
Apache HBase Guide

Important Notice
© 2010-2021 Cloudera, Inc. All rights reserved.

Cloudera, the Cloudera logo, and any other product or
service names or slogans contained in this document are trademarks of Cloudera and
its suppliers or licensors, and may not be copied, imitated or used, in whole or in part,
without the prior written permission of Cloudera or the applicable trademark holder. If
this documentation includes code, including but not limited to, code examples, Cloudera
makes this available to you under the terms of the Apache License, Version 2.0, including
any required notices. A copy of the Apache License Version 2.0, including any notices,
is included herein. A copy of the Apache License Version 2.0 can also be found here:
https://opensource.org/licenses/Apache-2.0

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software
Foundation. All other trademarks, registered trademarks, product names and company
names or logosmentioned in this document are the property of their respective owners.
Reference to any products, services, processes or other information, by trade name,
trademark, manufacturer, supplier or otherwise does not constitute or imply
endorsement, sponsorship or recommendation thereof by us.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this documentmay be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Cloudera.

Cloudera may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subjectmatter in this document. Except as expressly
provided in anywritten license agreement fromCloudera, the furnishing of this document
does not give you any license to these patents, trademarks copyrights, or other
intellectual property. For information about patents covering Cloudera products, see
http://tiny.cloudera.com/patents.

The information in this document is subject to change without notice. Cloudera shall
not be liable for any damages resulting from technical errors or omissions which may
be present in this document, or from use of this document.

Cloudera, Inc.
395 Page Mill Road
Palo Alto, CA 94306
info@cloudera.com
US: 1-888-789-1488
Intl: 1-650-362-0488
www.cloudera.com

Release Information

Version: Cloudera Enterprise 6.3.x
Date: September 30, 2021

Table of Contents

Apache HBase Guide..7
Configuration Settings..7

Managing HBase..7

HBase Security...7

HBase Replication...7

HBase High Availability...8

Troubleshooting HBase..8

Upstream Information for HBase...8

Configuration Settings for HBase..9
Using DNS with HBase..9

Using the Network Time Protocol (NTP) with HBase...9

Setting User Limits for HBase...9

Using dfs.datanode.max.transfer.threads with HBase..11

Configuring BucketCache in HBase..11

Configuring Encryption in HBase..11

Enabling Hedged Reads for HBase...11

Accessing HBase by using the HBase Shell...12
HBase Shell Overview...12

Setting Virtual Machine Options for HBase Shell...12

Scripting with HBase Shell...12

HBase Online Merge..13

Configuring RegionServer Grouping...13

Troubleshooting HBase..16

Configuring the BlockCache...16

Configuring the Scanner Heartbeat..16

Accessing HBase by using the HBase Shell...17
HBase Shell Overview...17

Setting Virtual Machine Options for HBase Shell...17

Scripting with HBase Shell...17

HBase Online Merge..18

Using MapReduce with HBase...18

Configuring HBase Garbage Collection..18
Configure HBase Garbage Collection Using Cloudera Manager..19

Using the HBase Garbage Collector with JDK11..19

Disabling the BoundedByteBufferPool..20

Configuring the HBase Canary..20
Configure the HBase Canary Using Cloudera Manager...20

Configuring the Blocksize for HBase...21
Configuring the Blocksize for a Column Family..21

Monitoring Blocksize Metrics...21

Configuring the HBase BlockCache..22
Contents of the BlockCache...22

Deciding Whether To Use the BucketCache...22

Bypassing the BlockCache..22

Cache Eviction Priorities...23

Sizing the BlockCache..23

About the Off-heap BucketCache...23

Configuring the Off-heap BucketCache..24

Configuring Quotas..29
Setting up quotas...29

General Quota Syntax..30

Throttle quotas..31

Throttle quota examples..31

Space quotas..32

Quota enforcement..32

Quota violation policies...32

Impact of quota violation policy..33

Number-of-Tables Quotas..35

Number-of-Regions Quotas...35

Configuring the HBase Scanner Heartbeat...36
Configure the Scanner Heartbeat Using Cloudera Manager...36

Limiting the Speed of Compactions...36
Configure the Compaction Speed Using Cloudera Manager..37

Configuring and Using the HBase REST API..37
Installing the REST Server...37

Using the REST API...38

Configuring HBase MultiWAL Support...45
Configuring MultiWAL Support Using Cloudera Manager...45

Storing Medium Objects (MOBs) in HBase...45
Configuring Columns to Store MOBs..46

HBase MOB Cache Properties..46

Configuring the MOB Cache Using Cloudera Manager..47

Testing MOB Storage and Retrieval Performance ...47

Compacting MOB Files Manually...47

Configuring the Storage Policy for the Write-Ahead Log (WAL)...48

Managing HBase..50

Creating the HBase Root Directory..50

Graceful Shutdown...50

Configuring the HBase Thrift Server Role...51

Enabling HBase Indexing..51

Adding a Custom Coprocessor...51

Disabling Loading of Coprocessors...52

Enabling Hedged Reads on HBase..52

Moving HBase Master Role to Another Host...52

Advanced Configuration for Write-Heavy Workloads..53

Starting and Stopping HBase..53
Starting or Restarting HBase..53

Stopping HBase..53

Accessing HBase by using the HBase Shell...54
HBase Shell Overview...54

Setting Virtual Machine Options for HBase Shell...54

Scripting with HBase Shell...54

Using HBase Command-Line Utilities...55
PerformanceEvaluation..55

LoadTestTool...56

wal...57

hfile..57

hbck..58

clean..58

Writing Data to HBase..59

Importing Data Into HBase...61
Choosing the Right Import Method...61

Using CopyTable...61

Using Snapshots...62

Using BulkLoad..63

Using Cluster Replication...65

Using Pig and HCatalog...68

Using the Java API..69

Using the Apache Thrift Proxy API...69

Using the REST Proxy API...71

Using Flume...71

Using Sqoop...73

Using Spark..74

Using Spark and Kafka...74

Using a Custom MapReduce Job..76

Reading Data from HBase..76
Hedged Reads..78

Enabling Hedged Reads for HBase...78

Hedged Reads..78

Enabling Hedged Reads for HBase...78

Monitoring the Performance of Hedged Reads...79

HBase Filtering...79

Using the HBCK2 Tool to Remediate HBase Clusters..86
Supported Versions..87

Running the HBCK2 Tool..87

Finding Issues...87

Fixing Issues ..88

HBCK2 Tool Command Reference...91

Exposing HBase Metrics to a Ganglia Server..92
Expose HBase Metrics to Ganglia Using Cloudera Manager...92

Managing HBase Security...93
HBase Authentication..93

Configuring HBase Authorization...93
Understanding HBase Access Levels..94

Enable HBase Authorization..95

Configure Access Control Lists for Authorization...96

Auditing HBase Authorization Grants..97

Configuring the HBase Thrift Server Role...97

Other HBase Security Topics..98

Troubleshooting HBase..99
Table Creation Fails after Installing LZO...99

Thrift Server Crashes after Receiving Invalid Data...99

HBase is using more disk space than expected..99

Appendix: Apache License, Version 2.0...101

Apache HBase Guide

Apache HBase is a scalable, distributed, column-oriented datastore. Apache HBase provides real-time read/write
random access to very large datasets hosted on HDFS.

Configuration Settings
HBase has a number of settings that you need to configure. For information, see Configuration Settings for HBase on
page 9.

By default, HBase ships configured for standalone mode. In this mode of operation, a single JVM hosts the HBase
Master, an HBase RegionServer, and a ZooKeeper quorum peer. HBase stores your data in a location on the local
filesystem, rather than using HDFS. Standalone mode is only appropriate for initial testing.

Pseudo-distributedmode differs from standalonemode in that each of the component processes run in a separate
JVM. It differs from distributedmode in that each of the separate processes run on the same server, rather thanmultiple
servers in a cluster.

Managing HBase
You canmanage and configure various aspects of HBase using ClouderaManager. For more information, seeManaging
HBase on page 50.

HBase Security
For the most part, securing an HBase cluster is a one-way operation, and moving from a secure to an unsecure
configuration should not be attempted without contacting Cloudera support for guidance. For an overview security in
HBase, see Managing HBase Security on page 93.

For information about authentication and authorization with HBase, see HBase Authentication and Configuring HBase
Authorization.

HBase Replication
If your data is already in an HBase cluster, replication is useful for getting the data into additional HBase clusters. In
HBase, cluster replication refers to keeping one cluster state synchronized with that of another cluster, using the
write-ahead log (WAL) of the source cluster to propagate the changes. Replication is enabled at column family granularity.
Before enabling replication for a column family, create the table and all column families to be replicated, on the
destination cluster.

Cluster replication uses an active-push methodology. An HBase cluster can be a source (also called active, meaning
that it writes new data), a destination (also called passive, meaning that it receives data using replication), or can fulfill
both roles at once. Replication is asynchronous, and the goal of replication is consistency.

When data is replicated from one cluster to another, the original source of the data is tracked with a cluster ID, which
is part of the metadata. In CDH 6, all clusters that have already consumed the data are also tracked. This prevents
replication loops.

For more information about replication in HBase, see HBase Replication.

Apache HBase Guide | 7

Apache HBase Guide

https://www.cloudera.com/documentation/enterprise/latest/topics/glossaries.html#glossary__glos_hdfs

HBase High Availability
Most aspects of HBase are highly available in a standard configuration. A cluster typically consists of one Master and
three or more RegionServers, with data stored in HDFS. To ensure that every component is highly available, configure
one or more backup Masters. The backup Masters run on other hosts than the active Master.

For information about configuring high availability in HBase, see HBase High Availability.

Troubleshooting HBase
The Cloudera HBase packages have been configured to place logs in /var/log/hbase. Cloudera recommends tailing
the .log files in this directory when you start HBase to check for any error messages or failures.

For information about HBase troubleshooting, see Troubleshooting HBase on page 99.

Upstream Information for HBase
More HBase information is available on the Apache Software Foundation site on the HBase project page.

For Apache HBase documentation, see the following:

• Apache HBase Reference Guide
• Apache HBase API Guide
• Apache HBase Blogs

Because Cloudera does not support all upstream HBase features, always check the Apache HBase documentation
against the current version and supported features of HBase included in this version of the CDH distribution.

HBase has its own JIRA issue tracker.

8 | Apache HBase Guide

Apache HBase Guide

http://hbase.apache.org/
http://hbase.apache.org/book.html
https://hbase.apache.org/apidocs/
https://blogs.apache.org/hbase/
https://issues.apache.org/jira/browse/HBASE/?selectedTab=com.atlassian.jira.jira-projects-plugin:versions-panel

Configuration Settings for HBase

This section contains information on configuring the Linux host and HDFS for HBase.

Using DNS with HBase
HBase uses the local hostname to report its IP address. Both forward and reverse DNS resolving should work. If your
server has multiple interfaces, HBase uses the interface that the primary hostname resolves to. If this is insufficient,
you can set hbase.regionserver.dns.interface in the hbase-site.xml file to indicate the primary interface.
Towork properly, this setting requires that your cluster configuration is consistent and every host has the same network
interface configuration. As an alternative, you can set hbase.regionserver.dns.nameserver in the
hbase-site.xml file to use a different DNS name server than the system-wide default.

Using the Network Time Protocol (NTP) with HBase
The clocks on cluster members must be synchronized for your cluster to function correctly. Some skew is tolerable,
but excessive skew could generate odd behaviors. Run NTP or another clock synchronization mechanism on your
cluster. If you experience problems querying data or unusual cluster operations, verify the system time. For more
information about NTP, see the NTP website.

Setting User Limits for HBase
BecauseHBase is a database, it opensmany files at the same time. The default setting of 1024 for themaximumnumber
of open files on most Unix-like systems is insufficient. Any significant amount of loading will result in failures and cause
error message such as java.io.IOException...(Too many open files) to be logged in the HBase or HDFS
log files. For more information about this issue, see the Apache HBase Book. You may also notice errors such as:

2010-04-06 03:04:37,542 INFO org.apache.hadoop.hdfs.DFSClient: Exception
increateBlockOutputStream java.io.EOFException
2010-04-06 03:04:37,542 INFO org.apache.hadoop.hdfs.DFSClient: Abandoning block
blk_-6935524980745310745_1391901

Another setting you should configure is the number of processes a user is permitted to start. The default number of
processes is typically 1024. Consider raising this value if you experience OutOfMemoryException errors.

Configuring ulimit for HBase Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope >Master or Scope > RegionServer.
4. Locate theMaximum Process File Descriptors property or search for it by typing its name in the Search box.
5. Edit the property value.

To apply this configuration property to other role groups as needed, edit the value for the appropriate role group.
See Modifying Configuration Properties Using Cloudera Manager.

6. Enter a Reason for change, and then click Save Changes to commit the changes.
7. Restart the role.
8. Restart the service.

Apache HBase Guide | 9

Configuration Settings for HBase

http://www.ntp.org/
http://hbase.apache.org/book.html

Configuring ulimit for HBase Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 6.3.x. See Cloudera Documentation for information

specific to other releases.

Cloudera recommends increasing themaximumnumber of file handles tomore than 10,000. Increasing the file handles
for the user running the HBase process is an operating system configuration, not an HBase configuration. A common
mistake is to increase the number of file handles for a particular user when HBase is running as a different user. HBase
prints the ulimit it is using on the first line in the logs. Make sure that it is correct.

To change the maximum number of open files for a user, use the ulimit -n command while logged in as that user.

To set themaximumnumber of processes a user can start, use the ulimit -u command. You can also use the ulimit
command to set many other limits. For more information, see the online documentation for your operating system,
or the output of the man ulimit command.

To make the changes persistent, add the command to the user's Bash initialization file (typically ~/.bash_profile
or ~/.bashrc). Alternatively, you can configure the settings in the Pluggable Authentication Module (PAM)
configuration files if your operating system uses PAM and includes the pam_limits.so shared library.

Configuring ulimit using Pluggable Authentication Modules Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 6.3.x. See Cloudera Documentation for information

specific to other releases.

If you are using ulimit, you must make the following configuration changes:

1. In the /etc/security/limits.conf file, add the following lines, adjusting the values as appropriate. This
assumes that your HDFS user is called hdfs and your HBase user is called hbase.

hdfs - nofile 32768
hdfs - nproc 2048
hbase - nofile 32768
hbase - nproc 2048

Note:

• Only the root user can edit this file.
• If this change does not take effect, check other configuration files in the

/etc/security/limits.d/ directory for lines containing the hdfs or hbase user and the
nofile value. Such entries may be overriding the entries in /etc/security/limits.conf.

To apply the changes in /etc/security/limits.conf on Ubuntu and Debian systems, add the following line in the
/etc/pam.d/common-session file:

session required pam_limits.so

For more information on the ulimit command or per-user operating system limits, refer to the documentation for
your operating system.

10 | Apache HBase Guide

Configuration Settings for HBase

http://www.cloudera.com/content/support/en/documentation.html
http://www.cloudera.com/content/support/en/documentation.html

Using dfs.datanode.max.transfer.threads with HBase
A Hadoop HDFS DataNode has an upper bound on the number of files that it can serve at any one time. The upper
bound is controlled by the dfs.datanode.max.transfer.threads property (the property is spelled in the code
exactly as shown here). Before loading, make sure you have configured the value for
dfs.datanode.max.transfer.threads in the conf/hdfs-site.xml file (by default found in
/etc/hadoop/conf/hdfs-site.xml) to at least 4096 as shown below:

<property>
 <name>dfs.datanode.max.transfer.threads</name>
 <value>4096</value>
</property>

Restart HDFS after changing the value for dfs.datanode.max.transfer.threads. If the value is not set to an
appropriate value, strange failures can occur and an error message about exceeding the number of transfer threads
will be added to the DataNode logs. Other error messages about missing blocks are also logged, such as:

06/12/14 20:10:31 INFO hdfs.DFSClient: Could not obtain block
blk_XXXXXXXXXXXXXXXXXXXXXX_YYYYYYYY from any node:
java.io.IOException: No live nodes contain current block. Will get new block locations
 from namenode and retry...

Note: The property dfs.datanode.max.transfer.threads is a HDFS 2 property which replaces
the deprecated property dfs.datanode.max.xcievers.

Configuring BucketCache in HBase
The default BlockCache implementation in HBase is CombinedBlockCache, and the default off-heap BlockCache
is BucketCache. SlabCache is now deprecated. See Configuring the HBase BlockCache on page 22 for information
about configuring the BlockCache using Cloudera Manager or the command line.

Configuring Encryption in HBase
It is possible to encrypt the HBase root directory within HDFS, using HDFS Transparent Encryption. This provides an
additional layer of protection in case the HDFS filesystem is compromised.

If you use this feature in combinationwith bulk-loading of HFiles, youmust configure hbase.bulkload.staging.dir
to point to a location within the same encryption zone as the HBase root directory. Otherwise, you may encounter
errors such as:

org.apache.hadoop.ipc.RemoteException(java.io.IOException):
/tmp/output/f/5237a8430561409bb641507f0c531448 can't be moved into an encryption zone.

You can also choose to only encrypt specific column families, which encrypts individual HFiles while leaving others
unencrypted, using HBase Transparent Encryption at Rest. This provides a balance of data security and performance.

Enabling Hedged Reads for HBase
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope > HBASE-1 (Service-Wide).
4. Select Category > Performance.

Apache HBase Guide | 11

Configuration Settings for HBase

http://hbase.apache.org/book.html#hbase.encryption.server

5. Configure the HDFS Hedged Read Threadpool Size and HDFS Hedged Read Delay Threshold properties. The
descriptions for each of these properties on the configuration pages provide more information.

6. Enter a Reason for change, and then click Save Changes to commit the changes.

Accessing HBase by using the HBase Shell
After you have started HBase, you can access the database in an interactive way by using the HBase Shell, which is a
command interpreter for HBase which is written in Ruby. Always run HBase administrative commands such as the
HBase Shell, hbck, or bulk-load commands as the HBase user (typically hbase).

hbase shell

HBase Shell Overview

• To get help and to see all available commands, use the help command.
• To get help on a specific command, use help "command". For example:

hbase> help "create"

• To remove an attribute from a table or column family or reset it to its default value, set its value to nil. For
example, use the following command to remove the KEEP_DELETED_CELLS attribute from the f1 column of the
users table:

hbase> alter 'users', { NAME => 'f1', KEEP_DELETED_CELLS => nil }

• To exit the HBase Shell, type quit.

Setting Virtual Machine Options for HBase Shell

HBase in CDH 5.2 and higher allows you to set variables for the virtual machine running HBase Shell, by using the
HBASE_SHELL_OPTS environment variable. This example sets several options in the virtual machine.

$ HBASE_SHELL_OPTS="-verbose:gc -XX:+PrintGCApplicationStoppedTime -XX:+PrintGCDateStamps

 -XX:+PrintGCDetails -Xloggc:$HBASE_HOME/logs/gc-hbase.log" ./bin/hbase shell

Scripting with HBase Shell

CDH 5.2 and higher include non-interactive mode. This mode allows you to use HBase Shell in scripts, and allow the
script to access the exit status of the HBase Shell commands. To invoke non-interactive mode, use the -n or
--non-interactive switch. This small example script shows how to use HBase Shell in a Bash script.

#!/bin/bash
echo 'list' | hbase shell -n
status=$?
if [$status -ne 0]; then
 echo "The command may have failed."
fi

Successful HBase Shell commands return an exit status of 0. However, an exit status other than 0 does not necessarily
indicate a failure, but should be interpreted as unknown. For example, a command may succeed, but while waiting for
the response, the clientmay lose connectivity. In that case, the client has noway to know the outcomeof the command.
In the case of a non-zero exit status, your script should check to be sure the command actually failed before taking
further action.

12 | Apache HBase Guide

Configuration Settings for HBase

CDH 5.7 and higher include the get_splits command, which returns the split points for a given table:

hbase> get_splits 't2'
Total number of splits = 5

=> ["", "10", "20", "30", "40"]

You can also write Ruby scripts for use with HBase Shell. Example Ruby scripts are included in the
hbase-examples/src/main/ruby/ directory.

HBase Online Merge
CDH 6 supports online merging of regions. HBase splits big regions automatically but does not support merging small
regions automatically. To complete an online merge of two regions of a table, use the HBase shell to issue the online
merge command. By default, both regions to be merged should be neighbors; that is, one end key of a region should
be the start key of the other region. Although you can "force merge" any two regions of the same table, this can create
overlaps and is not recommended.

The Master and RegionServer both participate in online merges. When the request to merge is sent to the Master, the
Master moves the regions to be merged to the same RegionServer, usually the one where the region with the higher
load resides. The Master then requests the RegionServer to merge the two regions. The RegionServer processes this
request locally. Once the two regions are merged, the new region will be online and available for server requests, and
the old regions are taken offline.

For merging two consecutive regions use the following command:

hbase> merge_region 'ENCODED_REGIONNAME', 'ENCODED_REGIONNAME'

For merging regions that are not adjacent, passing true as the third parameter forces the merge.

hbase> merge_region 'ENCODED_REGIONNAME', 'ENCODED_REGIONNAME', true

Note: This command is slightly different from other region operations. You must pass the encoded
region name (ENCODED_REGIONNAME), not the full region name . The encoded region name is the
hash suffix on region names. For example, if the region name is
TestTable,0094429456,1289497600452.527db22f95c8a9e0116f0cc13c680396, theencoded
region name portion is 527db22f95c8a9e0116f0cc13c680396.

Configuring RegionServer Grouping
You can use RegionServer Grouping (rsgroup) to impose strict isolation between RegionServers by partitioning
RegionServers into distinct groups. You can use HBase Shell commands to define and manage RegionServer Grouping.

You must first create an rsgroup before you can add RegionServers to it. Once you have created an rsgroup, you can
move your HBase tables into this rsgroup so that only the RegionServers in the same rsgroup can host the regions of
the table.

Note: RegionServers and tables can only belong to one rsgroup at a time. By default, all the tables
and RegionServers belong to the default rsgroup.

A custom balancer implementation tracks assignments per rsgroup and moves regions to the relevant RegionServers
in that rsgroup. The rsgroup information is stored in a regular HBase table, and a ZooKeeper-based read-only cache is
used at cluster bootstrap time.

Apache HBase Guide | 13

Configuration Settings for HBase

Enabling RegionServer Grouping using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

You must use Cloudera Manager to enable RegionServer Grouping before you can define and manage rsgroups.

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope >Master.
4. Locate the HBase Coprocessor Master Classes property or search for it by typing its name in the Search box.
5. Add the following property value: org.apache.hadoop.hbase.rsgroup.RSGroupAdminEndpoint.
6. Locate theMaster Advanced Configuration Snippet (Safety Valve) for hbase-site.xml property or search for it

by typing its name in the Search box.
7. Click View as XML and add the following property:

<property>
 <name>hbase.master.loadbalancer.class</name>
 <value>org.apache.hadoop.hbase.rsgroup.RSGroupBasedLoadBalancer</value>
</property>

8. Enter a Reason for change, and then click Save Changes to commit the changes.
9. Restart the role.
10. Restart the service.

Configuring RegionServer Grouping

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

When you add a new rsgroup, you are creating an rsgroup other than the default group. To configure a rsgroup, in the
HBase shell:

1. Add an rsgroup:

hbase> add_rsgroup 'mygroup'

2. Add RegionServers and tables to this rsgroup:

hbase> move_servers_tables_rsgroup ‘mygroup’,
['server1:port','server2:port'],['table1','table2']

3. Run the balance_rsgroup command if the tables are slow to migrate to the group’s dedicated server.

Note: The term rsgroup refers to servers in a cluster with only the hostname and port. It does not
make use of the HBase ServerName type identifying RegionServers (hostname + port + start time) to
distinguish RegionServer instances.

Monitor RegionServer Grouping

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

You can monitor the status of the commands using the Tables tab on the HBase Master UI home page. If you click on
a table name, you can see the RegionServers that are deployed.

You must manually align the RegionServers referenced in rsgroups with the actual state of nodes in the cluster that is
active and running.

Removing a RegionServer from RegionServer Grouping

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

14 | Apache HBase Guide

Configuration Settings for HBase

You can remove a RegionServer bymoving it to the default rsgroup. Edits made using shell commands to all rsgroups,
except the default rsgroup, are persisted to the system hbase:rsgroup table. If an rsgroup references a
decommissioned RegionServer, then the rsgroup should be updated to undo the reference.

1. Move the RegionServer to the default rsgroup using the command:

hbase> move_servers_rsgroup 'default',['server1:port']

2. Check the list of RegionServers in your rsgourp to ensure that that the RegionServer is successfully removed using
the command:

hbase> get_rsgroup 'mygroup’

The default rsgroup’s RegionServer list mirrors the current state of the cluster. If you shut down a RegionServer that
was part of the default rsgroup, and then run the get_rsgroup 'default' command to list its content in the
shell, the server is no longer listed. If you move the offline server from the non-default rsgroup to default, it will not
show in the default list; the server will just be removed from the list.

Enabling ACL for RegionServer Grouping

Minimum Required Role: Full Administrator

You need to be a Global Admin to manage rsgroups if authorization is enabled.

To enable ACL, add the following to the hbase-site.xml file, and then restart your HBase Master server:

<property>
 <name>hbase.security.authorization</name>
 <value>true</value>
<property>

Best Practices when using RegionServer Grouping

You must keep in mind the following best practices when using rsgroups:

Isolate System Tables

You can either have a system rsgroupwhere all the system tables are present or just leave the system tables in default
rsgroup and have all user-space tables in non-default rsgroups.

Handling Dead Nodes

You can have a special rsgroup of dead or questionable nodes to help you keep them without running until the nodes
are repaired. Be careful when replacing dead nodes in an rsgroup, and ensure there are enough live nodes before you
start moving out the dead nodes. You can move the good live nodes first before moving out the dead nodes.

If you have configured a table to be in a rsgroup, but all the RegionServers in that rsgroup die, the tables become
unavailable and you can no longer access those tables.

Troubleshooting RegionServer Grouping

If you encounter an issue when using rsgroup, check the Master log to see what is causing the issue. If an rsgroup
operation is unresponsive, restart the Master.

For example, if you have not enabled the rsgroup coprocessor endpoint in the Master, and run any of the rsgroup shell
commands, you will encounter the following error message:

ERROR: org.apache.hadoop.hbase.exceptions.UnknownProtocolException: No registered master
 coprocessor service found for name RSGroupAdminService
 at
org.apache.hadoop.hbase.master.MasterRpcServices.execMasterService(MasterRpcServices.java:604)

 at

Apache HBase Guide | 15

Configuration Settings for HBase

org.apache.hadoop.hbase.shaded.protobuf.generated.MasterProtos$MasterService$2.callBlockingMethod(MasterProtos.java)

 at org.apache.hadoop.hbase.ipc.RpcServer.call(RpcServer.java:1140)
 at org.apache.hadoop.hbase.ipc.CallRunner.run(CallRunner.java:133)
 at org.apache.hadoop.hbase.ipc.RpcExecutor$Handler.run(RpcExecutor.java:277)
 at org.apache.hadoop.hbase.ipc.RpcExecutor$Handler.run(RpcExecutor.java:257)

Disabling RegionServer Grouping

When you no longer require rsgroups, you can disable it for your cluster. Removing RegionServer Grouping for a cluster
on which it was enabled involves more steps in addition to removing the relevant properties from hbase-site.xml.
You must ensure that you clean the RegionServer grouping-related metadata so that if the feature is re-enabled in the
future, the old metadata will not affect the functioning of the cluster.

