNodes)
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GroupUserCloudera Product or Component

httpfshttpfsHttpFS

huehueHue

apacheapacheHue Load Balancer (needs apache2 package)

kmskmsJava KeyStore KMS

kmskmsKey Trustee KMS

keytrusteekeytrusteeKey Trustee Server

kudukuduKudu

llamallamaLlama

mapred, hadoopmapredMapReduce (JobTracker, TaskTracker)

(No default)(No default)Parquet

yarn, hadoopyarnYARN

In addition:

• For Sentry with Hive, add these properties on the HiveServer2 node.
• For Sentry with Impala, add these properties to all hosts.

See Users and Groups in Sentry for more information.

Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Make the following changes to the HDFS service's security configuration:

1. Open the Cloudera Manager Admin Console and go to the HDFS service.
2. Click the Configuration tab.
3. Select Scope > HDFS (Service Wide)
4. Select Category > Security.
5. Modify the following configuration properties using values from the table below:

ValueConfiguration Property

org.apache.hadoop.security.LdapGroupsMappingHadoop User Group Mapping Implementation

ldap://<server>Hadoop User Group Mapping LDAP URL

Administrator@example.comHadoop User Group Mapping LDAP Bind User

***Hadoop User Group Mapping LDAP Bind User
Password

dc=example,dc=comHadoop User Group Mapping Search Base

Although the above changes are sufficient to configure group mappings for Active Directory, some changes to the
remaining default configurations might be required for OpenLDAP.

Authorization With Apache Sentry
Apache Sentry is a granular, role-based authorization module for Hadoop. Sentry provides the ability to control and
enforce precise levels of privileges on data for authenticated users and applications on a Hadoop cluster. Sentry
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currently works out of the box with Apache Hive, Hive Metastore/HCatalog, Apache Solr, Impala, and HDFS (limited
to Hive table data).

Sentry is designed to be a pluggable authorization engine for Hadoop components. It allows you to define authorization
rules to validate a user or application’s access requests for Hadoop resources. Sentry is highly modular and can support
authorization for a wide variety of data models in Hadoop.

For information about configuring and managing the Sentry service, see the Apache Sentry Guide.

Continue reading:

Architecture Overview

Sentry Components

There are three components involved in the authorization process:

• Sentry Server

The Sentry RPC server manages the authorization metadata. It supports interfaces to securely retrieve and
manipulate the metadata. In CDH 5.13 and above, you can configure multiple Sentry Servers for high availability.
See Sentry High Availability for information about how to enable high availability for Sentry.

• Data Engine

This is a data processing application, such as Hive or Impala, that needs to authorize access to data or metadata
resources. The data engine loads the Sentry plugin and all client requests for accessing resources are intercepted
and routed to the Sentry plugin for validation.

• Sentry Plugin

The Sentry plugin runs in the data engine. It offers interfaces to manipulate authorization metadata stored in the
Sentry Server, and includes the authorization policy engine that evaluates access requests using the authorization
metadata retrieved from the server.

Key Concepts

• Authentication - Verifying credentials to reliably identify a user
• Authorization - Limiting the user’s access to a given resource
• User - Individual identified by underlying authentication system
• Group - A set of users, maintained by the authentication system
• Privilege - An instruction or rule that allows access to an object
• Role - A set of privileges; a template to combine multiple access rules
• Authorization models - Defines the objects to be subject to authorization rules and the granularity of actions

allowed. For example, in the SQL model, the objects can be databases or tables, and the actions are SELECT,
INSERT, and CREATE. For the Search model, the objects are indexes, configs, collections, documents; the access
modes include query and update.
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User Identity and Group Mapping

Sentry relies on underlying authentication systems, such as Kerberos or LDAP, to identify the user. It also uses the
group mapping mechanism configured in Hadoop to ensure that Sentry sees the same group mapping as other
components of the Hadoop ecosystem.

Consider a sample organization with users Alice and Bob who belong to an Active Directory (AD) group called
finance-department. Bob also belongs to a group called finance-managers. In Sentry, you first create roles and
then grant privileges to these roles. For example, you can create a role called Analyst and grant SELECT on tables
Customer and Sales to this role.

The next step is to join these authentication entities (users and groups) to authorization entities (roles). This can be
done by granting the Analyst role to the finance-department group. Now Bob and Alice who are members of the
finance-department group get SELECT privilege to the Customer and Sales tables.

Role-Based Access Control

Role-based access control (RBAC) is a powerful mechanism to manage authorization for a large set of users and data
objects in a typical enterprise. New data objects get added or removed, users join, move, or leave organisations all the
time. RBAC makes managing this a lot easier. Hence, as an extension of the sample organization discussed previously,
if a new employee Carol joins the Finance Department, all you need to do is add her to the finance-department
group in AD. This will give Carol access to data from the Sales and Customer tables.

Unified Authorization

Another important aspect of Sentry is the unified authorization. The access control rules once defined, work across
multiple data access tools. For example, being granted the Analyst role in the previous example will allow Bob, Alice,
and others in the finance-department group to access table data from SQL engines such as Hive and Impala, as
well as using MapReduce, Pig applications or metadata access using HCatalog.

Sentry Integration with the Hadoop Ecosystem

As illustrated above, Apache Sentry works withmultiple Hadoop components. At the heart, you have the Sentry Server
which stores authorization metadata and provides APIs for tools to retrieve and modify this metadata securely.
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Note that the Sentry Server only facilitates the metadata. The actual authorization decision is made by a policy engine
that runs in data processing applications such as Hive or Impala. Each component loads the Sentry plugin, which includes
the service client for dealing with the Sentry service and the policy engine to validate the authorization request.

Hive and Sentry

Consider an example where Hive gets a request to access an object in a certain mode by a client. If Bob submits the
following Hive query:

select * from production.sales

Hive will identify that user Bob is requesting SELECT access to the Sales table. At this point Hive will ask the Sentry
plugin to validate Bob’s access request. The plugin will retrieve Bob’s privileges related to the Sales table and the policy
engine will determine if the request is valid.

Hiveworkswith both the Sentry service and policy files. Cloudera recommends you use the Sentry service,whichmakes
it easier to manage user privileges. For more details and instructions, see Managing the Sentry Service for more
information.

Impala and Sentry

Authorization processing in Impala is similar to that in Hive. The main difference is caching of privileges. Impala’s
Catalog server manages caching schema metadata and propagating it to all Impala server nodes. This Catalog server
caches Sentry metadata as well. As a result, authorization validation in Impala happens locally and much faster.
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For detailed documentation, see Enabling Sentry Authorization for Impala.

Sentry-HDFS Synchronization

Sentry-HDFS authorization is focused on Hive warehouse data - that is, any data that is part of a table in Hive or Impala.
The real objective of this integration is to expand the same authorization checks to Hivewarehouse data being accessed
from any other components such as Pig, MapReduce or Spark. At this point, this feature does not replace HDFS ACLs.
Tables that are not associated with Sentry will retain their old ACLs.

The mapping of Sentry privileges to HDFS ACL permissions is as follows:

• SELECT privilege -> Read access on the file.
• INSERT privilege -> Write access on the file.
• ALL privilege -> Read and Write access on the file.

The NameNode loads a Sentry plugin that caches Sentry privileges as well Hive metadata. This helps HDFS to keep file
permissions and Hive tables privileges in sync. The Sentry plugin periodically polls Sentry to keep themetadata changes
in sync.

For example, if Bob runs a Pig job that is reading from the Sales table data files, Pig will try to get the file handle from
HDFS. At that point the Sentry plugin on the NameNode will figure out that the file is part of Hive data and overlay
Sentry privileges on top of the file ACLs. As a result, HDFS will enforce the same privileges for this Pig client that Hive
would apply for a SQL query.
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For HDFS-Sentry synchronization towork, youmust use the Sentry service, not policy file authorization. See Synchronizing
HDFS ACLs and Sentry Permissions, for more details.

Search and Sentry

Sentry can apply restrictions to various Search tasks including accessing data and creating collections. These restrictions
are consistently applied, regardless of the way users attempt to complete actions. For example, restricting access to
data in a collection restricts that access whether queries come from the command line, from a browser, or through
the admin console.

With Search, Sentry restrictions can be stored in the database-backed Sentry service or in a policy file (for example,
sentry-provider.ini) which is stored in an HDFS location such as
hdfs://ha-nn-uri/user/solr/sentry/sentry-provider.ini.

Sentry with Search does not support multiple policy files for multiple databases. If you choose to use policy files rather
than database-backed Sentry service, youmust use a separate policy file for each Sentry-enabled service. For example,
if Hive and Search were using policy file authorization, using a combined Hive and Search policy file would result in an
invalid configuration and failed authorization on both services.

Search works with both the Sentry service and policy files. Cloudera recommends you use the Sentry service, which
makes it easier to manage user privileges. For more details and instructions, see Managing the Sentry Service.

For detailed documentation, see Configuring Sentry Authorization for Cloudera Search.

Authorization Administration

The Sentry Server supports APIs to securely manipulate roles and privileges. Both Hive and Impala support SQL
statements tomanage privileges natively. Sentry assumes that HiveServer2 and Impala run as superusers, usually called
hive and impala. To initiate top-level permissions for Sentry, an admin must login as a superuser. You can use either
Beeline or the Impala shell to execute the following sample statement:

GRANT ROLE Analyst TO GROUP finance_managers

Disabling Hive CLI

To execute Hive queries, you must use Beeline. Hive CLI is not supported with Sentry and therefore its access to the
Hive Metastore must be disabled. This is especially necessary if the metastore has sensitive metadata. To do this, give
the hive user read/execute permission to the Hive CLI file and then remove global execute permission, at least,
to the Hive CLI file in the HIVE_HOME path. Assuming HIVE_HOME is /opt/cloudera/parcels/CDH/bin/hive, disable the
HIVE CLI as follows:

$ setfacl -m u:hive:rx /opt/cloudera/parcels/CDH/bin/hive

$ chmod 754 /opt/cloudera/parcels/CDH/bin/hive

Hive fails to start if the hive user does not have access to the Hive CLI file.

Using Hue to Manage Sentry Permissions

Hue supports a Security app tomanage Sentry authorization. This allows users to explore and change table permissions.
Here is a video blog that demonstrates its functionality.

Configuring HBase Authorization
After configuring HBase authentication (as detailed in HBase Configuration), you must define rules on resources that
is allowed to access. HBase rules can be defined for individual tables, columns, and cells within a table. Cell-level
authorization is fully supported since CDH 5.2.
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Important: In a cluster managed by Cloudera Manager, HBase authorization is disabled by default.
You have to enable HBase authorization (as detailed in Enable HBase Authorization on page 140) to
use any kind of authorization method.

Understanding HBase Access Levels

HBase access levels are granted independently of each other and allow for different types of operations at a given
scope.

• Read (R) - can read data at the given scope
• Write (W) - can write data at the given scope
• Execute (X) - can execute coprocessor endpoints at the given scope
• Create (C) - can create tables or drop tables (even those they did not create) at the given scope
• Admin (A) - can perform cluster operations such as balancing the cluster or assigning regions at the given scope

The possible scopes are:

• Superuser - superusers can perform any operation available in HBase, to any resource. The user who runs HBase
on your cluster is a superuser, as are any principals assigned to the configuration property hbase.superuser in
hbase-site.xml on the HMaster.

• Global - permissions granted at global scope allow the admin to operate on all tables of the cluster.
• Namespace - permissions granted at namespace scope apply to all tables within a given namespace.
• Table - permissions granted at table scope apply to data or metadata within a given table.
• ColumnFamily - permissions granted at ColumnFamily scope apply to cells within that ColumnFamily.
• Cell - permissions granted at Cell scope apply to that exact cell coordinate. This allows for policy evolution along

with data. To change an ACL on a specific cell, write an updated cell with new ACL to the precise coordinates of
the original. If you have a multi-versioned schema and want to update ACLs on all visible versions, you'll need to
write new cells for all visible versions. The application has complete control over policy evolution. The exception
is append and increment processing. Appends and increments can carry an ACL in the operation. If one is
included in the operation, then it will be applied to the result of the append or increment. Otherwise, the ACL
of the existing cell being appended to or incremented is preserved.

The combination of access levels and scopes creates a matrix of possible access levels that can be granted to a user.
In a production environment, it is useful to think of access levels in terms of what is needed to do a specific job. The
following list describes appropriate access levels for some common types of HBase users. It is important not to grant
more access than is required for a given user to perform their required tasks.

• Superusers - In a production system, only the HBase user should have superuser access. In a development
environment, an administrator might need superuser access to quickly control and manage the cluster. However,
this type of administrator should usually be a Global Admin rather than a superuser.

• Global Admins - A global admin can perform tasks and access every table in HBase. In a typical production
environment, an admin should not have Read or Write permissions to data within tables.

– A global adminwith Admin permissions can perform cluster-wide operations on the cluster, such as balancing,
assigning or unassigning regions, or calling an explicit major compaction. This is an operations role.

– A global adminwith Create permissions can create or drop any tablewithin HBase. This ismore of a DBA-type
role.

In a production environment, it is likely that different users will have only one of Admin and Create permissions.
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Warning:

In the current implementation, a Global Adminwith Admin permission can grant himself Read
and Write permissions on a table and gain access to that table's data. For this reason, only grant
Global Admin permissions to trusted user who actually need them.

Also be aware that a Global Admin with Create permission can perform a Put operation on
the ACL table, simulating a grant or revoke and circumventing the authorization check for
Global Admin permissions. This issue (but not the first one) is fixed in CDH 5.3 and higher, as
well as CDH 5.2.1.

Due to these issues, be cautious with granting Global Admin privileges.

• NamespaceAdmin - a namespace adminwith Create permissions can create or drop tableswithin that namespace,
and take and restore snapshots. A namespace admin with Admin permissions can perform operations such as
splits or major compactions on tables within that namespace. Prior to CDH 5.4, only global admins could create
namespaces. In CDH 5.4, any user with Namespace Create privileges can create namespaces.

• Table Admins - A table admin can perform administrative operations only on that table. A table adminwith Create
permissions can create snapshots from that table or restore that table from a snapshot. A table admin with Admin
permissions can perform operations such as splits or major compactions on that table.

• Users - Users can read or write data, or both. Users can also execute coprocessor endpoints, if given Executable
permissions.

Important:

If you are using Kerberos principal names when setting ACLs for users, Hadoop uses only the first part
(short) of the Kerberos principal when converting it to the username. Hence, for the principal
ann/fully.qualified.domain.name@YOUR-REALM.COM, HBase ACLs should only be set for user
ann.

The following table shows some typical job descriptions at a hypothetical company and the permissions they might
require to get their jobs done using HBase.

Table 7: Real-World Example of Access Levels

DescriptionPermissionsScopeJob Title

Manages the cluster and
gives access to Junior
Administrators.

Admin, CreateGlobalSenior Administrator

Creates tables and gives
access to Table
Administrators.

CreateGlobalJunior Administrator

Maintains a table from an
operations point of view.

AdminTableTable Administrator

Creates reports from HBase
data.

ReadTableData Analyst

Puts data into HBase and
uses HBase data to perform
operations.

Read, WriteTableWeb Application

Further Reading

• Access Control Matrix
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• Security - Apache HBase Reference Guide

Enable HBase Authorization

HBase authorization is built on top of the Coprocessors framework, specifically AccessController Coprocessor.

Note: Once the Access Controller coprocessor is enabled, any user who uses the HBase shell will be
subject to access control. Access control will also be in effect for native (Java API) client access to
HBase.

1. Go to Clusters and select the HBase cluster.
2. Select Configuration.
3. Search for HBase Secure Authorization and select it.
4. Search forHBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml and enter the following

into it to enable hbase.security.exec.permission.checks. Without this option, all users will continue to
have access to execute endpoint coprocessors. This option is not enabled when you enable HBase Secure
Authorization for backward compatibility.

<property>
  <name>hbase.security.exec.permission.checks</name>
  <value>true</value>
</property>

5. Optionally, search for and configure HBase Coprocessor Master Classes and HBase Coprocessor Region Classes.

Configure Access Control Lists for Authorization

Now that HBase has the security coprocessor enabled, you can set ACLs using the HBase shell. Start the HBase shell
as usual.

Important:

The host running the shell must be configured with a keytab file as described in Configuring Kerberos
Authentication for HBase.

The commands that control ACLs take the following form. Group names are prefixed with the @ symbol.

hbase> grant <user> <permissions> [ @<namespace> [ <table>[ <column family>[ <column 
qualifier> ] ] ] ]   # grants permissions

hbase> revoke <user> [ @<namespace> [ <table> [ <column family> [ <column qualifier> ]
 ] ]  # revokes permissions

hbase> user_permission <table>                                                        
                    # displays existing permissions

In the above commands, fields encased in <> are variables, and fields in [] are optional. The permissions variable
must consist of zero or more character from the set "RWCA".

• R denotes read permissions, which is required to perform Get, Scan, or Exists calls in a given scope.
• W denotes write permissions, which is required to perform Put, Delete, LockRow, UnlockRow,

IncrementColumnValue, CheckAndDelete, CheckAndPut, Flush, or Compact in a given scope.
• X denotes execute permissions, which is required to execute coprocessor endpoints.
• C denotes create permissions, which is required to perform Create, Alter, or Drop in a given scope.
• A denotes admin permissions, which is required to perform Enable, Disable, Snapshot, Restore, Clone,

Split, MajorCompact, Grant, Revoke, and Shutdown in a given scope.
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Access Control List Example Commands

grant 'user1', 'RWC'
grant 'user2', 'RW', 'tableA'
grant 'user3', 'C', '@my_namespace'

Be sure to review the information in Understanding HBase Access Levels on page 138 to understand the implications
of the different access levels.

Configure Cell_Level Access Control Lists

If you wish to enable cell-level ACLs for HBase, then you must modify the default values for the following properties:

hbase.security.exec.permission.checks => true (the default value is false)
hbase.security.access.early_out => false (the default value is true)
hfile.format.version => 3 (the default value is 2)

Unless you modify the default properties as specified (or via the service-wide HBase Service Advanced Configuration
Snippet (Safety Valve) for hbase-site.xml, which requires a service restart), then cell level ACLs will not work.

The following example shows how to grant (or revoke) HBase permissions (in this case, read permission) at the cell-level
via an ACL:

grant 'Employee', { 'employe.name' => 'R' }, { COLUMNS => [ 'pd' ], FILTER => 
"(PrefixFilter ('T'))" }

Auditing HBase Authorization Grants

When Cloudera Navigator collects HBase audits (enabled by default in Cloudera Manager), each time a grant occurs,
Navigator collects an audit event for the grant. The audit includes the information in the following table:

DescriptionField

Automatically generated and incremented ID.ID

HBase service name as shown in Cloudera Manager.SERVICE_NAME

Whether the request to perform an operation failed or succeeded. A failure occurs if
the user is not authorized to perform the action.

ALLOWED

Username for the account that performed the operation. Depending on how HBase is
configured, this can be the service user.

USERNAME

If HBase is configured for the service user to impersonate the user performing an
operation, the impersonated user appears in USERNAME and the service name appears
in this field.

IMPERSONATOR

IP address of the HBase service.IP_ADDR

Event occurrence in milliseconds in epoch time format.EVENT_TIME

The object that is the target of the operation, if appropriate.TABLE_NAME

The column family that is the object of the operation, if appropriate.FAMILY

The column that is the object of the operation, if appropriate.QUALIFIER

The operation command; in the case of a grant operation, the operation field includes
the command, the grantee, and the access control granted, separated by colons. For
example: grant:user1:RWC. (Available as of CDH version 6.2.1)

OPERATION

For information on other HBase commands audited through Cloudera Navigator, see Cloudera Navigator Service Audit
Events.
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Encrypting Data in Transit

Transport Layer Security (TLS) is an industry standard set of cryptographic protocols for securing communications over
a network. TLS evolved from Secure Sockets Layer (SSL). Because the SSL terminology is still widely used, Cloudera
software and documentation refer to TLS as TLS/SSL, but the actual protocol used is TLS. SSL is not used in Cloudera
software.

In addition to TLS/SSL encryption, HDFS and HBase transfer data using remote procedure calls (RPCs). To secure this
transfer, you must enable RPC encryption.

For instructions on enabling TLS/SSL and RPC encryption, see the following topics:

TLS/SSL and Its Use of Certificates
TLS/SSL provides privacy and data integrity between applications communicating over a network by encrypting the
packets transmitted between endpoints (ports on a host, for example). Configuring TLS/SSL for any system typically
involves creating a private key and public key for use by server and client processes to negotiate an encrypted connection
at runtime. In addition, TLS/SSL can use certificates to verify the trustworthiness of keys presented during the negotiation
to prevent spoofing and mitigate other potential security issues.

Setting up Cloudera clusters to use TLS/SSL requires creating private key, public key, and storing these securely in a
keystore, among other tasks. Although adding a certificate to the keystore may be the last task in the process, the lead
time required to obtain a certificate depends on the type of certificate you plan to use for the cluster.

Certificates Overview
A certificate is digitally signed, typically by a certificate authority (CA) that indirectly (through a chain of trust) verifies
the authenticity of the public key presented during the negotiation. Certificates can be signed in one of the three
different ways shown in the table:

Usage NoteType

Recommended. This type of certificate is signed by a public certificate authority (CA), such as
Symantec or Comodo. Public CAs are trusted third-parties whose certificates can be verified

Public CA-signed
certificates

through publicly accessible chains of trust. Using this type of certificate can simplify deployment
because security infrastructure, such as root CAs, are already contained in the Java JDK and its
default truststore. See Generate TLS Certificates on page 151 for details.

This type of certificate is signed by your organization's internal CA. Organizations using OpenSSL
Certificate Authority, Microsoft Active Directory Certificate Service, or another internal CA

Internal CA-signed
certificates

system can use this type of certificate. See How to Configure TLS Encryption for Cloudera
Manager for details about using internal CA-signed certificates for configuration.

Not recommended for production deployments. Self-signed certificates are acceptable for use
in non-production deployments, such as for proof-of-concept setups. See Using Self-signed
Certificates for TLS for details.

Self-signed
certificates

During the process of configuring TLS/SSL for the cluster, you typically obtain a certificate for each host in the cluster,
and re-use the certificate obtained in a given format (JKS, PEM) as needed for the various services (daemon roles)
supported by the host. For information about converting formats, see How to Convert Certificate Encodings (DER, JKS,
PEM) for TLS/SSL. As an alternative to creating discrete certificates for each host in the cluster, as of Cloudera
Manager/CDH 5.9, all Cloudera cluster components support wildcard domains and SubjectAlternateName certificates.
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Wildcard Domain Certificates and SAN Certificates Support

Cloudera Manager and CDH (as of release 5.9) support use of wildcard domain certificates and SAN certificates.

A wildcard certificate—a certificate with the common name *, as in *.example.com, rather than a specific host
name—can be used for any number of first level sub-domains within a single domain name. For example, a wildcard
certificate can be used with host-1.example.com, host-2.example, host-3.example.com, and so on.

Certificates obtained from public CAs are not free, so using wildcard certificates can reduce costs. Using wildcard
certificates also makes it easier to enable encryption for transient clusters and for clusters that need to expand and
shrink, since the same certificate and keystore can be re-used.

Important: Be aware that using wildcard domain certificates has some security risks. Specifically,
because all nodes use the same certificate, a breach of any one machine can result in a breach of all
machines.

A SubjectAlternativeNameor SAN certificate is a certificate that uses the SubjectAlternativeName extension to associate
the resulting certificate with multiple specific host names. In the context of clusters, SAN certificates are used in
high-availability (HA) configurations in which a load balancer targets two different specific hosts as primary and
secondary nodes for fail-over purposes. See Server Certificate Requirements for HA Deployments for an example.

Wildcard certificates can be used by all hosts within a given domain. Using wildcard certificates
for all hosts in the cluster can reduce costs but also exposes greater potential risk.

Wildcard
Certificates

SubjectAlternativeName (SAN) certificates are bound to a set of specific DNS names. A single SAN
certificate can be used for all hosts or a subset of hosts in the cluster. SAN certificates are used
in Cloudera Manager high-availability (HA) configurations.

SubjectAlternativeName
Certificates

Renew Certificates Before Expiration Dates

The signed certificates you obtain from a public CA (or those you obtain from an internal CA) have an expiration date,
such as that shown in this excerpt:

Expired certificates cause most cluster operations to fail. Cloudera Manager Agent hosts, for example, will not be able
to validate the Cloudera Manager Server host and will fail to launch the cluster nodes. Administrators should note
expiration dates of all certificates when they deploy the certificates to the cluster nodes and setup reminders to allow
enough time to renew.

Tip: Use OpenSSL to check the expiration dates for certificates already deployed:

openssl x509 -enddate -noout -in /opt/cloudera/security/pki/$(hostname -f)-server.cert.pem
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Understanding Keystores and Truststores
Configuring ClouderaManager Server and cluster components to use TLS/SSL requires obtaining keys, certificates, and
related security artifacts. The following provides a brief overview.

Java Keystore and Truststore

All clients in a Cloudera Manager cluster configured for TLS/SSL need access to the truststore to validate certificates
presented during TLS/SSL session negotiation. The certificates assure the client or server process that the issuing
authority for the certificate is part of a legitimate chain of trust.

The standard Oracle Java JDK distribution includes a default truststore (cacerts) that contains root certificates for
many well-known CAs, including Symantec. Rather than using the default truststore, Cloudera recommends using the
alternative truststore, jssecacerts. The alternative truststore is created by copying cacerts to that filename
(jssecacerts). Certificates can be added to this truststorewhenneeded for additional roles or services. This alternative
truststore is loaded by Hadoop daemons at startup.

Important: For use with Cloudera clusters, the alternative trust store—jssecacerts—must start
as a copy of cacerts because cacerts contains all available default certificates needed to establish
the chain of trust during the TLS/SSL handshake. After jssecacerts has been created, new public
and private root CAs are added to it for use by the cluster. See Generate TLS Certificates on page 151
for details.

The private keys are maintained in the keystore.

Note: For detailed information about the Java keystore and truststore, see Oracle documentation:

• Keytool—Key and Certificate Management Tool
• JSSE Reference Guide for Java

Although the keystore and truststore in some environments may comprise the same file, as configured for Cloudera
Manager Server and CDH clusters, the keystore and truststore are distinct files. For Cloudera Manager Server clusters,
each host should have its own keystore, while several hosts can share the same truststore. This table summarizes the
general differences between keystore and the truststore in Cloudera Manager Server clusters.

TruststoreKeystore

Used by the client side of a TLS/SSL client-server
connection.

Used by the server side of a TLS/SSL client-server
connection.

Contains no keys of any kind.Typically contains 1 private key for the host system.

Contains root certificates forwell-knownpublic certificate
authorities. May contain certificates for intermediary
certificate authorities.

Contains the certificate for the host's private key.

Password-protection not needed. However, if password
has been used for the truststore, never use the same
password as used for a key and keystore.

Password protected. Use the same password for the key
and its keystore.

Password (if there is one for the truststore) stored in a
plaintext file readable by all (OS filesystem permissions
set to 0440).

Password stored in a plaintext file read permissions
granted to a specific group only (OS filesystempermissions
set to 0440, hadoop:hadoop).

For Java JDK, cacerts is the default unless the alternative
default jssecacerts is available.

No default. Provide a keystore name and password when
you create the private key and CSR for any host system.

HDFS, MapReduce, and YARN need client access to
truststore.

Must be owned by hadoop user and group so that HDFS,
MapReduce, YARN can access the private key.
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The details in the table above are specific to the Java KeyStore (JKS) format, which is used by Java-based cluster services
such as ClouderaManager Server, ClouderaManagement Service, andmany (but not all) CDH components and services.
See Certificate Formats (JKS, PEM) and Cluster Components on page 145 for information about certificate and key file
type used various processes.

CDH Services as TLS/SSL Servers and Clients

Cluster services function as a TLS/SSL server, client, or both:

ServerClientComponent

Flume

HBase

HDFS

Hive

Hue (Hue is a TLS/SSL client of HDFS,MapReduce, YARN,HBase,
and Oozie.)

MapReduce

Oozie

YARN

Daemons that function as TLS/SSL servers load the keystores when starting up. When a client connects to an TLS/SSL
server daemon, the server transmits the certificate loaded at startup time to the client, and the client then uses its
truststore to validate the certificate presented by the server.

Certificate Formats (JKS, PEM) and Cluster Components

Cloudera Manager Server, Cloudera Management Service, and many other CDH services use JKS formatted keystores
and certificates. Cloudera Manager Agent, Hue, Key Trustee Server, Impala, and other Python or C++ based services
require PEM formatted certificates and keystores rather than Java. Specifically, PEM certificates conform to PKCS #8,
which requires individual Base64-encoded text files for certificate and password-protected private key file. The table
summarizes certificate types required by several components.

PEMJKSComponent

Flume

HBase

HDFS

Hive (Hive clients and HiveServer 2)

Hue

Impala

MapReduce

Oozie

Solr

YARN
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For more information, see:

• How to Convert Certificate Encodings (DER, JKS, PEM) for TLS/SSL
• OpenSSL Cryptography and TLS/SSL Toolkit

Recommended Keystore and Truststore Configuration

Cloudera recommends the following for keystores and truststores for Cloudera Manager clusters:

• Create a separate keystore for each host. Each keystore should have a name that helps identify it as to the type
of host—server or agent, for example. The keystore contains the private key and should be password protected.

• Create a single truststore that can be used by the entire cluster. This truststore contains the root CA and
intermediate CAs used to authenticate certificates presented during TLS/SSL handshake. The truststore does not
need to be password protected. (See How To Add Root and Intermediary CAs to Truststore for more information
about the truststore for TLS/SSL and Cloudera clusters.)

The steps included in Generate TLS Certificates on page 151 follow this approach.

Configuring TLS Encryption for Cloudera Manager and CDH Using Auto-TLS
Auto-TLS, first introduced in ClouderaManager 5.13 on Cloudera Director 2.6, is now available for on-premises clusters
in Cloudera Enterprise 6.

An Enterprise license is required to enable Auto-TLS.

Auto-TLS greatly simplifies the process of enabling and managing TLS encryption on your cluster. It automates the
creation of an internal certificate authority (CA) and deployment of certificates across all cluster hosts. It can also
automate the distribution of existing certificates, such as those signed by a public CA. Adding new cluster hosts or
services to a cluster with auto-TLS enabled automatically creates and deploys the required certificates.

To configure TLS encryptionmanually, see Configuring TLS/SSL Encryption for CDH Services on page 160 and Configuring
TLS Encryption for Cloudera Manager on page 151.

Startingwith ClouderaManager 6.2, you can enable auto-TLS on existing clusters. For instructions on enabling auto-TLS
as part of a new installation, see the installation guide.

When TLS is enabled for the ClouderaManager Admin Console, web requests now include the Strict-Transport-Security
header. For more details about this header, see Strict-Transport-Security (Mozilla).

Auto-TLS Requirements and Limitations

• You must install the Cloudera Manager Agent software on the Cloudera Manager Server host.
• You can enable auto-TLS using certificates created andmanaged by a ClouderaManager certificate authority (CA),

or certificates signed by a trusted public CA or your own internal CA. If you want to use a trusted public CA or your
own internal CA, youmust obtain all of the host certificates before enabling auto-TLS. For instructions on obtaining
certificates from a CA, see Generate TLS Certificates on page 151.

The following Cloudera Enterprise services support auto-TLS:

• Cloudera Navigator Audit Server
• Cloudera Navigator Metadata Server
• Cloudera Manager Host Monitor Debug Interface
• Cloudera Manager Service Monitor Debug Interface
• Flume
• HDFS Client Configuration
• HDFS NameNode Web UI
• HiveServer2
• HttpFS
• Hue Client
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• Hue Load Balancer
• Hue Server
• Impala Catalog Server
• Impala Server
• Impala StateStore
• Kafka Broker Server
• Oozie
• Spark History Server
• YARN Web UI

For more information on how to use Auto-TLS with Flume, see Configuring TLS/SSL for Flume on page 165.

For unlisted Cloudera Enterprise services, you must enable TLS manually.

The certmanager Utility

Auto-TLS is managed using the certmanager utility, which is included in the Cloudera Manager Agent software, and
not the Cloudera Manager Server software. You must install the Cloudera Manager Agent software on the Cloudera
Manager Server host to be able to use the utility. You can use certmanager to manage auto-TLS on a new installation.

The certmanager syntax is as follows:

/opt/cloudera/cm-agent/bin/certmanager [OPTIONS] COMMAND [ARGS]...

• Options:

– --location <certmanager-dir-root>

The directory where certmanager stores all of its files on the Cloudera Manager Server host. If omitted,
defaults to /var/lib/cloudera-scm-server/certmanager. This directory is created automatically, and
must not exist before running the command. The agent host certificates and other files are stored elsewhere
on each agent (see Auto-TLS Agent File Locations on page 150).

– --help

Displays the help message.

• Commands:

Cloudera Security | 147

Encrypting Data in Transit



add_custom_cert–

Adds a custom certificate and key for a host. Use this command only if you have configured a custom certificate
directory (using the setup_custom_certdir command). You must run this command before adding a host
in Cloudera Manager.

–export_ca_cert

Displays the Cloudera Manager internal CA certificate. You can export the certificate to a file using a redirect
operator (> or >>).

–setup

Initializes the certificate manager and the internal CA, and configures Cloudera Manager Server to enable
auto-TLS.

–--configure-services

Configures ClouderaManager Server to enable automatic configuration of TLS for supported components,
such as HDFS, YARN, and so on. If you omit this option, auto-TLS will only be configured for Cloudera
Manager agent/server communication.

–setup_custom_certdir

Initializes the certificate manager using a custom certificate directory. Use this command if you are using
existing certificates signed by a trusted public CA or your own internal CA.

–--configure-services

Configures ClouderaManager Server to enable automatic configuration of TLS for supported components,
such as HDFS, YARN, and so on. If you omit this option, auto-TLS will only be configured for Cloudera
Manager agent/server communication.

Enabling Auto-TLS with Existing Certificates

To use auto-TLS with existing certificates on new installations:

1. Make sure that you have host certificates for all cluster hosts. For instructions on obtaining certificates from a
certificate authority (CA), see Generate TLS Certificates on page 151.

2. Initialize the certificate manager using a custom certificate directory:

sudo JAVA_HOME=/usr/java/jdk1.8.0_141 /opt/cloudera/cm-agent/bin/certmanager --location
/opt/cloudera/CMCA setup_custom_certdir --configure-services --host-cert 

/path/to/hostcert.pem --host-key /path/to/hostkey.pem --ca-cert /path/to/cacert.pem
--keystore-pw-file /path/to/keystore_pw_file --truststore-pw-file 
/path/to/truststore_pw_file

Replace the JDK version with the correct path for your environment. Replace /path/to/hostcert.pem and
/path/to/hostkey.pem with the certificate and key, respectively, of the Cloudera Manager Server host.

The directory specified by the --location parameter is created automatically, andmust not exist before running
the command. Check the /var/log/cloudera-scm-agent/certmanager.log log file to confirm that the
directories were created.
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3. For each cluster host (with unique certificates and keys), run the following command:

sudo JAVA_HOME=/usr/java/jdk1.8.0_141 /opt/cloudera/cm-agent/bin/certmanager --location
/opt/cloudera/CMCA add_custom_cert --host-cert <host_cert> --host-key <host_key>

<hostname>

Replace the JDK version with the correct path for your environment.

4. If Cloudera Manager Server is running, restart it:

RHEL 7 Compatible, Ubuntu 16 or later, SLES 12

sudo systemctl restart cloudera-scm-server

RHEL 6 Compatible

sudo service cloudera-scm-server restart

5. Continue with the installation.

Enabling Auto-TLS on Existing Clusters

Consider the following before enabling auto-TLS on existing clusters using the Cloudera Manager web UI:

Important:

• The Cloudera Manage web UI supports auto-TLS on existing clusters using certificates created
and managed only by an internal Cloudera Manager Certificate Authority (CMCA). If you want to
enable auto-TLS on existing clusters using a custom CA, you must use the following Cloudera
Manager API commands:/cm/commands/addCustomCerts,/cm/commands/generateCmca,
and /clusters/{clusterName}/commands/configureAutoTlsServices.

For instructions on obtaining certificates from a CA, see Generate TLS Certificates on page 151.

• You cannot enable auto-TLS on a cluster where the hosts are already configured to use agent
certificates. You must first delete all TLS configurations from the config.ini configuration file
on all agent hosts before proceeding to enable auto-TLS. You must delete the configurations
associated with the following properties:

– verify_cert_file

– client_key_file

– client_keypw_file

– client_cert_file

– cm_auto_cert_dir

In addition, you must disable TLS between the agent and server, and confirm that they can
communicate without TLS.

• Auto-TLS does not generate certificates with Subject Alternative Names (SANs) when using a load
balancer. Therefore, if you are using a load balancer with any services (except Hue), your load
balancermust perform TLS termination and re-establishment. If you are using custom certificates,
you must manage the SANs.

Use the following instructions for enabling auto-TLS on existing clusters using the Cloudera Manager web UI:

1. Navigate to Administration > Security. Click Enable Auto-TLS to launch the wizard.
2. In the CMCA Directory field, enter the full path to the directory you want to use for the CMCA certificates and

configuration files. For example, /opt/cloudera/CMCA.
3. If you want to distribute a list of trusted CA certificates, in the Trusted CA Certificates Location field, enter the

full path to a file containing a concatenated list of CA certificates in PEM format. These certificates are imported
into the Auto-TLS truststore and distributed to all hosts. This file must be readable by the cloudera-scm user.
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Note: If you do not specify any file path for the list of CA certificates, the Cloudera Manager
Agents trust only the CMCA certificate.

4. Select whether you want to enable auto-TLS for all existing and future clusters, or future clusters only. Enabling
auto-TLS enables TLS for all hosts managed by Cloudera Manager, whether they are assigned to a cluster or not.
Additionally, TLS will be configured and enabled for all future hosts added to Cloudera Manager.

5. Enter SSH credentials for the root user, and then click Next.
6. The Remaining Steps page provides instructions for restarting Cloudera Manager Server from the command line.

Click Finish.
7. Restart Cloudera Manager Server from the command line:

RHEL 7 Compatible, Ubuntu 16 or later, SLES 12

sudo systemctl restart cloudera-scm-server

RHEL 6 Compatible

sudo service cloudera-scm-server restart

8. Refresh the Cloudera Manager web UI in your browser. You are redirected to https://<server_host>:7183,
and a security warning is displayed. You might need to indicate that you trust the certificate, or click to proceed
to the Cloudera Manager Server host.

9. Log in to Cloudera Manager. All services report bad health.
10. Restart the Cloudera Management Service (Cloudera Management Service > Actions > Restart). After the restart

completes, you might need to wait a minute or two for the health status to update. Several CDH services remain
in bad health.

11. On the Cloudera Manager home page, click any of the orange stale configuration icons to launch the Stale
Configuration wizard.

12. Click Restart Stale Services.
13. Make sure that Re-deploy client configuration is checked, and then clickRestart Now. After the restart completes,

click Finish.

Rotating Auto-TLS Certificate Authority and Host Certificates

Your cluster's security requirements may require that you rotate the auto-TLS CA and certificates.

Note: When using a custom CA, you must first use the /cm/commands/addCustomCerts API
command to replace the old certificates with new certificates before using the following procedure.

1. Navigate to Administration > Security. Click the Rotate Auto-TLS Certificates button to launch the wizard.
2. Follow the same workflow as in enabling auto-TLS on an existing cluster.

Auto-TLS Agent File Locations

The certificates, keystores, and password files generated by auto-TLS are stored in
/var/lib/cloudera-scm-agent/agent-cert on each Cloudera Manager Agent. The filenames are as follows:

Table 8: Auto-TLS Agent Files

DescriptionFilename

CA certificate and other trusted certificates in PEM formatcm-auto-global_cacerts.pem

CA certificate and other trusted certificates in JKS formatcm-auto-global_truststore.jks

CA certificate in PEM formatcm-auto-in_cluster_ca_cert.pem
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DescriptionFilename

CA certificate in JKS formatcm-auto-in_cluster_truststore.jks

Agent host certificate and private key in PEM formatcm-auto-host_key_cert_chain.pem

Agent host certificate in PEM formatcm-auto-host_cert_chain.pem

Agent host private key in PEM formatcm-auto-host_key.pem

Agent host private key in JKS formatcm-auto-host_keystore.jks

Agent host private key password filecm-auto-host_key.pw

Enabling Auto-TLS on a Cluster

If you enabled auto-TLS, but configured it to enable TLS on future clusters only, existing clusters do not have TLS
enabled.

To enable auto-TLS on a cluster, click the drop-down menu next to the cluster name, and then click Configure the
Cluster for Auto-TLS and follow the prompts.

Configuring TLS Encryption for Cloudera Manager

Note: For new installations, Cloudera recommends enabling auto-TLS as part of the installation
process.

Auto-TLS greatly simplifies the process of enabling and managing TLS encryption on your cluster. It
automates the creation of an internal certificate authority (CA) and deployment of certificates across
all cluster hosts. It can also automate the distribution of existing certificates, such as those signed by
a public CA. Adding new cluster hosts or services to a cluster with auto-TLS enabled automatically
creates and deploys the required certificates.

For instructions on enabling auto-TLS, see Installing Cloudera Manager, CDH, and Managed Services
and Configuring TLS Encryption for Cloudera Manager and CDH Using Auto-TLS on page 146.

Auto-TLS is not supported for existing clusters. To enable TLS on an existing cluster, follow the
instructions on this page.

When you configure authentication and authorization on a cluster, ClouderaManager Server sends sensitive information
over the network to cluster hosts, such as Kerberos keytabs and configuration files that contain passwords. To secure
this transfer, you must configure TLS encryption between Cloudera Manager Server and all cluster hosts.

TLS encryption is also used to secure client connections to the Cloudera Manager Admin Interface, using HTTPS.

Cloudera Manager also supports TLS authentication. Without certificate authentication, a malicious user can add a
host to Cloudera Manager by installing the Cloudera Manager Agent software and configuring it to communicate with
Cloudera Manager Server. To prevent this, you must install certificates on each agent host and configure Cloudera
Manager Server to trust those certificates.

This guide shows how to configure and enable TLS encryption and certificate authentication for Cloudera Manager.
The provided examples use an internal certificate authority (CA) to sign all TLS certificates, so this guide also shows
you how to establish trust with the CA. (For certificates signed by a trusted public CA, establishing trust is not necessary,
because the Java Development Kit (JDK) already trusts them.)

Use this guide to enable TLS encryption and certificate authentication for Cloudera Manager:

Generate TLS Certificates

The following procedure assumes that an internal certificate authority (CA) is used, and shows how to establish trust
for that internal CA. If you are using a trusted public CA (such as Symantec, GeoTrust, Comodo, and others), you do
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not need to explicitly establish trust for the issued certificates, unless you are using an older JDK and a newer public
CA. Older JDKs might not trust newer public CAs by default.

On Each Cluster Host:

Complete the following procedure on each cluster host, including the Cloudera Manager Server host.

1. Configure your environment to set JAVA_HOME to the Oracle JDK. For example:

export JAVA_HOME=/usr/java/jdk1.8.0_141-cloudera

If you log out of the host before completing this procedure, make sure to set JAVA_HOME again when you log in
to complete the steps.

2. Create the /opt/cloudera/security/pki directory:

sudo mkdir -p /opt/cloudera/security/pki

If you choose to use a different directory, make sure you use the same directory on all cluster hosts to simplify
management and maintenance.

3. Use the keytool utility to generate a Java keystore and certificate signing request (CSR). Replace the OU, O, L,
ST, and C entrieswith the values for your environment.When prompted, use the same password for the keystore
password and key password. Cloudera Manager does not support using different passwords for the key and
keystore.

$JAVA_HOME/bin/keytool -genkeypair -alias $(hostname -f) -keyalg RSA -keystore 
/opt/cloudera/security/pki/$(hostname -f).jks -keysize 2048 -dname "CN=$(hostname 
-f),OU=Engineering,O=Cloudera,L=Palo Alto,ST=California,C=US" -ext san=dns:$(hostname 
-f)

$JAVA_HOME/bin/keytool -certreq -alias $(hostname -f) -keystore 
/opt/cloudera/security/pki/$(hostname -f).jks -file /opt/cloudera/security/pki/$(hostname
 -f).csr -ext san=dns:$(hostname -f) -ext EKU=serverAuth,clientAuth

Note: You must ensure that your Issuing Authority will issue the certificates with the extensions
CDH requires.

4. Submit the CSR files (for example, cm01.example.com.csr) to your certificate authority to obtain a server
certificate.

For security purposes, many commercial CAs ignore requested extensions in a CSR. Make sure that you inform
the CA that you require certificates with both server and client authentication options.

If possible, obtain the certificate in PEM (Base64 ASCII) format. The certificate file is in PEM format if it looks similar
to this (some lines omitted):

-----BEGIN CERTIFICATE-----
MIIDAzCCAesCAQAwgY0xCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlh
MRIwEAYDVQQHEwlQYWxvIEFsdG8xETAPBgNVBAoTCENsb3VkZXJhMRQwEgYDVQQL
…
tudY0C32LjGjWOg5ALliN9Oy1u2xRKGAVfapbzAZ2rchtlCZc7mtaT6BXgW8S+Db
0HhuObn1/8TL4Ho9G+KlJB3MWik2oEbOvQt0rBidMr9qaNX86m0i7pouXZelZ5c5
UnDPtrhW6A==
-----END CERTIFICATE-----

If your issued certificate is in binary (DER) format, convert it to PEM format.

5. After you have received the signed certificate, copy the signed certificate to the following location:

/opt/cloudera/security/pki/$(hostname -f).pem
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6. Inspect the signed certificate to verify that both server and client authentication options are present, as well as
the subject alternative name:

openssl x509 -in /opt/cloudera/security/pki/$(hostname -f).pem -noout -text

Look for output similar to the following to verify the server and client authentication options:

            X509v3 Extended Key Usage:
                TLS Web Server Authentication, TLS Web Client Authentication

Look for output similar to the following to validate the subject alternative name:

            X509v3 Subject Alternative Name:
                DNS:hostname.example.com

Important:

If the certificate does not have the DNS field, re-submit the CSR to the CA, and request that they
generate a certificate that keeps the Subject Alternative Name field intact.

If the certificate does not have bothTLS Web Server Authentication andTLS Web Client
Authentication listed in the X509v3 Extended Key Usage section, re-submit the CSR to
the CA, and request that they generate a certificate that can be used for both server and client
authentication.

7. Copy the root and intermediate CA certificates to /opt/cloudera/security/pki/rootca.pem and
/opt/cloudera/security/pki/intca.pem on each host. If you have a concatenated file containing the root
CA and an intermediate CA certificate, split the file along the END CERTIFICATE/BEGIN CERTIFICATE boundary
into individual files. If there aremultiple intermediate CA certificates, use unique file names such as intca-1.pem,
intca-2.pem, and so on.

8. Copy the JDK cacerts file to jssecacerts as follows:

sudo cp $JAVA_HOME/jre/lib/security/cacerts $JAVA_HOME/jre/lib/security/jssecacerts

Note: The default password for the cacerts file is changeit. The same applies to the
jssecacerts file if you copied it from the cacerts before changing the password. Cloudera
recommends changing these passwords by running the following commands:

$JAVA_HOME/bin/keytool -storepasswd -keystore 
$JAVA_HOME/jre/lib/security/cacerts

$JAVA_HOME/bin/keytool -storepasswd -keystore 
$JAVA_HOME/jre/lib/security/jssecacerts

The Oracle JDK uses the jssecacerts file for its default truststore if it exists. Otherwise, it uses the cacerts
file. Creating the jssecacerts file allows you to trust an internal CA without modifying the cacerts file that is
included with the JDK.

Note: If you upgrade your JDK, make sure to copy your existing jssecacerts file to the new
JDK (under $JAVA_HOME/jre/lib/security).
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9. Import the root CA certificate into the JDK truststore.

sudo $JAVA_HOME/bin/keytool -importcert -alias rootca -keystore 
$JAVA_HOME/jre/lib/security/jssecacerts -file /opt/cloudera/security/pki/rootca.pem

If you see a message like the following, enter yes to continue:

Trust this certificate? [no]: yes

Youmust see the following response verifying that the certificate has been properly imported:

Certificate was added to keystore

10. Append the intermediate CA certificate to the signed host certificate, and then import it into the keystore. Make
sure that you use the append operator (>>) and not the overwrite operator (>):

sudo cat /opt/cloudera/security/pki/intca.pem >> /opt/cloudera/security/pki/$(hostname
 -f).pem

sudo $JAVA_HOME/bin/keytool -importcert -alias $(hostname -f) -file 
/opt/cloudera/security/pki/$(hostname -f).pem -keystore 
/opt/cloudera/security/pki/$(hostname -f).jks

If you see a message like the following, enter yes to continue:

... is not trusted. Install reply anyway? [no]:  yes

Youmust see the following response verifying that the certificate has been properly imported:

Certificate reply was installed in keystore

If you do not see this response, contact Cloudera Support.

11. Create symbolic links (symlink) for the certificate and keystore files:

sudo ln -s /opt/cloudera/security/pki/$(hostname -f).pem 
/opt/cloudera/security/pki/agent.pem

This allows you to use the same /etc/cloudera-scm-agent/config.ini file on all agent hosts rather than
maintaining a file for each agent.

On the Cloudera Manager Server Host

On the Cloudera Manager Server host, create an additional symlink for the keystore file:

sudo ln -s /opt/cloudera/security/pki/$(hostname -f).jks 
/opt/cloudera/security/pki/server.jks

Configure TLS for the Cloudera Manager Admin Console

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

Use the following procedure to enable TLS encryption for the Cloudera Manager Server admin interface. Make sure
you have generated the host certificate as described in Generate TLS Certificates on page 151.

Step 1: Enable HTTPS for the Cloudera Manager Admin Console

1. Log in to the Cloudera Manager Admin Console.
2. Select Administration > Settings.
3. Select the Security category.

154 | Cloudera Security

Encrypting Data in Transit



4. Configure the following TLS settings:

DescriptionProperty

The complete path to the keystore file. For example:

/opt/cloudera/security/pki/server.jks

ClouderaManager TLS/SSL
Server JKS Keystore File
Location

The password for the /opt/cloudera/security/jks/server.jks keystore.ClouderaManager TLS/SSL
Server JKS Keystore File
Password

Check this box to enable TLS encryption for Cloudera Manager.Use TLS Encryption for
Admin Console

5. Enter a Reason for Change, then click Save Changes to save the settings.

Step 2: Specify SSL Truststore Properties for Cloudera Management Services

When enabling TLS for the Cloudera Manager Server admin interface, you must set the Java truststore location and
password in the Cloudera Management Services configuration. Otherwise, roles such as Host Monitor and Service
Monitor cannot connect to Cloudera Manager Server and will not start.

Configure the path and password for the $JAVA_HOME/jre/lib/security/jssecacerts truststore that you
created earlier. Make sure that you have created this file on all hosts, including the Cloudera Management Service
hosts, as instructed in Generate TLS Certificates on page 151.

1. Open the Cloudera Manager Administration Console and go to the Cloudera Management Service service.
2. Click the Configuration tab.
3. Select Scope > Cloudera Management Service (Service-Wide).
4. Select Category > Security.
5. Edit the following TLS/SSL properties according to your cluster configuration.

DescriptionProperty

The path to the client truststore file used inHTTPS communication. This truststore
contains certificates of trusted servers, or of Certificate Authorities trusted to
identify servers. For this example, set the value to:

<JAVA_HOME>/jre/lib/security/jssecacerts

TLS/SSL Client Truststore File
Location

Replace <JAVA_HOME> with the path to the Oracle JDK.

The password for the truststore file.Cloudera Manager Server
TLS/SSL Certificate Trust Store
Password

6. Enter a Reason for change, and then click Save Changes to commit the changes.

Step 3: Restart Cloudera Manager and Services

You must restart both Cloudera Manager Server and the Cloudera Management Service for TLS encryption to work.
Otherwise, the ClouderaManagement Services (such as Host Monitor and ServiceMonitor) cannot communicate with
Cloudera Manager Server.

1. Restart the Cloudera Manager Server by running the following command on the Cloudera Manager Server host:

• RHEL 7 compatible:

sudo systemctl restart cloudera-scm-server
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• RHEL 6 compatible, SLES, Ubuntu:
•sudo service cloudera-scm-server restart

2. After the restart completes, connect to the Cloudera Manager Admin Console using the HTTPS URL (for example:
https://cm01.example.com:7183). If you used an internal CA-signed certificate, you must configure your
browser to trust the certificate. Otherwise, youwill see awarning in your browser any time you access the Cloudera
Manager Administration Console. By default, certificates issued by public commercial CAs are trusted by most
browsers, and no additional configuration is necessary if your certificate is signed by one of them.

3. Restart the Cloudera Management Service (Cloudera Management Service > Actions > Restart).

Configure TLS for Cloudera Manager Agents

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

Use the following procedure to encrypt the communication between ClouderaManager Server and ClouderaManager
Agents:

Step 1: Enable TLS Encryption for Agents in Cloudera Manager

Configure the TLS properties for Cloudera Manager Agents.

1. Log in to the Cloudera Manager Admin Console.
2. Select Administration > Settings.
3. Select the Security category.
4. Select the Use TLS Encryption for Agents option.
5. Enter a Reason for change, and then click Save Changes to commit the changes.

Step 2: Enable TLS on Cloudera Manager Agent Hosts

To enable TLS between the Cloudera Manager agents and Cloudera Manager, you must specify values for the TLS
properties in the /etc/cloudera-scm-agent/config.ini configuration file on all agent hosts.

1. On each agent host (including the Cloudera Manager Server host, which also has an agent), open the
/etc/cloudera-scm-agent/config.ini configuration file and set theuse_tlsparameter in the[Security]
section as follows:

use_tls=1

Alternatively, you can edit the config.ini file on one host, and then copy it to the other hosts because this file
by default does not contain host-specific information. If you have modified properties such as
listening_hostname or listening_ip address in config.ini, you must edit the file individually on each
host.

Step 3: Restart Cloudera Manager Server and Agents

1. Restart the Cloudera Manager Server by running the following command on the Cloudera Manager Server host:

• RHEL 7 compatible:

sudo systemctl restart cloudera-scm-server

• RHEL 6 compatible, SLES, Ubuntu:
•sudo service cloudera-scm-server restart

2. On each agent host (including the Cloudera Manager Server host), restart the Cloudera Manager agent service:
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RHEL 7 compatible:

sudo systemctl restart cloudera-scm-agent

•

• RHEL 6 compatible, SLES, Ubuntu:
•sudo service cloudera-scm-agent restart

Step 4: Verify that the Cloudera Manager Server and Agents are Communicating

In the Cloudera Manager Admin Console, go to Hosts > All Hosts. If you see successful heartbeats reported in the Last
Heartbeat column after restarting the agents, TLS encryption is working properly.

Enable Server Certificate Verification on Cloudera Manager Agents

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

If you have completed the previous sections, communication between Cloudera Manager server and the agents is
encrypted, but the certificate authenticity is not verified. For full security, you must configure the agents to verify the
ClouderaManager server certificate. If you are using a server certificate signed by an internal certificate authority (CA),
you must configure the agents to trust that CA:

1. On each agent host (including the Cloudera Manager Server host), open the
/etc/cloudera-scm-agent/config.ini configuration file, and then uncomment and set the following
property:

verify_cert_file=/opt/cloudera/security/pki/rootca.pem

Alternatively, you can edit the config.ini file on one host, and then copy it to the other hosts because this file
by default does not contain host-specific information. If you have modified properties such as
listening_hostname or listening_ip address in config.ini, you must edit the file individually on each
host.

2. Restart the Cloudera Manager agents. On each agent host (including the Cloudera Manager Server host), run the
following command:

• RHEL 7 compatible:

sudo systemctl restart cloudera-scm-agent

• RHEL 6 compatible, SLES, Ubuntu:
•sudo service cloudera-scm-agent restart

3. Verify that the ClouderaManager server and agents are communicating. In the ClouderaManager Admin Console,
go to Hosts > All Hosts. If you see successful heartbeats reported in the Last Heartbeat column after restarting
the agents and management service, TLS verification is working properly. If not, check the agent log
(/var/log/cloudera-scm-agent/cloudera-scm-agent.log) for errors.

Configure Agent Certificate Authentication

Important: Perform this procedure on each agent host, including the Cloudera Manager Server host,
which also has an agent.

Without certificate authentication, a malicious user can add a host to Cloudera Manager by installing the Cloudera
Manager agent software and configuring it to communicate with Cloudera Manager Server. To prevent this, you must
configure Cloudera Manager to trust the agent certificates.
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Step 1: Export the Private Key to a File

On each Cloudera Manager Agent host, use the keytool utility to export the private key and certificate to a PKCS12
file, which can then be split up into individual key and certificate files using the openssl command:

1. Export the private key and certificate:

sudo $JAVA_HOME/bin/keytool -importkeystore -srckeystore 
/opt/cloudera/security/pki/$(hostname -f).jks -destkeystore 
/opt/cloudera/security/pki/$(hostname -f)-key.p12 -deststoretype PKCS12 -srcalias 
$(hostname -f)

2. Use the openssl command to export the private key into its own file:

sudo openssl pkcs12 -in /opt/cloudera/security/pki/$(hostname -f)-key.p12 -nocerts -out
 /opt/cloudera/security/pki/$(hostname -f).key

3. Create a symbolic link for the .key file:

sudo ln -s /opt/cloudera/security/pki/$(hostname -f).key 
/opt/cloudera/security/pki/agent.key

This allows you to use the same /etc/cloudera-scm-agent/config.ini file on all agent hosts rather than
maintaining a file for each agent.

Step 2: Create a Password File

The ClouderaManager agent obtains the password from a text file, not from a command line parameter or environment
variable. The password file allows you to use file permissions to protect the password. For example, run the following
commands on each Cloudera Manager Agent host, or run them on one host and copy the file to the other hosts:

Create and secure the file containing the password used to protect the private key of the Agent:

1. Use a text editor to create a file called /etc/cloudera-scm-agent/agentkey.pw that contains the password.
2. Change ownership of the file to root:

sudo chown root:root /etc/cloudera-scm-agent/agentkey.pw

3. Change the permissions of the file:

sudo chmod 440 /etc/cloudera-scm-agent/agentkey.pw

Step 3: Configure the Agent to Use Private Keys and Certificates

On a Cloudera Manager Agent, open the /etc/cloudera-scm-agent/config.ini configuration file, uncomment
and edit the following properties:

DescriptionExample ValueProperty

Path to the private key file./opt/cloudera/security/pki/agent.keyclient_key_file

Path to the private key password file./etc/cloudera-scm-agent/agentkey.pwclient_keypw_file

Path to the client certificate file./opt/cloudera/security/pki/agent.pemclient_cert_file

Copy the file to all other cluster hosts. If you havemodified properties such aslistening_hostnameorlistening_ip
address in config.ini, you must edit the file individually on each host.

Step 4: Enable Agent Certificate Authentication

1. Log in to the Cloudera Manager Admin Console.
2. Select Administration > Settings.
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3. Click the Security category.
4. Configure the following TLS settings:

DescriptionSetting

Select this option to enable TLS authentication of agents to the server.UseTLSAuthenticationofAgents
to Server

Specify the full filesystem path to the jssecacerts file located on the
Cloudera Manager Server host. For this example, set the value to:

<JAVA_HOME>/jre/lib/security/jssecacerts

Cloudera Manager TLS/SSL
Certificate Trust Store File

Replace <JAVA_HOME> with the path to the Oracle JDK.

Specify the password for the jssecacerts truststore.Cloudera Manager TLS/SSL
Certificate Trust Store Password

5. Enter a Reason for change, and then click Save Changes to commit the changes.

Step 5: Restart Cloudera Manager Server and Agents

1. On the Cloudera Manager server host, restart the Cloudera Manager server:

• RHEL 7 compatible:

sudo systemctl restart cloudera-scm-server

• RHEL 6 compatible, SLES, Ubuntu:
•sudo service cloudera-scm-server restart

2. On every agent host, restart the Cloudera Manager agent:

• RHEL 7 compatible:

sudo systemctl restart cloudera-scm-agent

• RHEL 6 compatible, SLES, Ubuntu:
•sudo service cloudera-scm-agent restart

Step 6: Verify that Cloudera Manager Server and Agents are Communicating

In the Cloudera Manager Admin Console, go to Hosts > All Hosts. If you see successful heartbeats reported in the Last
Heartbeat column after restarting the agents and server, TLS certificate authentication is working properly. If not,
check the agent log (/var/log/cloudera-scm-agent/cloudera-scm-agent.log) for errors.

For example, you might see the following error:

WrongHost: Peer certificate commonName does not match host, expected 192.0.2.155, got 
cdh-1.example.com
[02/May/2018 15:04:15 +0000] 4655 MainThread agent        ERROR    Heartbeating to 
192.0.2.155:7182 failed

For this scenario, make sure that your DNS and /etc/hosts file are configured correctly, and that your server_host
parameter in /etc/cloudera-scm-agent/config.ini uses the Cloudera Manager Server hostname, and not IP
address.
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Configuring TLS/SSL Encryption for CDH Services
In addition to configuring Cloudera Manager cluster to use TLS/SSL (as detailed in Configuring TLS Encryption for
Cloudera Manager on page 151), the various CDH services running on the cluster should also be configured to use
TLS/SSL. The process of configuring TLS/SSL varies by component, so follow the steps below as needed for your system.
Before trying to configure TLS/SSL, however, be sure your cluster meets prerequisites.

In general, all the roles on any given node in the cluster can use the same certificates, assuming the certificates are in
the appropriate format (JKS, PEM) and that the configuration properly points to the location. If you follow the steps
in How to Configure TLS Encryption for Cloudera Manager to create your CSRs and use the symbolic link for the path
to the certificates, you will be setting up the certificates in the cluster for optimal reuse.

Note: TLS/SSL for Hadoop core services—HDFS,MapReduce, and YARN—must be enabled as a group.
TLS/SSL for other components such as HBase, Hue, and Oozie can be enabled independently.

Not all components support TLS/SSL, nor do all external engines support TLS/SSL. Unless explicitly listed in this guide,
the component you want to configure may not currently support TLS/SSL. For example, Sqoop does not currently
support TLS/SSL to Oracle, MySQL, or other databases.

Prerequisites

Cloudera recommends that the cluster and all services use Kerberos for authentication. If you enable TLS/SSL for a
cluster that has not been configured to use Kerberos, a warning displays. You should integrate the cluster with your
Kerberos deployment before proceeding.

The steps below require the cluster to have TLS enabled to ensure that Cloudera Manager Server certificate and
Cloudera Manager Agent certificates are properly configured and already in place. In addition, you should have the
certificates and keys needed by the specific CDH server ready.

If the cluster meets these requirements, you can configure the specific CDH service to use TLS/SSL, as detailed in this
section.

Configuring TLS/SSL for HDFS, YARN and MapReduce

Required Role: Configurator, Cluster Administrator, or Full Administrator

TLS/SSL for the core Hadoop services—HDFS, MapReduce, and YARN—must be enabled as a group. Because most
clusters run either MapReduce or YARN, not both, you will typically enable HDFS and YARN, or HDFS and MapReduce.
Enabling TLS/SSL on HDFS is required before it can be enabled on either MapReduce or YARN.

Note: If you enable TLS/SSL for HDFS, you must also enable it for MapReduce or YARN.

The steps below include enabling Kerberos authentication for HTTP Web-Consoles. Enabling TLS/SSL for the core
Hadoop services on a cluster without enabling authentication displays a warning.

Before You Begin

• Before enabling TLS/SSL, keystores containing certificates bound to the appropriate domain names will need to
be accessible on all hosts on which at least one HDFS, MapReduce, or YARN daemon role is running.

• Since HDFS, MapReduce, and YARN daemons act as TLS/SSL clients as well as TLS/SSL servers, they must have
access to truststores. In many cases, the most practical approach is to deploy truststores to all hosts in the cluster,
as it may not be desirable to determine in advance the set of hosts on which clients will run.

• Keystores for HDFS, MapReduce and YARN must be owned by the hadoop group, and have permissions 0440
(that is, readable by owner and group). Truststores must have permissions 0444 (that is, readable by all)

• Cloudera Manager supports TLS/SSL configuration for HDFS, MapReduce and YARN at the service level. For each
of these services, you must specify absolute paths to the keystore and truststore files. These settings apply to all
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hosts on which daemon roles of the service in question run. Therefore, the paths you choose must be valid on all
hosts.

An implication of this is that the keystore file names for a given service must be the same on all hosts. If, for
example, you have obtained separate certificates for HDFS daemons on hosts node1.example.com and
node2.example.com, you might have chosen to store these certificates in files called hdfs-node1.keystore
and hdfs-node2.keystore (respectively). When deploying these keystores, youmust give them both the same
name on the target host — for example, hdfs.keystore.

• Multiple daemons running on a host can share a certificate. For example, in case there is a DataNode and an Oozie
server running on the same host, they can use the same certificate.

Configuring TLS/SSL for HDFS

1. Go to the HDFS service.
2. Click the Configuration tab.
3. Select Scope > HDFS (Service-Wide).
4. Select Category > Security.
5. In the Search field, type TLS/SSL to show the TLS/SSL properties (found under the Service-Wide > Security category).
6. Edit the following properties according to your cluster configuration:

DescriptionProperty

Path to the keystore file containing the server certificate and private key.Hadoop TLS/SSL Server
Keystore File Location

Password for the server keystore file.Hadoop TLS/SSL Server
Keystore File Password

Password that protects the private key contained in the server keystore.Hadoop TLS/SSL Server
Keystore Key Password

7. If you are not using the default truststore, configure TLS/SSL client truststore properties:

Important: The HDFS properties below define a cluster-wide default truststore that can be
overridden by YARN and MapReduce (see the Configuring TLS/SSL for YARN and MapReduce
section below).

DescriptionProperty

Path to the client truststore file. This truststore contains certificates of trusted
servers, or of Certificate Authorities trusted to identify servers.

Cluster-Wide Default TLS/SSL
Client Truststore Location

Password for the client truststore file.Cluster-Wide Default TLS/SSL
Client Truststore Password

8. (Optional) Cloudera recommends you enable web UI authentication for the HDFS service. Web UI authentication
uses SPNEGO. After enabling this, you cannot access the Hadoop web consoles without a valid Kerberos ticket
and proper client-side configuration. For more information, see How to Configure Browsers for Kerberos
Authentication on page 324.

To enable web UI authentication, enter web consoles in the Search field to bring up the Enable Authentication
for HTTPWeb-Consoles property (found under the Service-Wide>Security category). Check the property to enable
web UI authentication.
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Enables authentication for HadoopHTTPweb-consoles for all roles of this service.

Note: This is effective only if security is enabled for the HDFS
service.

Enable Authentication for
HTTP Web-Consoles

9. Click Save Changes.
10. Follow the procedure described in the following Configuring TLS/SSL for YARN and MapReduce section, at the

end of which you will be instructed to restart all the affected services (HDFS, MapReduce and YARN).

Configuring TLS/SSL for YARN or MapReduce

Perform the following steps to configure TLS/SSL for the YARN or MapReduce services:

1. Go to the YARN orMapReduce service.
2. Click the Configuration tab.
3. Select Scope > service name (Service-Wide).
4. Select Category > Security.
5. Locate the <property name> property or search for it by typing its name in the Search box.
6. In the Search field, type TLS/SSL to show the TLS/SSL properties (found under the Service-Wide > Security category).
7. Edit the following properties according to your cluster configuration:

DescriptionProperty

Path to the keystore file containing the server certificate and private key.Hadoop TLS/SSL Server
Keystore File Location

Password for the server keystore file.Hadoop TLS/SSL Server
Keystore File Password

Password that protects the private key contained in the server keystore.Hadoop TLS/SSL Server
Keystore Key Password

8. Configure the following TLS/SSL client truststore properties for MRv1 or YARN only if you want to override the
cluster-wide defaults set by the HDFS properties configured above.

DescriptionProperty

Path to the client truststore file. This truststore contains certificates of trusted
servers, or of Certificate Authorities trusted to identify servers.

TLS/SSL Client Truststore File
Location

Password for the client truststore file.TLS/SSL Client Truststore File
Password

9. Cloudera recommends you enable Web UI authentication for the service in question.

Enter web consoles in the Search field to bring up the Enable Authentication for HTTP Web-Consoles property
(found under the Service-Wide>Security category). Check the property to enable web UI authentication.

Enables authentication for HadoopHTTPweb-consoles for all roles of this service.

Note: This is effective only if security is enabled for the HDFS
service.

Enable Authentication for
HTTP Web-Consoles

10. Enter a Reason for change, and then click Save Changes to commit the changes.
11. Go to the HDFS service
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12. Click the Configuration tab.
13. Type Hadoop SSL Enabled in the Search box.
14. Select the Hadoop SSL Enabled property to enable SSL communication for HDFS, MapReduce, and YARN.

DescriptionProperty

Enable TLS/SSL encryption for HDFS, MapReduce, and YARN web UIs, as well as
encrypted shuffle for MapReduce and YARN.

Hadoop TLS/SSL Enabled

15. Enter a Reason for change, and then click Save Changes to commit the changes.
16. Restart all affected services (HDFS, MapReduce and YARN), as well as their dependent services.

Configuring HSTS for HDFS

Configuring the HTTP Strict Transport Security (HSTS) for HDFS ensures that a web browser does not load the service
information using HTTP. Additionally, all attempts to load the information using HTTP will automatically be converted
to HTTPS.

Perform the following steps to configure HSTS for HDFS:

1. Go to the HDFS service.
2. Click the Configuration tab.
3. Set the HSTS credentials in Cluster-wide Advanced Configuration Snippet (Safety Valve) for core-site.xml.

<property>
<name>hadoop.http.header.Strict_Transport_Security</name>
<value>max-age=63072000;includeSubDomains;preload</value>
</property>

4. If required, configure additional headers by using the safety value specified in the previous step for the
hadoop.http.header.http-header property.

5. Enter a Reason for change, and then click Save Changes to commit the changes.
6. Restart the HDFS service.

Configuring TLS/SSL for HBase

Required Role: Configurator, Cluster Administrator, or Full Administrator

Before You Begin

• Before enabling TLS/SSL, ensure that keystores containing certificates bound to the appropriate domain names
will need to be accessible on all hosts on which at least one HBase daemon role is running.

• Keystores for HBase must be owned by the hbase group, and have permissions 0440 (that is, readable by owner
and group).

• You must specify absolute paths to the keystore and truststore files. These settings apply to all hosts on which
daemon roles of the HBase service run. Therefore, the paths you choose must be valid on all hosts.

• Cloudera Manager supports the TLS/SSL configuration for HBase at the service level. Ensure you specify absolute
paths to the keystore and truststore files. These settings apply to all hosts on which daemon roles of the service
in question run. Therefore, the paths you choose must be valid on all hosts.

An implication of this is that the keystore file names for a given service must be the same on all hosts. If, for
example, you have obtained separate certificates for HBase daemons on hosts node1.example.com and
node2.example.com, youmight have chosen to store these certificates in files called hbase-node1.keystore
and hbase-node2.keystore (respectively). When deploying these keystores, you must give them both the
same name on the target host — for example, hbase.keystore.

Configuring TLS/SSL for HBase Web UIs

The steps for configuring and enabling TLS/SSL for HBase are similar to those for HDFS, YARN and MapReduce:
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1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope > HBASE (Service-Wide).
4. Select Category > Security.
5. In the Search field, type TLS/SSL to show the HBase TLS/SSL properties.
6. Edit the following TLS/SSL properties according to your cluster configuration:

Table 9: HBase TLS/SSL Properties

DescriptionProperty

Path to the keystore file containing the server certificate and private key used
for encrypted web UIs.

HBase TLS/SSL Server JKS
Keystore File Location

Password for the server keystore file used for encrypted web UIs.HBase TLS/SSL Server JKS
Keystore File Password

Password that protects the private key contained in the server keystore used
for encrypted web UIs.

HBase TLS/SSL Server JKS
Keystore Key Password

7. Check theWeb UI TLS/SSL Encryption Enabled property.

Enable TLS/SSL encryption for the HBase Master, RegionServer, Thrift Server,
and REST Server web UIs.

Web UI TLS/SSL Encryption
Enabled

8. Click Save Changes.
9. Restart the HBase service.

Configuring TLS/SSL for HBase REST Server

1. Go to the HBase service
2. Click the Configuration tab.
3. Select Scope > HBase REST Server.
4. Select Category > Security.
5. In the Search field, type TLS/SSL REST to show the HBase REST TLS/SSL properties.
6. Edit the following TLS/SSL properties according to your cluster configuration:

DescriptionProperty

Encrypt communication between clients and HBase REST Server
using Transport Layer Security (TLS).

Enable TLS/SSL for HBase REST Server

The path to the TLS/SSL keystore file containing the server certificate
and private key used for TLS/SSL. Used when HBase REST Server is
acting as a TLS/SSL server. The keystore must be in JKS format.file.

HBase REST Server TLS/SSL Server JKS
Keystore File Location

The password for the HBase REST Server JKS keystore file.HBase REST Server TLS/SSL Server JKS
Keystore File Password

The password that protects the private key contained in the JKS
keystore usedwhenHBase REST Server is acting as a TLS/SSL server.

HBase REST Server TLS/SSL Server JKS
Keystore Key Password

7. Click Save Changes.
8. Restart the HBase service.

Configuring TLS/SSL for HBase Thrift Server

1. Go to the HBase service
2. Click the Configuration tab.
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3. Select Scope > HBase Thrift Server.
4. Select Category > Security.
5. In the Search field, type TLS/SSL Thrift to show the HBase Thrift TLS/SSL properties.
6. Edit the following TLS/SSL properties according to your cluster configuration:

DescriptionProperty

Encrypt communication between clients and HBase Thrift Server
over HTTP using Transport Layer Security (TLS).