To disable RegionServer Grouping:

1. Move all the tables in non-default rsgroups to default RegionServer group.

#Reassigning table t1 from the non-default group - hbase shell
hbase> move_tables_rsgroup 'default',['t1']

2. Move all RegionServers in non-default rsgroups to default regionserver group.

#Reassigning all the servers in the non-default rsgroup to default - hbase shell
hbase> move_servers_rsgroup
'default',['regionserver1:port','regionserver2:port','regionserver3:port']

3. Remove all non-default rsgroups. default rsgroup created implicitly does not have to be removed.

#removing non-default rsgroup - hbase shell
hbase> remove_rsgroup 'mygroup'

4. Remove the changes made in hbase-site.xml and restart the cluster.
5. Drop the table hbase:rsgroup from HBase.

#Through hbase shell drop table hbase:rsgroup
hbase> disable 'hbase:rsgroup'
0 row(s) in 2.6270 seconds
hbase> drop 'hbase:rsgroup'
0 row(s) in 1.2730 seconds

6. Remove the znode rsgroup from the cluster ZooKeeper using zkCli.sh.

#From ZK remove the node /hbase/rsgroup through zkCli.sh
rmr /hbase/rsgroup

Troubleshooting HBase
See Troubleshooting HBase.

Configuring the BlockCache
See Configuring the HBase BlockCache on page 22.

Configuring the Scanner Heartbeat
See Configuring the HBase Scanner Heartbeat on page 36.

16 | Apache HBase Guide

Configuration Settings for HBase

Accessing HBase by using the HBase Shell
After you have started HBase, you can access the database in an interactive way by using the HBase Shell, which is a
command interpreter for HBase which is written in Ruby. Always run HBase administrative commands such as the
HBase Shell, hbck, or bulk-load commands as the HBase user (typically hbase).

hbase shell

HBase Shell Overview

• To get help and to see all available commands, use the help command.
• To get help on a specific command, use help "command". For example:

hbase> help "create"

• To remove an attribute from a table or column family or reset it to its default value, set its value to nil. For
example, use the following command to remove the KEEP_DELETED_CELLS attribute from the f1 column of the
users table:

hbase> alter 'users', { NAME => 'f1', KEEP_DELETED_CELLS => nil }

• To exit the HBase Shell, type quit.

Setting Virtual Machine Options for HBase Shell

HBase in CDH 5.2 and higher allows you to set variables for the virtual machine running HBase Shell, by using the
HBASE_SHELL_OPTS environment variable. This example sets several options in the virtual machine.

$ HBASE_SHELL_OPTS="-verbose:gc -XX:+PrintGCApplicationStoppedTime -XX:+PrintGCDateStamps

 -XX:+PrintGCDetails -Xloggc:$HBASE_HOME/logs/gc-hbase.log" ./bin/hbase shell

Scripting with HBase Shell

CDH 5.2 and higher include non-interactive mode. This mode allows you to use HBase Shell in scripts, and allow the
script to access the exit status of the HBase Shell commands. To invoke non-interactive mode, use the -n or
--non-interactive switch. This small example script shows how to use HBase Shell in a Bash script.

#!/bin/bash
echo 'list' | hbase shell -n
status=$?
if [$status -ne 0]; then
 echo "The command may have failed."
fi

Successful HBase Shell commands return an exit status of 0. However, an exit status other than 0 does not necessarily
indicate a failure, but should be interpreted as unknown. For example, a command may succeed, but while waiting for
the response, the clientmay lose connectivity. In that case, the client has noway to know the outcomeof the command.
In the case of a non-zero exit status, your script should check to be sure the command actually failed before taking
further action.

CDH 5.7 and higher include the get_splits command, which returns the split points for a given table:

hbase> get_splits 't2'
Total number of splits = 5

=> ["", "10", "20", "30", "40"]

Apache HBase Guide | 17

Configuration Settings for HBase

You can also write Ruby scripts for use with HBase Shell. Example Ruby scripts are included in the
hbase-examples/src/main/ruby/ directory.

HBase Online Merge
CDH 6 supports online merging of regions. HBase splits big regions automatically but does not support merging small
regions automatically. To complete an online merge of two regions of a table, use the HBase shell to issue the online
merge command. By default, both regions to be merged should be neighbors; that is, one end key of a region should
be the start key of the other region. Although you can "force merge" any two regions of the same table, this can create
overlaps and is not recommended.

The Master and RegionServer both participate in online merges. When the request to merge is sent to the Master, the
Master moves the regions to be merged to the same RegionServer, usually the one where the region with the higher
load resides. The Master then requests the RegionServer to merge the two regions. The RegionServer processes this
request locally. Once the two regions are merged, the new region will be online and available for server requests, and
the old regions are taken offline.

For merging two consecutive regions use the following command:

hbase> merge_region 'ENCODED_REGIONNAME', 'ENCODED_REGIONNAME'

For merging regions that are not adjacent, passing true as the third parameter forces the merge.

hbase> merge_region 'ENCODED_REGIONNAME', 'ENCODED_REGIONNAME', true

Note: This command is slightly different from other region operations. You must pass the encoded
region name (ENCODED_REGIONNAME), not the full region name . The encoded region name is the
hash suffix on region names. For example, if the region name is
TestTable,0094429456,1289497600452.527db22f95c8a9e0116f0cc13c680396, theencoded
region name portion is 527db22f95c8a9e0116f0cc13c680396.

Using MapReduce with HBase
To run MapReduce jobs that use HBase, you need to add the HBase and Zookeeper JAR files to the Hadoop Java
classpath. You can do this by adding the following statement to each job:

TableMapReduceUtil.addDependencyJars(job);

This distributes the JAR files to the cluster along with your job and adds them to the job's classpath, so that you do not
need to edit the MapReduce configuration.

When getting an Configuration object for a HBase MapReduce job, instantiate it using the
HBaseConfiguration.create()method.

Configuring HBase Garbage Collection

Warning: Configuring the JVM garbage collection for HBase is an advanced operation. Incorrect
configuration can havemajor performance implications for your cluster. Test any configuration changes
carefully.

Garbage collection (memory cleanup) by the JVM can cause HBase clients to experience excessive latency. See Tuning
Java Garbage Collection for HBase for a discussion of various garbage collection settings and their impacts on
performance.

18 | Apache HBase Guide

Configuration Settings for HBase

http://blog.cloudera.com/blog/2014/12/tuning-java-garbage-collection-for-hbase/
http://blog.cloudera.com/blog/2014/12/tuning-java-garbage-collection-for-hbase/

To tune the garbage collection settings, you pass the relevant parameters to the JVM.

Example configuration values are not recommendations and should not be considered as such. This is not the complete
list of configuration options related to garbage collection. See the documentation for your JVM for details on these
settings.

-XX:+UseG1GC

Use the 'G1' garbage collection algorithm. You can tune G1 garbage collection to provide a consistent pause time,
which benefits long-term running Java processes such as HBase, NameNode, Solr, and ZooKeeper. For more
information about tuning G1, see the Oracle documentation on tuning garbage collection.

-XX:MaxGCPauseMillis=value

The garbage collection pause time. Set this to the maximum amount of latency your cluster can tolerate while
allowing as much garbage collection as possible.

-XX:+ParallelRefProcEnabled

Enable or disable parallel reference processing by using a + or - symbol before the parameter name.

-XX:-ResizePLAB

Enable or disable resizing of Promotion Local Allocation Buffers (PLABs) by using a + or - symbol before the parameter
name.

-XX:ParallelGCThreads=value

The number of parallel garbage collection threads to run concurrently.

-XX:G1NewSizePercent=value

The percent of the heap to be used for garbage collection. If the value is too low, garbage collection is ineffective.
If the value is too high, not enough heap is available for other uses by HBase.

Configure HBase Garbage Collection Using Cloudera Manager

Minimum Required Role: Full Administrator

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope > RegionServer.
4. Select Category > Advanced.
5. Locate the Java Configuration Options for HBase RegionServer property or search for it by typing its name in the

Search box.
6. Add or modify JVM configuration options.
7. Enter a Reason for change, and then click Save Changes to commit the changes.
8. Restart the role.

Using the HBase Garbage Collector with JDK11

G1GC is the default garbage collector when JDK11 is used. It operates well with large heap sizes, at least 16G, and can
cause low throughput and OOM errors in a heap constrained application environment.

You can improve the performance of G1GC by increasing the number of concurrent making threads. You can set this
number using the -XX:ConcGCThreads=n option. By default this option is set to 10% of the available total host CPUs.
However in an environment with more CPUs, you can increase this number to add more concurrent marking threads.

Althought G1GC is the default garbage collector, you can use other garbage collector with JDK11. For example, you
can enable CMS using the -XX:+UseConcMarkSweepGC java option at runtime.

JDK11 uses the JVM unified logging framework. You can print garbage collection information with the following
command:-Xlog:gc*. The result of this command is a detailed overviewduring andoutside the pauses about garbage
collection activity, including the type of collection and time spent in specific phases of the pause. If you want to see
both the garbage collection and heap information, use the -Xlog:gc+heap option.

Apache HBase Guide | 19

Configuration Settings for HBase

https://docs.oracle.com/cd/E40972_01/doc.70/e40973/cnf_jvmgc.htm

Disabling the BoundedByteBufferPool

HBase uses a BoundedByteBufferPool to avoid fragmenting the heap. The G1 garbage collector reduces the need
to avoid fragmenting the heap in some cases. If you use the G1 garbage collector, you can disable the
BoundedByteBufferPool in HBase. This can reduce the number of "old generation" items that need to be collected.
This configuration is experimental.

To disable the BoundedByteBufferPool, set the hbase.ipc.server.reservoir.enabled property to false.

Disable the BoundedByteBufferPool Using Cloudera Manager

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope > RegionServer.
4. Select Category > Advanced.
5. Locate the HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml property, or search

for it by typing its name in the Search box.
6. Add the following XML:

<property>
 <name>hbase.ipc.server.reservoir.enabled</name>
 <value>false</value>
</property>

7. Enter a Reason for change, and then click Save Changes to commit the changes.
8. Restart the service.

Configuring the HBase Canary
The HBase canary is an optional service that periodically checks that a RegionServer is alive. This canary is different
from the Cloudera Service Monitoring canary and is provided by the HBase service. The HBase canary is disabled by
default. After enabling the canary, you can configure several different thresholds and intervals relating to it, as well
as exclude certain tables from the canary checks. The canary works on Kerberos-enabled clusters if you have the HBase
client configured to use Kerberos.

Configure the HBase Canary Using Cloudera Manager

Minimum Required Role: Full Administrator

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope > HBase or HBase Service-Wide.
4. Select Category >Monitoring.
5. Locate the HBase Canary property or search for it by typing its name in the Search box. Several properties have

Canary in the property name.
6. Select the checkbox.
7. Review other HBase Canary properties to configure the specific behavior of the canary.

To apply this configuration property to other role groups as needed, edit the value for the appropriate role group.
See Modifying Configuration Properties Using Cloudera Manager.

8. Enter a Reason for change, and then click Save Changes to commit the changes.
9. Restart the role.
10. Restart the service.

20 | Apache HBase Guide

Configuration Settings for HBase

Configuring the Blocksize for HBase
The blocksize is an important configuration option for HBase. HBase data is stored in one (after a major compaction)
or more (possibly before amajor compaction) HFiles per column family per region. It determines both of the following:

• The blocksize for a given column family determines the smallest unit of data HBase can read from the column
family's HFiles.

• It is also the basic unit of measure cached by a RegionServer in the BlockCache.

The default blocksize is 64 KB. The appropriate blocksize is dependent upon your data and usage patterns. Use the
following guidelines to tune the blocksize size, in combination with testing and benchmarking as appropriate.

Warning: The default blocksize is appropriate for a wide range of data usage patterns, and tuning
the blocksize is an advanced operation. The wrong configuration can negatively impact performance.

• Consider the average key/value size for the column family when tuning the blocksize. You can find the average
key/value size using the HFile utility:

$ hbase org.apache.hadoop.hbase.io.hfile.HFile -f /path/to/HFILE -m -v
...
Block index size as per heapsize: 296
reader=hdfs://srv1.example.com:9000/path/to/HFILE, \
compression=none, inMemory=false, \
firstKey=US6683275_20040127/mimetype:/1251853756871/Put, \
lastKey=US6684814_20040203/mimetype:/1251864683374/Put, \
avgKeyLen=37, avgValueLen=8, \
entries=1554, length=84447
...

• Consider the pattern of reads to the table or column family. For instance, if it is common to scan for 500 rows on
various parts of the table, performancemight be increased if the blocksize is large enough to encompass 500-1000
rows, so that often, only one read operation on the HFile is required. If your typical scan size is only 3 rows,
returning 500-1000 rows would be overkill.

It is difficult to predict the size of a row before it is written, because the data will be compressed when it is written
to the HFile. Perform testing to determine the correct blocksize for your data.

Configuring the Blocksize for a Column Family

You can configure the blocksize of a column family at table creation or by disabling and altering an existing table. These
instructions are valid whether or not you use Cloudera Manager to manage your cluster.

hbase> create ‘test_table ,{NAME => ‘test_cf , BLOCKSIZE => '262144'}
hbase> disable 'test_table'
hbase> alter 'test_table', {NAME => 'test_cf', BLOCKSIZE => '524288'}
hbase> enable 'test_table'

After changing the blocksize, the HFiles will be rewritten during the next major compaction. To trigger a major
compaction, issue the following command in HBase Shell.

hbase> major_compact 'test_table'

Depending on the size of the table, the major compaction can take some time and have a performance impact while
it is running.

Monitoring Blocksize Metrics

Several metrics are exposed for monitoring the blocksize by monitoring the blockcache itself.

Apache HBase Guide | 21

Configuration Settings for HBase

Configuring the HBase BlockCache
In the default configuration, HBase uses a single on-heap cache. If you configure the off-heap BucketCache, the
on-heap cache is used for Bloom filters and indexes, and the off-heap BucketCache is used to cache data blocks. This
is called the Combined Blockcache configuration. The Combined BlockCache allows you to use a larger in-memory
cachewhile reducing the negative impact of garbage collection in the heap, becauseHBasemanages theBucketCache
instead of relying on the garbage collector.

Contents of the BlockCache

To size the BlockCache correctly, you need to understand what HBase places into it.

• Your data: Each time a Get or Scan operation occurs, the result is added to the BlockCache if it was not already
cached there. If you use the BucketCache, data blocks are always cached in the BucketCache.

• Row keys:When a value is loaded into the cache, its row key is also cached. This is one reason to make your row
keys as small as possible. A larger row key takes up more space in the cache.

• hbase:meta: The hbase:meta catalog table keeps track of which RegionServer is serving which regions. It can
consume several megabytes of cache if you have a large number of regions, and has in-memory access priority,
which means HBase attempts to keep it in the cache as long as possible.

• Indexes of HFiles: HBase stores its data in HDFS in a format called HFile. These HFiles contain indexes which allow
HBase to seek for data within them without needing to open the entire HFile. The size of an index is a factor of
the block size, the size of your row keys, and the amount of data you are storing. For big data sets, the size can
exceed 1 GB per RegionServer, although the entire index is unlikely to be in the cache at the same time. If you
use the BucketCache, indexes are always cached on-heap.

• Bloom filters: If you use Bloom filters, they are stored in the BlockCache. If you use the BucketCache, Bloom filters
are always cached on-heap.

The sum of the sizes of these objects is highly dependent on your usage patterns and the characteristics of your data.
For this reason, the HBase Web UI and Cloudera Manager each expose several metrics to help you size and tune the
BlockCache.

Deciding Whether To Use the BucketCache

The HBase team has published the results of exhaustive BlockCache testing, which revealed the following guidelines.

• If the result of a Get or Scan typically fits completely in the heap, the default configuration, which uses the on-heap
LruBlockCache, is the best choice, as the L2 cache will not provide much benefit. If the eviction rate is low,
garbage collection can be 50% less than that of the BucketCache, and throughput can be at least 20% higher.

• Otherwise, if your cache is experiencing a consistently high eviction rate, use the BucketCache, which causes
30-50% of the garbage collection of LruBlockCache when the eviction rate is high.

• BucketCache using file mode on solid-state disks has a better garbage-collection profile but lower throughput
than BucketCache using off-heap memory.

Bypassing the BlockCache

If the data needed for a specific but atypical operation does not all fit in memory, using the BlockCache can be
counter-productive, because data that you are still using may be evicted, or even if other data is not evicted, excess
garbage collection can adversely effect performance. For this type of operation, youmaydecide to bypass the BlockCache.
To bypass the BlockCache for a given Scan or Get, use the setCacheBlocks(false)method.

In addition, you can prevent a specific column family's contents from being cached, by setting its BLOCKCACHE
configuration to false. Use the following syntax in HBase Shell:

hbase> alter 'myTable', CONFIGURATION => {NAME => 'myCF', BLOCKCACHE => 'false'}

22 | Apache HBase Guide

Configuration Settings for HBase

https://blogs.apache.org/hbase/entry/comparing_blockcache_deploys

Cache Eviction Priorities

Both the on-heap cache and the off-heap BucketCache use the same cache prioritymechanism to decidewhich cache
objects to evict to make room for new objects. Three levels of block priority allow for scan-resistance and in-memory
column families. Objects evicted from the cache are subject to garbage collection.

• Single access priority: The first time a block is loaded from HDFS, that block is given single access priority, which
means that it will be part of the first group to be considered during evictions. Scanned blocks are more likely to
be evicted than blocks that are used more frequently.

• Multi access priority: If a block in the single access priority group is accessed again, that block is assigned multi
access priority, which moves it to the second group considered during evictions, and is therefore less likely to be
evicted.

• In-memory access priority: If the block belongs to a column family which is configured with the in-memory
configuration option, its priority is changed to in memory access priority, regardless of its access pattern. This
group is the last group considered during evictions, but is not guaranteed not to be evicted. Catalog tables are
configured with in-memory access priority.

To configure a column family for in-memory access, use the following syntax in HBase Shell:

hbase> alter 'myTable', 'myCF', CONFIGURATION => {IN_MEMORY => 'true'}

To use the Java API to configure a column family for in-memory access, use the
HColumnDescriptor.setInMemory(true)method.

Sizing the BlockCache

When you use the LruBlockCache, the blocks needed to satisfy each read are cached, evicting older cached objects
if the LruBlockCache is full. The size cached objects for a given read may be significantly larger than the actual result
of the read. For instance, if HBase needs to scan through 20 HFile blocks to return a 100 byte result, and the HFile
blocksize is 100 KB, the read will add 20 * 100 KB to the LruBlockCache.

Because the LruBlockCache resides entirely within the Java heap, the amount of which is available to HBase and
what percentage of the heap is available to the LruBlockCache strongly impact performance. By default, the amount
of HBase heap reserved for LruBlockCache (hfile.block.cache.size) is .40, or 40%. To determine the amount
of heap available for theLruBlockCache, use the following formula. The0.99 factor allows 1%of heap to be available
as a "working area" for evicting items from the cache. If you use the BucketCache, the on-heap LruBlockCache only
stores indexes and Bloom filters, and data blocks are cached in the off-heap BucketCache.

number of RegionServers * heap size * hfile.block.cache.size * 0.99

To tune the size of the LruBlockCache, you can add RegionServers or increase the total Java heap on a given
RegionServer to increase it, or you can tune hfile.block.cache.size to reduce it. Reducing it will cause cache
evictions to happen more often, but will reduce the time it takes to perform a cycle of garbage collection. Increasing
the heap will cause garbage collection to take longer but happen less frequently.

About the Off-heap BucketCache

If the BucketCache is enabled, it stores data blocks, leaving the on-heap cache free for storing indexes and Bloom
filters. The physical location of the BucketCache storage can be either in memory (off-heap) or in a file stored in a
fast disk.

• Off-heap: This is the default configuration.
• File-based: You can use the file-based storage mode to store the BucketCache on an SSD or FusionIO device,

You can configure a column family to keep its data blocks in the L1 cache instead of the BucketCache, using the
HColumnDescriptor.cacheDataInL1(true)method or by using the following syntax in HBase Shell:

hbase> alter 'myTable', CONFIGURATION => {CACHE_DATA_IN_L1 => 'true'}}

Apache HBase Guide | 23

Configuration Settings for HBase

Configuring the Off-heap BucketCache

This table summaries the important configuration properties for the BucketCache. To configure the BucketCache,
see Configuring theOff-heap BucketCacheUsing ClouderaManager on page 27 or Configuring theOff-heap BucketCache
Using the Command Line on page 28. The table is followed by three diagrams that show the impacts of different
blockcache settings.

Table 1: BucketCache Configuration Properties

DescriptionDefaultProperty

When BucketCache is enabled, use
it as a L2 cache for LruBlockCache.

truehbase.bucketcache.combinedcache.enabled

If set to true, indexes and Bloom filters
are kept in the LruBlockCache and
the data blocks are kept in the
BucketCache.

Where to store the contents of the
BucketCache. Its value can be

none (BucketCache is disabled by
default)

hbase.bucketcache.ioengine

offheap,file:PATH,mmap:PATHor
pmem:PATH where PATH is the path
to the file that host the file-based
cache.

A float between 0.0 and 1.0. This
factor multiplied by the Java heap size

0.4hfile.block.cache.size

is the size of the L1 cache. In other
words, the percentage of the Java
heap to use for the L1 cache.

When using BucketCache, this is a
float that represents one of two

not sethbase.bucketcache.size

different values, depending on
whether it is a floating-point decimal
less than 1.0 or an integer greater than
1.0.

• If less than 1.0, it represents a
percentage of total heapmemory
size to give to the cache.

• If greater than 1.0, it represents
the capacity of the cache in
megabytes

A comma-separated list of sizes for
buckets for the BucketCache if you

4, 8, 16, 32, 40, 48, 56, 64,

96, 128, 192, 256, 384, 512

KB

hbase.bucketcache.bucket.sizes

prefer to use multiple sizes. The sizes
should be multiples of the default
blocksize, ordered from smallest to
largest. The sizes you use will depend
on your data patterns. This parameter
is experimental.

A JVM option to configure the
maximum amount of direct memory

MaxDirectMemorySize =

BucketCache + 1

-XX:MaxDirectMemorySize

available for the JVM. It is
automatically calculated and
configured based on the following

24 | Apache HBase Guide

Configuration Settings for HBase

DescriptionDefaultProperty

formula: MaxDirectMemorySize =
BucketCache size + 1 GB for
other features using direct memory,
such as DFSClient. For example, if the
BucketCache size is 8 GB, it will be
-XX:MaxDirectMemorySize=9G.

1. 20% minimum reserved for operations and rpc call queues
2. hbase.regionserver.global.memstore.size: default is 0.4, which means 40%
3. hbase.regionserver.global.memstore.size + hfile.block.cache.size ≤0.80, which means 80%
4. hfile.block.cache.size: default is 0.4, which means 40%
5. slack reserved for HDFS SCR/NIO: number of open HFiles *

hbase.dfs.client.read.shortcircuit.buffer.size, where
hbase.dfs.client.read.shortcircuit.buffer.size is set to 128k.

Figure 1: Default LRUCache, L1 only block cache hbase.bucketcache.ioengine=NULL

Apache HBase Guide | 25

Configuration Settings for HBase

1. 20% minimum reserved for operations and rpc call queues
2. hbase.regionserver.global.memstore.size: default is 0.4, which means 40%
3. hbase.regionserver.global.memstore.size + hfile.block.cache.size ≤0.80, which means 80%
4. hfile.block.cache.size: default is 0.4 which means 40%
5. slack reserved for HDFS SCR/NIO: number of open HFiles *

hbase.dfs.client.read.shortcircuit.buffer.size, where
hbase.dfs.client.read.shortcircuit.buffer.size is set to 128k.

6. hbase.bucketcache.size: default is 0.0

If hbase.bucketcache.size is float <1, it represents the percentage of total heap size.

If hbase.bucketcache.size is ≥1, it represents the absolute value in MB. It must be < HBASE_OFFHEAPSIZE

Figure 2: Default LRUCache, L1 only block cache hbase.bucketcache.ioengine=offheap

Configuring the BucketCache IO Engine

Use the hbase.bucketcache.ioengine parameter to define where to store the content of the BucketCache. Its
value can be offheap, file:PATH, mmap:PATH, pmem:PATH , or it can be empty. By default it is empty which means
that BucketCache is disabled.

Note: PATH denotes the path to the file that host the file-based cache.

offheap

When hbase.bucketcache.ioengine is set to offheap, the content of the BucketCache is stored off-heap as it is
presented on the Figure 2: Default LRUCache, L1 only block cache hbase.bucketcache.ioengine=offheap on page 26
image.

file:PATH

When hbase.bucketcache.ioengine is set to file:PATH, the BucketCache uses file caching.

mmap:PATH

26 | Apache HBase Guide

Configuration Settings for HBase

When hbase.bucketcache.ioengine is set to mmap:PATH, the content of the BucketCache is stored and accessed
through memory mapping to a file under the specified path.

pmem:PATH

When hbase.bucketcache.ioengine is set to pmem:PATH, BucketCache uses direct memory access to and from
a file on the specified path. The specified pathmust be under a volume that is mounted on a persistent memory device
that supports direct access to its own address space. An example of such persistentmemory device is the Intel® Optane™
DC Persistent Memory, when it is mounted in Direct Mode.

The advantage of the pmem engine over the mmap engine is that it supports large cache size. That is because pmem allows
for reads straight from the device address, whichmeans in thismode no copy is created on DRAM. Therefore, swapping
due to DRAM freememory exhaustion is not an issuewhen large cache size is specified.With devices currently available,
the bucket cache size can be set to the order of hundreds of GBs or even a few TBs.

When bucket cache size is set to larger than 256GB, the OS limit must be increased, which can be configured by the
max_map_count property. Make sure you have an extra 10% for other processes on the host that require the use of
memory mapping. This additional overhead depends on the load of processes running on the RS hosts. To calculate
the OS limit divide the block cache size in GB by 4 MB and then multiply it by 1.1: (block cache size in GB / 4
MB) * 1.1.

Set the value offheap and file:PATH in the following way:

1. In Cloudera Manager select the HBase service and go to Configuration.
2. Search for BucketCache IOEngine and set it to the required value.

Set the value mmap:PATH and pmem:PATH in the following way:

Important: These values can only be set using safety valves.

1. In Cloudera Manager select the HBase service and go to Configuration.
2. Search for RegionServer Advanced Configuration Snippet (Safety Valve) for hbase-site.xml.
3. Click the plus icon.
4. Set the required value:

• Name: Add hbase.bucketcache.ioengine.
• Value: Add either mmap:PATH: or pmem:PATH.

Configuring the Off-heap BucketCache Using Cloudera Manager

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select the RegionServer scope and do the following:

a. Set BucketCache IOEngine to offheap.
b. Update the value of BucketCache Size according to the required BucketCache size.

4. In the RegionServer Environment Advanced Configuration Snippet (Safety Valve), edit the
HBASE_REGIONSERVER_OPTS parameter:

Add the JVMoption$HBASE_REGIONSERVER_OPTS -XX:MaxDirectMemorySize=<size>G, replacing<size>
with a value not smaller than the aggregated heap size expressed as a number of gigabytes + the off-heap
BucketCache, expressed as a number of gigabytes + around 1GB used for HDFS short circuit read. For example, if
the off-heap BucketCache is 16GB and the heap size is 15GB, the total value of MaxDirectMemorySize could be
32: -XX:MaxDirectMamorySize=32G.

Apache HBase Guide | 27

Configuration Settings for HBase

https://software.intel.com/en-us/blogs/2018/10/30/intel-optane-dc-persistent-memory-a-major-advance-in-memory-and-storage-architecture
https://software.intel.com/en-us/blogs/2018/10/30/intel-optane-dc-persistent-memory-a-major-advance-in-memory-and-storage-architecture

If JDK11 is used, Cloudera recommends to replace <size>with a value not smaller than the aggregated heap size
expressed as a number of gigabytes + 3GB. For example, if the off-heap BucketCache is 16GB, the total value of
MaxDirectMemorySize could be 19: -XX:MaxDirectMamorySize=19G

HBASE_REGIONSERVER_OPTS="$HBASE_REGIONSERVER_OPTS -XX:MaxDirectMemorySize=<size>G"

5. Optionally, when combined BucketCache is in use, you can decrease the heap size ratio allocated to the L1
BlockCache, and increase the Memstore size.

The on-heap BlockCache only stores indexes and Bloom filters, the actual data resides in the off-heap BucketCache.
A larger Memstore is able to accommodate more write request before flushing them to disks.

• Decrease HFile Block Cache Size to 0.3 or 0.2.
• IncreaseMaximum Size of All Memstores in RegionServer to 0.5 or 0.6 respectively.

6. Enter a Reason for change, and then click Save Changes to commit the changes.
7. Restart or rolling restart your RegionServers for the changes to take effect.

Configuring the Off-heap BucketCache Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 6.3.x. See Cloudera Documentation for information

specific to other releases.

1. Configure the MaxDirectMemorySize option for the RegionServers JVMS.

Add the JVMoption$HBASE_REGIONSERVER_OPTS -XX:MaxDirectMemorySize=<size>G, replacing<size>
with a value not smaller than the aggregated heap size expressed as a number of gigabytes + the off-heap
BucketCache, expressed as a number of gigabytes + around 1GB used for HDFS short circuit read. For example, if
the off-heap BucketCache is 16GB and the heap size is 15GB, the total value of MaxDirectMemorySize could be
32: -XX:MaxDirectMamorySize=32G.

This can be done adding the following line in hbase-env.sh:

HBASE_REGIONSERVER_OPTS="$HBASE_REGIONSERVER_OPTS -XX:MaxDirectMemorySize=<size>G"

2. Next, in the hbase-site.xml files on the RegionServers, configure the properties in Table 1: BucketCache
Configuration Properties on page 24 as appropriate, using the example below as a model.

<property>
 <name>hbase.bucketcache.combinedcache.enabled</name>
 <value>true</value>
</property>
<property>
 <name>hbase.bucketcache.ioengine</name>
 <value>offheap</value>
</property>
<property>
 <name>hbase.bucketcache.size</name>
 <value>8388608</value>
</property>
<property>
 <name>hfile.block.cache.size</name>
 <value>0.2</value>
</property>
<property>
 <name>hbase.regionserver.global.memstore.size</name>
 <value>0.6</value>
</property>

28 | Apache HBase Guide

Configuration Settings for HBase

http://www.cloudera.com/content/support/en/documentation.html

Optionally, when combined BucketCache is in use, you can decrease the heap size ratio allocated to the L1
BlockCache, and increase the Memstore size as it is done in the above example. The on-heap BlockCache only
stores indexes and Bloom filters, the actual data resides in the off-heap BucketCache. A larger Memstore is able
to accommodate more write request before flushing them to disks.

• Decrease hfile.block.cache.size to 0.3 or 0.2.
• Increase hbase.regionserver.global.memstore.size to 0.5 or 0.6 respectively.

3. Restart each RegionServer for the changes to take effect.

Monitoring the BlockCache

Cloudera Manager provides metrics to monitor the performance of the BlockCache, to assist you in tuning your
configuration.

You can view further detail and graphs using the RegionServer UI. To access the RegionServer UI in Cloudera Manager,
go to the Cloudera Manager page for the host, click the RegionServer process, and click HBase RegionServer Web UI.

If you do not use Cloudera Manager, access the BlockCache reports at
http://regionServer_host:22102/rs-status#memoryStats, replacing regionServer_host with the
hostname or IP address of your RegionServer.

Configuring Quotas
Two types of HBase quotas are well established: throttle quota and number-of tables-quota. These two quotas can
regulate users and tables.

In a multitenant HBase environment, ensuring that each tenant can use only its allotted portion of the system is key
in meeting SLAs.

Table 2: Quota Support Matrix

User applicable?Table applicable?Namespace
applicable?

PurposeResource TypeQuota Type

YesYesYesLimit overall
network

NetworkThrottle

throughput and
number of RPC
requests

NoYesYesLimit amount of
storage used for

StorageNew space

table or
namespaces

YesNoYesLimit number of
tables for each

MetadataNumber of tables

namespace or
user

NoNoYesLimit number of
regions for each
namespace

MetadataNumbr of regions

Setting up quotas

HBase quotas are disabled by default. To enable quotas, the relevant hbase-site.xml property must be set to true
and the limit of each quota specified on the command line.

Apache HBase Guide | 29

Configuration Settings for HBase

You need hbase superuser privileges

1. Set the hbase.quota.enabled property in the hbase-site.xml file to true.

2. Enter the command to set the set the limit of the quota, type of quota, and to which entity to apply the quota.
The command and its syntax are:

$hbase_shell> set_quota TYPE =>

quota_type,
arguments

General Quota Syntax

The general quota syntax are THROTTLE_TYPE, Request sizes and space limit, Number of requests, Time
limits and Number of tables or regions.

THROTTLE_TYPE

Can be expressed as READ-only, WRITE-only, or the default type (both READ and WRITE permissions)

Timeframes

Can be expressed in the following units of time:

• sec (second)

min (minute)

hour

day

Request sizes and space limit

Can be expressed in the following units:

• B: bytes

K: kilobytes

M: megabytes

G: gigabytes

P: petabytes

When no size units is included, the default value is bytes.

Number of requests

Expressed as integer followed by the string request

Time limits

Expressed as requests per unit-of-time or size per unit-of-time

Examples: 10req/day or 100P/hour

Number of tables or regions

Expressed as integers

30 | Apache HBase Guide

Configuration Settings for HBase

Throttle quotas

The throttle quota, also known asRPC limit quota, is commonly used tomanage length of RPC queue aswell as network
bandwidth utilization. It is best used to prioritize time-sensitive applications to ensure latency SLAs are met.

Throttle quota examples

Following examples details the usage of adding throttle quotas commands, listing throttle quotas commands, and
updating and deleting throttle quotas commands.

Examples of Adding Throttle Quotas Commands

Limit user u1 to 10 requests per second globally:

hbase> set_quota => TYPE => THROTTLE, USER => 'u1', LIMIT => '10req/sec'

Limit user u1 to up to 10MB of traffic per second globally:

hbase> set_quota => TYPE => THROTTLE, USER => 'u1', LIMIT => '10M/sec'

Limit user u1 to 10 requests/second globally for read operations. User u1 can still issue unlimited writes:

hbase> set_quota TYPE => THROTTLE, THROTTLE_TYPE => READ, USER => 'u1', LIMIT => '10req/sec'

Limit user u1 to 10 requests/second globally for read operations. User u1 can still issue unlimited reads:

hbase> set_quota TYPE => THROTTLE, THROTTLE_TYPE => WRITE, USER => 'u1', LIMIT => '10M/sec'

Limit user u1 to 5 KB/second for all operations on table t2. User u1 can still issue unlimited requests for other tables,
regardless of type of operation:

hbase> set_quota TYPE => THROTTLE, USER => 'u1', TABLE => 't2', LIMIT => '5K/min'

Limit request to namespaces:

hbase> set_quota TYPE => THROTTLE, NAMESPACE => 'ns1', LIMIT => '10req/sec'

Limit request to tables:

hbase> set_quota TYPE => THROTTLE, TABLE => 't1', LIMIT => '10M/sec'

Limit requests based on type, regardless of users, namespaces, or tables:

hbase> set_quota TYPE => THROTTLE, THROTTLE_TYPE => WRITE, TABLE => 't1', LIMIT => '10M/sec'

Examples of Listing Throttle Quotas Commands

Show all quotas:

hbase> list_quotas

Show all quotas applied to user bob:

hbase> list_quotas USER => 'bob.*'

Show all quotas applied to user bob and filter by table or namespace:

hbase> list_quotas USER => 'bob.*', TABLE => 't1'
hbase> list_quotas USER => 'bob.*', NAMESPACE => 'ns.*'

Show all quotas and filter by table or namespace:

hbase> list_quotas TABLE => 'myTable'
hbase> list_quotas NAMESPACE => 'ns.*'

Examples of Updating and Deleting Throttle Quotas Commands

To update a quota, simply issue a new set_quota command. To remove a quota, you can set LIMIT to NONE. The
actual quota entry will not be removed, but the policy will be disabled.

hbase> set_quota TYPE => THROTTLE, USER => 'u1', LIMIT => NONE

hbase> set_quota TYPE => THROTTLE, USER => 'u1', NAMESPACE => 'ns2', LIMIT => NONE

hbase> set_quota TYPE => THROTTLE, THROTTLE_TYPE => WRITE, USER => 'u1', LIMIT => NONE

hbase> set_quota USER => 'u1', GLOBAL_BYPASS => true

Apache HBase Guide | 31

Configuration Settings for HBase

Space quotas

Space quotas, also known as filesystem space quotas, limit the amount of stored data. It can be applied at a table or
namespace level where table-level quotas take priority over namespace-level quotas.

Space quotas are special in that they can trigger different policies when storage goes above thresholds. The following
list describes the policies, and they are listed in order of least strict to most strict:

NO_INSERTS

Prohibits new data from being ingested (for example, data from Put, Increment, and Append operations are not
ingested).

NO_WRITES

Performs the same function as NO_INSERTS but Delete operations are also prohibited.

NO_WRITES_COMPACTIONS

Performs the same function as NO_INSERTS but compactions are also prohibited.

DISABLE

Diables tables.

Examples of Adding Space Quotas

Add quota with the condition that Insert operations are rejected when table t1 reaches 1 GB of data:

hbase> set_quota TYPE => SPACE, TABLE => 't1', LIMIT => '1G', POLICY => NO_INSERTS

Add quota with the condition that table t2 is disabled when 50 GB of data is exceeded:

hbase> set_quota TYPE => SPACE, TABLE => 't2', LIMIT => '50G', POLICY => DISABLE

Add quota with the condition that Insert and Delete operations cannot be applied to namespace ns1 when it reaches
50 terabytes of data:

hbase> set_quota TYPE => SPACE, NAMESPACE => 'ns1', LIMIT => '50T', POLICY => NO_WRITES

Listing Space Quotas

See "Examples of Listing Throttle Quotas Commands" above for the supported syntax.

Examples of Updating and Deleting Space Quotas

A quota can be removed by setting LIMIT to NONE.

hbase> set_quota TYPE => SPACE, TABLE => 't1', LIMIT => NONE

hbase> set_quota TYPE => SPACE, NAMESPACE => 'ns1', LIMIT => NONE

Quota enforcement

When a quota limit is exceeded, the Master server instructs RegionServers to enable an enforcement policy for the
namespace or table that violated the quota.

It is important to note the storage quota is not reported in real-time. There is a window when threshold is reached on
RegionServers but the threshold accounted for on the Master server is not updated.

Note:

Set a storage limit lower than the amount of available disk space to provide extra buffer.

Quota violation policies

If quotas are set for the amount of space each HBase tenant can fill on HDFS, then a coherent quota violation policy
should be planned and implemented on the system.

32 | Apache HBase Guide

Configuration Settings for HBase

When a quota violation policy is enabled, the table owner should not be allowed to remove the policy. The expectation
is that the Master automatically removes the policy. However, the HBase superuser should still have permission.

Automatic removal of the quota violation policy after the violation is resolved can be accomplished via the same
mechanisms that it was originally enforced. But the system should not immediately disable the violation policy when
the violation is resolved.

The following describes quota violation policies that you might consider.

Disabling Tables

This is the “brute-force” policy, disabling any tables that violated the quota. This policy removes the risk that tables
over quota affect your system. For most users, this is likely not a good choice as most sites want READ operations to
still succeed.

One hypothetical situation when a disabling tables policy might be advisable is when there are multiple active clusters
hosting the same data and, because of a quota violation, it is discovered that one copy of the data does not have all
of the data it should have. By disabling tables, you can prevent further discrepancies until the administrator can correct
the problem.

Rejecting All WRITE Operations, Bulk Imports, and Compactions

This policy rejects all WRITEs and bulk imports to the region which the quota applies. Compactions for this region are
also disabled to prevent the system from using more space because of the temporary space demand of a compaction.
The only resolution in this case is administrator intervention to increase the quota that is being exceeded.

Rejecting All WRITE Operations and Bulk Imports

This is the same as the previous policy, except that compactions are still allowed. This allows users to set or alter a TTL
on table and then perform a compaction to reduce the total used space. Inherently, using this violation policy means
that you let used space to slightly rise before it is ultimately reduced.

Allowing DELETE Operations But Rejecting WRITE Operations and Bulk Imports

This is another variation of the two previously listed policies. This policy allows users to run processes to delete data
in the system. Like the previous policy, using this violation policy means that you let used space slightly rises before it
is ultimately reduced. In this case, the deletions are propagated to disk and a compaction actually removes data
previously stored on disk. TTL configuration and compactions can also be used to remove data.

Impact of quota violation policy

Quota violation policies can impact live write access, bulk write access, and read access. You must understand what
the quota violation policies mean for your deployment before you plan and implement it on your system.

Live Write Access

As one would expect, every violation policy outlined disables the ability to write new data into the system. This means
that any Mutation implementation other than DELETE operations could be rejected by the system. Depending on the
violation policy, DELETE operations still might be accepted.

Bulk Write Access

Bulk loading HFiles can be an extremely effective way to increase the overall throughput of ingest into HBase. Quota
management is very relevant because large HFiles have the potential to quickly violate a quota.

Clients group HFiles by region boundaries and send the file for each column family to the RegionServer presently
hosting that region. The RegionServer ultimately inspects each file, ensuring that it should be loaded into this region,
and then, sequentially, load each file into the correct column family.

As a part of the precondition-check of the file's boundaries before loading it, the quota state should be inspected to
determine if loading the next file will violate the quota. If the RegionServer determines that it will violate the quota,
it should not load the file and inform the client that the file was not loaded because it would violate the quota.

Apache HBase Guide | 33

Configuration Settings for HBase

Read Access

In most cases, quota violation policies can affect the ability to read the data stored in HBase. A goal of applying these
HBase quotas is to ensure that HDFS remains healthy and sustains a higher level of availability to HBase users.
Guaranteeing that there is always free space in HDFS can yield a higher level of health of the physical machines and
the DataNodes. This leaves the HDFS-reserved space percentage as a fail-safe mechanism.

Metrics and Insight

Quotas should ideally be listed on the HBase Master UI. The list of defined quotas should be present as well as those
quotas whose violation policy is being enforced. The list of tables/namespaces with enforced violation policies should
also be presented via the JMX metrics exposed by the Master.

Examples of overlapping quota policies

With the ability to define a quota policy on namespaces and tables, you have to define how the policies are applied.
A table quota should take precedence over a namespace quota.

Scenario 1

For example, consider Scenario 1, which is outlined in the following table. Namespace n has the following collection
of tables: n1.t1, n1.t2, and n1.t3. The namespace quota is 100 GB. Because the total storage required for all tables is
less than 100 GB, each table can accept new WRITEs.

Table 3: Scenario 1: Overlapping Quota Policies

Storage UtilizationQuotaObject

80 GB100 GBNamespace n1

5 GB10 GBTable n1.t1

50 GB(not set)Table n1.t2

25 GB(not set)Table n1.t3

Scenario 2

In Scenario 2, as shown in the following table, WRITEs to table n1.t1 are denied because the table quota is violated,
but WRITEs to tablen1.t2 and table n1.t3 are still allowed because they are within the namespace quota. The violation
policy for the table quota on table n1.t1 is enacted.

Table 4: Scenario 2: Overlapping Quota Policies

Storage UtilizationQuotaObject

60 GB100 GBNamespace n1

15 GB10 GBTable n1.t1

30 GB(not set)Table n1.t2

15 GB(not set)Table n1.t3

Scenario 3

In the Scenario 3 table below, WRITEs to all tables are not allowed because the storage utilization of all tables exceeds
the namespace quota limit. The namespace quota violation policy is applied to all tables in the namespace.

34 | Apache HBase Guide

Configuration Settings for HBase

Table 5: Scenario 3: Overlapping Quota Policies

Storage UtilizationQuotaObject

108 GB100 GBNamespace n1

8 GB10 GBTable n1.t1

50 GB(not set)Table n1.t2

50 GB(not set)Table n1.t3

Scenario 4

In the Scenario 4 table below, table n1.t1 violates the quota set at the table level. The table quota violation policy is
enforced. In addition, the disk utilization of table n1t1 plus the sumof disk utilization for table n1t2 and table n1t3exceeds
the 100 GB namespace quota. Therefore, the namespace quota violation policy is also applied.

Table 6: Scenario 4: Overlapping Quota Policies

Storage UtilizationQuotaObject

115 GB100 GBNamespace n1

15 GB10 GBTable n1.t1

50 GB(not set)Table n1.t2

50 GB(not set)Table n1.t3

Number-of-Tables Quotas

The number-of-tables quota is set as part of the namespacemetadata and does not involve the set_quota command.

Examples of Commands Relevant to Setting and Administering Number-of-Tables Quotas

Create namespace ns1 with a maximum of 5 tables

hbase> create_namespace 'ns1', {'hbase.namespace.quota.maxtables'=>'5'}

Alter an existing namespace ns1 to set a maximum of 8 tables

hbase> alter_namespace 'ns1', {METHOD => 'set', 'hbase.namespace.quota.maxtables'=>'8'}

Show quota information for namespace ns1

hbase> describe_namespace 'ns1'

Alter existing namespace ns1 to remove a quota

hbase> alter_namespace 'ns1', {METHOD => 'unset', NAME=>'hbase.namespace.quota.maxtables'}

Number-of-Regions Quotas

The number-of-regions quota is similar to the number-of-tables quota. The number-of-regions quota is set as part of
the namespace metadata and does not involve the set_quota command.

Examples of Commands Relevant to Setting and Administering Number-of-Regions Quotas

Create namespace ns1 with a maximum of 5 tables

hbase> create_namespace 'ns1', {'hbase.namespace.quota.maxregions'=>'5'}

Alter an existing namespace ns1 to set a maximum of 8 regions

hbase> alter_namespace 'ns1', {METHOD => 'set', 'hbase.namespace.quota.maxregions'=>'8'}

Show quota information for namespace ns1

hbase> describe_namespace 'ns1'

Apache HBase Guide | 35

Configuration Settings for HBase

Alter existing namespace ns1 to remove a quota

hbase> alter_namespace 'ns1', {METHOD => 'unset', NAME=>'hbase.namespace.quota.maxregions'}

Configuring the HBase Scanner Heartbeat
A scanner heartbeat check enforces a time limit on the execution of scan RPC requests. This helps prevent scans from
taking too long and causing a timeout at the client.

When the server receives a scan RPC request, a time limit is calculated to be half of the smaller of two values:
hbase.client.scanner.timeout.period and hbase.rpc.timeout (which both default to 60000 milliseconds,
or one minute). When the time limit is reached, the server returns the results it has accumulated up to that point. This
result set may be empty. If your usage pattern includes that scans will take longer than a minute, you can increase
these values.

Tomake sure the timeout period is not too short, you can configurehbase.cells.scanned.per.heartbeat.check
to a minimum number of cells that must be scanned before a timeout check occurs. The default value is 10000. A
smaller value causes timeout checks to occur more often.

Configure the Scanner Heartbeat Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select HBase or HBase Service-Wide.
4. Locate the RPC Timeout property by typing its name in the Search box, and edit the property.
5. Locate theHBase RegionServer Lease Period property by typing its name in the Search box, and edit the property.
6. Enter a Reason for change, and then click Save Changes to commit the changes.
7. Restart the role.
8. Restart the service.

Limiting the Speed of Compactions
You can limit the speed at which HBase compactions run, by configuring
hbase.regionserver.throughput.controller and its related settings. The default controller is
org.apache.hadoop.hbase.regionserver.throttle.PressureAwareCompactionThroughputController,
which uses the following algorithm:

1. If compaction pressure is greater than 1.0, there is no speed limitation.
2. In off-peak hours, use a fixed throughput limitation, configured using

hbase.hstore.compaction.throughput.offpeak, hbase.offpeak.start.hour, and
hbase.offpeak.end.hour.

3. In normal hours, the max throughput is tuned between
hbase.hstore.compaction.throughput.higher.bound and
hbase.hstore.compaction.throughput.lower.bound (which default to 20 MB/sec and 10 MB/sec
respectively), using the following formula, where compactionPressure is between 0.0 and 1.0. The
compactionPressure refers to the number of store files that require compaction.

lower + (higher - lower) * compactionPressure

To disable compaction speed limits, set hbase.regionserver.throughput.controller to
org.apache.hadoop.hbase.regionserver.throttle.NoLimitThroughputController.

36 | Apache HBase Guide

Configuration Settings for HBase

Configure the Compaction Speed Using Cloudera Manager

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select HBase or HBase Service-Wide.
4. Search for HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml. Paste the relevant

properties from the following example into the field and modify the values as needed:

<property>
 <name>hbase.hstore.compaction.throughput.higher.bound</name>
 <value>20971520</value>
 <description>The default is 20 MB/sec</description>
</property>
<property>
 <name>hbase.hstore.compaction.throughput.lower.bound</name>
 <value>10485760</value>
 <description>The default is 10 MB/sec</description>
</property>
<property>
 <name>hbase.hstore.compaction.throughput.offpeak</name>
 <value>9223372036854775807</value>
 <description>The default is Long.MAX_VALUE, which effectively means no
limitation</description>
</property>
<property>
 <name>hbase.offpeak.start.hour</name>
 <value>20</value>
 <description>When to begin using off-peak compaction settings, expressed as an integer
 between 0 and 23.</description>
</property>
<property>
 <name>hbase.offpeak.end.hour</name>
 <value>6</value>
 <description>When to stop using off-peak compaction settings, expressed as an integer
 between 0 and 23.</description>
</property>
<property>
 <name>hbase.hstore.compaction.throughput.tune.period</name>
 <value>60000</value>
</property>

5. Enter a Reason for change, and then click Save Changes to commit the changes.
6. Restart the service.

Configuring and Using the HBase REST API
You can use the HBase REST API to interact with HBase services, tables, and regions using HTTP endpoints.

Installing the REST Server

The HBase REST server is an optional component of HBase and is not installed by default.

Installing the REST Server Using Cloudera Manager

Minimum Required Role: Full Administrator

1. Click the Clusters tab.
2. Select Clusters > HBase.
3. Click the Instances tab.
4. Click Add Role Instance.
5. Under HBase REST Server, click Select Hosts.
6. Select one or more hosts to serve the HBase Rest Server role. Click Continue.

Apache HBase Guide | 37

Configuration Settings for HBase

7. Select the HBase Rest Server roles. Click Actions For Selected > Start.

Using the REST API

The HBase REST server exposes endpoints that provide CRUD (create, read, update, delete) operations for each HBase
process, as well as tables, regions, and namespaces. For a given endpoint, the HTTP verb controls the type of operation
(create, read, update, or delete).

Note: curl Command Examples

The examples in these tables use the curl command, and follow these guidelines:

• The HTTP verb is specified using the -X parameter.
• For GET queries, the Accept header is set to text/xml, which indicates that the client (curl)

expects to receive responses formatted in XML. You can set it to text/json to receive JSON
responses instead.

• For PUT, POST, and DELETE queries, the Content-Type header should be set only if data is also
being sent with the -d parameter. If set, it should match the format of the data being sent, to
enable the REST server to deserialize the data correctly.

For more details about the curl command, see the documentation for the curl version that ships
with your operating system.

These examples use port 20050, which is the default port for the HBase REST server when you use Cloudera Manager.
If you use CDH without Cloudera Manager, the default port for the REST server is 8080.

38 | Apache HBase Guide

Configuration Settings for HBase

Table 7: Cluster-Wide Endpoints

ExampleDescriptionHTTP VerbEndpoint

curl -vi -X GET
\

Version of HBase running on
this cluster

GET/version/cluster

 -H
"Accept: text/
xml" \
 "http:/
/
example.com:20550/
version/cluster"

curl -vi -X GET
\

Cluster statusGET/status/cluster

 -H
"Accept: text/
xml" \
 "http:/
/
example.com:20550/
status/cluster"

curl -vi -X GET
\

List of all nonsystem tablesGET/

 -H
"Accept: text/
xml" \
 "http:/
/
example.com:20550/
"

Table 8: Namespace Endpoints

ExampleDescriptionHTTP VerbEndpoint

curl -vi -X GET
\

List all namespaces.GET/namespaces

 -H
"Accept: text/
xml" \
 "http:/
/
example.com:20550/
namespaces/"

curl -vi -X GET
\

Describe a specific
namespace.

GET/namespaces/namespace

 -H
"Accept: text/
xml" \
 "http:/
/
example.com:20550/
namespaces/
special_ns"

curl -vi -X POST
 \

Create a new namespace.POST/namespaces/namespace

 -H
"Accept: text/
xml" \

Apache HBase Guide | 39

Configuration Settings for HBase

ExampleDescriptionHTTP VerbEndpoint

"example.com:20550/
namespaces/
special_ns"

curl -vi -X GET
\

List all tables in a specific
namespace.

GET/namespaces/namespace/tables

 -H
"Accept: text/
xml" \
 "http:/
/
example.com:20550/
namespaces/
special_ns/
tables"

curl -vi -X PUT
\

Alter an existing namespace.
Currently not used.

PUT/namespaces/namespace

 -H
"Accept: text/
xml" \
 "http:/
/
example.com:20550/
namespaces/
special_ns"

curl -vi -X
DELETE \

Delete a namespace. The
namespace must be empty.

DELETE/namespaces/namespace

 -H
"Accept: text/
xml" \

"example.com:20550/
namespaces/
special_ns"

Table 9: Table Endpoints

ExampleDescriptionHTTP VerbEndpoint

curl -vi -X GET
\

Describe the schema of the
specified table.

GET/table/schema

 -H
"Accept: text/
xml" \
 "http:/
/
example.com:20550/
users/schema"

curl -vi -X POST \
 -H "Accept:

Create a new table, or
replace an existing table's

POST/table/schema

 text/xml" \

40 | Apache HBase Guide

Configuration Settings for HBase

ExampleDescriptionHTTP VerbEndpoint

 -H
"Content-Type: text/

schema with the provided
schema

xml" \
 -d '<?xml
version="1.0"
encoding="UTF-8"?><TableSchema

name="users"><ColumnSchema
 name="cf" /></
TableSchema>' \
 "http://
example.com:20550/
users/schema"

curl -vi -X PUT \
 -H "Accept:

Update an existing table
with the provided schema
fragment

UPDATE/table/schema

 text/xml" \
 -H
"Content-Type: text/
xml" \
 -d '<?xml
version="1.0"
encoding="UTF-8"?><TableSchema

name="users"><ColumnSchema
 name="cf"
KEEP_DELETED_CELLS="true"
 /></TableSchema>' \
 "http://
example.com:20550/
users/schema"

curl -vi -X
DELETE \

Delete the table. You must
use the table/schema

endpoint, not just table/.