Enable TLS/SSL for HBase Thrift Server over
HTTP

Path to the TLS/SSL keystore file (in JKS format) with the TLS/SSL
server certificate and private key. Used when HBase Thrift Server
over HTTP acts as a TLS/SSL server.

HBase Thrift Server over HTTP TLS/SSL
Server JKS Keystore File Location

Password for the HBase Thrift Server JKS keystore file.HBase Thrift Server over HTTP TLS/SSL
Server JKS Keystore File Password

Password that protects the private key contained in the JKS keystore
used when HBase Thrift Server over HTTP acts as a TLS/SSL server.

HBase Thrift Server over HTTP TLS/SSL
Server JKS Keystore Key Password

7. Click Save Changes.
8. Restart the HBase service.

Configuring TLS/SSL for Flume

Several Flume components support the TLS/SSL protocols to communicate with other systems securely.

Table 10: Flume Components Supporting TLS/SSL

SSL server or clientComponent

serverAvro Source

clientAvro Sink

serverThrift Source

clientThrift Sink

clientKafka Source

clientKafka Channel

clientKafka Sink

serverHTTP Source

clientJMS Source

serverSyslog TCP Source

serverMultiport Syslog TCP Source

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Setting Keystore and Truststore for Flume Components

You can set up keystore and truststore for Flume at the component level or globally. In case of global setup, you can
define the keystore / truststore properties once in Cloudera Manager, and use the same settings for all components.

You can find the Keystore File Location, Keystore File Password, Trust Store File, and Trust Store Password properties
on the Flume configuration page in Cloudera Manager.
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The keystore and truststore properties defined in Cloudera Manager provide the 'default' keystore and truststore for
Flume components that have SSL enabled. For component level setup, you can configure keystore and truststore in
the agent configuration file, through component specific parameters.

Note: If you provide keystore and truststore property values in the Flume agent configuration file,
these will overwrite the default values set in Cloudera Manager.

Auto-TLS

Auto-TLS support is available in Cloudera Manager, both keystore and truststore properties support Auto-TLS.
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Enabling TLS/SSL for Flume Components

The usual Enable TLS/SSL property is not available for Flume in Cloudera Manager. Enabling TLS/SSL for individual
Flume components is always done at component level, in the agent configuration file.

To enable SSL for SSL-capable sources (except JMS and Kafka source), use:

a1.sources.r1.ssl=true

To enable SSL for SSL-capable sinks (except Kafka sink), use:

a1.sinks.s1.ssl=true

Enabling SSL for JMS source and Kafka components is handled differently. You can find details on their TLS/SSL
configuration at:

• Configuring TLS/SSL for Flume JMS Source on page 167
• Configuring Flume Security with Kafka

Important: When enabling SSL for Flume, make sure you configure TLS/SSL for each source and sink
instance in your Flume agent at the component level. Specifying the global SSL parameters alone will
not enable SSL for the components.

Configuring TLS/SSL for Flume JMS Source

There are no component-level configuration properties and no Enable TLS/SSL flag for Flume's JMS sources unlike for
other components. SSL setup is controlled by JNDI/Provider URL settings (ultimately the JMS server settings), and by
the presence / absence of truststore and keystore.

JMS client implementations usually support configuring TLS/SSL via Java system properties defined by Java Secure
Socket Extension (JSSE). You can configure these properties in ClouderaManager. If you specify these systemproperties
for Flume's JVM, its JMS source can connect to the JMS server through SSL.

Note:

• This is only possible when the JMS server has also been set up to use SSL.
• TLS/SSL configuration works for any TLS/SSL compliant JMS provider, and it has been tested with

ActiveMQ, IBMMQ and Oracle WebLogic.

The following sections provide information on SSL configuration on the Flume side only, assuming that the JMS server
has already been configured for SSL correctly.

Configuring SSL Transport / Server Authentication

If the JMS server uses a self-signed certificate or its certificate is signed by a non-trusted certificate authority (CA), for
example, the company's own CA, you have to set up a truststore that contains the right certificate, and pass it to Flume.

To set up the truststore, edit the Flume TLS/SSL Client Trust Store File and Flume TLS/SSL Client Trust Store Password
properties in Cloudera Manager.

1. Open the Cloudera Manager Admin Console.
2. Go to the Flume service.
3. Click the Configuration tab.
4. Select Scope > Flume.
5. Select Category > Security. The TLS/SSL configuration options display.
6. Edit the Flume TLS/SSL Client Trust Store File and Flume TLS/SSL Client Trust Store Password properties.
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7. Enter a Reason for change, and then click Save Changes to commit the changes.
8. Restart the Flume service.

If you want to use IBMMQwith Flume as a JMS source, you must provide an additional Java system property because
of the mismatch between the cipher suite names used in IBM and Oracle JVMs. You can configure this Java system
property in the Java Configuration Options for Flume Agent field in Cloudera Manager:

-Dcom.ibm.mq.cfg.useIBMCipherMappings=false

If you want to turn on debug logging for SSL, specify the following Java system property in the Java Configuration
Options for Flume Agent field in Cloudera Manager:

-Djavax.net.debug=ssl

Some JMS providers require SSL-specific JNDI Initial Context Factory and/or Provider URL settings when using SSL. For
example, ActiveMQuses ssl://URL prefix instead of tcp://. In this case, youmust adjust the JMS source properties
(initialContextFactory and/or providerURL) in the Flume agent configuration file (Configuration File field) in
Cloudera Manager.

Configuring Client Certificate Authentication (Two-Way SSL)

The JMS source can authenticate to the JMS server through client certificate authentication (instead of the usual
user/password login) when SSL is used, and the JMS server is configured to accept this kind of authentication.

To configure the keystore that contains Flume's authentication key, fill in the Flume TLS/SSL Server JKS Keystore File
Location and Flume TLS/SSL Server JKS Keystore File Password properties.

1. Open the Cloudera Manager Admin Console.
2. Go to the Flume service.
3. Click the Configuration tab.
4. Select Scope > Flume.
5. Select Category > Security. The TLS/SSL configuration options display.
6. Edit the Flume TLS/SSL Server Keystore File and Flume TLS/SSL Server Keystore Password properties.

7. Enter a Reason for change, and then click Save Changes to commit the changes.
8. Restart the Flume service.
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Important: The keystore should contain only one key. If multiple keys are present, the first one is
used. The key password must be the same as the keystore password.

Note: In case of client certificate authentication, you don’t need to specify the userName /
passwordFile properties for the JMS source in the Flume agent configuration file (Configuration
File field) in CM.

Configuring TLS/SSL for Flume Thrift Source and Sink

You can configure TLS/SSL for each Thrift source and sink instance either in Cloudera Manager or use the command
line to edit the flume.conf file.

The following tables list the properties that must be configured to enable TLS/SSL communication between Flume's
Thrift source and sink instances.

Table 11: Thrift Source TLS/SSL Properties

DescriptionProperty

Set to true to enable TLS/SSL encryption.ssl

(Optional) The path to a Java keystore file. Keystore parameters can also be
defined in the global keystore fields in CM.

keystore

(Optional) The password for the Java keystore. Keystore parameters can also
be defined in the global keystore fields in CM.

keystore-password

The type of the Java keystore. This can be JKS or PKCS12.keystore-type

Table 12: Thrift Sink TLS/SSL Properties

DescriptionProperty

Set to true to enable TLS/SSL for this ThriftSink.

When configuring TLS/SSL, you can optionally set the following truststore,
truststore-password and truststore-type properties. If a custom

ssl

truststore is not specified, Flume will use the default Java JSSE truststore
(typically jssecacerts or cacerts in the Oracle JRE) to verify the remote
Thrift Source's TLS/SSL credentials.

(Optional) The path to a custom Java truststore file.truststore

(Optional) The password for the specified truststore.truststore-password

(Optional) The type of the Java truststore. This can be JKS or any other
supported Java truststore type.

truststore-type

Configuring TLS/SSL in the flume.conf File

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

For agent a1, source r1, and sink k1, you would add the following properties:

# TLS/SSL properties for Thrift source r1 
a1.sources.r1.ssl=true
a1.sources.r1.keystore=<path/to/keystore>
a1.sources.r1.keystore-password=<keystore password>
a1.sources.r1.keystore-type=<keystore type>
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# TLS/SSL properties for Thrift sink k1 
a1.sinks.k1.ssl=true
a1.sinks.k1.truststore=<path/to/truststore>
a1.sinks.k1.truststore-password=<truststore password>
a1.sinks.k1.truststore-type=<truststore type>

Configuring TLS/SSL Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Open the Cloudera Manager Admin Console.
2. Go to the Flume Service.
3. Click the Configuration tab.
4. Select Scope > Agent.
5. Select Category >Main.
6. Edit the Configuration File property and add the Thrift source and sink properties for each Thrift source and sink

instance as described in Configuring TLS/SSL in the flume.conf File on page 169.
7. Enter a Reason for change, and then click Save Changes to commit the changes.
8. Restart the Flume service.

Configuring Encrypted Communication Between HiveServer2 and Client Drivers

In CDH5.5 and later, encryption betweenHiveServer2 and its clients has been decoupled fromKerberos authentication.
(Prior to CDH 5.5, SASL QOP encryption for JDBC client drivers required connections authenticated by Kerberos.)
De-coupling the authentication process from the transport-layer encryption process means that HiveServer2 can
support two different approaches to encryption between the service and its clients (Beeline, JDBC/ODBC) regardless
of whether Kerberos is being used for authentication, specifically:

• SASL
• TLS/SSL

Unlike TLS/SSL, SASL QOP encryption does not require certificates and is aimed at protecting core Hadoop RPC
communications. However, SASLQOPmay have performance issueswhen handling large amounts of data, so depending
on your usage patterns, TLS/SSLmay be a better choice. See the following topics for details about configuringHiveServer2
services and clients for TLS/SSL and SASL QOP encryption.

Configuring TLS/SSL Encryption for HiveServer2

HiveServer2 can be configured to support TLS/SSL connections from JDBC/ODBC clients using the Cloudera Manager
Admin Console (for clusters that run in the context of Cloudera Manager Server), or manually using the command line.

Requirements and Assumptions

Whether youuse ClouderaManager AdminConsole ormanuallymodify theHive configuration file for TLS/SSL encryption,
the steps assume that the HiveServer2 node in the cluster has the necessary server key, certificate, keystore, and trust
store set up on the host system. For details, see any of the following:

• Encrypting Data in Transit on page 142
• How to Configure TLS Encryption for Cloudera Manager
• How To Obtain and Deploy Keys and Certificates for TLS/SSL

The configuration paths and filenames shownbelow assume that hostname variable ($(hostname -f)-server.jks)
was used with Java keytool commands to create keystore, as shown in this example:

$ sudo keytool -genkeypair -alias $(hostname -f)-server -keyalg RSA -keystore \
/opt/cloudera/security/pki/$(hostname -f)-server.jks -keysize 2048 -dname \
"CN=$(hostname 
-f),OU=dept-name-optional,O=company-name,L=city,ST=state,C=two-digit-nation" \
-storepass password -keypass password

See the appropriate How-To guide from the above list for more information.

170 | Cloudera Security

Encrypting Data in Transit

https://www.ietf.org/rfc/rfc2222.txt
https://tools.ietf.org/html/rfc5246


Using Cloudera Manager to Enable TLS/SSL

To configure TLS/SSL for Hive in clusters managed by Cloudera Manager:

1. Log in to the Cloudera Manager Admin Console.
2. Select Clusters > Hive.
3. Click the Configuration tab.
4. Select Hive (Service-Wide) for the Scope filter.
5. Select Security for the Category filter. The TLS/SSL configuration options display.
6. Enter values for your cluster as follows:

DescriptionProperty

Click the checkbox to enable encrypted client-server communications between
HiveServer2 and its clients using TLS/SSL.

Enable TLS/SSL for HiveServer2

Enter the path to the Java keystore on the host system. For example:

/opt/cloudera/security/pki/server-name-server.jks

HiveServer2 TLS/SSL Server JKS
Keystore File Location

Enter the password for the keystore that was passed at the Java keytool
command-line when the key and keystore were created. As detailed in How To

HiveServer2 TLS/SSL Server JKS
Keystore File Password

Obtain and Deploy Keys and Certificates for TLS/SSL, the password for the
keystore must be the same as the password for the key.

Enter the path to the Java trust store on the host system. Cloudera clusters are
typically configured to use the alternative trust store, jssecacerts, set up at
$JAVA_HOME/jre/lib/security/jssecacerts.

HiveServer2 TLS/SSL Certificate
Trust Store File

For example:

The entry field for certificate trust store password has been left empty because the trust store is typically not
password protected—it contains no keys, only publicly available certificates that help establish the chain of trust
during the TLS/SSL handshake. In addition, reading the trust store does not require the password.

7. Click Save Changes.
8. Restart the Hive service.
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Client Connections to HiveServer2 Over TLS/SSL

Clients connecting to a HiveServer2 over TLS/SSLmust be able to access the trust store on the HiveServer2 host system.
The trust store contains intermediate and other certificates that the client uses to establish a chain of trust and verify
server certificate authenticity. The trust store is typically not password protected.

Note: The trust storemay have been password protected to prevent its contents frombeingmodified.
However, password protected trust stores can be read from without using the password.

The client needs the path to the trust store when attempting to connect to HiveServer2 using TLS/SSL. This can be
specified using two different approaches, as follows:

• Pass the path to the trust store each time you connect to HiveServer in the JDBC connection string:

jdbc:hive2://fqdn.example.com:10000/default;ssl=true;\
sslTrustStore=$JAVA_HOME/jre/lib/security/jssecacerts;trustStorePassword=extraneous

or,
• Set the path to the trust store one time in the Java system javax.net.ssl.trustStore property:

java 
-Djavax.net.ssl.trustStore=/usr/java/jdk1.7.0_67-cloudera/jre/lib/security/jssecacerts
 \
-Djavax.net.ssl.trustStorePassword=extraneous MyClass \
jdbc:hive2://fqdn.example.com:10000/default;ssl=true

Configuring SASL Encryption for HiveServer2

Communications between Hive JDBC or ODBC drivers and HiveServer2 can be encrypted using SASL, a framework for
authentication and data security rather than a protocol like TLS/SSL. Support for SASL (Simple Authentication and
Security Layer) in HiveServer2 preceded the support for TLS/SSL. SASL offers three different Quality of Protection (QOP)
levels as shown in the table:

Default. Authentication only.auth

Authentication with integrity protection. Signed message digests (checksums)
verify the integrity of messages sent between client and server.

auth-int

Authentication with confidentiality (transport-layer encryption). Use this setting
for encrypted communications from clients to HiveServer2.

auth-conf

To support encryption for communications between client and server processes, specify the QOP auth-conf setting
for the SASL QOP property in the HiveServer2 configuration file (hive-site.xml). For example,

<property>
  <name>hive.server2.thrift.sasl.qop</name>
  <value>auth-conf</value>
</property>

Client Connections to HiveServer2 Using SASL

The client connection stringmustmatch the parameter value specified for the HiveServer2 configuration. This example
shows how to specify encryption for the Beeline client in the JDBC connection URL:

beeline> !connect jdbc:hive2://fqdn.example.com:10000/default;  \
principal=hive/_HOST@EXAMPLE.COM;sasl.qop=auth-conf

The _HOST is a wildcard placeholder that gets automatically replaced with the fully qualified domain name (FQDN) of
the server running the HiveServer2 daemon process.
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Configuring TLS/SSL for Hue

Hue as a TLS/SSL Client

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Hue acts as a TLS/SSL client when communicating with other services such as core Hadoop, HBase, Oozie and Amazon
S3. This means Hue must authenticate HDFS, MapReduce, YARN daemons, the HBase Thrift server, and so on. To do
so, Hue needs the certificate chains of their hosts in its truststore.

The Hue truststore is a single PEM file that contains the CA root, and all intermediate certificates, to authenticate the
certificate installed on each TLS/SSL-enabled server. These servers host the various services with which Hue
communicates.

Note: A certificate is specific to a host. It is signed by a certificate authority (CA) and tells the requesting
client (Hue) that "this host" is the same one as represented by the host public key. Hue uses chain of
signing authorities in its truststore to validate the CA that signed the host certificate.

Creating a Hue Truststore File in PEM Format

Server certificates are stored in JKS format and must be converted to PEM. To create the Hue truststore, extract each
certificate from its keystore with keytool, convert to PEM format with openssl, and add to the truststore.

1. Extract the certificate from the keystore of each TLS/SSL-enabled server with which Hue communicates.

For example,hadoop-server.jks contains server certificate,foo-1.example.com, andpassword,example123.

keytool -exportcert -keystore hadoop-server.jks -alias foo-1.example.com -storepass 
example123 -file foo-1.cert

2. Convert each certificate into a PEM file.

openssl x509 -inform der -in foo-1.cert > foo-1.pem

3. Concatenate all the PEM certificates into one PEM file.

cat foo-1.pem foo-2.pem foo-n.pem ... > hue_trustore.pem

Note: Ensure the final PEM truststore is deployed in a location that is accessible by the Hue
service.

Configuring Hue as a TLS/SSL Client with Cloudera Manager

1. Go to the Hue service and click the Configuration tab.
2. Filter by Scope > Hue Server and Category > Security.
3. Find the property, Hue TLS/SSL Server CA Certificate (PEM Format), or ssl_cacerts.
4. Enter the path to <hue_truststore>.pem on the host running the Hue web server.
5. Click Save Changes.
6. Select Actions > Restart to restart the Hue service.
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Configuring Hue as a TLS/SSL Client at the Command Line

For unmanageddeployments only,manually setssl_cacerts inhue.ini to the path of the<hue_truststore>.pem
file:

[desktop]
# Path to default Certificate Authority certificates.
ssl_cacerts=/etc/hue/<hue_truststore>.pem

Hue as a TLS/SSL Server

Hue and other Python-based services expect certificates and keys to be stored in PEM format. You can manage such
services with the openssl tool. To configure Hue to use HTTPS, generate a private key and certificate as described in
Configuring TLS Encryption for Cloudera Manager on page 151 and reuse a host's existing Java keystore by converting
it to the PEM format. See Converting JKS Key and Certificate to PEM on page 337.

Enabling TLS/SSL for the Hue Server with Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the Hue service and click Configuration.
2. Filter by Scope > Hue Server and Category > Security.
3. Edit the following TLS/SSL properties according to your cluster configuration.

DescriptionProperty

Encrypt communication between clients and Hue with TLS/SSL.Enable TLS/SSL for Hue

Path to TLS/SSL certificate on host running Hue web server.Hue TLS/SSL Server Certificate File
(PEM Format)

ssl_certificate

Path to TLS/SSL private key on host running Hue web server.Hue TLS/SSL Server Private Key
File (PEM Format

ssl_private_key

Password for private key in Hue TLS/SSL Server Certificate and Private Key
file.

Hue TLS/SSL Private Key Password

ssl_password

You can also store ssl_passwordmore securely in a script and set this parameter instead:

ssl_password_script=<your_hue_passwords_script.sh>

For more, see Storing Hue Passwords in a Script on page 176.

To apply this configuration property to other role groups as needed, edit the value for the appropriate role group.
See Modifying Configuration Properties Using Cloudera Manager.

4. Click Save Changes.
5. Select Actions > Restart to restart the Hue service.

For more details on configuring Hue with TLS/SSL, see this blog post.

Enabling TLS/SSL for the Hue Load Balancer

To configure the Hue Load Balancer to use HTTPS or to make it act as a TLS/SSL server, you need a self-signed SSL
certificate and a private key file. If the private key file is password protected then you must configure the Hue Load
Balancer to use the corresponding key password.

1. Sign in to the Cloudera Manager web interface as an Administrator.
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2. Go to Clusters > $Hue service > Configuration > Scope > Load Balancer and search for SSL.
3. Enter the path to the file containing the server certificate key for TLS/SSL on the host running Hue Load Balancer

in the Hue Load Balancer TLS/SSL Server Certificate File (PEM Format) field.

The certificate file must be in PEM format.

4. Enter the path TLS/SSL file containing the private key used for TLS/SSL on the host running Hue Load Balancer in
the Hue Load Balancer TLS/SSL Server Private Key File (PEM Format) field.

The certificate file must be in PEM format.

5. (Optional) If the private key file is password protected:

a. Create a password file in your chosen security directory and insert the private key password as shown in the
following example:

echo "abc123" > /etc/security/password.txt

Where abc123 is the private key password and password.txt is the password file.

b. Set the file ownership and permissions as shown in the following example:

chown hue:hue password.txt
chmod 700 password.txt

c. Enter the path to the file containing the passphrase used to encrypt the private key of the Hue Load Balancer
server in the Hue Load Balancer TLS/SSL Server SSLPassPhraseDialog field.

6. Click Save Changes.
7. Restart the Hue service.

Enabling Hue TLS/SSL Communication with HiveServer2

In CDH 5.5.x and higher, HiveServer2 is enabled for TLS/SSL communication by default.

To enable communication between Hue and HiveServer2 using TLS/SSL, Hue needs the Hive certificate and certificate
chain.

1. Log in to Cloudera Manager as an administrator.
2. Go to Clusters > $Hue service > Configuration and add the following section in the Hue Service Advanced

Configuration Snippet (Safety Valve) for hue_safety_valve.ini field:

[beeswax]
  [[ssl]]
    enabled=true ## default: false
    cacerts=/etc/hue/cacerts.pem ## Path to Certificate Authority certificates
    validate=true ##Choose whether Hue should validate certificates received from the 
server. Default: true

3. Click Save Changes.
4. Restart the Hue service.

Related Information

• Configuring Encrypted Communication Between HiveServer2 and Client Drivers on page 170

Enabling Hue TLS/SSL Communication with Impala

In CDH 5.5.x and higher, Impala is enabled for TLS/SSL communication by default.

For Hue to communicate with Impala using TLS/SSL, Hue needs the Impala certificate and certificate chain.

1. Log in to Cloudera Manager as an administrator.
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2. Go to Clusters > $Hue service > Configuration and add the following section in the Hue Service Advanced
Configuration Snippet (Safety Valve) for hue_safety_valve.ini field:

[impala]
  [[ssl]]
    enabled=true ## default: false
    cacerts=/etc/hue/cacerts.pem ## Path to Certificate Authority certificates
    validate=true ##Choose whether Hue should validate certificates received from the 
server. Default: true

3. Click Save Changes.
4. Restart the Hue service.

Securing Database Connections using TLS/SSL

Hue uses different clients to communicate with each database internally. Client-specific options, such as secure
connectivity can be configured using Cloudera Manager.

To enable TLS/SSL for the backend database:

1. Log in to Cloudera Manager as an administrator.
2. Go to Clusters > $Hue service > Configuration and add the following section in the Hue Service Advanced

Configuration Snippet (Safety Valve) for hue_safety_valve.ini field:

[desktop] 
  [[databases]] 
    … 
    options={"ssl":{"ca":"/tmp/ca-cert.pem"}}

This identifies the Certificate Authority (CA) certificate for the backend database. You can also identify public and
private keys as follows:

options='{"ssl": {"ca": "/tmp/newcerts2/ca.pem", "key": "/tmp/newcerts2/client-key.pem",
 "cert": “/tmp/newcerts2/client-cert.pem"}}'

3. Click Save Changes.
4. Restart the Hue service.

Storing Hue Passwords in a Script

In CDH 5.4, Hue added the ability to store passwords in a secure script and pull passwords from stdout. On startup,
Hue runs one or more passwords scripts and grabs each password from stdout.

In hue_ini, add the suffix, _script, to any password property and set it equal to the script name. In Cloudera
Manager, set these properties in the configuration field, Hue Service Advanced Configuration Snippet (Safety Valve)
for hue_safety_valve.ini. For example:

[desktop]
ldap_username=hueservice
ldap_password_script="/var/lib/hue/<your_hue_passwords_script.sh> ldap_password"
ssl_password_script="/var/lib/hue/<your_hue_passwords_script.sh> ssl_password"

[[ldap]]
bind_password_script="/var/lib/hue/<your_hue_passwords_script.sh> bind_password"

[[database]]
password_script="/var/lib/hue/<your_hue_passwords_script.sh> database"

Store the script in a directory that only the hue user can read, write, and execute. You can have one script per password
or one script with parameters for all passwords. Here is an example of a script with parameters for multiple passwords:

#!/bin/bash

SERVICE=$1
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if [[ ${SERVICE} == "ldap_password" ]]
then
   echo "password"
fi

if [[ ${SERVICE} == "ssl_password" ]]
then
   echo "password"
fi

if [[ ${SERVICE} == "bind_password" ]]
then
   echo "Password1"
fi

if [[ ${SERVICE} == "database_password" ]]
then
   echo "password"
fi

Note: The bind password parameter was added in CDH 5.4.6.

Configuring TLS/SSL for Impala

Impala supports TLS/SSL network encryption, between Impala and client programs, and between the Impala-related
daemons running on different nodes in the cluster. This feature is important when you also use other features such
as Kerberos authentication or Sentry authorization, where credentials are being transmitted back and forth.

Important:

• You can use either Cloudera Manager or the following command-line instructions to complete
this configuration.

• This information applies specifically to the version of Impala shown in the HTML page header or
on the PDF title page. If you use an earlier version of CDH, see the documentation for that version
located at Cloudera Documentation.

Using Cloudera Manager

To configure Impala to listen for Beeswax and HiveServer2 requests on TLS/SSL-secured ports:

1. Open the Cloudera Manager Admin Console and go to the Impala service.
2. Click the Configuration tab.
3. Select Scope > Impala (Service-Wide).
4. Select Category > Security.
5. Edit the following properties:

Table 13: Impala SSL Properties

DescriptionProperty

Encrypt communication between clients (like ODBC, JDBC, and the Impala shell)
and the Impala daemon using Transport Layer Security (TLS) (formerly known
as Secure Socket Layer (SSL)).

Enable TLS/SSL for Impala

Local path to the X509 certificate that identifies the Impala daemon to clients
during TLS/SSL connections. This file must be in PEM format.

Impala TLS/SSL Server
Certificate File (PEM Format)
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DescriptionProperty

Local path to the private key that matches the certificate specified in the
Certificate for Clients. This file must be in PEM format.

Impala TLS/SSL Server Private
Key File (PEM Format)

The password for the private key in the Impala TLS/SSL Server Certificate and
Private Key file. If left blank, the private key is not protected by a password.

Impala TLS/SSL Private Key
Password

The location on disk of the certificate, in PEM format, used to confirm the
authenticity of SSL/TLS servers that the Impala daemons might connect to.

Impala TLS/SSL CA Certificate

Because the Impala daemons connect to each other, this should also include
the CA certificate used to sign all the SSL/TLS Certificates.Without this parameter,
SSL/TLS between Impala daemons will not be enabled.

6. Click Save Changes to commit the changes.
7. Select each scope, one each for “Impala Daemon”, “Catalog Server”, and “Statestore”, and repeat the above steps.

Each of these Impala components has its own internalweb server that powers the associatedwebUIwith diagnostic
information. The configuration setting represents the local path to the X509 certificate that identifies the web
server to clients during TLS/SSL connections.

8. Restart the Impala service.

Configuring TLS/SSL Communication for the Impala Shell

Typically, a client programhas corresponding configuration properties in ClouderaManager to verify that it is connecting
to the right server. For example, with TLS/SSL enabled for Impala, you use the following options when starting
impala-shell:

• --ssl: enables TLS/SSL for impala-shell.
• --ca_cert: the local pathname pointing to the third-party CA certificate, or to a copy of the server certificate

for self-signed server certificates.

If --ca_cert is not set, impala-shell enables TLS/SSL, but does not validate the server certificate. This is useful
for connecting to a known-good Impala that is only running over TLS/SSL, when a copy of the certificate is not available
(such as when debugging customer installations).

For impala-shell to successfully connect to an Impala cluster that has the minimum allowed TLS/SSL version set to
1.2 (--ssl_minimum_version=tlsv1.2), the Python version on the cluster that impala-shell runs on must be
2.7.9 or higher (or a vendor-provided Python version with the required support. Some vendors patched Python 2.7.5
versions on Red Hat Enterprise Linux 7 and derivatives).

Using TLS/SSL with Business Intelligence Tools

You can use Kerberos authentication, TLS/SSL encryption, or both to secure connections from JDBCandODBCapplications
to Impala. See Configuring Impala to Work with JDBC and Configuring Impala to Work with ODBC for details.

Prior to CDH 5.7 / Impala 2.5, the Hive JDBC driver did not support connections that use both Kerberos authentication
and SSL encryption. If your cluster is running an older release that has this restriction, to use both of these security
features with Impala through a JDBC application, use the Cloudera JDBC Connector as the JDBC driver.

Specifying TLS/SSL Minimum Allowed Version and Ciphers

Depending on your cluster configuration and the security practices in your organization, you might need to restrict the
allowed versions of TLS/SSL used by Impala. Older TLS/SSL versions might have vulnerabilities or lack certain features.
In CDH 5.13 / Impala 2.10, you can use startup options for the impalad, catalogd, and statestored daemons to
specify a minimum allowed version of TLS/SSL.

Specify one of the following values for the --ssl_minimum_version configuration setting:

• tlsv1: Allow any TLS version of 1.0 or higher. This setting is the default when TLS/SSL is enabled.

• tlsv1.1: Allow any TLS version of 1.1 or higher.
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• tlsv1.2: Allow any TLS version of 1.2 or higher.

Alongwith specifying the version, you can also specify the allowed set of TLS ciphers by using the --ssl_cipher_list
configuration setting. The argument to this option is a list of keywords, separated by colons, commas, or spaces, and
optionally including other notation. For example:

--ssl_cipher_list="RC4-SHA,RC4-MD5"

By default, the cipher list is empty, and Impala uses the default cipher list for the underlying platform. See the output
of man ciphers for the full set of keywords and notation allowed in the argument string.

Configuring TLS/SSL for Oozie

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Before You Begin

• Keystores for Oozie must be readable by the oozie user. This can be a copy of the Hadoop services' keystore with
permissions set to 0440 and owned by the oozie group.

• Truststores must have permissions set to 0444, which means that all users can read them.
• Specify absolute paths to the keystore and truststore files. These settings apply to all hosts on which daemon

roles of the Oozie service run so the paths you choose must be valid on all hosts.
• If there is a DataNode and an Oozie server running on the same host, they can use the same certificate.

For more information on obtaining signed certificates and creating keystores, see Encrypting Data in Transit on page
142. You can also view the upstream documentation located here.

Important:

• This configuration process can be completed using either ClouderaManager or the command-line
instructions.

• This information applies specifically to CDH 6.x. If you are using a different version of CDH, see
the documentation for that version located here.

Using Cloudera Manager

The steps for configuring and enabling Hadoop TLS/SSL for Oozie are as follows:

1. Open the Cloudera Manager Admin Console and go to the Oozie service.
2. Click the Configuration tab.
3. In the Search field, type TLS/SSL to show the Oozie TLS/SSL properties.
4. Edit the following TLS/SSL properties according to your cluster configuration.

Table 14: Oozie TLS/SSL Properties

DescriptionProperty

Check this field to enable TLS/SSL for Oozie.Enable TLS/SSL for Oozie

Location of the keystore file on the local file system.Oozie TLS/SSL Server JKS
Keystore File Location

Password for the keystore.Oozie TLS/SSL Server JKS
Keystore File Password

5. Click Save Changes.
6. Restart the Oozie service.
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Additional Considerations when Configuring TLS/SSL for Oozie HA

To enable clients to connect to Oozie servers (the target servers) through the load balancer using TLS/SSL, configure
the load balancer for TLS/SSL pass-through. Thismeans that the load balancer does not performencryption or decryption
but instead passes traffic from clients and servers to the appropriate target host. See the documentation for your load
balancer for details.

Configuring TLS/SSL for Solr

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

Before You Begin

Important: Enabling TLS on a cluster breaks existing collections. Because of this, you are advised to
enable TLS before creating the first collection on the cluster.

• The Solr service must be running.
• Keystores for Solr must be readable by the solr user. This could be a copy of the Hadoop services' keystore with

permissions 0440 and owned by the solr group.
• Truststores must have permissions 0444 (that is, readable by all).
• Specify absolute paths to the keystore and truststore files. These settings apply to all hosts on which daemon

roles of the Solr service run. Therefore, the paths you choose must be valid on all hosts.
• In case there is a DataNode and a Solr server running on the same host, they can use the same certificate.

For more information on obtaining signed certificates and creating keystores, see Encrypting Data in Transit on page
142. You can also view the upstream documentation located here.

Important:

• This configuration process can be completed using either ClouderaManager or the command-line
instructions.

• This information applies specifically to CDH 6.2.x. If you use an earlier version of CDH, see the
documentation for that version located at Cloudera Documentation.

Additional Considerations when Configuring TLS/SSL for Solr HA

To allow clients to talk to Solr servers (the target servers) through the load balancer using TLS/SSL, Configure the load
balancer for TLS/SSL pass-through, whichmeans the load balancer does not perform encryption/decryption but simply
passes traffic from clients and servers to the appropriate target host. See documentation for your load balancer for
details.

Configuring TLS/SSL for Solr Using Cloudera Manager

The steps for configuring and enabling Hadoop TLS/SSL for Search are as follows:

1. Open the Cloudera Manager Admin Console and go to the Solr service.
2. Click the Configuration tab.
3. Select Scope > All.
4. Select Category > All.
5. In the Search field, type TLS/SSL to show the Solr TLS/SSL properties.
6. Edit the following properties according to your cluster configuration.

Note: These values must be the same for all hosts running the Solr role.
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Table 15: Solr TLS/SSL Properties

DescriptionProperty

Check this field to enable SSL for Solr.Enable TLS/SSL for Solr

The path to the TLS/SSL keystore file containing the server certificate and private
key used for TLS/SSL. Used when Solr is acting as a TLS/SSL server. The keystore
must be in JKS format.

Solr TLS/SSL Server Keystore
File Location

Password for the Solr JKS keystore.Solr TLS/SSL Server JKS
Keystore File Password

Required in case of self-signed or internal CA signed certificates. The location
on disk of the truststore, in .jks format, used to confirm the authenticity of

Solr TLS/SSL Certificate Trust
Store File

TLS/SSL servers that Solr might connect to. This is used when Solr is the client
in a TLS/SSL connection. This truststore must contain the certificate(s) used to
sign the service(s) being connected to. If this parameter is not provided, the
default list of well-known certificate authorities is used instead.

The password for the Solr TLS/SSL Certificate Trust Store File. This password is
not required to access the truststore: this field can be left blank. This password

Solr TLS/SSL Certificate Trust
Store Password

provides optional integrity checking of the file. The contents of truststores are
certificates, and certificates are public information.

7. Enter a Reason for change, and then click Save Changes to commit the changes.
8. Restart the service.

Additional Considerations When Using a Load Balancer TLS/SSL for Solr HA

To configure a load balancer:

1. Go to the Solr service.
2. Click the Configuration tab.
3. Select Scope > Solr.
4. Enter the hostname and port number of the load balancer in the Solr Load Balancer property in the format

hostname:port number.

Note:

When you set this property, ClouderaManager regenerates the keytabs for Solr roles. The principal
in these keytabs contains the load balancer hostname.

If there are services that depends on this Solr service, such as Hue, those services use the load
balancer to communicate with Solr.

5. Enter a Reason for change, and then click Save Changes to commit the changes.
6. Restart Solr and any dependent services or restart the entire cluster for this configuration to take effect.

Configuring TLS/SSL for the Key-Value Store Indexer Using Cloudera Manager

The steps for configuring and enabling Hadoop TLS/SSL for the Keystore Indexer are as follows:

1. Open the Cloudera Manager Admin Console and go to the Key-Value Store Indexer.
2. Click the Configuration tab.
3. Select Scope > All.
4. Select Category > All.
5. In the Search field, type TLS/SSL to show the Solr TLS/SSL properties.
6. Edit the following TLS/SSL properties according to your cluster configuration.
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Note: These values must be the same for all hosts running the Key-Value Store Indexer role.

Table 16: Key-Value Store TLS/SSL Properties

DescriptionProperty

The location on disk of the truststore, in .jks format, used to confirm the
authenticity of TLS/SSL servers that HBase Indexermight connect to. This is used

HBase Indexer TLS/SSL
Certificate Trust Store File

when HBase Indexer is the client in a TLS/SSL connection. This truststore must
contain the certificate(s) used to sign the service(s) being connected to. If this
parameter is not provided, the default list of well-known certificate authorities
is used instead.

The password for the HBase Indexer TLS/SSL Certificate Trust Store File. This
password is not required to access the truststore: this field can be left blank.

HBase Indexer TLS/SSL
Certificate Trust Store
Password (Optional) This password provides optional integrity checking of the file. The contents of

truststores are certificates, and certificates are public information.

7. Restart the service.

Configuring TLS/SSL for Flume Using Cloudera Manager

The steps for configuring and enabling Hadoop TLS/SSL for Flume are as follows:

1. Open the Cloudera Manager Admin Console and go to Flume.
2. Click the Configuration tab.
3. Select Scope > All.
4. Select Category > All.
5. In the Search field, type TLS/SSL to show the properties.
6. Edit the following SSL properties according to your cluster configuration.

Note: These values must be the same for all hosts running the Flume role.

Table 17: Key-Value Store SSL Properties

DescriptionProperty

The location on disk of the truststore, in .jks format, used to confirm the
authenticity of TLS/SSL servers that Flume might connect to. This is used when

FlumeTLS/SSL Certificate Trust
Store File

Flume is the client in a TLS/SSL connection. This truststore must contain the
certificate(s) used to sign the service(s) being connected to. If this parameter is
not provided, the default list of well-known certificate authorities is used instead.

The password for the Flume TLS/SSL Certificate Trust Store File. This password
is not required to access the truststore: this field can be left blank. This password

FlumeTLS/SSL Certificate Trust
Store Password (Optional)

provides optional integrity checking of the file. The contents of truststores are
certificates, and certificates are public information.

7. Enter a Reason for change, and then click Save Changes to commit the changes.
8. Restart the service.
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Spark Encryption

Spark supports the following means of encrypting Spark data at rest, and data in transit.

Enabling Spark Encryption Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Open the Cloudera Manager Admin Console and go to the Spark service.
2. Click the Configuration tab.
3. (Prerequisite) Search for the Spark Authentication property and make sure it has been enabled. If this property

is not set, the following settings to enable encryption will not work.
4. Search for the Enable Network Encryption property. Use the checkbox to enable encrypted communication

between Spark processes belonging to the same application.
5. Search for the Enable I/O Encryption property. Use the checkbox to enabled encryption for temporary shuffle

and cache files stored by Spark on local disks.
6. Enter a Reason for change, and then click Save Changes to commit the changes.
7. Redeploy client configuration.
8. Restart stale services (if indicated by Cloudera Manager).

Configuring TLS/SSL for HttpFS

Important: This information applies specifically to CDH 6.2.x. If you use an earlier version of CDH,
see the documentation for that version located at Cloudera Documentation.

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

The steps for configuring and enabling TLS/SSL for HttpFS using Cloudera Manager are as follows:

1. Go to the HDFS service
2. Click the Configuration tab.
3. Select Scope > HttpFS.
4. Select > Security.
5. Edit the following TLS/SSL properties according to your cluster configuration:

Table 18: HttpFS TLS/SSL Properties

DescriptionProperty

Use TLS/SSL for HttpFS.Use TLS/SSL

Location of the keystore file used by the HttpFS role for TLS/SSL.

Default: /var/run/hadoop-httpfs/.keystore. Note that the default
location for the keystore file is on non-persistent disk.

HttpFS Keystore File

Password of the keystore used by the HttpFS role for TLS/SSL.

If the keystore password has a percent sign, it must be escaped. For example,
for a password that is pass%word, use pass%%word.

HttpFS Keystore Password

The location on disk of the truststore, in .jks format, used to confirm the
authenticity of TLS/SSL servers that HttpFS might connect to. This is used when
HttpFS is the client in a TLS/SSL connection.

HttpFS TLS/SSL Certificate
Trust Store File

The password for the HttpFS TLS/SSL Certificate Trust Store File. This password
is not required to access the truststore; this field can be left blank.

If the truststore password has a percent sign, it must be escaped. For example,
for a password that is pass%word, use pass%%word.

HttpFS TLS/SSL Certificate
Trust Store Password
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6. Click Save Changes.
7. Restart the HDFS service.

Connect to the HttpFS Web UI using TLS/SSL (HTTPS)

Use https://<httpfs_server_hostname>:14000/webhdfs/v1/, though most browsers should automatically
redirect you if you use http://<httpfs_server_hostname>:14000/webhdfs/v1/

Configuring TLS/SSL for Navigator Audit Server
Cloudera Navigator supports TLS/SSL encryption for network communications between the Navigator Audit Server
and clients, such as the Cloudera Manager. Configuring TLS/SSL encryption for Navigator Audit Server includes three
parts:

1. Configure a dedicated truststore in Cloudera Manager.

If you haven't already done this, see Step 4: Enable Agent Certificate Authentication on page 158 in the Cloudera
Manager TLS setup instructions.

This step is important because ClouderaManagerwon't use the JDK alternate truststore for connecting toNavigator
Audit Server. An explicit truststore needs to be set in the Cloudera Manager configuration, including the root CA
certificate signing the Navigator Audit Server server certificate. If this configuration isn't in place, you'll see a
"Server error" message when accessing the Audits tab in the Cloudera Navigator console.

Important: When configuring Navigator to use TLS, the Cloudera Manager TLS/SSL Client Trust
Store Password is required. If not provided, Navigator Audit Server isn't able to communicate
with ClouderaManager and aNullPointerException error appears in the ClouderaManager server
log.

2. Make sure the server key and certificate are on the Navigator Audit Server host.

Typically, when TLS is enabled for Cloudera Manager Service, it is likely that the server key and certificate already
exist on the specific host running the Navigator Audit Server role. If Navigator Audit Server is deployed on a
separate host and the key and certificate are not present, then a keystore and truststore need to be created using
the instructions in How To Obtain and Deploy Keys and Certificates for TLS/SSL on page 352.

3. Use Cloudera Manager to configure Navigator Audit Server TLS settings, including pointing to the server key and
certificate you identified in the previous step.

a. Log in to the Cloudera Manager Admin Console.
b. Select Clusters > Cloudera Management Service.
c. Click the Configuration tab.
d. Select Scope > Navigator Audit Server.
e. Select Category > Security.
f. Edit the following properties according to your cluster configuration.

DescriptionProperty

Encrypt network communications between clients andNavigator Audit Server
using TLS/SSL.

Enable TLS/SSL for Navigator
Audit Server

The path to the keystore file containing the server private key and certificate.
The keystore must be in JKS format.

TLS/SSL Keystore File
Location

The password for the Navigator Audit Server JKS keystore file.TLS/SSL Keystore File
Password

The password for the private key contained in the JKS keystore.TLS/SSL Keystore Key
Password
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DescriptionProperty

The path to the trust store. The trust store is used when Navigator is the
client in a TLS/SSL connection. This trust storemust contain the certificate(s)

Navigator TLS/SSL Certificate
Trust Store File

used to sign the service(s) connected to. If this parameter is not provided,
the default list of well-known certificate authorities is used instead.

The password for the Navigator TLS/SSL Certificate Trust Store File. This
password is not required to access the trust store; this field can be left blank.
This password provides optional integrity checking of the file.

Navigator TLS/SSL Certificate
Trust Store Password

g. Click Save Changes.
h. Restart the Navigator Audit Server role.

Note: After TLS/SSL is enabled, Cloudera Manager links to the Cloudera Navigator console use
HTTPS rather thanunencryptedHTTP. The trust store password is encryptedwhenpassedbetween
Cloudera Manager and Cloudera Navigator.

Configuring TLS/SSL for Navigator Metadata Server
Cloudera Navigator supports TLS/SSL encryption for network communications between the NavigatorMetadata Server
and clients, such as theweb browser used for Cloudera Navigator console. Typically, TLS/SSL is configured for the entire
cluster, so it is possible that the server key and certificate already exist on the specific host running the Navigator
Metadata Server role. The assumption in the steps below is that the cluster is already configured for TLS/SSL and the
security artifacts have already been obtained and deployed to the host running the Navigator Metadata Server role
instance.

1. Validate that the JDK on the Navigator Metadata Server host has certificates configured.

Navigator establishes trust for the TLS certificate used for network communication using the JDK on the local host.
The JDK looks for certificates in three places:

• $JAVA_HOME/jre/lib/security/jssecacerts

• $JAVA_HOME/jre/lib/security/cacerts

• Location specified byjava.net.ssl.truststore. This property can be set through theNavigatorMetadata
Server Advanced Configuration Snippet (Safety Valve) for cloudera-navigator.properties.

If the java.net.ssl.truststore location is set, the JDK ignores the default certificate locations.

If there isn't a certificate in any of these locations, review Generate TLS Certificates on page 151 and make sure
that the Navigator Metadata Server host was included in step 7.

2. Validate the location of the keystore file on the host running the Navigator Metadata Server role instance.

For example, if TLS was enabled according to the instructions Configuring TLS Encryption for Cloudera Manager
on page 151, the TLS keystore would be located in /opt/cloudera/security/pki. If the keystore isn't already
on the Navigator Metadata Server host, generate one from the instructions in Generate TLS Certificates on page
151.

3. Log in to the Cloudera Manager Admin Console.
4. Select Clusters > Cloudera Management Service.
5. Click the Configuration tab.
6. Select Scope > Navigator Metadata Server.
7. Select Category > Security.
8. Edit the following properties according to your cluster configuration.
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DescriptionProperty

Encrypt network communications between clients and Navigator Metadata
Server using TLS/SSL.

Enable TLS/SSL for Navigator
Metadata Server

The path to the keystore file containing the server private key and certificate.
The keystore must be in JKS format.

TLS/SSL Keystore File Location

The password for the Navigator Metadata Server JKS keystore file.TLS/SSLKeystore File Password

The password for the private key contained in the JKS keystore.TLS/SSL Keystore Key
Password

9. Click Save Changes.
10. Restart the Navigator Metadata Server role.

Note: After TLS/SSL is enabled, ClouderaManager links to the Cloudera Navigator console use HTTPS
rather than unencrypted HTTP. The trust store password is encryptedwhen passed between Cloudera
Manager and Cloudera Navigator.

Configuring TLS/SSL for Kafka (Navigator Event Broker)
To enable TLS/SSL encryption between Navigator Audit Server and Kafka for publishing audit events to Kafka:

1. Log in to the Cloudera Manager Admin Console.
2. Select Clusters > Kafka.
3. Click the Configuration tab.
4. Select Kafka Broker for the Scope filter.
5. Select Security for the Category filter.
6. Enter the following properties according to your cluster configuration.

DescriptionProperty

Select the checkbox to enable TLS/SSL for encrypted communication between
clients and the Kafka Broker service.

Enable TLS/SSL for Kafka
Broker

Enter the path (location on disk) to the JKS truststore. Leave this field empty to
have the list of well-known CAs checked to provide a chain of proof for the
Navigator Audit Server.

Kafka Broker TLS/SSL
Certificate Trust Store File

The truststore does not need password protection. Its contents are public
certificates already included in the default Java truststore.

Kafka Broker TLS/SSL
Certificate Trust Store
Password

7. Click Save Changes.
8. Restart the Kafka service.

Configuring Encrypted Transport for HDFS
Minimum Required Role: Full Administrator

You must enable Kerberos before configuring encrypted HDFS data transport. See Authentication on page 40 for
instructions.

To enable encryption of data transferred betweenDataNodes and clients, and amongDataNodes, perform the following
steps:
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1. Enable Hadoop security using Kerberos.
2. Select the HDFS service.
3. Click the Configuration tab.
4. Select Scope > HDFS (Service Wide).
5. Select Category > Security.
6. Configure the following properties: (You can type the property name in the Search box to locate the property.)

DescriptionProperty

Check this field to enable wire encryption.Enable Data Transfer
Encryption

Optionally configure the algorithm used to encrypt data.Data Transfer Encryption
Algorithm

Select privacy.Hadoop RPC Protection

7. Click Save Changes.
8. Restart the HDFS service.

Configuring Encrypted Transport for HBase
This topic describes how to configure encrypted HBase data transport using Cloudera Manager.

Configuring Encrypted HBase Data Transport Using Cloudera Manager

Minimum Required Role: Full Administrator

To enable encryption of data transferred between HBase masters and RegionServers and between RegionServers and
clients:

1. Enable Hadoop security using Kerberos.
2. Configure Kerberos authentication for HBase.
3. Select the HBase service.
4. Click the Configuration tab.
5. Select Scope > HBase (Service Wide).
6. Select Category > Security.
7. Search for the HBase Transport Security property and select one of the following:

DescriptionProperty

Enables simple authentication using Kerberos.authentication

Checks the integrity of data received to ensure it was not corrupted in transit.
Selecting integrity also enables authentication.

integrity

Ensures privacy by encrypting the data in transit using TLS/SSL encryption.
Selecting privacy also enables authentication and integrity.

privacy

8. Click Save Changes.
9. Restart the HBase service.
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Encrypting Data at Rest

Cloudera clusters can use a combination of data at rest encryptionmechanisms, including HDFS transparent encryption
and Cloudera Navigator Encrypt. Both of these data at rest encryption mechanisms can be augmented with key
management using Cloudera Navigator Key Trustee Server on page 249 and Cloudera Navigator Key HSM on page 267.

Before configuring encryption for data at rest, familiarize yourself with the requirements in Data at Rest Encryption
Requirements on page 189.

Data at Rest Encryption Reference Architecture
The following diagram illustrates the supported architecture for deploying Cloudera Navigator encryption for data at
rest:

To isolate Key Trustee Server from other enterprise data hub (EDH) services, you must deploy Key Trustee Server on
dedicated hosts in a separate cluster in Cloudera Manager. Deploy Key Trustee KMS on dedicated hosts in the same
cluster as the EDH services that require access to Key Trustee Server. This provides the following benefits:

• You can restart your EDH cluster without restarting Key Trustee Server, avoiding interruption to other clusters or
clients that use the same Key Trustee Server instance.

• You can manage the Key Trustee Server upgrade cycle independently of other cluster components.
• You can limit access to the Key Trustee Server hosts to authorized key administrators only, reducing the attack

surface of the system.
• Resource contention is reduced. Running Key Trustee Server and Key Trustee KMS services on dedicated hosts

prevents other cluster services from reducing available resources (such as CPU and memory) and creating
bottlenecks.

If you are using virtual machines for the Key Trustee Server or Key Trustee KMS hosts, see Navigator HSM KMS HA
Planning on page 193.
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Data at Rest Encryption Requirements
Encryption comprises several components, each with its own requirements.

Data at rest encryption protection can be applied at a number of levels within Hadoop:

• OS filesystem-level
• Network-level
• HDFS-level (protects both data at rest and in transit)

For more information on the components, concepts, and architecture for encrypting data at rest, see Encrypting Data
at Rest on page 188.

Product Compatibility Matrix

See Product Compatibility Matrix for Cloudera Navigator Encryption for the individual compatibility matrices for each
Cloudera Navigator encryption component.

Entropy Requirements

Cryptographic operations require entropy to ensure randomness.

You can check the available entropy on a Linux system by running the following command:

cat /proc/sys/kernel/random/entropy_avail

The output displays the entropy currently available. Check the entropy several times to determine the state of the
entropy pool on the system. If the entropy is consistently low (500 or less), youmust increase it by installingrng-tools
and starting the rngd service. Run the following commands on RHEL 6-compatible systems:

sudo yum install rng-tools
sudo echo 'EXTRAOPTIONS="-r /dev/urandom"' >> /etc/sysconfig/rngd
sudo service rngd start
sudo chkconfig rngd on

For RHEL 7, run the following commands:

sudo yum install rng-tools
cp /usr/lib/systemd/system/rngd.service /etc/systemd/system/
sed -i -e 's/ExecStart=\/sbin\/rngd -f/ExecStart=\/sbin\/rngd -f -r \/dev\/urandom/' 
/etc/systemd/system/rngd.service
systemctl daemon-reload
systemctl start rngd
systemctl enable rngd

Make sure that the hosts running Key Trustee Server, Key Trustee KMS, and Navigator Encrypt have sufficient entropy
to perform cryptographic operations.

Key Trustee Server Requirements

Recommended Hardware and Supported Distributions

Key Trustee Server must be installed on a dedicated server or virtual machine (VM) that is not used for any other
purpose. The backing PostgreSQL database must be installed on the same host as the Key Trustee Server, and must
not be shared with any other services. For high availability, the active and passive Key Trustee Servers must not share
physical resources. See Resource Planning for Data at Rest Encryption on page 193 for more information.

The recommended minimum hardware specifications are as follows:

• Processor: 1 GHz 64-bit quad core
• Memory: 8 GB RAM
• Storage: 20 GB on moderate- to high-performance disk drives
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For information on the supported Linux distributions, see Table 1.

Cloudera Manager Requirements

Installing and managing Key Trustee Server using Cloudera Manager requires Cloudera Manager 5.4.0 and higher. Key
Trustee Server does not require Cloudera Navigator Audit Server or Metadata Server.

umask Requirements

Key Trustee Server installation requires the default umask of 0022.

Network Requirements

For new Key Trustee Server installations (5.4.0 and higher) and migrated upgrades (see Migrate Apache Web Server
to CherryPy for more information), Key Trustee Server requires the following TCP ports to be opened for inbound
traffic:

• 11371

Clients connect to this port over HTTPS.

• 11381 (PostgreSQL)

The passive Key Trustee Server connects to this port for database replication.

For upgrades that are not migrated to the CherryPy web server, the pre-upgrade port settings are preserved:

• 80

Clients connect to this port over HTTP to obtain the Key Trustee Server public key.

• 443 (HTTPS)

Clients connect to this port over HTTPS.

• 5432 (PostgreSQL)

The passive Key Trustee Server connects to this port for database replication.

TLS Certificate Requirements

To ensure secure network traffic, Cloudera recommends obtaining Transport Layer Security (TLS) certificates specific
to the hostname of your Key Trustee Server. To obtain the certificate, generate a Certificate Signing Request (CSR) for
the fully qualified domain name (FQDN) of the Key Trustee Server host. The CSRmust be signed by a trusted Certificate
Authority (CA). After the certificate has been verified and signed by the CA, the Key Trustee Server TLS configuration
requires:

• The CA-signed certificate
• The private key used to generate the original CSR
• The intermediate certificate/chain file (provided by the CA)

Cloudera recommends not using self-signed certificates. If you use self-signed certificates, you must use the
--skip-ssl-checkparameterwhen registeringNavigator Encryptwith the Key Trustee Server. This skips TLS hostname
validation, which safeguards against certain network-level attacks. For more information regarding insecure mode,
see Table 31: Registration Options on page 278.

Key Trustee KMS Requirements

Recommended Hardware and Supported Distributions

The recommended minimum hardware specifications are as follows:

• Processor: 2 GHz 64-bit quad core
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• Memory: 16 GB RAM
• Storage: 40 GB on moderate- to high-performance disk drives

For information on the supported Linux distributions, see Table 2.

The Key Trustee KMS workload is CPU-intensive. Cloudera recommends using machines with capabilities equivalent
to your NameNode hosts, with Intel CPUs that support AES-NI for optimum performance. Also, Cloudera strongly
recommends that you enable TLS for both the HDFS and the Key Trustee KMS services to prevent the passage of plain
text key material between the KMS and HDFS data nodes.

Key HSM Requirements

The following are prerequisites for installing Navigator Key HSM:

• Oracle Java Runtime Environment (JRE) 7 or higher with Java Cryptography Extension (JCE) Unlimited Strength
Jurisdiction Policy Files:

– JCE for Java SE 7
– JCE for Java SE 8

• A supported Linux distribution. See Table 4.
• A supported HSM device:

– SafeNet Luna

– HSM firmware version: 6.2.1
– HSM software version: 5.2.3-1

– SafeNet KeySecure

– HSM firmware version: 6.2.1
– HSM software version: 8.0.1

– Thales nSolo, nConnect

– HSM firmware version: 11.4.0
– Client software version: 2.28.9cam136

• Key Trustee Server 3.8 or higher

Important: You must install Key HSM on the same host as Key Trustee Server.

Root access is required to install Navigator Key HSM.

Navigator HSM KMS Requirements

Recommended Hardware and Supported Distributions

The recommended minimum hardware specifications are as follows:

• Processor: 2 GHz 64-bit quad core
• Memory: 16 GB RAM
• Storage: 40 GB on moderate- to high-performance disk drives

The supported Linux distribution, which is listed in the Table 3.

Supported HSM devices:

• SafeNet Luna

– HSM software version: 6.2.2-5
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– HSM firmware version: 6.10.9
– Client: 6.2.2

• Thales nSolo, nConnect

– Server version: 3.67.11cam4
– Firmware: 2.65.2
– Security World Version: 12.30

Navigator Encrypt Requirements

Operating System Requirements

• For supported Linux distributions, see Table 5.

Note: Cloudera Enterprise,with the exception of ClouderaNavigator Encrypt, is supported on platforms
with Security-Enhanced Linux (SELinux) enabled and in enforcingmode. Cloudera is not responsible
for SELinux policy development, support, or enforcement. If you experience issues running Cloudera
software with SELinux enabled, contact your OS provider for assistance.

If you are using SELinux in enforcingmode, Cloudera Support can request that you disable SELinux
or change themode topermissive to rule out SELinux as a factorwhen investigating reported issues.

Supported command-line interpreters:

• sh (Bourne)
• bash (Bash)
• dash (Debian)

Note: Navigator Encrypt does not support installation or use in chroot environments.

Network Requirements

For new Navigator Key Trustee Server (5.4.0 and higher) installations, Navigator Encrypt initiates TCP traffic over port
11371 (HTTPS) to the Key Trustee Server.

For upgrades and Key Trustee Server versions lower than 5.4.0, Navigator Encrypt initiates TCP traffic over ports 80
(HTTP) and 443 (HTTPS) to the Navigator Key Trustee Server.

Internet Access

Youmust have an active connection to the Internet to downloadmany package dependencies, unless you have internal
repositories or mirrors containing the dependent packages.

Maintenance Window

Data is not accessible during the encryption process. Plan for system downtime during installation and configuration.

Administrative Access

To enforce a high level of security, all Navigator Encrypt commands require administrative (root) access (including
installation and configuration). If you do not have administrative privileges on your server, contact your system
administrator before proceeding.
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Package Dependencies

Navigator Encrypt requires these packages, which are resolved by your distribution packagemanager during installation:

• dkms

• keyutils

• ecryptfs-utils

• libkeytrustee

• navencrypt-kernel-module

• openssl

• lsof

• gcc

• cryptsetup

These packages may have other dependencies that are also resolved by your package manager. Installation works with
gcc, gcc3, and gcc4.

Resource Planning for Data at Rest Encryption
For production environments, you must configure high availability for:

• Key Trustee Server
• Key Trustee KMS
• Navigator HSM KMS

Key Trustee Server and Key Trustee KMS HA Planning

For high availability, you must provision two dedicated Key Trustee Server hosts and at least two dedicated Key Trustee
KMS hosts, for a minimum of four separate hosts. Do not run multiple Key Trustee Server or Key Trustee KMS services
on the same physical host, and do not run these services on hosts with other cluster services. Doing so causes resource
contentionwith other important cluster services and defeats the purpose of high availability. See Data at Rest Encryption
Reference Architecture on page 188 for more information.

The Key Trustee KMS workload is CPU intensive. Cloudera recommends using machines with capabilities equivalent
to your NameNode hosts, with Intel CPUs that support AES-NI for optimum performance.

Make sure that each host is secured and audited. Only authorized key administrators should have access to them. Red
Hat provides security guides for RHEL:

• RHEL 6 Security Guide
• RHEL 7 Security Guide

For hardware sizing information, see Data at Rest Encryption Requirements on page 189 for recommendations for each
Cloudera Navigator encryption component.

For Cloudera Manager deployments, deploy Key Trustee Server in its own dedicated cluster. Deploy Key Trustee KMS
in each cluster that uses Key Trustee Server. See Data at Rest Encryption Reference Architecture on page 188 for more
information.

For information about enabling Key Trustee Server high availability, refer to Configuring Key Trustee Server High
Availability Using Cloudera Manager.

For information about enabling Key Trustee KMS high availability, refer to Enabling Key Trustee KMS High Availability.

Navigator HSM KMS HA Planning

For Navigator HSM KMS high availability, you need to provision two dedicated HSM KMS hosts only.

Make sure that each host is secured and audited. Only authorized key administrators should have access to them. Red
Hat provides security guides for RHEL:
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• RHEL 6 Security Guide
• RHEL 7 Security Guide

For hardware sizing information, see Data at Rest Encryption Requirements on page 189 for recommendations for each
Cloudera Navigator encryption component.

For information about enabling HSM KMS high availability, refer to Enabling Navigator HSM KMS High Availability.

Virtual Machine Considerations

If you are using virtual machines, make sure that the resources (such as virtual disks, CPU, and memory) for each Key
Trustee Server and Key Trustee KMS host are allocated to separate physical hosts. Hosting multiple services on the
same physical host defeats the purpose of high availability, because a single machine failure can take down multiple
services.

To maintain the security of the cryptographic keys, make sure that all copies of the virtual disk (including any back-end
storage arrays, backups, snapshots, and so on) are secured and audited with the same standards you apply to the live
data.

HDFS Transparent Encryption
Data encryption is mandatory for many government, financial, and regulatory entities, worldwide, to meet privacy and
other security requirements. For example, the card payment industry has adopted the Payment Card Industry Data
Security Standard (PCI DSS) for information security. Other examples include requirements imposed by United States
government's Federal Information SecurityManagement Act (FISMA) andHealth Insurance Portability andAccountability
Act (HIPAA). Encrypting data stored in HDFS can help your organization comply with such regulations.

Introduced in CDH 5.3, transparent encryption for HDFS implements transparent, end-to-end encryption of data read
from and written to HDFS blocks across your cluster. Transparentmeans that end-users are unaware of the
encryption/decryption processes, and end-to-endmeans that data is encrypted at-rest and in-transit (see the Cloudera
Engineering Blog post for complete details).

Note: HDFS Transparent Encryption is not the same as TLS encryption. Clusters configured TLS/SSL
encrypt network communications throughout the cluster. Depending on the type of services your
cluster supports, you may want to configure both HDFS Transparent Encryption and TLS/SSL for the
cluster. See Configuring Encryption for more information.

HDFS encryption has these capabilities:

• Only HDFS clients can encrypt or decrypt data.
• Key management is external to HDFS. HDFS cannot access unencrypted data or encryption keys. Administration

of HDFS and administration of keys are separate duties encompassed by distinct user roles (HDFS administrator,
Key Administrator), thus ensuring that no single user has unrestricted access to both data and keys.

• The operating system and HDFS interact using encrypted HDFS data only, mitigating threats at the OS- and
file-system-level.

• HDFS uses the Advanced Encryption Standard-Counter mode (AES-CTR) encryption algorithm. AES-CTR supports
a 128-bit encryption key (default), or can support a 256-bit encryption key when Java Cryptography Extension
(JCE) unlimited strength JCE is installed.

• HDFS encryption has been designed to take advantage of the AES-NI instruction set, a hardware-based encryption
acceleration technique, so your cluster performance should not adversely affected by configuring encryption.
(The AES-NI instruction set can be an order of magnitude faster than software implementations of AES.) However,
you may need to update cryptography libraries on your HDFS andMapReduce client hosts to use the acceleration
mechanism. See Optimizing Performance for HDFS Transparent Encryption on page 198 for details.
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Key Concepts and Architecture

Keystores and the Hadoop Key Management Server

Integrating HDFS with an external, enterprise-level keystore is the first step to deploying transparent encryption. This
is because separation of duties between a key administrator and an HDFS administrator is a very important aspect of
this feature. However,most keystores are not designed for the encrypt/decrypt request rates seen byHadoopworkloads.
This led to the development of a new service, called the Hadoop Key Management Server (KMS), which serves as a
proxy between HDFS clients and the backing keystore. Both the keystore and Hadoop KMS must use Hadoop’s
KeyProvider API to interact with each other and with HDFS clients.

While HDFS encryption can be used with a local Java KeyStore for key management, Cloudera does not recommend
this for production environments where amore robust and secure keymanagement solution should be used. Cloudera
offers the following two options for enterprise-grade key management:

• Cloudera Navigator Key Trustee Server is a key store for managing encryption keys. To integrate with the Navigator
Key Trustee Server, Cloudera provides a custom KMS service, Key Trustee KMS.

• Hardware security modules (HSM) are third-party appliances that provide the highest level of security for keys.
To integrate with a list of supported HSMs, Cloudera provides a custom KMS service, Navigator HSM KMS (see
Installing Navigator HSM KMS Backed by Thales HSM and Installing Navigator HSM KMS Backed by Luna HSM).

The diagram below illustrates how HDFS clients and the NameNode interact with an enterprise keystore through the
Hadoop Key Management Server. The keystore can be either the Cloudera Navigator Key Trustee Server or a support
HSM.

To get started with deploying the KMS and a keystore, see Enabling HDFS Encryption Using the Wizard on page 199.

For information on configuring and securing the KMS, see Configuring the KeyManagement Server (KMS) on page 218
and Securing the Key Management Server (KMS) on page 220.

KMS Solutions

This section describes the various KMS solutions available, and identifies criteria often used for selecting each.

Key Trustee KMS with Key Trustee Server

Choose KT KMS with Key Trustee Server if:

• Enterprise-grade key management is required
• Encryption zone key protection by an HSM is not required

Key Trustee KMS with Key Trustee Server and Key HSM

Choose KT KMS with Key Trustee Server and Key HSM if:

• Enterprise-grade key management is required
• Encryption zone key protection by an HSM (as root of trust) is required
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• Performance for encryption zone key operations is critical

HSM KMS

Choose HSM KMS if:

• Enterprise-grade key management is required
• Encryption zone keys must be stored only on the HSM
• Performance for encryption zone key operations is not critical

Encryption Zones and Keys

HDFS transparent encryption introduces the concept of an encryption zone (EZ), which is a directory in HDFS whose
contents will be automatically encrypted on write and decrypted on read. Encryption zones always start off as empty
directories, and tools such as distcp with the -skipcrccheck -update flags can be used to add data to a zone.
(These flags are required because encryption zones are being used.) Every file and subdirectory copied to an encryption
zone will be encrypted.

Note: An encryption zone cannot be created on top of an existing directory.

Each encryption zone is associated with a key (EZ Key) specified by the key administrator when the zone is created. EZ
keys are stored on a backing keystore external to HDFS. Each file within an encryption zone has its own encryption
key, called the Data Encryption Key (DEK). These DEKs are encrypted with their respective encryption zone's EZ key,
to form an Encrypted Data Encryption Key (EDEK).

The following diagram illustrates how encryption zone keys (EZ keys), data encryption keys (DEKs), and encrypted data
encryption keys (EDEKs) are used to encrypt and decrypt files.

EDEKs are stored persistently on the NameNode as part of each file's metadata, using HDFS extended attributes
(implemented as of Cloudera CDH 5.2). EDEKs can be safely stored and handled by the NameNode because the hdfs
user does not have access to the EDEK's encryption keys (EZ keys). Even if HDFS is compromised (for example, by
gaining unauthorized access to a superuser account), a malicious user only gains access to the encrypted text and
EDEKs. EZ keys are controlled by a separate set of permissions on the KMS and the keystore.

An EZ key can have multiple key versions, where each key version has its own distinct key material (that is, the portion
of the key used during encryption and decryption). Key rotation is achieved by bumping up the version for an EZ key.
Per-file key rotation is then achieved by re-encrypting the file's DEK with the new version of the EZ key to create new
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EDEKs. HDFS clients can identify an encryption key either by its key name, which returns the latest version of the key,
or by a specific key version.

For more information on creating and managing encryption zones, see Managing Encryption Keys and Zones on page
209.

Accessing Files Within an Encryption Zone

To encrypt a new file, the HDFS client requests a new EDEK from the NameNode. The NameNode then asks the KMS
to decrypt it with the encryption zone's EZ key. This decryption results in a DEK, which is used to encrypt the file.

The diagram above depicts the process of writing a new encrypted file. Note that the EDEK cache on the NameNode
is populated in the background. Since it is the responsibility of KMS to create EDEKs, using a cache avoids having to
call the KMS for each create request. The client can request new EDEKs directly from the NameNode.

To decrypt a file, the HDFS client provides the NameNode with the file's EDEK and the version number of the EZ key
that was used to generate the EDEK. The NameNode requests the KMS to decrypt the file’s EDEK with the encryption
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zone's EZ key, which involves checking that the requesting client has permission to access that particular version of
the EZ key. Assuming decryption of the EDEK is successful, the client then uses this DEK to decrypt the file.

Encryption and decryption of EDEKs takes place entirely on the KMS. More importantly, the client requesting creation
or decryption of an EDEK never handles the EZ key. Only the KMS can use EZ keys to create and decrypt EDEKs as
requested. It is important to note that the KMS does not store any keys, other than temporarily in its cache. It is up to
the enterprise keystore to be the authoritative storage for keys, and to ensure that keys are never lost, as a lost key
is equivalent to introducing a security hole. For production use, Cloudera recommends you deploy two or more
redundant enterprise key stores.

Optimizing Performance for HDFS Transparent Encryption

Warning: To ensure that HDFS encryption functions as expected, the steps described in this section
aremandatory for production use.

CDH implements theAdvanced Encryption StandardNew Instructions (AES-NI), which provide substantial performance
improvements. To get these improvements, you need a recent version of libcrypto.so on HDFS and MapReduce
client hosts -- that is, any host fromwhich you originate HDFS orMapReduce requests. Many OS versions have an older
version of the library that does not support AES-NI. The instructions that follow tell you what you need to do for each
OS version that CDH supports.

RHEL/CentOS 6.5 or later

The installed version of libcrypto.so supports AES-NI, but you need to install the openssl-devel package on all
clients:

sudo yum install openssl-devel

RHEL/CentOS 6.4 or earlier 6.x versions, or SLES 11

Download and extract a newer version of libcrypto.so from a CentOS 6.5 repository and install it on all clients in
/var/lib/hadoop/extra/native/:

1. Download the latest version of the openssl package. For example:

wget http://mirror.centos.org/centos/6/os/x86_64/Packages/openssl-1.0.1e-30.el6.x86_64.rpm

The libcrypto.so file in this package can be used on SLES 11 as well as RHEL/CentOS.
2. Decompress the files in the package, but do not install it:

rpm2cpio openssl-1.0.1e-30.el6.x86_64.rpm | cpio -idmv

3. If you are using parcels, create the /var/lib/hadoop/extra/native/ directory:

sudo mkdir -p /var/lib/hadoop/extra/native

4. Copy the shared library into /var/lib/hadoop/extra/native/. Name the target file libcrypto.so, with
no suffix at the end, exactly as in the command that follows.

sudo cp ./usr/lib64/libcrypto.so.1.0.1e /var/lib/hadoop/extra/native/libcrypto.so

Debian Wheezy

The installed version of libcrypto.so supports AES-NI, but you need to install the libssl-devel package on all
clients:

sudo apt-get install libssl-dev

Ubuntu Precise and Ubuntu Trusty
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Install the libssl-devel package on all clients:

sudo apt-get install libssl-dev

Testing if encryption optimization works

To verify that a client host is ready to use the AES-NI instruction set optimization for HDFS encryption at rest, use the
following command:

hadoop checknative

You should see a response such as the following:

14/12/12 13:48:39 INFO bzip2.Bzip2Factory: Successfully loaded & initialized native-bzip2
library system-native14/12/12 13:48:39 INFO zlib.ZlibFactory: Successfully loaded & 
initialized native-zlib library
Native library checking:
hadoop:  true /usr/lib/hadoop/lib/native/libhadoop.so.1.0.0
zlib:    true /lib64/libz.so.1
snappy:  true /usr/lib64/libsnappy.so.1
lz4:     true revision:99
bzip2:   true /lib64/libbz2.so.1
openssl: true /usr/lib64/libcrypto.so

If you see true in the openssl row, Hadoop has detected the right version of libcrypto.so and optimization will
work. If you see false in this row, you do not have the right version.

Enabling HDFS Encryption Using the Wizard

To accommodate the security best practice of separation of duties, enabling HDFS encryption using the wizard requires
different Cloudera Manager user roles for different steps.

Launch the Set up HDFS Data At Rest Encryption wizard in one of the following ways:

• Cluster > Set up HDFS Data At Rest Encryption

Minimum Required Role: Key Administrator or Cluster Administrator (also provided by Full Administrator)

• Administration > Security > Set up HDFS Data At Rest Encryption

Minimum Required Role: Key Administrator or Cluster Administrator (also provided by Full Administrator)

• HDFS service > Actions > Set up HDFS Data At Rest Encryption

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

On the first page of the wizard, select the root of trust for encryption keys:

• Cloudera Navigator Key Trustee Server
• Navigator HSM KMS backed by Thales HSM
• Navigator HSM KMS backed by Luna HSM
• A file-based password-protected Java KeyStore

Cloudera strongly recommends using Cloudera Navigator Key Trustee Server as the root of trust for production
environments. The file-based Java KeyStore root of trust is insufficient to provide the security, scalability, and
manageability required by most production systems. More specifically, the Java KeyStore KMS does not provide:

• Scalability, so you are limited to only one KMS, which can result in bottlenecks
• High Availability (HA)
• Recoverability, so if you lose the node where the Java KeyStore is stored, then you can lose access to all the

encrypted data

Ultimately, the Java KeyStore does not satisfy the stringent security requirements of most organizations for handling
master encryption keys.
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Choosing a root of trust displays a list of steps required to enable HDFS encryption using that root of trust. Each step
can be completed independently. The Status column indicates whether the step has been completed, and the Notes
column provides additional context for the step. If your Cloudera Manager user account does not have sufficient
privileges to complete a step, the Notes column indicates the required privileges.