DELETE/table/schema

 -H
"Accept: text/
xml" \
 "http:/
/
example.com:20550/
users/schema"

curl -vi -X GET
\

List the table regions.GET/table/regions

 -H
"Accept: text/
xml" \
 "http:/
/
example.com:20550/
users/regions"

Table 10: Endpoints for Get Operations

ExampleDescriptionHTTP VerbEndpoint

Latest version:

curl -vi -X GET
\

Get the value of a single
row. Values are Base-64
encoded.

GET/table/row/column:qualifier/timestamp

 -H
"Accept: text/
xml" \
 "http:/
/
example.com:20550/
users/row1"

Apache HBase Guide | 41

Configuration Settings for HBase

ExampleDescriptionHTTP VerbEndpoint

Specific timestamp:

curl -vi -X GET
\
 -H
"Accept: text/
xml" \
 "http:/
/
example.com:20550/
users/row1/cf:a/
1458586888395"

Latest version:

curl -vi -X GET
\

Get the value of a single
column. Values are Base-64
encoded.

 -H
"Accept: text/
xml" \
 "http:/
/
example.com:20550/
users/row1/cf:a"

Specific version:

curl -vi -X GET
\
 -H
"Accept: text/
xml" \

"http://
example.com:20550/
users/row1/cf:a/
"

curl -vi -X GET
\

Multi-Get a specified
number of versions of a
given cell. Values are
Base-64 encoded.

/table/row/column:qualifier?v=number_of_versions

 -H
"Accept: text/
xml" \
 "http:/
/
example.com:20550/
users/row1/
cf:a?v=2"

Table 11: Endpoints for Scan Operations

ExampleDescriptionHTTP VerbEndpoint

curl -vi -X PUT
\

Get a Scanner object.
Required by all other Scan
operations. Adjust the batch

PUT/table/scanner/

 -H
"Accept: text/parameter to the number of xml" \

rows the scan should return -H
in a batch. See the next "Content-Type:

text/xml" \example for adding filters to -d
your Scanner. The scanner '<Scanner
endpoint URL is returned as batch="1"/>' \

42 | Apache HBase Guide

Configuration Settings for HBase

ExampleDescriptionHTTP VerbEndpoint

 "http:/
/

the Location in the HTTP
response. The other
examples in this table example.com:20550/

users/scanner/"assume that the Scanner
endpoint is
http://example.com:20550/users/scanner/145869072824375522207.

curl -vi -X PUT
\

To supply filters to the
Scanner object or configure
the Scanner in any other

PUT/table/scanner/

 -H
"Accept: text/way, you can create a text xml" \

file and add your filter to the -H
file. For example, to return "Content-Type:text/

xml" \only rows for which keys -d
start with u123 and use a
batch size of 100:

<Scanner
batch="100">

@filter.txt \
 "http:/
/
example.com:20550/
users/scanner/"

 <filter>
 {
 "type":
"PrefixFilter",
 "value":
"u123"
 }
 </filter>
</Scanner>

Pass the file to the -d
argument of the curl
request.

curl -vi -X GET
\

Get the next batch from the
scanner. Cell values are
byte-encoded. If the scanner

GET/table/scanner/scanner_id

 -H
"Accept: text/

Apache HBase Guide | 43

Configuration Settings for HBase

ExampleDescriptionHTTP VerbEndpoint

xml" \
 "http:/

is exhausted, HTTP status
204 is returned.

/
example.com:20550/
users/scanner/
145869072824375522207"

curl -vi -X
DELETE \

Deletes the scanner and
frees the resources it was
using.

DELETE/table/scanner/scanner_id

 -H
"Accept: text/
xml" \
 "http:/
/
example.com:20550/
users/scanner/
145869072824375522207"

Table 12: Endpoints for Put Operations

ExampleDescriptionHTTP VerbEndpoint

XML:

curl -vi -X PUT
\

Write a row to a table. The
row, column qualifier, and
value must each be Base-64
encoded. To encode a string,

PUT/table/row_key/

 -H
you can use the base64 "Accept: text/

xml" \command-line utility. To
 -H decode the string, use "Content-Type:

base64 -d. The payload is text/xml" \
 -d in the --data argument, so
'<?xml the/users/fakerow value version="1.0"

is a placeholder. Insert encoding="UTF-8"
multiple rows by adding

standalone="yes"?><CellSet><Rowthem to the <CellSet>
element. You can also save key="cm93NQo="><Cell
the data to be inserted to a

column="Y2Y6ZQo=">dmFsdWU1Cg==</file and pass it to the -d Cell></Row></
parameter with the syntax
-d @filename.txt.

CellSet>' \
 "http:/
/
example.com:20550/
users/fakerow"

JSON:

curl -vi -X PUT
\
 -H
"Accept: text/
json" \
 -H
"Content-Type:
text/json" \
 -d
'{"Row":[{"key":"cm93NQo=",
 "Cell":
[{"column":"Y2Y6ZQo=",

"$":"dmFsdWU1Cg=="}]}]}''
 \

44 | Apache HBase Guide

Configuration Settings for HBase

ExampleDescriptionHTTP VerbEndpoint

"example.com:20550/
users/fakerow"

Configuring HBase MultiWAL Support
CDH supports multiple write-ahead logs (MultiWAL) for HBase. (For more information, see HBASE-5699.)

Without MultiWAL support, each region on a RegionServer writes to the same WAL. A busy RegionServer might host
several regions, and each write to the WAL is serial because HDFS only supports sequentially written files. This causes
the WAL to negatively impact performance.

MultiWAL allows a RegionServer to write multipleWAL streams in parallel by using multiple pipelines in the underlying
HDFS instance, which increases total throughput during writes.

Note: In the current implementation ofMultiWAL, incoming edits are partitioned by Region. Therefore,
throughput to a single Region is not increased.

To configure MultiWAL for a RegionServer, set the value of the property hbase.wal.provider to multiwal and
restart the RegionServer. To disable MultiWAL for a RegionServer, unset the property and restart the RegionServer.

RegionServers using the original WAL implementation and those using theMultiWAL implementation can each handle
recovery of either set of WALs, so a zero-downtime configuration update is possible through a rolling restart.

Configuring MultiWAL Support Using Cloudera Manager

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope > RegionServer.
4. Select Category >Main.
5. SetWAL Provider toMultiWAL.
6. Set the Per-RegionServer Number of WAL Pipelines to a value greater than 1.
7. Enter a Reason for change, and then click Save Changes to commit the changes.
8. Restart the RegionServer roles.

Storing Medium Objects (MOBs) in HBase
Data comes in many sizes, and saving all of your data in HBase, including binary data such as images and documents,
is convenient. HBase can technically handle binary objects with cells that are up to 10 MB in size. However, HBase
normal read and write paths are optimized for values smaller than 100 KB in size. When HBase handles large numbers
of values up to 10 MB (medium objects, or MOBs), performance is degraded because of write amplification caused by
splits and compactions.

One way to solve this problem is by storing objects larger than 100KB directly in HDFS, and storing references to their
locations in HBase. CDH includes optimizations for storing MOBs directly in HBase based on HBASE-11339.

To use MOB, you must use HFile version 3. Optionally, you can configure the MOB file reader's cache settings
Service-Wide and for each RegionServer, and then configure specific columns to hold MOB data. No change to client
code is required for HBase MOB support.

Enabling HFile Version 3 Using Cloudera Manager

Minimum Required Role: Full Administrator

Apache HBase Guide | 45

Configuration Settings for HBase

https://issues.apache.org/jira/browse/HBASE-5699
https://issues.apache.org/jira/browse/HBASE-11339

To enable HFile version 3 using Cloudera Manager, edit the HBase Service Advanced Configuration Snippet for HBase
Service-Wide.

1. Go to the HBase service.
2. Click the Configuration tab.
3. Search for the property HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml.
4. Paste the following XML into the Value field and save your changes.

<property>
 <name>hfile.format.version</name>
 <value>3</value>
</property>

Changes will take effect after the next major compaction.

Configuring Columns to Store MOBs

Use the following options to configure a column to store MOBs:

• IS_MOB is a Boolean option, which specifies whether or not the column can store MOBs.
• MOB_THRESHOLD configures the number of bytes at which an object is considered to be a MOB. If you do not

specify a value for MOB_THRESHOLD, the default is 100 KB. If you write a value larger than this threshold, it is
treated as a MOB.

You can configure a column to store MOBs using the HBase Shell or the Java API.

Using HBase Shell:

hbase> create 't1', {NAME => 'f1', IS_MOB => true, MOB_THRESHOLD => 102400}
hbase> alter 't1', {NAME => 'f1', IS_MOB => true, MOB_THRESHOLD =>
102400}

Using the Java API:

HColumnDescriptor hcd = new HColumnDescriptor(“f”);
hcd.setMobEnabled(true);
hcd.setMobThreshold(102400L);

HBase MOB Cache Properties

Because there can be a large number of MOB files at any time, as compared to the number of HFiles, MOB files are
not always kept open. The MOB file reader cache is a LRU cache which keeps the most recently used MOB files open.

The following properties are available for tuning the HBase MOB cache.

Table 13: HBase MOB Cache Properties

DescriptionDefaultProperty

The of opened file handlers to cache.
A larger value will benefit reads by

1000hbase.mob.file.cache.size

providing more file handlers per MOB
file cache and would reduce frequent
file opening and closing of files.
However, if the value is too high,
errors such as "Too many opened file
handlers" may be logged.

The amount of time in seconds after
a file is opened before theMOB cache

3600hbase.mob.cache.evict.period

46 | Apache HBase Guide

Configuration Settings for HBase

DescriptionDefaultProperty

evicts cached files. The default value
is 3600 seconds.

The ratio, expressed as a float
between 0.0 and 1.0, that controls

0.5fhbase.mob.cache.evict.remain.ratio

howmanyfiles remain cached after an
eviction is triggered due to the number
of cached files exceeding the
hbase.mob.file.cache.size. The
default value is 0.5f.

Configuring the MOB Cache Using Cloudera Manager

To configure the MOB cache within Cloudera Manager, edit the HBase Service advanced configuration snippet for the
cluster. Cloudera recommends testing your configuration with the default settings first.

1. Go to the HBase service.
2. Click the Configuration tab.
3. Search for the property HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml.
4. Paste your configuration into the Value field and save your changes. The following example sets the

hbase.mob.cache.evict.period property to 5000 seconds. See Table 13: HBase MOB Cache Properties on
page 46 for a full list of configurable properties for HBase MOB.

<property>
 <name>hbase.mob.cache.evict.period</name>
 <value>5000</value>
</property>

5. Restart your cluster for the changes to take effect.

Testing MOB Storage and Retrieval Performance

HBase provides the Java utility org.apache.hadoop.hbase.IntegrationTestIngestMOB to assist with testing
the MOB feature and deciding on appropriate configuration values for your situation. The utility is run as follows:

$ sudo -u hbase hbase org.apache.hadoop.hbase.IntegrationTestIngestMOB \
 -threshold 102400 \
 -minMobDataSize 512 \
 -maxMobDataSize 5120

• threshold is the threshold at which cells are considered to be MOBs. The default is 1 kB, expressed in bytes.
• minMobDataSize is the minimum value for the size of MOB data. The default is 512 B, expressed in bytes.
• maxMobDataSize is the maximum value for the size of MOB data. The default is 5 kB, expressed in bytes.

Compacting MOB Files Manually

You can trigger manual compaction of MOB files manually, rather than waiting for them to be triggered by your
configuration, using the compact and major_compact HBase Shell commands. For MOB, each of these commands
requires these parameters in the following order:

1. The table name.
2. An optional column family name or nil.
3. The keyword MOB.

Apache HBase Guide | 47

Configuration Settings for HBase

If the column family is provided, only that column family's files are compacted. Otherwise, all MOB-enabled column
families' files are compacted.

hbase> compact 't1', nil, 'MOB'
hbase> compact 't1', 'c1', 'MOB'
hbase> major_compact 't1', nil, 'MOB'
hbase> major_compact 't1', 'c1', 'MOB'

This functionality is also available using the API, using the Admin.compact and Admin.majorCompactmethods.

Configuring the Storage Policy for the Write-Ahead Log (WAL)
In CDH 5.7.0 and higher, you can configure the preferred HDFS storage policy for HBase's write-ahead log (WAL) replicas.
This feature allows you to tune HBase's use of SSDs to your available resources and the demands of your workload.

These instructions assume that you have followed the instructions in Configuring Storage Directories for DataNodes
and that your cluster has SSD storage available to HBase. If HDFS is not configured to use SSDs, these configuration
changes will have no effect on HBase. The following policies are available:

• NONE: no preference about where the replicas are written.
• ONE_SSD: place one replica on SSD storage and the remaining replicas in default storage. This allows you to derive

some benefit from SSD storage even if it is a scarce resource in your cluster.

Warning: ONE_SSDmode has not been thoroughly tested with HBase and is not recommended.

• ALL_SSD: place all replicas on SSD storage.

Configuring the Storage Policy for WALs Using Cloudera Manager

Minimum Required Role: Full Administrator

1. Go to the HBase service.
2. Click the Configuration tab.
3. Search for the propertyWAL HSM Storage Policy.
4. Select your desired storage policy.
5. Save your changes. Restart all HBase roles.

Changes will take effect after the next major compaction.

Configuring the Storage Policy for WALs Using the Command Line

Important:

• Follow these command-line instructions on systems that do not use Cloudera Manager.
• This information applies specifically to CDH 6.3.x. See Cloudera Documentation for information

specific to other releases.

Paste the following XML into hbase-site.xml. Uncomment the <value> line that corresponds to your desired storage
policy.

<property>
 <name>hbase.wal.storage.policy</name>
 <value>NONE</value>
 <!--<value>ONE_SSD</value>-->
 <!--<value>ALL_SSD</value>-->
</property>

48 | Apache HBase Guide

Configuration Settings for HBase

http://www.cloudera.com/content/support/en/documentation.html

Warning: ONE_SSDmode has not been thoroughly tested with HBase and is not recommended.

Restart HBase. Changes will take effect for a given region during its next major compaction.

Apache HBase Guide | 49

Configuration Settings for HBase

Managing HBase

Cloudera Manager requires certain additional steps to set up and configure the HBase service.

Creating the HBase Root Directory
Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

When adding the HBase service, the Add Service wizard automatically creates a root directory for HBase in HDFS. If
you quit the Add Service wizard or it does not finish, you can create the root directory outside the wizard by doing
these steps:

1. Choose Create Root Directory from the Actionsmenu in the HBase > Status tab.
2. Click Create Root Directory again to confirm.

Graceful Shutdown
Minimum Required Role: Operator (also provided by Configurator, Cluster Administrator, Full Administrator)

A graceful shutdown of an HBase RegionServer allows the regions hosted by that RegionServer to be moved to other
RegionServers before stopping the RegionServer. Cloudera Manager provides the following configuration options to
perform a graceful shutdown of either an HBase RegionServer or the entire service.

To increase the speed of a rolling restart of the HBase service, set the Region Mover Threads property to a higher
value. This increases the number of regions that can be moved in parallel, but places additional strain on the HMaster.
In most cases, Region Mover Threads should be set to 5 or lower.

Gracefully Shutting Down an HBase RegionServer

1. Go to the HBase service.
2. Click the Instances tab.
3. From the list of Role Instances, select the RegionServer you want to shut down gracefully.
4. Select Actions for Selected > Decommission (Graceful Stop).
5. Cloudera Manager attempts to gracefully shut down the RegionServer for the interval configured in the Graceful

Shutdown Timeout configuration option, which defaults to 3 minutes. If the graceful shutdown fails, Cloudera
Manager forcibly stops the process by sending a SIGKILL (kill -9) signal. HBase will perform recovery actions
on regions that were on the forcibly stopped RegionServer.

6. If you cancel the graceful shutdown before the Graceful Shutdown Timeout expires, you can still manually stop
a RegionServer by selecting Actions for Selected > Stop, which sends a SIGTERM (kill -5) signal.

Gracefully Shutting Down the HBase Service

1. Go to the HBase service.
2. Select Actions > Stop. This tries to perform an HBase Master-driven graceful shutdown for the length of the

configured Graceful Shutdown Timeout (three minutes by default), after which it abruptly shuts down the whole
service.

Configuring the Graceful Shutdown Timeout Property

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

This timeout only affects a graceful shutdown of the entire HBase service, not individual RegionServers. Therefore, if
you have a large cluster with many RegionServers, you should strongly consider increasing the timeout from its default
of 180 seconds.

50 | Apache HBase Guide

Managing HBase

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope > HBASE-1 (Service Wide)
4. Use the Search box to search for the Graceful Shutdown Timeout property and edit the value.
5. Click Save Changes to save this setting.

Configuring the HBase Thrift Server Role
Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

The Thrift Server role is not added by default when you install HBase, but it is required before you can use certain other
features such as the Hue HBase browser. To add the Thrift Server role:

1. Go to the HBase service.
2. Click the Instances tab.
3. Click the Add Role Instances button.
4. Select the host(s) where you want to add the Thrift Server role (you only need one for Hue) and click Continue.

The Thrift Server role should appear in the instances list for the HBase server.
5. Select the Thrift Server role instance.
6. Select Actions for Selected > Start.

Enabling HBase Indexing
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

HBase indexing is dependent on the Key-Value Store Indexer service. The Key-Value Store Indexer service uses the Lily
HBase Indexer Service to index the stream of records being added to HBase tables. Indexing allows you to query data
stored in HBase with the Solr service.

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope > HBASE-1 (Service Wide)
4. Select Category > Backup.
5. Select the Enable Replication and Enable Indexing properties.
6. Click Save Changes.

Adding a Custom Coprocessor
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

The HBase coprocessor framework provides a way to extend HBase with custom functionality. To configure these
properties in Cloudera Manager:

1. Select the HBase service.
2. Click the Configuration tab.
3. Select Scope > All.
4. Select Category > All.
5. Type HBase Coprocessor in the Search box.
6. You can configure the values of the following properties:

• HBase Coprocessor Abort on Error (Service-Wide)
• HBase Coprocessor Master Classes (Master Default Group)
• HBase Coprocessor Region Classes (RegionServer Default Group)

7. Enter a Reason for change, and then click Save Changes to commit the changes.

Apache HBase Guide | 51

Managing HBase

Disabling Loading of Coprocessors
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

In CDH 5.7 and higher, you can disable loading of system (HBase-wide) or user (table-wide) coprocessors. Cloudera
recommends against disabling loading of system coprocessors, because HBase security functionality is implemented
using system coprocessors. However, disabling loading of user coprocessors may be appropriate.

1. Select the HBase service.
2. Click the Configuration tab.
3. Search for HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml.
4. To disable loading of all coprocessors, add a new property with the name hbase.coprocessor.enabled and

set its value to false. Cloudera does not recommend this setting.
5. To disable loading of user coprocessors, add a newpropertywith the namehbase.coprocessor.user.enabled

and set its value to false.
6. Enter a Reason for change, and then click Save Changes to commit the changes.

Enabling Hedged Reads on HBase
Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope > HBASE-1 (Service-Wide).
4. Select Category > Performance.
5. Configure the HDFS Hedged Read Threadpool Size and HDFS Hedged Read Delay Threshold properties. The

descriptions for each of these properties on the configuration pages provide more information.
6. Enter a Reason for change, and then click Save Changes to commit the changes.

Moving HBase Master Role to Another Host
Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

1. Select the HBase service in Cloudera Manager.
2. Click the Instances tab.
3. Click Add Role Instances to add role instances to HBase.
4. Choose the desired new host underMaster.
5. Click Continue.
6. Start the newly added HBase Master role.

As a results the state of this role becomes Started.

7. Wait until the type of the newly added HBase Master role becomes Master (Backup).
8. Stop any other non-active HBase Master role instances.

Note: This step does not impact HBase. It is required to ensure that the newly created HBase
Master role backup will be chosen to be the new active HBase Master role.

9. Stop the remaining active HBase Master role.

As a result, the type of the newly added HBase Master role automatically becomes Master (Active).

10. Delete the old HBase Master role instances on hosts that are not wanted.

52 | Apache HBase Guide

Managing HBase

Advanced Configuration for Write-Heavy Workloads
HBase includes several advanced configuration parameters for adjusting the number of threads available to service
flushes and compactions in the presence of write-heavy workloads. Tuning these parameters incorrectly can severely
degrade performance and is not necessary for most HBase clusters. If you use Cloudera Manager, configure these
options using the HBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml.

hbase.hstore.flusher.count

The number of threads available to flush writes from memory to disk. Never increase
hbase.hstore.flusher.count to more of 50% of the number of disks available to HBase. For example, if you
have 8 solid-state drives (SSDs), hbase.hstore.flusher.count should never exceed 4. This allows scanners
and compactions to proceed even in the presence of very high writes.

hbase.regionserver.thread.compaction.large andhbase.regionserver.thread.compaction.small

The number of threads available to handle small and large compactions, respectively. Never increase either of these
options to more than 50% of the number of disks available to HBase.

Ideally, hbase.regionserver.thread.compaction.small should be greater than or equal to
hbase.regionserver.thread.compaction.large, since the large compaction threads domore intense work
and will be in use longer for a given operation.

In addition to the above, if you use compression on some column families, more CPU will be used when flushing these
column families to disk during flushes or compaction. The impact on CPU usage depends on the size of the flush or the
amount of data to be decompressed and compressed during compactions.

Starting and Stopping HBase
Use these instructions to start, stop, restart, rolling restart, or decommission HBase clusters or individual hosts.

Starting or Restarting HBase

You can start HBase hosts individually or as an entire cluster.

1. Go to the HBase service.
2. Click the Actions button and select Start.
3. To restart a running cluster, click Actions and select Restart or Rolling Restart. A rolling restart, which restarts

each RegionServer, one at a time, after a grace period. To configure the grace period, see Configuring the Graceful
Shutdown Timeout Property on page 50.

4. The Thrift service has no dependencies and can be restarted at any time. To stop or restart the Thrift service:

• Go to the HBase service.
• Select Instances.
• Select the HBase Thrift Server instance.
• Select Actions for Selected and select either Stop or Restart.

Stopping HBase

You can stop a single HBase host, all hosts of a given type, or all hosts in the cluster.

1. To stop or decommission a single RegionServer:

a. Go to the HBase service.
b. Click the Instances tab.
c. From the list of Role Instances, select the RegionServer or RegionServers you want to stop or decommission.
d. Select Actions for Selected and select either Decommission (Graceful Stop) or Stop.

• Graceful Stop causes the regions to be redistributed to other RegionServers, increasing availability during
the RegionServer outage. Cloudera Manager waits for an interval determined by the Graceful Shutdown

Apache HBase Guide | 53

Managing HBase

timeout interval, which defaults to three minutes. If the graceful stop does not succeed within this
interval, the RegionServer is stopped with a SIGKILL (kill -9) signal. Recovery will be initiated on
affected regions.

• Stop happens immediately and does not redistribute the regions. It issues a SIGTERM (kill -5) signal.

2. To stop or decommission a single HMaster, select the Master and go through the same steps as above.
3. To stop or decommission the entire cluster, select the Actions button at the top of the screen (not Actions for

selected) and select Decommission (Graceful Stop) or Stop.

Accessing HBase by using the HBase Shell
After you have started HBase, you can access the database in an interactive way by using the HBase Shell, which is a
command interpreter for HBase which is written in Ruby. Always run HBase administrative commands such as the
HBase Shell, hbck, or bulk-load commands as the HBase user (typically hbase).

hbase shell

HBase Shell Overview

• To get help and to see all available commands, use the help command.
• To get help on a specific command, use help "command". For example:

hbase> help "create"

• To remove an attribute from a table or column family or reset it to its default value, set its value to nil. For
example, use the following command to remove the KEEP_DELETED_CELLS attribute from the f1 column of the
users table:

hbase> alter 'users', { NAME => 'f1', KEEP_DELETED_CELLS => nil }

• To exit the HBase Shell, type quit.

Setting Virtual Machine Options for HBase Shell

HBase in CDH 5.2 and higher allows you to set variables for the virtual machine running HBase Shell, by using the
HBASE_SHELL_OPTS environment variable. This example sets several options in the virtual machine.

$ HBASE_SHELL_OPTS="-verbose:gc -XX:+PrintGCApplicationStoppedTime -XX:+PrintGCDateStamps

 -XX:+PrintGCDetails -Xloggc:$HBASE_HOME/logs/gc-hbase.log" ./bin/hbase shell

Scripting with HBase Shell

CDH 5.2 and higher include non-interactive mode. This mode allows you to use HBase Shell in scripts, and allow the
script to access the exit status of the HBase Shell commands. To invoke non-interactive mode, use the -n or
--non-interactive switch. This small example script shows how to use HBase Shell in a Bash script.

#!/bin/bash
echo 'list' | hbase shell -n
status=$?
if [$status -ne 0]; then
 echo "The command may have failed."
fi

Successful HBase Shell commands return an exit status of 0. However, an exit status other than 0 does not necessarily
indicate a failure, but should be interpreted as unknown. For example, a command may succeed, but while waiting for
the response, the clientmay lose connectivity. In that case, the client has noway to know the outcomeof the command.

54 | Apache HBase Guide

Managing HBase

In the case of a non-zero exit status, your script should check to be sure the command actually failed before taking
further action.

CDH 5.7 and higher include the get_splits command, which returns the split points for a given table:

hbase> get_splits 't2'
Total number of splits = 5

=> ["", "10", "20", "30", "40"]

You can also write Ruby scripts for use with HBase Shell. Example Ruby scripts are included in the
hbase-examples/src/main/ruby/ directory.

Using HBase Command-Line Utilities
Besides the HBase Shell, HBase includes several other command-line utilities, which are available in the hbase/bin/
directory of each HBase host. This topic provides basic usage instructions for the most commonly used utilities.

PerformanceEvaluation

The PerformanceEvaluation utility allows you to run several preconfigured tests on your cluster and reports its
performance. To run the PerformanceEvaluation tool in CDH 5.1 and higher, use the bin/hbase pe command.
In CDH 5.0 and lower, use the command bin/hbase org.apache.hadoop.hbase.PerformanceEvaluation.

For usage instructions, run the command with no arguments. The following output shows the usage instructions for
the PerformanceEvaluation tool in CDH 5.7. Options and commands available depend on the CDH version.

$ hbase pe

Usage: java org.apache.hadoop.hbase.PerformanceEvaluation \
 <OPTIONS> [-D<property=value>]* <command> <nclients>

Options:
 nomapred Run multiple clients using threads (rather than use mapreduce)
 rows Rows each client runs. Default: One million
 size Total size in GiB. Mutually exclusive with --rows. Default: 1.0.
 sampleRate Execute test on a sample of total rows. Only supported by randomRead.
 Default: 1.0
 traceRate Enable HTrace spans. Initiate tracing every N rows. Default: 0
 table Alternate table name. Default: 'TestTable'
 multiGet If >0, when doing RandomRead, perform multiple gets instead of single
 gets.
 Default: 0
 compress Compression type to use (GZ, LZO, ...). Default: 'NONE'
 flushCommits Used to determine if the test should flush the table. Default: false
 writeToWAL Set writeToWAL on puts. Default: True
 autoFlush Set autoFlush on htable. Default: False
 oneCon all the threads share the same connection. Default: False
 presplit Create presplit table. Recommended for accurate perf analysis (see
 guide). Default: disabled
 inmemory Tries to keep the HFiles of the CF inmemory as far as possible. Not
 guaranteed that reads are always served from memory. Default: false
 usetags Writes tags along with KVs. Use with HFile V3. Default: false
 numoftags Specify the no of tags that would be needed. This works only if usetags
 is true.
 filterAll Helps to filter out all the rows on the server side there by not returning
 anything back to the client. Helps to check the server side performance.
 Uses FilterAllFilter internally.
 latency Set to report operation latencies. Default: False
 bloomFilter Bloom filter type, one of [NONE, ROW, ROWCOL]
 valueSize Pass value size to use: Default: 1024
 valueRandom Set if we should vary value size between 0 and 'valueSize'; set on read
 for stats on size: Default: Not set.
 valueZipf Set if we should vary value size between 0 and 'valueSize' in zipf form:
 Default: Not set.
 period Report every 'period' rows: Default: opts.perClientRunRows / 10
 multiGet Batch gets together into groups of N. Only supported by randomRead.
 Default: disabled
 addColumns Adds columns to scans/gets explicitly. Default: true
 replicas Enable region replica testing. Defaults: 1.
 splitPolicy Specify a custom RegionSplitPolicy for the table.
 randomSleep Do a random sleep before each get between 0 and entered value. Defaults: 0

Apache HBase Guide | 55

Managing HBase

 columns Columns to write per row. Default: 1
 caching Scan caching to use. Default: 30

 Note: -D properties will be applied to the conf used.
 For example:
 -Dmapreduce.output.fileoutputformat.compress=true
 -Dmapreduce.task.timeout=60000

Command:
 append Append on each row; clients overlap on keyspace so some concurrent
 operations
 checkAndDelete CheckAndDelete on each row; clients overlap on keyspace so some concurrent
 operations
 checkAndMutate CheckAndMutate on each row; clients overlap on keyspace so some concurrent
 operations
 checkAndPut CheckAndPut on each row; clients overlap on keyspace so some concurrent
 operations
 filterScan Run scan test using a filter to find a specific row based on it's value
 (make sure to use --rows=20)
 increment Increment on each row; clients overlap on keyspace so some concurrent
 operations
 randomRead Run random read test
 randomSeekScan Run random seek and scan 100 test
 randomWrite Run random write test
 scan Run scan test (read every row)
 scanRange10 Run random seek scan with both start and stop row (max 10 rows)
 scanRange100 Run random seek scan with both start and stop row (max 100 rows)
 scanRange1000 Run random seek scan with both start and stop row (max 1000 rows)
 scanRange10000 Run random seek scan with both start and stop row (max 10000 rows)
 sequentialRead Run sequential read test
 sequentialWrite Run sequential write test

Args:
 nclients Integer. Required. Total number of clients (and HRegionServers)
 running: 1 <= value <= 500
Examples:
 To run a single client doing the default 1M sequentialWrites:
 $ bin/hbase org.apache.hadoop.hbase.PerformanceEvaluation sequentialWrite 1
 To run 10 clients doing increments over ten rows:
 $ bin/hbase org.apache.hadoop.hbase.PerformanceEvaluation --rows=10 --nomapred increment 10

LoadTestTool

The LoadTestTool utility load-tests your cluster by performing writes, updates, or reads on it. To run the
LoadTestTool in CDH 5.1 and higher, use the bin/hbase ltt command . In CDH 5.0 and lower, use the command
bin/hbase org.apache.hadoop.hbase.util.LoadTestTool. To print general usage information, use the -h
option. Options and commands available depend on the CDH version.

$ bin/hbase ltt -h

Options:
 -batchupdate Whether to use batch as opposed to separate updates for every
column
 in a row
 -bloom <arg> Bloom filter type, one of [NONE, ROW, ROWCOL]
 -compression <arg> Compression type, one of [LZO, GZ, NONE, SNAPPY, LZ4]
 -data_block_encoding <arg> Encoding algorithm (e.g. prefix compression) to use for data
blocks
 in the test column family, one of
 [NONE, PREFIX, DIFF, FAST_DIFF, PREFIX_TREE].
 -deferredlogflush Enable deferred log flush.
 -encryption <arg> Enables transparent encryption on the test table, one of [AES]
 -families <arg> The name of the column families to use separated by comma
 -generator <arg> The class which generates load for the tool. Any args for this
class
 can be passed as colon separated after class name
 -h,--help Show usage
 -in_memory Tries to keep the HFiles of the CF inmemory as far as possible.
 Not
 guaranteed that reads are always served from inmemory
 -init_only Initialize the test table only, don't do any loading
 -key_window <arg> The 'key window' to maintain between reads and writes for concurrent

 write/read workload. The default is 0.
 -max_read_errors <arg> The maximum number of read errors to tolerate before terminating
 all
 reader threads. The default is 10.
 -mob_threshold <arg> Desired cell size to exceed in bytes that will use the MOB write
 path

56 | Apache HBase Guide

Managing HBase

 -multiget_batchsize <arg> Whether to use multi-gets as opposed to separate gets for every
 column in a row
 -multiput Whether to use multi-puts as opposed to separate puts for every
 column in a row
 -num_keys <arg> The number of keys to read/write
 -num_regions_per_server <arg> Desired number of regions per region server. Defaults to 5.
 -num_tables <arg> A positive integer number. When a number n is specified, load
test tool
 will load n table parallely. -tn parameter value becomes table
name prefix.
 Each table name is in format <tn>_1...<tn>_n
 -read <arg> <verify_percent>[:<#threads=20>]
 -reader <arg> The class for executing the read requests
 -region_replica_id <arg> Region replica id to do the reads from
 -region_replication <arg> Desired number of replicas per region
 -regions_per_server <arg> A positive integer number. When a number n is specified, load
test tool
 will create the test table with n regions per server
 -skip_init Skip the initialization; assume test table already exists
 -start_key <arg> The first key to read/write (a 0-based index). The default value
 is 0.
 -tn <arg> The name of the table to read or write
 -update <arg> <update_percent>[:<#threads=20>][:<#whether to ignore nonce
collisions=0>]
 -updater <arg> The class for executing the update requests
 -write <arg> <avg_cols_per_key>:<avg_data_size>[:<#threads=20>]
 -writer <arg> The class for executing the write requests
 -zk <arg> ZK quorum as comma-separated host names without port numbers
 -zk_root <arg> name of parent znode in zookeeper

wal

The wal utility prints information about the contents of a specified WAL file. To get a list of all WAL files, use the HDFS
command hadoop fs -ls -R /hbase/WALs. To run the wal utility, use the bin/hbase wal command. Run it
without options to get usage information.

hbase wal
usage: WAL <filename...> [-h] [-j] [-p] [-r <arg>] [-s <arg>] [-w <arg>]
 -h,--help Output help message
 -j,--json Output JSON
 -p,--printvals Print values
 -r,--region <arg> Region to filter by. Pass encoded region name; e.g.
 '9192caead6a5a20acb4454ffbc79fa14'
 -s,--sequence <arg> Sequence to filter by. Pass sequence number.
 -w,--row <arg> Row to filter by. Pass row name.

hfile

The hfile utility prints diagnostic information about a specified hfile, such as block headers or statistics. To get a
list of all hfiles, use the HDFS command hadoop fs -ls -R /hbase/data. To run the hfile utility, use the
bin/hbase hfile command. Run it without options to get usage information.

$ hbase hfile

usage: HFile [-a] [-b] [-e] [-f <arg> | -r <arg>] [-h] [-i] [-k] [-m] [-p]
 [-s] [-v] [-w <arg>]
 -a,--checkfamily Enable family check
 -b,--printblocks Print block index meta data
 -e,--printkey Print keys
 -f,--file <arg> File to scan. Pass full-path; e.g.
 hdfs://a:9000/hbase/hbase:meta/12/34
 -h,--printblockheaders Print block headers for each block.
 -i,--checkMobIntegrity Print all cells whose mob files are missing
 -k,--checkrow Enable row order check; looks for out-of-order
 keys
 -m,--printmeta Print meta data of file
 -p,--printkv Print key/value pairs
 -r,--region <arg> Region to scan. Pass region name; e.g.
 'hbase:meta,,1'
 -s,--stats Print statistics
 -v,--verbose Verbose output; emits file and meta data
 delimiters
 -w,--seekToRow <arg> Seek to this row and print all the kvs for this
 row only

Apache HBase Guide | 57

Managing HBase

hbck

The hbck utility checks and optionally repairs errors in HFiles.

Warning: Running hbck with any of the -fix or -repair commands is dangerous and can lead to
data loss. Contact Cloudera support before running it.

To run hbck, use the bin/hbase hbck command. Run it with the -h option to get more usage information.

NOTE: As of HBase version 2.0, the hbck tool is significantly changed.
In general, all Read-Only options are supported and can be be used
safely. Most -fix/ -repair options are NOT supported. Please see usage
below for details on which options are not supported.

Usage: fsck [opts] {only tables}
 where [opts] are:
 -help Display help options (this)
 -details Display full report of all regions.
 -timelag <timeInSeconds> Process only regions that have not experienced any metadata updates
 in the last <timeInSeconds> seconds.
 -sleepBeforeRerun <timeInSeconds> Sleep this many seconds before checking if the fix worked if
 run with -fix
 -summary Print only summary of the tables and status.
 -metaonly Only check the state of the hbase:meta table.
 -sidelineDir <hdfs://> HDFS path to backup existing meta.
 -boundaries Verify that regions boundaries are the same between META and store files.
 -exclusive Abort if another hbck is exclusive or fixing.

 Datafile Repair options: (expert features, use with caution!)
 -checkCorruptHFiles Check all Hfiles by opening them to make sure they are valid
 -sidelineCorruptHFiles Quarantine corrupted HFiles. implies -checkCorruptHFiles

 Replication options
 -fixReplication Deletes replication queues for removed peers

 Metadata Repair options supported as of version 2.0: (expert features, use with caution!)
 -fixVersionFile Try to fix missing hbase.version file in hdfs.
 -fixReferenceFiles Try to offline lingering reference store files
 -fixHFileLinks Try to offline lingering HFileLinks
 -noHdfsChecking Don't load/check region info from HDFS. Assumes hbase:meta region info is
good. Won't check/fix any HDFS issue, e.g. hole, orphan, or overlap
 -ignorePreCheckPermission ignore filesystem permission pre-check

NOTE: Following options are NOT supported as of HBase version 2.0+.

 UNSUPPORTED Metadata Repair options: (expert features, use with caution!)
 -fix Try to fix region assignments. This is for backwards compatiblity
 -fixAssignments Try to fix region assignments. Replaces the old -fix
 -fixMeta Try to fix meta problems. This assumes HDFS region info is good.
 -fixHdfsHoles Try to fix region holes in hdfs.
 -fixHdfsOrphans Try to fix region dirs with no .regioninfo file in hdfs
 -fixTableOrphans Try to fix table dirs with no .tableinfo file in hdfs (online mode only)
 -fixHdfsOverlaps Try to fix region overlaps in hdfs.
 -maxMerge <n> When fixing region overlaps, allow at most <n> regions to merge. (n=5 by
default)
 -sidelineBigOverlaps When fixing region overlaps, allow to sideline big overlaps
 -maxOverlapsToSideline <n> When fixing region overlaps, allow at most <n> regions to sideline
 per group. (n=2 by default)
 -fixSplitParents Try to force offline split parents to be online.
 -removeParents Try to offline and sideline lingering parents and keep daughter regions.
 -fixEmptyMetaCells Try to fix hbase:meta entries not referencing any region (empty
REGIONINFO_QUALIFIER rows)

 UNSUPPORTED Metadata Repair shortcuts
 -repair Shortcut for -fixAssignments -fixMeta -fixHdfsHoles -fixHdfsOrphans
-fixHdfsOverlaps -fixVersionFile -sidelineBigOverlaps -fixReferenceFiles-fixHFileLinks
 -repairHoles Shortcut for -fixAssignments -fixMeta -fixHdfsHoles

clean

After you have finished using a test or proof-of-concept cluster, the hbase clean utility can remove all HBase-related
data from ZooKeeper and HDFS.

58 | Apache HBase Guide

Managing HBase

Warning: The hbase clean command destroys data. Do not run it on production clusters, or unless
you are absolutely sure you want to destroy the data.

To run the hbase clean utility, use the bin/hbase clean command. Run it with no options for usage information.

$ bin/hbase clean

Usage: hbase clean (--cleanZk|--cleanHdfs|--cleanAll)
Options:
 --cleanZk cleans hbase related data from zookeeper.
 --cleanHdfs cleans hbase related data from hdfs.
 --cleanAll cleans hbase related data from both zookeeper and hdfs.

Writing Data to HBase
To write data to HBase, you use methods of the Table class. You can use the Java API directly, or use the HBase Shell,
the REST API, the Thrift API, , or another client which uses the Java API indirectly.When you issue a Put, the coordinates
of the data are the row, the column, and the timestamp. The timestamp is unique per version of the cell, and can be
generated automatically or specified programmatically by your application, and must be a long integer.

Variations on Put

There are several different ways to write data into HBase. Some of them are listed below.

• A Put operation writes data into HBase.
• A Delete operation deletes data from HBase. What actually happens during a Delete depends upon several

factors.
• A CheckAndPut operation performs a Scan before attempting the Put, and only does the Put if a value matches

what is expected, and provides row-level atomicity.
• A CheckAndDelete operation performs a Scan before attempting the Delete, and only does the Delete if a

value matches what is expected.
• An Increment operation increments values of one or more columns within a single row, and provides row-level

atomicity.

Refer to the API documentation for a full list of methods provided for writing data to HBase.Different methods require
different access levels and have other differences.

Versions

When you put data into HBase, a timestamp is required. The timestamp can be generated automatically by the
RegionServer or can be supplied by you. The timestamp must be unique per version of a given cell, because the
timestamp identifies the version. To modify a previous version of a cell, for instance, you would issue a Put with a
different value for the data itself, but the same timestamp.

HBase's behavior regarding versions is highly configurable. The maximum number of versions defaults to 1. You can
change the default value for HBase by configuring hbase.column.max.version in hbase-site.xml, either using
an advanced configuration snippet if you use Cloudera Manager, or by editing the file directly otherwise.

You can also configure the maximum andminimum number of versions to keep for a given column, or specify a default
time-to-live (TTL), which is the number of seconds before a version is deleted. The following examples all use alter
statements in HBase Shell to create new column families with the given characteristics, but you can use the same
syntax when creating a new table or to alter an existing column family. This is only a fraction of the options you can
specify for a given column family.

hbase> alter ‘t1 , NAME => ‘f1 , VERSIONS => 5
hbase> alter ‘t1 , NAME => ‘f1 , MIN_VERSIONS => 2
hbase> alter ‘t1 , NAME => ‘f1 , TTL => 15

Apache HBase Guide | 59

Managing HBase

HBase sorts the versions of a cell from newest to oldest, by sorting the timestamps lexicographically. When a version
needs to be deleted because a threshold has been reached, HBase always chooses the "oldest" version, even if it is in
fact the most recent version to be inserted. Keep this in mind when designing your timestamps. Consider using the
default generated timestamps and storing other version-specific data elsewhere in the row, such as in the row key. If
MIN_VERSIONS and TTL conflict, MIN_VERSIONS takes precedence.

Deletion

When you request for HBase to delete data, either explicitly using a Delete method or implicitly using a threshold such
as the maximum number of versions or the TTL, HBase does not delete the data immediately. Instead, it writes a
deletionmarker, called a tombstone, to the HFile, which is the physical file where a given RegionServer stores its region
of a column family. The tombstone markers are processed during major compaction operations, when HFiles are
rewritten without the deleted data included.

Even aftermajor compactions, "deleted" datamay not actually be deleted. You can specify the KEEP_DELETED_CELLS
option for a given column family, and the tombstones will be preserved in the HFile even after major compaction. One
scenario where this approach might be useful is for data retention policies.

Another reason deleted data may not actually be deleted is if the data would be required to restore a table from a
snapshot which has not been deleted. In this case, the data is moved to an archive during a major compaction, and
only deleted when the snapshot is deleted. This is a good reason to monitor the number of snapshots saved in HBase.

Examples

This abbreviated example writes data to an HBase table using HBase Shell and then scans the table to show the result.

hbase> put 'test', 'row1', 'cf:a', 'value1'
0 row(s) in 0.1770 seconds

hbase> put 'test', 'row2', 'cf:b', 'value2'
0 row(s) in 0.0160 seconds

hbase> put 'test', 'row3', 'cf:c', 'value3'
0 row(s) in 0.0260 seconds
hbase> scan 'test'
ROW COLUMN+CELL
 row1 column=cf:a, timestamp=1403759475114, value=value1
 row2 column=cf:b, timestamp=1403759492807, value=value2
 row3 column=cf:c, timestamp=1403759503155, value=value3
3 row(s) in 0.0440 seconds

This abbreviated example uses the HBase API to write data to an HBase table, using the automatic timestamp created
by the Region Server.

publicstaticfinalbyte[] CF = "cf".getBytes();
publicstaticfinalbyte[] ATTR = "attr".getBytes();
...
Put put = new Put(Bytes.toBytes(row));
put.add(CF, ATTR, Bytes.toBytes(data));
htable.put(put);

This example uses the HBase API to write data to an HBase table, specifying the timestamp.

publicstaticfinalbyte[] CF = "cf".getBytes();
publicstaticfinalbyte[] ATTR = "attr".getBytes();
...
Put put = new Put(Bytes.toBytes(row));
long explicitTimeInMs = 555; // just an example
put.add(CF, ATTR, explicitTimeInMs, Bytes.toBytes(data));
htable.put(put);

60 | Apache HBase Guide

Managing HBase

Further Reading

• Refer to the Table and HColumnDescriptor API documentation for more details about configuring tables and
columns, as well as reading and writing to HBase.

• Refer to the Apache HBase Reference Guide for more in-depth information about HBase, including details about
versions and deletions not covered here.

Importing Data Into HBase

Note: This page contains references to CDH 5 components or features that have been removed from
CDH6. These references are only applicable if you aremanaging a CDH5 clusterwith ClouderaManager
6. For more information, see Deprecated Items.

The method you use for importing data into HBase depends on several factors:

• The location, size, and format of your existing data
• Whether you need to import data once or periodically over time
• Whether you want to import the data in bulk or stream it into HBase regularly
• How fresh the HBase data needs to be

This topic helps you choose the correct method or composite of methods and provides example workflows for each
method.

Always run HBase administrative commands as the HBase user (typically hbase).

Choosing the Right Import Method

If the data is already in an HBase table:

• To move the data from one HBase cluster to another, use snapshot and either the clone_snapshot or
ExportSnapshot utility; or, use the CopyTable utility.

• To move the data from one HBase cluster to another without downtime on either cluster, use replication.

If the data currently exists outside HBase:

• If possible, write the data to HFile format, and use a BulkLoad to import it into HBase. The data is immediately
available to HBase and you can bypass the normal write path, increasing efficiency.

• If you prefer not to use bulk loads, and you are using a tool such as Pig, you can use it to import your data.

If you need to stream live data to HBase instead of import in bulk:

• Write a Java client using the Java API, or use the Apache Thrift Proxy API to write a client in a language supported
by Thrift.

• Stream data directly into HBase using the REST Proxy API in conjunction with an HTTP client such as wget or curl.

• Use Flume or Spark.

Most likely, at least one of these methods works in your situation. If not, you can use MapReduce directly. Test the
most feasible methods with a subset of your data to determine which one is optimal.

Using CopyTable

CopyTable uses HBase read and write paths to copy part or all of a table to a new table in either the same cluster or
a different cluster. CopyTable causes read load when reading from the source, and write load when writing to the
destination. Region splits occur on the destination table in real time as needed. To avoid these issues, use snapshot
and export commands instead of CopyTable. Alternatively, you can pre-split the destination table to avoid excessive

Apache HBase Guide | 61

Managing HBase

https://archive.cloudera.com/cdh6/6.0.0/docs/hbase-2.0.0-cdh6.0.0/apidocs/org/apache/hadoop/hbase/client/Table.html
https://archive.cloudera.com/cdh6/6.0.0/docs/hbase-2.0.0-cdh6.0.0/apidocs/org/apache/hadoop/hbase/HColumnDescriptor.html
https://archive.cloudera.com/cdh6/6.0.0/docs/hbase-2.0.0-cdh6.0.0/book.html

splits. The destination table can be partitioned differently from the source table. See this section of the Apache HBase
documentation for more information.

Edits to the source table after the CopyTable starts are not copied, so you may need to do an additional CopyTable
operation to copy new data into the destination table. Run CopyTable as follows, using --help to see details about
possible parameters.

$./bin/hbase org.apache.hadoop.hbase.mapreduce.CopyTable --help
Usage: CopyTable [general options] [--starttime=X] [--endtime=Y] [--new.name=NEW]
[--peer.adr=ADR] <tablename>

The starttime/endtime and startrow/endrow pairs function in a similar way: if you leave out the first of the pair,
the first timestamp or row in the table is the starting point. Similarly, if you leave out the second of the pair, the
operation continues until the end of the table. To copy the table to a new table in the same cluster, you must specify
--new.name, unless you want to write the copy back to the same table, which would add a new version of each cell
(with the same data), or just overwrite the cell with the same value if the maximum number of versions is set to 1 (the
default in CDH 5). To copy the table to a new table in a different cluster, specify --peer.adr and optionally, specify
a new table name.

The following example creates a new table using HBase Shell in non-interactive mode, and then copies data in two
ColumnFamilies in rows starting with timestamp 1265875194289 and including the last row before the CopyTable
started, to the new table.

echo create 'NewTestTable', 'cf1', 'cf2', 'cf3' | bin/hbase shell --non-interactive
bin/hbase org.apache.hadoop.hbase.mapreduce.CopyTable --starttime=1265875194289
--families=cf1,cf2,cf3 --new.name=NewTestTable TestTable

Snapshots are recommended instead of CopyTable for most situations.

Using Snapshots

Cloudera recommends snapshots instead of CopyTable where possible. A snapshot captures the state of a table at the
time the snapshot was taken. Because no data is copied when a snapshot is taken, the process is very quick. As long
as the snapshot exists, cells in the snapshot are never deleted from HBase, even if they are explicitly deleted by the
API. Instead, they are archived so that the snapshot can restore the table to its state at the time of the snapshot.

After taking a snapshot, use the clone_snapshot command to copy the data to a new (immediately enabled) table
in the same cluster, or the Export utility to create a new table based on the snapshot, in the same cluster or a new
cluster. This is a copy-on-write operation. The new table shares HFiles with the original table until writes occur in the
new table but not the old table, or until a compaction or split occurs in either of the tables. This can improve performance
in the short term compared to CopyTable.

To export the snapshot to a new cluster, use the ExportSnapshot utility, which usesMapReduce to copy the snapshot
to the new cluster. Run the ExportSnapshot utility on the source cluster, as a user with HBase and HDFS write
permission on the destination cluster, and HDFS read permission on the source cluster. This creates the expected
amount of IO load on the destination cluster. Optionally, you can limit bandwidth consumption, which affects IO on
the destination cluster. After the ExportSnapshot operation completes, you can see the snapshot in the new cluster
using the list_snapshot command, and you can use the clone_snapshot command to create the table in the
new cluster from the snapshot.

For full instructions for the snapshot and clone_snapshot HBase Shell commands, run the HBase Shell and type
help snapshot. The following example takes a snapshot of a table, uses it to clone the table to a new table in the
same cluster, and then uses the ExportSnapshot utility to copy the table to a different cluster, with 16 mappers and
limited to 200 Mb/sec bandwidth.

$ bin/hbase shell
hbase(main):005:0> snapshot 'TestTable', 'TestTableSnapshot'
0 row(s) in 2.3290 seconds

hbase(main):006:0> clone_snapshot 'TestTableSnapshot', 'NewTestTable'
0 row(s) in 1.3270 seconds

62 | Apache HBase Guide

Managing HBase

http://hbase.apache.org/book/regions.arch.html#manual_region_splitting_decisions

hbase(main):007:0> describe 'NewTestTable'
DESCRIPTION ENABLED
 'NewTestTable', {NAME => 'cf1', DATA_BLOCK_ENCODING true
 => 'NONE', BLOOMFILTER => 'ROW', REPLICATION_SCOPE
 => '0', VERSIONS => '1', COMPRESSION => 'NONE', MI
 N_VERSIONS => '0', TTL => 'FOREVER', KEEP_DELETED_C
 ELLS => 'false', BLOCKSIZE => '65536', IN_MEMORY =>
 'false', BLOCKCACHE => 'true'}, {NAME => 'cf2', DA
 TA_BLOCK_ENCODING => 'NONE', BLOOMFILTER => 'ROW',
 REPLICATION_SCOPE => '0', VERSIONS => '1', COMPRESS
 ION => 'NONE', MIN_VERSIONS => '0', TTL => 'FOREVER
 ', KEEP_DELETED_CELLS => 'false', BLOCKSIZE => '655
 36', IN_MEMORY => 'false', BLOCKCACHE => 'true'}
1 row(s) in 0.1280 seconds
hbase(main):008:0> quit

$ hbase org.apache.hadoop.hbase.snapshot.ExportSnapshot -snapshot TestTableSnapshot
-copy-to file:///tmp/hbase -mappers 16 -bandwidth 200
14/10/28 21:48:16 INFO snapshot.ExportSnapshot: Copy Snapshot Manifest
14/10/28 21:48:17 INFO client.RMProxy: Connecting to ResourceManager at
a1221.example.com/192.0.2.121:8032
14/10/28 21:48:19 INFO snapshot.ExportSnapshot: Loading Snapshot 'TestTableSnapshot'
hfile list
14/10/28 21:48:19 INFO Configuration.deprecation: hadoop.native.lib is deprecated.
Instead, use io.native.lib.available
14/10/28 21:48:19 INFO util.FSVisitor: No logs under
directory:hdfs://a1221.example.com:8020/hbase/.hbase-snapshot/TestTableSnapshot/WALs
14/10/28 21:48:20 INFO mapreduce.JobSubmitter: number of splits:0
14/10/28 21:48:20 INFO mapreduce.JobSubmitter: Submitting tokens for job:
job_1414556809048_0001
14/10/28 21:48:20 INFO impl.YarnClientImpl: Submitted application
application_1414556809048_0001
14/10/28 21:48:20 INFO mapreduce.Job: The url to track the job:
http://a1221.example.com:8088/proxy/application_1414556809048_0001/
14/10/28 21:48:20 INFO mapreduce.Job: Running job: job_1414556809048_0001
14/10/28 21:48:36 INFO mapreduce.Job: Job job_1414556809048_0001 running in uber mode
: false
14/10/28 21:48:36 INFO mapreduce.Job: map 0% reduce 0%
14/10/28 21:48:37 INFO mapreduce.Job: Job job_1414556809048_0001 completed successfully
14/10/28 21:48:37 INFO mapreduce.Job: Counters: 2
 Job Counters
 Total time spent by all maps in occupied slots (ms)=0
 Total time spent by all reduces in occupied slots (ms)=0
14/10/28 21:48:37 INFO snapshot.ExportSnapshot: Finalize the Snapshot Export
14/10/28 21:48:37 INFO snapshot.ExportSnapshot: Verify snapshot integrity
14/10/28 21:48:37 INFO Configuration.deprecation: fs.default.name is deprecated. Instead,
 use fs.defaultFS
14/10/28 21:48:37 INFO snapshot.ExportSnapshot: Export Completed: TestTableSnapshot

The bold italic line contains the URL from which you can track the ExportSnapshot job. When it finishes, a new set
of HFiles, comprising all of the HFiles that were part of the table when the snapshot was taken, is created at the HDFS
location you specified.