Available steps contain links to wizards or documentation required to complete the step. If a step is unavailable due
to insufficient privileges or a prerequisite step being incomplete, no links are present and the Notes column indicates
the reason the step is unavailable.

Continue to the section for your selected root of trust for further instructions:

Enabling HDFS Encryption Using Navigator Key Trustee Server

Enabling HDFS encryption using Key Trustee Server as the key store involves multiple components. For an overview of
the components involved in encrypting data at rest, see Cloudera Navigator Data Encryption Overview. For guidelines
on deploying theNavigator Key Trustee Server in production environments, Resource Planning for Data at Rest Encryption
on page 193.

Before continuing, make sure the Cloudera Manager server host has access to the internal repository hosting the Key
Trustee Server software. See Setting Up an Internal Repository for more information.

After selecting Cloudera Navigator Key Trustee Server as the root of trust, the following steps are displayed:

1. Enable Kerberos

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

For more information about enabling Kerberos, see Enabling Kerberos Authentication for CDH on page 51.

2. Enable TLS/SSL

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

For more information about enabling TLS, see Configuring TLS/SSL Encryption for CDH Services on page 160.

3. Add a dedicated cluster for the Key Trustee Server

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

If you haven't already done so, youmust create an internal repository to install Cloudera Navigator before you can set
up and useNavigator Key Trustee Server. For instructions on creating internal repositories (including ClouderaManager,
CDH, and Cloudera Navigator encryption components), see Configuring a Local Parcel Repository and Configuring a
Local Package Repository.

This step creates a new cluster in Cloudera Manager for the Key Trustee Server hosts to isolate them from other
enterprise data hub (EDH) services for increased security and durability. For more information, see Data at Rest
Encryption Reference Architecture on page 188.

To complete this step:

1. Click Add a dedicated cluster for the Key Trustee Server.
2. Leave Enable High Availability checked to add two hosts to the cluster. For production environments, you must

enable high availability for Key Trustee Server. Failure to enable high availability can result in complete data loss
in the case of catastrophic failure of a standalone Key Trustee Server. Click Continue.

3. Search for new hosts to add to the cluster, or select the Currently Managed Hosts tab to add existing hosts to the
cluster. After selecting the hosts, click Continue.

4. Select the KEYTRUSTEE_SERVER parcel to install Key Trustee Server using parcels, or select None if you want to
use packages. If you do not see a parcel available, clickMore Options and add the repository URL to the Remote
Parcel Repository URLs list. After selecting a parcel or None, click Continue.

If you selectedNone, click Continue again, and skip to 4. Install Key Trustee Server binary using packages or parcels
on page 201.
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5. After the KEYTRUSTEE_SERVER parcel is successfully downloaded, distributed, unpacked, and activated, click
Continue.

6. Click Continue to complete this step and return to the main page of the wizard.

4. Install Key Trustee Server binary using packages or parcels

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

Note: If you selected None on the parcel selection page in step 3. Add a dedicated cluster for the Key
Trustee Server on page 200, the step title is changed to Install Parcel for Key Trustee Server. If you
are using packages, skip this step and see Installing Key Trustee Server Using the Command Line for
package-based installation instructions. After installing Key Trustee Server using packages, continue
to 5. Install Parcel for Key Trustee KMS on page 201.

If you haven't already done so, youmust create an internal repository to install Cloudera Navigator before you can set
up and useNavigator Key Trustee Server. For instructions on creating internal repositories (including ClouderaManager,
CDH, and Cloudera Navigator encryption components), see Configuring a Local Parcel Repository and Configuring a
Local Package Repository.

This step is completed automatically during 3. Add a dedicated cluster for the Key Trustee Server on page 200 if you
are using parcels. If the step is incomplete for any reason (such as the wizard being interrupted or a failure installing
the parcel), complete it manually:

1. Click Install Key Trustee Server binary using packages or parcels.
2. Select the KEYTRUSTEE_SERVER parcel to install Key Trustee Server, or select None if you need to install Key

Trustee Server manually using packages. If you do not see a parcel available, clickMore Options and add the
repository URL to the Remote Parcel Repository URLs list. After selecting a parcel, click Continue.

3. After the KEYTRUSTEE_SERVER parcel is successfully downloaded, distributed, unpacked, and activated, click Finish
to complete this step and return to the main page of the wizard.

5. Install Parcel for Key Trustee KMS

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

If you haven't already done so, youmust create an internal repository to install Cloudera Navigator before you can set
up and useNavigator Key Trustee Server. For instructions on creating internal repositories (including ClouderaManager,
CDH, and Cloudera Navigator encryption components), see Configuring a Local Parcel Repository and Configuring a
Local Package Repository.

This step installs the Key Trustee KMS parcel. If you are using packages, skip this step and see Installing Key Trustee
KMS Using Packages for instructions. After installing Key Trustee KMS using packages, continue to 6. Add a Key Trustee
Server Service on page 201.

To complete this step for parcel-based installations:

1. Click Install Parcel for Key Trustee KMS.
2. Select the KEYTRUSTEE parcel to install Key Trustee KMS. If you do not see a parcel available, clickMore Options

and add the repository URL to the Remote Parcel Repository URLs list. After selecting a parcel, click Continue.
3. After the KEYTRUSTEE parcel is successfully downloaded, distributed, unpacked, and activated, click Finish to

complete this step and return to the main page of the wizard.

6. Add a Key Trustee Server Service

Minimum Required Role: Key Administrator (also provided by Full Administrator)

This step adds the Key Trustee Server service to Cloudera Manager. To complete this step:

1. Click Add a Key Trustee Server Service.
2. Click Continue.
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3. On the Customize Role Assignments for Key Trustee Server page, select the hosts for the Active Key Trustee
Server and Passive Key Trustee Server roles. Make sure that the selected hosts are not used for other services
(see Resource Planning for Data at Rest Encryption on page 193 for more information), and click Continue.

4. The Entropy Considerations page provides commands to install the rng-tools package to increase available
entropy for cryptographic operations. For more information, see Entropy Requirements on page 189. After
completing these commands, click Continue.

5. The Synchronize Active and Passive Key Trustee Server Private Keys page provides instructions for generating
and copying the Active Key Trustee Server private key to the Passive Key Trustee Server. Cloudera recommends
following security best practices and transferring the private key using offline media, such as a removable USB
drive. For convenience (for example, in a development or testing environment where maximum security is not
required), you can copy the private key over the network using the provided rsync command.

After you have synchronized the private keys, run the ktadmin init command on the Passive Key Trustee Server
as described in the wizard. After the initialization is complete, check the box to indicate you have synchronized
the keys and click Continue in the wizard.

6. The Setup TLS for Key Trustee Server page provides instructions on replacing the auto-generated self-signed
certificate with a production certificate from a trusted Certificate Authority (CA). For more information, see
Managing Key Trustee Server Certificates on page 264. Click Continue to view and modify the default certificate
settings.

7. On the Review Changes page, you can view and modify the following settings:

• Database Storage Directory (db_root)

Default value: /var/lib/keytrustee/db

The directory on the local filesystem where the Key Trustee Server database is stored. Modify this value to
store the database in a different directory.

• Active Key Trustee Server TLS/SSL Server Private Key File (PEM Format) (ssl.privatekey.location)

Default value: /var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee-pk.pem

The path to the Active Key Trustee Server TLS certificate private key. Accept the default setting to use the
auto-generated private key. If you have a CA-signed certificate, change this path to the CA-signed certificate
private key file. This file must be in PEM format.

• Active Key Trustee Server TLS/SSL Server Certificate File (PEM Format) (ssl.cert.location)

Default value: /var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee.pem

The path to the Active Key Trustee Server TLS certificate. Accept the default setting to use the auto-generated
self-signed certificate. If you have a CA-signed certificate, change this to the path to the CA-signed certificate.
This file must be in PEM format.

• Active Key Trustee Server TLS/SSL Server CA Certificate (PEM Format) (ssl.cacert.location)

Default value: (none)

The path to the file containing the CA certificate and any intermediate certificates (if any intermediate
certificates exist, then they are required here) used to sign the Active Key Trustee Server certificate. If you
have a CA-signed certificate, set this value to the path to the CA certificate or certificate chain file. This file
must be in PEM format.

• Active Key Trustee Server TLS/SSL Private Key Password (ssl.privatekey.password)

Default value: (none)

The password for the Active Key Trustee Server private key file. Leave this blank if the file is not
password-protected.

• Passive Key Trustee Server TLS/SSL Server Private Key File (PEM Format) (ssl.privatekey.location)

Default value: /var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee-pk.pem
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The path to the Passive Key Trustee Server TLS certificate private key. Accept the default setting to use the
auto-generated private key. If you have a CA-signed certificate, change this path to the CA-signed certificate
private key file. This file must be in PEM format.

• Passive Key Trustee Server TLS/SSL Server Certificate File (PEM Format) (ssl.cert.location)

Default value: /var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee.pem

The path to the Passive Key Trustee Server TLS certificate. Accept the default setting to use the auto-generated
self-signed certificate. If you have a CA-signed certificate, change this to the path to the CA-signed certificate.
This file must be in PEM format.

• Passive Key Trustee Server TLS/SSL Server CA Certificate (PEM Format) (ssl.cacert.location)

Default value: (none)

The path to the file containing the CA certificate and any intermediate certificates (if any intermediate
certificates exist, then they are required here) used to sign the Passive Key Trustee Server certificate. If you
have a CA-signed certificate, set this value to the path to the CA certificate or certificate chain file. This file
must be in PEM format.

• Passive Key Trustee Server TLS/SSL Private Key Password (ssl.privatekey.password)

Default value: (none)

The password for the Passive Key Trustee Server private key file. Leave this blank if the file is not
password-protected.

After reviewing the settings and making any changes, click Continue.

8. After all commands complete successfully, click Continue. If the Generate Key Trustee Server Keyring appears
stuck, make sure that the Key Trustee Server host has enough entropy. See Entropy Requirements on page 189
for more information.

9. Click Finish to complete this step and return to the main page of the wizard.

For parcel-based Key Trustee Server releases 5.8 and higher, Cloudera Manager automatically backs up Key Trustee
Server (using the ktbackup.sh script) after adding the Key Trustee Server service. It also schedules automatic backups
using cron. For package-based installations, you must manually back up Key Trustee Server and configure a cron job.

Cloudera Manager configures cron to run the backup script hourly. The latest 10 backups are retained in
/var/lib/keytrustee in cleartext. For information about using the backup script and configuring the cron job
(including how to encrypt backups), see Backing Up Key Trustee Server and Key Trustee KMS Using the ktbackup.sh
Script on page 250.

7. Add a Key Trustee KMS Service

Minimum Required Role: Key Administrator (also provided by Full Administrator)

This step adds a Key Trustee KMS service to the cluster. The Key Trustee KMS service is required to enable HDFS
encryption to use Key Trustee Server for cryptographic key management. Key Trustee KMS high availability uses
ZooKeeper to automatically configure load balancing. If you do not have a ZooKeeper service in your cluster, add one
using the instructions in Adding a Service.

Note: Before performing this step, you must have already added hosts to the environment for KMS.
For details, see Adding a Host to the Cluster.

To complete this step:

1. Click Add a Key Trustee KMS Service.
2. Select an existing Key Trustee Server pair or specify an external Key Trustee Server pair. If you have an existing

Key Trustee Server pair outside of Cloudera Manager control, select the External Key Trustee Server option and
specify the fully-qualified domain names (FQDNs) of the Key Trustee Server pair. Click Continue.
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3. Select cluster hosts for the Key Trustee KMS service. For production environments, select at least two hosts for
high availability. If you proceed with only one host, you can enable high availability later. See Enabling Key Trustee
KMS High Availability for more information.

Make sure that the selected hosts are not used for other services (see Resource Planning for Data at Rest Encryption
on page 193 for more information), and click Continue.

4. The Entropy Considerations page provides commands to install the rng-tools package to increase available
entropy for cryptographic operations. For more information, see Entropy Requirements on page 189. After
completing these commands, click Continue.

5. The Setup Organization and Auth Secret page generates the necessary commands to create an organization in
Key Trustee Server. An organization is required to be able to register the Key Trustee KMS with Key Trustee Server.
See Managing Key Trustee Server Organizations on page 261 for more information.

Enter an organization name and click Generate Instruction. Run the displayed commands to generate an
organization and obtain the auth_secret value for the organization. Enter the secret in the auth_secret field
and click Continue.

6. The Setup Access Control List (ACL) page allows you to generate ACLs for the Key Trustee KMS or to provide your
own ACLs. To generate the recommended ACLs, enter the username and group responsible for managing
cryptographic keys and click Generate ACLs. To specify your own ACLs, select the Use Your Own kms-acls.xml
File option and enter the ACLs. For more information on the KMS Access Control List, see Configuring KMS Access
Control Lists (ACLs) on page 221.

After generating or specifying the ACL, click Continue.

7. The Setup TLS for Key Trustee KMS page provides high-level instructions for configuring TLS communication
between the Key Trustee KMS and the Key Trustee Server, as well as between the EDH cluster and the Key Trustee
KMS. See Configuring TLS/SSL for the KMS on page 221 for more information.

Click Continue.

8. The Review Changes page lists all of the settings configured in this step. Click the icon next to any setting for
information about that setting. Review the settings and click Continue.

9. After the First Run commands have successfully completed, click Continue.
10. The Synchronize Private Keys and HDFS Dependency page provides instructions for copying the private key from

one Key Management Server Proxy role to all other roles.

Cloudera recommends following security best practices and transferring the private key using offline media, such
as a removable USB drive. For convenience (for example, in a development or testing environmentwheremaximum
security is not required), you can copy the private key over the network using the provided rsync command.

After you have synchronized the private keys, check the box to indicate you have done so and click Continue.

11. After the Key Trustee KMS service starts, click Finish to complete this step and return to the main page of the
wizard.

For parcel-based Key Trustee KMS releases 5.8 and higher, Cloudera Manager automatically backs up Key Trustee KMS
(using the ktbackup.sh script) after adding the Key Trustee KMS service. It does not schedule automatic backups
using cron. For package-based installations, you must manually back up Key Trustee Server and configure a cron job.

The backup is stored in /var/lib/kms-keytrustee in cleartext. Formore information about using the backup script
and configuring the cron job (including how to encrypt backups), see Backing Up Key Trustee Server and Key Trustee
KMS Using the ktbackup.sh Script on page 250.

8. Restart stale services and redeploy client configuration

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

This step restarts all services which were modified while enabling HDFS encryption. To complete this step:

1. Click Restart stale services and redeploy client configuration.
2. Click Restart Stale Services.
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3. Ensure that Re-deploy client configuration is checked, and click Restart Now.
4. After all commands have completed, click Finish.

9. Validate Data Encryption

Minimum Required Role: Key Administrator or Cluster Administrator (also provided by Full Administrator)

This step launches a tutorial with instructions on creating an encryption zone and putting data into it to verify that
HDFS encryption is enabled and working.

Enabling HDFS Encryption Using Navigator HSM KMS Backed by Thales HSM

1. Enable Kerberos

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

For more information about enabling Kerberos, see Enabling Kerberos Authentication for CDH on page 51.

2. Enable TLS/SSL

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

For more information about enabling TLS, see Configuring TLS Encryption for Cloudera Manager on page 151.

3. Install the Thales HSM Client

Before installing the Navigator HSM KMS backed by Thales HSM, youmust install the Thales HSM client on the host.
Attempts to install the HSM KMS service before installing the Thales HSM client will fail.

For details about how to install the Thales HSM client, refer to the Thales HSM product documentation.

4. Install Key Trustee KMS binary using parcels

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

This step completes automatically when you download the parcel. If the step is incomplete for any reason (such as the
wizard being interrupted or a failure installing the parcel), complete it manually:

1. Click Install Key Trustee KMS binary using parcels.
2. Select the KEYTRUSTEE parcel to install Key Trustee KMS, or select None if you need to install Key Trustee KMS

manually using packages. If you do not see a parcel available, clickMore Options and add the repository URL to
the Remote Parcel Repository URLs list. After selecting a parcel, click Continue.

3. After the KEYTRUSTEE parcel is successfully downloaded, distributed, unpacked, and activated, click Finish to
complete this step and return to the main page of the wizard.

5. Add the HSM KMS backed by Thales Service

1. Click Add Navigator HSM KMS Services backed by Thales HSM.
2. In the Thales HSM KMS Proxy field, select the hosts to which you want to assign a new or existing role. Click OK,

and then click Continue.
3. To set up the ACL for the cluster, specify a comma-separated list of users and groups, and then click Generate

ACLs. Click Continue.
4. Click Continue.
5. Review your selections and specify the:

• Thales HSM Password

Contact your HSM administrator for the Thales HSM password.

• Keystore Password
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Important: Specify a unique password to protect the KMS metadata. Safely store this
password for future use. In the event that the service is deleted, youmust provide this
password to re-add the service with the same metastore.

Note: It is a good practice to review the Thales HSM Server port at this point, because it could
have changed during configuration.

Then click Continue.
6. Upon notification that you have successfully added the Thales KMS Service, click Continue and Finish.

6. Restart stale services and redeploy client configuration

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

This step restarts all services that were modified while enabling HDFS encryption. To complete this step:

1. Click Restart stale services and redeploy client configuration.
2. Click Restart Stale Services.
3. Ensure that Re-deploy client configuration is checked, and click Restart Now.
4. After all commands have completed, click Finish.

7. Validate Data Encryption

Minimum Required Role: Key Administrator or Cluster Administrator (also provided by Full Administrator)

This step launches a Validate Data Encryption tutorial with instructions describing how to create an encryption zone
and place data into it to verify that HDFS encryption is enabled and working.

Enabling HDFS Encryption Using Navigator HSM KMS Backed by Luna HSM

1. Enable Kerberos

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

For more information about enabling Kerberos, see Enabling Kerberos Authentication for CDH on page 51.

2. Enable TLS/SSL

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

For more information about enabling TLS, see Configuring TLS Encryption for Cloudera Manager on page 151.

3. Install Luna HSM Client

Before installing the Navigator HSM KMS backed by Luna HSM, you must install the Luna HSM client on the host.
Attempts to install the Navigator HSM KMS backed by Luna HSM before installing the Luna HSM client will fail.

For details about how to install the Luna HSM client, refer to the Luna HSM product documentation.

4. Install Parcel for Cloudera Key Providers

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

This step completed automatically when you downloaded the parcel. If the step is incomplete for any reason (such as
the wizard being interrupted or a failure installing the parcel), complete it manually:

1. Click Install Key Trustee KMS binary using packages or parcels.
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2. Select the KEYTRUSTEE parcel to install Key Trustee KMS, or select None if you need to install Key Trustee KMS
manually using packages. If you do not see a parcel available, clickMore Options and add the repository URL to
the Remote Parcel Repository URLs list. After selecting a parcel, click Continue.

3. After the KEYTRUSTEE parcel is successfully downloaded, distributed, unpacked, and activated, click Finish to
complete this step and return to the main page of the wizard.

5. Add the Navigator HSM KMS backed by SafeNet Luna HSM

1. Click Add Navigator HSM KMS backed by Safenet Luna HSM.
2. In the Luna HSM-backed KMS Proxy field, select the hosts to which you want to assign a new or existing role.

Click OK, and then click Continue.
3. To set up the ACL for the cluster, specify a comma-separated list of users and groups, and then click Generate

ACLs. Click Continue.
4. Click Continue.
5. Review your selections and specify the:

• Luna HSM Password

Contact your HSM administrator for the Luna HSM Partition password.

• Keystore Password

Important: Specify a unique password to protect the KMS metadata. Safely store this
password for future use. In the event that the service is deleted, youmust provide this
password to re-add the service with the same metastore.

• Luna HSM Server Slot

Identification number of the Luna HSM Server slot/device to use. If you do not know what value(s) to enter
here, see the Luna product documentation for instructions on configuring your Luna HSM. Alternatively, run
the /usr/safenet/lunaclient/bin/vtl verify command on the Luna HSM client host to view the
slot value.

Then click Continue.
6. Upon notification that you have successfully added the Navigator Safenet Luna KMS Service, click Continue and

Finish.

6. Restart stale services and redeploy client configuration

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

This step restarts all services that were modified while enabling HDFS encryption. To complete this step:

1. Click Restart stale services and redeploy client configuration.
2. Click Restart Stale Services.
3. Ensure that Re-deploy client configuration is checked, and click Restart Now.
4. After all commands have completed, click Finish.

7. Validate Data Encryption

Minimum Required Role: Key Administrator or Cluster Administrator (also provided by Full Administrator)

This step launches a Validate Data Encryption tutorial with instructions describing how to create an encryption zone
and place data into it to verify that HDFS encryption is enabled and working.
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Enabling HDFS Encryption Using a Java KeyStore

Note: Cloudera strongly recommends using Cloudera Navigator Key Trustee Server as the root of
trust for production environments. The file-based Java KeyStore root of trust is insufficient to provide
the security, scalability, and manageability required by most production systems.

After selecting A file-based password-protected Java KeyStore as the root of trust, the following steps are displayed:

1. Enable Kerberos

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

For more information on enabling Kerberos, see Enabling Kerberos Authentication for CDH on page 51.

2. Enable TLS/SSL

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

For more information on enabling TLS, see Configuring TLS Encryption for Cloudera Manager on page 151.

3. Add a Java KeyStore KMS Service

Minimum Required Role: Key Administrator (also provided by Full Administrator)

This step adds the Java KeyStore KMS service to the cluster. The Java KeyStore KMS service uses a password-protected
Java KeyStore for cryptographic key management. To complete this step:

1. Click Add a Java KeyStore KMS Service.
2. Select a cluster host for the Java KeyStore KMS service. Click Continue.
3. The Setup TLS for Java KeyStore KMS page provides high-level instructions for configuring TLS communication

between the EDH cluster and the Java KeyStore KMS. See Configuring TLS/SSL for the KMS on page 221 for more
information.

Click Continue.

4. The Review Changes page lists the Java KeyStore settings. Click the icon next to any setting for information
about that setting. Enter the location and password for the Java KeyStore and click Continue.

5. Click Continue to automatically configure the HDFS service to depend on the Java KeyStore KMS service.
6. Click Finish to complete this step and return to the main page of the wizard.

4. Restart stale services and redeploy client configuration

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

This step restarts all services which were modified while enabling HDFS encryption. To complete this step:

1. Click Restart stale services and redeploy client configuration.
2. Click Restart Stale Services.
3. Ensure that Re-deploy client configuration is checked, and click Restart Now.
4. After all commands have completed, click Finish.

5. Validate Data Encryption

Minimum Required Role: Key Administrator or Cluster Administrator (also provided by Full Administrator)

This step launches a tutorial with instructions on creating an encryption zone and putting data into it to verify that
HDFS encryption is enabled and working.

Hints and Tips

This section includes hints and tips that can help simplify the HSM KMS installation when using the HDFS Encryption
Wizard.
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Limit the Number of ZooKeeper DEBUG Messages

When setting the KMS log level to DEBUG, there can be a lot of ZooKeeper DEBUG messages that clutter the log. To
prevent this, in the Logging Advanced Configuration Snippet (Safety Valve) field, enter:

log4j.category.org.apache.zookeeper=INFO

Limit Encryption Zone Timeouts

When creating encryption zones, there can be client timeouts due to the time it takes to fill the encrypted data
encryption key (EDEK) cache. To avoid this, adjust the low watermark threshold settings as follows.

On the server side, in the field HSM KMS Proxy Advanced Configuration Snippet (Safety Valve) for kms-site.xml:

<property>
   <name>hadoop.security.kms.encrypted.key.cache.low.watermark</name>
   <value>.03</value>
</property>

On the client side, in the field HDFS Cluster-wide Advanced Configuration Snippet (Safety Valve) for core-site.xml:

<property>
   <name>hadoop.security.kms.client.encrypted.key.cache.low-watermark</name>
   <value>.02</value>
</property>

Increase KMS Client Timeout Value

Due to potential latency during installation, it is recommended that you increase the KMS client timeout value.

Change from the default of 60 seconds to a value between 100 and 120 seconds in the fieldHDFS Cluster-wideAdvanced
Configuration Snippet (Safety Valve) for core-site.xml:

<property>
   <name>hadoop.security.kms.client.timeout</name>
   <value>110</value>
</property>

Managing Encryption Keys and Zones

Interacting with the KMS and creating encryption zones requires the use of two new CLI commands: hadoop key and
hdfs crypto. The following sections will help you get started with creating encryption keys and setting up encryption
zones.

Before continuing, make sure that your KMS ACLs have been set up according to best practices. For more information,
see Configuring KMS Access Control Lists (ACLs) on page 221.

Validating Hadoop Key Operations

Warning: If you are using or plan to use Cloudera Navigator Key HSM in conjunction with Cloudera
Navigator Key Trustee Server, ensure that:

Key names begin with alphanumeric characters and do not use special characters other than hyphen
(-), period (.), or underscore (_). Using other special characters can prevent you frommigrating your
keys to an HSM.

See Integrating Key HSM with Key Trustee Server on page 273 for more information.
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Warning:

HSM KMS key names should not exceed 28 characters. If the key name exceeds 28 characters, then
it is silently truncated when passed on to the HSM; however, it is used at full length in the HSM KMS
local data store. Truncation only impacts key names created on the HSM, not in those in the HSM
KMS metastore.

Use hadoop key create to create a test key, and then use hadoop key list to retrieve the key list:

sudo -u <key_admin> hadoop key create keytrustee_test
hadoop key list

Creating Encryption Zones

Important: Cloudera does not currently support configuring the root directory as an encryption zone.
Nested encryption zones are also not supported.

Important: The Java Keystore KMS default Truststore (for example,
org.apache.hadoop.crypto.key.JavaKeyStoreProvider) does not support uppercase key
names.

Once a KMS has been set up and the NameNode and HDFS clients have been correctly configured, use the hadoop
key and hdfs crypto command-line tools to create encryption keys and set up new encryption zones.

• Create an encryption key for your zone as keyadmin for the user/group (regardless of the application that will
be using the encryption zone):

sudo -u hdfs hadoop key create <key_name>

• Create a new empty directory and make it an encryption zone using the key created above.

sudo -u hdfs hadoop fs -mkdir /encryption_zone
sudo -u hdfs hdfs crypto -createZone -keyName <key_name> -path /encryption_zone

You can verify creation of the new encryption zone by running the -listZones command. You should see the
encryption zone along with its key listed as follows:

$ sudo -u hdfs hdfs crypto -listZones
/encryption_zone    <key_name>

Warning: Do not delete an encryption key as long as it is still in use for an encryption zone. This
results in loss of access to data in that zone. Also, do not delete the KMS service, as your encrypted
HDFS data will be inaccessible. To prevent data loss, first copy the encrypted HDFS data to a
non-encrypted zone using the distcp command.

For more information and recommendations on creating encryption zones for each CDH component, see Configuring
CDH Services for HDFS Encryption on page 242.

Adding Files to an Encryption Zone

You can add files to an encryption zone by copying them to the encryption zone using distcp. For example:

sudo -u hdfs hadoop distcp /user/dir /encryption_zone
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Important: You can delete files or directories that are part of an HDFS encryption zone. For details
on how to configure trash in HDFS, see Trash Behavior with HDFS Transparent Encryption Enabled.

DistCp Considerations

A common use case for DistCp is to replicate data between clusters for backup and disaster recovery purposes. This is
typically performed by the cluster administrator, who is an HDFS superuser. To retain this workflow when using HDFS
encryption, a new virtual path prefix has been introduced, /.reserved/raw/, that gives superusers direct access to
the underlying block data in the filesystem. This allows superusers todistcp datawithout requiring access to encryption
keys, and avoids the overhead of decrypting and re-encrypting data. It also means the source and destination data will
be byte-for-byte identical, which would not have been true if the data was being re-encrypted with a new EDEK.

Warning:

• When using /.reserved/raw/ to distcp encrypted data, make sure you preserve extended
attributes with the -px flag. This is because encrypted attributes such as the EDEK are exposed
through extended attributes andmust be preserved to be able to decrypt the file

Thismeans that if the distcp is initiated at or above the encryption zone root, it will automatically
create a new encryption zone at the destination if it does not already exist. Hence, Cloudera
recommends you first create identical encryption zones on the destination cluster to avoid any
potential mishaps.

• Attempting to perform distcp on encrypted data in /.reserved/raw/ fails if the destination
cluster does not have an identical encryption key as the source. Therefore, in addition to
configuring identical encryption zones on both the source and destination clusters, ensure that
both the clusters have identical encryption keys.

Alternatively, you need not configure encryption zones on the destination cluster, and perform
distcp from the /.reserved/raw/ endpoint to the destination cluster. The data copied to
the destination cluster in this format will remain encrypted until restored to the source cluster
and decrypted by using the source cluster's keys.

Copying data from encrypted locations

By default, distcp compares checksums provided by the filesystem to verify that data was successfully copied to the
destination.When copying froman encrypted location, the file system checksumswill notmatch because the underlying
block data is different. This is true whether or not the destination location is encrypted or unencrypted.

In this case, you can specify the -skipcrccheck and -update flags to avoid verifying checksums. When you use
-skipcrccheck, distcp checks the file integrity by performing a file size comparison, right after the copy completes for
each file.

Deleting Encryption Zones

To remove an encryption zone, delete the encrypted directory:

Warning: This command deletes the entire directory and all of its contents. Ensure that the data is
no longer needed before running this command.

sudo -u hdfs hadoop fs -rm -r -skipTrash /encryption_zone
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Important: The Key Trustee KMSdoes not directly execute a key deletion (for example, itmay perform
a soft delete instead, or delay the actual deletion to prevent mistakes). In these cases, errors may
occur when creating or deleting a key using the same name after it has already been deleted.

Backing Up Encryption Keys

Warning: It is very important that you regularly back up your encryption keys. Failure to do so can
result in irretrievable loss of encrypted data.

If you are using the Java KeyStore KMS, make sure you regularly back up the Java KeyStore that stores the encryption
keys. If you are using the Key Trustee KMS and Key Trustee Server, see Backing Up and Restoring Key Trustee Server
and Clients on page 249 for instructions on backing up Key Trustee Server and Key Trustee KMS.

Rolling Encryption Keys

Before attempting to roll an encryption key (also known as an encryption zone key, or EZ key), familiarize yourself with
the concepts described in Cloudera Navigator Data Encryption Overview, and HDFS Transparent Encryption, as the
material in these sections presumes you are familiar with the fundamentals of HDFS transparent encryption and
Cloudera data at rest encryption.

When you roll an EZ key, you are essentially creating a new version of the key (ezKeyVersionName). Rolling EZ keys
regularly helps enterprises minimize the risk of key exposure. If a malicious attacker were to obtain the EZ key and
decrypt encrypted data encryption keys (EDEKs) into DEKs, they could gain the ability to decrypt HDFS files. Rolling an
EZ key ensures that all DEKs for newly-created files will be encrypted with the new version of the EZ key. The older EZ
key version that the attacker obtained cannot decrypt these EDEKs. Youmaywant to roll the encryption key periodically,
as part of your security policy or when an external security compromise is detected.

To roll an EZ key:

1. (Optional) Before rolling any keys, log in as HDFS Superuser and verify/identify the encryption zones to which the
current key applies. This operation also helps clarify the relationship between the EZ key and encryption zones,
and, if necessary, makes it easier to identify more important, high priority zones:

$ hdfs crypto –listZones
/ez key1
/ez2 key2
/user key1

The first column identifies the encryption zone paths; the second column identifies the encryption key name.
2. (Optional) You can verify that the files inside an encryption zone are encrypted using the hdfs crypto

-getFileEncryptionInfo command.Note the EZ key version nameand value,which you can use for comparison
and verification after rolling the EZ key.

$ hdfs crypto –getFileEncryptionInfo –path /ez/f
{cipherSuite: {name: AES/CTR/NoPadding, algorithmBlockSize: 16}. cryptoProtocolVersion:
CryptoProtocolVersion{description=’Encryption zones’, version=2, unknownValue=null}, 
edek: 373c0c2e919c27e58c1c343f54233cbd,
iv: d129c913c8a34cde6371ec95edfb7337, keyName: key1, ezKeyVersionName: 
7mbvopZ0Weuvs0XtTkpGw3G92KuWc4e4xcTXl0bXCpF}

Log off as HDFS Superuser.
3. Log in as Key Administrator. Because keys can be rolled, a key can have multiple key versions, where each key

version has its own key material (the actual secret bytes used during DEK encryption and EDEK decryption). You
can fetch an encryption key by either its key name, returning the latest version of the key, or by a specific key
version.
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Roll the encryption key (previously identified/confirmed by the HDFS Superuser in step 1. Here, the <key name>
is key1:

hadoop key roll key1

This operation contacts the KMS and rolls the keys there. Note that this can take a considerable amount of time,
depending on the number of key versions residing in the KMS.

Rolling key version from KeyProvider: 
org.apache.hadoop.crypto.key.kms.LoadBalancingKMSClientProvider@5ea434c8
for keyName: key1
key1 has been successfully rolled.
org.apache.hadoop.crypto.key.kms.LoadBalancingKMSClientProvider@5ea434c8 has been updated.

4. (Optional) Log out as Key Administrator, and log in as HDFS Superuser. Verify that new files in the encryption zone
have a new EZ key version.

Note: For performance reasons, the NameNode caches EDEKs, so after rolling an encryption key,
you may not be able to see the new version encryption key immediately, or at least until after
the EDEK cache is consumed. Of course, the file decryption and encryption still works with these
EDEKs. If you require that all files' DEKs in an encryption zone are encrypted using the latest
version encryption key, please re-encrypt the EDEKs.

$ hdfs crypto –getFileEncryptionInfo –path /ez/new_file
{cipherSuite: {name: AES/CTR/NoPadding, algorithmBlockSize: 16}. cryptoProtocolVersion:
CryptoProtocolVersion{description=’Encryption zones’, version=2, unknownValue=null}, 
edek: 9aa13ea4a700f96287cfe1349f6ff4f2,
iv: 465c878ad9325e42fa460d2a22d12a72, keyName: key1, ezKeyVersionName: 
4tuvorJ6Feeqk8WiCfdDs9K32KuEj7g2ydCAv0gNQbY}

Alternatively, you can use KMS Rest API to view key metadata and key versions. Elements appearing in brackets
should be replaced with your actual values. So in this case, before rolling a key, you can view the key metadata
and versions as follows:

$ curl -k --negotiate -u: "https://<KMS_HOSTNAME>:16000/kms/v1/key/<key-name>/_metadata"
{
  "name" : "<key-name>",
  "cipher" : "<cipher>",
  "length" : <length>,
  "description" : "<decription>",
  "created" : <millis-epoc>,
  "versions" : <versions> (For example, 1)
}

$ curl -k  --negotiate -u: 
"https://<KMS_HOSTNAME>:16000/kms/v1/key/<key-name>/_currentversion"
{
  "material" : "<material>",
  "name" : "<key-name>",
  "versionName" : "<versionName>" (For example, version 1)
}

Roll the key and compare the results:

$ hadoop key roll key1

Rolling key version from KeyProvider: 
KMSClientProvider[https://<KMS_HOSTNAME>:16000/kms/v1/]

  for key name: <key-name>

key1 has been successfully rolled.

KMSClientProvider[https://<KMS_HOSTNAME>/kms/v1/] has been updated.
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$ curl -k  --negotiate -u: 
"https://<KMS_HOSTNAME>:16000/kms/v1/key/<key-name>/_currentversion"

{
  "material" : "<material>", (New material)
  "name" : "<key-name>",
  "versionName" : "<versionName>" (New version name. For example, version 2)
}

$ curl -k --negotiate -u: "https://<KMS_HOSTNAME>:16000/kms/v1/key/<key-name>/_metadata"
{
  "name" : "<key-name>",
  "cipher" : "<cipher>",
  "length" : <length>,
  "description" : "<decription>",
  "created" : <millis-epoc>,
  "versions" : <versions> (For example, version 2)
}

Re-encrypting Encrypted Data Encryption Keys (EDEKs)

Before attempting to re-encrypt an EDEK, familiarize yourself with the concepts described in Cloudera Navigator Data
Encryption Overview, and HDFS Transparent Encryption, as the material in this section presumes you are familiar with
the fundamentals of HDFS transparent encryption and Cloudera data at rest encryption.

When you re-encrypt an EDEK, you are essentially decrypting the original EDEK created by theDEK, and then re-encrypting
it using the new (rolled) version of the EZ key (see Rolling Encryption Keys on page 212). The file's metadata, which is
stored in the NameNode, is then updated with this new EDEK. Re-encryption does not impact the data in the HDFS
files or the DEK–the same DEK is still used to decrypt the file, so re-encryption is essentially transparent.

Benefits and Capabilities

In addition to minimizing security risks, re-encrypting the EDEK offers the following capabilities and benefits:

• Re-encrypting EDEKs does not require that the user explicitly re-encrypt HDFS files.
• In cases where there are several zones using the same key, the Key Administrator has the option of selecting which

zone’s EDEKs are re-encrypted first.
• The HDFS Superuser can also monitor and cancel re-encryption operations.
• Re-encryption is restarted automatically in cases where you have a NameNode failure during the re-encryption

operation.

Prerequisites and Assumptions

Before attempting to re-encrypt an EDEK, familiarize yourself with the concepts and rules described in Managing
Encryption Keys and Zones on page 209.

• It is recommended that you perform EDEK re-encryption at the same time that you perform regular cluster
maintenance because the operation can adversely impact CPU resources on the NameNode.

• In Cloudera Manager, review the cluster’s NameNode status, which must be in “Good Health”. If the cluster
NameNode does not have a status of “Good Health”, then do not proceed with the re-encryption of the EDEK. In
the Cloudera Manager WebUI menu, you can verify the status for the cluster NameNode, which must not be in
Safe mode (in other words, the WebUI should indicate “Safemode is off”).

Running the re-encryption command without successfully verifying the preceding items will result in failures with
errors.

Limitations

This section identifies limitations associated with the re-encryption of EDEKs.

EDEK re-encryption doesn't change EDEKs on snapshots, due to the immutable nature HDFS snapshots. Thus, you
should be aware that after EZ key exposure, the Key Administrator must delete snapshots.
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Re-encrypting an EDEK

This scenario operates on the assumption that an encryption zone has already been set up for this cluster. For more
details about creating an encryption zone, see Creating Encryption Zones on page 210.

1. Navigate to the cluster in which you will be rolling keys and re-encrypting the EDEK.
2. Log in as HDFS Superuser.
3. (Optional) To view all of the options for the hdfs crypto command:

$ hdfs crypto
[-createZone –keyName <keyName> -path <path>]
[-listZones]
[-provisionTrash –path <path>]
[-getFileEncryptionInfo –path <path>]
[-reencryptZone <action> -path <zone>]
[-listReencryptionStatus]
[-help <command-name>]

4. Before rolling any keys, verify/identify the encryption zones to which the current key applies. This operation also
helps clarify the relationship between the EZ key and encryption zones, and, if necessary, makes it easier to identify
more important, high priority zones:

$ hdfs crypto –listZones
/ez     key1

The first column identifies the encryption zone path (/ez); the second column identifies the encryption key name
(key1).

5. Exit from the HDFS Superuser account and log in as Key Administrator.
6. Roll the encryption key (previously identified/confirmed by the HDFS Superuser in step 4). Here, the <key name>

is key1:

hadoop key roll key1

This operation contacts the KMS and rolls the keys. Note that this can take a considerable amount of time,
depending on the number of key versions.

Rolling key version from KeyProvider: 
org.apache.hadoop.crypto.key.kms.LoadBalancingKMSClientProvider@5ea434c8
for keyName: key1
key1 has been successfully rolled.
org.apache.hadoop.crypto.key.kms.LoadBalancingKMSClientProvider@5ea434c8 has been updated.

7. Log out as Key Administrator, and log in as HDFS Superuser.
8. (Optional) Before performing the re-encryption, you can verify the status of the current key version being used

(keyName). Then, after re-encrypting, you can confirm that the EZ key version (ezKeyVersionName) and EDEK
have changed:

$ hdfs crypto –getFileEncryptionInfo –path /ez/f
{cipherSuite: {name: AES/CTR/NoPadding, algorithmBlockSize: 16}. cryptoProtocolVersion:
CryptoProtocolVersion{description=’Encryption zones’, version=2, unknownValue=null}, 
edek: 9aa13ea4a700f96287cfe1349f6ff4f2,
iv: d129c913c8a34cde6371ec95edfb7337, keyName: key1, ezKeyVersionName: 
7mbvopZ0Weuvs0XtTkpGw3G92KuWc4e4xcTXl0bXCpF}

9. After the EZ key has been rolled successfully, re-encrypt the EDEK by running the re-encryption command on the
encryption zone:

hdfs crypto –reencryptZone –start –path /ez
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The following information appears when the submission is complete. At this point, the NameNode is processing
and re-encrypting all of the EDEKs under the /ez directory.

re-encrypt command successfully submitted for zone: /ez action:  START:

Depending on the number of files, the re-encryption operation can take a long time. Re-encrypting a 1M EDEK
file typically takes between 2-6 minutes, depending on the NameNode hardware. To check the status of the
re-encryption for the zone:

hdfs crypto –listReencryptionStatus

Table 19: Re-encryption Status Column Data

Sample DataDescriptionColumn Name

/ezThe encryption zone nameZoneName

CompletedStatus • Submitted: the command is
received, but not yet being
processed by the NameNode.

• Processing: the zone is being
processed by the NameNode.

• Completed: the NameNode has
finished processing the zone,
and every file in the zone has
been re-encrypted.

ZMHfRoGKeXXgf0QzCX8q16NczIw2sq0rWRTOHS3YjCzThe encryption zone key version
name, which used for re-encryption

EZKey Version Name

comparison. After re-encryption is
complete, all files in the encryption
zone are guaranteed to have an EDEK
whose encryption zone key version
is at least equal to this version.

2017-09-07 10:01:09,262-0700The time at which the re-encryption
operation commenced.

Submission Time

FalseTrue: the encryption operation has
been canceled.

False: the encryption operation has
not been canceled.

Is Canceled?

2017-09-07 10:01:10,441-0700The time at which the re-encryption
operation completed.

Completion Time

1The number that appears in this
column reflects only the files whose

Number of files re-encrypted

EDEKs have been updated. If a file is
created after the key is rolled, then
it will already have an EDEK that has
been encrypted by the new key
version, so the re-encryption
operation will skip that file. In other
words, it's possible for a
"Completed" re-encryption to reflect
a number of re-encrypted files that
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Sample DataDescriptionColumn Name

is less than the number of files
actually in the encryption zone.

Note: In cases when you re-encrypt
an EZ key that has already been
re-encrypted and there are no new
files, the number of files
re-encrypted will be 0.

0When 0, no errors occurred during
the re-encryption operation. If larger

Number of failures

than 0, then investigate the
NameNode log, and re-encrypt.

0Identifies the current position of the
re-encryption process in the

Last file Checkpointed

encryption zone--in otherwords, the
file that was most recently
re-encrypted.

10. (Optional) After the re-encryption completes, you can confirm that the EDEK and EZ Key Version Name values
have changed:

$ hdfs crypto –getFileEncryptionInfo –path /ez/f
{cipherSuite: {name: AES/CTR/NoPadding, algorithmBlockSize: 16}. cryptoProtocolVersion:
CryptoProtocolVersion{description=’Encryption zones’, version=2, unknownValue=null}, 
edek: 373c0c2e919c27e58c1c343f54233cbd,
iv: d129c913c8a34cde6371ec95edfb7337, keyName: key1, ezKeyVersionName: 
ZMHfRoGKeXXgf0QzCX8q16NczIw2sq0rWRTOHS3YjCz }

Managing Re-encryption Operations

This section includes information that can help you manage various facets of the EDEK re-encryption process.

Cancelling Re-encryption

Only users with the HDFS Superuser privilege can cancel the EDEK re-encryption after the operation has started.

To cancel a re-encryption:

hadoop crypto -reencryptZone cancel -path <zone>

Rolling Keys During a Re-encryption Operation

While it is not recommended, it is possible to roll the encryption zone key version on the KMS while a re-encryption
of that encryption zone is already in progress in the NameNode. The re-encryption is guaranteed to complete with all
DEKs re-encrypted, with a key version equal to or later than the encryption zone key version when the re-encryption
command was submitted. This means that, if initially the key version is rolled from v0 to v1, then a re-encryption
command was submitted. If later on the KMS the key version is rolled again to v2, then all EDEKs will be at least
re-encrypted to v1. To ensure that all EDEKs are re-encrypted to v2, submit another re-encryption command for the
encryption zone.

Rolling keys during re-encryption is not recommended because of the potential negative impact on key management
operations. Due to the asynchronous nature of re-encryption, there is no guarantee of when, exactly, the rolled
encryption keys will take effect. Re-encryption can only guarantee that all EDEKs are re-encrypted at least on the EZ
key version that existed when the re-encryption command is issued.
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Throttling Re-encryption Operations

With the default operation settings, you will not typically need to throttle re-encryption operations. However, in cases
of excessive performance impact due to the re-encryption of large numbers of files, advanced users have the option
of throttling the operation so that the impact on the HDFS NameNode and KT KMS are minimized.

Specifically, you can throttle the operation to control the rate of the following:

• The number of EDEKs that the NameNode should send to the KMS to re-encrypt in a batch
(dfs.namenode.reencrypt.batch.size)

• The number of threads in the NameNode that can run concurrently to contact the KMS.
(dfs.namenode.reencrypt.edek.threads)

• Percentage of time the NameNode read-lock should be held by the re-encryption thread
(dfs.namenode.reencrypt.throttle.limit.handler.ratio)

• Percentage of time the NameNode write-lock should be held by the re-encryption thread
(dfs.namenode.reencrypt.throttle.limit.updater.ratio)

You can monitor the HDFS NameNode heap and CPU usage from Cloudera Manager.

Configuring the Key Management Server (KMS)

Hadoop Key Management Server (KMS) is a cryptographic key management server based on the Hadoop KeyProvider
API. It provides a KeyProvider implementation client that interacts with the KMS using the HTTP REST API. Both the
KMS and its client support HTTP SPNEGO Kerberos authentication and TLS/SSL-secured communication. The KMS is a
Java-based web application that uses a preconfigured Jetty server bundled with the Hadoop distribution.

For instructions on securing the KMS, see Securing the Key Management Server (KMS) on page 220.

Cloudera provides the following implementations of the Hadoop KMS:

• Java KeyStore KMS - The default Hadoop KMS included in CDH that uses a file-based Java KeyStore (JKS) for its
backing keystore. For parcel-based installations, no additional action is required to install or upgrade the KMS.
Cloudera strongly recommends not using Java Keystore KMS in production environments.

• Key Trustee KMS - A custom KMS that uses Cloudera Navigator Key Trustee Server for its backing keystore instead
of the file-based Java KeyStore (JKS) used by the default Hadoop KMS. Cloudera strongly recommends using Key
Trustee KMS in production environments to improve the security, durability, and scalability of your cryptographic
key management. For more information about the architecture and components involved in encrypting data at
rest for production environments, see Cloudera Navigator Data Encryption Overview and Data at Rest Encryption
Reference Architecture on page 188. For instructions on installing and upgrading Key Trustee KMS, see:

– Installing Key Trustee KMS
– Upgrading Key Trustee KMS

Also, integrating Key Trustee Server with Cloudera Navigator Key HSM provides an additional layer of protection.
• Navigator KMS Services backed by Thales HSM - A custom KMS that uses a supported Thales Hardware Security

Module (HSM) as its backing keystore. This KMS service provides the highest level of key isolation to customers
who require it.

For installation information about Navigator KMS Services backed by Thales HSM, see Installing Navigator HSM
KMS Backed by Thales HSM.

• Navigator KMS Services backed by Luna HSM - A custom KMS that uses a supported Luna Hardware Security
Module (HSM) as its backing keystore. This KMS provides the highest level of key isolation to customers who
require it.

For installation information about Navigator KMS Services backed by Luna HSM, see Installing Navigator HSM KMS
Backed by Luna HSM.

Configuring KMS High Availability

For Key Trustee KMS high availability, see Enabling Key Trustee KMS High Availability. Java KeyStore KMS does not
support high availability.
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Configuring the KMS Using Cloudera Manager

If you are using Cloudera Manager, you can view and edit the KMS configuration by navigating to the following pages,
depending on the KMS implementation you are using:

• Key Trustee KMS service > Configuration
• Java KeyStore KMS service > Configuration

For more information on using Cloudera Manager to find and change configuration parameters, see Modifying
Configuration Properties Using Cloudera Manager.

For instructions about configuring the KMS and its clients using the command line for package-based installations,
continue reading:

Configuring the KMS Cache Using Cloudera Manager

By default, the KMS caches keys to reduce the number of interactions with the key provider. You can disable the cache
by setting the hadoop.kms.cache.enable property to false.

The cache is only used with the getCurrentKey(), getKeyVersion() and getMetadata()methods.

For the getCurrentKey()method, entries are cached for a maximum of 30000milliseconds to prevent stale keys.

For the getKeyVersion()method, entries are cached with a default inactivity timeout of 600000milliseconds (10
minutes).

You can configure the cache and its timeout values by adding the following properties to KMS service > Configuration >
Advanced > Key Management Server Proxy Advanced Configuration Snippet (Safety Valve) for kms-site.xml:

<property>
    <name>hadoop.kms.cache.enable</name>
    <value>true</value>
</property>

<property>
    <name>hadoop.kms.cache.timeout.ms</name>
    <value>600000</value>
</property>

<property>
    <name>hadoop.kms.current.key.cache.timeout.ms</name>
    <value>30000</value>
</property>

See CustomConfiguration formore information on adding customproperties using theAdvanced Configuration Snippet
(Safety Valve) feature.

Configuring the Audit Log Aggregation Interval

Audit logs are generated forGET_KEY_VERSION, GET_CURRENT_KEY, DECRYPT_EEK, andGENERATE_EEKoperations.

Entries are aggregated by user, key, and operation for a configurable interval, after which the number of aggregated
operations by the user for a given key is written to the audit log.

The interval is configured in milliseconds by adding the hadoop.kms.aggregation.delay.ms property to KMS
service > Configuration > Advanced > KeyManagement Server Proxy Advanced Configuration Snippet (Safety Valve)
for kms-site.xml:

<property>
    <name>hadoop.kms.aggregation.delay.ms</name>
    <value>10000</value>
</property>

For more information about adding custom properties using the Advanced Configuration Snippet (Safety Valve)
feature, see Custom Configuration.
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Securing the Key Management Server (KMS)

Cloudera provides the following implementations of the Hadoop KMS:

• Java KeyStore KMS - The default Hadoop KMS included in CDH that uses a file-based Java KeyStore (JKS) for its
backing keystore. For parcel-based installations, no additional action is required to install or upgrade the KMS.
Cloudera strongly recommends not using Java Keystore KMS in production environments.

• Key Trustee KMS - A custom KMS that uses Cloudera Navigator Key Trustee Server for its backing keystore instead
of the file-based Java KeyStore (JKS) used by the default Hadoop KMS. Cloudera strongly recommends using Key
Trustee KMS in production environments to improve the security, durability, and scalability of your cryptographic
key management. For more information about the architecture and components involved in encrypting data at
rest for production environments, see Cloudera Navigator Data Encryption Overview and Data at Rest Encryption
Reference Architecture on page 188. For instructions on installing and upgrading Key Trustee KMS, see:

– Installing Key Trustee KMS
– Upgrading Key Trustee KMS

Also, integrating Key Trustee Server with Cloudera Navigator Key HSM provides an additional layer of protection.
• Navigator KMS Services backed by Thales HSM - A custom KMS that uses a supported Thales Hardware Security

Module (HSM) as its backing keystore. This KMS service provides the highest level of key isolation to customers
who require it.

For installation information about Navigator KMS Services backed by Thales HSM, see Installing Navigator HSM
KMS Backed by Thales HSM.

• Navigator KMS Services backed by Luna HSM - A custom KMS that uses a supported Luna Hardware Security
Module (HSM) as its backing keystore. This KMS provides the highest level of key isolation to customers who
require it.

For installation information about Navigator KMS Services backed by Luna HSM, see Installing Navigator HSM KMS
Backed by Luna HSM.

This topic contains information on securing the KMS using Kerberos, TLS/SSL communication, and access control lists
(ACLs) for operations on encryption keys. Cloudera Manager instructions can be performed for both Key Trustee KMS
and Java KeyStore KMS deployments. Command-line instructions apply only to Java KeyStore KMS deployments. Key
Trustee KMS is not supported outside of Cloudera Manager. For more information, see Installing Key Trustee KMS.

Enabling Kerberos Authentication for the KMS

Minimum Required Role: Full Administrator

To enable Kerberos for the KMS using Cloudera Manager:

1. Open the Cloudera Manager Admin Console and go to the KMS service.
2. Click Configuration.
3. Set the Authentication Type property to kerberos.
4. Click Save Changes.
5. Because Cloudera Manager does not automatically create the principal and keytab file for the KMS, you must run

the Generate Credentials command manually. On the top navigation bar, go to Administration > Security >
Kerberos Credentialsand click Generate Missing Credentials.

Note: This does not create a new Kerberos principal if an existing HTTP principal exists for the
KMS host.

6. Return to the Home page by clicking the Cloudera Manager logo.
7. Click the icon that is next to any stale services to invoke the cluster restart wizard.
8. Click Restart Stale Services.
9. Click Restart Now.
10. Click Finish.

220 | Cloudera Security

Encrypting Data at Rest



Configuring TLS/SSL for the KMS

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

The steps for configuring and enabling Hadoop TLS/SSL for the KMS are as follows:

1. Go to the KMS service.
2. Click Configuration.
3. In the Search field, type TLS/SSL to show the KMS TLS/SSL properties (in the Key Management Server Default

Group > Security category).
4. Edit the following TLS/SSL properties according to your cluster configuration.

Table 20: KMS TLS/SSL Properties

DescriptionProperty

Encrypt communication between clients and Key Management Server using
Transport Layer Security (TLS) (formerly known as Secure Socket Layer (TLS/SSL)).

Enable TLS/SSL for Key
Management Server

The path to the TLS/SSL keystore file containing the server certificate and private
key used for TLS/SSL. Used when Key Management Server is acting as a TLS/SSL
server. The keystore must be in JKS format.

Key Management Server
TLS/SSL Server JKS Keystore
File Location

The password for the Key Management Server JKS keystore file.Key Management Server
TLS/SSL Server JKS Keystore
File Password

The location on disk of the truststore, in .jks format, used to confirm the
authenticity of TLS/SSL servers that KeyManagement Server Proxymight connect

KeyManagement Server Proxy
TLS/SSL Certificate Trust Store
File to. This is used when Key Management Server Proxy is the client in a TLS/SSL

connection. This truststoremust contain the certificates used to sign the services
connected to. If this parameter is not provided, the default list of well-known
certificate authorities is used instead.

The password for the Key Management Server Proxy TLS/SSL Certificate Trust
Store File. This password is not required to access the truststore; this field can

KeyManagement Server Proxy
TLS/SSL Certificate Trust Store
Password be left blank. This password provides optional integrity checking of the file. The

contents of truststores are certificates, and certificates are public information.

5. Click Save Changes.
6. Return to the Home page by clicking the Cloudera Manager logo.
7. Click the icon that is next to any stale services to invoke the cluster restart wizard.
8. Click Restart Stale Services.
9. Click Restart Now.
10. Click Finish.

For help troubleshooting TLS/SSL configuration issues, see Troubleshooting TLS/SSL Issues in Cloudera Manager on
page 380.

Configuring KMS Access Control Lists (ACLs)

An Access Control List (ACL) is a list of specific permissions or controls that allow individual users, groups, a host, or
applications to perform specific actions upon specific objects. The Hadoop KMS supports a range of ACLs that control
access to encryption keys and key operations on a granular basis.

KMS ACLs indirectly impact data access by controlling key access, and are decoupled from HDFS file permissions and
ACLs. KMS ACLs alone do not directly control data access. Instead, KMS ACLs control whether or not an authorized
client can perform a specific operation on a named encryption key.

While KMS ACLs play a primary role in controlling encryption key security, it is important to understand that they are
not the only mechanism by which access is controlled. A user’s role also factors into the level of access.
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Proper configuration of KMS ACLs depends on a variety of variables such as workload, CDH components in use, and
how your clusters are configured. This documentation does not take into consideration or describe these outside
variables. For details about your specific component’s ACL behavior and requirements, refer to the product
documentation for the CDH components in your configuration. See the following for additional CDH component ACL
information:

• Synchronizing HDFS ACLs and Sentry Permissions
• HDFS Extended ACLs on page 127
• Navigator Encrypt Access Control List on page 291

KMS ACLs and Roles

Cloudera’s framework for key management is based on enforcing a secure-by-default configuration based upon the
KMS ACLs and roles described here.

Table 21: KMS ACLs and Roles

Not Allowed To:Allowed To:DescriptionRole

The sole purpose of a Key Administrator
is to create and manage keys. This user

Key
Administrators

• Create and manage
encryption zone keys

is whitelisted in a number of areas so • Add, update, or
otherwise modify ACLsthat they can handle defined and

undefined keys within the context of the
KMS.

that protect all
encryption zone keys

Responsible for HDFS administration,
HDFS Superusers are not granted rights

HDFS Superusers • Manage, create, or
read keys

• Create encryption zones

to decrypt datawithin encryption zones. • Add, update, or
otherwise modifyRather, they are authorized to only

create zones and attach keys to those ACLs that protect all
keyszones for the data sets that they

manage. HDFS Superusers are usually
also HDFS Superusers.

• Decrypt EEKs

Important: To maintain
the separation of duties,
the HDFS Encryption
Wizard automatically
blacklists all of the
specified HDFS Superuser
Groups set in
dfs.permissions.supergroup.
Do not authorize HDFS
Superusers to create,
manage, or read keys, or
to decrypt EEKs.

There is only oneHDFS ServiceUser; this
is the user the HDFS service runs as

HDFS Service
User

• Generate keys that are
made available for use
through the perwithin the Hadoop framework. HDFS
encryption zone key
caches

Service Users are granted special
permissions to generate keys (EEKs) that
populate per encryption zone key
caches.
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Not Allowed To:Allowed To:DescriptionRole

Producers and consumers of data who
store or retrieve information within
specific encryption zones.

End Users • Read and write in
encrypted data
spaces

KMS ACL Classes

ACLs are implemented in the upstream Hadoop KMS and apply to any variant of the service, whether it is through Key
Trustee Server (KTS), the Java Keystore (JKS), or the HSM KMS. Understanding how these ACLs are defined and work
enables you to more accurately create ACLs that meet both your needs and the needs of your customers.

The KMS ACL classes provide fine-grain control of key access at different decision points (for example, preventing a
user from accessing the KMS altogether), and are applied either KMS-wide or key-specific:

• KMS-wide

You can use KMS-wide ACLs to specify the types of operations a user can perform. Configure KMS-wide operations
using the classes:

• hadoop.kms.acl.<OPERATION>

• hadoop.kms.blacklist.<OPERATION>

KMS-wide ACLs precede key-specific ACLs. In other words, the permission check on a key-specific ACL only occurs
if permission is already granted at the KMS-wide level; if it is, then the permission check against key-specific ACLs
can proceed.

Users accessing a KMS-wide ACL are first checked for inclusion in the ACL for the requested operation, and then
checked for exclusion in the blacklist before the operation is performed or access is granted.

• Key-specific

You can use key-specific ACLs, set on a per-encryption zone key basis, to specify the types of operations a user
can perform. Configure key-specific operations using the classes:

• default.key.acl.<OPERATION>

• whitelist.key.acl.<OPERATION>

• key.acl.<key_name>.<OPERATION>

Important:

The KMS supports both whitelist and blacklist ACLs. Blacklist entries apply and are implemented
KMS-wide, while whitelist entries apply and are implemented at the key-specific level.

There are five distinct classes of ACLs, each defined by the operations defined within.

The hadoop.kms.acl.<OPERATION> Class

This class controls permissions to perform KMS-wide operations. The only ACLs that fall back to a value of '*' when
the values are empty are those within the hadoop.kms.acl definition.

You can define fine-grain access for the following operations in this ACL class:

Table 22: hadoop.kms.acl.<OPERATION> Class

Description<OPERATION> Namehadoop.kms.acl.
<OPERATION>

Creates an encryption zone key.Create KeyCREATE
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Description<OPERATION> Namehadoop.kms.acl.
<OPERATION>

Note: Encryption zone key material is returned
only if the user also has GET permission.

Deletes an encryption zone key.Delete KeyDELETE

Rolls an encryption zone key to the new version, using different
material.

Rollover KeyROLLOVER

The encrypted encryption keys (also known as EEKs or EDEKs)
are always generated using the latest version of the encryption
key.

Note: Encryption zone key material is returned
only if the user also has GET permission.

Invalidates all cached EEKs.Invalidate Key Cache

Gets the latest version of the encryption zone key, including its
material.

Get Current KeyGET

Gets a specified version of the encryption zone key, including
its material.

Get Key Version

Gets all versions of the encryption zone key, including their
materials.

Get Key Versions

Lists all the encryption zone key names on the Key Trustee KMS.
No additional key material is returned.

Get Key NamesGET_KEYS

Gets the metadata of an encryption zone key, including the
cipher, key length, description, time created, and number of
versions and other attributes.

Get Key MetadataGET_METADATA

Gets the metadata for a collection of encryption zone keys.Get Keys Metadata

For ROLLOVER and/or CREATE encryption key operations,
determines whether or not the user can provide key material.

If encryption zone key material is not provided, then the Key
Trustee KMS randomly generates the material.

SET_KEY_MATERIAL

Generates an encrypted encryption zone key from a given
encrypted key name, using its current key version.

Generate Encrypted
Key for Current
KeyVersion

GENERATE_EEK

Takes a previously generated EEK, and re-encrypts it using the
latest KeyVersion of the same encrypted key. If the latest

Re-encrypt Encrypted
Key With The Latest
KeyVersion KeyVersion is the same as the one used to generate the EEK,

then the same EEK is returned.

Takes a batch of previously generated EEKs, and re-encrypts
them using the latest KeyVersion of the same encrypted key. If

Batch Re-encrypt
Encrypted Keys With
The Latest KeyVersion the latest KeyVersion is the same as the one used to generate

the EEK, then the same EEK is returned.

Decrypts an EEK and returns the decrypted encryption zone key.Decrypt Encrypted KeyDECRYPT_EEK
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The hadoop.kms.blacklist.<OPERATION> Class

This class controls permissions to perform KMS-wide operations. Users and groups listed here will be prevented from
performing any other listed OPERATION on any encryption keys.

You can define fine-grain access for the following operations in this ACL category:

Table 23: hadoop.kms.blacklist.<OPERATION> Class

Description<OPERATION> Namehadoop.kms.blacklist.
<OPERATION>

Creates an encryption zone key.Create KeyCREATE

Note: Encryption zone key material is
returned only if the user also has GET
permission.

Deletes an encryption zone key.Delete KeyDELETE

Rolls an encryption zone key to the new version, using
different material.

Rollover KeyROLLOVER

The encrypted encryption keys (EEKs) are always generated
using the latest version of the encryption key.

Note: Encryption zone key material is
returned only if the user also has GET
permission.

Invalidates all cached EEKs.Invalidate Key Cache

Gets the latest version of the encryption zone key, including
its material.

Get Current KeyGET

Gets a specified version of the encryption zone key,
including its material.

Get Key Version

Gets all versions of the encryption zone key, including their
materials.

Get Key Versions

Lists all the encryption zone key names on the Key Trustee
KMS. No additional key material is returned.

Get Key NamesGET_KEYS

Gets the metadata of an encryption zone key, including
the cipher, key length, description, time created, and
number of versions and other attributes.

Get Key MetadataGET_METADATA

Gets themetadata for a collection of encryption zone keys.Get Keys Metadata

For ROLLOVER and/or CREATE encryption key operations,
determines whether or not the user can provide key
material.

If encryption zone key material is not provided, then the
Key Trustee KMS randomly generates the material.

SET_KEY_MATERIAL

Generates an encrypted encryption zone key (EEK) from a
given encrypted key name, using its current key version.

Generate EncryptedKey
for Current KeyVersion

GENERATE_EEK
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Description<OPERATION> Namehadoop.kms.blacklist.
<OPERATION>

Takes a previously generated EEK, and re-encrypts it using
the latest KeyVersion of the same encrypted key. If the

Re-encrypt Encrypted
Key With The Latest
KeyVersion latest KeyVersion is the same as the one used to generate

the EEK, then the same EEK is returned.

Takes a batch of previously generated EEKs, and re-encrypts
them using the latest KeyVersion of the same encrypted

Batch Re-encrypt
Encrypted Keys With
The Latest KeyVersion key. If the latest KeyVersion is the same as the one used

to generate the EEK, then the same EEK is returned.

Decrypts an EEK and returns the decrypted encryption zone
key.

Decrypt Encrypted KeyDECRYPT_EEK

The key.acl.<key-name>.<OPERATION> Class

This class controls permissions to perform operations for a specific key, and applies to key-specific ACLs.

Important:

In the process of evaluating key access,key.acl.<OPERATION> overrides default operations provided
in default.key.acl.<OPERATION> or whitelist.key.acl.<OPERATION>.

Be aware that the key.acl does not fall back to a value of '*' when you use empty values.

You can define fine-grain access for the following operations in this ACL class:

Table 24: key.acl<key-name>.<OPERATION> Class

Description<OPERATION> Namekey.acl.key-name. <OPERATION>

Use for the following operations:createKey, deleteKey,
rolloverNewVersion

MANAGEMENT

• createKey

• deleteKey

• rolloverNewKeyVersion

Use for the following operations:Generate Encryption KeyGENERATE_EEK

• generateEncryptedKey

• reencryptEncryptedKey

• reencryptEncryptedKeys

• warmUpEncryptedKeys

Use for the decryptEncryptedKey
operation.

Decrypt Encrypted KeyDECRYPT_EEK

Use for the following operations:ReadREAD

• getKeyVersion

• getKeyVersions

• getMetadata

• getKeysMetadata

• getCurrentKey

Use to specify all operations in this class.AllALL
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The default.key.acl.<OPERATION> Class

This class controls permission to perform operations for keys that are not otherwise specified by
key.acl.<key-name>.<OPERATION>, and applies to key-specific ACLs.

The default.key.acl.<OPERATION> applies to all keys for which an ACL has not been explicitly configured. Be
aware that if all of the following conditions exist, key access is denied:

• There is no key-specific ACL configured
• There is no KMS ACL configured for the requested operation
• There is no whitelist key ACL configured for the requested operation

Also note that the default.key.acl does not fall back to a value of '*' when you use empty values. All
default.key.acls are (by default) empty, which means that you must create the required key definition entries
for each key you wish to use.

Note: The default.key.acl class does not support the ALL operation. If specified, it will be ignored.

Table 25: default.key.acl.<OPERATION> Class

Description<OPERATION> Namedefault.key.acl. <OPERATION>

Use for the following operations:Manage the Zone KeyMANAGEMENT

• createKey

• deleteKey

• rolloverNewKeyVersion

Use for the decryptEncryptedKey
operation.

Create Encryption KeyGENERATE_EEK

Use for the following operations:Decrypt Encryption KeyDECRYPT_EEK

• getKeyVersion

• getKeyVersions

• getMetadata

• getKeysMetadata

• getCurrentKey

Use for the following operations:ReadREAD

• getKeyVersion

• getKeyVersions

• getMetadata

• getKeysMetadata

• getCurrentKey

The whitelist.key.acl Class

This class controls permissions to perform key operations across all keys, and applies to key-specific ACLs.

Table 26: whitelist.key.acl.<OPERATION> Class

Description<OPERATION> Namewhitelist.key.acl.<OPERATION>

Use for the following operations:Manage the Zone KeyMANAGEMENT
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Description<OPERATION> Namewhitelist.key.acl.<OPERATION>

• createKey

• deleteKey

• rolloverNewKeyVersion

Use for the decryptEncryptedKey
operation.

Create Encryption KeyGENERATE_EEK

Use for the following operations:Decrypt Encryption KeyDECRYPT_EEK

• getKeyVersion

• getKeyVersions

• getMetadata

• getKeysMetadata

• getCurrentKey

Use for the following operations:ReadREAD

• getKeyVersion

• getKeyVersions

• getMetadata

• getKeysMetadata

• getCurrentKey

Important:

To successfully create an encryption zone, the HDFS Superuser must include the following two entries
in the whitelist.key.acl.<OPERATION>:

• GENERATE_EEK

• READ

These whitelist entries enable the NameNode to build per encryption zone key EEK caches when an
encryption zone is created.

KMS ACL Evaluation Flow

Before diving into the details of how KMS ACLs are evaluated, it is critical that you understand the key rules that the
KMS uses in performing this evaluation.

KMS ACL Flow Rules:

• The whitelist class bypasses key.acl and default.key.acl controls.
• The key.acl definitions override all default definitions.

The better you understand these rules, the more likely it is that you will be successful creating and managing KMS ACL
sets to achieve your desired goals.

Encryption key access is evaluated as follows:
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The KMS evaluates hadoop.kms.acl.<OPERATION> and hadoop.kms.blacklist.<OPERATION> classes to
determine whether or not access to a specific KMS feature or function is authorized.

In other words, a user must be allowed by hadoop.kms.acl.<OPERATION>, and not be disallowed by
hadoop.kms.blacklist.<OPERATION>.

If a user is blacklisted or otherwise not allowed access to a KMS-wide operation, then the flow halts and returns the
result "Denied".

If a user is allowed access to a KMS-wide operation, then the evaluation flow proceeds.

The KMS evaluates whitelist.key.acl class.

The KMS ACL workflow evaluates the whitelist.key.acl.<OPERATION>, and if the user is allowed access, then it
is granted ("Allowed") . If not, then the flow continues with the evaluation.

The KMS evaluates default.key.acl.<OPERATION>, and key.acl.<OPERATION> classes.

The KMS evaluates whether or not there is a key.acl.KEY.<OPERATION> that matches the action the user is
attempting to perform. If there is, it then evaluates that value to determine whether or not the user can perform the
requested operation.
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Note: Before evaluating the default.key.acl.<OPERATION> and key.acl.<OPERATION>, the
flow logic determines which classes exist. Only one of these can exist and be used at any time (for
example, key.acl.prodkey.READ would override default.key.acl.READ for prodkey, so it
will be configured with its own READ ACLs).

Depending on the result of the KMS ACL evaluation, controls are applied to the key and results (Allowed or Denied).

KMS ACL Syntax and Tips

Blacklist and Whitelist Syntax

The ACL syntax for both blacklist and whitelist entries is as follows:

• Users only: user1,user2,userN

There are no spaces following the commas separating the users in the list.

• Groups only: nobody group1,group2,groupN

There is a space between nobody and the comma-separated group list. The nobody user, if it exists, must not
have privileges to log in to or interact with the system. If you are uncertain about its access privileges, specify a
different nonexistent user in its place.

• Users and Groups: user1,user2,userN group1,group2,groupN

The comma-separated user list is separated from the comma-separated group list by a space.

Blocking User Access

If you wish to block access to an operation entirely, use the value of an empty space, or some non-existent values (for
example,'NOUSERS NOGROUPS'). By doing this, you ensure that no user maps to a particular operation by default.
Alternatively, you can restrict those features to Key Administrators only by setting the value to Keyadmin users and/or
groups.

Group Membership in KMS ACLs

The group membership used by ACL entries depends upon the configured group mapping mechanism for HDFS. By
default, group membership is determined on the local Linux system running the KMS service. If you have configured
HDFS to use LDAP for group mapping, then group membership for the ACL entries is determined using the configured
LDAP settings. For more information about LDAP-based group membership, see Configuring LDAP GroupMappings on
page 130.

Configuring KMS ACLs Using Cloudera Manager

Minimum Required Role: Key Administrator (also provided by Full Administrator)

The KMS installation wizard includes an option to generate the recommended ACLs. To view or edit the ACLs:

1. Go to the KMS service.
2. Click Configuration.
3. In the Search field, type acl to show the KeyManagement Server Advanced Configuration Snippet (Safety Valve)

for kms-acls.xml (in the Key Management Server Default Group category).
4. Add or edit the ACL properties according to your cluster configuration. See "Recommended KMS Access Control

List” for example ACL entries.
5. Click Save Changes.
6. Return to the Home page by clicking the Cloudera Manager logo, and return to the KMS service.
7. Click ( Refresh Needed) . Then click Refresh Cluster.
8. Click Finish.
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Recommended KMS ACL

Cloudera recommends the following ACL definition for secure production settings. Replace keyadmin and
keyadmingroup with the user and group responsible for maintaining encryption keys.

Note: If you are entering the ACL using ClouderaManager, omit the surrounding <configuration>
and </configuration> tags; Cloudera Manager adds this automatically.

<configuration>

<!--
KMS ACLs control which users can perform various actions on the KMS,and which
users and groups have access to which keys.

This file includes the following sections:
  * ACLs for KMS operations
  ** Access to specific KMS operations
  ** Blacklists for specific operations
  * ACLs for keys
  ** Default ACLs for keys
  ** Whitelist ACLs for keys
  ** Key-specific ACLs
-->

<!--
KMS ACLs that govern access to specific key operations. If access is not granted
for an operation here, then the operation is forbidden, even if a key ACL allows it.