You can use the SnapshotInfo command-line utility included with HBase to verify or debug snapshots.

Using BulkLoad

HBase uses the well-known HFile format to store its data on disk. In many situations, writing HFiles programmatically
with your data, and bulk-loading that data into HBase on the RegionServer, has advantages over other data ingest
mechanisms. BulkLoad operations bypass the write path completely, providing the following benefits:

• The data is available to HBase immediately but does cause additional load or latency on the cluster when it appears.
• BulkLoad operations do not use the write-ahead log (WAL) and do not cause flushes or split storms.
• BulkLoad operations do not cause excessive garbage collection.

Note: Because they bypass the WAL, BulkLoad operations are not propagated between clusters
using replication. If you need the data on all replicated clusters, you must perform the BulkLoad
on each cluster.

Apache HBase Guide | 63

Managing HBase

If you use BulkLoads with HBase, your workflow is similar to the following:

1. Extract your data from its existing source. For instance, if your data is in a MySQL database, you might run the
mysqldump command. The process you use depends on your data. If your data is already in TSV or CSV format,
skip this step and use the included ImportTsv utility to process your data into HFiles. See the ImportTsv
documentation for details.

2. Process your data into HFile format. See http://hbase.apache.org/book.html#_hfile_format_2 for details about
HFile format. Usually you use a MapReduce job for the conversion, and you often need to write the Mapper
yourself because your data is unique. The jobmust to emit the row key as the Key, and either a KeyValue, a Put,
or a Delete as the Value. The Reducer is handled by HBase; configure it using
HFileOutputFormat.configureIncrementalLoad() and it does the following:

• Inspects the table to configure a total order partitioner
• Uploads the partitions file to the cluster and adds it to the DistributedCache
• Sets the number of reduce tasks to match the current number of regions
• Sets the output key/value class to match HFileOutputFormat requirements
• Sets the Reducer to perform the appropriate sorting (either KeyValueSortReducer or PutSortReducer)

3. One HFile is created per region in the output folder. Input data is almost completely re-written, so you need
available disk space at least twice the size of the original data set. For example, for a 100 GB output from
mysqldump, you should have at least 200 GB of available disk space in HDFS. You can delete the original input
file at the end of the process.

4. Load the files into HBase. Use the LoadIncrementalHFiles command (more commonly known as the
completebulkload tool), passing it a URL that locates the files in HDFS. Each file is loaded into the relevant region
on the RegionServer for the region. You can limit the number of versions that are loaded by passing the
--versions= N option, where N is the maximum number of versions to include, from newest to oldest
(largest timestamp to smallest timestamp).

If a region was split after the files were created, the tool automatically splits the HFile according to the new
boundaries. This process is inefficient, so if your table is being written to by other processes, you should load as
soon as the transform step is done.

The following illustration shows the full BulkLoad process.

Extra Steps for BulkLoad With Encryption Zones

When using BulkLoad to import data into HBase in the a cluster using encryption zones, the following information is
important.

• Both the staging directory and the directory into which you place your generated HFiles need to be within HBase's
encryption zone (generally under the/hbase directory). Before you can do this, you need to change the permissions
of /hbase to be world-executable but not world-readable (rwx--x--x, or numeric mode 711).

64 | Apache HBase Guide

Managing HBase

http://hbase.apache.org/book/ops_mgt.html#importtsv
http://hbase.apache.org/book/ops_mgt.html#importtsv
http://hbase.apache.org/book/hfile_format.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/HFileOutputFormat2.html
http://hbase.apache.org/book.html#completebulkload

• You also need to configure the HMaster to set the permissions of the HBase root directory correctly. If you use
ClouderaManager, edit theMaster Advanced Configuration Snippet (Safety Valve) for hbase-site.xml. Otherwise,
edit hbase-site.xml on the HMaster. Add the following:

<property>
 <name>hbase.rootdir.perms</name>
 <value>711</value>
</property>

If you skip this step, a previously-working BulkLoad setup will start to fail with permission errors when you restart
the HMaster.

Use Cases for BulkLoad

• Loading your original dataset intoHBase for the first time - Your initial datasetmight be quite large, and bypassing
the HBase write path can speed up the process considerably.

• Incremental Load - To load new data periodically, use BulkLoad to import it in batches at your preferred intervals.
This alleviates latency problems and helps you to achieve service-level agreements (SLAs). However, one trigger
for compaction is the number of HFiles on a RegionServer. Therefore, importing a large number of HFiles at
frequent intervals can cause major compactions to happen more often than they otherwise would, negatively
impacting performance. You can mitigate this by tuning the compaction settings such that the maximum number
of HFiles that can be present without triggering a compaction is very high, and relying on other factors, such as
the size of the Memstore, to trigger compactions.

• Data needs to originate elsewhere - If an existing system is capturing the data you want to have in HBase and
needs to remain active for business reasons, you can periodically BulkLoad data from the system into HBase so
that you can perform operations on it without impacting the system.

Using BulkLoad On A Secure Cluster

If you use security, HBase allows you to securely BulkLoad data into HBase. For a full explanation of how secure BulkLoad
works, see HBase Transparent Encryption at Rest.

First, configure a hbase.bulkload.staging.dir which will be managed by HBase and whose subdirectories will
be writable (but not readable) by HBase users. Next, add the
org.apache.hadoop.hbase.security.access.SecureBulkLoadEndpoint coprocessor to your configuration,
so that users besides the hbase user can BulkLoad files into HBase.

<property>
 <name>hbase.bulkload.staging.dir</name>
 <value>/tmp/hbase-staging</value>
</property>
<property>
 <name>hbase.coprocessor.region.classes</name>
 <value>org.apache.hadoop.hbase.security.access.SecureBulkLoadEndpoint</value>
</property>

More Information about BulkLoad

For more information and examples, as well as an explanation of the ImportTsv utility, which can be used to import
data in text-delimited formats such as CSV, see this post on the Cloudera Blog.

Using Cluster Replication

If your data is already in an HBase cluster, replication is useful for getting the data into additional HBase clusters. In
HBase, cluster replication refers to keeping one cluster state synchronized with that of another cluster, using the
write-ahead log (WAL) of the source cluster to propagate the changes. Replication is enabled at column family granularity.
Before enabling replication for a column family, create the table and all column families to be replicated, on the
destination cluster. Replication is supported both from CDH 5 to CDH 6 and from CDH 6 to CDH 5, the source and
destination cluster do not have to run the same major version of CDH.

Apache HBase Guide | 65

Managing HBase

http://hbase.apache.org/book.html#hbase.encryption.server
http://blog.cloudera.com/blog/2013/09/how-to-use-hbase-bulk-loading-and-why/

Cluster replication uses an active-push methodology. An HBase cluster can be a source (also called active, meaning
that it writes new data), a destination (also called passive, meaning that it receives data using replication), or can fulfill
both roles at once. Replication is asynchronous, and the goal of replication is consistency.

When data is replicated from one cluster to another, the original source of the data is tracked with a cluster ID, which
is part of the metadata. All clusters that have already consumed the data are also tracked. This prevents replication
loops.

Common Replication Topologies

• A central source clustermight propagate changes tomultiple destination clusters, for failover or due to geographic
distribution.

• A source cluster might push changes to a destination cluster, which might also push its own changes back to the
original cluster.

• Many different low-latency clustersmight push changes to one centralized cluster for backup or resource-intensive
data-analytics jobs. The processed data might then be replicated back to the low-latency clusters.

• Multiple levels of replication can be chained together to suit your needs. The following diagram shows a hypothetical
scenario. Use the arrows to follow the data paths.

At the top of the diagram, the San Jose and Tokyo clusters, shown in red, replicate changes to each other, and each
also replicates changes to a User Data and a Payment Data cluster.

Each cluster in the second row, shown in blue, replicates its changes to the All Data Backup 1 cluster, shown in
grey. The All Data Backup 1 cluster replicates changes to the All Data Backup 2 cluster (also shown in grey),
as well as the Data Analysis cluster (shown in green). All Data Backup 2 also propagates any of its own changes
back to All Data Backup 1.

The Data Analysis cluster runs MapReduce jobs on its data, and then pushes the processed data back to the San
Jose and Tokyo clusters.

Configuring Clusters for Replication

To configure your clusters for replication, see HBase Replication and Configuring Secure HBase Replication. The following
is a high-level overview of the steps to enable replication.

66 | Apache HBase Guide

Managing HBase

Important: You cannot run replication-related HBase commands as an HBase administrator. To run
replication-related HBase commands, you must have HBase user permissions. If ZooKeeper uses
Kerberos, configure HBase Shell to authenticate to ZooKeeper using Kerberos before attempting to
run replication-related commands. No replication-related ACLs are available at this time.

1. Configure and start the source and destination clusters.
2. Create tables with the same names and column families on both the source and destination clusters, so that the

destination cluster knows where to store data it receives. All hosts in the source and destination clusters should
be reachable to each other. See Creating the Empty Table On the Destination Cluster.

3. On the source cluster, enable replication in Cloudera Manager, or by setting hbase.replication to true in
hbase-site.xml.

4. Obtain Kerberos credentials as theHBase principal. Substitute yourfully.qualified.domain.name and realm
in the following command:

kinit -k -t /etc/hbase/conf/hbase.keytab hbase/fully.qualified.domain.name@YOUR-REALM.COM

5. On the source cluster, in HBase Shell, add the destination cluster as a peer, using the add_peer command. The
syntax is as follows:

add_peer 'ID', 'CLUSTER_KEY'

The ID must be a short integer. To compose the CLUSTER_KEY, use the following template:

hbase.zookeeper.quorum:hbase.zookeeper.property.clientPort:zookeeper.znode.parent

If both clusters use the same ZooKeeper cluster, you must use a different zookeeper.znode.parent, because they
cannot write in the same folder.

6. On the source cluster, configure each column family to be replicated by setting its REPLICATION_SCOPE to 1,
using commands such as the following in HBase Shell.

hbase> disable 'example_table'
hbase> alter 'example_table', {NAME => 'example_family', REPLICATION_SCOPE => '1'}
hbase> enable 'example_table'

7. Verify that replication is occurring by examining the logs on the source cluster for messages such as the following.

Considering 1 rs, with ratio 0.1
Getting 1 rs from peer cluster # 0
Choosing peer 192.0.2.49:62020

8. To verify the validity of replicated data, use the included VerifyReplicationMapReduce job on the source
cluster, providing it with the ID of the replication peer and table name to verify. Other options are available, such
as a time range or specific families to verify.

The command has the following form:

hbase org.apache.hadoop.hbase.mapreduce.replication.VerifyReplication
[--starttime=timestamp1] [--stoptime=timestamp] [--families=comma separated list of
families] <peerId> <tablename>

The VerifyReplication command prints GOODROWS and BADROWS counters to indicate rows that did and did
not replicate correctly.

Apache HBase Guide | 67

Managing HBase

Note:

Some changes are not replicated and must be propagated by other means, such as Snapshots or
CopyTable. See Initiating Replication When Data Already Exists for more details.

• Data that existed in the master before replication was enabled.

• Operations that bypass the WAL, such as when using BulkLoad or API calls such as
writeToWal(false).

• Table schema modifications.

Using Pig and HCatalog

Apache Pig is a platform for analyzing large data sets using a high-level language. Apache HCatalog is a sub-project of
Apache Hive, which enables reading and writing of data from one Hadoop utility to another. You can use a combination
of Pig and HCatalog to import data into HBase. The initial format of your data and other details about your infrastructure
determine the steps you follow to accomplish this task. The following simple example assumes that you can get your
data into a TSV (text-separated value) format, such as a tab-delimited or comma-delimited text file.

1. Format the data as a TSV file. You canworkwith other file formats; see the Pig andHCatalog project documentation
for more details.

The following example shows a subset of data fromGoogle's NGramDataset, which shows the frequency of specific
phrases or letter-groupings found in publications indexed by Google. Here, the first column has been added to
this dataset as the row ID. The first column is formulated by combining the n-gram itself (in this case, Zones) with
the line number of the file in which it occurs (z_LINE_NUM). This creates a format such as "Zones_z_6230867."
The second column is the n-gram itself, the third column is the year of occurrence, the fourth column is the
frequency of occurrence of that Ngram in that year, and the fifth column is the number of distinct publications.
This extract is from the z file of the 1-gram dataset from version 20120701. The data is truncated at the ...mark,
for the sake of readability of this document. In most real-world scenarios, you will not work with tables that have
five columns. Most HBase tables have one or two columns.

Zones_z_6230867 Zones 1507 1 1
Zones_z_6230868 Zones 1638 1 1
Zones_z_6230869 Zones 1656 2 1
Zones_z_6230870 Zones 1681 8 2
...
Zones_z_6231150 Zones 1996 17868 4356
Zones_z_6231151 Zones 1997 21296 4675
Zones_z_6231152 Zones 1998 20365 4972
Zones_z_6231153 Zones 1999 20288 5021
Zones_z_6231154 Zones 2000 22996 5714
Zones_z_6231155 Zones 2001 20469 5470
Zones_z_6231156 Zones 2002 21338 5946
Zones_z_6231157 Zones 2003 29724 6446
Zones_z_6231158 Zones 2004 23334 6524
Zones_z_6231159 Zones 2005 24300 6580
Zones_z_6231160 Zones 2006 22362 6707
Zones_z_6231161 Zones 2007 22101 6798
Zones_z_6231162 Zones 2008 21037 6328

2. Using the hadoop fs command, put the data into HDFS. This example places the file into an /imported_data/
directory.

hadoop fs -put zones_frequency.tsv /imported_data/

68 | Apache HBase Guide

Managing HBase

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

3. Create and register a new HBase table in HCatalog, using the hcat command, passing it a DDL file to represent
your table. You could also register an existing HBase table, using the same command. The DDL file format is
specified as part of the Hive REST API. The following example illustrates the basic mechanism.

CREATE TABLE
zones_frequency_table (id STRING, ngram STRING, year STRING, freq STRING, sources STRING)
STORED BY 'org.apache.hcatalog.hbase.HBaseHCatStorageHandler'
TBLPROPERTIES (
 'hbase.table.name' = 'zones_frequency_table',
 'hbase.columns.mapping' = 'd:ngram,d:year,d:freq,d:sources',
 'hcat.hbase.output.bulkMode' = 'true'
);

hcat -f zones_frequency_table.ddl

4. Create a Pig file to process the TSV file created in step 1, using the DDL file created in step 3. Modify the file names
and other parameters in this command to match your values if you use data different from this working example.
USING PigStorage('\t') indicates that the input file is tab-delimited. For more details about Pig syntax, see
the Pig Latin reference documentation.

A = LOAD 'hdfs:///imported_data/zones_frequency.tsv' USING PigStorage('\t') AS
(id:chararray, ngram:chararray, year:chararray, freq:chararray, sources:chararray);
-- DUMP A;
STORE A INTO 'zones_frequency_table' USING org.apache.hcatalog.pig.HCatStorer();

Save the file as zones.bulkload.pig.

5. Use the pig command to bulk-load the data into HBase.

pig -useHCatalog zones.bulkload.pig

The data is now in HBase and is available to use.

Using the Java API

The Java API is the most commonmechanism for getting data into HBase, through Put operations. The Thrift and REST
APIs, as well as the HBase Shell, use the Java API. The following simple example ouses the Java API to put data into an
HBase table. The Java API traverses the entire write path and can cause compactions and region splits, which can
adversely affect performance.

...
 HTable table = null;
try {

 table = myCode.createTable(tableName, fam);
int i = 1;

 List<Put> puts = new ArrayList<Put>();
for (String labelExp : labelExps) {

 Put put = new Put(Bytes.toBytes("row" + i));
 put.add(fam, qual, HConstants.LATEST_TIMESTAMP, value);
 puts.add(put);
 i++;
 }
 table.put(puts);
 } finally {

if (table != null) {
 table.flushCommits();
 }
 }
...

Using the Apache Thrift Proxy API

The Apache Thrift library provides cross-language client-server remote procedure calls (RPCs), using Thrift bindings. A
Thrift binding is client code generated by the Apache Thrift Compiler for a target language (such as Python) that allows

Apache HBase Guide | 69

Managing HBase

https://cwiki.apache.org/confluence/display/Hive/WebHCat
http://pig.apache.org/docs/r0.14.0/basic.html

communication between the Thrift server and clients using that client code. HBase includes an Apache Thrift Proxy
API, which allows you towrite HBase applications in Python, C, C++, or another language that Thrift supports. The Thrift
Proxy API is slower than the Java API and may have fewer features. T use the Thrift Proxy API, you need to configure
and run the HBase Thrift server on your cluster. You also need to install the Apache Thrift compiler on your development
system.

After the Thrift server is configured and running, generate Thrift bindings for the language of your choice, using an IDL
file. A HBase IDL file named HBase.thrift is included as part of HBase. After generating the bindings, copy the Thrift
libraries for your language into the same directory as the generated bindings. In the following Python example, these
libraries provide the thrift.transport and thrift.protocol libraries. These commands show how you might
generate the Thrift bindings for Python and copy the libraries on a Linux system.

mkdir HBaseThrift
cd HBaseThrift/
thrift -gen py /path/to/Hbase.thrift
mv gen-py/* .
rm -rf gen-py/
mkdir thrift
cp -rp ~/Downloads/thrift-0.9.0/lib/py/src/* ./thrift/

The following example shows a simple Python application using the Thrift Proxy API.

from thrift.transport import TSocket
from thrift.protocol import TBinaryProtocol
from thrift.transport import TTransport
from hbase import Hbase

Connect to HBase Thrift server
transport = TTransport.TBufferedTransport(TSocket.TSocket(host, port))
protocol = TBinaryProtocol.TBinaryProtocolAccelerated(transport)

Create and open the client connection
client = Hbase.Client(protocol)
transport.open()

Modify a single row
mutations = [Hbase.Mutation(
 column='columnfamily:columndescriptor', value='columnvalue')]
client.mutateRow('tablename', 'rowkey', mutations)

Modify a batch of rows
Create a list of mutations per work of Shakespeare
mutationsbatch = []

for line in myDataFile:
 rowkey = username + "-" + filename + "-" + str(linenumber).zfill(6)

 mutations = [
 Hbase.Mutation(column=messagecolumncf, value=line.strip()),
 Hbase.Mutation(column=linenumbercolumncf, value=encode(linenumber)),
 Hbase.Mutation(column=usernamecolumncf, value=username)
]

 mutationsbatch.append(Hbase.BatchMutation(row=rowkey,mutations=mutations))

Run the mutations for all the lines in myDataFile
client.mutateRows(tablename, mutationsbatch)

transport.close()

The Thrift Proxy API does not support writing to HBase clusters that are secured using Kerberos.

This example wasmodified from the following two blog posts on http://www.cloudera.com. See them formore details.

• Using the HBase Thrift Interface, Part 1
• Using the HBase Thrift Interface, Part 2

70 | Apache HBase Guide

Managing HBase

http://thrift.apache.org/docs/install/
http://www.cloudera.com
http://blog.cloudera.com/blog/2013/09/how-to-use-the-hbase-thrift-interface-part-1/
http://blog.cloudera.com/blog/2013/12/how-to-use-the-hbase-thrift-interface-part-2-insertinggetting-rows/

Using the REST Proxy API

After configuring and starting HBase on your cluster, you can use the HBase REST Proxy API to stream data into HBase,
from within another application or shell script, or by using an HTTP client such as wget or curl. The REST Proxy API
is slower than the Java API and may have fewer features. This approach is simple and does not require advanced
development experience to implement. However, like the Java and Thrift Proxy APIs, it uses the full write path and
can cause compactions and region splits.

Specified addresseswithout existing data create new values. Specified addresseswith existing data create new versions,
overwriting an existing version if the row, column:qualifier, and timestamp all match that of the existing value.

curl -H "Content-Type: text/xml" http://localhost:8000/test/testrow/test:testcolumn

The REST Proxy API does not support writing to HBase clusters that are secured using Kerberos.

For full documentation and more examples, see the REST Proxy API documentation.

Using Flume

Apache Flume is a fault-tolerant system designed for ingesting data into HDFS, for use with Hadoop. You can configure
Flume to write data directly into HBase. Flume includes a sink designed to work with HBase: HBase2Sink
(org.apache.flume.sink.hbase2.HBase2Sink). HBase2Sink supports HBase 2 IPC calls, and allows you to write data to
an HBase cluster that is secured by Kerberos.

The following code is an example configuration for HBase2Sink. For more information about configuring HBase2Sink,
see the Flume documentation. The table, columnFamily, and column parameters correlate to the HBase table,
column family, and column where the data is to be imported. The serializer is the class that converts the data at the
source into something HBase can use. Configure your sinks in the Flume configuration file.

In practice, you usually need to write your own serializer, which implements HBase2EventSerializer. The
HBase2EventSerializer converts Flume Events into one or more HBase Puts, sends them to the HBase cluster, and is
closed when the HBase2Sink stops.

HBase2Sink:

#Use the HBase2Sink
host1.sinks.sink1.type = org.apache.flume.sink.hbase2.HBase2Sink
host1.sinks.sink1.channel = ch1
host1.sinks.sink1.table = transactions
host1.sinks.sink1.columnFamily = clients
host1.sinks.sink1.column = charges
host1.sinks.sink1.batchSize = 5000
#Use the SimpleHBase2EventSerializer that comes with Flume
host1.sinks.sink1.serializer = org.apache.flume.sink.hbase2.SimpleHBase2EventSerializer
host1.sinks.sink1.serializer.incrementColumn = icol
host1.channels.ch1.type=memory

The following serializer, based on an Apache Flume blog post by Dan Sandler, splits the event body based on a delimiter
and inserts each split into a different column. The column names are defined in the serializer.columns sink parameter.
The row key is defined in the event header. When each event is received, a counter is incremented to track the number
of events received.

import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.FlumeException;
import org.apache.flume.conf.ComponentConfiguration;
import org.apache.flume.sink.hbase2.HBase2EventSerializer;
import org.apache.hadoop.hbase.client.Increment;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.client.Row;

import java.util.ArrayList;
import java.util.List;

/**

Apache HBase Guide | 71

Managing HBase

http://hbase.apache.org/book.html#_rest
http://flume.apache.org/FlumeUserGuide.html
https://blogs.apache.org/flume/entry/streaming_data_into_apache_hbase

 * A serializer for the HBase2Sink, which splits the event body into
 * multiple columns and inserts them into a row whose key is available in
 * the headers
 */
public class SplittingSerializer implements HBase2EventSerializer {
 private byte[] colFam;
 private Event currentEvent;
 private byte[][] columnNames;
 private final List<Row> puts = new ArrayList<>();
 private final List<Increment> incs = new ArrayList<>();
 private byte[] currentRowKey;
 private final byte[] eventCountCol = "eventCount".getBytes();

 @Override
 public void initialize(Event event, byte[] cf) {
 this.currentEvent = event;
 String rowKeyStr = currentEvent.getHeaders().get("rowKey");
 if (rowKeyStr == null) {
 throw new FlumeException("No row key found in headers!");
 }
 currentRowKey = rowKeyStr.getBytes();

 this.colFam = cf;
 }

 @Override
 public List<Row> getActions() {
 // Split the event body and get the values for the columns
 String eventStr = new String(currentEvent.getBody());
 String[] cols = eventStr.split(",");
 puts.clear();
 for (int i = 0; i < cols.length; i++) {
 //Generate a Put for each column.
 Put put = new Put(currentRowKey);
 put.addColumn(colFam, columnNames[i], cols[i].getBytes());
 puts.add(put);
 }
 return puts;
 }

 @Override
 public List<Increment> getIncrements() {
 incs.clear();
 //Increment the number of events received
 Increment inc = new Increment("totalEvents".getBytes());
 inc.addColumn(colFam, eventCountCol, 1);
 incs.add(inc);
 return incs;
 }

 @Override
 public void close() {
 colFam = null;
 currentEvent = null;
 columnNames = null;
 currentRowKey = null;
 }

 @Override
 public void configure(Context context) {
 //Get the column names from the configuration
 String cols = context.getString("columns");
 String[] names = cols.split(",");
 byte[][] columnNames = new byte[names.length][];
 int i = 0;
 for (String name : names) {
 columnNames[i++] = name.getBytes();
 }
 this.columnNames = columnNames;
 }

 @Override
 public void configure(ComponentConfiguration conf) {

72 | Apache HBase Guide

Managing HBase

 }
}

Using Sqoop

Sqoop can import records into a table in HBase. It has an out-of-the-box support for HBase.

There are two mandatory options you must specify when using the sqoop import command to import data into
HBase using Sqoop:

• --hbase-table: Specifies the name of the table in HBase to which you want to import your data.
• --column-family: Specifies into which column family Sqoop imports the data of your tables.

For example, you can import the table cities into an already existing HBase table with the same name and use the
column family name world:

sqoop import --connect jdbc:mysql://mysql.example.com/sqoop --username sqoop --password
sqoop --table cities --hbase-table cities --column-family world

If the target table and column family do not exist, the Sqoop job will exit with an error. You must create the target
table and column family before running an import. If you specify --hbase-create-table, Sqoop creates the target
table and column family if they do not exist, using the default parameters from your HBase configuration.

Sqoop needs to identify which RDBMS column is used as row key column in the HBase table. There are three ways to
do this:

• By default, with the column name specified in the --split-by option
• With the primary key of the table, if it is available
• With the --hbase-row-key parameter, which overrides both the --split-by option and the primary key of

the table

For more information on data insertion into HBase, see Sqoop User Guide.

Import NULL Column Updates into HBase

You can specify how Sqoop handles RDBMS table column updated to NULL during incremental import.

There are two modes for this, ignore and delete. You can specify the mode using the
--hbase-null-incrementel-mode option:

• -ignore: This is the default value. If the source table's column is updated to NULL, the target HBase table will
still show the previous value for that column.

• -delete: If the source table's column is updated to NULL, all previous versions of the column will be deleted
from HBase. When checking the column in HBase using the Java API, a null value will be displayed.

Examples:

Execute an incremental import to an HBase table and ignore the columns which were updated to NULL in the relational
database:

sqoop import --connect $CONN --username $USER --password $PASS --table "hbase_test"
--hbase-table hbase_test --column-family data -m 1 --incremental lastmodified
--check-column date_modified --last-value "2017-12-15 10:58:44.0" --merge-key id
--hbase-null-incremental-mode ignore

Execute an incremental import to an HBase table and delete all the versions of the columns which were updated to
NULL in the relational database:

sqoop import --connect $CONN --username $USER --password $PASS --table "hbase_test"
--hbase-table hbase_test --column-family data -m 1 --incremental lastmodified

Apache HBase Guide | 73

Managing HBase

http://sqoop.apache.org/docs/1.4.7/SqoopUserGuide.html#_importing_data_into_hbase

--check-column date_modified --last-value "2017-12-15 10:58:44.0" --merge-key id
--hbase-null-incremental-mode delete

Using Spark

For instructions on configuring an HBase service as a Spark service dependency, see Accessing HBase from Spark.