The ACL value should be either a username or a username and groupname separated
by whitespace.

A value of "*" (for the username or groupname) indicates that all users are
granted access to that operation. Any operation for which there is no ACL or an
empty (zero-length) ACL is treated as having an ACL with a value of "*".
To disallow all users, add an ACL with a value of " " (a single space).

Note: This convention applies only to the KMS-wide ACLs beginning with 'hadoop.kms.acl'.
-->
<property>
  <name>hadoop.kms.acl.CREATE</name>
  <value>keyadmin keyadmingroup</value>
  <description>
    ACL for create-key operations.
    If the user is not in the GET ACL, the key material is not returned
    as part of the response.
  </description>
</property>

<property>
  <name>hadoop.kms.acl.DELETE</name>
  <value>keyadmin keyadmingroup</value>
  <description>
   ACL for delete-key operations.
  </description>
</property>

<property>
  <name>hadoop.kms.acl.ROLLOVER</name>
  <value>keyadmin keyadmingroup</value>
  <description>
    ACL for rollover-key operations.
    If the user does is not in the GET ACL, the key material is not returned as part of
 the response.
  </description>
</property>

<property>
  <name>hadoop.kms.acl.GET</name>
  <value></value>
  <description>
    ACL for get-key-version and get-current-key operations.
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  </description>
</property>

<property>
  <name>hadoop.kms.acl.GET_KEYS</name>
  <value>keyadmin keyadmingroup</value>
  <description>
    ACL for get-keys operations.
  </description>
</property>

<property>
  <name>hadoop.kms.acl.SET_KEY_MATERIAL</name>
  <value></value>
  <description>
    Complementary ACL for CREATE and ROLLOVER operations to allow the client to provide
 the
    key material when creating or rolling a key.
  </description>
</property>

<property>
  <name>hadoop.kms.acl.GENERATE_EEK</name>
  <value>hdfs supergroup</value>
  <description>
    ACL for generateEncryptedKey CryptoExtension operations.
  </description>
</property>

<!--
  KMS blacklists to prevent access to operations. These settings override the permissions
 granted by the KMS ACLs listed above.

  The blacklist value should be either a username or a username and groupname separated
 by whitespace.

  A blank value indicates that no user is blacklisted from the operation. A value of 
"*" (for either the username or
  groupname) indicates that all users are blacklisted from the operation. Any operation
 for which there is no blacklist
  will be treated as having a blacklist with an empty value.
-->

<!--
  In this template the hdfs user is blacklisted for everything except GET_METADATA, 
GET_KEYS, and GENERATE_EEK. The
  GET and SET_KEY_MATERIAL operations are blacklisted for all users because Hadoop users
 should not need to perform
  those operations, and access to the key material should be as restricted as possible.
-->

<property>
  <name>hadoop.kms.blacklist.CREATE</name>
  <value>hdfs supergroup</value>
</property>

<property>
  <name>hadoop.kms.blacklist.DELETE</name>
  <value>hdfs supergroup</value>
</property>

<property>
  <name>hadoop.kms.blacklist.ROLLOVER</name>
  <value>hdfs supergroup</value>
</property>

<property>
  <name>hadoop.kms.blacklist.GET</name>
  <value>*</value>
</property>

<property>
  <name>hadoop.kms.blacklist.GET_KEYS</name>
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  <value></value>
</property>

<property>
  <name>hadoop.kms.blacklist.SET_KEY_MATERIAL</name>
  <value>*</value>
</property>

<property>
  <name>hadoop.kms.blacklist.DECRYPT_EEK</name>
  <value>hdfs supergroup</value>
</property>

<property>
  <name>keytrustee.kms.acl.UNDELETE</name>
  <value></value>
  <description>
    ACL that grants access to the UNDELETE operation on all keys.
    Only used by Key Trustee KMS.
  </description>
</property>

<property>
  <name>keytrustee.kms.acl.PURGE</name>
  <value></value>
  <description>
    ACL that grants access to the PURGE operation on all keys.
    Only used by Key Trustee KMS.
  </description>
</property>

<!--
  Default key ACLs that govern access to key operations for key-operation pairs that do
 not have a
  key-specific ACL already. Key-specific ACLs override the default key ACLs.

  The ACL value should be either a username or a username and group name separated by 
whitespace.

  An empty value for an ACL indicates that no user is granted access to that operation.
 A value
  of "*" (for the username or groupname) indicates that all users are granted access to
 that operation.
  Any operation for which there is no ACL will be treated as having an ACL with an empty
 value.
-->

<property>
  <name>default.key.acl.MANAGEMENT</name>
  <value></value>
  <description>
    Default ACL that grants access to the MANAGEMENT operation on all keys.
  </description>
</property>

<property>
  <name>default.key.acl.GENERATE_EEK</name>
  <value></value>
  <description>
    Default ACL that grants access to the GENERATE_EEK operation on all keys.
  </description>
</property>

<property>
  <name>default.key.acl.DECRYPT_EEK</name>
  <value></value>
  <description>
    Default ACL that grants access to the DECRYPT_EEK operation on all keys.
  </description>
</property>

<property>
  <name>default.key.acl.READ</name>
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  <value></value>
  <description>
    Default ACL that grants access to the READ operation on all keys.
  </description>
</property>

<!--
  Whitelist key ACLs that grant access to key-specific operations. Any permissions 
granted here
  will be added to whatever permissions are granted by the specific key ACL or the 
default key ACL.
  Note that these whitelist ACLs grant access to operations on specific keys. If the 
operations
  are not allowed because of the KMS ACLs/blacklists, then the they will not be permitted,

  regardless of the whitelist settings.

  The ACL value should be either a username or a username and group name separated by 
whitespace.

  An empty value for an ACL indicates that no user is granted access to that operation.
 A value
  of "*" (for the username or groupname) indicates that all users are granted access to
 that
  operation. Any operation for which there is no ACL will
  be treated as having an ACL with an empty value.
-->

<property>
  <name>whitelist.key.acl.MANAGEMENT</name>
  <value>keyadmin keyadmingroup</value>
  <description>
    Whitelist ACL for MANAGEMENT operations for all keys.
  </description>
</property>

<property>
  <name>whitelist.key.acl.READ</name>
  <value>hdfs supergroup</value>
  <description>
    Whitelist ACL for READ operations for all keys.
  </description>
</property>

<property>
  <name>whitelist.key.acl.GENERATE_EEK</name>
  <value>hdfs supergroup</value>
  <description>
    Whitelist ACL for GENERATE_EEK operations for all keys.
  </description>
</property>

<property>
  <name>whitelist.key.acl.DECRYPT_EEK</name>
  <value>keyadmin keyadmingroup</value>
  <description>
    Whitelist ACL for DECRYPT_EEK operations for all keys.
  </description>
</property>

<!--
  Key ACLs that grant access to specific key operations. Any permissions granted here 
are added
  to whatever permissions are granted by the whitelists.
  The key ACL name should be key.acl.<keyname>.<OPERATION>.

  The ACL value should be either a username or a username and group name separated by 
whitespace.

  An empty value for an ACL indicates that no user is granted access to that operation.
 A value
  of "*" (for the username or group name) indicates that all users are granted access 
to that operation.
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  Any key operation for which there is no ACL will default to the default ACL for the 
operation.

  Normally adding users or groups for a specific key and DECRYPT_EEK is sufficient to 
allow access
  to data protected with HDFS data at rest encryption.
-->

<!--
  The following ACLs are required for proper functioning of services. Cloudera Manager
 does not create keys or
  encryption zones; however, our best practices recommend encryption zones on certain 
directories.
  An assumption in these ACLs is that the user has followed the recommended naming scheme
 and named the keys
  according to documented best practices: "hive-key" for the Hive service,
  "hbase-key" for the Hbase service, etc. If the key names are different, then none of
 this will work
  out of the box, and you will need to edit these ACLs to match your key names.
-->

<property>
  <name>key.acl.hive-key.DECRYPT_EEK</name>
  <value>hive hive</value>
  <description>
    Gives the Hive user and the Hive group access to the key named "hive-key".
    This allows the Hive service to read and write files in /user/hive/.
    Also note that the Impala user ought to be a member of the Hive group to enjoy this
 same access.
  </description>
</property>

<property>
  <name>key.acl.hive-key.READ</name>
  <value>hive hive</value>
  <description>
    Required because Hive compares key strengths when joining tables.
  </description>
</property>

<property>
  <name>key.acl.hbase-key.DECRYPT_EEK</name>
  <value>hbase hbase</value>
  <description>
    Gives the hbase user and hbase group access to the key named "hbase-key".
    This allows the hbase service to read and write files in /hbase.
  </description>
</property>

<property>
  <name>key.acl.solr-key.DECRYPT_EEK</name>
  <value>solr solr</value>
  <description>
    Gives the solr user and solr group access to the key named "solr-key".
    This allows the solr service to read and write files in /solr.
  </description>
</property>

<property>
  <name>key.acl.mapred-key.DECRYPT_EEK</name>
  <value>mapred,yarn hadoop</value>
  <description>
    Gives the mapred user and mapred group access to the key named "mapred-key".
    This allows mapreduce to read and write files in /user/history.
    This is required by YARN.
  </description>
</property>

<property>
  <name>key.acl.hue-key.DECRYPT_EEK</name>
  <value>oozie,hue oozie,hue</value>
  <description>
    Gives the appropriate users and groups access to the key named "hue-key".
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    This allows Hue and Oozie to read and write files in /user/hue.
    Oozie is required here because it will attempt to access workflows in 
/user/hue/oozie/workspaces.
  </description>
</property>

<!-- This example is required if there are encryption zones on user’s home directories.
 -->
<!--
<property>
  <name>key.acl.username-key.DECRYPT_EEK</name>
  <value>username username,hive,hbase,solr,oozie,hue,yarn</value>
  <description>
    Designed to be placed on a key that protects the EZ /user/username, and assumes that

    the key name is also "username-key"; this shows that a number of services can reach
 in
    to access data. Remove those that are not needed for your use case.
  </description>
</property>
-->

</configuration>    

Migrating from a Key Trustee KMS to an HSM KMS

In cases where your enterprise requires the highest level of encryption zone key (EZ key) security, or, it must adhere
to strict security certification compliance standards, you have the option of migrating from a Key Trustee KMS (KT
KMS) to a Hardware Security Module KMS (HSM KMS). Migrating from KT KMS to HSM KMS essentially means that
you are moving EZ key metadata from one KMS to another.

You should be aware of the following important points associated with the migration of key metadata from a KT KMS
to an HSM KMS:

• Only EZ key metadata (name, cipher, length, description, created, and versions) is migrated. Encryption zone key
material is notmigrated.

• EZ key versions on the destination KMS are distinct and disjoint from the EZ key versions on the source KMS.

The key isolation standards of the HSM KMS require that keys originate on and never leave the HSM. However,
importing key material (which includes the corresponding unique identifier and key version) would violate this
requirement. If you want to verify metadata after migrating to an HSM KMS, note that the key versions will be
different than before. With the Java Keystore KMS and KT KMS, this is not the case.

Before attempting a KT KMS to HSM KMS migration, you should be familiar with basic concepts about EZ keys and the
HSM KMS. For more details, see:

• Managing Encryption Keys and Zones on page 209
• Cloudera Navigator HSM KMS Overview

Requirements and Limitations

The following requirements and limitations apply to the KT KMS to HSM KMS migration of EZ key metadata:

• The KT KMS and HSM KMS must be on separate hosts. Running each KMS on a distinct node ensures that there
will be no conflicts, especially when both are running at the same time.

• Key Trustee Server must be configured with Key HSM using either the SafeNet Luna or Thales HSM.
• The KT KMS must remain active until all encrypted data encryption keys (EDEKs) are re-encrypted using an EZ key

version from the destination KMS. This is necessary so that you can continue to use EDEKs encrypted with an EZ
key version from the source KMS.

• It is recommended that the HSM KMS is installed, but not running as the default KMS for HDFS during the actual
migration.
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• The latency between the physical HSMandHSMKMSmust be low. It is recommended that themeasurable latency
be no higher than 30 milliseconds. Note that this latency can result in timeout conditions, as the EDEK must be
sent to the HSM to be encrypted and/or decrypted.

Migrating from a KT KMS to an HSM KMS

1. Copy the configuration file (kts-site.xml) from the KT KMS node to all HSM KMS nodes and, if not already the
owner, change the owner to 'kms':

root@kms-1.example.com> scp 
/var/run/cloudera-scm-agent/process/##--keytrustee-KMS_KEYTRUSTEE/kts-site.xml 
root@hsm-1.example.com:/tmp/kts-site.xml
# Where ## is the latest number that is present for keytrustee-KMS_KEYTRUSTEE in the 
process folder.

root@hsm-1.example.com> chown kms:kms /tmp/kts-site.xml

The kts-site configuration file includes required connection information about the Key Trustee servers to which
you will need to connect.

2. Copy the /var/lib/kms-keytrustee directory from the KT KMS node to all HSM KMS nodes:

root@kms-1.example.com> scp -r /var/lib/kms-keytrustee 
root@hsm-1.example.com:/var/lib/kms-keytrustee/
root@hsm-1.example.com> chown -R kms:kms /var/lib/kms-keytrustee

If you plan to re-encrypt with new keys, then you will require a way to decrypt the old keys first, before you can
re-encrypt them. Copying this directory ensures that you will have all the GPG keys necessary to contact, read,
and decrypt the EZ keys from the KT KMS.

3. If TLS is enabled, then import the Key Trustee Server certificates into the HSM KMS truststore on both nodes:

hsm-1.example.com> echo -n | openssl s_client -connect kts-1.example.com>11371 | sed 
-ne '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p' > /tmp/keytrustee_certificate.pem
# Use the default Oracle Java keytool to import the certificate:
/usr/java/jdk1.7.0_67/bin/keytool -importcert -keystore 
/path_to_truststore_file/truststore.jks -file /tmp/keytrustee_certificate.pem -alias 
kts1
# If Key Trustee Server HA is configured, then import certificates from both nodes.

4. If TLS is enabled, then add the following Java option to the Additional Java Configuration Options for the HSM
KMS. Use the HSM KMS truststore location from the previous step:

-Djavax.net.ssl.trustStore=/path_to_truststore_file/truststore.jks

5. Set the following Advanced Configuration Snippets for kms-site.xml (also known as "safety valves") on all HSM
KMS nodes, unless otherwise specified. Refer to Custom Configuration for details about safety valves.

1. Configure the re-encryption source URI file. The configuration information provided here instructs the HSM
to check the KT KMS for a key version (if it cannot be found in the HSM KMS).

Note: If TLS is enabled, use HTTPS. Otherwise, use HTTP.

<property>
<name>hadoop.kms.key.provider.reencryption.source.uri</name>
<value>kms://https@kms-1.example.com:16000/kms</value>
</property>

<property>
<name>hadoop.kms.key.provider.reencryption.source.uri</name>
<value>kms://http@kms-1.example.com:16000/kms</value>
</property>
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This new HSM KMS URI includes the old KT KMS configuration as a secondary source. If the HSM KMS does
not have that key version, then it reaches out to the KT KMS to try and locate it there. In cases where you
have several KMS nodes, specify them using a semi-colon (;).

2. Enable re-encryption:

<property>
<name>hadoop.kms.reencryption.crypto.enable</name>
<value>true</value>
</property>

3. Configure the location of the kts-site.xml file:

<property>
<name>cloudera.hsmkp.ktkms.config.dir</name>
<value>/path/to/kts-site.xml</value>
</property>  

4. Configure HSM-specific settings for the hadoop.kms.key.provider.uri:

For Luna, use the luna.keystore:
<property>
<name>hadoop.kms.key.provider.uri</name>
<value>cloudera.hsmkp://file@/${user.home}/luna.keystore,keytrustee://file@/var/lib/kms-keytrustee/keytrustee/.keytrustee</value>
</property>

For Thales, use the ncipher.keystore:
<property>
<name>hadoop.kms.key.provider.uri</name>
<value>cloudera.hsmkp://file@/${user.home}/ncipher.keystore,keytrustee://file@/var/lib/kms-keytrustee/keytrustee/.keytrustee</value>
</property>

6. Configure the following safety valve in kms-site.xml for a single Navigator HSM KMS Proxy role (for details,
refer to Overriding Configuration Properties):

<property>
<name>cloudera.hsmkp.initiatemigration</name>
<value>true</value>
</property>

7. (Optional) If the HSM KMS is operating in a topology where there is significant latency between the HSM KMS and
HSM (for example, an HSM KMS in the cloud with an HSM on premise), then you can configure cache sizes to
prevent timeouts (the values here are suggestions; you may need to fine tune them for your specific topology):

In hdfs-site.xml on HDFS:
<property>
<name>hadoop.security.kms.client.encrypted.key.cache.low-watermark</name>
<value>.05</value>
</property>
<property>
<name>hadoop.security.kms.client.encrypted.key.cache.size</name>
<value>40</value>
</property>

In kms-site.xml on all HSM KMS nodes:
<property>
<name>hadoop.security.kms.encrypted.key.cache.low-watermark</name>
<value>.05</value>
</property>
<property>
<name>hadoop.security.kms.encrypted.key.cache.size</name>
<value>40</value>
</property>
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8. If Kerberos is enabled, in the HSMKMS service configuration, set Zookeeper Authentication Type for Secret Signer
to sasl.

9. In the HDFS configuration, replace KT KMS with HSM KMS.
10. Start the HSM KMS, and then restart HDFS. Upon startup, key migration automatically occurs.
11. Post migration, it is recommended that you set cloudera.hsmkp.initiatemigration to false after key

migration completes (set in Step 5), and then restart the HSM KMS.

It is highly recommended that you re-encrypt encryption zones after migration is complete. For details about
re-encrypting EDEKs, refer to Re-encrypting Encrypted Data Encryption Keys (EDEKs) on page 214.

12. Before operating the new HSM KMS, it is recommended that you restore the properties
(hadoop.kms.key.provider.uri), and also remove and clean up the safety valves that you set previously, as
they are no longer necessary:

• cloudera.hsmkp.ktkms.config.dir

• hadoop.kms.key.provider.reencryption.source.uri

• hadoop.kms.reencryption.crypto.enable

13. (For Luna HSM) To restore hadoop.kms.key.provider.uri:
cloudera.hsmkp://file@/${user.home}/luna.keystore

14. (For Thales HSM) To restore hadoop.kms.key.provider.uri:
cloudera.hsmkp://file@/${user.home}/ncipher.keystore

Migrating Keys from a Java KeyStore to Cloudera Navigator Key Trustee Server

You can migrate keys from an existing Java KeyStore (JKS) to Key Trustee Server to improve security, durability, and
scalability. If you are using the Java KeyStore KMS service, and want to use Key Trustee Server as the backing key store
for HDFS Transparent Encryption on page 194, use the following procedure.

This procedure assumes that the Java KeyStore (JKS) is on the same host as the new Key Trustee KMS service.

1. Stop the Java KeyStore KMS service.
2. Add and configure the Key Trustee KMS service, and configure HDFS to use it for its KMS Service setting. For more

information about how to install Key Trustee KMS, see Installing Key Trustee KMS.
3. Restart the HDFS service and redeploy client configuration for this to take effect:

a. Home > Cluster-wide > Deploy Client Configuration

4. Add the following to the Key Management Server Proxy Advanced Configuration Snippet (Safety Valve) for
kms-site.xml (Key Trustee KMS Service > Configuration > Category > Advanced):

<property>
  <name>hadoop.kms.key.provider.uri</name>

<value>keytrustee://file@/var/lib/kms-keytrustee/keytrustee/.keytrustee/,jceks://file@/path/to/kms.keystore</value>

  <description>URI of the backing KeyProvider for the KMS</description>
</property>

<property>
  <name>hadoop.security.keystore.java-keystore-provider.password-file</name>
  <value>/tmp/password.txt</value>
  <description>Java KeyStore password file</description>
</property>

If the Java KeyStore is not password protected, omit the
hadoop.security.keystore.java-keystore-provider.password-file property.

5. Click Save Changes and restart the Key Trustee KMS service. If the Java KeyStore is not password protected, skip
to step 7.

6. Create the file
/var/lib/keytrustee-kms/jetty-deployment/webapps/kms/WEB-INF/classes/tmp/password.txt

and add the Java KeyStore password to it.
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7. Change the ownership of
/var/lib/keytrustee-kms/jetty-deployment/webapps/kms/WEB-INF/classes/tmp/password.txt

to kms:kms:

sudo chown kms:kms 
/var/lib/keytrustee-kms/jetty-deployment/webapps/kms/WEB-INF/classes/tmp/password.txt

8. From the host running the Key Trustee KMS service, if you have not configured Kerberos and TLS/SSL, run the
following command:

curl -L -d "trusteeOp=migrate" 
"http://kms01.example.com:16000/kms/v1/trustee/key/migrate?user.name=username&trusteeOp=migrate"

If you have configured Kerberos and TLS/SSL, use the following command instead:

curl --negotiate -u : -L -d "trusteeOp=migrate" 
"https://kms01.example.com:16000/kms/v1/trustee/key/migrate?user.name=username&trusteeOp=migrate"
 --cacert /path/to/kms/cert

9. Monitor/var/log/kms-keytrustee/kms.logand/var/log/kms-keytrustee/kms-catalina.<date>.log
to verify that the migration is successful. You can also run sudo -u <key_admin> hadoop key list to verify
that the keys are listed.

10. After you have verified that the migration is successful, remove the safety valve entry used in step 3 and restart
the Key Trustee KMS service.

Migrating a Key Trustee KMS Server Role Instance to a New Host

Note: This migration procedure applies only to the Key Trustee KMS Server, and does not apply to
the Key Trustee Server. Do not attempt this migration on the Key Trustee Server.

In some cases–for example, after upgrading your servers–it is desirable to migrate a Key Trustee KMS Server role
instance to a new host. This procedure describes how to move a Key Trustee KMS proxy service role instance from an
existing cluster host to another cluster host. The security and performance requirements for the KMS proxy are based
on providing a dedicated system to the role, and not shared with CDH or other services. The KMS proxy represents a
service that must be:

• secure
• isolated from non-administrator access
• maintained as a systemwith a higher level of isolation and security requirements compared to other cluster nodes

Assumptions and Requirements

Warning: Do not attempt thismigration procedure on any Key Trustee KMS version lower than 5.16.0.

The following assumptions and requirements apply during the migration of a Key Trustee KMS server role instance to
a new host as described in this procedure:

• Complete the steps one node at a time (migrate to the first new node, verify, then repeat the steps to migrate to
second new node, verify, and so on).

• The sequence of restarts indicated throughout the steps are critical to successfully completing the migration
without data loss. Do not skip any of the steps.

• As required for any KMS service that is configured for HA, Zookeeper must be deployed as a service (true by
default). Refer to Adding a Service for details about how to add services.

• Review and examine TLS and Kerberos configuration requirements: the new KMS nodesmust be ready with a Java
Keystore and Truststore that present the correct host certificates while also trusting the Key Trustee Server. If the
custom Kerberos keytab retrieval script is in use for Kerberos integration, it is important to have those keytabs
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ready and ingested before proceeding. Refer to Using a Custom Kerberos Keytab Retrieval Script on page 66 for
details.

• For this use case/procedure, assume that the existing KMS proxy host instances are named:

– ktkms01.example.com

– ktkms02.example.com

• Assume that the host destination instances are:

– ktkms03.example.com

– ktkms04.example.com

Migrating a Key Trustee KMS Server Role Instance to a New Host

1. Back up the Key Trustee KMS private key and configuration directory. See Backing Up and Restoring Key Trustee
Server and Clients on page 249 for more information.

2. Before adding the new role instance, see Resource Planning for Data at Rest Encryption on page 193 for
considerations when selecting a host.

3. Run the Add Role Instances wizard for the Key Trustee KMS service (Key Trustee KMS service > Actions > Add
Role Instances).

4. Click Select hosts and select the checkbox for the host to which you are adding the new Key Management Server
proxy service role instance. Click OK and then Continue.

5. On the Review Changes page of the wizard, confirm the authorization code, organization name, and settings, and
then click Finish.

6. Select and start the new KMS instance (Actions for Selected > Start).

Important:

The initial startup of the KMS instance may fail with the following error message:

java.io.IOException: Unable to verify private key match between KMS
 hosts. If the system has been recently upgraded, DO NOT TAKE FURTHER
 ACTION and contact your support representative as soon as possible.
 If this is a new installation, verify private key files have been 
synced between all KMS hosts. Aborting to prevent data inconsistency.

If this occurs, it indicates that the KMS attempted to verify the Key Trustee private key has been
synchronized with the new instance, but was unable to because that synchronization has not yet
taken place. This is expected behavior at this point in the process. Proceed to the next step, and
the new KMS instance will come up when the KMS service is restarted after the synchronization.

7. Verify that a Kerberos HTTP principal has been created for that specific host role instance in the Security
configuration interface (Administration > Security > Kerberos Credentials)).

For example, in this scenario the existing KMSKerberos principal isHTTP/ktkms01.example.com@EXAMPLE.COM,
and you must verify the new host principal HTTP/ktkms03.example.com@EXAMPLE.COM has been created
before continuing. If you cannot verify the new host principal, then click Generate Missing Credentials on the
Kerberos Credentials tab to generate it before continuing.

If the custom Kerberos keytab retrieval script is in use for Kerberos integration, it is important to have those
keytabs ready and ingested before proceeding. Refer to Using a Custom Kerberos Keytab Retrieval Script on page
66 for details.

8. Synchronize the Key Trustee KMS private key. In this use case you log into the original working KMS instance host,
which is ktkms01.example.com, and synchronize the keys from your existing KMShost ktkms01.example.com
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to the new host to which you are migrating, ktkms03.example.com. Copy the private key over the network by
running the following command as a privileged (root) user on the original Key Trustee KMS host:

rsync -zav /var/lib/kms-keytrustee/keytrustee/.keytrustee 
root@ktkms03.example.com:/var/lib/kms-keytrustee/keytrustee/.

Replace the host name (here we are using ktkms03.example.com) with the hostname of the Key Trustee KMS
host to which you are migrating.

Warning: It is very important that you perform this step. If the KMS private key is not copied
from the existing instance to the new instance, then the encryption keyswill be inaccessiblewhen
the old KMS instance is removed from the cluster.

9. To verify that the Key Trustee KMS private keys successfully synchronized, compare the MD5 hash of the private
keys. On each Key Trustee KMS host, run the following command:

$ md5sum /var/lib/kms-keytrustee/keytrustee/.keytrustee/secring.gpg

If the outputs are different, contact Cloudera Support for assistance. Do not attempt to synchronize existing keys.
If you overwrite the private key and do not have a backup, any keys encrypted by that private key are permanently
inaccessible, and any data encrypted by those keys is permanently irretrievable. If you are configuring Key Trustee
KMS high availability for the first time, continue synchronizing the private keys.

10. Restart the Key Trustee KMS service (Key Trustee KMS service > Actions > Restart). After the restart completes,
click Close.

11. Restart the cluster. This refreshes all the KMS instances in the cluster, and ensures all stale services are restarted.
12. Redeploy the client configuration (Home > Cluster > Deploy Client Configuration).
13. Run the steps in Validating Hadoop Key Operations on page 209. Perform the check multiple times to exercise the

Load balanced KMS nodes properly. If a command fails during this test, stop immediately, halt the cluster, and
contact Cloudera Support.

14. Remove the old KMS instance beingmigrated. First stop the KMS instance (ktkms01.example.com) (Select KMS
instance > Actions for Selected > Stop), and then delete it (Select KMS instance > Actions for Selected > Delete).

Delete the /var/lib/kms-keytrustee directories on the old KMS instance only after configuring and verifying
the new KMS instances. Delete this material only after completing the following tasks:

1. Remove the old KMS instances from the KMS service.
2. Verify that you can read previously encrypted data only using the new KMS instances.

15. Restart the cluster. This refreshes all the KMS instances in the cluster, and ensures all stale services are restarted.
16. Redeploy the client configuration (Home > Clusterwide > Deploy Client Configuration).
17. Re-run the steps in Validating Hadoop Key Operations on page 209. Perform the check multiple times to exercise

the Load balanced KMS nodes properly. If a command fails during this test, stop immediately, and halt the cluster.
18. Repeat these steps for any additional KMS node migrations you wish to perform. So in the use case shown here,

we would repeat the steps to migrate the ktkms02.example.com host to the ktkms04.example.com host.

Configuring CDH Services for HDFS Encryption

Note: This page contains references to CDH 5 components or features that have been removed from
CDH6. These references are only applicable if you aremanaging a CDH5 clusterwith ClouderaManager
6. For more information, see Deprecated Items.

This page contains recommendations for setting upHDFS Transparent Encryption on page 194with various CDH services.
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Important: HDFS encryption does not support file transfer (reading, writing files) between zones
through WebHDFS. For web-based file transfer between encryption zones managed by HDFS, use
HttpFS with a load balancer instead.

Important: Encrypting /tmp using HDFS encryption is not supported.

HBase

Recommendations

Make /hbase an encryption zone. Do not create encryption zones as subdirectories under /hbase, because HBase
may need to rename files across those subdirectories.When you create the encryption zone, name the key hbase-key
to take advantage of auto-generatedKMS ACLs .

Steps

On a cluster without HBase currently installed, create the /hbase directory and make that an encryption zone.

On a cluster with HBase already installed, perform the following steps:

1. Stop the HBase service.
2. Move data from the /hbase directory to /hbase-tmp.
3. Create an empty /hbase directory and make it an encryption zone.
4. Distcp all data from /hbase-tmp to /hbase, preserving user-group permissions and extended attributes.
5. Start the HBase service and verify that it is working as expected.
6. Remove the /hbase-tmp directory.

KMS ACL Configuration for HBase

In theKMS ACL, grant the hbase user and group DECRYPT_EEK permission for the HBase key:

<property>
  <name>key.acl.hbase-key.DECRYPT_EEK</name>
  <value>hbase hbase</value>
  </description>
</property>

Hive

HDFS encryption has been designed so that files cannot be moved from one encryption zone to another or from
encryption zones to unencrypted directories. Therefore, the landing zone for datawhen using the LOAD DATA INPATH
command must always be inside the destination encryption zone.

To use HDFS encryption with Hive, ensure you are using one of the following configurations:

Single Encryption Zone

With this configuration, you can use HDFS encryption by having all Hive data inside the same encryption zone. In
Cloudera Manager, configure the Hive Scratch Directory (hive.exec.scratchdir) to be inside the encryption zone.

Recommended HDFS Path: /user/hive

To use the auto-generated KMS ACL, make sure you name the encryption key hive-key.

For example, to configure a single encryption zone for the entire Hive warehouse, you can rename /user/hive to
/user/hive-old, create an encryption zone at /user/hive, and then distcp all the data from /user/hive-old

to /user/hive.
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In Cloudera Manager, configure the Hive Scratch Directory (hive.exec.scratchdir) to be inside the encryption
zone by setting it to /user/hive/tmp, ensuring that permissions are 1777 on /user/hive/tmp.

Multiple Encryption Zones

With this configuration, you can use encrypted databases or tables with different encryption keys. To read data from
read-only encrypted tables, users must have access to a temporary directory that is encrypted at least as strongly as
the table.

For example:

1. Configure two encrypted tables, ezTbl1 and ezTbl2.
2. Create two new encryption zones, /data/ezTbl1 and /data/ezTbl2.
3. Load data to the tables in Hive using LOAD statements.

For more information, see Changed Behavior after HDFS Encryption is Enabled on page 244.

Other Encrypted Directories

• LOCALSCRATCHDIR: The MapJoin optimization in Hive writes HDFS tables to a local directory and then uploads
them to the distributed cache. To ensure these files are encrypted, either disable MapJoin by setting
hive.auto.convert.join to false, or encrypt the local Hive Scratch directory
(hive.exec.local.scratchdir) using Cloudera Navigator Encrypt.

• DOWNLOADED_RESOURCES_DIR: JARs that are added to a user session and stored in HDFS are downloaded to
hive.downloaded.resources.dir on the HiveServer2 local filesystem. To encrypt these JAR files, configure
Cloudera Navigator Encrypt to encrypt the directory specified by hive.downloaded.resources.dir.

• NodeManager Local Directory List: Hive stores JARs and MapJoin files in the distributed cache. To use MapJoin
or encrypt JARs and other resource files, the yarn.nodemanager.local-dirs YARN configuration property
must be configured to a set of encrypted local directories on all nodes.

Changed Behavior after HDFS Encryption is Enabled

• Loading data from one encryption zone to another results in a copy of the data. Distcp is used to speed up the
process if the size of the files being copied is higher than the value specified by HIVE_EXEC_COPYFILE_MAXSIZE.
The minimum size limit for HIVE_EXEC_COPYFILE_MAXSIZE is 32 MB, which you can modify by changing the
value for the hive.exec.copyfile.maxsize configuration property.

• When loading data to encrypted tables, Cloudera strongly recommends using a landing zone inside the same
encryption zone as the table.

– Example 1: Loading unencrypted data to an encrypted table - Use one of the following methods:

– If you are loading new unencrypted data to an encrypted table, use the LOAD DATA ... statement.
Because the source data is not inside the encryption zone, the LOAD statement results in a copy. For this
reason, Cloudera recommends landing data that you need to encrypt inside the destination encryption
zone. You can use distcp to speed up the copying process if your data is inside HDFS.

– If the data to be loaded is already inside a Hive table, you can create a new table with a LOCATION inside
an encryption zone as follows:

CREATE TABLE encrypted_table [STORED AS] LOCATION ... AS SELECT * FROM <unencrypted_table>

The location specified in the CREATE TABLE statement must be inside an encryption zone. Creating a
table pointing LOCATION to an unencrypted directory does not encrypt your source data. Youmust copy
your data to an encryption zone, and then point LOCATION to that zone.

– Example 2: Loading encrypted data to an encrypted table - If the data is already encrypted, use the CREATE
TABLE statement pointingLOCATION to the encrypted source directory containing the data. This is the fastest
way to create encrypted tables.

CREATE TABLE encrypted_table [STORED AS] LOCATION ... AS SELECT * FROM 
<encrypted_source_directory>
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• Users reading data from encrypted tables that are read-only must have access to a temporary directory which is
encrypted with at least as strong encryption as the table.

• Temporary data is now written to a directory named .hive-staging in each table or partition
• Previously, an INSERT OVERWRITE on a partitioned table inherited permissions for new data from the existing

partition directory. With encryption enabled, permissions are inherited from the table.

KMS ACL Configuration for Hive

When Hive joins tables, it compares the encryption key strength for each table. For this operation to succeed, you
must configure the KMS ACL to allow the hive user and group READ access to the Hive key:

<property>
  <name>key.acl.hive-key.READ</name>
  <value>hive hive</value>
</property>

If you have restricted access to the GET_METADATA operation, you must grant permission for it to the hive user or
group:

<property>
  <name>hadoop.kms.acl.GET_METADATA</name>
  <value>hive hive</value>
</property>

If you have disabled HiveServer2 Impersonation on page 87 (for example, to use Apache Sentry), you must configure
the KMS ACLs to grant DECRYPT_EEK permissions to the hive user, as well as any user accessing data in the Hive
warehouse.

Cloudera recommends creating a group containing all Hive users, and granting DECRYPT_EEK access to that group.

For example, suppose user jdoe (homedirectory /user/jdoe) is a Hive user and amember of the group hive-users.
The encryption zone (EZ) key for /user/jdoe is named jdoe-key, and the EZ key for /user/hive is hive-key. The
following ACL example demonstrates the required permissions:

<property>
  <name>key.acl.hive-key.DECRYPT_EEK</name>
  <value>hive hive-users</value>
</property>

<property>
  <name>key.acl.jdoe-key.DECRYPT_EEK</name>
  <value>jdoe,hive</value>
</property>

If you have enabled HiveServer2 impersonation, data is accessed by the user submitting the query or job, and the user
account (jdoe in this example) may still need to access data in their home directory. In this scenario, the required
permissions are as follows:

<property>
  <name>key.acl.hive-key.DECRYPT_EEK</name>
  <value>nobody hive-users</value>
</property>

<property>
  <name>key.acl.jdoe-key.DECRYPT_EEK</name>
  <value>jdoe</value>
</property>

Hue

Recommendations

Make /user/hue an encryption zone becauseOozieworkflows and other Hue-specific data are stored there by default.
When you create the encryption zone, name the key hue-key to take advantage of auto-generatedKMS ACLs .
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Steps

On a cluster without Hue currently installed, create the /user/hue directory and make it an encryption zone.

On a cluster with Hue already installed:

1. Create an empty /user/hue-tmp directory.
2. Make /user/hue-tmp an encryption zone.
3. DistCp all data from /user/hue into /user/hue-tmp.
4. Remove /user/hue and rename /user/hue-tmp to /user/hue.

KMS ACL Configuration for Hue

In the KMS ACLs, grant the hue and oozie users and groups DECRYPT_EEK permission for the Hue key:

<property>
  <name>key.acl.hue-key.DECRYPT_EEK</name>
  <value>oozie,hue oozie,hue</value>
</property>

Impala

Recommendations

• If HDFS encryption is enabled, configure Impala to encrypt data spilled to local disk.

• In releases lower than Impala 2.2.0 / CDH 5.4.0, Impala does not support the LOAD DATA statement when the
source and destination are in different encryption zones. If you are running an affected release and need to use
LOAD DATA with HDFS encryption enabled, copy the data to the table's encryption zone prior to running the
statement.

• Use Cloudera Navigator to lock down the local directory where Impala UDFs are copied during execution. By
default, Impala copies UDFs into /tmp, and you can configure this location through the --local_library_dir
startup flag for the impalad daemon.

• Limit the rename operations for internal tables once encryption zones are set up. Impala cannot do an ALTER
TABLE RENAME operation to move an internal table from one database to another, if the root directories for
those databases are in different encryption zones. If the encryption zone covers a table directory but not the
parent directory associated with the database, Impala cannot do an ALTER TABLE RENAME operation to rename
an internal table, even within the same database.

• Avoid structuring partitioned tables where different partitions reside in different encryption zones, or where any
partitions reside in an encryption zone that is different from the root directory for the table. Impala cannot do an
INSERT operation into any partition that is not in the same encryption zone as the root directory of the overall
table.

• If the data files for a table or partition are in a different encryption zone than the HDFS trashcan, use the PURGE
keyword at the end of the DROP TABLE or ALTER TABLE DROP PARTITION statement to delete the HDFS data
files immediately. Otherwise, the data files are left behind if they cannot be moved to the trashcan because of
differing encryption zones. This syntax is available in Impala 2.3 / CDH 5.5 and higher.

Steps

Start every impalad process with the --disk_spill_encryption=true flag set. This encrypts all spilled data using
AES-256-CFB. Set this flag by selecting theDisk Spill Encryption checkbox in the Impala configuration (Impala service >
Configuration > Category > Security).

Important: Impala does not selectively encrypt data based on whether the source data is already
encrypted in HDFS. This results in at most 15 percent performance degradation when data is spilled.
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KMS ACL Configuration for Impala

Cloudera recommendsmaking the impala user amember of the hive group, and following the ACL recommendations
in KMS ACL Configuration for Hive on page 245.

MapReduce and YARN
MapReduce v1

Recommendations

MRv1 stores both history and logs on local disks by default. Even if you do configure history to be stored on HDFS, the
files are not renamed. Hence, no special configuration is required.

MapReduce v2 (YARN)

Recommendations

Make /user/history a single encryption zone, because history files are moved between the intermediate and
done directories, and HDFS encryption does not allow moving encrypted files across encryption zones. When you
create the encryption zone, name the key mapred-key to take advantage of auto-generated KMS ACLs.

Steps

On a cluster with MRv2 (YARN) installed, create the /user/history directory and make that an encryption zone.

If /user/history already exists and is not empty:

1. Create an empty /user/history-tmp directory.
2. Make /user/history-tmp an encryption zone.
3. DistCp all data from /user/history into /user/history-tmp.
4. Remove /user/history and rename /user/history-tmp to /user/history.

KMS ACL Configuration for MapReduce

In the KMS ACLs, grant DECRYPT_EEK permission for the MapReduce key to the mapred and yarn users and the
hadoop group:

<property>
  <name>key.acl.mapred-key.DECRYPT_EEK</name>
  <value>mapred,yarn hadoop</value>
  </description>
</property>

Search

Recommendations

Make /solr an encryption zone. When you create the encryption zone, name the key solr-key to take advantage
of auto-generated Configuring KMS Access Control Lists (ACLs) on page 221KMS ACLs.

Steps

On a cluster without Solr currently installed, create the /solr directory and make that an encryption zone.

On a cluster with Solr already installed:

1. Create an empty /solr-tmp directory.
2. Make /solr-tmp an encryption zone.
3. DistCp all data from /solr into /solr-tmp.
4. Remove /solr, and rename /solr-tmp to /solr.

Cloudera Security | 247

Encrypting Data at Rest



KMS ACL Configuration for Search

In the KMS ACL, grant the solr user and group DECRYPT_EEK permission for the Solr key:

<property>
  <name>key.acl.solr-key.DECRYPT_EEK</name>
  <value>solr solr</value>
  </description>
</property>

Spark

Recommendations

• By default, application event logs are stored at /user/spark/applicationHistory, which can be made into
an encryption zone.

• Spark also optionally caches its JAR file at /user/spark/share/lib (by default), but encrypting this directory
is not required.

• Spark does not encrypt shuffle data. To do so, configure the Spark local directory,spark.local.dir (in Standalone
mode), to reside on an encrypted disk. For YARN mode, make the corresponding YARN configuration changes.

KMS ACL Configuration for Spark

In the KMS ACLs, grant DECRYPT_EEK permission for the Spark key to the spark user and any groups that can submit
Spark jobs:

<property>
  <name>key.acl.spark-key.DECRYPT_EEK</name>
  <value>spark spark-users</value>
</property>

Sqoop

Recommendations

• For Hive support: Ensure that you are using Sqoop with the --target-dir parameter set to a directory that is
inside the Hive encryption zone. For more details, see Hive on page 243.

• For append/incremental support:Make sure that the sqoop.test.import.rootDir property points to the
same encryption zone as the --target-dir argument.

• For HCatalog support: No special configuration is required.
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Cloudera Navigator Key Trustee Server

Cloudera Navigator Key Trustee Server is an enterprise-grade cryptographic key storage and management system used
by ClouderaNavigator Encrypt on page 277 that separates encryption keys from the data, thus ensuring data is protected
even if unauthorized users gain access to the storage media. It enables your cluster to meet the strictest data security
regulations. Furthermore, Navigator Key Trustee Server can be integrated with a hardware security module (HSM) to
provide the highest level of security for your keys. See Cloudera Navigator Key HSM on page 267 for details.

In addition, Navigator Key Trustee Server can be used by other cluster components. For example, HDFS Transparent
Encryption on page 194 can use Navigator Key Trustee Server (KTS) as its backing key store (for Hadoop KMS, instead
of the default Java KeyStore) for better security and scalability. See Migrating Keys from a Java KeyStore to Cloudera
Navigator Key Trustee Server on page 239 for more information about using Navigator KTS with HDFS encryption.

Important: Cloudera recommends that each cluster use its own KTS instance. Although sharing a
single KTS across clusters is technically possible, it is neither approved nor supported for security
reasons—specifically, the increased security risks associated with single point of failure for encryption
keys used by multiple clusters.

After Installing Cloudera Navigator Key Trustee Server, follow the steps below to manage the system:

Backing Up and Restoring Key Trustee Server and Clients
Key Trustee Server high availability applies to read operations only. If either Key Trustee Server fails, the client
automatically retries fetching keys from the functioning server. New write operations (for example, creating new
encryption keys) are not allowed unless both Key Trustee Servers are operational.

If a Key Trustee Server fails catastrophically, you must restore it from backup to a new host with the same hostname
and IP address as the failed host. Cloudera does not support PostgreSQL promotion to convert a passive Key Trustee
Server to an active Key Trustee Server.

Cloudera strongly recommends regularly backing up Key Trustee Server databases and configuration files. Because
these backups contain encryption keys and encrypted deposits, you must ensure that your backup repository is as
secure as the Key Trustee Server.

You must also back up client configuration files and keys for Key Trustee Server clients, such as Key Trustee KMS and
Navigator Encrypt clients.

Note: In an HA configuration, the backup need only be performed on one of the hosts for Key Trustee
Server and the Key Trustee KMS. For Key Trustee Server, run the backup on the active server. For Key
Trustee KMS, you can run the backup on any instance.

Backing Up Key Trustee Server and Key Trustee KMS Using Cloudera Manager

Cloudera Manager versions 5.8 and higher, when used with Key Trustee Server and Key Trustee KMS versions 5.7 and
higher, allow for backups of the KT Server and KT KMS configurations.

The actions executed in this procedure are equivalent to running the ktbackup.sh script on the node in question
(see BackingUp Key Trustee Server and Key Trustee KMSUsing the ktbackup.sh Script on page 250 for additional details.

In addition, when using the HDFS Encryption Wizard in Cloudera Manager 5.8 or higher to install and configure Key
Trustee Server and Key Trustee KMS versions 5.7 and higher, a cron job is automatically set up to back up the Key
Trustee Server on an ongoing basis. See Initializing Standalone Key Trustee Server on page 259 for more detail.

To back up the KT Server or KT KMS service configuration using Cloudera Manager:

1. Select the KT Server or KMS service configuration that you wish to back up.
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2. For a KT Server backup, select Create Backup on Active Server (or Create Backup on Passive Server) from the
Actions menu. For a KMS backup, select Create Backup.

A successfully completed backup of the KT Server is indicated by the message “Command Create Backup on Active
Server finished successfully on service keytrustee_server”.

Backing Up Key Trustee Server and Key Trustee KMS Using the ktbackup.sh Script

Key Trustee Server releases 5.7 and higher include a script, ktbackup.sh, to simplify and automate backing up Key
Trustee Server. Key Trustee KMS releases 5.7 and higher include the same script for backing up Key Trustee KMS.

When run on a Key Trustee Server host, the script creates a tarball containing the Key Trustee Server private GPG keys
and the PostgreSQL database. When run on a Key Trustee KMS host, the script creates a tarball containing the Key
Trustee KMS private GPG keys and configuration file.

To preserve the security of the backup, you must specify a GPG recipient. Because this recipient is the only entity that
can decrypt the backup, the recipient must be someone authorized to access the Key Trustee Server database, such
as a key administrator.

Creating and Importing a GPG Key for Encrypting and Decrypting Backups

If the key administrator responsible for backing up and restoring Key Trustee Server and Key Trustee KMS does not
already have a GPG key pair, they can create one using the gpg --gen-key command. The following example
demonstrates this procedure:

Note: By default, gpg --gen-key fails at the password prompt if you have logged in to your user
account with the su command. You must log in to the SSH session with the user account for which
you want to generate the GPG key pair.

[john.doe@backup-host ~]$ gpg --gen-key
gpg (GnuPG) 2.0.14; Copyright (C) 2009 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Please select what kind of key you want:
   (1) RSA and RSA (default)
   (2) DSA and Elgamal
   (3) DSA (sign only)
   (4) RSA (sign only)
Your selection? 1
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048)
Requested keysize is 2048 bits
Please specify how long the key should be valid.
         0 = key does not expire
      <n>  = key expires in n days
      <n>w = key expires in n weeks
      <n>m = key expires in n months
      <n>y = key expires in n years
Key is valid for? (0)
Key does not expire at all
Is this correct? (y/N) y

GnuPG needs to construct a user ID to identify your key.

Real name: John Doe
Email address: john.doe@example.com
Comment: Key Trustee Backup
You selected this USER-ID:
    "John Doe (Key Trustee Backup) <john.doe@example.com>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O
You need a Passphrase to protect your secret key.

can't connect to `/home/john.doe/.gnupg/S.gpg-agent': No such file or directory
gpg-agent[10638]: directory `/home/john.doe/.gnupg/private-keys-v1.d' created
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We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
We need to generate a lot of random bytes. It is a good idea to perform
some other action (type on the keyboard, move the mouse, utilize the
disks) during the prime generation; this gives the random number
generator a better chance to gain enough entropy.
gpg: /home/john.doe/.gnupg/trustdb.gpg: trustdb created
gpg: key 0936CB67 marked as ultimately trusted
public and secret key created and signed.

gpg: checking the trustdb
gpg: 3 marginal(s) needed, 1 complete(s) needed, PGP trust model
gpg: depth: 0  valid:   1  signed:   0  trust: 0-, 0q, 0n, 0m, 0f, 1u
pub   2048R/0936CB67 2016-02-10
      Key fingerprint = CE57 FDED 3AFE E67D 2041  9EBF E64B 7D00 0936 CB67
uid                  John Doe (Key Trustee Backup) <john.doe@example.com>
sub   2048R/52A6FC5C 2016-02-10

After the GPG key pair is generated, you can export the public key:

[john.doe@backup-host ~]$ gpg --armor --output /path/to/johndoe.pub --export 'John Doe'

Copy the public key (johndoe.pub in this example) to the Key Trustee Server or Key Trustee KMS host, and import it
into the service account keyring (keytrustee for Key Trustee Server and kms for Key Trustee KMS):

• On the Key Trustee Server host:

sudo -u keytrustee gpg --import /path/to/johndoe.pub

• On the Key Trustee KMS host:

sudo -u kms gpg --import /path/to/johndoe.pub

Running the ktbackup.sh Script

You must run ktbackup.sh as the service account. The location of the script depends on the service and installation
method. See the following table for the script location and default service account for package- and parcel-based
installations for Key Trustee Server and Key Trustee KMS.

Table 27: Backup Script Locations

Package-Based InstallationParcel-Based InstallationService AccountService

/usr/bin/ktbackup.sh/opt/cloudera/parcels/KEYTRUSTEE_SERVER/bin/ktbackup.shkeytrusteeKey Trustee Server

/usr/share/keytrustee-keyprovider/bin/ktbackup.sh/opt/cloudera/parcels/KEYTRUSTEE/bin/ktbackup.shkmsKey Trustee KMS

The following table lists the command options for ktbackup.sh.

Table 28: Command Options for ktbackup.sh

DescriptionCommand Option

Specifies the Key Trustee configuration directory. Defaults
to /var/lib/keytrustee/.keytrustee for

-c, --confdir=CONFDIR

parcel-based Key Trustee Server. For Key Trustee KMS and
package-based Key Trustee Server, you must specify this
option.
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DescriptionCommand Option

Specifies the Key Trustee Server database port. Defaults
to11381 for parcel-based installations. For package-based

--database-port=PORT

Key Trustee Server installations, you must specify this
option.

Specifies the GPG recipient. The backup is encrypted with
the public key of the specified recipient. The GPG recipient

--gpg-recipient=GPG_RECIPIENT

public key must be imported into the service account
keyring before running the script. See Creating and
Importing a GPG Key for Encrypting and Decrypting
Backups on page 250 for more information.

Outputs an unencrypted tarball. To preserve the security
of the cryptographic keys, do not use this option in
production environments.

--cleartext

Specifies the output directory for the tarball. Defaults to
/var/lib/keytrustee for parcel-based Key Trustee

--output=DIR

Server. For Key Trustee KMS and package-based Key
Trustee Server, you must specify this option.

Deletes backups older than the last n backups from the
directory specified by the --output parameter. For

--roll=n

example, if you have 10 backups, specifying --roll=10
creates a new backup (11 backups total) and then delete
the oldest backup. Specifying --roll=1 creates a new
backup and then deletes all other backups.

Note: This option works for Key Trustee
Server only.

Suppresses console logmessages and, if successful, returns
only the backup tarball file path. This is useful for
automating backups.

-q, --quiet

Outputs additional log messages to the console for
debugging.

--verbose

Important: Running the ktbackup.sh script on the KMS server creates a backed up copy of the GPG
private keys currently being used by the KMS. If this backup is not performed, and the GPG private
keys are not saved, then the system cannot be fully restored in the event of a catastrophic failure,
and access to both keys and data may be lost. It is therefore imperative that you perform a manual
backup after the KMS starts successfully for the first time, and on all KMS instances whenever a new
Key Trustee High Availability instance is added. Running this backup ensures that the most recent
backup contains a copy of the GPG private keys currently in use.

The following examples demonstrate the command usage for different scenarios:

• To back up a parcel-based Key Trustee Server, specifying the GPG recipient by name:

$ sudo -u keytrustee /opt/cloudera/parcels/KEYTRUSTEE_SERVER/bin/ktbackup.sh 
--gpg-recipient='John Doe'
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• To back up a parcel-based Key Trustee KMS, specifying the GPG recipient by email:

$ sudo -u kms /opt/cloudera/parcels/KEYTRUSTEE/bin/ktbackup.sh -c 
/var/lib/kms-keytrustee/keytrustee/.keytrustee --output=/var/lib/kms-keytrustee 
--gpg-recipient=john.doe@example.com

• To back up a package-based Key Trustee Server with the database running on a non-default port (12345 in this
example):

$ sudo -u keytrustee ktbackup.sh --database-port=12345 
--gpg-recipient=john.doe@example.com

• To back up a package-based Key Trustee KMS, specifying the GPG recipient by email:

$ sudo -u kms /usr/share/keytrustee-keyprovider/bin/ktbackup.sh -c 
/var/lib/kms-keytrustee/keytrustee/.keytrustee --output=/var/lib/kms-keytrustee 
--gpg-recipient=john.doe@example.com

Automating Backups Using cron

You can schedule automatic backups of Key Trustee Server using the cron scheduling utility.

Create a crontab entry using the following commands:

1. Edit the crontab by running the following command:

sudo -u keytrustee crontab -e

2. Add the following entry to run the backup script every 30 minutes. This example is for a parcel-based installation
of Key Trustee Server. See the Backup Script Locations table for the package-based script location.

*/30 * * * * /opt/cloudera/parcels/KEYTRUSTEE_SERVER/bin/ktbackup.sh --gpg-recipient='John
 Doe' --quiet --output=/tmp/backups --roll=10

Run man 5 crontab to see the crontabman page for details on using cron to schedule backups at different
intervals.

Backing Up Key Trustee Server Manually

Use this procedure for both parcel-based and package-based installations.

If you have deployed Cloudera Navigator Key Trustee Server High Availability, perform these steps on both the active
and passive Key Trustee Servers. The following procedure references the default database port and location; if you
modified these settings during installation, replace the database and port with your values.

1. Back up the Key Trustee Server database:

• For Key Trustee Server 3.8:

su - postgres
pg_dump -c -p 5432 keytrustee | zip --encrypt keytrustee-db.zip -

• For Key Trustee Server 5.4 and higher:

su - keytrustee
pg_dump -c -p 11381 keytrustee | zip --encrypt keytrustee-db.zip -

The --encrypt option prompts you to create a password used to encrypt the zip file. This password is required
to decrypt the file.
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For parcel-based installations, you must set environment variables after switching to the keytrustee user:

su - keytrustee
export PATH=$PATH:/opt/cloudera/parcels/KEYTRUSTEE_SERVER/PG_DB/opt/postgres/9.3/bin
export LD_LIBRARY_PATH=/opt/cloudera/parcels/KEYTRUSTEE_SERVER/PG_DB/opt/postgres/9.3/lib
pg_dump -c -p 11381 keytrustee | zip --encrypt keytrustee-db.zip -

2. Back up the Key Trustee Server configuration directory (/var/lib/keytrustee/.keytrustee):

zip -r --encrypt keytrustee-conf.zip /var/lib/keytrustee/.keytrustee

The --encrypt option prompts you to create a password used to encrypt the zip file. This password is required
to decrypt the file.

3. Move the backup files (keytrustee-db.zip and keytrustee-conf.zip) to a secure location.

Backing Up Key Trustee Server Clients

Cryptographic keys stored in Key Trustee Server are encrypted by clients before they are sent to Key Trustee Server.
The primary clients for Key Trustee Server are Key Trustee KMS and Navigator Encrypt. Cloudera strongly recommends
backing up regularly the configuration files and GPG keys for Key Trustee Server clients. See Backing Up Key Trustee
Server and Key Trustee KMS Using the ktbackup.sh Script on page 250 for instructions on backing up Key Trustee KMS
using the provided backup script.

Warning: Failure to back up these files can result in irretrievable data loss. For example, encryption
zone keys used for HDFS Transparent Encryption on page 194 are encrypted by the KMS before being
stored in Key Trustee Server. A catastrophic failure of the KMS with no backup causes all HDFS data
stored in encryption zones to become permanently irretrievable.

To prevent permanent data loss, regularly back up the following directories on each client that stores objects in Key
Trustee Server:

Table 29: Key Trustee Server Client Configuration Directories

Directories to Back UpKey Trustee Server Client

/var/lib/kms-keytrusteeKey Trustee KMS

/etc/navencryptNavigator Encrypt

Restoring Key Trustee Server

When restoring the Key Trustee Server database from backup, keep in mind that any keys or deposits created after
the backup are not restored. If you are using Key Trustee Server high availability, you can restore the Active Key Trustee
Server from the Passive Key Trustee Server. This restores all keys that were successfully written to the Passive Key
Trustee Server before the failure.

The procedure to restore Key Trustee Server is different for parcel-based than for package-based installations. For
more information about parcels, see Parcels.

Restoring Key Trustee Server in Parcel-Based Installations

Note: These instructions apply to Key Trustee Servers deployed using parcels. For package-based
deployments, skip to the Restoring Key Trustee Server in Package-Based Installations on page 255
section.

If you have deployed Cloudera Navigator Key Trustee Server High Availability, perform these steps on both the active
and passive Key Trustee Servers. The following procedures assume the default database port and location; if you
modified these settings during installation, replace the database and port with your custom values.
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If the Key Trustee Server host has failed completely, remove the host from the cluster and add a newhost using Cloudera
Manager:

1. Remove the failed host from the cluster. See Deleting Hosts for instructions.
2. Add a new host with the same hostname and IP address as the failed host to the cluster. See Adding a Host to the

Cluster for instructions.

Important: Make sure that the replacement host uses the same operating system version as the
failed host.

3. Install Key Trustee Server on the new host. See Installing Cloudera Navigator Key Trustee Server for instructions.
Make sure to install the same Key Trustee Server version as the failed host.

After you have provisioned a new host and installed Key Trustee Server (or if you are restoring the database or
configuration on the original host), restore the database and configuration directory. If your backups were created
using the ktbackup.sh script, skip to Restoring Key Trustee Server and Key Trustee KMS from ktbackup.sh Backups
on page 256. If you need to restore the Active Key Trustee Server from the Passive Key Trustee Server, skip to Restoring
Active Key Trustee Server from Passive Key Trustee Server on page 258.

If your backups were created manually using the pg_dump command, do the following:

1. Copy or move the backup files (keytrustee-db.zip and keytrustee-conf.zip) to the Key Trustee Server host.
2. Start the PostgreSQL server:

sudo ktadmin db --start --pg-rootdir /var/lib/keytrustee/db --background

3. Restore the Key Trustee Server database:

su - keytrustee
export PATH=$PATH:/opt/cloudera/parcels/KEYTRUSTEE_SERVER/PG_DB/opt/postgres/9.3/bin
export LD_LIBRARY_PATH=/opt/cloudera/parcels/KEYTRUSTEE_SERVER/PG_DB/opt/postgres/9.3/lib
unzip -p /path/to/keytrustee-db.zip | psql -p 11381 -d keytrustee

If the zip file is encrypted, you are prompted for the password to decrypt the file.

4. Restore the Key Trustee Server configuration directory:

su - keytrustee
cd /var/lib/keytrustee
unzip /path/to/keytrustee-conf.zip

If the zip file is encrypted, you are prompted for the password to decrypt the file.

5. Stop the PostgreSQL server:

sudo ktadmin db --stop --pg-rootdir /var/lib/keytrustee/db

6. Start the Key Trustee Server service in Cloudera Manager (Key Trustee Server service > Actions > Start).
7. Restart the Key Trustee KMS service in Cloudera Manager (Key Trustee KMS service > Actions > Restart).
8. Remove the backup files (keytrustee-db.zip and keytrustee-conf.zip) from the Key Trustee Server host.

Restoring Key Trustee Server in Package-Based Installations

If you have deployed Cloudera Navigator Key Trustee Server High Availability, perform these steps on both the active
and passive Key Trustee Servers. The following procedures assume the default database port and location; if you
modified these settings during installation, replace the database and port with your custom values.

If the Key Trustee Server host has failed completely, provision a new host with the same hostname and IP address as
the failed host, and re-install Key Trustee Server. See Installing Cloudera Navigator Key Trustee Server for instructions.
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Important: Make sure to install the same operating system and Key Trustee Server versions as the
failed host.

After you have provisioned a new host and installed Key Trustee Server (or if you are restoring the database or
configuration on the original host), restore the database and configuration directory. If your backups were created
using the ktbackup.sh script, skip to Restoring Key Trustee Server and Key Trustee KMS from ktbackup.sh Backups
on page 256. If you need to restore the Active Key Trustee Server from the Passive Key Trustee Server, skip to Restoring
Active Key Trustee Server from Passive Key Trustee Server on page 258.

If your backups were created manually using the pg_dump command, do the following:

1. Copy or move the backup files (keytrustee-db.zip and keytrustee-conf.zip) to the Key Trustee Server host.
2. Change the file ownership on the backup files to keytrustee:keytrustee:

sudo chown keytrustee:keytrustee /path/to/keytrustee*.zip

3. Restore the Key Trustee Server database:

su - keytrustee
unzip -p /path/to/keytrustee-db.zip | psql -p 11381 -d keytrustee

If the zip file is encrypted, you are prompted for the password to decrypt the file.

4. Restore the Key Trustee Server configuration directory:

cd /var/lib/keytrustee
unzip /path/to/keytrustee-conf.zip

If the zip file is encrypted, you are prompted for the password to decrypt the file.

5. Start the Key Trustee Server service:

• RHEL 6-compatible: $ sudo service keytrusteed start
• RHEL 7-compatible: $ sudo systemctl start keytrusteed

6. Remove the backup files (keytrustee-db.zip and keytrustee-conf.zip) from the Key Trustee Server host.

Restoring Key Trustee Server and Key Trustee KMS from ktbackup.sh Backups

After installing Key Trustee Server or Key Trustee KMS on a newhost after a failure, or if you need to restore accidentally
deleted keys on the same host, use the following procedure to restore Key Trustee Server or Key Trustee KMS from
backups generated by the ktbackup.sh script.

1. Decrypt the backup tarball using the private key of the GPG recipient specified in the backup command by running
the following command as the GPG recipient user account. The GPG recipient private key must be available on
the Key Trustee Server or Key Trustee KMS host on which you run this command.

gpg -d -o /path/to/decrypted/backup.tar /path/to/encrypted/tarball

2. Verify the decrypted tarball using the tar tvf /path/to/decrypted/backup.tar command. For example:

$ tar tvf kts_bak_kts01_example_com_2016-02-10_11-14-37.tar
drwx------ keytrustee/keytrustee 0 2016-02-09 16:43 var/lib/keytrustee/.keytrustee/
-rw------- keytrustee/keytrustee 434 2016-02-09 16:43 
var/lib/keytrustee/.keytrustee/keytrustee.conf
-rw------- keytrustee/keytrustee 1280 2016-02-09 16:43 
var/lib/keytrustee/.keytrustee/trustdb.gpg
-rw------- keytrustee/keytrustee 4845 2016-02-09 16:43 
var/lib/keytrustee/.keytrustee/secring.gpg
-rw------- keytrustee/keytrustee  600 2016-02-09 16:43 
var/lib/keytrustee/.keytrustee/random_seed
drwx------ keytrustee/keytrustee    0 2016-02-09 16:40 

256 | Cloudera Security

Cloudera Navigator Key Trustee Server



var/lib/keytrustee/.keytrustee/.ssl/
-rw------- keytrustee/keytrustee 1708 2016-02-09 16:40 
var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee-pk.pem
-rw------- keytrustee/keytrustee 1277 2016-02-09 16:40 
var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee.pem
-rw------- keytrustee/keytrustee 2263 2016-02-09 16:43 
var/lib/keytrustee/.keytrustee/pubring.gpg
-rw-r--r-- keytrustee/keytrustee  457 2016-02-09 16:43 
var/lib/keytrustee/.keytrustee/logging.conf
-rw------- keytrustee/keytrustee 2263 2016-02-09 16:43 
var/lib/keytrustee/.keytrustee/pubring.gpg~
-rw------- keytrustee/keytrustee  157 2016-02-09 16:40 
var/lib/keytrustee/.keytrustee/gpg.conf
-rw-r--r-- keytrustee/keytrustee 47752 2016-02-10 11:14 
var/lib/keytrustee/kts_bak_kts01_example_com_2016-02-10_11-14-37.sql

3. Restore the files to their original locations, using this command for both Key Trustee Server and Key Trustee KMS
backups:

tar xvf /path/to/decrypted/backup.tar -C /

4. (Key Trustee Server Only) Drop and re-create the keytrustee PostgreSQL database, and restore the database
from the backup.

• For parcel-based installations:

$ su - keytrustee
$ source /opt/cloudera/parcels/KEYTRUSTEE_SERVER/meta/keytrustee_env.sh
$ /opt/cloudera/parcels/KEYTRUSTEE_SERVER/PG_DB/opt/postgres/9.3/bin/psql -p 11381
psql (9.3.6)
Type "help" for help.

keytrustee=# \list
                                     List of databases
    Name    |   Owner    | Encoding |   Collate   |    Ctype    |     Access privileges
------------+------------+----------+-------------+-------------+---------------------------

 keytrustee | keytrustee | UTF8     | en_US.UTF-8 | en_US.UTF-8 |
 postgres   | keytrustee | UTF8     | en_US.UTF-8 | en_US.UTF-8 |
 template0  | keytrustee | UTF8     | en_US.UTF-8 | en_US.UTF-8 | =c/keytrustee       
     +
            |            |          |             |             | 
keytrustee=CTc/keytrustee
 template1  | keytrustee | UTF8     | en_US.UTF-8 | en_US.UTF-8 | =c/keytrustee       
     +
            |            |          |             |             | 
keytrustee=CTc/keytrustee
(4 rows)

keytrustee=# \c postgres;
You are now connected to database "postgres" as user "keytrustee".
postgres=# drop database keytrustee;
DROP DATABASE
postgres=# create database keytrustee;
CREATE DATABASE
postgres=# \q
$ sudo -u keytrustee 
/opt/cloudera/parcels/KEYTRUSTEE_SERVER/PG_DB/opt/postgres/9.3/bin/psql -p 11381 -f 
/var/lib/keytrustee/kts_bak_kts01_example_com_2016-02-10_11-14-37.sql

• For package-based installations:

$ su - keytrustee
$ psql -p 11381
psql (9.3.6)
Type "help" for help.

keytrustee=# \list
                                     List of databases
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    Name    |   Owner    | Encoding |   Collate   |    Ctype    |     Access privileges
------------+------------+----------+-------------+-------------+---------------------------

 keytrustee | keytrustee | UTF8     | en_US.UTF-8 | en_US.UTF-8 |
 postgres   | keytrustee | UTF8     | en_US.UTF-8 | en_US.UTF-8 |
 template0  | keytrustee | UTF8     | en_US.UTF-8 | en_US.UTF-8 | =c/keytrustee       
     +
            |            |          |             |             | 
keytrustee=CTc/keytrustee
 template1  | keytrustee | UTF8     | en_US.UTF-8 | en_US.UTF-8 | =c/keytrustee       
     +
            |            |          |             |             | 
keytrustee=CTc/keytrustee
(4 rows)

keytrustee=# \c postgres;
You are now connected to database "postgres" as user "keytrustee".
postgres=# drop database keytrustee;
DROP DATABASE
postgres=# create database keytrustee;
CREATE DATABASE
postgres=# \q
$ sudo -u keytrustee psql -p 11381 -f 
/var/lib/keytrustee/kts_bak_kts01_example_com_2016-02-10_11-14-37.sql

5. Restart Key Trustee Server.

• Using Cloudera Manager: Key Trustee Server service > Actions > Restart
• Using the Command Line: Run the following command on the Key Trustee Server hosts:

sudo service keytrusteed restart      #RHEL 6-compatible
sudo systemctl restart keytrusteed    #RHEL 7-compatible

6. Restart the Key Trustee KMS service in Cloudera Manager (Key Trustee KMS service > Actions > Restart).

Restoring Active Key Trustee Server from Passive Key Trustee Server

If the Active Key Trustee Server fails, and you do not have a backup, you can restore it from the Passive Key Trustee
Server using the following procedure. You can also use this procedure if you need to restore keys that were successfully
written to the Passive Key Trustee Server, but are not included in the most recent backup.

The following procedure assumes you have installed Key Trustee Server on the replacement host and (if you are using
ClouderaManager) added the Key Trustee Server service. For instructions on installing Key Trustee Server, see Installing
Cloudera Navigator Key Trustee Server

1. Copy the Key Trustee Server database from the Passive Key Trustee Server host to the new Active Key Trustee
Server host. Run the following command on the Passive Key Trustee Server host:

sudo rsync --exclude recovery.conf -a /var/lib/keytrustee/db 
root@kts01.example.com:/var/lib/keytrustee/

Replace kts01.example.com with the hostname of the new Active Key Trustee Server.

2. Make sure that the recovery.conf file did not get copied to the Active Key Trustee Server (for example, if there
was a typo in your rsync command). Run the following command on the Active Key Trustee Server host:

sudo ls -l /var/lib/keytrustee/db/recovery.conf

If the file exists on the Active Key Trustee Server host, delete it. Make sure you are on the Active Key Trustee
Server host before deleting the file. Do not delete the recovery.conf file on the Passive Key Trustee Server
host.
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3. Copy the configuration directory from the Passive Key Trustee Server host to the new Active Key Trustee Server
host. Run the following command on the Passive Key Trustee Server host:

sudo rsync --exclude .ssl --exclude '*.pid' -a /var/lib/keytrustee/.keytrustee 
root@kts01.example.com:/var/lib/keytrustee/

Replace kts01.example.com with the hostname of the new Active Key Trustee Server.

4. Create the logs directory and make sure it is owned by the keytrustee user and group:

sudo mkdir /var/lib/keytrustee/logs
sudo chown keytrustee:keytrustee /var/lib/keytrustee/logs

5. (ClouderaManager only)Generate the Key Trustee Server keyring:Key Trustee Server service >Actions >Generate
Key Trustee Server Keyring

6. Set up the database on the Active Key Trustee Server host.

• Using Cloudera Manager: Key Trustee Server service > Actions > Set Up Key Trustee Server Database
• Using the Command Line:

sudo ktadmin --confdir /var/lib/keytrustee db --port 11381 --pg-rootdir 
/var/lib/keytrustee/db --bootstrap --slave kts02.example.com

Replace kts02.example.com with the hostname of the Passive Key Trustee Server.

7. Start the database.

• Using Cloudera Manager: Key Trustee Server service > Instances > Active Database > Actions > Start this
Active Database

• Using the Command Line: Run the following command on the Active Key Trustee Server host:

sudo ktadmin --confdir /var/lib/keytrustee db --port 11381 --pg-rootdir 
/var/lib/keytrustee/db --bootstrap --slave kts02.example.com

Replace kts02.example.com with the hostname of the Passive Key Trustee Server.

8. Enable synchronous replication.

• Using Cloudera Manager: Key Trustee Server service > Actions > Setup Enable Synchronous Replication in
HA mode

• Using the Command Line: Run the following command on the Active Key Trustee Server host:

sudo ktadmin --confdir /var/lib/keytrustee enable-synchronous-replication

9. Restart the Active Key Trustee Server.

• Using Cloudera Manager: Key Trustee Server service > Actions > Restart
• Using the Command Line: Run the following command on the Active Key Trustee Server host:

sudo service keytrusteed restart      #RHEL 6-compatible
sudo systemctl restart keytrusteed    #RHEL 7-compatible

10. Restart the Key Trustee KMS service in Cloudera Manager (Key Trustee KMS service > Actions > Restart).

Initializing Standalone Key Trustee Server
If you are configuring high availability Key Trustee Server, skip this step and proceed to Cloudera Navigator Key Trustee
Server High Availability. Cloudera strongly recommends configuring high availability for Key Trustee Server.
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Initializing Standalone Key Trustee Server Using Cloudera Manager

Important: If you are using SSH software other than OpenSSH, the initialization fails. To prevent this,
pre-create the SSH key before continuing:

sudo -u keytrustee ssh-keygen -t rsa -f /var/lib/keytrustee/.ssh/id_rsa

For new installations, use the Set up HDFS Data At Rest Encryptionwizard and follow the instructions in Enabling HDFS
Encryption Using theWizard on page 199. When prompted, deselect the Enable High Availability option to proceed in
standalone mode.

To set up Key Trustee Server manually, add the Key Trustee Server service to your cluster, following the instructions
in Adding a Service.When customizing role assignments, assign only the Active Key Trustee Server and Active Database
roles.

Important: Youmust assign the Key Trustee Server and Database roles to the same host. Key Trustee
Server does not support running the database on a different host.

For parcel-based Key Trustee Server releases 5.8 and higher, Cloudera Manager automatically backs up Key Trustee
Server (using the ktbackup.sh script) after adding the Key Trustee Server service. It also schedules automatic backups
using cron. For package-based installations, you must manually back up Key Trustee Server and configure a cron job.

Cloudera Manager configures cron to run the backup script hourly. The latest 10 backups are retained in
/var/lib/keytrustee in cleartext. For information about using the backup script and configuring the cron job
(including how to encrypt backups), see Backing Up Key Trustee Server and Key Trustee KMS Using the ktbackup.sh
Script on page 250.

Specifying TLS/SSL Minimum Allowed Version and Ciphers

Depending on your cluster configuration and the security practices in your organization, you might need to restrict the
allowed versions of TLS/SSL used by Key Trustee Server. Older TLS/SSL versionsmight have vulnerabilities or lack certain
features.

Specify one of the following values using the Minimum TLS Support configuration setting:

• tlsv1: Allow any TLS version of 1.0 or higher. This setting is the default when TLS/SSL is enabled.

• tlsv1.1: Allow any TLS version of 1.1 or higher.

• tlsv1.2: Allow any TLS version of 1.2 or higher.

Note: The pyOpenSSL version on the Key Trustee Server cluster should be updated to 16.2 before
changing the TLS version to 1.2. If pyOpenSSL is not updated, then the following error appears when
the Key Trustee Server service attempts to restart:

keytrustee-server: Error in setting the protocol to the value TLSv1.2.
This usually means there is no support for the entered value.
Python Error: 'module' object has no attribute 'OP_NO_TLSv1_1"

Along with specifying the version, you can also specify the allowed set of TLS ciphers using the Supported Cipher
Configuration for SSL configuration setting. The argument to this option is a list of keywords, separated by colons,
commas, or spaces, and optionally including other notation.

AES256:CAMELLIA256-SHA
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By default, the cipher list is empty, and Key Trustee Server uses the default cipher list for the underlying platform. See
the output of man ciphers for the full set of keywords and notation allowed in the argument string.

Configuring a Mail Transfer Agent for Key Trustee Server
The Key Trustee Server requires a mail transfer agent (MTA) to send email. Cloudera recommends Postfix, but you can
use any MTA that meets your needs.

To configure Postfix for local delivery, run the following commands:

export 
KEYTRUSTEE_SERVER_PK="/var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee-pk.pem"
export 
KEYTRUSTEE_SERVER_CERT="/var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee.pem"
export 
KEYTRUSTEE_SERVER_CA="/var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee-ca.pem"
export KEYTRUSTEE_SERVER_HOSTNAME="$(hostname -f)"  # or adjust as required
postconf -e 'mailbox_command ='
postconf -e 'smtpd_sasl_local_domain ='
postconf -e 'smtpd_sasl_auth_enable = yes'
postconf -e 'smtpd_sasl_security_options = noanonymous'
postconf -e 'broken_sasl_auth_clients = yes'
postconf -e 'smtpd_recipient_restrictions = 
permit_sasl_authenticated,permit_mynetworks,reject_unauth_destination'
postconf -e 'inet_interfaces = localhost'
postconf -e 'smtp_tls_security_level = may'
postconf -e 'smtpd_tls_security_level = may'

Start the Postfix service and ensure that it starts at boot:

service postfix restart
sudo chkconfig --level 235 postfix on

For information on installing Postfix or configuring a relay host, see the Postfix documentation.

Verifying Cloudera Navigator Key Trustee Server Operations
Verify that the installation was successful by running the following command on all Key Trustee Servers.

curl -k https://keytrustee.example.com:11371/?a=fingerprint

Replace keytrustee.example.comwith the fully qualified domain name (FQDN) of each Key Trustee Server you are
validating. This command outputs a fingerprint similar to the following:

4096R/4EDC46882386C827E20DEEA2D850ACA33BEDB0D1

If high availability is enabled, the output should be identical for all Key Trustee Servers.

Managing Key Trustee Server Organizations
Organizations allow you to configure Key Trustee for use in amulti-tenant environment. Using thekeytrustee-orgtool
utility, you can create organizations and administrators for multiple organizations. Organization administrators can
then approve or deny the registration of clients, depending on the registration method.

The keytrustee-orgtool Utility

keytrustee-orgtool is a command-line utility for administering organizations. Thekeytrustee-orgtool command
must be run as the root user.
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The following table explains the variouskeytrustee-orgtool commands andparameters. Runkeytrustee-orgtool
--help to view this information at the command line.

Table 30: Usage for keytrustee-orgtool

DescriptionUsageOperation

Adds a new organization and
administrators for the organization.

keytrustee-orgtool add [-h]

–n name –c contacts

Add

Lists current organizations, including
the authorization secret, all

keytrustee-orgtool listList

administrators, the organization
creation date, and the organization
expiration date.

Disables a client that has already been
activated by the organization
administrator.

keytrustee-orgtool

disable-client [-h]

-–fingerprint fingerprint

Disable client

Enables a client that has requested
activation but has not yet been

keytrustee-orgtool

enable-client [-h]

–-fingerprint fingerprint

Enable client

approved by the organization
administrator.

Sets the authorization code to a new
string, or to blank to allow automatic
approvals without the code.

keytrustee-orgtool set-auth

[-h] –n name –s secret

Set authorization Code

Create Organizations

Each new Key Trustee tenant needs its own organization. You can create new organizations using the
keytrustee-orgtool add command. For example, to create a new organization for the Disaster Recovery group
and add two administrators, Finn and Jake:

keytrustee-orgtool add -n disaster-recov -c finn@example.com,jake@example.com

When adding organizations:

• Do not use spaces or special characters in the organization name. Use hyphens or underscores instead.
• Do not use spaces between email addresses (when adding multiple administrators to an organization). Use a

comma to separate email addresses, without any space (as shown in the example above).

Each contact email address added when creating the organization receives a notification email, as detailed below.

Once an organization exists, use the keytrustee-orgtool add command to add new administrators to the
organization. For example, to add an administrator to the disaster-recov organization:

keytrustee-orgtool add -n disaster-recov -c marceline@example.com

Note: You cannot remove contacts from an organization with the keytrustee-orgtool utility.
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List Organizations

After creating an organization, verify its existence with the keytrustee-orgtool list command. This command
lists details for all existing organizations. The following is the entry for the disaster-recov organization created in
the example:

"disaster-recov": {
           "auth_secret": "/qFiICsyYqMLhdTznNY3Nw==",
           "contacts": [
            "finn@example.com",
            "jake@example.com"
        ],
        "creation": "2013-12-02T09:55:21",
        "expiration": "9999-12-31T15:59:59",
        "key_info": null,
        "name": "disaster-recov",
        "state": 0,
        "uuid": "xY3Z8xCwMuKZMiTYJa0mZOdhMVdxhyCUOc6vSNc9I8X"
    }

Change the Authorization Code

When an organization is created, an authorization code is automatically generated. When you run the
keytrustee-orgtool list command, the code is displayed in the auth_secret field. To register with a Key
Trustee Server, the client must have the authorization code along with the organization name. To set a new
auth_secret, run the following command:

keytrustee-orgtool set-auth -n disaster-recov -s ThisISAs3cr3t!

Run the keytrustee-orgtool list command again, and confirm the updated auth_secret field:

"disaster-recov": {
          "auth_secret": "ThisISAs3cr3t!",
          "contacts": [
            "finn@example.com",
            "jake@example.com"
        ],
        "creation": "2013-12-02T09:55:21",
        "expiration": "9999-12-31T15:59:59",
        "key_info": null,
        "name": "disaster-recov",
        "state": 0,
        "uuid": "xY3Z8xCwMuKZMiTYJa0mZOdhMVdxhyCUOc6vSNc9I8X"
    }

If you do not want to use an authorization code, set the auth_secret field to an empty string:

keytrustee-orgtool set-auth -n disaster-recov -s ""

Cloudera recommends requiring an authorization code.

Notification Email and GPG Keys

Whenever an administrator is added to an organization, the Key Trustee Server sends an automated email message
(subject: “KeyTrustee Contact Registration”) to the newly added administrator:

Hello, this is an automated message from your Cloudera keytrustee Server.

Welcome to Cloudera keytrustee! You have been listed as an administrator contact
for keytrustee services at your organization [test-org]. As an administrator,
you may be contacted to authorize the activation of new keytrustee clients.

We recommend that you register a GPG public key for secure administration of
your clients. To do so, visit the link below and follow the instructions.
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https://keytrustee01.example.com:11371/?q=CnRV6u0nbm7zB07BQEpXCXsN0QJFBz684uC0lcHMoWL

This link will expire in 12 hours, at Thu Sep  3 00:08:25 2015 UTC.

Cloudera recommends that an organization's administrators:

• Register the GPG public key by following the link contained in the notification email. Registering the GPG public
key is optional, but if you choose to register your public key:

– Complete the process within 12 hours, before the link expires.
– Upload the entire key, including the BEGIN and END strings, as shown here:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.2.1 (GNU/Linux)
Comment: For info see http://www.gnupg.org

mQGiBDkHP3URBACkWGsYh43pkXU9wj/X1G67K8/DSrl85r7dNtHNfLL/ewil10k2
q8saWJn26QZPsDVqdUJMOdHfJ6kQTAt9NzQbgcVrxLYNfgeBsvkHF/POtnYcZRgL
tZ6syBBWs8JB4xt5V09iJSGAMPUQE8Jpdn2aRXPApdoDw179LM8Rq6r+gwCg5ZZa
. . .
-----END PGP PUBLIC KEY BLOCK-----

• Import the Key Trustee Server’s public GPG key to verify that the server is the sender.

The organization's administrators are notified by email when new clients are registered to the Key Trustee Server using
themail transfer agent (as discussed in Configuring aMail Transfer Agent for Key Trustee Server on page 261). However,
if the server does not have access to email, you can use a local system mail address, such as username@hostname,
where hostname is the system hostname and username is a valid system user. If you use a local system email address,
be sure to regularly monitor the email box.

Managing Key Trustee Server Certificates
Transport Layer Security (TLS) certificates are used to secure communication with Key Trustee Server. By default, Key
Trustee Server generates self-signed certificates when it is first initialized. Cloudera strongly recommends using
certificates signed by a trusted Certificate Authority (CA).

Generating a New Certificate

1. Generate a new certificate signing request (CSR):

openssl req -new -key keytrustee_private_key.pem -out new.csr

Replace keytrustee_private_key.pem with the filename of the private key. You can reuse the existing private key
or generate a new private key in accordance with your company policies. For existing auto-generated self-signed
certificates, the private key file is located at
/var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee-pk.pem.

2. Generate a new certificate from the CSR:

• For a CA-signed certificate, submit the CSR to the CA, and they will provide a signed certificate.
• To generate a new self-signed certificate, run the following command:

$ openssl x509 -req -days 365 -in new.csr -signkey keytrustee_private_key.pem \
-out new_keytrustee_certificate.pem
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Replacing Key Trustee Server Certificates

Use the following procedure if you need to replace an existing certificate for the Key Trustee Server. For example, you
can use this procedure to replace the auto-generated self-signed certificate with a CA-signed certificate, or to replace
an expired certificate.

Note: Key Trustee Server supports password-protected private keys, but not password-protected
certificates.

1. After Generating a New Certificate on page 264, back up the original certificate and key files:

sudo cp -r /var/lib/keytrustee/.keytrustee/.ssl /var/lib/keytrustee/.keytrustee/.ssl.bak

2. (CA-Signed Certificates Only) Provide either the root or intermediate CA certificate:

Important: If you have separate root CA and intermediate CA certificate files, then you must
concatenate them into a single file. If you need to convert from a JKS with combined certificate
and private key file to a PEM file and separate private key file, refer to Converting JKS Key and
Certificate to PEM on page 337.

sudo mv /path/to/rootca.pem
/var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee-ca.pem

3. Make sure that the certificate and key files are owned by the keytrustee user and group, with file permissions
set to 600:

sudo chown keytrustee:keytrustee /path/to/new/certificate.pem /path/to/new/private_key.pem
sudo chmod 600 /path/to/new/certificate.pem /path/to/new/private_key.pem

4. Update the Key Trustee Server configuration with the location of the new certificate and key files:

• Using Cloudera Manager:

1. Go to the Key Trustee Server service.
2. Click the Configuration tab.
3. Select Category > Security.
4. Edit the following properties to specify the location of the new certificate and key files. If the private

keys are not password protected, leave the password fields empty.

• Active Key Trustee Server TLS/SSL Server Private Key File (PEM Format)
• Active Key Trustee Server TLS/SSL Server Certificate File (PEM Format)
• Active Key Trustee Server TLS/SSL Private Key Password
• Passive Key Trustee Server TLS/SSL Server Private Key File (PEM Format)
• Passive Key Trustee Server TLS/SSL Server Certificate File (PEM Format)
• Passive Key Trustee Server TLS/SSL Private Key Password

5. Enter a Reason for change, and then click Save Changes to commit the changes.

• Using the command line:

1. Edit/var/lib/keytrustee/.keytrustee/keytrustee.conf on the active and passive Key Trustee
Server hosts and modify the SSL_CERTIFICATE and SSL_PRIVATE_KEY parameters as follows:

    "SSL_CERTIFICATE": "/path/to/new/certificate.pem",
    "SSL_PRIVATE_KEY": "/path/to/new/private_key.pem"
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If the private key is password protected, add the following entry:

    "SSL_PRIVATE_KEY_PASSWORD_SCRIPT": "/path/to/password_script [arguments]"

Replace /path/to/password_script [arguments] with the path to a script (and any necessary command
arguments) that returns the password for the private key file. If you do not want to create a script, you
can use a simple command, such as echo -n password. For example:

    "SSL_PRIVATE_KEY_PASSWORD_SCRIPT": "/bin/echo -n password"

Keep in mind that this method can expose the private key password in plain text to anyone who can
view the /var/lib/keytrustee/.keytrustee/keytrustee.conf file.

5. Restart Key Trustee Server:

• Using Cloudera Manager: Restart the Key Trustee Server service (Key Trustee Server service > Actions >
Restart).

• Using the Command Line: Restart the Key Trustee Server daemon:

– RHEL 6-compatible: $ sudo service keytrusteed restart
– RHEL 7-compatible: $ sudo systemctl restart keytrusteed

6. If you are using the Key Trustee KMS service in Cloudera Manager for HDFS Transparent Encryption on page 194,
update the Java KeyStore (JKS) used on the Key Trustee KMS host:

a. Download the new certificate to the Key Trustee KMS host:

$ echo -n | openssl s_client -connect keytrustee01.example.com:11371 \
| sed -ne '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p' > /tmp/keytrustee_certificate.pem

b. Delete the existing keystore entry for keytrustee01.example.com:

keytool -delete -alias key_trustee_alias_name -keystore /path/to/truststore -v

c. Add the new keystore entry for keytrustee01.example.com:

$ keytool -import -trustcacerts -alias keytrustee01.example.com \
-file /tmp/keytrustee_certificate.pem -keystore /path/to/truststore

d. Restart the Key Trustee KMS service in Cloudera Manager.

7. If you are using Key HSM, update the Key Trustee Server and Key HSM configuration:

a. Run the keyhsm trust command, using the path to the new certificate:

sudo keyhsm trust /path/to/new/key_trustee_server/cert

b. Run the ktadmin keyhsm command, using the --client-certfile and --client-keyfile options to
specify the location of the new certificate file and private key:

sudo ktadmin keyhsm --server https://keyhsm01.example.com:9090 --client-certfile 
/path/to/new/key_trustee_server/cert --client-keyfile 
/path/to/new/key_trustee_server/private_key
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Cloudera Navigator Key HSM

Cloudera Navigator Key HSM allows Cloudera Navigator Key Trustee Server to seamlessly integrate with a hardware
security module (HSM). Key HSM enables Key Trustee Server to use an HSM as a root of trust for cryptographic keys,
taking advantage of Key Trustee Server’s policy-based key and security asset management capabilities while at the
same time satisfying existing, internal security requirements regarding treatment of cryptographic materials.

For instructions on installing Key HSM, see Installing Cloudera Navigator Key HSM.

For instructions on configuring Key HSM, continue reading:

Initializing Navigator Key HSM
Before initializing Navigator Key HSM, verify that the HSM is properly configured and accessible from the Key HSM
host, and that the HSM client libraries are installed on the Key HSM host:

• SafeNet Luna

Install the SafeNet Luna client. No additional configuration is needed.

• Thales

Install the Thales client service. CopynCipherKM.jar,jcetools.jar, andrsaprivenc.jar from the installation
media (usually located in opt/nfast/java/classes relative to the installation media mount point) to the Key
HSM library directory (/usr/share/keytrustee-server-keyhsm/).

• AWS CloudHSM

Install the AWS CloudHSM client. No additional configuration is needed.

See your HSMproduct documentation formore information on installing and configuring your HSM and client libraries.

Note: When using an HSM with Key Trustee Server and Navigator Encrypt, encrypting many block
devices may exceed the capacity of the HSM. A key is created in the HSM for each encrypted block
device, so be sure that your HSM can support your encryption requirements.

To initialize Key HSM, use the service keyhsm setup command in conjunction with the name of the target HSM
distribution:

sudo service keyhsm setup [keysecure|thales|luna|cloudhsm]

For all HSM distributions, this first prompts for the IP address and port number that Key HSM listens on.

Important: If you have implemented Key Trustee Server high availability, initialize Key HSM on each
Key Trustee Server.

Cloudera recommends using the loopback address (127.0.0.1) for the listener IP address and 9090 as the port
number:

-- Configuring keyHsm General Setup --
Cloudera Recommends to use 127.0.0.1 as the listener port for Key HSM
Please enter Key HSM SSL listener IP address: [127.0.0.1]127.0.0.1
Will attempt to setup listener on 127.0.0.1
Please enter Key HSM SSL listener PORT number: 9090

validate Port:                                    :[ Successful ]
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If the setup utility successfully validates the listener IP address and port, you are prompted for additional information
specific to your HSM. For HSM-specific instructions, continue to the HSM-Specific Setup for Cloudera Navigator Key
HSM on page 268 section for your HSM.

The Key HSM keystore defaults to a strong, randomly-generated password. However, you can change the keystore
password in the application.properties file:

keyhsm.keystore.password.set=yes

Then, run the service keyhsm setup commandwith the name of the HSM towhich the keystore password applies.
You will be prompted to enter the new keystore password, which must be a minimum of six characters in length:

sudo service keyhsm setup [keysecure|thales|luna|cloudhsm]

After initial setup, the configuration is stored in the
/usr/share/keytrustee-server-keyhsm/application.properties file, which contains human-readable
configuration information for the Navigator Key HSM server.

Important: The truststore file created during Key HSM initialization must be stored at
/usr/share/keytrustee-server-keyhsm/. There is no way to change the default location.

For additional details about keystores and truststores, see Understanding Keystores and Truststores on page 144.

HSM-Specific Setup for Cloudera Navigator Key HSM

SafeNet KeySecure

Note: KeySecure was previously named DataSecure, but the Key HSM configuration process is the
same for both.

Prerequisites

Before setting up SafeNet KeySecure, be sure to:

• Set the protocol to NAE-XML
• Set Allow Key and Policy Configuration Operations to enabled
• Set Password Authentication to required
• Disable Client Certificate Authentication
• Set KeySecure Crypto Operations to activated

For additional details about SafeNet KeySecure settings, see the SafeNet KeySecure product documentation.

After entering the Key HSM listener IP address and port, the HSM setup for SafeNet KeySecure prompts for login
credentials, the IP address of the KeySecure HSM, and the port number:

-- Ingrian HSM Credential Configuration --
Please enter HSM login USERNAME: keyhsm
Please enter HSM login PASSWORD: ******

Please enter HSM IP Address or Hostname: 172.19.1.135
Please enter HSM Port number: 9020

If the connection is successful, the following message is displayed:

Valid address:                                    :[ Successful ]

268 | Cloudera Security

Cloudera Navigator Key HSM



The KeySecure setup utility then prompts you whether to use SSL:

Use SSL? [Y/n] Y

If you choose to use SSL, Key HSM attempts to resolve the server certificate, and prompts you to trust the certificate:

  [0]         Version: 3
         SerialNumber: 0
             IssuerDN: C=US,ST=TX,L=Austin,O=ACME,OU=Dev,
CN=172.19.1.135,E=webadmin@example.com
           Start Date: Thu Jan 29 09:55:57 EST 2015
           Final Date: Sat Jan 30 09:55:57 EST 2016
            SubjectDN: C=US,ST=TX,L=Austin,O=ACME,OU=Dev,
CN=172.19.1.135,E=webadmin@example.com
           Public Key: RSA Public Key
            modulus: abe4a8dcef92e145984309bd466b33b35562c7f875
                     1d1c406b1140e0584890272090424eb347647ba04b
                     34757cacc79652791427d0d8580a652c106bd26945
                     384b30b8107f8e15d2deba8a4e868bf17bb0207383
                     7cffef0ef16d5b5da5cfb4d3625c0affbda6320daf
                     7c6b6d8adfcb563960fcd1207c059300feb6513408
                     79dd2d929a5b986517531be93f113c8db780c92ddf
                     30f5c8bf2b0bea60359b67be306c520358cc0c3fc3
                     65500d8abeeac99e53cc2b369b2031174e72e6fca1
                     f9a4639e09240ed6d4a73073885868e814839b09d5
                     6aa98a5a1e230b46cdb4818321f546ac15567c5968
                     33be47ef156a73e537fd09605482790714f4a276e5
                     f126f935
    public exponent: 10001

  Signature Algorithm: SHA256WithRSAEncryption
            Signature: 235168c68567b27a30b14ab443388039ff12357f
                       99ba439c6214e4529120d6ccb4a9b95ab25f81b4
                       7deb9354608df45525184e75e80eb0948eae3e15
                       c25c1d58c4f86cb9616dc5c68dfe35f718a0b6b5
                       56f520317eb5b96b30cd9d027a0e42f60de6dd24
                       5598d1fcea262b405266f484143a74274922884e
                       362192c4f6417643da2df6dd1a538d6d5921e78e
                       20a14e29ca1bb82b57c02000fa4907bd9f3c890a
                       bdae380c0b4dc68710deeaef41576c0f767879a7
                       90f30a4b64a6afb3a1ace0f3ced17ae142ee6f18
                       5eff64e8b710606b28563dd99e8367a0d3cbab33
                       2e59c03cadce3a5f4e0aaa9d9165e96d062018f3
                       6a7e8e3075c40a95d61ebc8db43d77e7
       Extensions:
                       critical(false) BasicConstraints: isCa(true)
                       critical(false) NetscapeCertType: 0xc0

Trust this server? [y/N] Y

Trusted server:                                   :[ Successful ]

CloudHSM

Before completing the CloudHSM setup, verify that the CloudHSM connection is properly configured by running either
the cloudhsm_mgmt_util or key_mgmt_util tool and verifying that the tool connects to the HSM successfully.
After validating this connection, you can exit the tool:

$ /opt/cloudhsm/bin/cloudhsm_mgmt_util /opt/cloudhsm/etc/cloudhsm_mgmt_util.cfg

Connecting to the server(s), it may take time
depending on the server(s) load, please wait...

Connecting to server '<hsm ip>': hostname '<hsm ip>', port 2225...
Connected to server '<hsm ip>': hostname '<hsm ip>', port 2225.
aws-cloudhsm>quit

After entering the Key HSM listener IP address and port identifier, the HSM setup for CloudHSM prompts you for: the
crypto user name and crypto user password.
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Note: You can configure different user types in the CloudHSM client (for example, the crypto user
type manages key operations). Be sure to enter the user type crypto (CU) here.

-- Configuring CloudHSM --
Please enter the crypto user name: <username>
Please enter the crypto user password  (input suppressed):

Configuration saved in 'application.properties' file
Configuration stored in: 'application.properties'. (Note: You can also use keyhsm settings
 to quickly view your current configuration)

Thales HSM

By default, the Thales HSM client process listens on ports 9000 and 9001. The Cloudera Manager agent also listens on
port 9000. To prevent a port conflict, youmust change the Thales client ports. Cloudera recommends using ports 11500
and 11501.

To change the Thales client ports, run the following commands:

sudo /opt/nfast/bin/config-serverstartup --enable-tcp --enable-privileged-tcp --port=11500
 --privport=11501
sudo /opt/nfast/sbin/init.d-ncipher restart

To configure Key HSM to use the modified port, edit the /usr/share/keytrustee-server-keyhsm/start.sh
file and add the -DNFAST_SERVER_PORT=11500 Java system property. For example:

java -classpath "*:/usr/safenet/lunaclient/jsp/lib/*:/opt/nfast/java/classes/*" 
-Djava.library.path=/usr/safenet/lunaclient/jsp/lib/ -DNFAST_SERVER_PORT=11500 
com.cloudera.app.run.Program $@

Before completing the Thales HSM setup, run the nfkminfo command to verify that the Thales HSM is properly
configured:

$ sudo /opt/nfast/bin/nfkminfo
  World generation  2
  state       0x17270000 Initialised Usable Recovery !PINRecovery !ExistingClient
              RTC  NVRAM FTO !AlwaysUseStrongPrimes SEEDebug

If state reports !Usable instead of Usable, configure the Thales HSM before continuing. See the Thales product
documentation for instructions.

After entering the Key HSM listener IP address and port, the HSM setup for Thales prompts for the OCS card password:

Please enter the OCS Card Password (input suppressed):

Configuration saved in 'application.properties' file
Configuration stored in: 'application.properties'. (Note: You can also use service keyHsm
 settings to quickly view your current configuration)

Luna HSM

Important: If you have implemented Key Trustee Server high availability, ensure that the Luna client
on each Key Trustee Server is configured with access to the same partition. See the Luna product
documentation for instructions on configuring the Luna client.

Before completing the Luna HSM setup, run the vtl verify command (usually located at
/usr/safenet/lunaclient/bin/vtl) to verify that the Luna HSM is properly configured.
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After entering the Key HSM listener IP address and port, the HSM setup for Luna prompts for the slot number and
password:

-- Configuring SafeNet Luna HSM --
Please enter SafeNetHSM Slot Number: 1
Please enter SafeNet HSM password (input suppressed):
Configuration stored in: 'application.properties'. (Note: You can also use service keyHsm
 settings to quickly view your current configuration)
Configuration saved in 'application.properties' file

See the Luna product documentation for instructions on configuring your Luna HSM if you do not know what values
to enter here.

Validating Key HSM Settings
After the setup completes, the Key HSM configuration is stored in
/usr/share/keytrustee-server-keyhsm/application.properties.

You can view these settings using the service keyhsm settings command:

$ sudo service keyhsm settings

  # keyHsm Server Configuration information:
  keyhsm.management.address : 172.19.1.2
  keyhsm.server.port : 9090
  keyhsm.management.port : 9899
  keyhsm.service.port : 19791
  keyhsm.hardware : ncipher

  # Module OCS Password
  thales.ocs_password :
    GIqhXDuZsj1Oet137Lb+f+tqkYvKYDm/8StefpNqZWwlB+LfSYlB4eHd
    endtYJio8qLjjbT+e7j2th5xf8O9t8FwfVguuyFW+6wdD
    uNGvse1LY/itCwqF0ScMlB1Mnz4010xqC6ylPW7l+0JjjkkqqM5gJJbl8lsQFFaIGVM/pY=

These settings can be manually configured by modifying the application.properties file, with the exception of
any passwords. These are encrypted by design, and can only be changed by re-running the setup utility.

Verifying Key HSM Connectivity to HSM

To verify Hardware Security Module (HSM) operations using Key HSM, run the following command on the Key Trustee
Server host (which should also be the Key HSM host as described in Installing Cloudera Navigator Key HSM):

curl -k https://keytrustee01.example.com:11371/test_hsm

If Key HSM operations to the HSM are successful, the command returns output similar to the following:

"Sample Key TEST_HELLO_DEPOSIT2016-06-03-072718 has been created"

You must run this command from the Key Trustee Server host. If you run it from a different host, the command returns
an HTTP 403 error code.

If the command returns an HTTP 405 error code, restart Key Trustee Server and try again.

Note: If you are using the test_hsm script to verify that the Key Hardware Security Module (Key
HSM) has successfully integratedwith the Key Trustee Server, or to verify that the KeyHSM is connected
to HSM, and the Key Trustee Server private key file is password-protected, then the verification may
fail. This can occur even if the integration is successful or connected.

If this occurs, then create a key through Hadoop for the test.
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Managing the Navigator Key HSM Service
Use the keyhsm service for all basic server operations:

$  sudo service keyhsm
keyHsm service usage:
    setup <hsm name> - set up a new connection to an HSM
    trust <path>     - add a trusted client certificate
    validate         - validate that Key HSM is properly configured
    settings         - display the current server configuration
    start            - start the Key HSM proxy server
    status           - show the current Key HSM server status
    stop|shutdown    - force Key HSM server to shut down
    reload           - reload the server (without shutdown)

The reload command causes the application to restart internal services without ending the process itself. If you want
to stop and start the process, use the restart command.

Logging and Audits

The Navigator Key HSM logs contain all log and audit information, and by default are stored in the /var/log/keyhsm
directory.

You can configure the maximum log size (in bytes) and maximum number of log files to retain by adding or editing the
following entries in the /usr/share/keytrustee-server-keyhsm/conf/logback.xml file.

<appender name="FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
        <file>/var/log/keyhsm/keyhsm.log</file>

        <encoder>
            <pattern>%date %level %logger: %msg%n</pattern>
        </encoder>

        <rollingPolicy class="ch.qos.logback.core.rolling.FixedWindowRollingPolicy">
            <fileNamePattern>/var/log/keyhsm/keyhsm.log.%i</fileNamePattern>
            <minIndex>1</minIndex>
            <maxIndex>10</maxIndex>
        </rollingPolicy>

        <triggeringPolicy class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">

            <maxFileSize>10MB</maxFileSize>
        </triggeringPolicy>
    </appender>

    <root level="info">
        <appender-ref ref="FILE" />
    </root>

The default log level is info. The filename is /var/log/keyhsm/keyhsm.log, the max file size is 10MB, and the last
10 rolled log files will be retained.
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Warning:

Modifying the settings for items such as the log file size, log level, and number of rolled logs should
not cause any issues. However, if more extensive changes are made to the logback.xml file (for
example, changing the policy classes or log message format) and these changes introduce malformed
XML or incorrect logback settings, then the Key HSM service may return an error and fail to start.
Check the validity of the logback.xml file by running the command keyhsm after any updates. If
there are errors in the formatting of logback.xml, they will appear in the command line:

$ keyhsm
...
06:55:20,208 |-ERROR in ch.qos.logback.core.joran.spi.Interpreter@11:85
 - no applicable action for [rollingPolicy], current ElementPath  is 
[[configuration][appender][rollingPolicy]]
06:55:20,208 |-ERROR in ch.qos.logback.core.joran.spi.Interpreter@12:30
 - no applicable action for [fileNamePattern], current ElementPath  is
 [[configuration][appender][rollingPolicy][fileNamePattern]]

Address any errors before restarting Key HSM to pick up the logging changes. A copy of the default
logback.xml file is provided at logback.xml.bkup. If there is an error in the updates, you can
use this file to recover the logging configuration.

Key Naming Convention

To ensure you can manage keys (for example, delete a key), you need to understand the naming convention for keys.
Keys adhere to the following naming convention: handle name-uuid-date, which means if you know the key name
and date, you can make modifications to it.

The following example shows the key nomenclature in the context of a key list query on Luna HSM:

[root@user 64]# cmu list
Please enter password for token in slot 1 : **********
handle=220
label=key1-3T17-YYdn-2015-07-23
handle=806
label=key2-CMYZ-8Sym-2015-07-23
handle=108
label=key3-qo62-XQfx-2015-07-23
handle=908
label=key2-CMYZ-8Sym-2015-07-23--cert0
handle=614
label=key3-qo62-RWz0-2015-07-23--cert0
handle=825
label=key1-3T11-YYdz-2015-07-23--cert0

Integrating Key HSM with Key Trustee Server
Using a hardware security module with Navigator Key Trustee Server requires Key HSM. This service functions as a
driver to support interactions between Navigator Key Trustee Server and the hardware security module, and it must
be installed on the same host system as Key Trustee Server. The steps below assume that both Key HSM and Key
Trustee Server are set up and running. See Installing Cloudera Navigator Key HSM for details. Integrating Key HSM and
Key Trustee Server involves the following steps:

1. Prepare Existing Keys for Migration on page 274 (for existing Key Trustee Server users only)
2. Establish Trust from Key HSM to Key Trustee Server
3. Integrate Key HSM and Key Trustee Server
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Prepare Existing Keys for Migration

During the process detailed below, you are prompted to migrate any existing keys from the Key Trustee Server to the
HSM.

Warning: Migration fails if any existing keys do not adhere to the constraints.

Successful migration depends on the existing keys conforming to the following constraints:

• Key names can begin with alpha-numeric characters only
• Key names can include only these special characters:

– Hyphen  -
– Period  .
– Underscore  _

If any existing key names in Key Trustee Server do not meet the requirements listed above, the migration fails. To
prepare for migration, check your key names and do the following if any of them are non-conforming:

• Decrypt any data using the non-conforming key
• Create a new key, named per the requirements
• Re-encrypt the data using the new key

After this, the migration from Key Trustee Server to the HSM will succeed during the process below.

Important: Keys are not available during migration, so you should perform these tasks during a
maintenance window.

Establish Trust from Key HSM to Key Trustee Server

This step assumes that Key Trustee Server has a certificate for TLS (wire) encryption as detailed inManaging Key Trustee
Server Certificates on page 264. Before you can run the commands in the steps below, Key HSM service must explicitly
trust the Key Trustee Server certificate (presented during TLS handshake). To establish this trust, run the following
command:

sudo keyhsm trust /path/to/key_trustee_server/cert

The /path/to/key_trustee_server/cert in this command (and in the commands below) depends on whether
the Key Trustee Server uses the default certificate (created by default during install), or uses a custom certificate
(obtained from a commercial or internal CA). The two alternate paths are shown in the table below. The custom path
is a common example but may differ from that shown.

CustomDefault

/etc/pki/cloudera/certs/cert-file.crt/var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee.pem

/etc/pki/cloudera/private/private-key.key/var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keytrustee-pk.pem

Note: The system requires TLS and Kerberos authentication throughout the system for security
reasons. Connections attempted over SSL (1 through 3) and connections from untrusted clients are
immediately terminated to prevent POODLE (Padding Oracle On Downgraded Legacy Encyryption)
exploits. See the Cloudera Security Bulletin for more information.
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Integrate Key HSM and Key Trustee Server

The steps below assume that both Key HSM and the Key Trustee Server are on the same host system, as detailed in
Installing Cloudera Navigator Key HSM. These steps invoke commands on the Key HSM service and the Key Trustee
Server, and they must be run on the host—they cannot be run remotely from another host.

1. Ensure the Key HSM service is running:

sudo service keyhsm start

2. Establish trust from Key Trustee Server to Key HSM specifying the path to the private key and certificate (Key
Trustee Server is a client to Key HSM). This example shows how to use the --client-certfile and
--client-keyfile options to specify the path to non-default certificate and key:

$ sudo ktadmin keyhsm --server https://keyhsm01.example.com:9090 \
--client-certfile  /etc/pki/cloudera/certs/mycert.crt \
--client-keyfile /etc/pki/cloudera/certs/mykey.key --trust

For a password-protected Key Trustee Server private key, add the --passphrase argument to the command
and enter the password when prompted:

$ sudo ktadmin keyhsm --passphrase \
--server https://keyhsm01.example.com:9090 \
--client-certfile  /etc/pki/cloudera/certs/mycert.crt \
--client-keyfile /etc/pki/cloudera/certs/mykey.key --trust

Note: The preceding commands also create a certificate file for the Key HSM that is used by the
Key Trustee Server. This certificate file is stored in
/var/lib/keytrustee/.keytrustee/.ssl/ssl-cert-keyhsm.pem.

3. Any keys that exist on the Key Trustee Server are automatically migrated when you run the ktadmin keyhsm
command. To complete the migration, enter y or yes at the command prompt:

Some deposits were found that will need to be moved to the HSM.

        Note that although this operation can be interrupted, once complete,
        items stored in the HSM must remain there!

Do you want to perform this migration now? [y/N]: y
Migrating hsm deposits...

Migration Complete!

4. Restart the Key Trustee Server:

• Using Cloudera Manager: Restart the Key Trustee Server service (Key Trustee Server service > Actions >
Restart).

• Using the Command Line: Restart the Key Trustee Server daemon:

– RHEL 6-compatible: $ sudo service keytrusteed restart
– RHEL 7-compatible: $ sudo systemctl restart keytrusteed

5. Verify connectivity between the Key HSM service and the HSM:

curl -k https://keytrustee01.example.com:11371/test_hsm

Important: You must perform the connection verification between Key HSM and the HSM for
all Key Trustee Server hosts.
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Successful connection and test of operations returns output like the following:

"Sample Key TEST_HELLO_DEPOSIT2016-06-03-072718 has been created"

Note: If you are using the test_hsm script to verify that the Key Hardware SecurityModule (Key
HSM) has successfully integrated with the Key Trustee Server, or to verify that the Key HSM is
connected to HSM, and the Key Trustee Server private key file is password-protected, then the
verification may fail. This can occur even if the integration is successful or connected.

If this occurs, then create a key through Hadoop for the test.

See Verifying Key HSM Connectivity to HSM on page 271 for more information about the validation process.
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Cloudera Navigator Encrypt

ClouderaNavigator Encrypt transparently encrypts and secures data at restwithout requiring changes to your applications
and ensures there is minimal performance lag in the encryption or decryption process. Advanced key management
with Cloudera Navigator Key Trustee Server on page 249 and process-based access controls in Navigator Encrypt enable
organizations to meet compliance regulations and ensure unauthorized parties or malicious actors never gain access
to encrypted data.

For instructions on installing Navigator Encrypt, see Installing Cloudera Navigator Encrypt.

For instructions on configuring Navigator Encrypt, continue reading:

Registering Cloudera Navigator Encrypt with Key Trustee Server

Prerequisites

Functioning Navigator Key Trustee Server

After Installing Cloudera Navigator Encrypt on a host, you must register the host with Navigator Key Trustee Server. If
you have not yet installed Navigator Key Trustee Server, see Installing Cloudera Navigator Key Trustee Server for
instructions.

Key Trustee Server Organization

To register with Key Trustee Server, you must have an existing organization. See Managing Key Trustee Server
Organizations on page 261 for information on creating and viewing organizations on a Key Trustee Server.

Master Password

TheMaster Key is the primary Navigator Encrypt administrator access code and is configured by the Navigator Encrypt
administrator during installation. The Master Key can take any one of three different forms:

• If you choose a passphrase (single), it must be between 15 and 32 characters long.
• If you choose passphrase (dual), both must be between 15 and 32 characters long.
• If you choose the RSA option, enter a path to the RSA key file, and if it has RSA passphrase, enter it for this private

key.

Warning: It is extremely important that you keep your master password secret and safe. In the event
that you lose your master password, you will never be able to recover it, leaving your encrypted data
irretrievably locked away.

Registering with Key Trustee Server

After Installing Cloudera Navigator Encrypt on a host, you must register the host with Navigator Key Trustee Server to
be able to encrypt and decrypt data. The following section lists the command options for registering your Navigator
Encrypt client.

Note: Do not run Navigator Encrypt commands with the screen utility.

If the TLS certificate is signed by an internal CA that is not publicly recognized, then you must add the root certificate
to the host certificate truststore of each Navigator Encrypt client. For details, see Setting Up TLS for Navigator Encrypt
Clients.
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Example command:

sudo navencrypt register --server=https://keytrustee01.example.com:11371
--passive-server=https://keytrustee02.example.com:11371 --org=your_keytrustee_org
--auth=org_auth_token

Table 31: Registration Options

ExplanationCommand Option

User-defined unique name for this client to be used for
administration and reports. You can verify your client name

--clientname=my_client_name

in the /etc/navencrypt/keytrustee/clientname
file.

Target Active Key Trustee Server for key storage. Replace
keytrustee01.example.com:11371with the hostname and

--server=https://keytrustee01.example.com:11371

port of the Active Key Trustee Server. The default port is
11371.

Target Passive Key Trustee Server for key storage. Replace
keytrustee02.example.com:11371with the hostname and

--passive-server=https://keytrustee02.example.com:11371

port of the Passive Key Trustee Server. The default port is
11371.

Key Trustee organization name configured by the Key
Trustee Server administrator

--org=your_keytrustee_org

Organization authorization token, a pre-shared secret by
the Navigator Key Trustee Server administrator

--auth=org_auth_token

Skip SSL certificate verification. Use with self-signed
certificates on the Navigator Key Trustee Server

--skip-ssl-check

Add trustees for retrieval of the master key--trustee

Configure voting policy for trustees--votes

Master Key will be uploaded without encrypting it with
your local GPG Navigator Key Trustee

--recoverable

Key Trustee Server scheme that Navigator Encrypt uses
for public key operations. Specify "http" or "https".

--scheme "<scheme>"

Key Trustee Server port that Navigator Encrypt uses for
public key operations.

--port

Registering with Previous Versions of Key Trustee Server

By default, new installations of Navigator Key Trustee Server 5.4.0 use a single HTTPS port for key storage and public
key operations. Previous versions and upgrades use separate ports for key storage and public key operations. For
backward compatibility, Navigator Encrypt 3.7.0 introduces the--scheme and--port parameters for thenavencrypt
register command.

For example, to register a version 3.7.0 Navigator Encrypt client with a version 3.8.0 Key Trustee Server using HTTPS
over port 443 for key storage and HTTP over port 80 for public key operations, run the following command:

sudo navencrypt register --server=https://keytrustee.example.com:443 --org=key_trustee_org
 --auth=auth_token --scheme "http" --port 80
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Navigator Encrypt versions lower than 3.7.0 do not support the --scheme and --port parameters. For these versions
of Navigator Encrypt, youmust ensure that the Key Trustee Server is configured to use port 443 (HTTPS) for key storage
and port 80 (HTTP) for public key operations.

Navigator Encrypt versions lower than 3.8.0 do not support the --passive-server parameter.

Updating Key Trustee Server Ports

The navencrypt register command does not provide the ability to change the ports for existing registrations. If
the Key Trustee Server ports are changed, youmust update /etc/navencrypt/keytrustee/ztrustee.confwith
the new port and scheme parameters (HKP_PORT and HKP_SCHEME, respectively).

For example, see the following ztrustee.conf excerpt from a registered client that has been upgraded to Navigator
Encrypt 3.7.0:

{
        "LOCAL_FINGERPRINT":    "2048R/182AAA838DC300AC334258D8E7F299BFB68A6F6F",
        "REMOTES":      {
                "kts01.example.com": {
                        "REMOTE_FINGERPRINT":   
"4096R/AF6400E12DC149799CA8CE6BF1604C34D830DE20",
                        "REMOTE_SERVER":        "https://kts01.example.com",
                        "DEFAULT":      true,
                        "SSL_INSECURE": false,
                        "PROTOCOL":     "json-encrypt"
                }
        }
}

In this example, the Key Trustee Server (keytrustee.example.com) is using the default configuration of port 443
(HTTPS) for key storage and port 80 (HTTP) for public key operations.

If the Key Trustee Server is then updated to use port 11371 (HTTPS) for both key storage and public key operations,
you must update ztrustee.conf as follows (changes in bold):

{
        "LOCAL_FINGERPRINT":    "2048R/182AAA838DC300AC334258D8E7F299BFB68A6F6F",
        "REMOTES":      {
                "kts01.example.com": {
                        "REMOTE_FINGERPRINT":   
"4096R/AF6400E12DC149799CA8CE6BF1604C34D830DE20",
                        "REMOTE_SERVER":        "https://kts01.example.com:11371",

"HKP_PORT":     11371,
"HKP_SCHEME":   "https",

                        "DEFAULT":      true,
                        "SSL_INSECURE": false,
                        "PROTOCOL":     "json-encrypt"
                }
        }
}

Updating Navigator Encrypt for High Availability Key Trustee Server

If you registered a Navigator Encrypt client with a standalone Key Trustee Server, and then configured high availability
for Key Trustee Server, you can edit /etc/navencrypt/keytrustee/ztrustee.conf to enable the client to take
advantage of the high availability features. The following example shows the contents of ztrustee.conf after adding
the required REMOTE_SERVERS entry (changes in bold):

{
        "LOCAL_FINGERPRINT":    "2048R/182AAA838DC300AC334258D8E7F299BFB68A6F6F",
        "REMOTES":      {
                "kts01.example.com": {
                        "REMOTE_FINGERPRINT":   
"4096R/AF6400E12DC149799CA8CE6BF1604C34D830DE20",
                        "REMOTE_SERVER":        "https://kts01.example.com:11371",
                        "HKP_PORT":     11371,
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                        "HKP_SCHEME":   "https",
                        "DEFAULT":      true,

"REMOTE_SERVERS":       ["https://kts01.example.com:11371", 
"https://kts02.example.com:11371"],
                        "SSL_INSECURE": true,
                        "PROTOCOL":     "json-encrypt"
                }
        }
}

Configuration Files

The installer creates the /etc/navencrypt directory. All configuration settings are saved in this directory. Do not
delete any file from /etc/navencrypt. These files provide the necessary information for the Navigator Encrypt
application to function properly.

Warning: Perform backups of encrypted data, mount-points, and Navigator Encrypt configuration
directories on a regular basis. To do this, ensure you have a backup of /etc/navencrypt. Failure to
backup this directory will make your backed up encrypted data unrecoverable in the event of data
loss.

Change Master Key by UUID

It is possible to re-use a previously used Master Key by its UUID. For example, if you currently have a Master key with
a single passphrase, you can see the corresponding Navigator Key Trustee UUID in the /etc/navencrypt/control
file:

$ cat /etc/navencrypt/control
{
 "app": {
  "name": "navencrypt",
  "version": "3.5"
 },
 "keys": {
  "master": {
   "type": "single-passphrase",
   "uuid": "qMAKRMdk4HVbhfzR79cp9w92YBmNHJ5nSLhfd8ZVo6L"
  },
  "targets": []
 }
}

Note: If the control file is accidentally deleted, you can restore it using the navencrypt control
--restore-control-file command.

You can copy theUUID (qMAKRMdk4HVbhfzR79cp9w92YBmNHJ5nSLhfd8ZVo6L in this example) and runnavencrypt
key --change with option --new-master-key-uuid to change a Master Key by using its UUID only:

$ sudo navencrypt key --change 
--new-master-key-uuid=qMAKRMdk4HVbhfzR79cp9w92YBmNHJ5nSLhfd8ZVo6L
>> Type your OLD Master key
Type MASTER passphrase 1:
Type MASTER passphrase 2:
Verifying Master Key against Navigator Key Trustee (wait a moment)...
OK
Changing Master key (wait a moment)...
 * Setting up EXISTING MASTER key...
 * Uploading CONTROL content...
 * Re-encrypting local keys...
Master key successfully changed.
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Note: The navencrypt key command fails if no volumes are encrypted or the kernel module is not
loaded.

Preparing for Encryption Using Cloudera Navigator Encrypt
Before you can encrypt data, you must prepare a storage repository to hold the encrypted data and a mount point
through which to access the encrypted data. The storage repository and mount point must exist before encrypting
data using the navencrypt-move command.

Data stored and retrieved from the repository is encrypted and decrypted transparently.

Cloudera Navigator Encrypt does not support:

• Encrypting a directory that contains or is contained within a mount point for another service (including Navigator
Encrypt and NFS). See Encrypting Data on page 286 for more information.

• Encrypting immutable files or directories containing immutable files.
• Installation or use inchroot environments, including creatingchroot environmentswithin an encrypted directory.
• Encrypting HDFS data files.

Navigator Encrypt Commands

Note: Do not run Navigator Encrypt commands with the screen utility.

The following table lists the commands used to encrypt data:

Table 32: Navigator Encrypt Commands

DescriptionCommand

Manage, update, and verify your data.navencrypt

Prepare your system for encryption by creating
mount-points and specifying storage.

navencrypt-prepare

Remove a mountpoint that is no longer in use.navencrypt-prepare --undo

Encrypt/decrypt your data to/from the encrypted
filesystem.

navencrypt-move

Generate process profile information in JSON format.navencrypt-profile

Build or rebuild the Navigator Encrypt kernel module.navencrypt-module-setup

Preparing for Encryption

Note: When using an HSM with Key Trustee Server and Navigator Encrypt, encrypting many block
devices may exceed the capacity of the HSM. A key is created in the HSM for each encrypted block
device, so be sure that your HSM can support your encryption requirements.

To get an in-depth look at the details behind the navencrypt-prepare command, or to use a unique configuration,
use the interactive prompt by executing navencrypt-preparewith no options. This launches an interactive console
that guides you through the following operations:

• Creating internal encryption keys
• Registering internal keys in Navigator Key Trustee
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• Registering mount point in /etc/navencrypt/ztab
• Mounting current mount point
• Establishing encryption method (dm-crypt for devices)

Using the console, you can choose how you want your data stored and accessed. Navigator Encrypt offers block-level
encryption with dm-crypt, which protects your data by encrypting the entire device. This enables full disk encryption
and is optimized for some system configurations. You can use block-level encryption with logical devices such as a loop
device.

See Block-Level Encryption with dm-crypt on page 282 for more information.

To prepare for encryption, you must specify a location to store the encrypted data and a mount point through which
to access the data. The storage location and mount point must be created before encrypting data.

Note: If you are performing a file system check as part of your preparation work, then note that the
crypto device must bemapped and active. Also, be aware that if you execute fsck in force mode (-f)
, there is a risk of data loss. If the force operation fails, it could cause file system corruption at the
device header.

Block-Level Encryption with dm-crypt

When choosing block-level encryption in the interactive console, you must specify two parameters:

1. The first parameter is the block device that you want to store the encrypted file system in. Because this device
stores all of the encrypted data, it must be as large as or larger than the target data. The device must exist and
be empty. Supported storage devices are:

• Physical block devices (for example, a disk device)
• Virtual block devices (for example, a block device created by LVM)
• Loop devices (see Block-Level Encryption with a Loop Device on page 283 for instructions on creating a loop

device)

Important: If the block device to be used for encryption was previously used by the host,
entries for it must be removed from the file /etc/fstab before running the
navencrypt-prepare command.

2. The second parameter is the mount point for the encrypted file system. This is the location where you can access
the encrypted data stored in the first parameter. The mount point must already exist. It is not created by the
navencrypt-prepare command.

The entire device in the first parameter is used for encrypted data.

Note: Do not manually unmount the encryption mount point (for example, using umount). If you do
so, you must manually close the dm-crypt device using the following procedure:

1. Run dmsetup table to list the dm-crypt devices.
2. Run cryptsetup luksClose <device_name> to close the device for the unmounted mount

point.

After specifying these twoparameters and following the interactive console (discussed further in Preparing for Encryption
on page 281), you are ready to encrypt your data.

The syntax for the prepare command is as follows:

sudo navencrypt-prepare <device_name> <mount_point>
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When specifying the mount point path, do not use a trailing / in the path names. The mount point directory must exist
prior to running the navencrypt-prepare command.

For RHEL 7, run the following command after the navencrypt-prepare command completes:

sudo systemctl start navencrypt-mount

The following example shows successful output fromanavencrypt-prepare commandusingdm-crypt for block-level
encryption:

$ sudo /usr/sbin/navencrypt-prepare urandom /mnt/dm_encrypted
Type MASTER passphrase:
Encryption Type:  dmCrypt (LUKS)
Cipher:        aes
Key Size:  256
Random Interface: /dev/urandom
Filesystem:    ext4
Verifying MASTER key against Navigator Key Trustee (wait a moment) ... OK
Generation Encryption Keys with /dev/urandom       ... OK
Preparing dmCrypt device (--use-urandom)               ... OK
Creating ext4 filesystem                               ... OK
Registering Encryption Keys (wait a moment)        ... OK
Mounting /dev/sda1                                    ... OK

After you have successfully prepared a client for encryption, you can encrypt and decrypt data using the commands
described in Encrypting and Decrypting Data Using Cloudera Navigator Encrypt on page 286.

Block-Level Encryption with a Loop Device

A block-level encrypted device can be a physical device or a storage space treated as a device.

To configure a loop device, use the dd command to create a storage space:

Warning: The space for the loop device is pre-allocated. After the loop device is created, the size
cannot be changed. Make sure you are allocating enough storage for the current encrypted data as
well as any future data.

If your disks are mounted individually with a filesystem on each disk, and your storage needs exceed
the capacity of a single disk, you can create a loop device on each disk for which you want to allocate
space for encrypted data. If you have consolidated storage (for example, using LVM), you can create
a single loop device or multiple devices.

sudo dd if=/dev/zero of=/dmcrypt/storage bs=1G count=500

The dd command above creates a 500 GB file. Modify the bs and count values to generate the required file size.

After generating the file, run losetup -f to view unused loop devices. Use the available loop device with the
navencrypt-prepare -d command, demonstrated below.

Specifically for loop devices, the -d parameter enables Navigator Encrypt to manage the loop device association. You
no longer need to use the losetup command to associate the file with the loop device, and the loop device is
automatically prepared at boot. For RHEL 7-compatible OS, you must run the following commands to ensure that a
loop device is available at boot:

sudo bash -c 'echo "loop" > /etc/modules-load.d/loop.conf'
sudo bash -c 'echo "options loop max_loop=8" > /etc/modprobe.d/loop_options.conf'
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Warning: Loop devices are not created by Navigator Encrypt. Instead, Navigator Encrypt assigns a
datastore to a loop device when the navencrypt-prepare --datastore option is used. So, it is
up to the system administrator to create persistent /dev/loopX devices, which are required to prepare
a virtual block device. If the loop device being prepared is not persistent, then Navigator Encrypt will
not mount the device upon a reboot.

The data storage directory name (/dmcrypt/storage in the previous example) must contain only alphanumeric
characters, spaces, hyphens (-), or underscores (_). Other special characters are not supported.

The following example shows the output from a successful command:

$ losetup -f
/dev/loop0
$ sudo navencrypt-prepare -d /dmcrypt/storage /dev/loop0 /dmcrypt/mountpoint
Type MASTER passphrase:

Encryption Type:  dmCrypt (LUKS)
Cipher:           aes
Key Size:         256
Random Interface: OpenSSL
Filesystem:       ext4
Options:

Verifying MASTER key against KeyTrustee (wait a moment)   ... OK
Generation Encryption Keys with OpenSSL                   ... OK
Assigning '/dev/loop0'->'/dmcrypt/storage'                ... OK
Preparing dmCrypt device                                  ... OK
Creating ext4 filesystem                                  ... OK
Registering Encryption Keys (wait a moment)               ... OK
Mounting /dev/loop0                                       ... OK

For upgraded Navigator Encrypt clients that already use loop devices, you can enable Navigator Encrypt to manage
the loop device file association (instead of configuring the system to run the losetup command at boot) by adding
the nav_datastore option to the entry in /etc/navencrypt/ztab. For example:

# <target mount-dir>        <source device>      <type>    <options>
/dmcrypt/mountpoint     /dev/loop0      luks    
key=keytrustee,nav_datastore='/dmcrypt/storage'

Important: Use caution when editing the /etc/navencrypt/ztab file. Entries are tab-separated
(not space-separated). The ztab file must not contain empty lines.

After you have created the loop device, continuewith the instructions in Block-Level Encryption with dm-crypt on page
282.

Navigator Encrypt and Device UUIDs

Navigator Encrypt has always prepared and identified devices simply using a device name, such as /dev/sdb1 or
/dev/loop0. However, we know that using a device nameor label could lead to a conflict and impact systemoperations.

Navigator Encrypt also supports preparing devices using a UUID, in addition to device name. This UUID is simply a
symbolic link to the actual device, and is created when preparing a device with Navigator Encrypt during a
navencrypt-prepare operation.

The advantage of using a device UUID is that if a device’s name changes, the UUID associated with that device does
not change. To ensure that Navigator Encrypt recognizes devices even when the device name changes, enter the
command:

navencrypt-prepare --use-uuid /dev/sda1 /mountpoint
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To unprepare (ensure the device UUID is included), enter either of the following commands:

navencrypt-prepare --undo-force /dev/disk/by-uuid/3a602a15-11f7-46ac-ae98-0a51e1b25cf9
navencrypt-prepare --undo /dev/disk/by-uuid/3a602a15-11f7-46ac-ae98-0a51e1b25cf9

Note: While the device name is still used in the navencrypt-prepare statement, rest assured that
Navigator Encrypt handles the device by the UUID, which is calculated and used for mount during
boot. The device name is used for convenience so that you do not have to explicitly input the UUID
in the command. Ultimately, Navigator Encrypt handles the device via the device UUID rather than
the device name.

Important: UUID device support does not include loop devices; rather, it only applies to physical
devices. When preparing loop devices with Navigator Encrypt, always use the device name.

Pass-through Mount Options for navencrypt-prepare

Navigator Encrypt 3.5 and higher provides the ability to specify options to pass to the mount command that is executed
during /etc/init.d/navencrypt-mount start (systemctl start navencrypt-mount on RHEL 7). These
options are specified with the -o option when preparing a mountpoint with the navencrypt-prepare command.

The following shows an example navencrypt-prepare command output when passing mount options with the -o
option:

$ sudo navencrypt-prepare -o discard,resize /mnt/t2 /mnt/t2
Type MASTER passphrase:

Encryption Type:  dmCrypt (LUKS)
Cipher:           aes
Key Size:         256
Random Interface: OpenSSL
Filesystem:       ext4
Options:          discard,resize

Verifying MASTER key against Navigator Key Trustee(wait a moment)     ... OK
Generation Encryption Keys with OpenSSL                               ... OK
Registering Encryption Keys (wait a moment)                           ... OK
Mounting /mnt/t2                                                      ... OK

You can verify the results by viewing the /etc/navencrypt/ztab file:

$ cat /etc/navencrypt/ztab
/mnt/t2 /mnt/t2 dmcrypt key=keytrustee,cipher=aes,keysize=256,discard,resize

Options can be added or removed to existing mount points prepared with versions of Navigator Encrypt prior to 3.5
by editing the /etc/navencrypt/ztab file and adding the comma-separated options (no spaces) to the end of each
line as seen in the previous example above.

Important: Use caution when editing the /etc/navencrypt/ztab file. Entries are tab-separated
(not space-separated). The ztab file must not contain empty lines.

To see the mounted filesystems and options, run mount:

$ mount
/mnt/t2 on /mnt/t2 type dmcrypt 
(rw,dmcrypt_sig=6de3db1e87077adb,ecryptfs_unlink_sigs,noauto,\
dmcrypt_cipher=aes,dmcrypt_key_bytes=32,discard,resize)

For a list of available mount options, see the man pages for cryptsetup and dmCrypt respectively.

Cloudera Security | 285

Cloudera Navigator Encrypt



Encrypting and Decrypting Data Using Cloudera Navigator Encrypt

Warning: Before encrypting or decrypting any data, stop all processes (for example,MySQL,MongoDB,
PostgreSQL, and so on) that have access to the target data. Failure to do so could lead to data
corruption.

After the encrypted file system is created and initialized, it is ready to hold data. All encryption and decryption
functionality is performed with a single command: navencrypt-move.

Do not manually create directories or files under a Cloudera Navigator Encrypt mount point; use only the
navencrypt-move command to encrypt and decrypt data. See Preparing for Encryption Using Cloudera Navigator
Encrypt on page 281 for more information about mount points.

After encrypting a file or directory, all data written and read through the mount point is transparently encrypted and
decrypted.

Before You Begin

Navigator Encrypt does not support encrypting data in certain environments, including the following:

• Do not attempt to encrypt a directory that contains or is contained within a mount point for another service
(including Navigator Encrypt and NFS). For example:

– If your encryptionmount point is/var/lib/navencrypt/mount, donot attempt to encrypt/var,/var/lib,
/var/lib/navencrypt, /var/lib/navencrypt/mount, or anything under
/var/lib/navencrypt/mount/.

– If you have mounted an NFS filesystem at /mnt/home, do not attempt to encrypt /mnt, /mnt/home, or
anything under /mnt/home.

• Do not attempt to encrypt immutable files or directories containing immutable files.
• Do not use Navigator Encrypt within a chroot environment, or create a chroot environmentwithin an encrypted

directory.
• If your Key Trustee Server is managed by Cloudera Manager, do not encrypt the Cloudera Manager database with

Navigator Encrypt; doing so prevents Cloudera Manager from starting.

Encrypting Data

Do not manually create directories or files under a Navigator Encrypt mount point; use only the navencrypt-move
command to encrypt data.

Here is an example command to encrypt data, with an explanation for each option:

sudo navencrypt-move encrypt @<category> <directory_or_file_to_encrypt> 
<encrypted_mount_point>

Important: Do not run navencrypt-move commands simultaneously in multiple terminals. Doing
so results in failure to encrypt or decrypt all of the specified data. No data is lost, as the source data
is not removed, but you must re-run the failed operations sequentially.

Table 33: navencrypt-move Command Options

ExplanationCommand Option

Main command interface for all actions that require
moving data either to or from the encrypted file system.

navencrypt-move

For more information see the navencrypt-move man
page (man navencrypt-move).
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ExplanationCommand Option

Identifies the cryptographic operation, in this case,
encrypting data. The decrypt option is described later in
Decrypting Data on page 288.

encrypt

Note: By default, all Navigator Encrypt
encryption commands require free space
equal to twice the size of the encrypted
data. If your environment does not have
enough free space, add--per-file to the
end of the command. This moves each file
individually. Per-file encryption only
requires free space equal to twice the size
of the largest individual file, but is a slower
operation.

The access category that is applied to the data being
encrypted. Encrypted data is protected by process-based

@<category>

access controls that restrict access to only the processes
that you allow. You can use any naming convention you
want (the@ symbol is required), but Cloudera recommends
keeping it simple and memorable. For example, you can
use a name referencing the data type being encrypted,
such as @mysql for a MySQL deployment. See Listing
Categories on page 298 for instructions on viewing existing
categories.

The data that you want to encrypt. This can be a single file
or an entire directory. Navigator Encrypt starts after the

<directory_or_file_to_encrypt>

system boots, so do not encrypt required system files and
directories (such as the root partition, /var, and so on).
Some examples of recommended data directories to
encrypt are /var/lib/mysql/data, /db/data, and so
on.

Where you want to store the data. This is the path to the
mount point specified during the navencrypt-prepare
command.

<encrypted_mount_point>

When a file is encrypted, a symbolic link (symlink) is created which points to a mount point @<category> directory.
The navencrypt-move command moves all specified data to the encrypted filesystem and replaces it with a symlink
to the mount point for that encrypted filesystem.

Encrypting a directory is similar to encrypting a file. The following command encrypts a directory:

sudo /usr/sbin/navencrypt-move encrypt @mycategory /path/to/directory_to_encrypt/ 
/path/to/mount

In this command, a directory is specified instead of a filename, and a symlink is created for that particular directory.
To see the effects of this command, run:

ls -l <directory_to_encrypt>
du -h <encrypted_storage_directory>

The output demonstrates the new filesystem layout. Everything that was in the target directory is now securely stored
in the encrypted filesystem.
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Decrypting Data

The decryption command requires only the path to the original data, which is now a symbolic link, as an argument.
The following example demonstrates how to decrypt a file using the navencrypt-move command:

sudo /usr/sbin/navencrypt-move decrypt /path/to/encrypted/directory_or_file

Important: Do not run navencrypt-move commands simultaneously in multiple terminals. Doing
so results in failure to encrypt or decrypt all of the specified data. No data is lost, as the source data
is not removed, but you must re-run the failed operations sequentially.

As with encryption, you can specify a directory instead of a file:

sudo /usr/sbin/navencrypt-move decrypt /path/to/encrypted/directory

Converting from Device Names to UUIDs for Encrypted Devices
When configuring a Navigator Encrypt mount point, you can use either the device name (sample device name:
/dev/sdb1) or the UUID (sample UUID: 3a602a15-11f7-46ac-ae98-0a51e1b25cf9) to configure the mount
point. For more information, see Navigator Encrypt and Device UUIDs on page 284.

The UUID mount point configuration choice is preferable for Navigator Encrypt, because the device name can change
when the system is rebooted or new disks are added, but the UUID never changes. You can only use the UUID
(--use-uuid) configuration option during the initial mount point configuration. You cannot use the UUIDmount point
configuration option on existing mount points that were created in Navigator Encrypt 3.12.0 or earlier, or that were
configured to use the device name instead of the UUID.

For configurations where a device name was used, and you wish to convert to a UUID, you have the option to use the
UUID conversion utility (navencrypt-prepare --convert-uuid), which converts existingmount points fromusing
the device name to using the UUID. The UUID conversion utility updates the Navigator Encrypt configuration files to
useUUIDs, and then reloads the updatedmount points. You can perform this conversion onmount pointswith encrypted
data without any impact on that data.

Important: Cloudera strongly recommends that Navigator Encrypt mount points that are currently
using the device name be converted to use the device UUID. This will prevent error situations when
the Navigator Encrypt mount points cannot be mounted, and the encrypted data cannot be accessed
because the device name changed.

Preparing for UUID Conversion

The UUID conversion utility runs as part of the navencrypt-prepare command:

# navencrypt-prepare -h
...
--convert-uuid --all|--device=DEVICE
    Converts devices that are stored using the device name to instead use its uuid.
    '--all' will attempt to convert all device names in the navencrypt ztab file.
    '--device=DEVICE' will convert a single device.
...

As shown, you have two options when running the UUID conversion utility:

• --device=DEVICE

Use this option to run the conversion against a single specified device.

• --all
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Use this option to run the conversion against all mount points that are currently using the device name instead
of the UUID as defined in the /etc/navencrypt/ztab file.

The conversion utility first backs up all files in /etc/navencrypt to a timestamped directory under /tmp. Ensure
that the user running the navencrypt-prepare operation has permission to write to /tmp. If this backup directory
is not created, then the conversion script will exit without making any changes to the Navigator Encrypt configuration
files.

Note: Because the conversion utility backs up the Navigator Encrypt configuration files, it is not
necessary to back up the files separately. However, if you want the files backed up elsewhere
(somewhere other than the /tmp folder), then manually perform this backup by copying the
/etc/navencrypt directory to the desired location before running the conversion utility. Note that
the conversion utility will still attempt to create its own backup under /tmp, and will not run if this
backup cannot be created.

Converting a Single Device

Use the UUID conversion utility --device=DEVICE option to convert from a device name to UUID for a mount point
on a single device. It is recommended that you test the conversion against at least one device before running it against
all devices:

# navencrypt-prepare --convert-uuid --device=/dev/xvdd

Backing up /etc/navencrypt to /tmp/navencrypt_bkup_20180917_135716 ...

Stopping navencrypt-mount...

Stopping navencrypt directories

Umounting /dev/xvdd ... [ OK ]
Umounting /dev/xvde ... [ OK ]
Umounting /dev/xvdf ... [ OK ]
* Unloading module ... [ OK ]

Running conversion on /dev/xvdd
...
..

You must approve and finalize the conversion before it is complete.

Converting All Available Devices

Use the UUID conversion utility --all option to convert from the device name to the device UUID on all available
devices. The conversion utility skips loop devices because they do not have a dedicated UUID:

# navencrypt-prepare --convert-uuid --all

Backing up /etc/navencrypt to /tmp/navencrypt_bkup_20180917_135731 ...

Stopping navencrypt-mount...

Stopping navencrypt directories
* Umounting /dev/xvdd ...                                 [  OK  ]
* Umounting /dev/xvde ...                                 [  OK  ]
* Umounting /dev/xvdf ...                                 [  OK  ]
* Unloading module ...                                    [  OK  ]

Running conversion on /dev/xvdd...

Running conversion on /dev/xvde...

Running conversion on /dev/xvdf...
...
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You must approve and finalize the conversion before it is complete.

Finalizing the Conversion

Before the device name-to-UUID conversion is applied to the configuration files, you must review and approve the
differences between the/etc/navencrypt/ztab and/etc/navencrypt/control by either accepting the changes
("y"), or rejecting them ("n").

# navencrypt-prepare --convert-uuid --all
...
Running conversion on /dev/xvdd...
Running conversion on /dev/xvde...
Running conversion on /dev/xvdf...

Showing diff of ztab and control files

---------------------------------------------
                    ZTAB
---------------------------------------------
2,4c2,4
< /navencrypt_mount/block1     /dev/xvdd     luks     key=keytrustee
< /navencrypt_mount/block2     /dev/xvde     luks     key=keytrustee
< /navencrypt_mount/block3     /dev/xvdf     luks     key=keytrustee
---
/navencrypt_mount/block1       /dev/disk/by-uuid/4206d6d5-6014-435a-b342-1d3dad5559a2 
    luks     key=keytrustee
> /navencrypt_mount/block2     /dev/disk/by-uuid/b84c4f38-bc74-40bc-87eb-2e857a996933 
    luks     key=keytrustee
> /navencrypt_mount/block3     /dev/disk/by-uuid/622312d0-0e6c-4e37-adeb-f6066a1df07d 
    luks     key=keytrustee
---------------------------------------------
                  CONTROL
---------------------------------------------
8c8
<     "name":     "/dev/xvdd",
---
>     "name":     "/dev/disk/by-uuid/4206d6d5-6014-435a-b342-1d3dad5559a2",
11c11
<     "name":     "/dev/xvde",
---
>     "name":     "/dev/disk/by-uuid/b84c4f38-bc74-40bc-87eb-2e857a996933",
14c14
<     "name":     "/dev/xvdf",
---
>     "name":     "/dev/disk/by-uuid/622312d0-0e6c-4e37-adeb-f6066a1df07d",

Accept changes? [y/N] y
Moving KeyTrustee deposit for /dev/xvdd...
Moving KeyTrustee deposit for /dev/xvde...
Moving KeyTrustee deposit for /dev/xvdf...
Operation complete
Overwriting old files...
Starting navencrypt-mount...
Starting navencrypt directories
 * Mounting '4206d6d5-6014-435a-b342-1d3dad5559a2'         [  OK  ]
 * Mounting 'b84c4f38-bc74-40bc-87eb-2e857a996933'         [  OK  ]
 * Mounting '622312d0-0e6c-4e37-adeb-f6066a1df07d'         [  OK  ]

If you reject the changes, the updated files are saved to /etc/navencrypt/ztab.new and
/etc/navencrypt/control.new, and the existing ztab and control files remain unchanged.
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Warning: Do notmanually copy the ztab.new and control.new files over the existing ztab and
control files. If upon review the new files are correct, then re-issue navencrypt-prepare
--convert-uuid and select “y” to use the updated files. If you modify the ztab and control files
outside of the navencrypt-prepare script, then you will encounter a conflict in the saved
keytrustee deposits that will prevent the Navigator Encrypt mount points from mounting.

# navencrypt-prepare --convert-uuid --all
...
Accept changes? [y/N] n

Changes will not be applied. Proposed changes are saved to /etc/navencrypt/ztab.new and
 /etc/navencrypt/control.new

Rolling Back the UUID Conversion

If you experience any problems with the device name-to-UUID conversion, you can restore the previous mount point
state by replacing the contents of the /etc/navencrypt/directory with the backup created by the conversion utility:

# service navencrypt-mount stop
# rm /etc/navencrypt/keytrustee/deposits/dev.disk.by-uuid.*
# cp -rp /tmp/navencrypt_bkup_date_time/* /etc/navencrypt/
# service navencrypt-mount start

Navigator Encrypt Access Control List

Managing the Access Control List

Cloudera Navigator Encrypt manages file system permissions with an access control list (ACL). This ACL is a security
access control created by Cloudera that enables a predefined Linux process to access a file or directory managed by
Navigator Encrypt.

The ACL uses rules to control process access to files. The rules specify whether a Linux process has access permissions
to read from or write to a specific Navigator Encrypt path.

A rule is defined in the following order:

# TYPE @CATEGORY PATH PROCESS PARAMETERS

The following table defines the ACL rule components:

Table 34: ACL Rule Components

DescriptionComponent

Specifies whether to allow or deny a process. It can have
either of the following values: ALLOW or DENY.

TYPE

This is a user-defined shorthand, or container, for the
encrypted dataset that the process will have access to.

@CATEGORY

For example, if you are encrypting the directory
/var/lib/mysql, you could use the category @mysql
to indicate that this rule is granting access to a process on
the MySQL data. See Listing Categories on page 298 for
instructions on viewing existing categories.

Specifies the rights permissions of a specific path. For
example: *, www/*.htaccess. Omit the leading slash (/).

PATH
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DescriptionComponent

Specifies the process or command name for the rule.PROCESS

Tells the process the parent-child process to be executed:PARAMETERS

--shell defines the script for Navigator Encrypt to allow
for executable process. Supported shells are
/usr/bin/bash, /bin/bash, /usr/bin/dash, and
/bin/bash.

--children defines for Navigator Encrypt which child
processes to allow that are executed by a process/script.

Example: --shell=/bin/bash,
--children=/bin/df,/bin/ls

All rules are stored in an encrypted policy file together with a set of process signatures that are used by Navigator
Encrypt to authenticate each Linux process. This file is encrypted with the Navigator Encrypt key you defined during
installation.

Cloudera recommends using permissivemode to assist with the initial ACL rule creation for your environment. In
permissivemode, Navigator Encrypt allows full access to the encrypted data by all processes, but logs them in dmesg
as action="denied"messages. Consult these messages to identify required ACL rules. To set Navigator Encrypt to
permissive mode, use the following command:

sudo /usr/sbin/navencrypt set --mode=permissive

To view the current mode, run navencrypt status -d. For more information on access modes, see Access Modes.

deny2allow

After you generate the action="denied"messages, use the navencrypt deny2allow command to show which
ACL rules are required, based on the action="denied"messages in dmesg. To show which ACL rules are required,
perform the following steps:

1. Save the dmesg content to a file:

sudo dmesg > /tmp/dmesg.txt

2. Use the dmesg.txt file content as input to the deny2allow command to analyze the action="denied"
messages and display a list of required ACL rules based on the action="denied"messages. Here is an example
command and output:

$ sudo /usr/sbin/navencrypt deny2allow /tmp/dmesg.txt
ALLOW @mysql employees/* /usr/sbin/mysqld
ALLOW @mysql * /bin/bash
ALLOW @mysql * /bin/ls

If you need to clear the dmesg log and start fresh, run dmesg -c.