You can write data to HBase from Apache Spark by using def saveAsHadoopDataset(conf: JobConf): Unit.
This example is adapted from a post on the spark-users mailing list.

// Note: mapred package is used, instead of the
// mapreduce package which contains new hadoop APIs.

import org.apache.hadoop.hbase.mapred.TableOutputFormat
import org.apache.hadoop.hbase.client
// ... some other settings

val conf = HBaseConfiguration.create()

// general hbase settings
conf.set("hbase.rootdir",
 "hdfs://" + nameNodeURL + ":" + hdfsPort + "/hbase")
conf.setBoolean("hbase.cluster.distributed", true)
conf.set("hbase.zookeeper.quorum", hostname)
conf.setInt("hbase.client.scanner.caching", 10000)
// ... some other settings

val jobConfig: JobConf = new JobConf(conf, this.getClass)

// Note: TableOutputFormat is used as deprecated code
// because JobConf is an old hadoop API
jobConfig.setOutputFormat(classOf[TableOutputFormat])
jobConfig.set(TableOutputFormat.OUTPUT_TABLE, outputTable)

Next, provide themapping between how the data looks in Spark and how it should look in HBase. The following example
assumes that your HBase table has two column families, col_1 and col_2, and that your data is formatted in sets of
three in Spark, like (row_key, col_1, col_2).

def convert(triple: (Int, Int, Int)) = {
 val p = new Put(Bytes.toBytes(triple._1))
 p.add(Bytes.toBytes("cf"),
 Bytes.toBytes("col_1"),
 Bytes.toBytes(triple._2))
 p.add(Bytes.toBytes("cf"),
 Bytes.toBytes("col_2"),
 Bytes.toBytes(triple._3))
 (new ImmutableBytesWritable, p)
}

To write the data from Spark to HBase, you might use:

new PairRDDFunctions(localData.map(convert)).saveAsHadoopDataset(jobConfig)

Using Spark and Kafka

For instructions on configuring an HBase service as a Spark service dependency, see Accessing HBase from Spark.

This example, written in Scala, uses Apache Spark in conjunction with the Apache Kafka message bus to stream data
from Spark to HBase. The example was provided in SPARK-944. It produces some random words and then stores them
in an HBase table, creating the table if necessary.

package org.apache.spark.streaming.examples

import java.util.Properties

import kafka.producer._

74 | Apache HBase Guide

Managing HBase

http://mail-archives.apache.org/mod_mbox/spark-user/201311.mbox/%3CCACyZca3ASKwD-tuJHQi1805BN7ScTguAoRuHd5xTxCSUL1aNvQ@mail.gmail.com%3E
https://issues.apache.org/jira/browse/SPARK-944

import org.apache.hadoop.hbase.{ HBaseConfiguration, HColumnDescriptor, HTableDescriptor
 }
import org.apache.hadoop.hbase.client.{ HBaseAdmin, Put }
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.mapred.TableOutputFormat
import org.apache.hadoop.hbase.mapreduce.TableInputFormat
import org.apache.hadoop.hbase.util.Bytes
import org.apache.hadoop.mapred.JobConf
import org.apache.spark.SparkContext
import org.apache.spark.rdd.{ PairRDDFunctions, RDD }
import org.apache.spark.streaming._
import org.apache.spark.streaming.StreamingContext._
import org.apache.spark.streaming.kafka._

object MetricAggregatorHBase {
 def main(args : Array[String]) {
 if (args.length < 6) {
 System.err.println("Usage: MetricAggregatorTest <master> <zkQuorum> <group> <topics>
 <destHBaseTableName> <numThreads>")
 System.exit(1)
 }

 val Array(master, zkQuorum, group, topics, hbaseTableName, numThreads) = args

 val conf = HBaseConfiguration.create()
 conf.set("hbase.zookeeper.quorum", zkQuorum)

 // Initialize hBase table if necessary
 val admin = new HBaseAdmin(conf)
 if (!admin.isTableAvailable(hbaseTableName)) {
 val tableDesc = new HTableDescriptor(hbaseTableName)
 tableDesc.addFamily(new HColumnDescriptor("metric"))
 admin.createTable(tableDesc)
 }

 // setup streaming context
 val ssc = new StreamingContext(master, "MetricAggregatorTest", Seconds(2),
 System.getenv("SPARK_HOME"), StreamingContext.jarOfClass(this.getClass))
 ssc.checkpoint("checkpoint")

 val topicpMap = topics.split(",").map((_, numThreads.toInt)).toMap
 val lines = KafkaUtils.createStream(ssc, zkQuorum, group, topicpMap)
 .map { case (key, value) => ((key, Math.floor(System.currentTimeMillis() /
60000).toLong * 60), value.toInt) }

 val aggr = lines.reduceByKeyAndWindow(add _, Minutes(1), Minutes(1), 2)

 aggr.foreach(line => saveToHBase(line, zkQuorum, hbaseTableName))

 ssc.start

 ssc.awaitTermination
 }

 def add(a : Int, b : Int) = { (a + b) }

 def saveToHBase(rdd : RDD[((String, Long), Int)], zkQuorum : String, tableName :
String) = {
 val conf = HBaseConfiguration.create()
 conf.set("hbase.zookeeper.quorum", zkQuorum)

 val jobConfig = new JobConf(conf)
 jobConfig.set(TableOutputFormat.OUTPUT_TABLE, tableName)
 jobConfig.setOutputFormat(classOf[TableOutputFormat])

 new PairRDDFunctions(rdd.map { case ((metricId, timestamp), value) =>
createHBaseRow(metricId, timestamp, value) }).saveAsHadoopDataset(jobConfig)
 }

 def createHBaseRow(metricId : String, timestamp : Long, value : Int) = {
 val record = new Put(Bytes.toBytes(metricId + "~" + timestamp))

Apache HBase Guide | 75

Managing HBase

 record.add(Bytes.toBytes("metric"), Bytes.toBytes("col"),
Bytes.toBytes(value.toString))

 (new ImmutableBytesWritable, record)
 }

}

// Produces some random words between 1 and 100.
object MetricDataProducer {

 def main(args : Array[String]) {
 if (args.length < 2) {
 System.err.println("Usage: MetricDataProducer <metadataBrokerList> <topic>
<messagesPerSec>")
 System.exit(1)
 }

 val Array(brokers, topic, messagesPerSec) = args

 // ZooKeeper connection properties
 val props = new Properties()
 props.put("metadata.broker.list", brokers)
 props.put("serializer.class", "kafka.serializer.StringEncoder")

 val config = new ProducerConfig(props)
 val producer = new Producer[String, String](config)

 // Send some messages
 while (true) {
 val messages = (1 to messagesPerSec.toInt).map { messageNum =>
 {
 val metricId = scala.util.Random.nextInt(10)
 val value = scala.util.Random.nextInt(1000)
 new KeyedMessage[String, String](topic, metricId.toString, value.toString)
 }
 }.toArray

 producer.send(messages : _*)
 Thread.sleep(100)
 }
 }
}

Using a Custom MapReduce Job

Many of the methods to import data into HBase useMapReduce implicitly. If none of those approaches fit your needs,
you can use MapReduce directly to convert data to a series of HFiles or API calls for import into HBase. In this way,
you can import data from Avro, Parquet, or another format into HBase, or export data fromHBase into another format,
using API calls such as TableOutputFormat, HFileOutputFormat, and TableInputFormat.

Reading Data from HBase
Get and Scan are the two ways to read data from HBase, aside from manually parsing HFiles. A Get is simply a Scan
limited by the API to one row. A Scan fetches zero or more rows of a table. By default, a Scan reads the entire table
from start to end. You can limit your Scan results in several different ways, which affect the Scan's load in terms of
IO, network, or both, as well as processing load on the client side. This topic is provided as a quick reference. Refer to
the API documentation for Scan for more in-depth information. You can also perform Gets and Scan using the HBase
Shell, the REST API, or the Thrift API.

• Specify a startrow or stoprow or both. Neither startrow nor stoprow need to exist. Because HBase sorts
rows lexicographically, it will return the first row after startrow would have occurred, and will stop returning
rows after stoprow would have occurred.The goal is to reduce IO and network.

– The startrow is inclusive and the stoprow is exclusive. Given a tablewith rows a, b, c, d, e, f, and startrow
of c and stoprow of f, rows c-e are returned.

76 | Apache HBase Guide

Managing HBase

https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/TableOutputFormat.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/HFileOutputFormat2.html
https://hbase.apache.org/apidocs/org/apache/hadoop/hbase/mapreduce/TableInputFormat.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Get.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Scan.html

– If you omit startrow, the first row of the table is the startrow.
– If you omit the stoprow, all results after startrow (including startrow) are returned.
– If startrow is lexicographically after stoprow, and you set Scan setReversed(boolean reversed) to

true, the results are returned in reverse order. Given the same table above, with rows a-f, if you specify c
as the stoprow and f as the startrow, rows f, e, and d are returned.

Scan()
Scan(byte[] startRow)
Scan(byte[] startRow, byte[] stopRow)

• Specify a scanner cache that will be filled before the Scan result is returned, setting setCaching to the number
of rows to cache before returning the result. By default, the caching setting on the table is used. The goal is to
balance IO and network load.

public Scan setCaching(int caching)

• To limit the number of columns if your table has very wide rows (rows with a large number of columns), use
setBatch(int batch) and set it to the number of columns youwant to return in one batch. A large number of columns
is not a recommended design pattern.

public Scan setBatch(int batch)

• To specify a maximum result size, use setMaxResultSize(long), with the number of bytes. The goal is to
reduce IO and network.

public Scan setMaxResultSize(long maxResultSize)

• When you usesetCaching andsetMaxResultSize together, single server requests are limited by either number
of rows or maximum result size, whichever limit comes first.

• You can limit the scan to specific column families or columns by using addFamily or addColumn. The goal is to
reduce IO and network. IO is reduced because each column family is represented by a Store on each RegionServer,
and only the Stores representing the specific column families in question need to be accessed.

public Scan addColumn(byte[] family,
 byte[] qualifier)

public Scan addFamily(byte[] family)

• You can specify a range of timestamps or a single timestamp by specifying setTimeRange or setTimestamp.

public Scan setTimeRange(long minStamp,
 long maxStamp)
 throws IOException

public Scan setTimeStamp(long timestamp)
 throws IOException

• You can retrieve a maximum number of versions by using setMaxVersions.

public Scan setMaxVersions(int maxVersions)

• You can use a filter by using setFilter. Filters are discussed in detail in HBase Filtering on page 79 and the Filter
API.

public Scan setFilter(Filter filter)

• You can disable the server-side block cache for a specific scan using the API setCacheBlocks(boolean). This
is an expert setting and should only be used if you know what you are doing.

Apache HBase Guide | 77

Managing HBase

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/Filter.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/Filter.html

Perform Scans Using HBase Shell

You can perform scans using HBase Shell, for testing or quick queries. Use the following guidelines or issue the scan
command in HBase Shell with no parameters for more usage information. This represents only a subset of possibilities.

Display usage information
hbase> scan

Scan all rows of table 't1'
hbase> scan 't1'

Specify a startrow, limit the result to 10 rows, and only return selected columns
hbase> scan 't1', {COLUMNS => ['c1', 'c2'], LIMIT => 10, STARTROW => 'xyz'}

Specify a timerange
hbase> scan 't1', {TIMERANGE => [1303668804, 1303668904]}

Specify a custom filter
hbase> scan 't1', {FILTER => org.apache.hadoop.hbase.filter.ColumnPaginationFilter.new(1,
 0)}

Specify a row prefix filter and another custom filter
hbase> scan 't1', {ROWPREFIXFILTER => 'row2',
 FILTER => (QualifierFilter (>=, 'binary:xyz')) AND
(TimestampsFilter (123, 456))}

Disable the block cache for a specific scan (experts only)
hbase> scan 't1', {COLUMNS => ['c1', 'c2'], CACHE_BLOCKS => false}

Hedged Reads

Hadoop 2.4 introduced a new feature called hedged reads. If a read from a block is slow, the HDFS client starts up
another parallel, 'hedged' read against a different block replica. The result of whichever read returns first is used, and
the outstanding read is cancelled. This feature helps in situations where a read occasionally takes a long time rather
than when there is a systemic problem. Hedged reads can be enabled for HBase when the HFiles are stored in HDFS.
This feature is disabled by default.

Enabling Hedged Reads for HBase

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select Scope > HBASE-1 (Service-Wide).
4. Select Category > Performance.
5. Configure the HDFS Hedged Read Threadpool Size and HDFS Hedged Read Delay Threshold properties. The

descriptions for each of these properties on the configuration pages provide more information.
6. Enter a Reason for change, and then click Save Changes to commit the changes.

Hedged Reads
Hadoop 2.4 introduced a new feature called hedged reads. If a read from a block is slow, the HDFS client starts up
another parallel, 'hedged' read against a different block replica. The result of whichever read returns first is used, and
the outstanding read is cancelled. This feature helps in situations where a read occasionally takes a long time rather
than when there is a systemic problem. Hedged reads can be enabled for HBase when the HFiles are stored in HDFS.
This feature is disabled by default.

Enabling Hedged Reads for HBase

Minimum Required Role: Configurator (also provided by Cluster Administrator, Full Administrator)

1. Go to the HBase service.

78 | Apache HBase Guide

Managing HBase

2. Click the Configuration tab.
3. Select Scope > HBASE-1 (Service-Wide).
4. Select Category > Performance.
5. Configure the HDFS Hedged Read Threadpool Size and HDFS Hedged Read Delay Threshold properties. The

descriptions for each of these properties on the configuration pages provide more information.
6. Enter a Reason for change, and then click Save Changes to commit the changes.

Monitoring the Performance of Hedged Reads

You can monitor the performance of hedged reads using the following metrics emitted by Hadoop when hedged reads
are enabled.

• hedgedReadOps - the number of hedged reads that have occurred
• hedgeReadOpsWin - the number of times the hedged read returned faster than the original read

HBase Filtering
When reading data from HBase using Get or Scan operations, you can use custom filters to return a subset of results
to the client. While this does not reduce server-side IO, it does reduce network bandwidth and reduces the amount
of data the client needs to process. Filters are generally used using the Java API, but can be used from HBase Shell for
testing and debugging purposes.

For more information on Gets and Scans in HBase, see Reading Data from HBase on page 76.

Dynamically Loading a Custom Filter

CDH, by default, has the ability to dynamically load a custom filter by adding a JAR with your filter to the directory
specified by the hbase.dynamic.jars.dir property (which defaults to the lib/ directory under the HBase root
directory).

To disable automatic loading of dynamic JARs, set hbase.use.dynamic.jars to false in the advanced configuration
snippet for hbase-site.xml if you use Cloudera Manager, or to hbase-site.xml otherwise.

Filter Syntax Guidelines

HBase filters take zero or more arguments, in parentheses. Where the argument is a string, it is surrounded by single
quotes ('string').

Logical Operators, Comparison Operators and Comparators

Filters can be combined together with logical operators. Some filters take a combination of comparison operators and
comparators. Following is the list of each.

Logical Operators

• AND - the key-value must pass both the filters to be included in the results.
• OR - the key-value must pass at least one of the filters to be included in the results.
• SKIP - for a particular row, if any of the key-values do not pass the filter condition, the entire row is skipped.
• WHILE - For a particular row, it continues to emit key-values until a key-value is reached that fails the filter condition.
• Compound Filters - Using these operators, a hierarchy of filters can be created. For example:

(Filter1 AND Filter2)OR(Filter3 AND Filter4)

Comparison Operators

• LESS (<)
• LESS_OR_EQUAL (<=)
• EQUAL (=)

Apache HBase Guide | 79

Managing HBase

• NOT_EQUAL (!=)
• GREATER_OR_EQUAL (>=)
• GREATER (>)
• NO_OP (no operation)

Comparators

• BinaryComparator - lexicographically compares against the specified byte array using the
Bytes.compareTo(byte[], byte[])method.

• BinaryPrefixComparator - lexicographically compares against a specified byte array. It only compares up to the
length of this byte array.

• RegexStringComparator - compares against the specified byte array using the given regular expression. Only EQUAL
and NOT_EQUAL comparisons are valid with this comparator.

• SubStringComparator - tests whether or not the given substring appears in a specified byte array. The comparison
is case insensitive. Only EQUAL and NOT_EQUAL comparisons are valid with this comparator.

Examples

Example1: >, 'binary:abc' will match everything that is lexicographically greater than
 "abc"
Example2: =, 'binaryprefix:abc' will match everything whose first 3 characters are
lexicographically equal to "abc"
Example3: !=, 'regexstring:ab*yz' will match everything that doesn't begin with "ab"
and ends with "yz"
Example4: =, 'substring:abc123' will match everything that begins with the substring
"abc123"

Compound Operators

Within an expression, parentheses can be used to group clauses together, and parentheses have the highest order of
precedence.

SKIP and WHILE operators are next, and have the same precedence.

The AND operator is next.

The OR operator is next.

Examples

A filter string of the form: “Filter1 AND Filter2 OR Filter3” will be evaluated as:
“(Filter1 AND Filter2) OR Filter3”
A filter string of the form: “Filter1 AND SKIP Filter2 OR Filter3” will be evaluated
as: “(Filter1 AND (SKIP Filter2)) OR Filter3”

Filter Types

HBase includes several filter types, as well as the ability to group filters together and create your own custom filters.

• KeyOnlyFilter - takes no arguments. Returns the key portion of each key-value pair.

Syntax: KeyOnlyFilter ()

• FirstKeyOnlyFilter - takes no arguments. Returns the key portion of the first key-value pair.

Syntax: FirstKeyOnlyFilter ()

80 | Apache HBase Guide

Managing HBase

• PrefixFilter - takes a single argument, a prefix of a row key. It returns only those key-values present in a row that
start with the specified row prefix

Syntax: PrefixFilter (‘<row_prefix>’)

Example: PrefixFilter (‘Row’)

• ColumnPrefixFilter - takes a single argument, a column prefix. It returns only those key-values present in a column
that starts with the specified column prefix.

Syntax: ColumnPrefixFilter (‘<column_prefix>’)

Example: ColumnPrefixFilter (‘Col’)

• MultipleColumnPrefixFilter - takes a list of column prefixes. It returns key-values that are present in a column
that starts with any of the specified column prefixes.

Syntax: MultipleColumnPrefixFilter (‘<column_prefix>’, ‘<column_prefix>’, …,
‘<column_prefix>’)

Example: MultipleColumnPrefixFilter (‘Col1’, ‘Col2’)

• ColumnCountGetFilter - takes one argument, a limit. It returns the first limit number of columns in the table.

Syntax: ColumnCountGetFilter (‘<limit>’)

Example: ColumnCountGetFilter (4)

• PageFilter - takes one argument, a page size. It returns page size number of rows from the table.

Syntax: PageFilter (‘<page_size>’)

Example: PageFilter (2)

• ColumnPaginationFilter - takes two arguments, a limit and offset. It returns limit number of columns after offset
number of columns. It does this for all the rows.

Syntax: ColumnPaginationFilter (‘<limit>’, ‘<offset>’)

Example: ColumnPaginationFilter (3, 5)

• InclusiveStopFilter - takes one argument, a row key on which to stop scanning. It returns all key-values present
in rows up to and including the specified row.

Syntax: InclusiveStopFilter (‘<stop_row_key>’)

Example: InclusiveStopFilter (‘Row2’)

• TimeStampsFilter - takes a list of timestamps. It returns those key-values whose timestamps matches any of the
specified timestamps.

Syntax: TimeStampsFilter (<timestamp>, <timestamp>, ... ,<timestamp>)

Example: TimeStampsFilter (5985489, 48895495, 58489845945)

• RowFilter - takes a compare operator and a comparator. It compares each row key with the comparator using
the compare operator and if the comparison returns true, it returns all the key-values in that row.

Syntax: RowFilter (<compareOp>, ‘<row_comparator>’)

Example: RowFilter (<=, ‘binary:xyz)

Apache HBase Guide | 81

Managing HBase

• FamilyFilter - takes a compare operator and a comparator. It compares each family name with the comparator
using the compare operator and if the comparison returns true, it returns all the key-values in that family.

Syntax: FamilyFilter (<compareOp>, ‘<family_comparator>’)

Example: FamilyFilter (>=, ‘binaryprefix:FamilyB’)

• QualifierFilter - takes a compare operator and a comparator. It compares each qualifier namewith the comparator
using the compare operator and if the comparison returns true, it returns all the key-values in that column.

Syntax: QualifierFilter (<compareOp>, ‘<qualifier_comparator>’)

Example: QualifierFilter (=, ‘substring:Column1’)

• ValueFilter - takes a compare operator and a comparator. It compares each value with the comparator using the
compare operator and if the comparison returns true, it returns that key-value.

Syntax: ValueFilter (<compareOp>, ‘<value_comparator>’)

Example: ValueFilter (!=, ‘binary:Value’)

• DependentColumnFilter - takes two arguments required arguments, a family and a qualifier. It tries to locate this
column in each row and returns all key-values in that row that have the same timestamp. If the row does not
contain the specified column, none of the key-values in that row will be returned.

The filter can also take an optional boolean argument, dropDependentColumn. If set to true, the column used
for the filter does not get returned.

The filter can also take two more additional optional arguments, a compare operator and a value comparator,
which are further checks in addition to the family and qualifier. If the dependent column is found, its value should
also pass the value check. If it does pass the value check, only then is its timestamp taken into consideration.

Syntax: DependentColumnFilter (‘<family>’, ‘<qualifier>’, <boolean>, <compare operator>,
 ‘<value comparator’)
 DependentColumnFilter (‘<family>’, ‘<qualifier>’, <boolean>)
 DependentColumnFilter (‘<family>’, ‘<qualifier>’)

Example: DependentColumnFilter (‘conf’, ‘blacklist’, false, >=, ‘zebra’)
 DependentColumnFilter (‘conf’, ‘blacklist’, true)
 DependentColumnFilter (‘conf’, ‘blacklist’)

• SingleColumnValueFilter - takes a column family, a qualifier, a compare operator and a comparator. If the specified
column is not found, all the columns of that row will be emitted. If the column is found and the comparison with
the comparator returns true, all the columns of the row will be emitted. If the condition fails, the row will not
be emitted.

This filter also takes two additional optional boolean arguments, filterIfColumnMissing and
setLatestVersionOnly.

If the filterIfColumnMissing flag is set to true, the columns of the row will not be emitted if the specified
column to check is not found in the row. The default value is false.

If the setLatestVersionOnly flag is set to false, it will test previous versions (timestamps) in addition to the
most recent. The default value is true.

These flags are optional and dependent on each other. You must set neither or both of them together.

Syntax: SingleColumnValueFilter (‘<family>’, ‘<qualifier>’, <compare operator>,
‘<comparator>’, <filterIfColumnMissing_boolean>, <latest_version_boolean>)
Syntax: SingleColumnValueFilter (‘<family>’, ‘<qualifier>’, <compare operator>,
‘<comparator>’)

Example: SingleColumnValueFilter (‘FamilyA’, ‘Column1’, <=, ‘abc’, true, false)
Example: SingleColumnValueFilter ('FamilyA’, ‘Column1’, <=, ‘abc’)

82 | Apache HBase Guide

Managing HBase

• SingleColumnValueExcludeFilter - takes the same arguments and behaves same asSingleColumnValueFilter.
However, if the column is found and the condition passes, all the columns of the row will be emitted except for
the tested column value.

Syntax: SingleColumnValueExcludeFilter (<family>, <qualifier>, <compare operators>,
<comparator>, <latest_version_boolean>, <filterIfColumnMissing_boolean>)
Syntax: SingleColumnValueExcludeFilter (<family>, <qualifier>, <compare operator>
<comparator>)

Example: SingleColumnValueExcludeFilter (‘FamilyA’, ‘Column1’, ‘<=’, ‘abc’, ‘false’,
‘true’)
Example: SingleColumnValueExcludeFilter (‘FamilyA’, ‘Column1’, ‘<=’, ‘abc’)

• ColumnRangeFilter - takes either minColumn, maxColumn, or both. Returns only those keys with columns that
are between minColumn and maxColumn. It also takes two boolean variables to indicate whether to include the
minColumn and maxColumn or not. If you don’t want to set the minColumn or the maxColumn, you can pass in
an empty argument.

Syntax: ColumnRangeFilter (‘<minColumn >’, <minColumnInclusive_bool>, ‘<maxColumn>’,
<maxColumnInclusive_bool>)

Example: ColumnRangeFilter (‘abc’, true, ‘xyz’, false)

• Custom Filter - You can create a custom filter by implementing the Filter class. The JAR must be available on all
RegionServers.

HBase Shell Example

This example scans the 'users' table for rows where the contents of the cf:name column equals the string 'abc'.

hbase> scan 'users', { FILTER => SingleColumnValueFilter.new(Bytes.toBytes('cf'),
 Bytes.toBytes('name'), CompareFilter::CompareOp.valueOf('EQUAL'),
 BinaryComparator.new(Bytes.toBytes('abc')))}

Java API Example

This example, taken from the HBase unit test found in
hbase-server/src/test/java/org/apache/hadoop/hbase/filter/TestSingleColumnValueFilter.java

, shows how to use the Java API to implement several different filters..