If a rule is displayed in the output from the command, it does not automatically mean the ACL rule must be added.
You must determine which rules are actually needed. For example, the rule for ls would not typically be added as an
ACL rule.

After the initial ACL rules are created, disable permissivemode with the following command:

sudo /usr/sbin/navencrypt set --mode=enforcing

292 | Cloudera Security

Cloudera Navigator Encrypt



Adding ACL Rules

Rules can be added one at a time using the command line or by specifying a policy file containing multiple rules. The
following example shows how to add a single rule using the navencrypt acl --add command:

sudo /usr/sbin/navencrypt acl --add --rule="ALLOW @mysql * /usr/sbin/mysqld"

See Listing Categories on page 298 for instructions on viewing existing categories.

The following example shows how to add multiple rules using a policy file:

sudo /usr/sbin/navencrypt acl --add --file=/mnt/private/acl_rules

The contents of the policy file should contain one rule per line. For example:

ALLOW @mysql * /usr/sbin/mysqld
ALLOW @log * /usr/sbin/mysqld
ALLOW @apache * /usr/lib/apache2/mpm-prefork/apache2

Navigator Encrypt releases 3.10 and higher support comments in the policy file. Comments begin with the hash (#)
symbol. You can use comments to annotate the policy file, or to temporarily disable a rule for testing. For example:

# Cloudera Navigator Encrypt policy file
# Allow mysqld to access all database files
ALLOW @mysql * /usr/sbin/mysqld
# Allow mysqld to write logs
ALLOW @log * /usr/sbin/mysqld
# ALLOW @apache * /usr/lib/apache2/mpm-prefork/apache2

Using a policy file is the fastest way to add multiple rules because it only requires the security key one time.

It is also possible to overwrite the entire current rules set with the option --overwrite. When this command is
executed, all current rules are replaced by the ones specified in the file that contains the new set of rules. Cloudera
recommends to save a copy of your current set of rules by printing it with the option --print.

Here is an example command using the --overwrite option:

sudo /usr/sbin/navencrypt acl --overwrite --file=/mnt/private/acl_rules

Adding ACL Rules by Profile

If your environment requires more granular controls on the processes that can access the data, you can add extra
controls by using profiles. Profiles set requirements on a process other than just having the correct fingerprint. They
can include such things as process owner and group, required open files, and the current working directory. To see
more about adding rules by profile, see ACL Profile Rules on page 295. For details about fingerprints, see Process-Based
Access Control List.

Deleting ACL Rules

Rules can be deleted in one of two ways:

1. Manually specifying the rule to delete using the command line.
2. Specifying the line number of the rule to delete.

The following example shows how to delete a rule by passing it as a parameter:

sudo /usr/sbin/navencrypt acl --del --rule="ALLOW @mysql * /usr/sbin/mysqld "

If you remove a MySQL ALLOW rule, the MySQL cache must be cleaned by executing the FLUSH TABLES;MySQL
statement. Otherwise, it will still be possible to view data from encrypted table.
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The following example shows how to delete a rule by specifying a line number:

sudo /usr/sbin/navencrypt acl --del --line 3

It is also possible to delete multiple ACL rules in a single command:

sudo /usr/sbin/navencrypt acl --del --line=1,3

See Printing ACL Rules on page 294 for information on determining line numbers.

Deleting ACL Rules by Profile

See ACL Profile Rules on page 295 for instructions on deleting rules by profile.

Printing ACL Rules

You can print the current Access Control List using the following command:

sudo /usr/sbin/navencrypt acl --print

Save the ACL to a file with the --file option:

sudo /usr/sbin/navencrypt acl --print --file=policy-backup

To display additional information about the organization of the policy file, use the --list option:

sudo /usr/sbin/navencrypt acl --list

Universal ACL Rules

Universal ACLs will allow or deny a process access to all files or directories encrypted with Navigator Encrypt.

The rule ALLOW @* * /process allows the designated process to access anything from all encrypted categories.

The rule ALLOW @data * * allows all processes access to any path under the @data category.

The rule ALLOW @* * * allows all processes access to all encrypted categories. Cloudera does not recommend using
this rule. Use it only in test environments.

Here is an example adding a universal ACL rule and then displaying it:

$ sudo /usr/sbin/navencrypt acl --add --rule="ALLOW @* * /usr/sbin/mysqld"
Type MASTER passphrase:
1 rule(s) were added
# navencrypt acl --listType MASTER passphrase:
# -  Type     Category       Path                     Profile  Process
1    ALLOW    @*             *                                 /usr/sbin/mysqld   

Enabling Shell Scripts to Be Detected by ACL

All of the previous rules work for binary files. There may be times a script, such as a shell script, must be allowed to
access the encrypted directory.

You can add the script as a rule by indicating the executable binary process of this script using the --shell option,
for example:

ALLOW @scripts * /root/script.sh --shell=/bin/bash

The --shell option identifies which executable process is used to execute the script. Supported shells are
/usr/bin/bash, /bin/bash, /usr/bin/dash, and /bin/bash
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If the script is altered, it will no longer be trusted by the ACL because the fingerprint has changed. If you edit the script
you must invoke the update option to update the ACL with the new fingerprint.

In some cases, it may be necessary to grant permissions to sub-processes invoked by scripts. For example, it may be
necessary to grant permissions to /bin/bash that also allow running the /bin/df command to allow the system
administrator to check disk capacity through a script run using a crontab entry. By using the --children option,
you can specify these permissions. For example:

ALLOW @scripts * /root/script.sh --shell=/bin/bash --children=/bin/df

The --children option tells Navigator Encrypt to allow the /bin/df binary process if it is executed by
/root/script.sh.

To allow more than one sub-process, identify them with the --children option as comma-separated values. For
example:

ALLOW @scripts * /root/script.sh --shell=/bin/bash --children=/bin/df,/bin/ls

To add shell-children sub-processes, execute the navencrypt acl --add command, for example:

$ sudo /usr/sbin/navencrypt acl --add --rule="ALLOW @mysql * /usr/bin/mysqld_safe \
--shell=/bin/bash --children=/bin/df,/bin/ls"

ACL Profile Rules

If your environment requires more granular controls on the processes that can access the data, you can add extra
controls by using profiles. Profiles set requirements on a process other than just having the correct fingerprint. They
can include such things as process owner and group, required open files, and the current working directory.

A profile is generated by using the following command:

usr/sbin/navencrypt-profile --pid=<pid>

The output, by default, will be displayed on the screen. You can redirect the output to a file using the > or >> redirect
operators. You can then edit the JSON output in the file to remove lines you do notwant. By default, the profile includes
the UID, the short name of the binary or script (identified as comm ), and the full command line of the running process
(including any parameters passed). You can generate information by using one of these flags:

• -c, --with-cwd

Output the current working directory

• -e, --with-egid

Output the egid

• -g, --with-gid

Output the gid

• -u, --with-euid

Output the euid

Example output from the navencrypt-profile command:

{
"uid":"0",
"comm":"NetworkManager",
"cmdline":"NetworkManager –pid-file=/var/run/NetwrkManager/NetworkManager.pid",
"gid":"0"
"cwd":"/",
"fd0":"/dev/null",
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"fd1":"/dev/null",
"fd2":"/dev/null"
}

Some distributions do not support euid and guid. Make sure that your profile file is correct by executing the following
command to verify the expected IDs:

ps -p <pid_of_process> -o euid,egid

If cmdline parameters are variable, such as appending a process start timestamp to a filename, then the process
profilewill notmatch on subsequent restarts of the process because the current profilewill have an updated timestamp
and access will be denied by the ACL. You can mark those parameters as variable inside the profile file. For example,
if the cmdline of a process is something like this:

"cmdline":"NetworkManager –pid-file=/var/run/NetworkManager/NetworkManager.pid \
-logfile=/var/log/NetworkManager/log-20130808152300.log"

Where log-20130505122300.log is a variable cmdline parameter, before adding the process profile to the ACL,
edit the process profile file and use ## to specify that a particular parameter is variable:

"cmdline":"NetworkManager –pid-file=/var/run/NetworkManager/NetworkManager.pid 
-logfile=##"

With the above configuration, the ACL will allow any value for the -logfile cmdline parameter.

To enable a profile in the ACL, use the additional parameter --profile-file=<filename> when adding the rule
to the ACL:

$ sudo /usr/sbin/navencrypt acl --add --rule="ALLOW @mysql * /usr/sbin/mysqld" \
–-profile-file=/path/to/profile/file

To display the profile portion of the rules, use the --all parameter with navencrypt acl --list:

$ sudo /usr/sbin/navencrypt acl --list --all
Type MASTER passphrase:
# - Type Category Path Profile Process
1 ALLOW @mysql * YES /usr/sbin/mysqld
PROFILE:
{"uid":"120","comm":"mysqld","cmdline":"mysqld"}

Maintaining Cloudera Navigator Encrypt

Manually Backing Up Navigator Encrypt

It is recommended that you back up Navigator Encrypt configuration directory after installation, and again after any
configuration updates.

1. To manually back up the Navigator Encrypt configuration directory (/etc/navencrypt):

zip -r --encrypt nav-encrypt-conf.zip /etc/navencrypt

The --encrypt option prompts you to create a password used to encrypt the zip file. This password is also
required to decrypt the file. Ensure that you protect the password by storing it in a secure location.

2. Move the backup file (nav-encrypt-conf.zip) to a secure location.

Warning: Failure to back up the configuration directory makes your backed-up encrypted data
unrecoverable in the event of data loss.

296 | Cloudera Security

Cloudera Navigator Encrypt



Validating Navigator Encrypt Configuration

To validate the Navigator Encrypt deployment, run the following command:

sudo navencrypt status --integrity

This command verifies that:

• The mount encryption key (MEK) exists for each mount point.
• Each mount point in /etc/navencrypt/ztab has a corresponding entry in the control file

(/etc/navencrypt/control).
• Each mount point directory exists.
• For loop devices, the file used for encrypted storage exists.

The output is similar to the following:

$ sudo navencrypt status --integrity
Checking MEKs integrity

        Mountpoint: /dev/loop0
                MEK file exist: ......................   [YES]
        Mountpoint: /dev/loop1
                MEK file exist: ......................   [YES]

Checking Ztab Mountpoints integrity

         Mountpoint: /dev/loop0
                 ztab vs control correspondence: .....   [YES]
                 Mountpoint directory exists: ........   [YES]
         Mountpoint: /dev/loop1
                 ztab vs control correspondence: .....   [YES]
                 Mountpoint directory exists: ........   [YES]

Checking Datastore backend files

         Datastore: '/root/my_storage_test'
                 Backend file exist: .................   [YES]

Restoring Mount Encryption Keys (MEKs) and Control File

Navigator Encrypt deposits its mount encryption keys (MEKs) and control file (/etc/navencrypt/control) in
Cloudera Navigator Key Trustee Server. If these files are accidentally deleted, they can be restored from Key Trustee
Server using the following commands:

• To restore MEKs:

sudo navencrypt key --restore-keys

• To restore the control file:

sudo navencrypt control --restore-control-file

Access Modes

Navigator Encrypt provides three different access modes:

• Enforcing is the default mode in which Navigator Encrypt validates access from all processes against the ACL. To
protect your data, enforcing mode must be enabled.

• Permissivemode causes action="denied"messages to be logged in dmesg. It does not prevent access to the
encrypted data. This mode is a dry-run feature to run and build ACL rules.

• Adminmode, as well as permissive mode, does not prevent access to the encrypted data. It allows any process
to access the information because the ACL rules are not validated against the process. Admin mode does not
cause action="denied"messages to be logged in dmesg.
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To view the current access mode, run the following command:

sudo /usr/sbin/navencrypt status -d

Note: The navencrypt status command reports that the navencryptmodule is not running if
no volumes are encrypted or the kernel module is not loaded.

To change the access mode, use the following command:

sudo /usr/sbin/navencrypt set --mode={enforcing|permissive|admin}

You cannot change the Navigator Encrypt access mode unless the Navigator Encrypt module is running. To view the
status of the Navigator Encrypt module, run navencrypt status --module.

To start the Navigator Encrypt module there must be at least one active mount-point. To verify the mount-points
status, run the following command:

sudo /etc/init.d/navencrypt-mount status

For RHEL 7, use systemctl instead:

sudo systemctl status navencrypt-mount

Changing and Verifying the Master Key

You can perform two operations with the navencrypt key command: change and verify.

You can verify a key against the Navigator Encrypt module, the Navigator Key Trustee server, or both. For example:

sudo /usr/sbin/navencrypt key --verify
sudo /usr/sbin/navencrypt key --verify --only-module
sudo /usr/sbin/navencrypt key --verify --only-keytrustee

Note: The navencrypt key command fails if no volumes are encrypted or the kernel module is not
loaded.

The master key can be changed in the event that another key-type authentication mechanism or a new master key is
required. Valid master key types are single-passphrase, dual-passphrase, and RSA key files. To change the master key
type, issue the following command and follow the interactive console:

sudo /usr/sbin/navencrypt key –-change

You can use the --trustees, --votes, and --recoverable options for the new key as described in Table 31:
Registration Options on page 278.

Listing Categories

To list the existing categories for each mount point, run the command navencrypt-move --list-categories.
For example:

$ sudo navencrypt-move --list-categories
Navigator Encrypt Categories found per Mountpoint:

  /dmcrypt-storage
     @mysql
     @keytabs

  /home/jdoe/secrets
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     @moms_recipes
     @world_domination_plan

Updating ACL Fingerprints

All rules reference a process fingerprint (a SHA256 digest) that is used to authenticate the process into the file system.
If the filesystem detects a fingerprint that is different from the one stored in the ACL, the Linux process is denied access
and treated as an untrusted process.

Occasionally this process fingerprint must be updated, such as when software is upgraded. When the fingerprint must
be updated, the Navigator Encrypt administrator re-authenticates the process on the ACL by executing the command
navencrypt acl --update.

The following example demonstrates how to determine when a process fingerprint has been changed and must be
updated:

$ sudo /usr/sbin/navencrypt acl --list
Type MASTER passphrase:
# -  Type Category    Path         Profile  Process
1 !! ALLOW @mysql *            /usr/sbin/mysqld
2 ALLOW @log * /usr/sbin/mysqld
3 !! ALLOW @apache * /usr/lib/apache2/mpm-prefork/

In the example above, the double exclamation (!!) characters indicate that a process fingerprint has changed and
must be updated. Similarly, double E (EE) characters indicate a process read error. This error can be caused by a process
that does not exist or that has permission issues.

Note:

For RHEL-compatible OSes, the prelink applicationmay also be responsible for ACL fingerprint issues.
Prelinking is intended to speed up a system by reducing the time a program needs to begin. Cloudera
highly recommends disabling any automated prelink jobs, which are enabled by default in some
systems. As an alternative, Cloudera recommends that you integrate a manual prelink run into your
existing change control policies to ensure minimal downtime for applications accessing encrypted
data.

To disable prelinking, modify the /etc/sysconfig/prelink file and change PRELINKING=yes to
PRELINKING=no. Then, run the/etc/cron.daily/prelink script as root. Once finished, automatic
prelinking is disabled.

For more information about how prelinking affects your system, see prelink.

Managing Mount Points

The /etc/init.d/navencrypt-mount command mounts all mount points that were registered with the
navencrypt-prepare command and are listed in the /etc/navencrypt/ztab file. The possible operations are:

• start

• stop

• status

• restart

For RHEL 7, use systemctl [start|stop|status|restart] navencrypt-mount.

Note: On RHEL 7, the systemctl command can obscure the exit status of the start and/or stop
commands because navencrypt-mount is loaded as a kernel module instead of running as a
background process. Cloudera strongly recommends that you run systemctl status
navencrypt-mount whenever you run the start and/or stop command to verify that the status
of the navencrypt kernel module is still healthy and functioning.
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Note: Do not manually unmount the encryption mount point (for example, using umount). If you do
so, you must manually close the dm-crypt device using the following procedure:

1. Run dmsetup table to list the dm-crypt devices.
2. Run cryptsetup luksClose <device_name> to close the device for the unmounted mount

point.

When executing the stop operation, the encrypted mount point is unmounted, and your data becomes inaccessible.

The following example shows how to execute navencrypt-mount status with some inactive mount points:

sudo /etc/init.d/navencrypt-mount status

The following example shows how to execute the navencrypt-mount stop command:

sudo /etc/init.d/navencrypt-mount stop

The following example shows how to execute the navencrypt-mount start command:

sudo /etc/init.d/navencrypt-mount start

Here is an example command used to manually mount a directory:

sudo /usr/sbin/mount.navencrypt /path/to_encrypted_data/ /path/to/mountpoint

This command can be executed only if the navencrypt-prepare command was previously executed.

Navigator Encrypt Kernel Module Setup

If the kernel headers were not installed on your host, or if the wrong version of the kernel headers were installed, the
Navigator Encrypt module was not built at installation time. To avoid reinstalling the system, install the correct headers
and execute the navencrypt-module-setup command. This attempts to build the module and install it.

This method is also an efficient way to install any new Navigator Encrypt module feature or fix without otherwise
modifying your current Navigator Encrypt environment.

Navigator Encrypt Configuration Directory Structure

The file and directory structure of /etc/navencrypt is as follows:

$ tree /etc/navencrypt/
/etc/navencrypt/
    control -> /etc/navencrypt/jSpi9SM65xUIIhrau1Nn8ZXmQhrrQ9e363EUz8HKiRs
    jSpi9SM65xUIIhrau1Nn8ZXmQhrrQ9e363EUz8HKiRs
    rules
    ztab
locust
    keytrustee
     clientname
     deposits
         dev.loop0
         media.31E5-79B9locustlocust[system ~]# . /etc/*release[system ~]# . /etc/*release

         mnt.a
         mnt.encrypted
         mnt.tomount
     pubring.gpg
     pubring.gpg~
     random_seed
     secring.gpg
     trustdb.gpg
     ztrustee.conf
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The following files and folders are part of the created file structure:

• control

File that saves information about the mount points and corresponding Navigator Key Trustee keys. If this file is
accidentally deleted, you can restore it using thenavencrypt control --restore-control-file command.

• rules

File that contains the ACL rules. It is encrypted with the user-provided master key.

• ztab

File that contains information about all the mount points and their encryption type.

Important: Use cautionwhenediting the/etc/navencrypt/ztab file. Entries are tab-separated
(not space-separated). The ztab file must not contain empty lines.

• keytrustee

Directory where Navigator Key Trustee GPG keys are stored. These are generated during navencrypt register
operations.

• keytrustee/deposits

Directory where the Navigator Encrypt mount encryption keys (MEKs) are saved. These are encrypted with the
user-provided master key. If these are accidentally deleted, you can can restore them from Key Trustee Server
using the navencrypt key --restore-keys command.

Every mount point has an internal randomly-generated encryption passphrase.

Collecting Navigator Encrypt Environment Information

When troubleshooting problems with Navigator Encrypt, it is helpful to gather information about the installation and
environment. Navigator Encrypt provides a command to facilitate this:

sudo navencrypt-collect

This command collects and outputs to the console the following information:

• Information about the system on which Navigator Encrypt is installed
• Entries from /etc/navencrypt/ztab

• The contents of the keytrustee.conf file
• Recent entries from the Navigator Encrypt log file
• Configured software repositories
• Checksums of all /usr/src/navencrypt* and /usr/sbin/navencrypt* files

You can use this information to compare Navigator Encrypt installations and to provide to Cloudera Support for
troubleshooting. The navencrypt-collect command only outputs this information on the console, and does not
generate any files or upload to Cloudera.

To save the information to a file, use the redirect operator (>). For example:

sudo navencrypt-collect > navencrypt.info

Upgrading Navigator Encrypt Hosts

See Best Practices for Upgrading Navigator Encrypt Hosts for considerations when upgrading operating systems (OS)
and kernels on hosts that have Navigator Encrypt installed.
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Configuring Encryption for Data Spills

Some CDH services can encrypt data stored temporarily on the local filesystem outside HDFS. For example, data may
spill to disk during memory-intensive operations, or when a service exceeds its allotted memory on a host. You can
enable on-disk spill encryption for the following services.

MapReduce v2 (YARN)
MapReduce v2 can encrypt intermediate files generated during encrypted shuffle and data spilled to disk during the
map and reduce stages. To enable encryption on these intermediate files, use Cloudera Manager to specify settings
for theMapReduce Client Advanced Configuration Snippet (Safety Valve) for the mapred-site.xml associated with
a gateway node.

From the Cloudera Manager Admin Console:

1. Select Clusters > YARN.
2. Click the Configuration tab.
3. In the Search field, enterMapReduce Client Advanced Configuration Snippet (Safety Valve) to find the safety

valve on one of YARN's gateway nodes:

4. Enter the XML in the field (or switch to Editor mode and enter each property and its value in the fields provided).
A complete example of the XML is shown here:

<property>
    <name>mapreduce.job.encrypted-intermediate-data</name>
    <value>true</value>
</property>
<property>
    <name>mapreduce.job.encrypted-intermediate-data-key-size-bits</name>
    <value>128</value>
</property>
<property>
    <name>mapreduce.job.encrypted-intermediate-data.buffer.kb</name>
    <value>128</value>
</property>

5. Click Save Changes.

The table provides descriptions of the properties used for data-spill encryption:

DescriptionDefaultProperty

Enables (true) and disables (false) encryption
for intermediate MapReduce spills.

falsemapreduce.job.encrypted-intermediate-data

Length of key (bits) used for encryption.128mapreduce.job.encrypted-intermediate-data-key-size-bits

Buffer size (Kb) for the stream written to disk
after encryption.

128mapreduce.job.encrypted-intermediate-data.buffer.kb
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Note: Enabling encryption for intermediate data spills limits the number of attempts for a job to 1.

HBase
HBase does not write data outside HDFS, and does not require spill encryption.

Impala
Impala allows certain memory-intensive operations to be able to write temporary data to disk in case these operations
approach theirmemory limit on a host. For details, read SQLOperations that Spill to Disk. To enable disk spill encryption
in Impala:

1. Go to the Cloudera Manager Admin Console.
2. Click the Configuration tab.
3. Select Scope > Impala Daemon.
4. Select Category > Security.
5. Check the checkbox for the Disk Spill Encryption property.
6. Click Save Changes.

Hive
Hive jobs occasionally write data temporarily to local directories. If you enable HDFS encryption, you must ensure that
the following intermediate local directories are also protected:

• LOCALSCRATCHDIR: The MapJoin optimization in Hive writes HDFS tables to a local directory and then uploads
them to the distributed cache. To ensure these files are encrypted, either disable MapJoin by setting
hive.auto.convert.join to false, or encrypt the local Hive Scratch directory
(hive.exec.local.scratchdir) using Cloudera Navigator Encrypt.

• DOWNLOADED_RESOURCES_DIR: JARs that are added to a user session and stored in HDFS are downloaded to
hive.downloaded.resources.dir on the HiveServer2 local filesystem. To encrypt these JAR files, configure
Cloudera Navigator Encrypt to encrypt the directory specified by hive.downloaded.resources.dir.

• NodeManager Local Directory List: Hive stores JARs and MapJoin files in the distributed cache. To use MapJoin
or encrypt JARs and other resource files, the yarn.nodemanager.local-dirs YARN configuration property
must be configured to a set of encrypted local directories on all nodes.

For more information on Hive behavior with HDFS encryption enabled, see Using HDFS Encryption with Hive.

Flume
Flume supports on-disk encryption for log files written by the Flume file channels. See Configuring Encrypted On-disk
File Channels for Flume on page 303.

Configuring Encrypted On-disk File Channels for Flume
Flume supports on-disk encryption of data on the local disk. To implement this:

• Generate an encryption key to use for the Flume Encrypted File Channel
• Configure on-disk encryption by setting parameters in the flume.conf file
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Important:

Flume on-disk encryption operates with a maximum strength of 128-bit AES encryption unless the
JCE unlimited encryption cryptography policy files are installed. Please see this Oracle document for
information about enabling strong cryptography:
http://www.oracle.com/technetwork/java/javase/downloads/jce-6-download-429243.html

Consult your security organization for guidance on the acceptable strength of your encryption keys.
Cloudera has tested with AES-128, AES-192, and AES-256.

Generating Encryption Keys

Use the keytool program included with the Oracle JDK to create the AES encryption keys for use with Flume.

The command to generate a 128-bit key that uses the same password as the key store password is:

keytool -genseckey -alias key-1 -keyalg AES -keysize 128 -validity 9000 \
-keystore test.keystore -storetype jceks \
-storepass keyStorePassword

The command to generate a 128-bit key that uses a different password from that used by the key store is:

keytool -genseckey -alias key-0 -keypass keyPassword -keyalg AES \
-keysize 128 -validity 9000 -keystore test.keystore \
-storetype jceks -storepass keyStorePassword

The key store and password files can be stored anywhere on the file system; both files should have flume as the owner
and 0600 permissions.

Please note that -keysize controls the strength of the AES encryption key, in bits; 128, 192, and 256 are the allowed
values.

Configuration

Flume on-disk encryption is enabled by setting parameters in the /etc/flume-ng/conf/flume.conf file.

Basic Configuration

The first example is a basic configuration with an alias called key-0 that uses the same password as the key store:

agent.channels.ch-0.type = file
agent.channels.ch-0.capacity = 10000
agent.channels.ch-0.encryption.cipherProvider = AESCTRNOPADDING
agent.channels.ch-0.encryption.activeKey = key-0
agent.channels.ch-0.encryption.keyProvider = JCEKSFILE
agent.channels.ch-0.encryption.keyProvider.keyStoreFile = /path/to/my.keystore
agent.channels.ch-0.encryption.keyProvider.keyStorePasswordFile = 
/path/to/my.keystore.password
agent.channels.ch-0.encryption.keyProvider.keys = key-0

In the next example, key-0 uses its own password which may be different from the key store password:

agent.channels.ch-0.type = file
agent.channels.ch-0.capacity = 10000
agent.channels.ch-0.encryption.cipherProvider = AESCTRNOPADDING
agent.channels.ch-0.encryption.activeKey = key-0
agent.channels.ch-0.encryption.keyProvider = JCEKSFILE
agent.channels.ch-0.encryption.keyProvider.keyStoreFile = /path/to/my.keystore
agent.channels.ch-0.encryption.keyProvider.keyStorePasswordFile = 
/path/to/my.keystore.password
agent.channels.ch-0.encryption.keyProvider.keys = key-0
agent.channels.ch-0.encryption.keyProvider.keys.key-0.passwordFile = 
/path/to/key-0.password
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Changing Encryption Keys Over Time

To modify the key, modify the configuration as shown below. This example shows how to change the configuration to
use key-1 instead of key-0:

agent.channels.ch-0.type = file
agent.channels.ch-0.capacity = 10000
agent.channels.ch-0.encryption.cipherProvider = AESCTRNOPADDING
agent.channels.ch-0.encryption.activeKey = key-1
agent.channels.ch-0.encryption.keyProvider = JCEKSFILE
agent.channels.ch-0.encryption.keyProvider.keyStoreFile = /path/to/my.keystore
agent.channels.ch-0.encryption.keyProvider.keyStorePasswordFile = 
/path/to/my.keystore.password
agent.channels.ch-0.encryption.keyProvider.keys = key-0 key-1

The same scenario except that key-0 and key-1 have their own passwords is shown here:

agent.channels.ch-0.type = file
agent.channels.ch-0.capacity = 10000
agent.channels.ch-0.encryption.cipherProvider = AESCTRNOPADDING
agent.channels.ch-0.encryption.activeKey = key-1
agent.channels.ch-0.encryption.keyProvider = JCEKSFILE
agent.channels.ch-0.encryption.keyProvider.keyStoreFile = /path/to/my.keystore
agent.channels.ch-0.encryption.keyProvider.keyStorePasswordFile = 
/path/to/my.keystore.password
agent.channels.ch-0.encryption.keyProvider.keys = key-0 key-1
agent.channels.ch-0.encryption.keyProvider.keys.key-0.passwordFile = 
/path/to/key-0.password
agent.channels.ch-0.encryption.keyProvider.keys.key-1.passwordFile = 
/path/to/key-1.password

Troubleshooting

If the unlimited strength JCE policy files are not installed, an error similar to the following is printed in the flume.log:

07 Sep 2012 23:22:42,232 ERROR [lifecycleSupervisor-1-0] 
(org.apache.flume.channel.file.encryption.AESCTRNoPaddingProvider.getCipher:137) - Unable
 to load key using transformation: AES/CTR/NoPadding; Warning: Maximum allowed key length
 = 128 with the available JCE security policy files. Have you installed the JCE unlimited
 strength jurisdiction policy files?
java.security.InvalidKeyException: Illegal key size
at javax.crypto.Cipher.a(DashoA13*..)
at javax.crypto.Cipher.a(DashoA13*..)
at javax.crypto.Cipher.a(DashoA13*..)
at javax.crypto.Cipher.init(DashoA13*..)
at javax.crypto.Cipher.init(DashoA13*..)
at 
org.apache.flume.channel.file.encryption.AESCTRNoPaddingProvider.getCipher(AESCTRNoPaddingProvider.java:120)
at 
org.apache.flume.channel.file.encryption.AESCTRNoPaddingProvider.access$200(AESCTRNoPaddingProvider.java:35)
at 
org.apache.flume.channel.file.encryption.AESCTRNoPaddingProvider$AESCTRNoPaddingDecryptor.<init>(AESCTRNoPaddingProvider.java:94)
at 
org.apache.flume.channel.file.encryption.AESCTRNoPaddingProvider$AESCTRNoPaddingDecryptor.<init>(AESCTRNoPaddingProvider.java:91)
at 
org.apache.flume.channel.file.encryption.AESCTRNoPaddingProvider$DecryptorBuilder.build(AESCTRNoPaddingProvider.java:66)
at 
org.apache.flume.channel.file.encryption.AESCTRNoPaddingProvider$DecryptorBuilder.build(AESCTRNoPaddingProvider.java:62)
at 
org.apache.flume.channel.file.encryption.CipherProviderFactory.getDecrypter(CipherProviderFactory.java:47)
at org.apache.flume.channel.file.LogFileV3$SequentialReader.<init>(LogFileV3.java:257)
at 
org.apache.flume.channel.file.LogFileFactory.getSequentialReader(LogFileFactory.java:110)
at org.apache.flume.channel.file.ReplayHandler.replayLog(ReplayHandler.java:258)
at org.apache.flume.channel.file.Log.replay(Log.java:339)
at org.apache.flume.channel.file.FileChannel.start(FileChannel.java:260)
at 
org.apache.flume.lifecycle.LifecycleSupervisor$MonitorRunnable.run(LifecycleSupervisor.java:236)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:441)
at java.util.concurrent.FutureTask$Sync.innerRunAndReset(FutureTask.java:317)
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at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:150)
at 
java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$101(ScheduledThreadPoolExecutor.java:98)
at 
java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.runPeriodic(ScheduledThreadPoolExecutor.java:180)
at 
java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:204)
at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908)
at java.lang.Thread.run(Thread.java:662)
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Impala Security Overview

Impala includes a fine-grained authorization framework for Hadoop, based on the Sentry open source project. Sentry
authorization was added in Impala 1.1.0. Together with the Kerberos authentication framework, Sentry takes Hadoop
security to a new level needed for the requirements of highly regulated industries such as healthcare, financial services,
and government. Impala also includes an auditing capability; Impala generates the audit data, the Cloudera Navigator
product consolidates the audit data from all nodes in the cluster, and Cloudera Manager lets you filter, visualize, and
produce reports. The auditing feature was added in Impala 1.1.1.

The Impala security features have several objectives. At the most basic level, security prevents accidents or mistakes
that could disrupt application processing, delete or corrupt data, or reveal data to unauthorized users. More advanced
security features and practices can harden the system against malicious users trying to gain unauthorized access or
perform other disallowed operations. The auditing feature provides a way to confirm that no unauthorized access
occurred, and detect whether any such attemptsweremade. This is a critical set of features for production deployments
in large organizations that handle important or sensitive data. It sets the stage for multi-tenancy, where multiple
applications run concurrently and are prevented from interfering with each other.

The material in this section presumes that you are already familiar with administering secure Linux systems. That is,
you should know the general security practices for Linux andHadoop, and their associated commands and configuration
files. For example, you should know how to create Linux users and groups, manage Linux group membership, set Linux
and HDFS file permissions and ownership, and designate the default permissions and ownership for new files. You
should be familiar with the configuration of the nodes in your Hadoop cluster, and know how to apply configuration
changes or run a set of commands across all the nodes.

The security features are divided into these broad categories:

authorization

Which users are allowed to access which resources, andwhat operations are they allowed to perform? Impala relies
on the open source Sentry project for authorization. By default (when authorization is not enabled), Impala does
all read and write operations with the privileges of the impala user, which is suitable for a development/test
environment but not for a secure production environment. When authorization is enabled, Impala uses the OS user
ID of the user who runs impala-shell or other client program, and associates various privileges with each user.
See Enabling Sentry Authorization for Impala for details about setting up and managing authorization.

authentication

How does Impala verify the identity of the user to confirm that they really are allowed to exercise the privileges
assigned to that user? Impala relies on the Kerberos subsystem for authentication. See Enabling Kerberos
Authentication for Impala on page 92 for details about setting up and managing authentication.

auditing

What operations were attempted, and did they succeed or not? This feature provides a way to look back and
diagnose whether attempts were made to perform unauthorized operations. You use this information to track
down suspicious activity, and to see where changes are needed in authorization policies. The audit data produced
by this feature is collected by the Cloudera Manager product and then presented in a user-friendly form by the
Cloudera Manager product. See Auditing Impala Operations for details about setting up and managing auditing.

These other topics in the Security Guide cover how Impala integrates with security frameworks such as Kerberos, LDAP,
and Sentry:

• Impala Authentication on page 92
• Enabling Sentry Authorization for Impala

Security Guidelines for Impala
The following are the major steps to harden a cluster running Impala against accidents and mistakes, or malicious
attackers trying to access sensitive data:
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• Secure the root account. The root user can tamper with the impalad daemon, read and write the data files in
HDFS, log into other user accounts, and access other system services that are beyond the control of Impala.

• Restrict membership in the sudoers list (in the /etc/sudoers file). The users who can run the sudo command
can do many of the same things as the root user.

• Ensure the Hadoop ownership and permissions for Impala data files are restricted.

• Ensure the Hadoop ownership and permissions for Impala log files are restricted.

• Ensure that the Impala web UI (available by default on port 25000 on each Impala node) is password-protected.
See Impala Web User Interface for Debugging for details.

• Create a policy file that specifies which Impala privileges are available to users in particular Hadoop groups (which
by defaultmap to LinuxOS groups). Create the associated Linux groups using the groupadd command if necessary.

• The Impala authorization featuremakes use of theHDFS file ownership and permissionsmechanism; for background
information, see theHDFS Permissions Guide. Set up users and assign them to groups at theOS level, corresponding
to the different categories of users with different access levels for various databases, tables, and HDFS locations
(URIs). Create the associated Linux users using theuseradd command if necessary, and add them to the appropriate
groups with the usermod command.

• Design your databases, tables, and views with database and table structure to allow policy rules to specify simple,
consistent rules. For example, if all tables related to an application are inside a single database, you can assign
privileges for that database and use the * wildcard for the table name. If you are creating views with different
privileges than the underlying base tables, you might put the views in a separate database so that you can use
the * wildcard for the database containing the base tables, while specifying the precise names of the individual
views. (For specifying table or database names, you either specify the exact name or * to mean all the databases
on a server, or all the tables and views in a database.)

• Enable authorization by running the impalad daemons with the -server_name and
-authorization_policy_file options on all nodes. (The authorization feature does not apply to the
statestored daemon, which has no access to schema objects or data files.)

• Set up authentication using Kerberos, to make sure users really are who they say they are.

Securing Impala Data and Log Files
One aspect of security is to protect files from unauthorized access at the filesystem level. For example, if you store
sensitive data in HDFS, you specify permissions on the associated files and directories in HDFS to restrict read andwrite
permissions to the appropriate users and groups.

If you issue queries containing sensitive values in the WHERE clause, such as financial account numbers, those values
are stored in Impala log files in the Linux filesystem and you must secure those files also. For the locations of Impala
log files, see Using Impala Logging.

All Impala read and write operations are performed under the filesystem privileges of the impala user. The impala
user must be able to read all directories and data files that you query, and write into all the directories and data files
for INSERT and LOAD DATA statements. At a minimum, make sure the impala user is in the hive group so that it
can access files and directories shared between Impala and Hive. See User Account Requirements for more details.

Setting file permissions is necessary for Impala to function correctly, but is not an effective security practice by itself:

• The way to ensure that only authorized users can submit requests for databases and tables they are allowed to
access is to set up Sentry authorization, as explained in Enabling Sentry Authorization for Impala.With authorization
enabled, the checking of the user ID and group is done by Impala, and unauthorized access is blocked by Impala
itself. The actual low-level read andwrite requests are still done by the impala user, so youmust have appropriate
file and directory permissions for that user ID.
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• You must also set up Kerberos authentication, as described in Enabling Kerberos Authentication for Impala on
page 92, so that users can only connect from trusted hosts. With Kerberos enabled, if someone connects a new
host to the network and creates user IDs that match your privileged IDs, they will be blocked from connecting to
Impala at all from that host.

Installation Considerations for Impala Security
Impala 1.1 comes set up with all the software and settings needed to enable security when you run the impalad
daemon with the new security-related options (-server_name and -authorization_policy_file). You do not
need to change any environment variables or install any additional JAR files. In a clustermanaged by ClouderaManager,
you do not need to change any settings in Cloudera Manager.

Securing the Hive Metastore Database
It is important to secure theHivemetastore, so that users cannot access the names or other information about databases
and tables the through the Hive client or by querying the metastore database. Do this by turning on Hive metastore
security, using the instructions in the CDH Security Guide for securing different Hive components:

• Secure the Hive Metastore.
• In addition, allow access to the metastore only from the HiveServer2 server, and then disable local access to the

HiveServer2 server.

Securing the Impala Web User Interface
The instructions in this section presume you are familiar with the .htpasswdmechanism commonly used to
password-protect pages on web servers.

Password-protect the ImpalawebUI that listens on port 25000 by default. Set up a.htpasswd file in the$IMPALA_HOME
directory, or start both the impalad and statestored daemons with the --webserver_password_file option
to specify a different location (including the filename).

This file should only be readable by the Impala process and machine administrators, because it contains (hashed)
versions of passwords. The username / password pairs are not derived from Unix usernames, Kerberos users, or any
other system. Thedomain field in the password filemustmatch the domain supplied to Impala by the new command-line
option --webserver_authentication_domain. The default is mydomain.com.

Impala also supports using HTTPS for secure web traffic. To do so, set --webserver_certificate_file to refer
to a valid .pem TLS/SSL certificate file. Impala will automatically start using HTTPS once the TLS/SSL certificate has
been read and validated. A .pem file is basically a private key, followed by a signed TLS/SSL certificate; make sure to
concatenate both parts when constructing the .pem file.

If Impala cannot find or parse the .pem file, it prints an error message and quits.

Note:

If the private key is encrypted using a passphrase, Impalawill ask for that passphrase on startup, which
is not useful for a large cluster. In that case, remove the passphrase and make the .pem file readable
only by Impala and administrators.

When you turn on TLS/SSL for the Impala web UI, the associated URLs change from http:// prefixes
to https://. Adjust any bookmarks or application code that refers to those URLs.
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Configuring Secure Access for Impala Web Servers

Cloudera Manager supports two methods of authentication for secure access to the Impala Catalog Server, Daemon,
and StateStoreweb servers: password-based authentication and TLS/SSL certificate authentication.

Authentication for the three types of daemons can be configured independently.

Configuring Password Authentication

1. Navigate to Clusters > Impala Service > Configuration.
2. Search for "password" using the Search box in the Configuration tab. This should display the password-related

properties (Username and Password properties) for the Impala Daemon, StateStore, and Catalog Server. If there
are multiple role groups configured for Impala Daemon instances, the search should display all of them.

3. Enter a username and password into these fields.
4. Click Save Changes, and restart the Impala service.

Now when you access theWeb UI for the Impala Daemon, StateStore, or Catalog Server, you are asked to log in before
access is granted.

Configuring TLS/SSL Certificate Authentication

1. Create or obtain an TLS/SSL certificate.
2. Place the certificate, in .pem format, on the hosts where the Impala Catalog Server and StateStore are running,

and on each host where an Impala Daemon is running. It can be placed in any location (path) you choose. If all
the Impala Daemons are members of the same role group, then the .pem file must have the same path on every
host.

3. Navigate to Clusters > Impala Service > Configuration.
4. Search for "certificate" using the Search box in the Configuration tab. This should display the certificate file location

properties for the Impala Catalog Server, Impala Daemon, and StateStore. If there are multiple role groups
configured for Impala Daemon instances, the search should display all of them.

5. In the property fields, enter the full path name to the certificate file.
6. Click Save Changes, and restart the Impala service.

Important: If Cloudera Manager cannot find the .pem file on the host for a specific role instance,
that role will fail to start.

When you access the Web UI for the Impala Catalog Server, Impala Daemon, and StateStore, https will be used.
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Kudu Security Overview

Kudu includes security features that allow Kudu clusters to be hardened against access from unauthorized users. Kudu
uses strong authenticationwith Kerberos, while communication between Kudu clients and servers can nowbe encrypted
with TLS. Kudu also allows you to use HTTPS encryption to connect to the web UI.

The rest of this topic describes the security capabilities of Apache Kudu and how to configure a secure Kudu cluster.
Currently, there are a few known limitations in Kudu security that might impact your cluster. For the list, see Security
Limitations.

Kudu Authentication with Kerberos
Kudu can be configured to enforce secure authentication among servers, and between clients and servers. Authentication
prevents untrusted actors from gaining access to Kudu, and securely identifies connecting users or services for
authorization checks. Authentication in Kudu is designed to interoperate with other secure Hadoop components by
utilizing Kerberos.

Configure authentication on Kudu servers using the --rpc_authentication flag, which can be set to one of the
following options:

• required - Kudu will reject connections from clients and servers who lack authentication credentials.
• optional - Kudu will attempt to use strong authentication, but will allow unauthenticated connections.
• disabled - Kudu will only allow unauthenticated connections.

By default, the flag is set to optional. To secure your cluster, set --rpc_authentication to required.

Internal Private Key Infrastructure (PKI)

Kudu uses an internal PKI to issue X.509 certificates to servers in the cluster. Connections between peers who have
both obtained certificates will use TLS for authentication. In such cases, neither peer needs to contact the Kerberos
KDC.

X.509 certificates are only used for internal communication among Kudu servers, and between Kudu clients and servers.
These certificates are never presented in a public facing protocol. By using internally-issued certificates, Kudu offers
strong authentication which scales to huge clusters, and allows TLS encryption to be used without requiring you to
manually deploy certificates on every node.

Authentication Tokens

After authenticating to a secure cluster, the Kudu client will automatically request an authentication token from the
Kudumaster. An authentication token encapsulates the identity of the authenticated user and carries the Kudumaster's
RSA signature so that its authenticity can be verified. This token will be used to authenticate subsequent connections.
By default, authentication tokens are only valid for seven days, so that even if a token were compromised, it cannot
be used indefinitely. For the most part, authentication tokens should be completely transparent to users. By using
authentication tokens, Kudu is able to take advantage of strong authentication, without paying the scalability cost of
communicating with a central authority for every connection.

Whenusedwith distributed compute frameworks such as Apache Spark, authentication tokens can simplify configuration
and improve security. For example, the Kudu Spark connectorwill automatically retrieve an authentication token during
the planning stage, and distribute the token to tasks. This allows Spark to work against a secure Kudu cluster where
only the planner node has Kerberos credentials.
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Client Authentication to Secure Kudu Clusters

Users running client Kudu applications must first run the kinit command to obtain a Kerberos ticket-granting ticket.
For example:

kinit admin@EXAMPLE-REALM.COM

Once authenticated, you use the same client code to read from andwrite to Kudu servers with andwithout the Kerberos
configuration.

Scalability
Kudu authentication is designed to scale to thousands of nodes, which means it must avoid unnecessary coordination
with a central authentication authority (such as the Kerberos KDC) for each connection. Instead, Kudu servers and
clients use Kerberos to establish initial trust with the Kudu master, and then use alternate credentials for subsequent
connections. As described previously, the Kudu master issues internal X.509 certificates to tablet servers on startup,
and temporary authentication tokens to clients on first contact.

Encryption
Kudu allows you to use TLS to encrypt all communications among servers, and between clients and servers. Configure
TLS encryption on Kudu servers using the --rpc_encryption flag, which can be set to one of the following options:

• required - Kudu will reject unencrypted connections.
• optional - Kudu will attempt to use encryption, but will allow unencrypted connections.
• disabled - Kudu will not use encryption.

By default, the flag is set to optional. To secure your cluster, set --rpc_encryption to required.

Note: Kudu will automatically turn off encryption on local loopback connections, since traffic from
these connections is never exposed externally. This allows locality-aware compute frameworks, such
as Spark and Impala, to avoid encryption overhead, while still ensuring data confidentiality.

Using Vormetric encryption is considered experimental.We recommend you to experiment using Vormetric encryption
with Kudu in a development environment.

Coarse-grained Authorization
Kudu supports coarse-grained authorization checks for client requests based on the client's authenticated Kerberos
principal (user or service). Access levels are granted based on whitelist-style Access Control Lists (ACLs), one for each
level. Each ACL specifies a comma-separated list of users, or may be set to '*' to indicate that all authenticated users
have access rights at the specified level.

The two levels of access which can be configured are:

• Superuser - Principals authorized as a superuser can perform certain administrative functions such as using the
kudu command line tool to diagnose and repair cluster issues.

• User - Principals authorized as a user are able to access and modify all data in the Kudu cluster. This includes the
ability to create, drop, and alter tables, as well as read, insert, update, and delete data. The default value for the
User ACL is '*', which allows all users access to the cluster. However, if authentication is enabled, this will restrict
access to only those users who are able to successfully authenticate using Kerberos. Unauthenticated users on
the same network as the Kudu servers will be unable to access the cluster.
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Note: Internally, Kudu has a third access level for the daemons themselves called Service. This is used
to ensure that users cannot connect to the cluster and pose as tablet servers.

Web UI Encryption
The Kudu web UI can be configured to use secure HTTPS encryption by providing each server with TLS certificates. Use
the--webserver_certificate_file and--webserver_private_key_file properties to specify the certificate
and private key to be used for communication.

Alternatively, you can choose to completely disable the web UI by setting --webserver_enabled flag to false on
the Kudu servers.

Web UI Redaction
To prevent sensitive data from being included in the web UI, all row data is redacted. Table metadata, such as table
names, column names, and partitioning information is not redacted. Alternatively, you can choose to completely disable
the web UI by setting the --webserver_enabled flag to false on the Kudu servers.

Note: Disabling the web UI will also disable REST endpoints such as /metrics. Monitoring systems
rely on these endpoints to gather metrics data.

Log Redaction
To prevent sensitive data from being included in Kudu server logs, all row data will be redacted. You can turn off log
redaction using the --redact flag.

Configuring a Secure Kudu Cluster using Cloudera Manager

Warning: If you are upgrading from Kudu 1.2.0 / CDH 5.10.x, you must upgrade both Kudu and CDH
parcels (or packages) at the same time. If you upgrade Kudu but do not upgrade CDH, new Kudu
features such as Security will not be available. Note that even though you might be able to see the
updated configuration options for Kudu security in Cloudera Manager, configuring them will have no
effect.

Use the following set of instructions to secure a Kudu cluster using Cloudera Manager:

Enabling Kerberos Authentication and RPC Encryption

Important: The following instructions assume you already have a secure Cloudera Manager cluster
with Kerberos authentication enabled. If this is not the case, first secure your cluster using the steps
described at Enabling Kerberos Authentication Using the Cloudera Manager Wizard.

To enable Kerberos authentication for Kudu:

1. Go to the Kudu service.
2. Click the Configuration tab.
3. Select Category >Main.
4. In the Search field, type Kerberos to show the relevant properties.
5. Edit the following properties according to your cluster configuration:
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Usage NotesField

Set to the default principal,kudu. Currently, Kudu does not support configuring
a custom service principal for Kudu processes.

Kerberos Principal

Select this checkbox to enable authentication and RPC encryption between
all Kudu clients and servers, as well as between individual servers. Only enable
this property after you have configured Kerberos.

Enable Secure Authentication
And Encryption

6. Click Save Changes.
7. You will see an error message that tells you the Kudu keytab is missing. To generate the keytab, go to the top

navigation bar and click Administration > Security.
8. Go to the Kerberos Credentials tab. On this page you will see a list of the existing Kerberos principals for services

running on the cluster.
9. Click Generate Missing Credentials. Once the Generate Missing Credentials command has finished running, you

will see the Kudu principal added to the list.

Configuring Coarse-grained Authorization with ACLs

1. Go to the Kudu service.
2. Click the Configuration tab.
3. Select Category > Security.
4. In the Search field, type ACL to show the relevant properties.
5. Edit the following properties according to your cluster configuration:

Usage NotesField

Add a comma-separated list of superusers who can access the cluster. By
default, this property is left blank.

'*' indicates that all authenticated users will be given superuser access.

Superuser Access Control List

Add a comma-separated list of users who can access the cluster. By default,
this property is set to '*'.

The default value of '*' allows all users access to the cluster. However, if
authentication is enabled, this will restrict access to only those users who are

User Access Control List

able to successfully authenticate using Kerberos. Unauthenticated users on
the same network as the Kudu servers will be unable to access the cluster.

Add the impala user to this list to allow Impala to query data in Kudu. You
might choose to add any other relevant usernames if you want to give access
to Spark Streaming jobs.

6. Click Save Changes.

Configuring HTTPS Encryption for the Kudu Master and Tablet Server Web UIs

Use the following steps to enable HTTPS for encrypted connections to the Kudu master and tablet server web UIs.

1. Go to the Kudu service.
2. Click the Configuration tab.
3. Select Category > Security.
4. In the Search field, type TLS/SSL to show the relevant properties.
5. Edit the following properties according to your cluster configuration:
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Usage NotesField

Set to the path containing the Kudu master host's private key (PEM-format).
This is used to enable TLS/SSL encryption (over HTTPS) for browser-based
connections to the Kudu master web UI.

Master TLS/SSL Server Private
Key File (PEM Format)

Set to the path containing the Kudu tablet server host's private key
(PEM-format). This is used to enable TLS/SSL encryption (over HTTPS) for
browser-based connections to Kudu tablet server web UIs.

Tablet Server TLS/SSL Server
Private Key File (PEM Format)

Set to the path containing the signed certificate (PEM-format) for the Kudu
master host's private key (set in Master TLS/SSL Server Private Key File). The

Master TLS/SSL Server Certificate
File (PEM Format)

certificate file can be created by concatenating all the appropriate root and
intermediate certificates required to verify trust.

Set to the path containing the signed certificate (PEM-format) for the Kudu
tablet server host's private key (set in Tablet Server TLS/SSL Server Private

Tablet Server TLS/SSL Server
Certificate File (PEM Format)

Key File). The certificate file can be created by concatenating all the
appropriate root and intermediate certificates required to verify trust.

Enables HTTPS encryption on the Kudu master web UI.Enable TLS/SSL forMaster Server

Enables HTTPS encryption on the Kudu tablet server Web UIs.Enable TLS/SSL for Tablet Server

6. Click Save Changes.

Configuring a Secure Kudu Cluster using the Command Line

Important: Follow these command-line instructions on systems that do not use Cloudera Manager.
If you are using Cloudera Manager, see Configuring a Secure Kudu Cluster using Cloudera Manager
on page 313.

The following configuration parameters should be set on all servers (master and tablet servers) to ensure that a Kudu
cluster is secure:

# Connection Security
#--------------------
--rpc_authentication=required
--rpc_encryption=required
--keytab_file=<path-to-kerberos-keytab>

# Web UI Security
#--------------------
--webserver_certificate_file=<path-to-cert-pem>
--webserver_private_key_file=<path-to-key-pem>
# optional
--webserver_private_key_password_cmd=<password-cmd>

# If you prefer to disable the web UI entirely:
--webserver_enabled=false

# Coarse-grained authorization
#--------------------------------

# This example ACL setup allows the 'impala' user as well as the
# 'etl_service_account' principal access to all data in the
# Kudu cluster. The 'hadoopadmin' user is allowed to use administrative
# tooling. Note that by granting access to 'impala', other users
# may access data in Kudu via the Impala service subject to its own
# authorization rules.
--user_acl=impala,etl_service_account
--admin_acl=hadoopadmin
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More information about these flags can be found in the configuration reference documentation.
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Security How-To Guides

Configuring security for clusters can be complex and time-consuming. Here are some start-to-finish guides and
single-focused instruction sets aimed at simplifying various tasks.

Administrative Basics
• Check Cluster Security Settings
• Configure Antivirus Software on CDH Hosts
• Log a Security Support Case

Authentication
• Authenticate Kerberos Principals Using Java
• Configure Browser-based Interfaces to Require Kerberos Authentication (SPNEGO)
• Configure Clusters for Kerberos Authentication (Start to finish)

Cloud Security

Amazon Web Services (AWS) and Amazon S3

• Amazon Web Services (AWS) Security on page 319
• How to Configure AWS Credentials on page 344
• Configure Authentication for Amazon S3
• Configure Encryption for Amazon S3

Microsoft Azure

• How To Set Up Access to Cloudera EDH or Altus Director (Microsoft Azure Marketplace) on page 359

Client Access
• Configure Browsers for Kerberos Authentication (SPNEGO)
• Set Up a Gateway Node to Restrict Access to the Cluster

Data Privacy
• Enable Sensitive Data Redaction

Data in Transit (TLS/SSL) Encryption
• Add Root and Intermediate CAs to Truststore for TLS/SSL
• Configure Encrypted Transport for HBase Data
• Configure Encrypted Transport for HDFS Data
• Configuring TLS Encryption for Cloudera Manager on page 151
• Convert DER, JKS, PEM for TLS/SSL Clients and Services
• Obtain and Deploy Keys and Certificates for TLS/SSL
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• Renew and Redistribute Certificates Before Expiration
• Use Self-Signed Certificates for TLS

How to Add Root and Intermediate CAs to Truststore for TLS/SSL
If a signed certificate is from a certificate authority (CA) that does not have certificates in the truststore for whatever
reason (internal CA or a public CA not included in the Java truststore, for example), you must explicitly establish trust
for the CA, as detailed below. The content of the truststore for the Cloudera Manager Server cluster can be modified
(certificates added, for example) without restarting the server. Changes to the truststore are adopted by the system
within 10 seconds.

Explicit Trust for Certificates

Before importing the certificate into the keystore of the host system, you must load the root CAs and any intermediate
CAs into the truststore.

1. Copy the root and intermediate CA certificates to these locations on the Cloudera Manager Server host:

/opt/cloudera/security/pki/rootca.cert.pem
/opt/cloudera/security/pki/intca.cert.pem

a. For concatenated files containing root CA and intermediate CA certificates, split the file between the END
CERTIFICATE and BEGIN CERTIFICATE boundaries that separate each certificate in the file and make
individual files instead.

b. When extracting multiple intermediate CA certificates from a concatenated file, use unique file names such
as intca-1.cert.pem, intca-1.cert.pem, and so on.

2. Import the root CA certificate into the JDK truststore. If you do not have the $JAVA_HOME variable set, replace it
with the path to the Oracle JDK.

$ sudo keytool -importcert -alias rootca -keystore $JAVA_HOME/jre/lib/security/jssecacerts
 \
-file /opt/cloudera/security/pki/rootca.cert.pem -storepass changeit

The default password for the cacerts file is changeit (as shown in the above command). Cloudera recommends
changing this password by running the keytool command:

keytool -storepasswd -keystore $JAVA_HOME/jre/lib/security/cacerts

3. Copy the jssecacerts file from the Cloudera Manager Server host to all other cluster hosts. Copy the file to the
same location on each host using the path required by Oracle JDK, which is as follows:

$JAVA_HOME/jre/lib/security/jssecacerts

4. On the Cloudera Manager Server host, append the intermediate CA certificate to the signed server certificate. Be
sure to use the append (>>) operator—not overwrite (>)—when executing the statement:

$ sudo cat /opt/cloudera/security/pki/intca.cert.pem >> \
/opt/cloudera/security/pki/$(hostname -f)-server.cert.pem
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Amazon Web Services (AWS) Security
Amazon Web Services (AWS) is Amazon's cloud solution that offers compute, storage, networking, and other
infrastructure services that can be used for Cloudera cluster deployments, whether completely cloud-based or in
combination with on-premises clusters.

For example, Amazon Elastic Compute Cloud (EC2) can be used for the instances that make-up the nodes of a Cloudera
cluster deployed to the AWS cloud. Amazon's cloud-based storage solution, Amazon Simple Storage Service (Amazon
S3), can be used by both on-premises and AWS-cloud-based clusters in various ways, including as storage for Impala
tables for direct use by Hue and Hive, and other CDH components such as HDFS client, Hive, Impala, MapReduce.

As of release 5.11, Cloudera Manager supports Amazon's IAM-role based access to Amazon S3 storage, in addition to
its prior support of AWS access key and secret key. See How to Configure AWS Credentials on page 344 for details.

For any AWS service, including Amazon S3, you must obtain an Amazon Web Services account and have appropriate
access to the AWS Management Console to set up the various services you want, including Amazon S3. Assuming you
have an account for AWS, to provide access from your Cloudera cluster to Amazon S3 storage you must configure AWS
credentials.

• Configuring Authentication
• Configuring Encryption

Getting Started with Amazon Web Services

To get started with AWS, including Amazon S3, you must have:

1. An Amazon Web Services account. Both Amazon and Cloudera recommend that you do not use your primary
Amazon account—known as the root account—for working with Amazon S3 and other AWS services. See the AWS
IAM documentation for details about how to set up your AWS account.

2. Access to the AWS Management Console and appropriate permissions to create and configure the AWS services
needed for your use case, such as the following:

a. AWS Elastic Compute Cloud (EC2) to deploy your cluster to the AWS cloud.
b. AWS Identity and Access Management (IAM) to set up users and groups, or to set up an IAM role.
c. Amazon S3 and the specific storage bucket (or buckets) for use with your cluster.
d. Amazon DynamoDB to enable the database needed by Cloudera S3Guard, if you plan to enable S3Guard for

your cluster. Cloudera S3Guard augments Amazon S3 with a database to track metadata changes so that the
'eventual consistency' model inherent to Amazon S3 does not pose a problem for transactions or other use
cases inwhich changesmay not be apparent to each other in real time. See Configuring andManaging S3Guard
in Cloudera Administration for details. To use S3Guard, you will also need to set up the appropriate access
policy (create table, read, write) to DynamoDB for the same AWS identity that owns the Amazon S3 storage.

e. AWS Key Management Services (KMS) (AWS KMS) to create encryption keys for your Amazon S3 bucket if
you plan to use SSE-KMS for server-side encryption (not necessary for SSE-S3 encryption. SeeHow to Configure
Encryption for Amazon S3 for details).

Configuration Properties Reference

This table provides reference documentation for the core-site.xml properties relevant for use with AWS and
Amazon S3.

DescriptionProperty

Enable server-side encryption for the Amazon S3 storage bucket associated with the
cluster. Allowable values:

fs.s3a.
server-side-encryption-algorithm

• AES256 Specifies SSE-S3 server-side encryption for Amazon S3.
• SSE-KMS Specifies SSE-KMS server-side encryption for Amazon S3. Requires adding

the fs.s3a.server-side-encryption-key property with a valid value.
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DescriptionProperty

Specify the ARN, ARN plus alias, Alias, or globally unique ID of the key created in AWS
Key Management Service for use with SSE-KMS.

fs.s3a.
server-side-encryption-key

Specify the AWS access key ID. This property is irrelevant and not used to access Amazon
S3 storage from a cluster launched using an IAM role.

fs.s3a.awsAccessKeyId

Specify the AWS secret key provided by Amazon. This property is irrelevant and not
used to access Amazon S3 storage from a cluster launched using an IAM role.

fs.s3a.awsSecretAccessKey

Use this property only if the endpoint is outside the standard region (s3.amazonaws.com),
such as regions and endpoints in China or in the US GovCloud. See AWS regions and
endpoints documentation for details.

fs.s3a.endpoint

Enables (true) and disables (false) TLS/SSL connections to Amazon S3. Default is
true.

fs.s3a.connection.ssl.
enabled

Connecting to Amazon S3 Using TLS

Thebooleanparameterfs.s3a.connection.ssl.enabled incore-site.xml controlswhether thehadoop-aws
connector uses TLS when communicating with Amazon S3. Because this parameter is set to true by default, you do
not need to configure anything to enable TLS. If you are not using TLS on Amazon S3, the connector will automatically
fall back to a plaintext connection.

The root Certificate Authority (CA) certificate that signed the Amazon S3 certificate is trusted by default. If you are
using custom truststores, make sure that the configured truststore for each service trusts the root CA certificate.

To import the root CA certificate into your custom truststore, run the following command:

$JAVA_HOME/bin/keytool -importkeystore -srckeystore $JAVA_HOME/jre/lib/security/cacerts
 -destkeystore /path/to/custom/truststore -srcalias baltimorecybertrustca

If you are using S3Guard, you must import an additional CA certificate:

$JAVA_HOME/bin/keytool -importkeystore -srckeystore $JAVA_HOME/jre/lib/security/cacerts
 -destkeystore /path/to/custom/truststore -srcalias verisignclass3g5ca

If you are using JDK 1.8.0_131 or higher, the aliases are appended with [jdk] as follows:

$JAVA_HOME/bin/keytool -importkeystore -srckeystore $JAVA_HOME/jre/lib/security/cacerts
 -destkeystore /path/to/custom/truststore -srcalias "baltimorecybertrustca [jdk]"
$JAVA_HOME/bin/keytool -importkeystore -srckeystore $JAVA_HOME/jre/lib/security/cacerts
 -destkeystore /path/to/custom/truststore -srcalias "verisignclass3g5ca [jdk]"

If you do not have the $JAVA_HOME variable set, replace it with the path to the Oracle JDK (for example,
/usr/java/jdk1.8.0_141-cloudera). When prompted, enter the password for the destination and source
truststores. The default password for the Oracle JDK cacerts truststore is changeit.

The truststore configurations for each service that accesses S3 are as follows:

hadoop-aws Connector

All components that can use Amazon S3 storage rely on the hadoop-aws connector, which uses the built-in Java
truststore ($JAVA_HOME/jre/lib/security/cacerts). To override this truststore, create a truststore named
jssecacerts in the same directory ($JAVA_HOME/jre/lib/security/jssecacerts) on all cluster nodes. If you
are using the jssecacerts truststore, make sure that it includes the root CA certificate that signed the Amazon S3
certificate.

Hive/Beeline CLI

The Hive and Beeline command line interfaces (CLI) rely on the HiveServer2 truststore. To view ormodify the truststore
configuration:
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1. Go to the Hive service in the Cloudera Manager Admin Interface.
2. Select the Configuration tab.
3. Select Scope > HIVE-1 (Service-Wide).
4. Select Category > Security.
5. Locate the HiveServer2 TLS/SSL Certificate Trust Store File and HiveServer2 TLS/SSL Certificate Trust Store

Password properties or search for them by typing Trust in the Search box.

Impala Shell

The Impala shell uses the hadoop-aws connector truststore. To override it, create the
$JAVA_HOME/jre/lib/security/jssecacerts file, as described in hadoop-aws Connector on page 320.

Hue S3 File Browser

For instructions on enabling the S3 file browser in Hue, see How to Enable S3 Cloud Storage in Hue. The S3 file browser
uses TLS if it is enabled, and the S3 File Browser trusts the S3 certificate by default. No additional configuration is
necessary.

Impala Query Editor (Hue)

The Impala query editor in Hue uses the hadoop-aws connector truststore. To override it, create the
$JAVA_HOME/jre/lib/security/jssecacerts file, as described in hadoop-aws Connector on page 320.

Hive Query Editor (Hue)

TheHive query editor in Hue uses the HiveServer2 truststore. For instructions on viewing andmodifying the HiveServer2
truststore, see Hive/Beeline CLI on page 320.

How to Authenticate Kerberos Principals Using Java
To authenticate Kerberos principals in custom applications using Java, import the UserGroupInformation class from
the Hadoop security library into your application and use it to pass principals and keytabs to the Kerberos service. This
basic example shows hard-coded passing of principal cloudera and a cloudera.keytab file:

// Authenticating Kerberos principal
System.out.println("Principal Authentication: ");
final String user = "cloudera@CLOUDERA.COM";
final String keyPath = "cloudera.keytab";
UserGroupInformation.loginUserFromKeytab(user, keyPath);

The UserGroupInformation class (org.apache.hadoop.security.UserGroupInformation) has methods to handle tokens,
proxy users, and many other tasks required for your Java application to work with Kerberos. See the Apache API
documentation for details.

How to Check Security Settings on a Cluster
Quickly perform a high level check of your cluster’s security configuration by doing one of the following:

Check Security for Cloudera Manager Clusters

Use ClouderaManager to verify securitymechanisms for your cluster by simply examining the properties for the cluster.

To check Kerberos and HDFS encryption:

1. Log into the Cloudera Manager Admin Console.
2. Select Security from the Administration drop-down selector to display a list of managed clusters:
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This shows at a glance that both Kerberos and HDFS transparent encryption have been configured for this cluster.

To check TLS settings:

1. Select Settings from the Administration drop-down selector to open a search field.
2. Enter TLS in the search field to display all TLS related configuration settings.
3. Scroll through the displayed results, looking for “Use TLS...” for various services and processes. For example, the

test system shown below is not using TLS for the Cloudera Manager Admin Console:

See How to Configure TLS Encryption for Cloudera Manager for complete information about configuring TLS for the
cluster.

To find all TLS settings, cluster-wide, enter "TLS enabled" (or simply, "TLS") in the top-most search field on the Cloudera
Manager Admin Console. Then you can easily select from among the display list to examine the actual setting.
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How to Use Antivirus Software on CDH Hosts
If you use antivirus software on your servers, consider configuring it to skip scans on certain types of Hadoop-specific
resources. It can take a long time to scan large files or directories with a large number of files. In addition, if your
antivirus software locks files or directories as it scans them, those resourceswill be unavailable to your Hadoop processes
during the scan, and can cause latency or unavailability of resources in your cluster. Consider skipping scans on the
following types of resources:

• Scratch directories used by services such as Impala
• Log directories used by various Hadoop services
• Data directories which can grow to petabytes in size

The specific directory names and locations depend on the services your cluster uses and your configuration. In general,
avoid scanning very large directories and filesystems. Instead, limit write access to these locations using security
mechanisms such as access controls at the level of the operating system, HDFS, or at the service level.

How to Configure Browser-based Interfaces to Require Kerberos Authentication
Required Role: Configurator, Cluster Administrator, or Full Administrator

Access to the web (browser-based) consoles for HTTP services, such as HDFS, MapReduce, and YARN roles can be
restricted to only those users with valid Kerberos credentials. After configuring the cluster services as detailed below,
theweb service and the browser negotiate the authentication process using SPNEGO. After following the steps detailed
below for any specific service, all browsers that connect to the service over HTTP must have their configurations
modified to handle SPNEGO. See How to Configure Browsers for Kerberos Authentication

To require authentication for HTTP services on the cluster, including web-based user interfaces, such as the Cloudera
Manager Admin Console, among others:

1. From the Clusters tab, select the service (HDFS,MapReduce, or YARN) forwhich youwant to enable authentication.
2. Click the Configuration tab.
3. Under the Scope filter, click service_name (Service-Wide).
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4. Under the Category filter, click Security to display the security configuration options.
5. In the Enable Kerberos Authentication for HTTP Web-Consoles setting, click the box to activate authentication

requirement for the selected service_name (Service-Wide).
6. Click Save Changes to save the change.

ClouderaManager generates new credentials for the service.When the process finishes, restart all roles for that service.

Repeat this process for the other services for which you want to require Kerberos authentication.

Configure your browser to support authentication to the HTTP services by following the appropriate steps for your
browser in How to Configure Browsers for Kerberos Authentication on page 324.

How to Configure Browsers for Kerberos Authentication
The browser configurations below are required only for those browsers used to connect to component web interfaces
with the Require Authentication for HTTP Web Consoles configuration property enabled. The settings below enable
the respective browser to use SPNEGO to negotiate Kerberos authentication for the browser. The host running the
browser must have a valid TGT to authenticate to Kerberos Web Consoles.

Mozilla Firefox

1. Open the low level Firefox configuration page by loading the about:config page.
2. In the Search text box, enter: network.negotiate-auth.trusted-uris
3. Double-click thenetwork.negotiate-auth.trusted-uris preference and enter the hostnameor the domain

of the web server that is protected by Kerberos HTTP SPNEGO. Separate multiple domains and hostnames with
a comma.

4. Click OK.
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Internet Explorer

Follow the steps below to configure Internet Explorer.

Configuring the Local Intranet Domain

1. Open Internet Explorer and click the Settings gear icon in the top-right corner. Select Internet options.
2. Select the Security tab.
3. Select the Local Intranet zone and click the Sites button.
4. Make sure that the first two options, Include all local (intranet) sites not listed in other zones and Include all

sites that bypass the proxy server are checked.
5. Click Advanced and add the names of the domains that are protected by Kerberos HTTP SPNEGO, one at a time,

to the list of websites. For example, myhost.example.com. Click Close.
6. Click OK to save your configuration changes.

Configuring Intranet Authentication

1. Click the Settings gear icon in the top-right corner. Select Internet options.
2. Select the Security tab.
3. Select the Local Intranet zone and click the Custom level... button to open the Security Settings - Local Intranet

Zone dialog box.
4. Scroll down to the User Authentication options and select Automatic logon only in Intranet zone.
5. Click OK to save these changes.
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Verifying Proxy Settings

Perform these steps only if you have a proxy server already enabled.

1. Click the Settings gear icon in the top-right corner. Select Internet options.
2. Select the Connections tab and click LAN Settings.
3. Verify that the proxy server Address and Port number settings are correct.
4. Click Advanced to open the Proxy Settings dialog box.
5. Add the Kerberos-protected domains to the Exceptions field.
6. Click OK to save any changes.
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Google Chrome

For Windows:

• Open the Control Panel to access the Internet Options dialog. Use the same configuration as detailed in
Configuration changes required are the same as those described above for Internet Explorer.

For Linux or MacOS:

• Add the--auth-server-whitelist parameter to thegoogle-chrome command. For example, to run Chrome
from a Linux prompt, run the google-chrome command as follows:

> google-chrome --auth-server-whitelist = "hostname/domain"

How to Configure Clusters to Use Kerberos for Authentication
Cloudera clusters can use Kerberos to authenticate services running on the cluster and the users who need access to
those services. This How To guide provides the requirements, pre-requisites, and high-level summary of the steps
needed to integrate clusters with Kerberos for authentication.

Note: For clusters deployed using ClouderaManager Server, Cloudera recommends using the Kerberos
configuration wizard available through the Cloudera Manager Admin Console. See Enabling Kerberos
Authentication Using the Wizard for details.

The following are the general steps for integrating Kerberoswith Cloudera clusterswithout using the ClouderaManager
configuration wizard.

Step 1: Verify Requirements and Assumptions

The steps outlined below assume that:

• The Kerberos instance has been setup, is running, and is available during the configuration process.
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• The Cloudera cluster has been installed and is operational, with all services fully-functional—Cloudera Manager
Server, CDH, and Cloudera Manager Agent processes on all cluster nodes.

Hosts Configured for AES-256 Encryption

By default, CentOS and RHEL 6 (and higher) use AES-256 encryption for Kerberos tickets. If you use either of these
platforms for your cluster, the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy File must be
installed on all cluster hosts.

To install the JCE Policy file on the host system at the OS layer:

1. Download the jce_policy-x.zip
2. Unzip the file
3. Follow the steps in the README.txt to install it.

Note: The AES-256 encryption can also be configured on a running cluster by using ClouderaManager
Admin Console. See To use Cloudera Manager to install the JCE policy file for details.

Required Administrator Privileges

Setting up the Cloudera cluster to use Kerberos for authentication requires complete administrator access to the cluster
and administrator privileges on the Kerberos instance:

• Cluster Administrator or Full Administrator
• Kerberos administrator privileges:

someone/admin@YOUR-DOMAIN.FQDN.EXAMPLE.COM

If you do not have administrator privileges on the Kerberos instance, youwill need help from the Kerberos administrator
before you can complete the process.

Required User (Service Account) Directories

During installation, the cloudera-scm account is created on the host system. When Cloudera Manager and CDH
services are installed at the same time, Cloudera Manager creates other accounts as needed to support the service
role daemons. However, if the CDH services and ClouderaManager are installed separately, youmay need to specifically
set directory permissions for certain Hadoop user (service daemon) accounts for successful integration with Kerberos.
The following table shows the accounts used for core service roles. Note that hdfs acts as superuser for the system.

Service RolesUser

NameNode, DataNodes, Secondary NameNode (and HDFS superuser)hdfs

JobTracker, TaskTrackers (MR1), Job History Server (YARN)mapred

ResourceManager, NodeManager (YARN)yarn

Oozie Serveroozie

Hue Server, Beeswax Server, Authorization Manager, Job Designerhue

These accounts require ownership control over specific directories.

• For newly installed Cloudera clusters (Cloudera Manager and CDH installed at the same time)—The Cloudera
Manager Agent process on each cluster host automatically configures the appropriate directory ownership when
the cluster launches.

• For existing CDH clusters using HDFS and running MapReduce jobs prior to Cloudera Manager installation—The
directory ownership must be manually configured, as shown in the table below. The directory owners cannot
differ from those shown in the table to ensure that the service daemons can set permissions as needed on each
directory.
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OwnerDirectory Specified in this Property

hdfs:hadoopdfs.name.dir

hdfs:hadoopdfs.data.dir

mapred:hadoopmapred.local.dir

mapred:hadoopmapred.system.dir in HDFS

yarn:yarnyarn.nodemanager.local-dirs

yarn:yarnyarn.nodemanager.log-dirs

oozie:oozieoozie.service.StoreService.jdbc.url (if using
Derby)

hue:hue[[database]] name

hue:huejavax.jdo.option.ConnectionURL

Step 2. Create Principal for Cloudera Manager Server in the Kerberos KDC

Cloudera Manager Server has its own principal to connect to the Kerberos KDC and import user and service principals
for use by the cluster.

The steps below summarize the process of adding a principal specifically for Cloudera Manager Server to an MIT KDC
and an Active Directory KDC. See documentation from MIT, Microsoft, or the appropriate vendor for more detailed
information.

Note: If an administrator principal to act on behalf of Cloudera Manager cannot be created on the
Kerberos KDC for whatever reason, Cloudera Manager will not be able to create or manage principals
and keytabs for CDH services. That means these principals must be created manually on the Kerberos
KDC and then imported (retrieved) by ClouderaManager. SeeUsing a CustomKerberos Keytab Retrieval
Script on page 66 for details about this process.

Creating a Principal in Active Directory

Check yourMicrosoft documentation for specific details for your Active Directory KDC. The general process is as follows:

1. Create an Organizational Unit (OU) in your Active Directory KDC service that will contain the principals for use by
the CDH cluster.

2. Add a new user account to Active Directory, for example, username@YOUR-REALM.EXAMPLE.COM. Set the
password for the user to never expire.

3. Use the Delegate Control wizard of Active Directory and grant this new user permission to Create, Delete, and
Manage User Accounts.

Creating a Principal in an MIT KDC

For MIT Kerberos, user principals that include the instance name admin designate a user account with administrator
privileges. For example:

username/admin@YOUR-REALM.EXAMPLE.COM

Create the Cloudera Manager Server principal as shown in one of the examples below, appropriate for the location of
the Kerberos instance and using the correct REALM name for your setup.

For MIT Kerberos KDC on a remote host:

kadmin: addprinc -pw password cloudera-scm/admin@YOUR-REALM.EXAMPLE.COM
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For MIT Kerberos KDC on a local host:

kadmin.local: addprinc -pw password cloudera-scm/admin@YOUR-REALM.EXAMPLE.COM

Step 3: Add the Credentials for the Principal to the Cluster

Assuming the principal was successfully added to the Kerberos KDC, it can be added to the cluster as follows:

1. Log in to the Cloudera Manager Admin Console.
2. Select Administration > Security.
3. Click the Kerberos Credentials tab.
4. Click the Import Kerberos Account Manager Credentials button.
5. Enter the credentials for the principal added to the Kerberos KDC in the previous step:

• For Username, enter the primary and realm portions of the Kerberos principal. Enter the realm name in all
upper-case only (YOUR-REALM.EXAMPLE.COM) as shown below.

• Enter the Password for the principal.

6. Click Import.

Cloudera Manager encrypts the username and password into a keytab and uses it to create new principals in the KDC
as needed.

Click Close when complete.

Step 4: Identify Default Kerberos Realm for the Cluster

Each host in the clustermust have the default realmproperty (default_realm) specified in the libdefaults section
of its Kerberos configuration file (/etc/krb5.conf).

[libdefaults]
default_realm = FQDN.EXAMPLE.COM

After adding the default realm to the configuration file for all hosts in the cluster, configure the same default realm
for Cloudera Manager Server.

In the Cloudera Manager Admin Console:

1. Select Administration > Settings.
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2. Select Kerberos for the Category filter.
3. In the Kerberos Security Realm field, enter the default realm name set in the Kerberos configuration file

(/etc/krb5.conf) of each host in the cluster. For example:

4. Click Save Changes.

Step 5: Stop all Services

All service daemons in the cluster must be stopped so that they can be restarted at the same time and start as
authenticated services in the cluster. Service daemons running without authenticating to Kerberos first will not be able
to communicate with other daemons in the cluster that have authenticated to Kerberos, so they must be shut down
and restarted at the end of the configuration process, as a unit.

Note: The requirement to stop all daemons prevents using the rolling upgrade process to enable
Kerberos integration on the cluster.

Stop all running services and the Cloudera Management Service as follows:

In the Cloudera Manager Admin Console:

1. Select Clusters > Cluster-n.
2. Click the Actions drop-down menu and select Stop to stop all services on the cluster.
3. Click Stop on the warning message to stop all services on the cluster. The Command Details window displays the

progress as each service shuts down. When the message All services successfully stopped displays, close the
Command Details window.

4. Select > Clusters > Cloudera Management Service.
5. Click the Actions drop-down menu and select Stop to stop the Cloudera Management Service. The Command

Details window displays the progress as each role instance running on the Cloudera Management Service shuts
down. The process is completed when the message Command completed with n/n successful subcommands
displays.

6. Click Close.

Step 6. Specify Kerberos for Security

Kerberosmust be specified as the securitymechanism for Hadoop infrastructure, startingwith theHDFS service. Enable
Cloudera Manager Server security for the cluster on an HDFS service. After you do so, the Cloudera Manager Server
automatically enables Hadoop security on the MapReduce and YARN services associated with that HDFS service.

In the Cloudera Manager Admin Console:

1. Select Clusters > HDFS-n.
2. Click the Configuration tab.
3. Select HDFS-n for the Scope filter.
4. Select Security for the Category filter.
5. Scroll (or search) to find the Hadoop Secure Authentication property.
6. Click the kerberos button to select Kerberos:
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7. Click the value for the Hadoop Secure Authorization property and select the checkbox to enable service-level
authorization on the selected HDFS service. You can specify comma-separated lists of users and groups authorized
to use Hadoop services or perform admin operations using the following properties under the Service-Wide
Security section:

• Authorized Users: Comma-separated list of users authorized to use Hadoop services.
• Authorized Groups: Comma-separated list of groups authorized to use Hadoop services.
• AuthorizedAdminUsers: Comma-separated list of users authorized to performadmin operations onHadoop.
• Authorized Admin Groups: Comma-separated list of groups authorized to perform admin operations on

Hadoop.

Important: For Cloudera Manager's Monitoring services to work, the hue user should always be
added as an authorized user.

8. In the Search field, type DataNode Transceiver to find the DataNode Transceiver Port property.
9. Click the value for the DataNode Transceiver Port property and specify a privileged port number (below 1024).

Cloudera recommends 1004.

Note: If there is more than one DataNode Role Group, youmust specify a privileged port number
for each DataNode Transceiver Port property.

10. In the Search field, typeDataNodeHTTP to find theDataNodeHTTPWebUI Port property and specify a privileged
port number (below 1024). Cloudera recommends 1006.

Note: The port numbers for the two DataNode properties must be below 1024 to provide part
of the security mechanism to make it impossible for a user to run a MapReduce task that
impersonates a DataNode. The port numbers for the NameNode and Secondary NameNode can
be anything you want, but the default port numbers are good ones to use.

11. In the Search field type Data Directory Permissions to find the DataNode Data Directory Permissions property.
12. Reset the value for the DataNode Data Directory Permissions property to the default value of 700 if not already

set to that.
13. Make sure you have changed theDataNode Transceiver Port,DataNodeDataDirectory Permissions andDataNode

HTTP Web UI Port properties for every DataNode role group.
14. Click Save Changes to save the configuration settings.

To enable ZooKeeper security:

1. Go to the ZooKeeper Service Configuration tab and click View and Edit.
2. Click the value for Enable Kerberos Authentication property.
3. Click Save Changes to save the configuration settings.

To enable HBase security:
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1. Go to the HBase Service > Configuration tab and click View and Edit.
2. In the Search field, type HBase Secure to show the Hadoop security properties (found under the Service-Wide >

Security category).
3. Click the value for the HBase Secure Authorization property and select the checkbox to enable authorization on

the selected HBase service.
4. Click the value for the HBase Secure Authentication property and select kerberos to enable authorization on

the selected HBase service.
5. Click Save Changes to save the configuration settings.

To enable Solr security:

1. Go to the Solr Service > Configuration tab and click View and Edit.
2. In the Search field, type Solr Secure to show the Solr security properties (found under the Service-WideSecurity

category).
3. Click the value for the Solr Secure Authentication property and select kerberos to enable authorization on the

selected Solr service.
4. Click Save Changes to save the configuration settings.

Note: Using Cloudera Manager Admin Console to generate client configuration files after enabling
Kerberos does not provide the Kerberos principals and keytabs that users need to authenticate to the
cluster. Users must obtain their Kerberos principals from the Kerberos administrator and then run
the kinit command themselves.

Credentials Generated

After you enable security for any of the services in Cloudera Manager, a command called Generate Credentials will be
triggered automatically. You can watch the progress of the command on the top right corner of the screen that shows
the running commands. Wait for this command to finish (indicated by a grey box containing "0" in it).

Step 7: Restart All Services

Start all services on the cluster using the Cloudera Manager Admin Console:

1. Select Clusters > Cluster-n.
2. Click the Actions drop-down button menu and select Start. The confirmation prompt displays.
3. Click Start to confirm and continue. The CommandDetailswindowdisplays progress.WhenAll services successfully

started displays, close the Command Detailswindow.
4. Select > Clusters > Cloudera Management Service.
5. Click the Actions drop-down menu and select Start. The Command Details window displays the progress as each

role instance running on the ClouderaManagement Service starts up. The process is completedwhen themessage
Command completed with n/n successful subcommands displays.

Step 8: Deploy Client Configurations

Deploy client configurations for services supported on the cluster using the Cloudera Manager Admin Console:

1. Select Clusters > Cluster-n.
2. Click the Actions drop-down button menu and select Deploy Client Configuration.

Step 9: Create the HDFS Superuser Principal

To be able to create homedirectories for users, youwill need access to theHDFS superuser account. (CDH automatically
created the HDFS superuser account on each cluster host during CDH installation.) When you enabled Kerberos for
the HDFS service, you lost access to the default HDFS superuser account using sudo -u hdfs commands. Cloudera
recommends you use a different user account as the superuser, not the default hdfs account.

Cloudera Security | 333

Security How-To Guides



Designating a Non-Default Superuser Group

To designate a different group of superusers instead of using the default hdfs account, follow these steps:

1. Go to the Cloudera Manager Admin Console and navigate to the HDFS service.
2. Click the Configuration tab.
3. Select Scope > HDFS (Service-Wide).
4. Select Category > Security.
5. Locate the Superuser Group property and change the value to the appropriate group name for your environment.

For example, superuser.
6. Click Save Changes.
7. Restart the HDFS service.

To enable your access to the superuser account now that Kerberos is enabled, you must now create a Kerberos
principal or an Active Directory user whose first component is superuser:

For Active Directory

Add a newuser account to ActiveDirectory,superuser@YOUR-REALM.EXAMPLE.COM . The password for this account
should be set to never expire.

For MIT KDC

1. In thekadmin.local orkadmin shell, type the following command to create a Kerberos principal called superuser:

kadmin:  addprinc superuser@YOUR-REALM.EXAMPLE.COM

This command prompts you to create a password for the superuser principal. You should use a strong password
because having access to this principal provides superuser access to all of the files in HDFS.

2. To run commands as the HDFS superuser, you must obtain Kerberos credentials for the superuser principal. To
do so, run the following command and provide the appropriate password when prompted.

kinit superuser@YOUR-REALM.EXAMPLE.COM

Step 10: Get or Create a Kerberos Principal for Each User Account

Now that Kerberos is configured and enabled on your cluster, you and every other Hadoop user must have a Kerberos
principal or keytab to obtain Kerberos credentials to be allowed to access the cluster and use the Hadoop services. In
the next step of this procedure, you need to create your own Kerberos principals to verify that Kerberos security is
working on your cluster. If you and the other Hadoop users already have a Kerberos principal or keytab, or if your
Kerberos administrator can provide them, you can skip ahead to the next step.

To create Kerberos principals for all users:

Active Directory

Add a newAD user account, <username>@EXAMPLE.COM for each ClouderaManager service that should use Kerberos
authentication. The password for these service accounts should be set to never expire.

MIT KDC

1. In the kadmin.local or kadmin shell, use the following command to create a principal for your account by replacing
EXAMPLE.COM with the name of your realm, and replacing username with a username:

kadmin:  addprinc username@EXAMPLE.COM 

2. When prompted, enter the password twice.
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Step 11: Prepare the Cluster for Each User

Before you and other business users can access the cluster, the hosts must be prepared for each user. Perform the
following tasks to prepare the hosts for each user:

1. Each host in the cluster must have a Unix user account with the same name as primary component of the user's
principal name. For example, the principal jcarlos@YOUR-REALM.EXAMPLE.COM needs the Linux account
jcarlos on each host system. Use LDAP (OpenLDAP, Microsoft Active Directory) for this step if possible.

Note: Each account must have a user ID that is greater than or equal to 1000. In the
/etc/hadoop/conf/taskcontroller.cfg file, the default setting for the banned.users
property ismapred,hdfs, andbin to prevent jobs frombeing submitted from those user accounts.
The default setting for the min.user.id property is 1000 to prevent jobs from being submitted
with a user ID less than 1000, which are conventionally Unix super users.

2. Create a subdirectory under /user on HDFS for each user account (for example, /user/jcarlos). Change the
owner and group of that directory to be the user.

hadoop fs -mkdir /user/jcarlos
hadoop fs -chown jcarlos /user/jcarlos

Note: The commands above do not include sudo -u hdfs because it is not required with Kerberos
configured for the cluster (assuming you created the Kerberos credentials for the HDFS super user as
detailed in Step 9: Create the HDFS Superuser Principal).

Step 12: Verify Successful Kerberos Integration

To verify that Kerberos has been successfully integrated for the cluster, try running one of the sample MapReduce jobs
(sleep or pi, for example) provided at:

/usr/lib/hadoop/hadoop-examples.jar

This assumes you have the fully-functional cluster as recommended in Step 1: Verify Requirements and Assumptions
and that the client configure files have been generated as detailed in Step 8: Deploying Client Configuration Files.

To verify that Kerberos security is working:

1. Obtain Kerberos credentials for your user account.

$ kinit
youruserid@YOUR-REALM.EXAMPLE.COM

2. Enter a password when prompted.
3. Submit a sample pi calculation as a test MapReduce job. Use the following command if you use a package-based

setup for Cloudera Manager:

$ hadoop jar /usr/lib/hadoop-0.20/hadoop-0.20.2*examples.jar pi 10 10000
Number of Maps = 10
Samples per Map = 10000
...
Job Finished in 38.572 seconds
Estimated value of Pi is 3.14120000000000000000

If you have a parcel-based setup, use the following command instead:

$ hadoop jar /opt/cloudera/parcels/CDH/lib/hadoop-0.20-mapreduce/hadoop-examples.jar pi
 10 10000
Number of Maps = 10
Samples per Map = 10000
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...
Job Finished in 30.958 seconds
Estimated value of Pi is 3.14120000000000000000

You have now verified that Kerberos security is working on your cluster.

Important:

Running a MapReduce job will fail if you do not have a valid Kerberos ticket in your credentials cache.
You can examine the Kerberos tickets currently in your credentials cache by running the klist
command. You can obtain a ticket by running the kinit command and either specifying a keytab file
containing credentials, or entering the password for your principal. If you do not have a valid ticket,
you will receive an error such as:

11/01/04 12:08:12 WARN ipc.Client:
Exception encountered while connecting to the server :
javax.security.sasl.SaslException:GSS initiate failed 
[Caused by GSSException: No valid credentials provided (Mechanism level:
 Failed to find any
Kerberos tgt)]
Bad connection to FS. command aborted. exception: Call to 
nn-host/10.0.0.2:8020 failed on local exception:
java.io.IOException:javax.security.sasl.SaslException: GSS initiate 
failed
[Caused by GSSException: No valid credentials provided
(Mechanism level: Failed to find any Kerberos tgt)]

How to Convert File Encodings (DER, JKS, PEM) for TLS/SSL Certificates and Keys
Client and server processes require specific file formats for certificates, keys, and other digital artifacts used for TLS/SSL
encryption. For example, when TLS is enabled, Cloudera Manager Server presents Java KeyStore (JKS) formatted key
and certificate to requesting ClouderaManager Agent hosts. The Hue client also connects to ClouderaManager Server,
but Hue requires a PEM-formatted key and certificate, rather than JKS. The PEM format used by Cloudera Manager is
PKCS #8, which handles certificates and keys as individual Base64-encoded text files.

If you receive binary DER files from your certificate authority, you must convert them to the appropriate format. Since
neither Java Keytool nor OpenSSLwork directlywith PKCS format,many of the configuration tasks detailed in Configuring
TLS Encryption for Cloudera Manager on page 151 involve converting formats, or extracting keys or certificates from
an artifact in one format to another.

Certificates issued by a CA in one format (encoding) can be used to create certificates in a different format using Java
Keytool and OpenSSL as detailed below:

• Converting DER Encoded Certificates to PEM on page 336
• Converting JKS Key and Certificate to PEM on page 337
• Extracting the Private Key from PKCS Keystore on page 337
• Converting PEM Key and Certificate to JKS on page 337

Converting DER Encoded Certificates to PEM

OpenSSL can be used to convert a DER-encoded certificate to an ASCII (Base64) encoded certificate. Typically,
DER-encoded certificatesmay have file extension of .DER, .CRT, or .CER, but regardless of the extension, a DER encoded
certificate is not readable as plain text (unlike PEM encoded certificate).

A PEM-encoded certificate may also have file extension of .CRT or .CER, in which case, you can simply copy the file to
a new name using the .PEM extension:

cp hostname.cer hostname.pem
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To convert a DER-encoded certificate to PEM encoding using OpenSSL:

openssl x509 -inform der -in hostname.cer -out hostname.pem

For example:

openssl x509 -inform der -in /opt/cloudera/security/pki/hostname.cer -out 
/tmp/hostname.pem

Converting JKS Key and Certificate to PEM

This process uses both Java keytool and OpenSSL (keytool and openssl, respectively, in the commands below) to
export the composite private key and certificate from a Java keystore and then extract each element into its own file.

The PKCS12 file created below is an interim file used to obtain the individual key and certificate files.

Replace hostname-keystore, cmhost, hostname, and password with values from your system.

1. Export the private key and certificate command line:

$ keytool -importkeystore -srckeystore /opt/cloudera/security/jks/hostname-keystore.jks
 \
-srcstorepass password -srckeypass password -destkeystore /tmp/hostname-keystore.p12 \
-deststoretype PKCS12 -srcalias hostname -deststorepass password -destkeypass password

2. Extract the certificate file from the resulting PKCS12 file:

$ openssl pkcs12 -in /tmp/hostname-keystore.p12 -passin pass:password  -nokeys \
-out /opt/cloudera/security/pki/hostname.pem

This extracted certificate can be used, as is, but you can additionally extract the private key from the keystore as
detailed in the next section.

Extracting the Private Key from PKCS Keystore

Use OpenSSL to extract the private key from the PKCS keystore when needed. The command shown below extracts
the key and saves it to a keystore that is protected using the password you provide:

   $ openssl pkcs12 -in /tmp/hostname-keystore.p12 -passin pass:password \
   -nocerts -out /opt/cloudera/security/pki/hostname.key -passout pass:password

To generate a key without a password, use this version of the command:

  $ openssl rsa -in /tmp/hostname-keystore.p12 -passin pass:password \
   -nocerts -out /opt/cloudera/security/pki/hostname.pem

Converting PEM Key and Certificate to JKS

Replace hostname in the commands below with the FQDN of the host whose certificate is being imported.

1. Convert the openssl private key and certificate files into a PKCS12 file.

$ openssl pkcs12 -export -in /opt/cloudera/security/pki/hostname.pem \
-inkey /opt/cloudera/security/pki/hostname.key -out /tmp/hostname.p12 \
-name hostname -passin pass:password -passout pass:password
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2. Import the PKCS12 file into the Java keystore.

$ keytool -importkeystore -srckeystore /tmp/hostname.p12 -srcstoretype PKCS12 \
-srcstorepass password -alias hostname -deststorepass password \
-destkeypass password -destkeystore /opt/cloudera/security/jks/hostname-keystore.jks

How To Configure Authentication for Amazon S3
There are several ways to integrate Amazon S3 storage with Cloudera clusters, depending on your use case and other
factors, including whether the cluster has been deployed using Amazon EC2 instances and if those instances were
deployed using an IAM role, such asmight be the case for clusters that have a single-user or small-teamwith comparable
privileges. Clusters deployed to support many different users with various privilege levels to the Amazon S3 need to
use AWS Credentials and have privileges to target data set up in Sentry. See How to Configure AWS Credentials on
page 344 for details.

Authentication through the S3 Connector Service

With Cloudera Manager and CDH 5.10+ clusters, the S3 Connector Service automates the authentication process to
Amazon S3 for Impala, Hive, and Hue, the components used for business-analytical use cases designed to run on
persistent multi-tenant clusters.

The S3 Connector Service transparently and securely distributes AWS credentials needed by the cluster for the Amazon
S3 storage. Access to the underlying Impala tables is controlled by Sentry role-based permissions. The S3 Connector
Service runs on a secure cluster only, that is, a cluster configured to use:

• Kerberos for authentication, and
• Sentry for role-based authorization.

Note: Of the items listed in the screenshot below, only the Sentry service and Kerberos enabled
messages are actual requirements. The other messages are for informational purposes only.

The S3 Connector Service setupwizard is launched automatically in ClouderaManager during the AWSCredential setup
process when you select the path to add the S3 Connector Service.

See Configuring the Amazon S3 Connector for more information about the S3 Connector Service.

Authentication through Advanced Configuration Snippets

Before release 5.10 and the introduction of the S3 Connector Service, using Amazon S3 storagewith the cluster involved
adding the credentials to thecore-site.xml configuration file (through ClouderaManager's Advanced Configuration
Snippetmechanism). This approach is not recommended. AWS credentials provide read andwrite access to data stored
on Amazon S3, so they should be kept secure at all times.

• Never share the credentials with other cluster users or services.
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• Do not store in cleartext in any configuration files. When possible, use Hadoop's credential provider to encrypt
and store credentials in the local JCEK (Java Cryptography Extension Keystore).

• Enable Cloudera sensitive data redaction to ensure that passwords and other sensitive information does not
appear in log files.

Important: Cloudera recommends using this approach for single-user clusters on secure networks
only—networks that allow access only to authorized users, all of whom are also authorized to use the
S3 credentials.

To enable CDH services to access Amazon S3, AWS credentials can be specified using the fs.s3a.access.key and
fs.s3a.secret.key properties:

<property>
    <name>fs.s3a.access.key</name>
    <value>your_access_key</value>
</property>

<property>
    <name>fs.s3a.secret.key</name>
    <value>your_secret_key</value>
</property>

The process of adding AWS credentials is generally the same as that detailed in configuring server-side encryption for
Amazon S3, that is, using the ClouderaManager Admin Console to add the properties and values to thecore-site.xml
configuration file (Advanced Configuration Snippet). However, Cloudera strongly discourages this approach: in general,
adding AWS credentials to the core-site.xml is not recommended. A somewhat more secure approach is to use
temporary credentials, which include a session token that limits the viability of the credentials to a shorter time-frame
within which a key can be stolen and used.

Using Temporary Credentials for Amazon S3

The AWS Security Token Service (STS) issues temporary credentials to access AWS services such as Amazon S3. These
temporary credentials include an access key, a secret key, and a session token that expireswithin a configurable amount
of time. Temporary credentials are not currently handled transparently by CDH, so administrators must obtain them
directly fromAmazon STS. For details, see Temporary Security Credentials in the AWS Identity and AccessManagement
Guide.

Important: Cloudera recommends using this approach only for single-user clusters on secure
networks—networks that allow access only to authorized users, all of whom are also authorized to
use the S3 credentials.

To connect to Amazon S3 using temporary credentials obtained from STS, submit them as command-line arguments
with the Hadoop job. For example:

-Dfs.s3a.access.key=your_temp_access_key
-Dfs.s3a.secret.key=your_temp_secret_key
-Dfs.s3a.session.token=your_session_token_from_AmazonSTS
-Dfs.s3a.aws.credentials.provider=org.apache.hadoop.fs.s3a.TemporaryAWSCredentialsProvider

Creating a Table in a Bucket

To create a table in a bucket, a user must have Sentry permissions on the S3 database and bucket URI. Cloudera
recommends that you create a database specifically for the purpose of creating tables. Then, youmust grant the user's
role one of the following options:

• CREATE on the server and ALL on the URI
• CREATE on the database and ALL on the URI
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It is possible to give the user ALL permissions on the server to allow the user to create external tables, but that approach
is not recommended because it is not secure.

To allow a user to create tables in a bucket, complete the following steps:

1. Create a database where you want to create the tables.
2. Grant CREATE on the database to the user's role.
3. Grant ALL on the bucket URI to the user's role.
4. The user must create the table with a reference to the database. For example:

CREATE EXTERNAL TABLE
sentrys3demo.your_external_s3_table
(name STRING, type STRING) ROW FORMAT
DELIMITED FIELDS TERMINATED BY ','
LOCATION 's3a://your-bucket-name/';

How to Configure Encryption for Amazon S3
Amazon offers several server-side encryption mechanisms for use with Amazon S3 storage. Cloudera clusters support
server-side encryption for Amazon S3 data using either SSE-S3 (CDH 5.10 and later) or SSE-KMS (CDH 5.11 and later).
With SSE-S3, keys are completely under the control of Amazon.With SSE-KMS, you havemore control over the encryption
keys, and can upload your own key material to use for encrypting Amazon S3. With either mechanism, encryption is
applied transparently to the Amazon S3 bucket objects after you configure your cluster to use it.

Amazon S3 also supports TLS/SSL ('wire' or data-in-transit) encryption by default. Configuring data-at-rest encryption
for Amazon S3 for use with your cluster involves some configuration both on Amazon S3 and for the cluster, using the
Cloudera Manager Admin Console, as detailed below:

Requirements

Using Amazon S3 assumes that you have an Amazon Web Services account and the appropriate privileges on the AWS
Management Console to set up and configure Amazon S3 buckets.

In addition, to configure Amazon S3 storage for use with a Cloudera cluster, you must have privileges as the User
Administrator or Full Administrator on the Cloudera Manager Admin Console. See How to Configure AWS Credentials
for details.

Amazon S3 and TLS/SSL Encryption

Amazon S3 uses TLS/SSL by default. Cloudera clusters (release 5.9 and later) include in their default configuration file
the boolean property, fs.s3a.connection.ssl.enabled set to true, which activates TLS/SSL. This means that if
the cluster has been configured to use TLS/SSL, connections from the cluster to Amazon S3 automatically use TLS wire
encryption for the communication. The value of the fs.s3a.connection.ssl.enabled property can be confirmed
by running hadoop org.apache.hadoop.conf.Configuration.

Important: Cloudera recommends that clusters always be configured for TLS/SSL. SeeHow to Configure
TLS Encryption for Cloudera Manager for details.

If the cluster is not configured to use TLS, the connection to Amazon S3 silently reverts to an unencrypted connection.

Amazon S3 and Data at Rest Encryption

Cloudera clusters can use either of these two Amazon S3 mechanisms for data-at-rest encryption:

• Server-side Encryption with AWS KMS-Managed Keys (SSE-KMS), which requires using Amazon Key Management
Server (AWS KMS) in conjunction with your Amazon S3. You can have Amazon generate and manage the keys in
AWS KMS for you, or you can provide your own key material, but you must configure AWS KMS and create a key
before you can use it with your cluster. See Prerequisites for Using SSE-KMS on page 341 for details.
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• Server-side Encryption with S3-Managed Encryption Keys (SSE-S3) , which is simplest to set up because it uses
Amazon-provided and -managed keys and has no requirements beyond setting a single property. See Configuring
the Cluster to Use Server-Side Encryption on Amazon S3 on page 342 for details.

Enabling the cluster to use Amazon S3 server-side encryption involves using the Cloudera Manager Admin Console to
configure the Advanced Configuration Snippet (Safety Valve) as detailed in Configuring the Cluster to Use Server-Side
Encryption on Amazon S3 on page 342, below.

The steps assume that your cluster has been set up and that you have set up AWS credentials.

Note: Cloudera clusters can be configured one encryption mode and key at a time for all objects in
a given Amazon S3 bucket. However, you can change encryption modes or keys. See Changing
Encryption Modes or Keys on page 343 for details.

Prerequisites for Using SSE-KMS

To use SSE-KMS with your Amazon S3 bucket, you must log in to the AWSManagement Console using the account you
set up in step 1 of Getting Started with Amazon Web Services on page 319. For example, the account lab-iam has an
IAM user named etl-workload that has been granted permissions on the Amazon S3 storage bucket to be configured
using SSE-KMS.

• SelectMy Security Credentials from the menu.
• Click Encryption keys (bottom left-hand on the AWS Management Console that displays at step 1, above).
• Click the Create key button to start the 5-step key-creation wizard that leads you through entry pages for giving

the key an alias and description; adding tags, defining administrator permissions to the key, and defining usage
permissions. The last page of the wizard shows you the policy that will be applied to the key before creating the
key.
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Configuring the Cluster to Use Server-Side Encryption on Amazon S3

Follow the steps below to enable server-side encryption on Amazon S3. To use SSE-KMS encryption, you will need your
KMS key ID at step 7. Using SSE-S3 has no pre-requisites—Amazon generates and manages the keys transparently.

To configure the cluster to encrypt data stored on Amazon S3:

1. Log into the Cloudera Manager Admin Console.
2. Select Clusters > HDFS.
3. Click the Configuration tab.
4. Select Scope > HDFS (Service-Wide).
5. Select Category > Advanced.
6. Locate the Cluster-wide Advanced Configuration Snippet (Safety Valve) for core-site.xml property.
7. In the text field, define the properties and values appropriate for the type of encryption you want to use.

a. To use SSE-S3 encryption:

<property>
    <name>fs.s3a.server-side-encryption-algorithm</name>
    <value>AES256</value>
</property>

b. To use SSE-KMS encryption:

<property>
    <name>fs.s3a.server-side-encryption-algorithm</name>
    <value>SSE-KMS</value>
</property>
<property>
    <name>fs.s3a.server-side-encryption-key</name>
    <value>your_kms_key_id</value>
</property>

8. Click Save Changes.
9. Restart the HDFS service.

For the value of your_kms_key_id (step 7b., above), you can use any of Amazon's four different key ID formats. Here
are some examples:

ExampleFormat

arn:aws:kms:us-west-1:141229114088:key/c914b724-f191- 41df-934a-6147f6235983Key ARN

arn:aws:kms:us-west-1: 141229114088:key/c914b724-f191-41df-934a-6147f6235983:
alias/awsCreatedMasterKey

Alias ARN

342 | Cloudera Security

Security How-To Guides



ExampleFormat

141229114088:key/c914b724-f191-41df-934a- 6147f6235983Globally Unique
Key ID

alias/awsCreatedMasterKeyAlias Name

Changing Encryption Modes or Keys

Cloudera clusters can be configured to use only one type of server-side encryption for Amazon S3 data at a time.

However, Amazon S3 does support using different encryption keys for objects on an Amazon S3 bucket, which means
that Amazon S3 continues to use whichever key was initially used to encrypt data (to decrypt on reads and re-encrypt
on writes), even after a new mechanism and key exists. Your new key is used on new data written to the Amazon S3
bucket, while your ‘old’ key is used on any existing data that was encrypted with it. To summarize the behavior:

• Changing encryption mechanisms or keys on Amazon S3 has no effect on existing encrypted or unencrypted data.
• Data stored on Amazon S3 without encryption remains unencrypted even after you configure encryption for

Amazon S3.
• Any existing encrypted data continues using the original mechanism and key to decrypt data (on reads) and

re-encrypt data (on writes).
• After changing encryption mode or key, new objects stored on Amazon S3 from the cluster use the new mode

and key.

Effect of Changing Encryption Mode or Key

This table shows the effect on existing encrypted or unencrypted data on Amazon S3 (far left column labeled "Data
starts as...," reading down) and the result of "New" and "Existing" data and the keys that would be used after changing
encryption-key configuration on the cluster. After changing encryption mode or key, existing data (Existing) and new
data (New) use the mode and keys shown in columns 2 ("Unencrypted") through 5 ("Non-SSE Key"):

Data results after modifying encryption mode or keys...Data starts as...↓

Non-SSE KeySSE-KMSSSE-S3Unencrypted

~NewNewExistingUnencrypted

~NewExisting~SSE-S3 encrypted

~Existing [key1] New
[key2]

New~SSE-KMS [key1]

Existing~~~Non-SSE key

Migrating Encrypted Data to New Encryption Mode or Key

To use a new key with existing data (data stored on Amazon S3 using a different mechanism or key), you must first
decrypt the data, and then re-encrypt it using the new key. The process is as follows:

1. Create an Amazon S3 bucket as temporary storage for the unencrypted files.
2. Decrypt the data on the Amazon S3 bucket using the mechanism and key used for encryption (legacy encryption

mode or key), moving the unencrypted data to the temporary bucket created in step 1.
3. Configure the Amazon S3 bucket to use the new encryptionmechanism and key of your choice (SSE-S3, SSE-KMS).
4. Move the unencrypted data from the temporary bucket back to the Amazon S3 bucket that is now configured

using the new mechanism and key.

Deleting an Encryption Key

If you change encryption modes or keys on Amazon S3, do not delete the key. To replace the old key and mode with
a completely new mode or key, you must manually migrate the data.

When you delete an encryption key, Amazon puts the key in a Pending Deletion state (as shown in the Status column
of the screenshot below) for at least 7 days, allowing you to reinstate a key if you change your mind or realize an error.
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The pending time frame is configurable, from 7 up to 30 days. See AWS Key Management Service Documentation for
complete details.

How to Configure AWS Credentials
Minimum Required Role: User Administrator (also provided by Full Administrator)

Amazon S3 (Simple Storage Service) can be used in a CDH cluster managed by ClouderaManager in the following ways:

• As storage for Impala tables
• As a source or destination for HDFS and Hive/Impala replication and for cluster storage
• To enable Cloudera Navigator to extract metadata from Amazon S3 storage
• To browse S3 data using Hue

You can use the S3Guard feature to address possible issues with the "eventual consistency" guarantee provided by
Amazon for data stored in S3. To use the S3Guard feature, you provision an Amazon DynamoDB that CDH uses as an
additional metadata store to improve performance and guarantee that your queries return the most current data. See
Configuring and Managing S3Guard.

To provide access to Amazon S3, you configure AWS Credentials that specify the authentication type (role-based, for
example) and the access and secret keys. Amazon offers two types of authentication you can use with Amazon S3:

IAM Role-based Authentication

Amazon Identity and AccessManagement (IAM) can be used to create users, groups, and roles for use with Amazon
Web Services, such as EC2 and Amazon S3. IAM role-based access provides the same level of access to all clients
that use the role. All jobs on the cluster will have the same level of access to Amazon S3, so this is better suited for
single-user clusters, or where all users of a cluster should have the same privileges to data in Amazon S3.

If you are setting up a peer to copy data to and from Amazon S3, using Cloudera Manager Hive or HDFS replication,
select this option.

If you are configuring Amazon S3 access for a cluster deployed to Amazon Elastic Compute Cloud (EC2) instances
using the IAM role for the EC2 instance profile, you do not need configure IAM role-based authentication for services
such as Impala, Hive, or Spark.

Note: IAM role-based authentication does not provide access to Amazon S3 using Cloudera
Navigator.

Access Key Credentials

This type of authentication requires an AWS Access Key and an AWS Secret key that you obtain from Amazon and
is better suited for environments where you have multiple users or multi-tenancy. You must enable the Sentry
service and Kerberoswhen using the S3 Connector service. Enabling these services allows you to configure selective
access for different data paths. (The Sentry service is not required for BDR replication or access by Cloudera
Navigator.)
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ClouderaManager stores these values securely and does not store them inworld-readable locations. The credentials
are masked in the ClouderaManager Admin console, encrypted in the configurations passed to processes managed
by Cloudera Manager, and redacted from the logs.

For more information about Amazon S3, see the Amazon S3 documentation.

The client configuration files generated by Cloudera Manager based on configured services do not include AWS
credentials. These clients must manage access to these credentials outside of Cloudera Manager. Cloudera Manager
uses credentials stored in Cloudera Manager for trusted clients such as the Impala daemon and Hue. For access from
YARN, MapReduce or Spark, see Using S3 Credentials with YARN, MapReduce, or Spark.

Note: Isilon storage cannot be used with AWS credentials.

Adding AWS Credentials

Minimum Required Role: User Administrator (also provided by Full Administrator)

To add AWS Credentials for Amazon S3:

1. Open the Cloudera Manager Admin Console.
2. Click Administration > External Accounts.
3. Select the AWS Credentials tab.
4. Select one of the following:

• Add Access Key Credentials

This authentication mechanism requires you to obtain AWS credentials from Amazon.

1. Enter a Name of your choosing for this account.
2. Enter the AWS Access Key ID.
3. Enter the AWS Secret Key.

• Add IAM Role-Based Authentication

1. Enter a name for your IAM Role-based authentication.

Note: You cannot use IAM Role-based authentication for Cloudera Navigator access.

5. Click Add.

The Edit S3Guard dialog box displays.

S3Guard enables a consistent view of data stored in Amazon S3 and requires that you provision a DynamoDB
database from Amazon Web Services. S3Guard is optional but can help improve performance and accuracy for
certain types of workflows. To configure S3Guard, see Configuring and Managing S3Guard and return to these
steps after completing the configuration.

If you do not want to enable S3Guard, click Save to finish adding the AWS Credential.

The Connect to Amazon Web Services dialog box displays.

6. Choose one of the following options:

• Cloud Backup and Restore

To configure Amazon S3 as the source or destination of a replication schedule (to back up and restore data,
for example), click the Replication Schedules link. See Data Replication for details.

• Cluster Access to S3
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To enable cluster access to S3 using the S3 Connector Service, click the Enable for Cluster Name link, which
launches a wizard for adding the S3 Connector service. See Adding the S3 Connector Service for details.

• Cloudera Navigator Access to S3

To give Cloudera Navigator access to Amazon S3, click the Enable for Cloudera Navigator link. Restart the
Cloudera Navigator Metadata Server to enable access.

Note: You cannot enable Cloudera Navigator Access to S3 when using IAM Role-based
Authentication.

Managing AWS Credentials

To remove AWS credentials:

Note: You cannot remove AWS credentials if they are in use by a service in the cluster. You might
need to edit the connectivity of the credential before removing it.

1. Open the Cloudera Manager Admin Console.
2. Click Administration > External Accounts.
3. Select the AWS Credentials tab.
4. Locate the row with the credentials you want to delete and click Actions > Remove.

To edit AWS Access Key credentials:

1. Open the Cloudera Manager Admin Console.
2. Click Administration > External Accounts.
3. Select the AWS Credentials tab.
4. Locate the row with the Access Key Credentials you want to delete and click Actions > Edit Credential.

The Edit Credential dialog box displays.

5. Edit the account fields.
6. Click Save.
7. Restart cluster services that use these credentials. If connectivity is for Cloudera Navigator, restart the Cloudera

Navigator Metadata server.

To rename the IAM Role-Based Authentication:

1. Open the Cloudera Manager Admin Console.
2. Click Administration > External Accounts.
3. Select the AWS Credentials tab.
4. Locate the row with the IAM Role-Based Authentication you want to rename and click Actions > Rename.
5. Enter a new name.
6. Click Save.

The Connect to Amazon Web Services screen displays.

7. Click the links to change any service connections or click Close to leave them unchanged.

To edit the services connected to an AWS Credentials account:

1. Open the Cloudera Manager Admin Console.
2. Click Administration > External Accounts.
3. Select the AWS Credentials tab.
4. Locate the row with the credentials you want to edit and click Actions > Edit Connectivity.

The Connect to Amazon Web Services screen displays.
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5. Click one of the following options:

• Cloud Backup and Restore

To configure Amazon S3 as the source or destination of a replication schedule (to back up and restore data,
for example), click the Replication Schedules link. See Data Replication for details.

• Cluster Access to S3

To enable cluster access to S3 using the S3 Connector Service, click the Enable for Cluster Name link, which
launches a wizard for adding the S3 Connector service. See Adding the S3 Connector Service for details.

• Cloudera Navigator Access to S3

To give Cloudera Navigator access to Amazon S3, click the Enable for Cloudera Navigator link. Restart the
Cloudera Navigator Metadata Server to enable access.

Note: You cannot enable Cloudera Navigator Access to S3 when using IAM Role-based
Authentication.

How to Enable Sensitive Data Redaction
Redaction is a process that obscures data. It helps organizations comply with government and industry regulations,
such as PCI (Payment Card Industry) and HIPAA, by making personally identifiable information (PII) unreadable except
to those whose jobs require such access. For example, in simple terms, HIPAA legislation requires that patient PII is
available only to appropriate medical professionals (and the patient), and that any medical or personal information
exposed outside the appropriate context cannot be used to associate an individual's identity with any medical
information. Data redaction can help ensure this privacy, by transforming PII to meaningless patterns—for example,
transforming U.S. social security numbers to XXX-XX-XXXX strings.

Data redaction works separately from Cloudera data encryption techniques. Data encryption alone does not preclude
administrators with full access to the cluster from viewing sensitive user data. Redaction ensures that cluster
administrators, data analysts, and others cannot see PII or other sensitive data that is not within their job domain. At
the same time, it does not prevent userswith appropriate permissions fromaccessing data towhich they have privileges.

Cloudera clusters implement some redaction features by default, while some features are configurable and require
administrators to specifically enable them. The details are covered below:

Cloudera Manager and Passwords

Passwords are not in cleartext in the Cloudera Manager Admin Console or the configuration files on disk. Passwords
managed by Cloudera Manager and Cloudera Navigator are redacted internally, with the following results:

• In the Cloudera Manager Admin Console:

– In the Processes page for a given role instance, passwords in the linked configuration files are replaced by
*******.

– Advanced Configuration Snippet (Safety Valve) parameters, such as passwords and secret keys, are visible
to users (such as admins) who have edit permissions on the parameter, while those with read-only access
see redacted data. However, the parameter name is visible to anyone. (Data to be redacted from these
snippets is identified by a fixed list of key words: password, key, aws, and secret.)

• On all Cloudera Manager Server and Cloudera Manager Agent hosts:

– Passwords in the configuration files in /var/run/cloudera-scm-agent/process are replaced by
********.
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Cloudera Manager Server Database Password Handling

Unlike the other passwords that are redacted or encrypted by Cloudera Manager, the password used for the Cloudera
Manager Server database is stored in plaintext in the configuration file,
/etc/cloudera-scm-server/db.properties, as shown in this example:

# Auto-generated by scm_prepare_database.sh on Mon Jan 30 05:02:18 PST 2017
#
# For information describing how to configure the Cloudera Manager Server
# to connect to databases, see the "Cloudera Manager Installation Guide."
#
com.cloudera.cmf.db.type=mysql
com.cloudera.cmf.db.host=localhost
com.cloudera.cmf.db.name=cm
com.cloudera.cmf.db.user=cm
com.cloudera.cmf.db.setupType=EXTERNAL
com.cloudera.cmf.db.password=password

Instead of using a cleartext password, you can use a script or other executable that uses stdout to return a password
for use by the system.

During installation of the database, you can pass the script name to the scm_prepare_database.sh script with the
--scm-password-script parameter. See Step 5: Set up the Cloudera Manager Database and Syntax for
scm_prepare_database.sh for details.

You can also replace an existing cleartext password in /etc/cloudera-scm-server/db.properties by replacing
the com.cloudera.cmf.db.password setting with com.cloudera.cmf.db.password_script and setting the
name of the script or executable:

Script (5.10 and higher)Cleartext Password (5.9 and prior)

com.cloudera.cmf.db.password_script=script_name_herecom.cloudera.cmf.db.password=password

At runtime, if /etc/cloudera-scm-server/db.properties does not include the script identified by
com.cloudera.cmf.db.password_script, the system looks for the value ofcom.cloudera.cmf.db.password.

Cloudera Manager API Redaction

Cloudera Manager API does not have redaction enabled by default. You can configure redaction of the sensitive items
by specifying a JVM parameter for Cloudera Manager. When you set this parameter, API calls to Cloudera Manager
for configuration data do not include the sensitive information. Formore information, see Redacting Sensitive Information
from the Exported Configuration.

Log and Query Redaction

Cloudera Manager provides a configurable log and query redaction feature that lets you redact sensitive data in the
CDH cluster as it's being written to the log files (see the Cloudera Engineering Blog "Sensitive Data Redaction" post for
a technical overview), to prevent leakage of sensitive data. Redaction works only on data, not metadata—that is,
sensitive data inside files is redacted, but the name, owner, and other metadata about the file is not.

Redaction is enabled for the entire cluster through the Cloudera Manager Admin Console, which also lets you define
rules to target sensitive data in SQL data and log files. After enabling data redaction, the following contain replacement
strings (such as a series of Xs) for the sensitive data items you define in your rules:

• Logs in HDFS and any dependent cluster services.
• Audit data sent to Cloudera Navigator.
• SQL query strings displayed by Hue, Hive, and Impala.

Note: Log redaction is not available in Isilon-based clusters.
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See Enabling Log and Query Redaction Using Cloudera Manager on page 349 (below) for information about how to
enable and define rules for sensitive data redaction for your cluster's logs and SQL queries (Hive, Hue, Impala).

How Redaction Rules Work

Cloudera's redaction process (redactor) uses regular expressions to target data for redaction. Common regular expression
patterns for sensitive data include social security numbers, credit card numbers, email addresses, and dates, for
example. The redaction rules are specified using the following elements:

• Search - Regular expression to compare against the data. For example, the regular expression
\d{4}[^\w]\d{4}[^\w]\d{4}[^\w]\d{4} searches for a credit card number pattern. Segments of data that
match the regular expression are redacted using the Replace string.

• Replace - String used to redact (obfuscate) data, such as a pattern of Xs to replace digits of a credit card number:
XXXX-XXXX-XXXX-XXXX.

• Trigger - Optional simple string to be searched before applying the regular expression. If the string is found, the
redactor searches for matches using the Search regular expression. Using the Trigger field improves performance:
simple string matching is faster than regular expression matching.

You can use the following preconfigured redaction rules on your cluster. Rules are applied in the order listed in the
table.

ReplacementRegex PatternRule

XXXX-XXXX-XXXX-XXXX\d{4}[^\w]\d{4}[^\w]\d{4}[^\w]\d{4}Credit Card numbers (with
separator)

XXX-XX-XXXX\d{3}[^\w]\d{2}[^\w]\d{4}Social Security numbers
(with separator)

email@redacted.host\b([A-Za-z0-9]|[A-Za-z0-9][A-Za-z0-9\-\._]

\ *[A-Za-z0-9])@(([A-Za-z0-9]|[A-Za-z] \

Email addresses

[A-Za-z0-9\-]*[A-Za-z0-9])\.)+([A-Za-z0-9]

\ |[A-Za-z0-9][A-Za-z0-9\-]*[A-Za-z0-9])\b

HOSTNAME.REDACTED\b(([A-Za-z]|[A-Za-z][A-Za-z0-9\-] \

*[A-Za-z0-9])\.)+([A-Za-z0-9] \

|[A-Za-z0-9][A-Za-z0-9\-]*[A-Za-z0-9])\b

Hostnames

Enabling Log and Query Redaction Using Cloudera Manager

To enable log and query redaction in Cloudera Manager:

1. Login to the Cloudera Manager Admin Console.
2. Select Clusters > HDFS.
3. Click the Configuration tab.
4. In the Search box, type redaction to find the redaction property settings:

• Enable Log and Query Redaction
• Log andQuery Redaction Policy List of rules for redacting sensitive information from log files and query strings.

Choose a preconfigured rule or add a custom rule. See How Redaction Rules Work on page 349 for more
information about rule pattern definitions.
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Test your rules:

– Enter sample text into the Test Redaction Rules text box
– Click Test Redaction.

5. Click Save Changes.
6. Restart the cluster.

If no rules match, the text you entered displays in the Results field, unchanged.

Using Cloudera Navigator Data Management for Data Redaction

Important: This approach has been supplanted by Cloudera Manager's cluster-wide log and query
redaction feature, and is not recommended.

You can specify credit card number patterns and other PII to be masked in audit events, in the properties of entities
displayed in lineage diagrams, and in information retrieved from the Audit Server database and the Metadata Server
persistent storage. Redacting data other than credit card numbers is not supported by default with the Cloudera
Navigator property. You can use regular expressions to redact social security numbers or other PII. Masking applies
only to audit events and lineage entities generated after enabling a mask.

Required Role: Navigator Administrator or Full Administrator

1. Log into Cloudera Manager Admin Console.
2. Select Clusters > Cloudera Management Service.
3. Click the Configuration tab.
4. Expand the Navigator Audit Server Default Group category.
5. Click the Advanced category.
6. Configure the PII Masking Regular Expression property with a regular expression that matches the credit card

number formats to be masked. The default expression is:

(4[0-9]{12}(?:[0-9]{3})?)|(5[1-5][0-9]{14})|
(3[47][0-9]{13})|(3(?:0[0-5]|[68][0-9])[0-9]{11})|
(6(?:011|5[0-9]{2})[0-9]{12})|((?:2131|1800|35\\d{3})\\d{11})

which consolidates these regular expressions:

• Visa - (4[0-9]{12}(?:[0-9]{3})?)
• MasterCard - (5[1-5][0-9]{14})
• American Express - (3[47][0-9]{13})
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• Diners Club - (3(?:0[0-5]|[68][0-9])[0-9]{11})
• Discover - (6(?:011|5[0-9]{2})[0-9]{12})
• JCB - ((?:2131|1800|35\\d{3})\\d{11})

If the property is left blank, PII information is not masked.
7. Click Save Changes.

How to Log a Security Support Case
Before logging a support case, collect as much information about your issue as possible, as detailed below:

• If possible, gather a diagnostic bundle.
• Note specific details about the issue, including these:

– Is this a new install, or did you upgrade a working cluster? For upgrades, identify release numbers ("trying
to upgrade from Cloudera Manager 5.7.0 to Cloudera Manager 6.0.0," for example).

– Is this a production deployment, development environment, or sandbox environment?
– Note the severity of the impact and whether it is causing a production outage.
– Capture error messages (screenshots, command-line capture, and so on) and attach to the case.
– Note the commands executed and the results, captured to a file if possible.
– Itemize all changes made to your cluster configuration after the issue arose (possibly, as attempts to resolve

the issue).

The following are some additional details to gather when contacting support:

• Kerberos Issues on page 351
• LDAP Issues on page 351
• TLS/SSL Issues on page 351

Kerberos Issues

• For Kerberos issues, your krb5.conf and kdc.conf files are valuable for support to be able to understand your
configuration.

• If you are having trouble with client access to the cluster, provide the output for klist -ef after kiniting as the
user account on the client host in question. Additionally, confirm that your ticket is renewable by running kinit
-R after successfully kiniting.

• Specify if you are authenticating (kiniting) with a user outside of the Hadoop cluster's realm (such as Active
Directory, or another MIT Kerberos realm).

• If using AES-256 encryption, ensure you have the Unlimited Strength JCE Policy Files deployed on all cluster and
client nodes.

LDAP Issues

• Specify the LDAP service in use (Active Directory, OpenLDAP, one of Oracle Directory Server offerings, OpenDJ,
etc)

• Provide a screenshot of the LDAP configuration screen you are working with if you are troubleshooting setup
issues.

• Be prepared to troubleshoot using the ldapsearch command (requires the openldap-clients package) on
the host where LDAP authentication or authorization issues are being seen.

TLS/SSL Issues

• Specify whether you are using a private/commercial CA for your certificates, or if they are self-signed. Note that
Cloudera strongly recommends against using self-signed certificates in production clusters.

• Clarify what services you are attempting to setup TLS/SSL for in your description.
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• When troubleshooting TLS/SSL trust issues, provide the output of the following openssl command:

openssl s_client -connect host.fqdn.name:port

How To Obtain and Deploy Keys and Certificates for TLS/SSL
Cloudera recommends obtaining certificates fromone of the trusted public certificate authorities (CA) such as Symantec
or Comodo for TLS/SSL encryption for the cluster. This How To provides a brief overview of the tools used to create
the various artifacts followed by the steps in the process. Plan ahead to allow time to receive signed certificates from
whichever CA you use.

Note: Always check with your selected public CA before creating any CSRs and follow the CA-specific
processes.

If your organization uses its own internal CA, follow your internal process for creating and submitting the CSRs.

Tools Overview

Java Keytool and OpenSSL are key management tools that let you create the security artifacts needed for TLS/SSL. See
How to Convert PEM to JKS and JKS to PEM for TLS/SSL Services and Clients for more information beyond the two short
overviews below.

Java Keytool

Oracle Java keytool is a utility included with the Oracle JDK for creating and managing cryptographic keys and
certificates. During configuring the Cloudera Manager Cluster for TLS/SSL, you create the private key pairs, keystore,
certificate signing requests, and create a truststore for specific use by the cluster using this software tool, as detailed
in the steps throughout this guide.

Java Keytool Requirements for Cloudera Manager TLS/SSL Configuration

For any steps using the Java Keytool, be sure to:

• Use the Oracle Java keytool rather than tools such as OpenJDK.
• Use the JDK downloaded fromOracle or the Cloudera-providedOracle JDK located in this default path on a Cloudera

Manager Server host:

/usr/java/jdk1.7.0_67-cloudera/bin/jre/lib/security

• Use the same version of the Java keytool for all steps. If the host has multiple JDKs installed, set the PATH variable
so that the Oracle JDK is invoked first, as in this example:

export JAVA_HOME=/usr/java/jdk1.7.0_67-cloudera
export PATH=$JAVA_HOME/bin:$PATH

• Use the same password for the -keypass and -storepass in any commands that invoke these two options.
Cloudera Manager requires the same password for a key and its keystore.

OpenSSL

OpenSSL is an open source cryptography and TLS/SSL toolkit that has been widely used since its inception ~ 1999. Just
as with Java Keytool, OpenSSL lets you create private keys, certificate requests, and keystores, and it provides options
for verifying certificates.

Cloudera Manager Agent hosts act as clients of a Cloudera Manager Server host during RPC client and server
communications. The Agent hosts, Hue, Impala and other Python-based services require PEM-formatted keys and
certificates (PKCS #8), which is why the steps below include converting some of the JKS artifacts using this tool. See
How to Convert PEM to JKS and JKS to PEM for TLS/SSL Services and Clients for more information.
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Step 1: Create Directory for Security Artifacts

Distributing the certificates, keys, truststore—in short, all security artifacts used for TLS/SSL intra-cluster
communications—is part of this and some subsequent processes. To keep things organized, Cloudera recommends
that you create the directory and distribute and store artifacts when you receive them, even though they may not be
immediately needed.

The following table shows an example directory structure for the security artifacts created in the steps in this and
subsequent sections. Use different names if you like, but for ease of deployment, use the same directory names across
all hosts in the cluster.

DescriptionExample

FQDN of an example Cloudera Manager Server host.cmhost.sec.example.com

Base path for security-related files./opt/cloudera/security

Path for all security artifacts associated with TLS/SSL,
including keys, keystores (keystore.jks), CSR, and root-
and intermediate-CA certificates.

/opt/cloudera/security/pki

Path to the default alternative Java truststore on a
Cloudera Manager Server host system.

/usr/java/jdk1.7.0_67-cloudera/jre/lib/security/jssecacerts

1. On the Cloudera Manager Server host, create the /opt/cloudera/security/pki directory:

sudo mkdir -p /opt/cloudera/security/pki

2. This directory must be owned by cloudera-scm:cloudera-scm and have its executable bit set correctly so
that Cloudera Manager can access the keystore at runtime:

sudo chown -R cloudera-scm:cloudera-scm /opt/cloudera/security/jks
umask 022
cd /opt/cloudera/security/jks

Directories and artifacts persist during system upgrades. For security purposes, for any host you remove from a cluster,
remove any directories you create and more importantly, remove any security artifacts (keys, certificates, and so on)
they may contain.

Step 2: Create the Java Truststore

On the Cloudera Manager Server host, copy the JDK cacerts file to jssecacerts:

sudo cp $JAVA_HOME/jre/lib/security/cacerts $JAVA_HOME/jre/lib/security/jssecacerts

If you do not have the $JAVA_HOME variable set, replace it with the path to the Oracle JDK. For example, the default
path to the Java JDK on a Cloudera Manager Server host is:

/usr/java/jdk1.7.0_67-cloudera/

Step 3: Generate Server Key and CSR

1. On the Cloudera Manager Server host, use the keytool utility to generate a keypair and a keystore named for
the server. Replace the OU, O, L, ST, and C entrieswith the values for your organization name, location, and country
code (US, in the example):

$ sudo keytool -genkeypair -alias $(hostname -f)-server -keyalg RSA -keystore \
/opt/cloudera/security/pki/$(hostname -f)-server.jks -keysize 2048 -dname \
"CN=$(hostname -f),OU=Dept,O=Example.com,L=City,ST=State,C=US" \
-storepass password -keypass password

Cloudera Security | 353

Security How-To Guides



Use the same password for the key and its keystore (-keypass and -storepass, respectively): ClouderaManager
does not support using different passwords for the key and keystore.

2. Generate a certificate signing request (CSR) for the public key (contained in the keystore as a result of the command
above). In this command below, enter the password that you set for the key and the keystore in the command
above:

$ sudo keytool -certreq -alias $(hostname -f)-server \
-keystore /opt/cloudera/security/pki/$(hostname -f)-server.jks \
-file /opt/cloudera/security/pki/$(hostname -f)-server.csr -storepass password \
-keypass password

Step 4: Submit the CSR to the CA

1. Submit the CSR file to your certificate authority using the process and means required by the CA, for example,
email or web submission. For the certificate format, specify PEM (base64 ASCII) (see Step 5 below for an example
of PEM formatted certificate heading and closing structure).

2. The public CA will request specific details from you, to verify that you own the domain name contained in the CSR,
before they issue the certificate.

3. When you receive the signed certificate from the CA, you can proceed with Step 5.

Step 5: Verify the Certificate

From the public (or internal) CA, you receive the certificate for the server signed by the CA and several other digital
artifacts, including root CA and possibly one (or more) intermediate CA certificates. Before distributing these to the
hosts, make sure the certificate is in PEM format. A PEM formatted certificate file looks like this:

-----BEGIN CERTIFICATE-----
<The encoded certificate is represented by multiple lines of exactly 64 characters, 
except
for the last line, which can contain 64 characters or fewer.>
-----END CERTIFICATE-----

If your issued certificate is in binary (DER) format, convert it to PEM format before continuing. See How to Convert
Formats (PEM, JKS) for TLS/SSL Clients and Services for details.

To modify the truststore (jssecacerts) to explicitly trust certificates or certificate chain (as you might for certificates
signed by an internal CA), follow the steps in How to Add Root and Intermediate CAs to Truststore for TLS/SSL.

Step 6: Import the Certificate into the Keystore

Copy the signed certificate you receive from the CA to the Cloudera Manager Server host. To identity the certificate's
functionality, include a suffix such as "-server.cert.pem" in the target name for the copy command, as shown in this
example:

cp cert-file-recd /opt/cloudera/security/pki/$(hostname -f)-server.cert.pem

Import the certificate into the keystore.

$ sudo keytool -importcert -alias $(hostname -f)-server \
-file /opt/cloudera/security/pki/$(hostname -f)-server.cert.pem \
-keystore /opt/cloudera/security/pki/$(hostname -f)-server.jks

Assuming the certificate was obtained from a public CA, you can safely disregard this message about trust, and enter
yes to continue:

... is not trusted. Install reply anyway? [no]:  yes
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Youmust see the following response confirming that the certificate has been properly imported and can verify the
private key that it certifies.

Certificate reply was installed in keystore

If you do not see this response, double-check all your steps up to this point: are you working in the correct path? Do
you have the proper certificate? and so on. SeeGetting Support for information about how to contact Cloudera Support
and to find out about other sources of help if you cannot successfully import the certificates.

How To Renew and Redistribute Certificates
Certificates installed throughout TLS/SSL-configured clusters have a defined lifetime. That lifetime begins on a certain
date and ends on another date, typically a year or two later as specified in the certificate's validity attribute. For
example, the following certificate is valid between January 24, 2017 and February 23, 2018 only:

If any certificates used for TLS/SSL in the Cloudera cluster expire, the cluster can fail completely or can exhibit various
issues related to connectivity between components. For example, an expired server certificate on the ClouderaManager
Server host will be rejected by the Cloudera Manager Agent host and prevent the cluster node from launching.

Warning: Replace certificates before they expire to avoid issues. If certificates expire and the cluster
or any nodes fail to start as a result, see Replacing Certificates After a Certificate Expires on page 358
for steps to resolve.

Obtaining certificates with new expiration dates takes just as much time as it did to obtain them in the first place. This
guide steps you through the process.

Note: Keep track of the expiration dates for all certificates installed in Cloudera clusters. For example,
add certificate expiration dates to your calendar with notifications set to alter you at least 1 month
in advance of the expiration date.

Assumptions and Requirements

The steps below assume that the cluster has been configured for TLS/SSL using certificates obtained previously as
detailed in How to Configure TLS Encryption for Cloudera Manager, and that the cluster has been operational using
those certificates. This table recaps recommended paths to various security artifacts:

DescriptionExample

Base path for security-related files./opt/cloudera/security
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DescriptionExample

Path for all security artifacts associated with TLS/SSL,
including keys, keystores (keystore.jks), CSR, and root-
and intermediate-CA certificates.

/opt/cloudera/security/pki

Path to the default alternative Java truststore on a
Cloudera Manager Server host system.

/usr/java/jdk1.7.0_67-cloudera/jre/lib/security/jssecacerts

This guide assumes that the Cloudera Manager Server host uses the jssecacerts truststore and includes all CA certs
from cacerts and any intermediate CA certificates needed to enable successful chain of trust traversal during
handshake.

sudo cp $JAVA_HOME/jre/lib/security/cacerts $JAVA_HOME/jre/lib/security/jssecacerts

Use Cloudera Manager Admin Console to check TLS/SSL configuration details for the cluster and services, and to verify
paths to keys and keystores, certificates, and trust stores configured for each service. These do not need to be re-enabled
or changed (unless you replace existing keys with new ones as part of this process), but you can note all paths and
names of all TLS-related security artifacts before you begin.

Certificates and keysmay have been converted fromone format to another (as detailed in How to Convert File Encodings
(DER, JKS, PEM) for TLS/SSL Certificates and Keys). Thatmeans that a CSRmay have been used to obtain a JKS formatted
certificate for one service that was then converted to PEM for use by another service (or services) running on the same
node of the cluster as needed.

Note: Use the same names for certificates to avoid having to reconfigure the TLS/SSL settings in
Cloudera Manager Admin Console.

Check Certificate Expiration Dates

If you do not know the expiration dates for certificates installed on the cluster, use OpenSSL (for PEM-formatted
certificates) or use Java Keytool (for JKS-formatted certificates) to determine certificate expiration dates.

PEM-formatted certificates (PKCS #8) are used by ClouderaManager Agent hosts, Hue, Impala and other Python-based
services, while JKS-formatted certificates are used by HDFS,MapReduce, and YARN, for example. See Certificate Formats
(JKS, PEM) and Cluster Components on page 145 for more information.

Using OpenSSL to Obtain Certificate Details

To check the expiration dates of PEM-formatted certificates using openssl and the certificate by name:

openssl x509 -enddate -noout -in /opt/cloudera/security/pki/$(hostname -f)-server.cert.pem

To check expiration dates by querying the active listener ports for any TLS-enabled services from the command line,
use OpenSSL as in this example of querying the Cloudera Manager TLS listener port (7183):

echo | openssl s_client -connect fqdn.example.com:7183 2>/dev/null | openssl x509 -noout
 -subject -dates

The subject and dates should display, as shown in this example:

subject=/C=US/ST=California/L=Los Angeles/O=Internet Corporation for Assigned Names
and Numbers/OU=Technology/CN=www.example.org
notBefore=Nov 3 00:00:00 2015 GMT
notAfter=Nov 28 12:00:00 2018 GMT
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Using Java Keytool to Obtain Certificate Details

To obtain all information about a certificate:

keytool -list -v -keystore keystore_name.jks

Renewing and Replacing Certificates Before Expiration

There are many different ways to proceed depending on your specific needs. Renewing a certificate really means
obtaining a new certificate, one with a new start and end date, and updating the key in the keystore with the certificate
so it can being presented during the TLS handshake. That means you can replace the key at the same time, or re-use
the existing key but apply a new certificate to it. If you have the original Certificate Signing Request (CSR), you can
resubmit that to the commercial Certificate Authority (CA) as was done when TLS/SSL was configured for the cluster.
Here is a summary of the various approaches:

• Use the existing key to generate a new CSR for a certificate to replace the one currently associated with the key,
as detailed in Step 1 below. This requires knowing the key/keystore password.

• Create a new private key and public key to replace those already in use and generate a new CSR to obtain a
completely new certificate to use with the public key. To use this approach, follow steps in How To Obtain and
Deploy Keys and Certificates for TLS/SSL.

• Submit the original CSR to the CA and obtain a new certificate. If you have the CSR that matches the key used by
the service, you can skip Step 1 and start with Step 2 below.

Step 1: Generate a New CSR from the Key

You must know the password for the key and keystore to generate a new signing request from it. Use the same alias
used for the key when it was created.

1. Use keytool to generate the CSR as follows:

$ sudo keytool -certreq -keystore server-key.jks -file newcert.csr
Enter keystore password:

Step 2: Submit the CSR to the CA

1. Submit the CSR file to your certificate authority using the process and means required by the CA, for example,
email or web submission. For the certificate format, specify PEM (base64 ASCII) (see Step 3 below for an example
of PEM formatted certificate heading and closing structure).

2. The public CA will request specific details from you, to verify that you own the domain name contained in the CSR,
before they issue the certificate.

3. When you receive the signed certificate from the CA, you can proceed with Step 3.

Step 3: Verify the Certificate

From any Certificate Authority (CA), you should receive a certificate signed by the CA attesting to the validity of the
key. Before distributing these to the hosts, make sure the certificate is in PEM format. A PEM formatted certificate file
looks like this:

-----BEGIN CERTIFICATE-----
<The encoded certificate is represented by multiple lines of exactly 64 characters, 
except
for the last line, which can contain 64 characters or fewer.>
-----END CERTIFICATE-----

If your issued certificate is in binary (DER) format, convert it to PEM format before continuing. See How to Convert
Formats (PEM, JKS) for TLS/SSL Clients and Services for details.

Along with the certificate, the CA also provides several other digital artifacts, including root CA and possibly one (or
more) intermediate CA certificates. The intermediate certificates may need to be added to the trust store in the
following situations:
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For certificates obtained from a public (commercial) CA—Intermediate or root certificates do not need to be installed
in the trust stores for the cluster. The JDK trust store already includes the certificates needed to establish chain of trust
for certificates obtained from commercial CAs.

For certificates obtained from an internal CA—To modify the truststore (jssecacerts) to explicitly trust certificates or
certificate chain (as you might for certificates signed by an internal CA), follow the steps in How to Add Root and
Intermediate CAs to Truststore for TLS/SSL.

Step 4: Import the Certificate into the Keystore

Copy the signed certificate you receive from the CA to the Cloudera Manager Server host. To identity the certificate's
functionality, include a suffix such as "-server.cert.pem" in the target name for the copy command, as shown in this
example:

cp cert-file-recd /opt/cloudera/security/pki/$(hostname -f)-server.cert.pem

Import the certificate into the keystore.

$ sudo keytool -importcert -alias $(hostname -f)-server \
-file /opt/cloudera/security/pki/$(hostname -f)-server.cert.pem \
-keystore /opt/cloudera/security/pki/$(hostname -f)-server.jks

Assuming the certificate was obtained from a public CA, you can safely disregard this message about trust, and enter
yes to continue:

... is not trusted. Install reply anyway? [no]:  yes

Youmust see the following response confirming that the certificate has been properly imported and can verify the
private key that it certifies.

Certificate reply was installed in keystore

If you do not see this response, double-check all your steps up to this point: are you working in the correct path? Do
you have the proper certificate? and so on. SeeGetting Support for information about how to contact Cloudera Support
and to find out about other sources of help if you cannot successfully import the certificates.

Replacing Certificates After a Certificate Expires

If the cluster cannot start up because of an expired certificate, then perform the steps in Renewing and Replacing
Certificates Before Expiration on page 357 to resolve the issue.

If the replacement certificate has not been obtained yet, you can use a self-signed certificate for the short term, until
you receive the CA signed certificate.

How to Set Up a Gateway Host to Restrict Access to the Cluster
The steps below configure a firewall-protected Hadoop cluster that allows access only through the host configured as
the gateway. Clients access the cluster through the gateway using the REST API, for example, using HttpFS (which
provides REST access to HDFS) or using Oozie, which allows REST access for submitting and monitoring jobs.

Installing and Configuring the Firewall and Gateway

Follow these steps:

1. Choose a cluster host to be the gateway host.
2. Following the instructions in Adding a Service or Adding a Role Instance, add the roles and services that you want

to be available. For example, you can add the HttpFS role to the HDFS service, or add the Oozie service to your
cluster.
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3. If you have not already done so, add the Oozie service to your cluster, following the instructions in Adding a
Service. Assign the Oozie Server role to your selected gateway host.

4. Configure your firewall to block access to all cluster nodes from outside the cluster, with the exception of the
gateway host. Open the ports to the gateway host for the services youwant tomake available. In general, Cloudera
recommends that you only allow access to the gateway host from clients that require access. Formore information
on the ports used by Cloudera software, see Ports.

5. If you have not already done so, enable security for your cluster, including Kerberos authentication, Apache Sentry
authorization, and encryption for data at rest or in transit. For more information, see Cloudera Security.

Accessing HDFS

With the Hadoop client:

All of the standard hadoop fs commands work; just make sure to specify -fs webhdfs://HOSTNAME:14000. For
example (where GATEWAYHOST is the hostname of the gateway machine):

$ hadoop fs -fs webhdfs://GATEWAYHOST:14000 -cat /user/me/myfile.txt
Hello World!

Without the Hadoop client:

You can run all of the standard  hadoop fs commands by using the WebHDFS REST API and any program that can
do GET , PUT,  POST, and DELETE requests; for example:

$ curl "http://GATEWAYHOST:14000/webhdfs/v1/user/me/myfile.txt?op=OPEN&user.name=me"
Hello World!

Important: The user.name parameter is valid only if security is disabled. In a secure cluster, you must
a initiate a valid Kerberos session.

In general, the command will look like this:

curl "http://GATEWAYHOST/webhdfs/v1/PATH?[user.name=USER&]op=…"

You can find a full explanation of the commands in the WebHDFS REST API documentation.

Submitting and Monitoring Jobs

The Oozie REST API supports the direct submission of jobs for MapReduce, Pig, and Hive; Oozie automatically creates
a workflow with a single action. For any other action types, or to execute anything more complicated than a single job,
you must create an actual workflow. Required files (JAR files, input data) must already exist on HDFS; if they do not,
you can use HttpFS to upload the files.

With the Oozie client:

All of the standard Oozie commands will work. You can find a full explanation of the commands in the documentation
for the command-line utilities.

Without the Oozie client:

You can run all of the standard Oozie commands by using the REST API and any program that can do GET, PUT, and
POST requests. You can find a full explanation of the commands in the Oozie Web Services API documentation.

How To Set Up Access to Cloudera EDH or Altus Director (Microsoft Azure Marketplace)
The Cloudera Enterprise Data Hub (EDH) and Cloudera Altus Director bundles that are available on theMicrosoft Azure
Marketplace only support SSH access (port 22). To access Cloudera Manager (port 7180), Altus Director (port 7189),
or other services, you can:
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• Set up a SOCKS (Sockets Secure protocol) proxy on your client machine. Cloudera recommends that you use this
option.

• Add inbound rules to the Network Security Group in the Azure instance after you deploy EDH or Director to Azure.

Configure the SOCKS Proxy

The SOCKS5 protocol is implemented as a client and server process that enables traversal of IP network firewalls. After
you configure the SOCKS proxy, your browser resolves DNS lookups using the Microsoft Azure network (through the
proxy server), and lets you connect to services using internal FQDNs or private IP address.

With this approach, you complete the following tasks:

• Set up a single SSH tunnel to one of the hosts on the network and create a SOCKS proxy on the host.
• Change the browser configuration to perform all lookups through the SOCKS proxy host.

Network Prerequisites

Verify the following prerequisites before you connect to your cluster with a SOCKS proxy:

• You must be able to reach the host that you want to proxy to from the public internet or from the network that
you're connecting from.

• The host that you proxy to must be on the same network as the Cloudera services that you're connecting to. For
example, if you’re using the Cloudera EDH offering, tunnel to the Cloudera Manager host. If you're using the Altus
Director offering, tunnel to the Altus Director host.

Find the Public IP of the Host

Only one VM is created for the Altus Director. Use the public IP of that VM.

For the Cloudera EDH offering, use the public IP of the 0th master node VM: [dnsName]-mn0.

Start the SOCKS Proxy
On Linux

To start a SOCKS proxy over SSH, run the following command:

ssh -i your-key-file.pem -CND 1080
the_username_you_specified@publicIP_of_VM

The command uses the following parameters:

• -i your-key-file.pem Specifies the path to the private key needed to SSH to the Altus Director server. Omit
if using SSH passwords.

• C Sets up compression.
• N Suppresses any command execution once established.
• D Sets up the SOCKS proxy on a port.
• 1080 The port to set the SOCKS proxy locally.

On Windows

Follow the instructions on Microsoft's website.

Configure Google Chrome to Use the Proxy

By default, Google Chrome uses system-wide proxy settings on a per-profile basis. To start Chrome without these
settings, open Chrome through the command line and specify the following:

• The SOCKS proxy port. This must be the same port that you used when you started the proxy.
• The profile. This examples below create a new profile.

Use one of the following commands to create a profile and launch a new instance of Chrome that does not conflict
with any currently running Chrome instances.
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Linux

/usr/bin/google-chrome \
--user-data-dir="$HOME/chrome-with-proxy" \
--proxy-server="socks5://localhost:1080"

Mac OS X

"/Applications/Google Chrome.app/Contents/MacOS/Google Chrome" \
--user-data-dir="$HOME/chrome-with-proxy" \
--proxy-server="socks5://localhost:1080"

Microsoft Windows

"C:\Program Files (x86)\Google\Chrome\Application\chrome.exe" ^
--user-data-dir="%USERPROFILE%\chrome-with-proxy" ^
--proxy-server="socks5://localhost:1080"

In this Chrome session, you can use the private IP address or internal FQDN to connect to any host that is accessible
by Altus Director. For example, if you proxy to the Altus Director server, you can connect to Altus Director as if it were
local by entering localhost:7189 in the Chrome URL bar.

Network Security Group

Warning: This method is not recommended for any purpose other than a Proof of Concept. If the data is not carefully
locked down, it will be accessible to hackers and malicious entities.

On portal.azure.com, find the Network Security Group(s) and add inbound rules for the various services. You might
have to create these rules for the services. Refer to Cloudera documentation for more information on ports used by
Cloudera Manager, CDH components, managed services, and third-party components.

How to Use Self-Signed Certificates for TLS
Self-signed certificates should not be used for production deployments. Self-signed certificates are created and stored
in the keystore specified during the key-generation process, and should be replaced by a signed certificate. Using
self-signed certificates requires generating and distributing the certificates and establishing explicit trust for the
certificate.

However, using self-signed certificates lets you easily obtain certificates for TLS/SSL configuration andmay be appropriate
for non-production or test setups. See Encrypting Data in Transit on page 142 and Configuring TLS Encryption for
Cloudera Manager on page 151 for more information.

Replace paths, file names, aliases, and other examples in the commands below for your system.

1. Create the directory for the certificates:

mkdir -p /opt/cloudera/security/x509/ /opt/cloudera/security/jks/

Give Cloudera Manager access to the directory, set the correct permissions, and then change to the directory:

sudo chown -R cloudera-scm:cloudera-scm /opt/cloudera/security/jks
sudo umask 0700
cd /opt/cloudera/security/jks

2. Generate the key pair and self-signed certificate, storing everything in the keystore with the same password for
keystore and storepass, as shown below. Use the FQDN of the current host for the CN to avoid raising a
java.io.IOException: HTTPS hostname wrong exception. Replace values for OU, O, L, ST, and C with
entries appropriate for your environment:

keytool -genkeypair -alias cmhost -keyalg RSA -keysize 2048 -dname "cn=cm01.example.com,
 ou=Department,
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o=Company, l=City, st=State, c=US" -keypass password -keystore example.jks -storepass 
password

3. Copy the default Java truststore (cacerts) to the alternate system truststore (jssecacerts):

sudo cp $JAVA_HOME/jre/lib/security/cacerts $JAVA_HOME/jre/lib/security/jssecacerts

4. Export the certificate from the keystore (example.jks).

keytool -export -alias cmhost -keystore example.jks -rfc -file selfsigned.cer

5. Copy the self-signed certificate (selfsigned.cer) to the /opt/cloudera/security/x509/ directory.

cp selfsigned.cer /opt/cloudera/security/x509/cmhost.pem

6. Import the public key into the alternate system truststore (jssecacerts), so that any process that runs with
Java on this machine will trust the key. The default password for the Java truststore is changeit. Do not use the
password created for the keystore in step 2.

$ keytool -import -alias cmhost -file /opt/cloudera/security/jks/selfsigned.cer
-keystore $JAVA_HOME/jre/lib/security/jssecacerts -storepass changeit

Important: Repeat this process on each host in the cluster.

7. Rename the keystore:

mv /opt/cloudera/security/jks/example.jks /opt/cloudera/security/jks/cmhost-keystore.jks

You can also delete the certificate because it was copied to the appropriate path in step 5.

rm /opt/cloudera/security/jks/selfsigned.cer

The self-signed certificate set up is complete.
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Troubleshooting Security Issues

Security-related issues can manifest in various ways and can be associated with various sources, including Kerberos
authentication, HDFS encryption, and TLS/SSL (data in transit encryption). This section includes error messages and
troubleshooting for common issues and some architectural details about some of the underlying components.

For information about Sentry troubleshooting, see Troubleshooting Sentry.

Error Messages and Various Failures

Note: This page contains references to CDH 5 components or features that have been removed from
CDH6. These references are only applicable if you aremanaging a CDH5 clusterwith ClouderaManager
6. For more information, see Deprecated Items.

These error messages may indicate an issue with Kerberos authentication or other issues.

Cluster cannot run jobs after Kerberos enabled

Symptom: Cluster previously configured without Kerberos authentication may fail to run jobs for certain users on
certain TaskTrackers (MRv1) or NodeManagers (YARN) after enabling Kerberos for the cluster. Errors may display in
the TaskTracker or NodeManager logs. The following example errors are from TaskTracker on MRv1:

10/11/03 01:29:55 INFO mapred.JobClient: Task Id : attempt_201011021321_0004_m_000011_0,
 Status : FAILED
Error initializing attempt_201011021321_0004_m_000011_0: 
java.io.IOException: org.apache.hadoop.util.Shell$ExitCodeException: 
at org.apache.hadoop.mapred.LinuxTaskController.runCommand(LinuxTaskController.java:212)

at 
org.apache.hadoop.mapred.LinuxTaskController.initializeUser(LinuxTaskController.java:442)

at 
org.apache.hadoop.mapreduce.server.tasktracker.Localizer.initializeUserDirs(Localizer.java:272)

at org.apache.hadoop.mapred.TaskTracker.localizeJob(TaskTracker.java:963) 
at org.apache.hadoop.mapred.TaskTracker.startNewTask(TaskTracker.java:2209) 
at org.apache.hadoop.mapred.TaskTracker$TaskLauncher.run(TaskTracker.java:2174) 
Caused by: org.apache.hadoop.util.Shell$ExitCodeException: 
at org.apache.hadoop.util.Shell.runCommand(Shell.java:250) 
at org.apache.hadoop.util.Shell.run(Shell.java:177) 
at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:370) 
at org.apache.hadoop.mapred.LinuxTaskController.runCommand(LinuxTaskController.java:203)

... 5 more

Possible cause: The issue is caused by legacy content in directories for TaskTracker and NodeManager that may exist
after configuring Kerberos authentication for a cluster that previously did not use Kerberos. The sequence of events
leading to this issue is as follows:

1. Cluster that had not been configured for Kerberos authentication was used to run jobs, which created local user
directory (or directories) on each TaskTracker or NodeManager host.

2. Cluster was then configured to use Kerberos authentication.
3. Users try running jobs on the newly secured cluster but local user directories on TaskTrackers or NodeManagers

are owned by the wrong user or have overly-permissive permissions.

These directories should have been cleaned up at the time Kerberos authentication was enabled for the cluster.

Steps to resolve: Delete mapred.local.dir or yarn.nodemanager.local-dirs directories across the cluster for
affected users.
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NameNode fails to start

Symptom: Login failure occurs when attempting to start the NameNode. With debugging enabled on the cluster, the
following KrbException messages may display:

Caused by: KrbException: Integrity check on decrypted field failed (31) - PREAUTH_FAILED}}

Caused by: KrbException: Identifier does not match expected value (906)

Possible cause: This issue may be due to incorrect configuration for AES-256. By default, certain operating
systems—CentOS/RedHat Enterprise Linux 5.6 (and higher), Ubuntu—useAES-256 encryptionwhich requires installing
the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy File on all hosts (see JCE Policy File for
AES-256 Encryption for details), or disabling AES-256 support in the kdc.conf or krb5.com (see disable AES-256
encryption from the Kerberos instance for details).

Steps to resolve: KrbException 31 and KrbException 906 can be caused by various issues, but the most likely cause is
incorrectly configured AES-256 encryption. Resolving the issue should start by determining the type of encryption
configured for the cluster.

To verify the type of encryption configured for the cluster:

1. On the local KDC host, type this command to create a test principal:

kadmin -q "addprinc test" 

2. On a cluster host, type this command to start a Kerberos session as test:

kinit test 

3. On a cluster host, type this command to view the encryption type in use:

klist -e 

If AES-256 is being used, output such as the following displays:

Ticket cache: FILE:/tmp/krb5cc_0
Default principal: test@SCM
Valid starting     Expires            Service principal
05/19/11 13:25:04  05/20/11 13:25:04  krbtgt/SCM@SCM
    Etype (skey, tkt): AES-256 CTS mode with 96-bit SHA-1 HMAC, AES-256 CTS mode with 
96-bit SHA-1 HMAC 

To remove AES-256 encryption from the Kerberos configuration files:

• Remove aes256-cts:normal from the supported_enctypes field of the kdc.conf or krb5.conf file.
• After changing the configuration, restart the KDC and the kadmin servers.
• Change TGT principal (krbtgt/REALM@REALM) and other principal passwords as needed.
• In the [realms] section of the kdc.conf file, for the realm associatedwith HADOOP.LOCALDOMAIN, add (or replace

if it exists already) the following variable:

supported_enctypes = des3-hmac-sha1:normal arcfour-hmac:normal des-hmac-sha1:normal 
des-cbc-md5:normal des-cbc-crc:normal des-cbc-crc:v4 des-cbc-crc:afs3

• Recreate the hdfs keytab file and mapred keytab file using the instructions in Viewing or Regenerating Kerberos
Credentials Using Cloudera Manager on page 66.

Clients cannot connect to NameNode

Symptom: The NameNode keytab file does not have an AES-256 entry but the client tickets do. The NameNode starts
but clients cannot connect to it. The error message does not specify "AES256" but rather contains enctype code "18."
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Possible cause: Issue related to AES-256 encryption and the JCE library.

Steps to resolve: Verify that Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy File is installed
or remove aes256-cts:normal from the supported_enctypes field of the kdc.conf or krb5.conf file, as
detailed above.

Hadoop commands run in local realm but not in remote realm

Symptom: After enabling cross-realm trust, authenticating as a principal in the local realm lets you successfully run
Hadoop commands, but authenticating as a principal in the remote realm does not.

Possible cause: This issue is often due to principals in the two realms having different encryption types or different
passwords for the cross-realm principal in each realm. Because the local and remote realm each issue their own TGTs,
the local commands run but the service ticket needed for the local and remote realms to communicate cannot be
granted.

Steps to resolve: Add the cross-realm krbtgt principal and its encryption types to the MIT KDC server using
kadmin.local or kadmin as appropriate (local access vs. remote):

kadmin: addprinc -e "enc_type_list" krbtgt/LOCAL-REALM.EXAMPLE.COM@MAIN-REALM.COMPANY.COM

Specify the types of encryption supported by the cross-realmprincipal (krbtgt), for example, AES, DES, or RC4.Multiple
encryption types can be specified in the enc_type_list as long as one of the encryption typesmatches that of the tickets
granted by the KDC in the remote realm. For example:

kadmin:  addprinc -e "aes256-cts:normal rc4-hmac:normal des3-hmac-sha1:normal" 
krbtgt/LOCAL-REALM.EXAMPLE.COM@MAIN-REALM.COMPANY.COM

Users cannot obtain credentials when running Hadoop jobs or commands

Symptom: Users attempt to authenticate but message such as the following displays:

13/01/15 17:44:48 DEBUG ipc.Client: Exception encountered while connecting to the server
 : javax.security.sasl.SaslException:
GSS initiate failed [Caused by GSSException: No valid credentials provided (Mechanism 
level: Fail to create credential. 
(63) - No service creds)]

Possible cause: Ticket message may be too large for the UDP protocol (which is used by SASL by default).

Steps to resolve: Force Kerberos to use TCP instead of UDP by adding the following parameter to libdefaults in
the krb5.conf file on the clients where the problem is occurring:

[libdefaults]
udp_preference_limit = 1

Configure krb5.conf through Cloudera Manager, this will automatically get added to krb5.conf.

Note:

When sending a message to the KDC, the library will try using TCP before UDP if the size of the ticket
message is larger than the setting specified for the udp_preference_limit property. If the ticket
message is smaller thanudp_preference_limit setting, thenUDPwill be tried before TCP. Regardless
of the size, both protocols will be tried if the first attempt fails.
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Bogus replay exceptions in service logs

Symptom:Multiple valid requests to Kerberos protected services are identified as replay attempts when they are not.
The following exception shows up in the logs for one or more of the Hadoop daemons:

2013-02-28 22:49:03,152 INFO  ipc.Server (Server.java:doRead(571)) - IPC Server listener
 on 8020: readAndProcess threw exception javax.security.sasl.SaslException: GSS initiate
 failed [Caused by GSSException: Failure unspecified at GSS-API level (Mechanism l
javax.security.sasl.SaslException: GSS initiate failed [Caused by GSSException: Failure
 unspecified at GSS-API level (Mechanism level: Request is a replay (34))]
        at 
com.sun.security.sasl.gsskerb.GssKrb5Server.evaluateResponse(GssKrb5Server.java:159)
        at org.apache.hadoop.ipc.Server$Connection.saslReadAndProcess(Server.java:1040)

        at org.apache.hadoop.ipc.Server$Connection.readAndProcess(Server.java:1213)
        at org.apache.hadoop.ipc.Server$Listener.doRead(Server.java:566)
        at org.apache.hadoop.ipc.Server$Listener$Reader.run(Server.java:363)
Caused by: GSSException: Failure unspecified at GSS-API level (Mechanism level: Request
 is a replay (34))
        at sun.security.jgss.krb5.Krb5Context.acceptSecContext(Krb5Context.java:741)
        at sun.security.jgss.GSSContextImpl.acceptSecContext(GSSContextImpl.java:323)
        at sun.security.jgss.GSSContextImpl.acceptSecContext(GSSContextImpl.java:267)
        at 
com.sun.security.sasl.gsskerb.GssKrb5Server.evaluateResponse(GssKrb5Server.java:137)
        ... 4 more
Caused by: KrbException: Request is a replay (34)
        at sun.security.krb5.KrbApReq.authenticate(KrbApReq.java:300)
        at sun.security.krb5.KrbApReq.<init>(KrbApReq.java:134)
        at sun.security.jgss.krb5.InitSecContextToken.<init>(InitSecContextToken.java:79)

        at sun.security.jgss.krb5.Krb5Context.acceptSecContext(Krb5Context.java:724)
        ... 7 more

This issue can also manifest as poor performance for clients of the cluster, including dropped connections, timeouts
attempting to make RPC calls, and so on.

Possible cause: Kerberos uses a second-resolution timestamp to protect against replay attacks (where an attacker
can record network traffic, and play back recorded requests later to gain elevated privileges). That is, incoming requests
are cached by Kerberos for a little while, and if there are similar requests within a few seconds, Kerberos will be able
to detect them as replay attack attempts (see MIT Kerberos replay cache for more information).

However, if there are multiple valid Kerberos requests coming in at the same time, these may also be misjudged as
attacks for the following reasons:

• Multiple services in the cluster are using the same Kerberos principal. All secure clients that run on multiple
machines should use unique Kerberos principals for each machine. For example, rather than connecting as a
service principal myservice@EXAMPLE.COM, services should have per-host principals such as
myservice/host123.example.com@EXAMPLE.COM.

• Clocks not synchronized: All hosts should run NTP so that clocks are kept in sync between clients and servers.

Steps to resolve:

While having different principals for each service, and clocks in sync helps mitigate the issue, there are, however, cases
where even if all of the above are implemented, the problem still persists. In such a case, disabling the cache (and the
replay protection as a consequence), will allow parallel requests to succeed. This compromise between usability and
security can be applied by setting the KRB5RCACHETYPE environment variable to none.

Note that the KRB5RCACHETYPE is not automatically detected by Java applications. For Java-based components:

• Ensure that the cluster runs on JDK 8.
• To disable the replay cache, add -Dsun.security.krb5.rcache=none to the Java Opts/Arguments of the

targeted JVM. For example, HiveServer2 or the Sentry service.
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Cloudera Manager cluster services fail to start

Symptom: One or more of the cluster services fails to start. For example, the DataNode fails to start. Error messages
in the log files may display the following error messages:

Exception in secureMain 
java.lang.ExceptionInInitializerError 
at javax.crypto.KeyGenerator.nextSpi(KeyGenerator.java:324) 
at javax.crypto.KeyGenerator.<init>(KeyGenerator.java:157) 
...
Caused by: java.lang.SecurityException: The jurisdiction policy files are not signed by
 a trusted signer! 
at javax.crypto.JarVerifier.verifyPolicySigned(JarVerifier.java:289) 
at javax.crypto.JceSecurity.loadPolicies(JceSecurity.java:316) 
at javax.crypto.JceSecurity.setupJurisdictionPolicies(JceSecurity.java:261) 
...

Possible cause: This is another example of a mismatch for AES-256 encryption. Services cannot start when the version
of the JCE policy file does not match the version of Java installed on a node because the cryptographic signatures for
the JCE policy files cannot be verified, resulting in the message shown above.

• Check that the encryption types are matched between your KDC and krb5.conf on all hosts.

Solution: If you are using AES-256, follow the instructions at Step 2: Installing JCE Policy File for AES-256 Encryption
on page 53 to deploy the JCE policy file on all hosts.

• Services cannot start

Solution: Download the correct JCE policy files for the version of Java you are running:

• Java 8
• Java 7
• Java 6 [Legacy information]

Download and unpack the zip file. Copy the two JAR files to the $JAVA_HOME/jre/lib/security directory on each
node within the cluster.

Error Messages

Incorrect permission Java exception (java.io.IOException)

Symptom: An incorrect permission error displays when trying to run a job:

java.io.IOException: Incorrect permission for
/var/folders/B3/B3d2vCm4F+mmWzVPB89W6E+++TI/-Tmp-/tmpYTil84/dfs/data/data1,
expected: rwxr-xr-x, while actual: rwxrwxr-x
       at org.apache.hadoop.util.DiskChecker.checkPermission(DiskChecker.java:107)
       at 
org.apache.hadoop.util.DiskChecker.mkdirsWithExistsAndPermissionCheck(DiskChecker.java:144)

       at org.apache.hadoop.util.DiskChecker.checkDir(DiskChecker.java:160)
       at org.apache.hadoop.hdfs.server.datanode.DataNode.makeInstance(DataNode.java:1484)

       at 
org.apache.hadoop.hdfs.server.datanode.DataNode.instantiateDataNode(DataNode.java:1432)

       at 
org.apache.hadoop.hdfs.server.datanode.DataNode.instantiateDataNode(DataNode.java:1408)

       at org.apache.hadoop.hdfs.MiniDFSCluster.startDataNodes(MiniDFSCluster.java:418)

      ...

Possible cause: The daemon has umask 0002 rather than 0022.

Steps to resolve:Make sure that the umask for hdfs and mapred is 0022.
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MapReduce (MRv1) Errors

These error messages are associated with MapReduce only (not YARN).

Jobs won't run and cannot access files in mapred.local.dir

Symptom: The TaskTracker log contains the following error message:

WARN org.apache.hadoop.mapred.TaskTracker: Exception while localization 
java.io.IOException: Job initialization failed (1) 

Possible cause:

Steps to resolve:

1. Add the mapred user to the mapred and hadoop groups on all hosts.
2. Restart all TaskTrackers.

Jobs cannot run and TaskTracker cannot create local mapred directory

Symptom: The TaskTracker log contains the following error message:

11/08/17 14:44:06 INFO mapred.TaskController: main : user is atm
11/08/17 14:44:06 INFO mapred.TaskController: Failed to create directory 
/var/log/hadoop/cache/mapred/mapred/local1/taskTracker/atm - No such file or directory
11/08/17 14:44:06 WARN mapred.TaskTracker: Exception while localization 
java.io.IOException: Job initialization failed (20)
        at 
org.apache.hadoop.mapred.LinuxTaskController.initializeJob(LinuxTaskController.java:191)

        at org.apache.hadoop.mapred.TaskTracker$4.run(TaskTracker.java:1199)
        at java.security.AccessController.doPrivileged(Native Method)
        at javax.security.auth.Subject.doAs(Subject.java:396)
        at 
org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1127)
        at org.apache.hadoop.mapred.TaskTracker.initializeJob(TaskTracker.java:1174)
        at org.apache.hadoop.mapred.TaskTracker.localizeJob(TaskTracker.java:1089)
        at org.apache.hadoop.mapred.TaskTracker.startNewTask(TaskTracker.java:2257)
        at org.apache.hadoop.mapred.TaskTracker$TaskLauncher.run(TaskTracker.java:2221)
Caused by: org.apache.hadoop.util.Shell$ExitCodeException:
        at org.apache.hadoop.util.Shell.runCommand(Shell.java:255)
        at org.apache.hadoop.util.Shell.run(Shell.java:182)
        at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:375)
        at 
org.apache.hadoop.mapred.LinuxTaskController.initializeJob(LinuxTaskController.java:184)

        ... 8 more

Possible cause:Mismatch ofmapred.local.dir values specified inmapred-site.xml andtaskcontroller.cfg.
These values should be the same.

Steps to resolve: Verify that the setting for mapred.local.dir is the same in both mapred-site.xml and
taskcontroller.cfg, and reconfigure if necessary.

Jobs cannot run and TaskTracker cannot create Hadoop logs directory

Symptom: The TaskTracker log contains an error message similar to the following:

11/08/17 14:48:23 INFO mapred.TaskController: Failed to create directory 
/home/atm/src/cloudera/hadoop/build/hadoop-0.23.2-cdh3u1-SNAPSHOT/logs1/userlogs/job_201108171441_0004
 - No such file or directory
11/08/17 14:48:23 WARN mapred.TaskTracker: Exception while localization 
java.io.IOException: Job initialization failed (255)
        at 
org.apache.hadoop.mapred.LinuxTaskController.initializeJob(LinuxTaskController.java:191)

        at org.apache.hadoop.mapred.TaskTracker$4.run(TaskTracker.java:1199)
        at java.security.AccessController.doPrivileged(Native Method)
        at javax.security.auth.Subject.doAs(Subject.java:396)
        at 

368 | Cloudera Security

Troubleshooting Security Issues



org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1127)
        at org.apache.hadoop.mapred.TaskTracker.initializeJob(TaskTracker.java:1174)
        at org.apache.hadoop.mapred.TaskTracker.localizeJob(TaskTracker.java:1089)
        at org.apache.hadoop.mapred.TaskTracker.startNewTask(TaskTracker.java:2257)
        at org.apache.hadoop.mapred.TaskTracker$TaskLauncher.run(TaskTracker.java:2221)
Caused by: org.apache.hadoop.util.Shell$ExitCodeException:
        at org.apache.hadoop.util.Shell.runCommand(Shell.java:255)
        at org.apache.hadoop.util.Shell.run(Shell.java:182)
        at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:375)
        at 
org.apache.hadoop.mapred.LinuxTaskController.initializeJob(LinuxTaskController.java:184)

        ... 8 more

Possible cause:Misconfiguration issue.

Steps to resolve: In MRv1, the default value specified for hadoop.log.dir in mapred-site.xml is
/var/log/hadoop-0.20-mapreduce. The path must be owned and be writable by the mapred user. If you change
the default value specified for hadoop.log.dir, make sure the value is identical in mapred-site.xml and
taskcontroller.cfg. If the values are different, the error message above is returned.

Authentication and Kerberos Issues
Clusters that use Kerberos for authentication have several possible sources of potential issues, including:

• Failure of the Key Distribution Center (KDC)
• Missing Kerberos or OS packages or libraries
• Incorrect mapping of Kerberos REALMs for cross-realm authentication

These are just some examples, but they can prevent users and services from authenticating and can interfere with the
cluster's ability to run and process workloads. The first step whenever an issue emerges is to try to isolate the source
of the actual issue, by answering basic questions such as these:

• Is the issue a local issue or a global issue? That is, are all users failing to authenticate, or is the issue specific to a
single user?

• Is the issue specific to a single service, or are all services problematic? and so on.

If all users and multiple services are affected—and if the cluster has not worked at all after integrating with Kerberos
for authentication—step through all settings for the Kerberos configuration files, as outlined in Auditing the Kerberos
Configuration.

Note: All nodes in any given cluster configured for Kerberosmust use the same configuration settings
in the files that are distributed throughout the cluster.

Auditing the Kerberos Configuration

Cloudera recommends verifying the Kerberos configuration whenever issues arise, especially after initially completing
the integration process.

• Verify that all /etc/hosts files conform to Cloudera Manager's installation requirements.
• Verify forward and reverse name resolution for all cluster hosts and for theMIT KDC or Active Directory KDC hosts.
• Verify that all required Kerberos server and workstation packages have been installed and are the correct versions

for the OS running on the host systems.
• Verify that the hadoop.security.auth_to_local property in the core-site.xml has proper mappings for

all trusted Kerberos realms, including HDFS trusted realms, for all services on the cluster that use Kerberos.
• Verify your Kerberos configuration by comparing to the Sample Kerberos Configuration Files on page 376 shown

below (see krb5.conf and kdc.conf).
• Review the configuration of all the KDC, REALM, and domain hosts referenced in the krb5.conf and kdc.conf

files. The KDC host in particular, is a common point-of-failure and you may have to begin troubleshooting there.
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Ensure that the REALM set in krb5.conf has the correct hostname listed for the KDC. For cross-realm
authentication, see Reviewing Service Ticket Credentials in Cross-Realm Deployments on page 376.

• Use whether the services using Kerberos are running and responding properly with kinit/klist.
• Attempt to authenticate to Cloudera Manager using cluster service credentials specific to the issue or affected

service. Examine the issued credentials if you are able to successfully authenticate with the service keytab.
• Use klist to list the principals present within a service keytab to ensure each service has one.
• Enabling debugging using either the command line or Cloudera Manager.

Kerberos Command-Line Tools

User Authentication with and Without Keytab

The kinit command line tool is used to authenticate a user, service, system, or device to a KDC. The most basic
example is a user authenticating to Kerberos with a username (principal) and password. In the following example, the
first attempt uses a wrong password, followed by a second successful attempt.

[alice@host1 ~]$ kinit alice@TEST.ORG.LAB
Password for alice@TEST.ORG.LAB: (wrong password)
kinit: Preauthentication failed while getting initial credentials

[alice@host1 ~]$ kinit alice@TEST.ORG.LAB
Password for alice@TEST.ORG.LAB: (correct password)
(note silent return on successful auth)
[alice@host1 ~]$ klist
Ticket cache: FILE:/tmp/krb5cc_10001
Default principal: alice@TEST.ORG.LAB

Valid starting     Expires            Service principal
03/11/14 11:55:39  03/11/14 21:54:55  krbtgt/TEST.ORG.LAB@TEST.ORG.LAB
renew until 03/18/14 11:55:39

Another method of authentication is using keytabs with the kinit command. You can verify whether authentication
was successful by using theklist command to show the credentials issued by the KDC. The following example attempts
to authenticate the hdfs service to the KDC by using the hdfs keytab file.

[root@host1 312-hdfs-DATANODE]# kinit -kt hdfs.keytab hdfs/host1.test.lab@TEST.LAB
[root@host1 312-hdfs-DATANODE]# klist
Ticket cache: FILE:/tmp/krb5cc_0
Default principal: hdfs/host1.test.lab@TEST.LAB

Valid starting      Expires      Service principal
03/11/14 11:18:34 03/12/14 11:18:34 krbtgt/TEST.LAB@TEST.LAB
renew until 03/18/14 11:18:34

Examining Kerberos credentials with klist

So far we've only seen basic usage examples of the klist command to list the contents of a keytab file, or to examine
a user's credentials. To getmore information from theklist command, such as the encryption types being negotiated,
or the flags being set for credentials being issued by the KDC, use the klist -ef command. The output for this
command will show you the negotiated encryption types for a user or service principal. This is useful information
because you may troubleshoot errors caused (especially in cross-realm trust deployments) because an AD or MIT KDC
server may not support a particular encryption type. Look for the encryption types under the "Etype" section of the
output.

Flags indicate options supported by Kerberos that extend the features of a set of issued credentials. As discussed
previously, CDH requires renewable as well as forwardable tickets for successful authentication, especially in cross
realm environments. Look for these settings in the "Flags:" section of the klist -ef output shown below where, F
= Forwardable, and, R = renewable.

For example, if you use the klist -ef command in an ongoing user session:

[alice@host1 ~]$ klist -ef
Ticket cache: FILE:/tmp/krb5cc_10001
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Default principal: alice@TEST.ORG.LAB 
Valid starting Expires Service principal
03/11/14 11:55:39 03/11/14 21:54:55 krbtgt/TEST.ORG.LAB@TEST.ORG.LAB
renew until 03/18/14 11:55:39, Flags: FRIA 
Etype (skey, tkt): aes256-cts-hmac-sha1-96,
    aes256-cts-hmac-sha1-96

Enabling Debugging for Authentication Issues

Using Cloudera Manager for Debugging

To obtain additional information in the logs and facilitate troubleshooting, administrators can set debug levels for any
of the services running on ClouderaManager Server. Typically, the settings are added using the Advanced Configuration
Snippet (Safety Valve) settings for the specific service, the names are specific to the service.

as for HDFS as detailed below:

1. Log in to the Cloudera Manager Admin Console.
2. Select Clusters > HDFS-n.
3. Click the Configuration tab.
4. Search for properties specific to the different role types for which you want to enable debugging. For example, if

you want to enable debugging for the HDFS NameNode, search for the NameNode Logging Threshold property
and select at least DEBUG level logging.

5. Enable Kerberos debugging by using the HDFS service's Advanced Configuration Snippet. Once again, this may be
different for each specific role type or service. For the HDFS NameNode, add the following properties to the HDFS
Service Environment Safety Valve:

HADOOP_JAAS_DEBUG=true
HADOOP_OPTS="-Dsun.security.krb5.debug=true"

6. Click Save Changes.
7. Restart the HDFS service.

The output will be seen in the process logs: stdout.log and stderr.log. These can be found in the runtime path
of the instance:

/var/run/cloudera-scm-agent/process/###-service-ROLE

After restarting Cloudera Manager Service, the most recent instance of the ###-service-ROLE directory will have
debug logs. Use ls -ltr in the /var/run/cloudera-scm-agent/process path to determine the most current
path.

Enabling Debugging for the Authentication Process

Set the following properties on the cluster to obtain debugging information from the Kerberos authentication process.

# export HADOOP_ROOT_LOGGER=TRACE,console;
# export HADOOP_JAAS_DEBUG=true;
# export HADOOP_OPTS="-Dsun.security.krb5.debug=true"

You can then use the following command to copy the console output to the user (with debugging messages), along
with all output from STDOUT and STDERR to a file.

# hadoop fs -ls / > >(tee fsls-logfile.txt) 2>&1
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Kerberos Credential-Generation Issues

Cloudera Manager creates accounts needed by CDH services using an internal command (Generate Credentials) that
is triggered automatically by the Kerberos configuration wizard or when changes are made to the cluster that require
new Kerberos principals.

After configuring the cluster for Kerberos authentication or making changes that require generation of new principals,
you can verify that the command ran successfully by using the Cloudera Manager Admin Console, as follows:

1. Log in to the Cloudera Manager Admin Console. Any error messages display on the Home page, in the Status area
near the top of the page. The following Status message indicates that the Generate Credentials command failed:

Role is missing Kerberos
            keytab

2. To display the output of the command, go to the Home > Status tab and click the All Recent Commands tab.

Active Directory Credential-Generation Errors

Error: ldap_sasl_interactive_bind_s: Can't contact LDAP server (-1)

Possible cause: The Domain Controller specified is incorrect or LDAPS has not been enabled for it.

Steps to resolve: Verify the configuration for Active Directory Active Directory KDC, as follows:

1. Log in to Cloudera Manager Admin Console.
2. Select Administration > Settings .
3. Select Kerberos for the Category filter.

Verify all settings. Also check that LDAPS is enabled for Active Directory.

Error: ldap_add: Insufficient access (50)

Possible cause: The Active Directory account you are using for Cloudera Manager does not have permissions to create
other accounts.

Steps to resolve: Use the Delegate Control wizard to grant permission to the Cloudera Manager account to create
other accounts. You can also login to Active Directory as the Cloudera Manager user to check that it can create other
accounts in your Organizational Unit.

MIT Kerberos Credential-Generation Errors

Error: kadmin: Cannot resolve network address for admin server in requested realm while
initializing kadmin interface.

Possible cause: The hostname for the KDC server is incorrect.

Steps to resolve: Check the kdc field for your default realm in krb5.conf and make sure the hostname is correct.

Hadoop commands fail after enabling Kerberos security

Users need to obtain valid Kerberos tickets to interact with a secure cluster, that is, a cluster that has been configured
to use Kerberos for authentication. Running any Hadoop command (such as hadoop fs -ls) will fail if you do not
have a valid Kerberos ticket in your credentials cache. If you do not have a valid ticket, you will receive an error such
as:

11/01/04 12:08:12 WARN ipc.Client: Exception encountered while connecting to the server
 : javax.security.sasl.SaslException:
GSS initiate failed [Caused by GSSException: No valid credentials provided (Mechanism 
level: Failed to find any Kerberos tgt)]
Bad connection to FS. command aborted. exception: Call to nn-host/10.0.0.2:8020 failed
 on local exception: java.io.IOException:
javax.security.sasl.SaslException: GSS initiate failed [Caused by GSSException: No valid
 credentials provided (Mechanism level: Failed to find any Kerberos tgt)]
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Steps to resolve: Examine the Kerberos tickets currently in your credentials cache by running the klist command.
You can obtain a ticket by running the kinit command and either specifying a keytab file containing credentials, or
entering the password for your principal.

Using the UserGroupInformation class to authenticate Oozie

Secured CDH services mainly use Kerberos to authenticate RPC communication. RPCs are one of the primary means
of communication between nodes in a Hadoop cluster. For example, RPCs are used by the YARN NodeManager to
communicate with the ResourceManager, or by the HDFS client to communicate with the NameNode.

CDH services handle Kerberos authentication by calling the UserGroupInformation (UGI) login method,
loginUserFromKeytab(), once every time the service starts up. Since Kerberos ticket expiration times are typically
short, repeated logins are required to keep the application secure. Long-running CDH applications have to be
implemented accordingly to accommodate these repeated logins. If an application is only going to communicate with
HDFS, YARN,MRv1, and HBase, then you only need to call the UserGroupInformation.loginUserFromKeytab()
method at startup, before any actual API activity occurs. The HDFS, YARN, MRv1 and HBase services' RPC clients have
their own built-inmechanisms to automatically re-loginwhen a keytab's Ticket-Granting Ticket (TGT) expires. Therefore,
such applications do not need to include calls to the UGI re-login method because their RPC client layer performs the
re-login task for them.

However, some applications may include other service clients that do not involve the generic Hadoop RPC framework,
such as Hive or Oozie clients. Such applications must explicitly call the
UserGroupInformation.getLoginUser().checkTGTAndReloginFromKeytab()methodbefore every attempt
to connect with a Hive or Oozie client. This is because these clients do not have the logic required for automatic
re-logins.

This is an example of an infinitely polling Oozie client application:

// App startup
UserGroupInformation.loginFromKeytab(KEYTAB_PATH, PRINCIPAL_STRING);
OozieClient client = loginUser.doAs(new PrivilegedAction<OozieClient>() {
    public OozieClient run() {
        try {
            returnnew OozieClient(OOZIE_SERVER_URI);
        } catch (Exception e) {
            e.printStackTrace();
            returnnull;
        }
    }
});

while (true && client != null) {
    // Application's long-running loop

    // Every time, complete the TGT check first
    UserGroupInformation loginUser = UserGroupInformation.getLoginUser();
    loginUser.checkTGTAndReloginFromKeytab();

    // Perform Oozie client work within the context of the login user object
    loginUser.doAs(new PrivilegedAction<Void>() {
        publicVoid run() {
            try {
                List<WorkflowJob> list = client.getJobsInfo("");
                for (WorkflowJob wfJob : list) {
                    System.out.println(wfJob.getId());
                }
            } catch (Exception e) {
                e.printStackTrace();
            }
        } // End of function block
    }); // End of doAs
} // End of loop
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Certain Java versions cannot read credentials cache

Symptom: For MIT Kerberos 1.8.1 (or higher), the following error will occur when you attempt to interact with the
Hadoop cluster, even after successfully obtaining a Kerberos ticket using kinit:

11/01/04 12:08:12 WARN ipc.Client: Exception encountered while connecting to the server
 : javax.security.sasl.SaslException:
GSS initiate failed [Caused by GSSException: No valid credentials provided (Mechanism 
level: Failed to find any Kerberos tgt)]
Bad connection to FS. command aborted. exception: Call to nn-host/10.0.0.2:8020 failed
 on local exception: java.io.IOException:
javax.security.sasl.SaslException: GSS initiate failed [Caused by GSSException: No valid
 credentials provided (Mechanism level: Failed to find any Kerberos tgt)]

Possible cause:

At release 1.8.1 of MIT Kerberos, a change was made to the credentials cache format that conflicts with Oracle JDK 6
Update 26 (and earlier JDKs) rendering Java incapable of reading Kerberos credentials cache created by versions of
MIT Kerberos 1.8.1 (or higher). Kerberos 1.8.1 is the default in Ubuntu Lucid and higher releases and Debian Squeeze
and higher releases. On RHEL and CentOS, an older version of MIT Kerberos which does not have this issue, is the
default.

Workaround: Use the -R (renew) option with kinit after initially obtaining credentials with kinit. This sequence
causes the ticket to be renewed and credentials are cached using a format that Java can read. However, the initial
ticket must be renewable.

For example:

$ klist
klist: No credentials cache found (ticket cache FILE:/tmp/krb5cc_1000)
$ hadoop fs -ls
11/01/04 13:15:51 WARN ipc.Client: Exception encountered while connecting to the server
 : javax.security.sasl.SaslException:
GSS initiate failed [Caused by GSSException: No valid credentials provided (Mechanism 
level: Failed to find any Kerberos tgt)]
Bad connection to FS. command aborted. exception: Call to nn-host/10.0.0.2:8020 failed
 on local exception: java.io.IOException:
javax.security.sasl.SaslException: GSS initiate failed [Caused by GSSException: No valid
 credentials provided (Mechanism level: Failed to find any Kerberos tgt)]
$ kinit
Password for username@REALM-NAME.EXAMPLE.COM: 
$ klist
Ticket cache: FILE:/tmp/krb5cc_1000
Default principal: username@REALM-NAME.EXAMPLE.COM

Valid starting     Expires            Service principal
01/04/11 13:19:31  01/04/11 23:19:31  krbtgt/REALM-NAME.EXAMPLE.COM@REALM-NAME.EXAMPLE.COM

 renew until 01/05/11 13:19:30
$ hadoop fs -ls
11/01/04 13:15:59 WARN ipc.Client: Exception encountered while connecting to the server
 : javax.security.sasl.SaslException:
GSS initiate failed [Caused by GSSException: No valid credentials provided (Mechanism 
level: Failed to find any Kerberos tgt)]
Bad connection to FS. command aborted. exception: Call to nn-host/10.0.0.2:8020 failed
 on local exception: java.io.IOException:
javax.security.sasl.SaslException: GSS initiate failed [Caused by GSSException: No valid
 credentials provided (Mechanism level: Failed to find any Kerberos tgt)]
$ kinit -R
$ hadoop fs -ls
Found 6 items
drwx------   - user user     0 2011-01-02
          16:16 /user/user/.staging

Non-renewable tickets display this error message when the command

kinit: Ticket expired while renewing credentials
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Resolving Cloudera Manager Service keytab Issues

Every service managed by Cloudera Manager has a keytab file that is provided at startup by the Cloudera Manager
Agent. The most recent keytab files can be examined by navigating to the path,
/var/run/cloudera-scm-agent/process, with an ls -ltr command.

As you can see in the example below, ClouderaManager service directory names have the form: ###-service-ROLE.
Therefore, if you are troubleshooting the HDFS service, the service directory may be called, 326-hdfs-NAMENODE.

[root@cehd1 ~]# cd /var/run/cloudera-scm-agent/process/
[root@cehd1 process]# ls -ltr | grep NAMENODE | tail -3
drwxr-x--x 3 hdfs         hdfs         4096 Mar  3 23:43 313-hdfs-NAMENODE
drwxr-x--x 3 hdfs         hdfs         4096 Mar  4 00:07 326-hdfs-NAMENODE
drwxr-x--x 3 hdfs         hdfs         4096 Mar  4 00:07 328-hdfs-NAMENODE-nnRpcWait

[root@cehd1 process]# cd 326-hdfs-NAMENODE

[root@cehd1 326-hdfs-NAMENODE]# ls
cloudera_manager_agent_fencer.py              dfs_hosts_allow.txt         hdfs.keytab 
                log4j.properties             topology.py
cloudera_manager_agent_fencer_secret_key.txt  dfs_hosts_exclude.txt       hdfs-site.xml
               logs
cloudera-monitor.properties                   event-filter-rules.json     
http-auth-signature-secret  navigator.client.properties
core-site.xml                                 hadoop-metrics2.properties  krb5cc_494  
                topology.map

If you have root access to the /var/run/cloudera-scm-agent/process path, you can use any service's keytab
file to log in as root or a sudo user to verify whether basic Kerberos authentication is working.

After locating a keytab file, examine its contents using the klist command to view the credentials stored in the file.
For example, to list the credentials stored in the hdfs.keytab file:

[root@host1 326-hdfs-DATANODE]# klist -kt hdfs.keytab

Keytab name: WRFILE:hdfs.keytab
KVNO Timestamp         Principal
---- ----------------- --------------------------------------------------------
  4 02/17/14 19:09:17 HTTP/host1.test.lab@TEST.LAB
  4 02/17/14 19:09:17 HTTP/host1.test.lab@TEST.LAB
  4 02/17/14 19:09:17 HTTP/host1.test.lab@TEST.LAB
  4 02/17/14 19:09:17 HTTP/host1.test.lab@TEST.LAB
  4 02/17/14 19:09:17 HTTP/host1.test.lab@TEST.LAB
  4 02/17/14 19:09:17 HTTP/host1.test.lab@TEST.LAB
  4 02/17/14 19:09:17 hdfs/host1.test.lab@TEST.LAB
  4 02/17/14 19:09:17 hdfs/host1.test.lab@TEST.LAB
  4 02/17/14 19:09:17 hdfs/host1.test.lab@TEST.LAB
  4 02/17/14 19:09:17 hdfs/host1.test.lab@TEST.LAB
  4 02/17/14 19:09:17 hdfs/host1.test.lab@TEST.LAB
  4 02/17/14 19:09:17 hdfs/host1.test.lab@TEST.LAB

Now, attempt to authenticate using the keytab file and a principal within it. In this case, we use the hdfs.keytab file
with the hdfs/host1.test.lab@TEST.LAB principal. Then use the klist command without any arguments to see
the current user session's credentials.

root@host1 312-hdfs-DATANODE]# kinit -kt hdfs.keytab hdfs/host1.test.lab@TEST.LAB
[root@host1 312-hdfs-DATANODE]# klist

Ticket cache: FILE:/tmp/krb5cc_0
Default principal: hdfs/host1.test.lab@TEST.LAB

Valid starting     Expires            Service principal
03/11/14 11:18:34  03/12/14 11:18:34  krbtgt/TEST.LAB@TEST.LAB
renew until 03/18/14 11:18:34

Note that Kerberos credentials have an expiry date and time. This means, to make sure Kerberos credentials are valid
uniformly over a cluster, all hosts and clients within the cluster should be using NTP and must never drift more than 5
minutes apart from each other. Kerberos session tickets have a limited lifespan, but can be renewed (as indicated in
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the samplekrb5.conf andkdc.conf). CDH requires renewable tickets for cluster principals. Checkwhether renewable
tickets have been enabled by using a klist commandwith the -e (list key encryption types) and -f (list flags set) switches
when examining Kerberos sessions and credentials.

Reviewing Service Ticket Credentials in Cross-Realm Deployments

When you examine your cluster configuration, make sure you haven't violated any of following the integration rules:

• When negotiating encryption types, follow the realm with the most specific limitations on supported encryption
types.

• All realms should be known to one another through the /etc/krb5.conf file deployed on the cluster.
• When you make configuration decisions for Active Directory environments, you must evaluate the Domain

Functional Level or Forrest Functional Level that is present.

Kerberos typically negotiates and uses the strongest form of encryption possible between a client and server for
authentication into the realm. However, the encryption types for TGTs may sometimes end up being negotiated
downward towards the weaker encryption types, which is not desirable. To investigate such issues, check the kvno of
the cross-realm trust principal (krbtgt) as described in the following steps. Replace CLUSTER.REALM and AD.REALM
(orMIT.REALM) with the appropriate values for your configured realm. This scenario assumes cross-realmauthentication
with Active Directory.

• Once trust has been configured (see sample files in previous section), kinit as a system user by authenticating
to the AD Kerberos realm.

• From the command line, perform a kvno check of the local and cross-realm krbtgt entry. The local representation
of this specialREALM service principal is in the form,krbtgt/CLUSTER.REALM@CLUSTER.REALM. The cross-realm
principal is named after the trusted realm in the form, krbtgt/AD.REALM.

• Failure of the kvno check indicates incorrect cross-realm trust configuration. Review encryption types again,
looking for incompatibilities or unsupported encryption types configured between realms.

Sample Kerberos Configuration Files

This section contains several example Kerberos configuration files.

/etc/krb5.conf

The/etc/krb5.conf file is the configuration a client uses to access a realm through its configured KDC. Thekrb5.conf
maps the realm to the available servers supporting those realms. It also defines the host-specific configuration rules
for how tickets are requested and granted.

[logging]
 default = FILE:/var/log/krb5libs.log
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmind.log

[libdefaults]
 default_realm = EXAMPLE.COM
 dns_lookup_realm = false
 dns_lookup_kdc = false
 ticket_lifetime = 24h
 renew_lifetime = 7d
 forwardable = true
# udp_preference_limit = 1

# set udp_preference_limit = 1 when TCP only should be
# used. Consider using in complex network environments when
# troubleshooting or when dealing with inconsistent
# client behavior or GSS (63) messages.

# uncomment the following if AD cross realm auth is ONLY providing DES encrypted tickets
# allow-weak-crypto = true

[realms]
 AD-REALM.EXAMPLE.COM = {
  kdc = AD1.ad-realm.example.com:88
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  kdc = AD2.ad-realm.example.com:88
  admin_server = AD1.ad-realm.example.com:749
  admin_server = AD2.ad-realm.example.com:749
  default_domain = ad-realm.example.com
 }
 EXAMPLE.COM = {
  kdc = kdc1.example.com:88
  admin_server = kdc1.example.com:749
  default_domain = example.com
 }

# The domain_realm is critical for mapping your host domain names to the kerberos realms
# that are servicing them. Make sure the lowercase left hand portion indicates any 
domains or subdomains
# that will be related to the kerberos REALM on the right hand side of the expression.
 REALMs will 
# always be UPPERCASE. For example, if your actual DNS domain was test.com but your 
kerberos REALM is
# EXAMPLE.COM then you would have,

[domain_realm]
test.com = EXAMPLE.COM
#AD domains and realms are usually the same
ad-domain.example.com = AD-REALM.EXAMPLE.COM  
ad-realm.example.com = AD-REALM.EXAMPLE.COM

/var/kerberos/krb5kdc/kdc.conf

The kdc.conf file only needs to be configured on the actual cluster-dedicated KDC, and should be located at
/var/kerberos/krb5kdc. Only primary and secondary KDCs need access to this configuration file. The contents of
this file establish the configuration rules which are enforced for all client hosts in the REALM.

[kdcdefaults]
 kdc_ports = 88
 kdc_tcp_ports = 88

[realms]
  EXAMPLE.COM = {
  #master_key_type = aes256-cts
  max_renewable_life = 7d 0h 0m 0s
  acl_file = /var/kerberos/krb5kdc/kadm5.acl
  dict_file = /usr/share/dict/words
  admin_keytab = /var/kerberos/krb5kdc/kadm5.keytab
# note that aes256 is ONLY supported in Active Directory in a domain / forrest operating
 at a 2008 or greater functional level.
# aes256 requires that you download and deploy the JCE Policy files for your JDK release
 level to provide
# strong java encryption extension levels like AES256. Make sure to match based on the
 encryption configured within AD for
# cross realm auth, note that RC4 = arcfour when comparing windows and linux enctypes
  supported_enctypes = aes256-cts:normal aes128-cts:normal arcfour-hmac:normal
  default_principal_flags = +renewable, +forwardable
 }

[logging]
    kdc = FILE:/var/log/krb5kdc.log
    admin_server = FILE:/var/log/kadmin.log

kadm5.acl

*/admin@HADOOP.COM *
cloudera-scm@HADOOP.COM * flume/*@HADOOP.COM
cloudera-scm@HADOOP.COM * hbase/*@HADOOP.COM
cloudera-scm@HADOOP.COM * hdfs/*@HADOOP.COM
cloudera-scm@HADOOP.COM * hive/*@HADOOP.COM
cloudera-scm@HADOOP.COM * httpfs/*@HADOOP.COM
cloudera-scm@HADOOP.COM * HTTP/*@HADOOP.COM
cloudera-scm@HADOOP.COM * hue/*@HADOOP.COM
cloudera-scm@HADOOP.COM * impala/*@HADOOP.COM
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cloudera-scm@HADOOP.COM * mapred/*@HADOOP.COM
cloudera-scm@HADOOP.COM * oozie/*@HADOOP.COM
cloudera-scm@HADOOP.COM * solr/*@HADOOP.COM
cloudera-scm@HADOOP.COM * sqoop/*@HADOOP.COM
cloudera-scm@HADOOP.COM * yarn/*@HADOOP.COM
cloudera-scm@HADOOP.COM * zookeeper/*@HADOOP.COM

HDFS Encryption Issues
The following are possible workarounds for issues that may arise when encrypting HDFS directories and files. HDFS
encryption is sometimes referred to in the documentation as HDFS Transparent Encryption or as HDFS Data at Rest
Encryption.

KMS server jute buffer exception

Description
You see the following error when the KMS (for example, as a ZooKeeper client) jute buffer size is insufficient to hold
all the tokens:

2017-01-31 21:23:56,416 WARN org.apache.zookeeper.ClientCnxn: Session 0x259f5fb3c1000fb
 for server example.cloudera.com/10.172.0.1:2181, unexpected error, closing socket 
connection and attempting reconnect
java.io.IOException: Packet len4196356 is out of range! 

Solution
Increase the jute buffer size and restart the KMS. In Cloudera Manager, go to the KMS Configuration page, and in the
Additional Java Configuration Options for KMS (kms_java_opts) field, enter
-Djute.maxbuffer=<number_of_bytes>. Restart the KMS.

Retrieval of encryption keys fails

Description
You see the following error when trying to list encryption keys

user1@example-sles-4:~> hadoop key list
Cannot list keys for KeyProvider: KMSClientProvider[https: 
//example-sles-2.example.com:16000/kms/v1/]: Retrieval of all keys failed.

Solution
Make sure your truststore has been updated with the relevant certificate(s), such as the Key Trustee server certificate.

DistCp between unencrypted and encrypted locations fails

Description
By default, DistCp compares checksums provided by the filesystem to verify that data was successfully copied to the
destination. However, when copying between unencrypted and encrypted locations, the filesystem checksums will
not match since the underlying block data is different.

Solution
Specify the -skipcrccheck and -update distcp flags to avoid verifying checksums.
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NameNode - KMS communication fails after long periods of inactivity

Description

Encrypted files and encryption zones cannot be created if a long period of time (by default, 20 hours) has passed since
the last time the KMS and NameNode communicated.

Solution

Upgrading your cluster to CDH 6 will fix this problem. For instructions, see Upgrading the CDH Cluster.

HDFS Trash Behaviour with Transparent Encryption Enabled

The Hadoop trash feature helps prevent accidental deletion of files and directories. When you delete a file in HDFS,
the file is not immediately expelled from HDFS. Deleted files are first moved to the
/user/<username>/.Trash/Current directory, with their original filesystem path being preserved. After a
user-configurable period of time (fs.trash.interval), a process knownas trash checkpointing renames theCurrent
directory to the current timestamp, that is, /user/<username>/.Trash/<timestamp>. The checkpointing process
also checks the rest of the .Trash directory for any existing timestamp directories and removes them from HDFS
permanently. You can restore files and directories in the trash simply bymoving them to a location outside the .Trash
directory.

Trash Behaviour with HDFS Transparent Encryption Enabled

Starting with CDH 5.7, you can delete files or directories that are part of an HDFS encryption zone. As is evident from
the procedure described above, moving and renaming files or directories is an important part of trash handling in
HDFS. However, currently HDFS transparent encryption only supports renames within an encryption zone. To
accommodate this, HDFS creates a local .Trash directory every time a new encryption zone is created. For example,
when you create an encryption zone, enc_zone, HDFS will also create the /enc_zone/.Trash/ subdirectory. Files
deleted from enc_zone are moved to /enc_zone/.Trash/<username>/Current/. After the checkpoint, the
Current directory is renamed to the current timestamp, /enc_zone/.Trash/<username>/<timestamp>.

If you delete the entire encryption zone, it will be moved to the .Trash directory under the user's home directory,
/users/<username>/.Trash/Current/enc_zone. Trash checkpointing will occur only after the entire zone has
beenmoved to /users/<username>/.Trash. However, if the user's home directory is already part of an encryption
zone, then attempting to delete an encryption zone will fail because you cannot move or rename directories across
encryption zones.

Key Trustee KMS Encryption Issues
The following errors and conditions are related to the Key Trustee KMS, and includes possible workarounds for issues
that may arise when using Key Trustee KMS.

Key Trustee KMS Fails to Restart After Upgrade (HA Only)

Description: You may see the following error after you attempt to restart a Key Trustee KMS HA host after an upgrade:

java.io.IOException: Unable to verify private key match between KMS hosts. Verify private
 key files have been synced between all KMS hosts. Aborting to prevent data inconsistency.

Solution: If you have failed to synchronize private keys between Key Trustee KMS hosts, they may be in a state where
keys are intermittently inaccessible, depending on which Key Trustee KMS host a client interacts with, because
cryptographic key material encrypted by one Key Trustee KMS host cannot be decrypted by another. If you are already
running multiple Key Trustee KMS hosts with different private keys, immediately back up all Key Trustee KMS hosts,
and contact Cloudera Support for assistance correcting the issue.
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For information about how to check if you are using different private keys, see Validating Private Key Synchronization
(Key Trustee KMS HA Only).

Key Trustee KMS Fails Upon First Run (HA Only)

Description: You may see the following error upon the first run after adding a new Key Trustee KMS HA service:

java.io.IOException: Unable to verify private key match between KMS hosts. Verify private
 key files have been synced between all KMS hosts. Aborting to prevent data inconsistency.

Solution: See Validating Private Key Synchronization (Key Trustee KMS HA Only) for guidance on synchronization and
validation of private keys.

Cloudera recommends following security best practices and transferring the private key using offline media, such as
a removable USB drive. For convenience (for example, in a development or testing environment where maximum
security is not required), you can copy the private key over the network by running the rsynccommand on the original
Key Trustee KMS host:

rsync -zav /var/lib/kms-keytrustee/keytrustee/.keytrustee 
root@ktkms02.example.com:/var/lib/kms-keytrustee/keytrustee/.

Replace ktkms02.example.com with the host name of the Key Trustee KMS host that you are adding.

Note: Execute the rsync command only upon the first run of Key Trustee KMS; do not enter this
command if the keys have already been created and data is encrypted.

Key Trustee KMS Fails to Start Because ZooKeeper is Not Running

Description: You may see the following error after you attempt to restart a Key Trustee KMS for the first time:

java.lang.Exception: Could not establish connection to ZooKeeper to verify KMS host 
private key consistency. Verify private key files have been synced between all KMS hosts.
 Aborting to prevent data inconsistency.        

Solution: ZooKeeper is used to communicate with hosts and is also the storage location of private key data, and
therefore must be running upon the first restart or running of the GPG validation check, which compares private keys
amongst Key Trustee KMS hosts to help prevent a "split brain" scenario (when private keys are not synchronized
between hosts). To ensure the GPG validation check can run, start ZooKeeper, and then restart the Key Trustee KMS.

Troubleshooting TLS/SSL Issues in Cloudera Manager
To diagnose and resolve issues related to TLS/SSL configuration, verify configuration tasks appropriate for the cluster
by verifying the steps in How to Configure TLS for Cloudera Manager.

After checking your settings and finding no obvious misconfiguration, try some of the troubleshooting steps below.

Test Connectivity with OpenSSL

From the host that has connectivity issues, run openssl as shown below. You can also check that the certificate used
by the host is recognized by a trusted CA during the TLS/SSL negotiation.

To check the connection:

openssl s_client -connect [host.fqdn.name]:[port]
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For example:

openssl s_client -connect test1.sec.cloudera.com:7183

A return code 0means opensslwas able to follow trust server chain of trust through its library of trusted public CAs.

For certificates signed by your organization's internal CA or self-signed certificates, youmay need to add the certificate
to the truststore using the openssl command. Use the -CAfile option to specify the path to the root CA so openssl
can verify the self-signed or internal-CA-signed certificate as follows:

$ openssl s_client -connect test1.sec.cloudera.com:7183 -CAfile \
/opt/cloudera/security/CAcerts/RootCA.pem

Only the Root CA certificate is needed to establish trust for this test. The result from the command is successful when
you see the return code 0 as follows:

...
 Verify return code: 0 (ok)
---

By default, ClouderaManager Serverwrites logs to the/etc/cloudera-scm-server/cloudera-scm-server.log
file on startup. Successful server start-up using the certificate looks similar to the following log example:

2014-10-06 21:33:47,515 INFO WebServerImpl:org.mortbay.log: jetty-6.1.26.cloudera.2
2014-10-06 21:33:47,572 INFO WebServerImpl:org.mortbay.log: Started 
SslSelectChannelConnector@0.0.0.0:7183
2014-10-06 21:33:47,573 INFO WebServerImpl:org.mortbay.log: Started 
SelectChannelConnector@0.0.0.0:7180
2014-10-06 21:33:47,573 INFO WebServerImpl:com.cloudera.server.cmf.WebServerImpl: Started
 Jetty server.

Upload Diagnostic Bundles to Cloudera Support

By default, Cloudera Manager uploads diagnostic bundles over HTTPS to the Cloudera Support server at
cops.cloudera.com. However, the upload can fail if the Cloudera Manager truststore cannot verify the authenticity
of the Cloudera Support server certificate, and that verification process can fail due to Cloudera Manager truststore
configuration issues.

To ensure the ClouderaManager Server truststore contains the public CAs needed to verify Cloudera Support's certificate,
you can explicitly establish trust by importing Cloudera Support's certificate into Cloudera Manager's truststore.

Note: Cloudera Support servers use certificates signed by a commercial CA, so this step is typically
not needed, unless the default truststore has been altered. Before downloading or adding any
certificates, test the connection and verify that the certificate is the source of the connection issue.

Importing Cloudera Support's Certificate into the Cloudera Manager Server Truststore

To obtain Cloudera's public key certificate from the Cloudera Support server:

openssl s_client -connect cops.cloudera.com:443 | openssl x509 -text -out 
/path/to/cloudera-cert.pem

To import this certificate into the Cloudera Manager truststore (use paths for your own system):

keytool -import -keystore /path/to/cm/truststore.jks -file /path/to/cloudera-cert.pem

After importing the certificate, confirm that Cloudera Manager is configured for this truststore file, as detailed in
Configuring Cloudera Manager Truststore Properties on page 382.
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Note: Alternatively, you can use the default Java truststore for your Cloudera Manager cluster
deployment, as described in Configuring TLS Encryption for Cloudera Manager on page 151.

Configuring Cloudera Manager Truststore Properties

After installing the Cloudera Support server certificate into the Cloudera Manager truststore, you must configure
Cloudera Manager to use the truststore, as follows:

1. Log into the Cloudera Manager Admin Console.
2. Select Administration > Settings.
3. Click the Security category.
4. Enter the path to the truststore and the password (if necessary):

DescriptionSetting

Enter the complete Cloudera Manager Server host filesystem path to the
truststore (the trust .jks). Cloudera Manager Server invokes JVM with
-Djavax.net.ssl.trustStore to access the specified truststore.

Cloudera Manager TLS/SSL
Certificate Trust Store File

Specify the password (if there is one) for the truststore file. Password is not
required to access the truststore, so you can typically leave this field blank.

Cloudera Manager TLS/SSL
Certificate Trust Store Password

Cloudera Manager Server invokes JVM with
-Djavax.net.ssl.trustStore.password if this field has an entry.

5. Click Save Changes to save the settings.

Note: See Oracle's JSSE Reference Guide for more information about the JSSE trust mechanism.

YARN, MRv1, and Linux OS Security

Note: This page contains references to CDH 5 components or features that have been removed from
CDH6. These references are only applicable if you aremanaging a CDH5 clusterwith ClouderaManager
6. For more information, see Deprecated Items.

Several subsystems are fundamental to Hadoop clusters, specifically, the Jsvc, TaskController, and Container Executor
Programs, documented below.

MRv1 and YARN: The jsvc Program

The jsvc is part of the Hadoop Apache Commons libraries designed to make Java applications run better on Linux.
The jsvcprogram is part of the bigtop-jsvc package and installed in /usr/lib/bigtop-utils/jsvc or
/usr/libexec/bigtop-utils/jsvc depending on version of Linux.

In particular, jsvc is used to start the DataNode listening on low port numbers. Its entry point is the
SecureDataNodeStarter class, which implements the Daemon interface that jsvc expects. jsvc is run as root,
and calls the SecureDataNodeStarter.init(...)method while running as root. Once the
SecureDataNodeStarter class has finished initializing, jsvc sets the effective UID to be the hdfs user, and then
calls SecureDataNodeStarter.start(...). SecureDataNodeStarter then calls the regular DataNode entry
point, passing in a reference to the privileged resources it previously obtained.
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MRv1 Only: The Linux TaskController

A setuid binary called task-controller is part of the hadoop-0.20-mapreduce package and is installed in either
/usr/lib/hadoop-0.20-mapreduce/sbin/Linux-amd64-64/task-controller or
/usr/lib/hadoop-0.20-mapreduce/sbin/Linux-i386-32/task-controller.

This task-controller program, which is used on MRv1 only, allows the TaskTracker to run tasks under the Unix
account of the user who submitted the job in the first place. It is a setuid binary that must have a very specific set of
permissions and ownership to function correctly. In particular, it must:

1. Be owned by root
2. Be owned by a group that contains only the user running the MapReduce daemons
3. Be setuid
4. Be group readable and executable

This corresponds to the ownership root:mapred and the permissions 4754.

Here is the output of ls on a correctly-configured Task-controller:

-rwsr-xr-- 1 root mapred 30888 Mar 18 13:03 task-controller

The TaskTracker will check for this configuration on start up, and fail to start if the Task-controller is not configured
correctly.

YARN Only: The Linux Container Executor

A setuid binary called container-executor is part of the hadoop-yarn package and is installed in
/usr/lib/hadoop-yarn/bin/container-executor.

Thiscontainer-executorprogram,which is used on YARNonly and supported onGNU/Linux only, runs the containers
as the user who submitted the application. It requires all user accounts to be created on the cluster hosts where the
containers are launched. It uses a setuid executable that is included in the Hadoop distribution. The NodeManager
uses this executable to launch and kill containers. The setuid executable switches to the user who has submitted the
application and launches or kills the containers. For maximum security, this executor sets up restricted permissions
and user/group ownership of local files and directories used by the containers such as the shared objects, jars,
intermediate files, and log files. As a result, only the application owner and NodeManager can access any of the local
files/directories including those localized as part of the distributed cache.

Parcel Deployments

In a parcel deployment the container-executor file is located inside the parcel at
/opt/cloudera/parcels/CDH/lib/hadoop-yarn/bin/container-executor. For the/usr/libmount point,
setuid should not be a problem. However, the parcel could easily be located on a different mount point. If you are
using a parcel, make sure the mount point for the parcel directory is without the nosuid option.

The container-executor programmust have a very specific set of permissions and ownership to function correctly.
In particular, it must:

1. Be owned by root
2. Be owned by a group that contains only the user running the YARN daemons
3. Be setuid
4. Be group readable and executable. This corresponds to the ownership root:yarn and the permissions 6050.

---Sr-s--- 1 root yarn 91886 2012-04-01 19:54 container-executor
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Important: Configuration changes to the Linux container executor could result in local NodeManager
directories (such as usercache) being left with incorrect permissions. To avoid this, when making
changes using either Cloudera Manager or the command line, first manually remove the existing
NodeManager local directories from all configured local directories
(yarn.nodemanager.local-dirs), and let the NodeManager recreate the directory structure.

Troubleshooting

When you set up a secure cluster for the first time and debug problems with it, the task-controller or
container-executormay encounter errors. These programs communicate these errors to the TaskTracker or
NodeManager daemon via numeric error codes that appear in the TaskTracker or NodeManager logs respectively
(/var/log/hadoop-mapreduceor/var/log/hadoop-yarn). The following sections list the possible numeric error
codes with descriptions of what they mean:

• TaskController Error Codes (MRv1) on page 384
• ContainerExecutor Error Codes (YARN) on page 386

TaskController Error Codes (MRv1)

This table shows some of the error codes and messages generated by TaskController in MapReduce (MRv1).

DescriptionNameNumeric
Code

INVALID_ARGUMENT_NUMBER1 • Incorrect number of arguments provided for
the given task-controller command

• Failure to initialize the job localizer

The user passed to the task-controller does not
exist.

INVALID_USER_NAME2

The task-controller does not recognize the
command it was asked to execute.

INVALID_COMMAND_PROVIDED3

The user passed to the task-controllerwas the super
user.

SUPER_USER_NOT_ALLOWED_TO_RUN_TASKS4

The passed TaskTracker root does not match the
configured TaskTracker root (mapred.local.dir),
or does not exist.

INVALID_TT_ROOT5

Either could not read the local groups database, or
could not set UID or GID

SETUID_OPER_FAILED6

The task-controller could not execute the task
launcher script.

UNABLE_TO_EXECUTE_TASK_SCRIPT7

The task-controller could not kill the task it was
passed.

UNABLE_TO_KILL_TASK8

The PID passed to the task-controller was negative
or 0.

INVALID_TASK_PID9

The task-controller could not resolve the path of
the task launcher script file.

ERROR_RESOLVING_FILE_PATH10

The path to the task launcher script file contains
relative components (for example, "..").

RELATIVE_PATH_COMPONENTS_IN_FILE_PATH11
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DescriptionNameNumeric
Code

The task-controller did not have permission to stat
a file it needed to check the ownership of.

UNABLE_TO_STAT_FILE12

A file which the task-controller must change the
ownership of has the wrong the ownership.

FILE_NOT_OWNED_BY_TASKTRACKER13

The mapred.local.dir is not configured, could
not be read by the task-controller, or could not have
its ownership secured.

PREPARE_ATTEMPT_DIRECTORIES_FAILED14

The task-controller could not get, stat, or secure
the job directory or job working working directory.

INITIALIZE_JOB_FAILED15

The task-controller could not find or could not
change the ownership of the task log directory to
the passed user.

PREPARE_TASK_LOGS_FAILED16

The hadoop.log.dir is not configured.INVALID_TT_LOG_DIR17

The task-controller could not determine the job
directory path or the task launcher script path.

OUT_OF_MEMORY18

Could not get a unique value for, stat, or the local
distributed cache directory.

INITIALIZE_DISTCACHEFILE_FAILED19

Could not get, stat, or secure the per-user task
tracker directory.

INITIALIZE_USER_FAILED20

The task-controller could not concatenate two
paths, most likely because it ran out of memory.

UNABLE_TO_BUILD_PATH21

The task-controller binary does not have the correct
permissions set. See Information about Other
Hadoop Security Programs.

INVALID_TASKCONTROLLER_PERMISSIONS22

The task-controller could not find or could not
change the ownership of the job log directory to
the passed user.

PREPARE_JOB_LOGS_FAILED23

The taskcontroller.cfg file is missing, malformed, or
has incorrect permissions.

INVALID_CONFIG_FILE24

Several possible causes for this error, including:Unknown Error255

• User accounts on the cluster with an ID less
than the value specified for the min.user.id
property in the taskcontroller.cfg file.
Default value of 1000 is good for Ubuntu but
may not be valid for other OSs. To set the
min.user.id in the taskcontroller.cfg
file, see Step 7: Prepare the Cluster for Each
User on page 59.

• Jobs do not run and the TaskTracker is unable
to create a Hadoop logs directory (see
Troubleshooting Error Messages).
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DescriptionNameNumeric
Code

• May result from previous errors. Check older
entries in the log file for possibilities.

ContainerExecutor Error Codes (YARN)

The codes in the table apply to the container-executor in YARN, but are used by the LinuxContainerExecutor only.

DescriptionNameNumeric
Code

INVALID_ARGUMENT_NUMBER1 • Incorrect number of arguments provided for
the given container-executor command

• Failure to initialize the container localizer

The user passed to the container-executor does not
exist.

INVALID_USER_NAME2

The container-executor does not recognize the
command it was asked to run.

INVALID_COMMAND_PROVIDED3

The passed NodeManager root does not match the
configured NodeManager root

INVALID_NM_ROOT5

(yarn.nodemanager.local-dirs), or does not
exist.

Either could not read the local groups database, or
could not set UID or GID

SETUID_OPER_FAILED6

The container-executor could not run the container
launcher script.

UNABLE_TO_EXECUTE_CONTAINER_SCRIPT7

The container-executor could not signal the
container it was passed.

UNABLE_TO_SIGNAL_CONTAINER8

The PID passed to the container-executor was
negative or 0.

INVALID_CONTAINER_PID9

The container-executor couldn't allocate enough
memory while reading the container-executor.cfg

OUT_OF_MEMORY18

file, or while getting the paths for the container
launcher script or credentials files.

Couldn't get, stat, or secure the per-user
NodeManager directory.

INITIALIZE_USER_FAILED20

The container-executor couldn't concatenate two
paths, most likely because it ran out of memory.

UNABLE_TO_BUILD_PATH21

The container-executor binary does not have the
correct permissions set. See Information about
Other Hadoop Security Programs.

INVALID_CONTAINER_EXEC_PERMISSIONS22

The container-executor.cfg file is missing,
malformed, or has incorrect permissions.

INVALID_CONFIG_FILE24

Could not set the session ID of the forked container.SETSID_OPER_FAILED25
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DescriptionNameNumeric
Code

Failed to write the value of the PID of the launched
container to the PID file of the container.

WRITE_PIDFILE_FAILED26

This error has several possible causes. Some
common causes are:

Unknown Error255

• User accounts on your cluster have a user ID
less than the value specified for the
min.user.id property in the
container-executor.cfg file. The default
value is 1000 which is appropriate on Ubuntu
systems, but may not be valid for your
operating system. For information about
setting min.user.id in the
container-executor.cfg file, see Step 7:
Prepare the Cluster for Each User on page 59.

• This error is often caused by previous errors;
look earlier in the log file for possible causes.

The following exit status codes apply to all containers in YARN. These exit status codes are part of the YARN framework
and are in addition to application specific exit codes that can be set:

DescriptionNameNumeric
Code

Container has finished succesfully.SUCCESS0

Initial value of the container exit code. A container
that does not have a COMPLETED state will always
return this status.

INVALID-1000

Containers killed by the framework, either due to
being released by the application or being 'lost' due
to node failures, for example.

ABORTED-100

Container exited due to local disks issues in the
NodeManager node. This occurs when the number

DISKS_FAILED-101

of good nodemanager-local-directories or
nodemanager-log-directories drops below the
health threshold.

Containers preempted by the framework. This does
not count towards a container failure in most
applications.

PREEMPTED-102

Container terminated because of exceeding
allocated virtual memory limit.

KILLED_EXCEEDED_VMEM-103

Container terminated because of exceeding
allocated physical memory limit.

KILLED_EXCEEDED_PMEM-104

Container was terminated on request of the
application master.

KILLED_BY_APPMASTER-105

Containerwas terminated by the resourcemanager.KILLED_BY_RESOURCEMANAGER-106
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DescriptionNameNumeric
Code

Container was terminated after the application
finished.

KILLED_AFTER_APP_COMPLETION-107
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Appendix: Apache License, Version 2.0

SPDX short identifier: Apache-2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through
9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of
fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

"Object" form shall mean any form resulting frommechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole,
an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or
additions to thatWork or DerivativeWorks thereof, that is intentionally submitted to Licensor for inclusion in theWork
by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of
discussing and improving theWork, but excluding communication that is conspicuouslymarked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whoma Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare DerivativeWorks of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license tomake, havemade,
use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims
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licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated
within theWork constitutes direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and
2. You must cause any modified files to carry prominent notices stating that You changed the files; and
3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,

and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part
of the Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along
with the DerivativeWorks; or, within a display generated by the DerivativeWorks, if andwherever such third-party
notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify
the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be
construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as
a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an "AS IS" BASIS,WITHOUTWARRANTIES OR CONDITIONSOF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required
by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable
to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure ormalfunction, or any and all other commercial damages or losses), even
if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.
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While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
"[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class name and description of
purpose be included on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
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