/**
 *
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements. See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership. The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.hadoop.hbase.filter;

import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;

import java.util.regex.Pattern;

Apache HBase Guide | 83

Managing HBase

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/Filter.html

import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.SmallTests;
import org.apache.hadoop.hbase.filter.CompareFilter.CompareOp;
import org.apache.hadoop.hbase.util.Bytes;
import org.junit.Before;
import org.junit.Test;
import org.junit.experimental.categories.Category;

/**
 * Tests the value filter
 */
@Category(SmallTests.class)
public class TestSingleColumnValueFilter {
 private static final byte[] ROW = Bytes.toBytes("test");
 private static final byte[] COLUMN_FAMILY = Bytes.toBytes("test");
 private static final byte [] COLUMN_QUALIFIER = Bytes.toBytes("foo");
 private static final byte[] VAL_1 = Bytes.toBytes("a");
 private static final byte[] VAL_2 = Bytes.toBytes("ab");
 private static final byte[] VAL_3 = Bytes.toBytes("abc");
 private static final byte[] VAL_4 = Bytes.toBytes("abcd");
 private static final byte[] FULLSTRING_1 =
 Bytes.toBytes("The quick brown fox jumps over the lazy dog.");
 private static final byte[] FULLSTRING_2 =
 Bytes.toBytes("The slow grey fox trips over the lazy dog.");
 private static final String QUICK_SUBSTR = "quick";
 private static final String QUICK_REGEX = ".+quick.+";
 private static final Pattern QUICK_PATTERN = Pattern.compile("QuIcK",
Pattern.CASE_INSENSITIVE | Pattern.DOTALL);

 Filter basicFilter;
 Filter nullFilter;
 Filter substrFilter;
 Filter regexFilter;
 Filter regexPatternFilter;

 @Before
 public void setUp() throws Exception {
 basicFilter = basicFilterNew();
 nullFilter = nullFilterNew();
 substrFilter = substrFilterNew();
 regexFilter = regexFilterNew();
 regexPatternFilter = regexFilterNew(QUICK_PATTERN);
 }

 private Filter basicFilterNew() {
 return new SingleColumnValueFilter(COLUMN_FAMILY, COLUMN_QUALIFIER,
 CompareOp.GREATER_OR_EQUAL, VAL_2);
 }

 private Filter nullFilterNew() {
 return new SingleColumnValueFilter(COLUMN_FAMILY, COLUMN_QUALIFIER,
CompareOp.NOT_EQUAL,
 new NullComparator());
 }

 private Filter substrFilterNew() {
 return new SingleColumnValueFilter(COLUMN_FAMILY, COLUMN_QUALIFIER,
 CompareOp.EQUAL,
 new SubstringComparator(QUICK_SUBSTR));
 }

 private Filter regexFilterNew() {
 return new SingleColumnValueFilter(COLUMN_FAMILY, COLUMN_QUALIFIER,
 CompareOp.EQUAL,
 new RegexStringComparator(QUICK_REGEX));
 }

 private Filter regexFilterNew(Pattern pattern) {
 return new SingleColumnValueFilter(COLUMN_FAMILY, COLUMN_QUALIFIER,
 CompareOp.EQUAL,
 new RegexStringComparator(pattern.pattern(), pattern.flags()));
 }

84 | Apache HBase Guide

Managing HBase

 private void basicFilterTests(SingleColumnValueFilter filter)
 throws Exception {
 KeyValue kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER, VAL_2);
 assertTrue("basicFilter1", filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);

 kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER, VAL_3);
 assertTrue("basicFilter2", filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);

 kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER, VAL_4);
 assertTrue("basicFilter3", filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);

 assertFalse("basicFilterNotNull", filter.filterRow());
 filter.reset();
 kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER, VAL_1);
 assertTrue("basicFilter4", filter.filterKeyValue(kv) == Filter.ReturnCode.NEXT_ROW);

 kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER, VAL_2);
 assertTrue("basicFilter4", filter.filterKeyValue(kv) == Filter.ReturnCode.NEXT_ROW);

 assertFalse("basicFilterAllRemaining", filter.filterAllRemaining());
 assertTrue("basicFilterNotNull", filter.filterRow());
 filter.reset();
 filter.setLatestVersionOnly(false);
 kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER, VAL_1);
 assertTrue("basicFilter5", filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);

 kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER, VAL_2);
 assertTrue("basicFilter5", filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);

 assertFalse("basicFilterNotNull", filter.filterRow());
 }

 private void nullFilterTests(Filter filter) throws Exception {
 ((SingleColumnValueFilter) filter).setFilterIfMissing(true);
 KeyValue kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER, FULLSTRING_1);
 assertTrue("null1", filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);
 assertFalse("null1FilterRow", filter.filterRow());
 filter.reset();
 kv = new KeyValue(ROW, COLUMN_FAMILY, Bytes.toBytes("qual2"), FULLSTRING_2);
 assertTrue("null2", filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);
 assertTrue("null2FilterRow", filter.filterRow());
 }

 private void substrFilterTests(Filter filter)
 throws Exception {
 KeyValue kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER,
 FULLSTRING_1);
 assertTrue("substrTrue",
 filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);
 kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER,
 FULLSTRING_2);
 assertTrue("substrFalse", filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);
 assertFalse("substrFilterAllRemaining", filter.filterAllRemaining());
 assertFalse("substrFilterNotNull", filter.filterRow());
 }

 private void regexFilterTests(Filter filter)
 throws Exception {
 KeyValue kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER,
 FULLSTRING_1);
 assertTrue("regexTrue",
 filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);
 kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER,
 FULLSTRING_2);
 assertTrue("regexFalse", filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);
 assertFalse("regexFilterAllRemaining", filter.filterAllRemaining());
 assertFalse("regexFilterNotNull", filter.filterRow());
 }

 private void regexPatternFilterTests(Filter filter)
 throws Exception {
 KeyValue kv = new KeyValue(ROW, COLUMN_FAMILY, COLUMN_QUALIFIER,
 FULLSTRING_1);

Apache HBase Guide | 85

Managing HBase

 assertTrue("regexTrue",
 filter.filterKeyValue(kv) == Filter.ReturnCode.INCLUDE);
 assertFalse("regexFilterAllRemaining", filter.filterAllRemaining());
 assertFalse("regexFilterNotNull", filter.filterRow());
 }

 private Filter serializationTest(Filter filter)
 throws Exception {
 // Decompose filter to bytes.
 byte[] buffer = filter.toByteArray();

 // Recompose filter.
 Filter newFilter = SingleColumnValueFilter.parseFrom(buffer);
 return newFilter;
 }

 /**
 * Tests identification of the stop row
 * @throws Exception
 */
 @Test
 public void testStop() throws Exception {
 basicFilterTests((SingleColumnValueFilter) basicFilter);
 nullFilterTests(nullFilter);
 substrFilterTests(substrFilter);
 regexFilterTests(regexFilter);
 regexPatternFilterTests(regexPatternFilter);
 }

 /**
 * Tests serialization
 * @throws Exception
 */
 @Test
 public void testSerialization() throws Exception {
 Filter newFilter = serializationTest(basicFilter);
 basicFilterTests((SingleColumnValueFilter)newFilter);
 newFilter = serializationTest(nullFilter);
 nullFilterTests(newFilter);
 newFilter = serializationTest(substrFilter);
 substrFilterTests(newFilter);
 newFilter = serializationTest(regexFilter);
 regexFilterTests(newFilter);
 newFilter = serializationTest(regexPatternFilter);
 regexPatternFilterTests(newFilter);
 }

}

Using the HBCK2 Tool to Remediate HBase Clusters
The HBCK2 tool is a repair tool to remediate Apache HBase clusters in CDH. The HBCK2 tool is the next version of the
Apache HBase hbck tool.

To identify a list of inconsistencies or blockages in a running HBase cluster, you can view or search the logs using the
log search feature in Cloudera Manager. Once you have identified the issue, you can then use the HBCK2 tool to fix
the defect or to skip-over a bad state. The HBCK2 tool uses an interactive fix-it process by asking the Master to make
the fixes rather than carry out the repair locally.

The HBCK2 performs a single, discrete task each time it is run. The HBCK2 tool does not analyze everything in a running
cluster and repair all the problems. Instead, you can use the HBCK2 tool to iteratively find and fix issues in your cluster.
The HBCK2 tool lets you use interactive commands to fix one issue at a time.

86 | Apache HBase Guide

Managing HBase

Important: The HBCK2 tool is specific to internals of Apache HBase. Using this tool requires binaries
that are specific to your version of CDH, and you must always use it with the assistance of Cloudera
Support and/or Cloudera Professional Services. Please contact Cloudera Support if you believe you
have an issue that requires using the HBCK2 tool.

Supported Versions

You can use the HBCK2 tool with these versions of CDH:

• CDH 6.1.x

• CDH 6.2.x

• CDH 6.3.x and later

Note: The HBCK2 tool is not supported on CDH 6.0.x. You must upgrade to CDH 6.1.x if you want to
use the tool. For information about the supported commands in specific versions of CDH, see HBCK2
Tool Command Reference.

Running the HBCK2 Tool

The HBCK2 tool is a part of the hbase-operator-tools binary. Once you get the hbase-operator-tools binary from
Cloudera, upload the binary tarball to the target cluster and extract the tarball. The HBCK2 JAR file is contained in the
operator tools tarball provided by Cloudera Support at
hbase-operator-tools-<version>/hbase-hbck2/hbase-hbck2-<version>.jar.

You can run the HBCK2 tool by specifying the JAR path with the “-j” option as shown here:

$ hbase hbck -j $HOME/hbase-operator-tools-<version>/hbase-hbck2/hbase-hbck2-<version>.jar

When you run the command, the HBCK2 tool command-line menu appears.

As a Cloudera Support or Professional Services personnel using this tool to remediate an HBase cluster, gather useful
information using these commands as an HBase super user (typically, hbase), or an HBase principal if Kerberos is
enabled:

$ hdfs dfs -ls -R /hbase/ 2>&1 | tee /tmp/hdfs-ls.txt
$ hbase hbck -details 2>&1 | tee /tmp/hbase-hbck.txt
$ echo "scan 'hbase:meta'" | hbase shell 2>&1 | tee /tmp/hbase-meta.txt

Finding Issues

The HBCK2 tool enables you to use interactive commands to fix one issue at a time. If you have multiple issues, you
may have to run the tool iteratively to find and resolve all the issues. Use the following utilities and commands to find
the issues.

Find issues using diagnostic tools

Master logs

The Apache HBase Master runs all the cluster start and stop operations, RegionServer assignment, and server crash
handling. Everything that theMaster does is a procedure on a state machine engine and each procedure has an unique
procedure ID (PID). You can trace the lifecycle of a procedure by tracking its PID through the entries in the Master log.
Some procedures may spawn sub-procedures and wait for the sub-procedure to complete.

You can trace the sub-procedure by tracking its PID and the parent PID (PPID).

Apache HBase Guide | 87

Managing HBase

If there is a problem with RegionServer assignment, the Master prints a STUCK log entry similar to the following:

2018-09-12 15:29:06,558 WARN
org.apache.hadoop.hbase.master.assignment.AssignmentManager: STUCK
Region-In-Transition rit=OPENING, location=va1001.example.org,00001,1000173230599,
table=IntegrationTestBigLinkedList_20180626110336,
region=dbdb56242f17610c46ea044f7a42895b

Master user interface

Status tables

You can find issues in your HBase tables by looking at the status tables section in theMaster user interface home page.
Look through the list of tables to identify if a table is ENABLED, ENABLING, DISABLED, or DISABLING. You can also take
a look at the regions in transition states: OPEN, CLOSED. For example, there may be an issue if a table is ENABLED,
some regions are not in the OPEN state, and the Master log entries do not have any ongoing assignments.

Procedures and locks

When an Apache HBase cluster is started, the Procedures & Locks page in the Master user interface is populated with
information about the procedures, locks, and the count of WAL files. After the cluster settles, if the WAL file count
does not reduce, it leads to procedure blocks. You can identify those procedures and locks on this page.

You can also get a list of locks and procedures using this command in the HBase shell:

$ echo "list_locks"| hbase shell &> /tmp/locks.txt
$ echo "list_procedures"| hbase shell &> /tmp/procedures.txt

Apache HBase canary tool

Use the HBase canary tool to verify the state of the assigns in your cluster. You can run this tool to focus on just one
table or the entire cluster. You can check the cluster assign using this command:

$ hbase canary -f false -t 6000000 &>/tmp/canary.log

Use the -f parameter to look for failed region fetches, and set the -t parameter to run for a specified time.

Fixing Issues

You must keep these in mind when fixing issues using HBCK2. Ensure that:

• A region is not in the CLOSING state during “assign”, and in the OPENING state during “unassign”. You can change
the state using the setRegionState command. See theHBCK2 tool CommandReference section formore information.

• You fix only one table at a time.

Important: Contact Cloudera Support before using any of the HBCK2 tool commands.

Fix assign and unassign issues

You can fix assign and unassign issues by monitoring the current list of outstanding locks. An assign against a locked
region will wait till the lock is released. An assignment gets an exclusive lock on the region.

Fix master startup cannot progress error

If you see amaster startup cannot progress holding-pattern until region online error in theMaster
log, it means that the Master is unable to start because there is no procedure to assign hbase:meta. You will see an
error message similar to this:

2020-04-01 22:07:42,792 WARN org.apache.hadoop.hbase.master.HMaster:
 hbase:meta,,1.1588230740 is NOT online; state={1588230740 state=CLOSING,

88 | Apache HBase Guide

Managing HBase

ts=1538456302300, server=ve1017.example.org,22101,1234567891012};
ServerCrashProcedures=true. Master startup cannot progress in holding-pattern until
region onlined.

To fix this issue, run the following command:

$ hbase hbck -j $HOME/hbase-operator-tools-<version>/hbase-hbck2/hbase-hbck2-<version>.jar

assigns 1588230740

The same issue can occur with a hbase:namespace system table. To fix this issue, run the following command:

$ hbase hbck -j $HOME/hbase-operator-tools-<version>/hbase-hbck2/hbase-hbck2-<version>.jar

assigns <hbase:namespace encoded region id>

You can find the namespace encoded region id using this command:

$ echo "scan 'hbase:meta',{COLUMNS=>'info:regioninfo',
FILTER=>\"PrefixFilter('hbase:namespace')\"}" | hbase shell

The namespace encoded region id is the value under the "ENCODED" field in the results.

Fix missing regions in hbase:meta region/table

If you encounter an issue where table regions have been removed from the hbase:meta table, you can use the
addFsRegionsMissingInMeta to resolve this issue. Ensure that the Master is online. This command is not as disruptive
as the hbase:meta rebuild command.

To fix this issue, run this command:

$ hbase hbck -j $HOME/hbase-operator-tools-<version>/hbase-hbck2/hbase-hbck2-<version>.jar

addFsRegionsMissingInMeta <NAMESPACE|NAMESPACE:TABLENAME>

The command returns an HBCK2 “assigns” commandwith all the listed re-inserted regions.Youmust restart theMaster,
and then run the HBCK2 'assigns' command returned by the addFsRegionsMissingInMeta command to complete your
fix.

Example output:

Regions re-added into Meta: 2
WARNING:
2 regions were added to META, but these are not yet on Masters cache.
You need to restart Masters, then run hbck2 'assigns' command below:
assigns 7be03127c5e0e2acfc7cae7ddfa9e29e e50b8c1adc38c942e226a8b2976f0c8c

Fix extra regions in hbase:meta region/table

If there are extra regions in hbase:meta, itmay be because of problems in splitting, deleting/moving the region directory
manually, or in rare cases because of the loss of metadata.

To fix this issue, run this command:

$ hbase hbck -j $HOME/hbase-operator-tools-<version>/hbase-hbck2/hbase-hbck2-<version>.jar

extraRegionsInMeta --fix <NAMESPACE|NAMESPACE:TABLENAME>...

Important: Use the --fix option only when the extra regions are overlapping the existing valid regions.
Otherwise, use the assigns command to recreate the regions.

Apache HBase Guide | 89

Managing HBase

Rebuild hbase:meta

If hbase:meta is offline because it is corrupted, you can bring it back online if the corruption is not too critical. If the
namespace region is among themission regions, scan hbase:meta during initialization to check if hbase:meta is online.

To check if hbase:meta is online, run this command in the Apache HBase shell:

$ echo "scan 'hbase:meta', {COLUMN=>'info:regioninfo'}" | hbase shell

If this scan does not throw any errors, then you can run the following command to validate that the tables are present:

$ hbase hbck -j $HOME/hbase-operator-tools-<version>/hbase-hbck2/hbase-hbck2-<version>.jar

addFsRegionsMissingInMeta <NAMESPACE|NAMESPACE:TABLENAME>

The addFsRegionsMissingInMeta command adds regions back to the hbase:meta table if the regioninfo file is
present in the storage but the regions were deleted because of an issue.

Fix dropped references and corrupted HFiles

To fix hanging references and corrupt HFiles, run the following command:

$ hbase hbck -j $HOME/hbase-operator-tools-<version>/hbase-hbck2/hbase-hbck2-<version>.jar

filesystem --fix [<TABLENAME>...]

90 | Apache HBase Guide

Managing HBase

HBCK2 Tool Command Reference

•addFsRegionsMissingInMeta <NAMESPACE|NAMESPACE:TABLENAME>...

Options: -d,--force_disable Use this option to abort fix for table if disable fails.

Supported from CDH 6.1.0 and later.

•assigns [OPTIONS] <ENCODED_REGIONNAME>...

Options:-o,--override Use this option to override ownership by another procedure.

Supported in CDH 6.1.0 and later.

•bypass [OPTIONS] <PID>...

Options: -o,--override Use this option to override if procedure is running/stuck -r,--recursive Use this option to
bypass parent and its children.

-w,--lockWait Use this option to wait (in milliseconds) before giving up; default=1.

Supported in CDH 6.1.0 and later.

•extraRegionsInMeta <NAMESPACE|NAMESPACE:TABLENAME>...

Options:-f, --fix Use this option to fix meta by removing all extra regions found.

Supported from CDH 6.1.0 and later.

•filesystem [OPTIONS] [<TABLENAME>...]

Options:-f, --fix Use this option to sideline corrupt HFiles, bad links, and references.

Supported in CDH 6.1.0 and later.

•replication [OPTIONS] [<TABLENAME>...]

Options:-f, --fix Use this option to fix replication issues.

Supported in CDH 6.1.0 and later.

•reportMissingRegionsInMeta <NAMESPACE|NAMESPACE:TABLENAME>...

Use this command when regions missing from hbase:meta but directories are still present in HDFS.

Supported in CDH 6.1.0 and later.

•setRegionState <ENCODED_REGIONNAME> <STATE>

Possible region states: OFFLINE,OPENING,OPEN, CLOSING, CLOSED, SPLITTING, SPLIT, FAILED_OPEN, FAILED_CLOSE,
MERGING, MERGED, SPLITTING_NEW, MERGING_NEW, ABNORMALLY_CLOSED.

Supported in CDH 6.1.0 and later.

•setTableState <TABLENAME> <STATE>

Possible table states and representations in hbase:meta table: ENABLED (\x08\x00), DISABLED (\x08\x01), DISABLING
(\x08\x02), ENABLING (\x08\x03).

Supported in CDH 6.1.0 and later.

•

Apache HBase Guide | 91

Managing HBase

scheduleRecoveries <SERVERNAME>...

Schedule ServerCrashProcedure(SCP) for list of RegionServers. Format server name as
'<HOSTNAME>,<PORT>,<STARTCODE>' .

Supported in CDH 6.2.0 and later.

•unassigns <ENCODED_REGIONNAME>...

Options:-o,--override Use this option to override ownership by another procedure.

Supported in CDH 6.1.0 and later.

Exposing HBase Metrics to a Ganglia Server
Ganglia is a popular open-source monitoring framework. You can expose HBase metrics to a Ganglia instance so that
Ganglia can detect potential problems with your HBase cluster.

Expose HBase Metrics to Ganglia Using Cloudera Manager

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

1. Go to the HBase service.
2. Click the Configuration tab.
3. Select the HBase Master or RegionServer role. To monitor both, configure each role as described in the rest of

the procedure.
4. Select Category >Metrics.
5. Locate the Hadoop Metrics2 Advanced Configuration Snippet (Safety Valve) property or search for it by typing

its name in the Search box.
6. Edit the property. Add the following, substituting the server information with your own.

hbase.sink.ganglia.class=org.apache.hadoop.metrics2.sink.ganglia.GangliaSink31
hbase.sink.ganglia.servers=<Ganglia server>:<port>
hbase.sink.ganglia.period=10

To apply this configuration property to other role groups as needed, edit the value for the appropriate role group.
See Modifying Configuration Properties Using Cloudera Manager.

7. Enter a Reason for change, and then click Save Changes to commit the changes.
8. Restart the role.
9. Restart the service.

92 | Apache HBase Guide

Managing HBase

http://ganglia.info/

Managing HBase Security

This topic pulls together content also found elsewhere which relates to configuring and using HBase in a secure
environment. For the most part, securing an HBase cluster is a one-way operation, and moving from a secure to an
unsecure configuration should not be attempted without contacting Cloudera support for guidance.

HBase Authentication
To configure HBase security, complete the following tasks:

1. Configure HBaseAuthentication: Youmust establish amechanism for HBase servers and clients to securely identify
themselves with HDFS, ZooKeeper, and each other. This ensures that hosts are who they claim to be.

Note:

• To enable HBase to work with Kerberos security, you must perform the installation and
configuration steps in Enabling Kerberos Authentication for CDH and ZooKeeper Security
Configuration.

• Although an HBase Thrift server can connect to a secured Hadoop cluster, access is not
secured from clients to the HBase Thrift server. To encrypt communication between clients
and the HBase Thrift Server, see Configuring TLS/SSL for HBase Thrift Server.

The following sections describe how to use Apache HBase and CDH 6 with Kerberos security:

• Configuring Kerberos Authentication for HBase
• Configuring Secure HBase Replication
• Configuring the HBase Client TGT Renewal Period

2. Configure HBase Authorization: You must establish rules for the resources that clients are allowed to access. For
more information, see Configuring HBase Authorization.

Using the Hue HBase App

Hue includes an HBase App that allows you to interact with HBase through a Thrift proxy server. Because Hue sits
between the Thrift server and the client, the Thrift server assumes that all HBase operations come from the hue user
and not the client. To ensure that users in Hue are only allowed to perform HBase operations assigned to their own
credentials, and not those of the hue user, you must enable HBase impersonation. For more information about the
how to enable doAs Impersonation for the HBase Browser Application, see Enabling the HBase Browser Application
with doAs Impersonation.

Configuring HBase Authorization
After configuring HBase authentication (as detailed in HBase Configuration), you must define rules on resources that
is allowed to access. HBase rules can be defined for individual tables, columns, and cells within a table. Cell-level
authorization is fully supported since CDH 5.2.

Important: In a cluster managed by Cloudera Manager, HBase authorization is disabled by default.
You have to enable HBase authorization (as detailed in Enable HBase Authorization) to use any kind
of authorization method.

Apache HBase Guide | 93

Managing HBase Security

http://gethue.com/the-web-ui-for-hbase-hbase-browser/
http://gethue.com/hbase-browsing-with-doas-impersonation-and-kerberos/

Understanding HBase Access Levels

HBase access levels are granted independently of each other and allow for different types of operations at a given
scope.

• Read (R) - can read data at the given scope
• Write (W) - can write data at the given scope
• Execute (X) - can execute coprocessor endpoints at the given scope
• Create (C) - can create tables or drop tables (even those they did not create) at the given scope
• Admin (A) - can perform cluster operations such as balancing the cluster or assigning regions at the given scope

The possible scopes are:

• Superuser - superusers can perform any operation available in HBase, to any resource. The user who runs HBase
on your cluster is a superuser, as are any principals assigned to the configuration property hbase.superuser in
hbase-site.xml on the HMaster.

• Global - permissions granted at global scope allow the admin to operate on all tables of the cluster.
• Namespace - permissions granted at namespace scope apply to all tables within a given namespace.
• Table - permissions granted at table scope apply to data or metadata within a given table.
• ColumnFamily - permissions granted at ColumnFamily scope apply to cells within that ColumnFamily.
• Cell - permissions granted at Cell scope apply to that exact cell coordinate. This allows for policy evolution along

with data. To change an ACL on a specific cell, write an updated cell with new ACL to the precise coordinates of
the original. If you have a multi-versioned schema and want to update ACLs on all visible versions, you'll need to
write new cells for all visible versions. The application has complete control over policy evolution. The exception
is append and increment processing. Appends and increments can carry an ACL in the operation. If one is
included in the operation, then it will be applied to the result of the append or increment. Otherwise, the ACL
of the existing cell being appended to or incremented is preserved.

The combination of access levels and scopes creates a matrix of possible access levels that can be granted to a user.
In a production environment, it is useful to think of access levels in terms of what is needed to do a specific job. The
following list describes appropriate access levels for some common types of HBase users. It is important not to grant
more access than is required for a given user to perform their required tasks.

• Superusers - In a production system, only the HBase user should have superuser access. In a development
environment, an administrator might need superuser access to quickly control and manage the cluster. However,
this type of administrator should usually be a Global Admin rather than a superuser.

• Global Admins - A global admin can perform tasks and access every table in HBase. In a typical production
environment, an admin should not have Read or Write permissions to data within tables.

– A global adminwith Admin permissions can perform cluster-wide operations on the cluster, such as balancing,
assigning or unassigning regions, or calling an explicit major compaction. This is an operations role.

– A global adminwith Create permissions can create or drop any tablewithin HBase. This ismore of a DBA-type
role.

In a production environment, it is likely that different users will have only one of Admin and Create permissions.

Warning:

In the current implementation, a Global Adminwith Admin permission can grant himself Read
and Write permissions on a table and gain access to that table's data. For this reason, only grant
Global Admin permissions to trusted user who actually need them.

Also be aware that a Global Admin with Create permission can perform a Put operation on
the ACL table, simulating a grant or revoke and circumventing the authorization check for
Global Admin permissions. This issue (but not the first one) is fixed in CDH 5.3 and higher, as
well as CDH 5.2.1.

Due to these issues, be cautious with granting Global Admin privileges.

94 | Apache HBase Guide

Managing HBase Security

• NamespaceAdmin - a namespace adminwith Create permissions can create or drop tableswithin that namespace,
and take and restore snapshots. A namespace admin with Admin permissions can perform operations such as
splits or major compactions on tables within that namespace. Prior to CDH 5.4, only global admins could create
namespaces. In CDH 5.4, any user with Namespace Create privileges can create namespaces.

• Table Admins - A table admin can perform administrative operations only on that table. A table adminwith Create
permissions can create snapshots from that table or restore that table from a snapshot. A table admin with Admin
permissions can perform operations such as splits or major compactions on that table.

• Users - Users can read or write data, or both. Users can also execute coprocessor endpoints, if given Executable
permissions.

Important:

If you are using Kerberos principal names when setting ACLs for users, Hadoop uses only the first part
(short) of the Kerberos principal when converting it to the username. Hence, for the principal
ann/fully.qualified.domain.name@YOUR-REALM.COM, HBase ACLs should only be set for user
ann.

The following table shows some typical job descriptions at a hypothetical company and the permissions they might
require to get their jobs done using HBase.

Table 14: Real-World Example of Access Levels

DescriptionPermissionsScopeJob Title

Manages the cluster and
gives access to Junior
Administrators.

Admin, CreateGlobalSenior Administrator

Creates tables and gives
access to Table
Administrators.

CreateGlobalJunior Administrator

Maintains a table from an
operations point of view.

AdminTableTable Administrator

Creates reports from HBase
data.

ReadTableData Analyst

Puts data into HBase and
uses HBase data to perform
operations.

Read, WriteTableWeb Application

Further Reading

• Access Control Matrix
• Security - Apache HBase Reference Guide

Enable HBase Authorization

HBase authorization is built on top of the Coprocessors framework, specifically AccessController Coprocessor.

Note: Once the Access Controller coprocessor is enabled, any user who uses the HBase shell will be
subject to access control. Access control will also be in effect for native (Java API) client access to
HBase.

1. Go to Clusters and select the HBase cluster.
2. Select Configuration.

Apache HBase Guide | 95

Managing HBase Security

http://hbase.apache.org/book/appendix_acl_matrix.html
http://hbase.apache.org/book/security.html

3. Search for HBase Secure Authorization and select it.
4. Search forHBase Service Advanced Configuration Snippet (Safety Valve) for hbase-site.xml and enter the following

into it to enable hbase.security.exec.permission.checks. Without this option, all users will continue to
have access to execute endpoint coprocessors. This option is not enabled when you enable HBase Secure
Authorization for backward compatibility.

<property>
 <name>hbase.security.exec.permission.checks</name>
 <value>true</value>
</property>

5. Optionally, search for and configure HBase Coprocessor Master Classes and HBase Coprocessor Region Classes.

Configure Access Control Lists for Authorization

Now that HBase has the security coprocessor enabled, you can set ACLs using the HBase shell. Start the HBase shell
as usual.

Important:

The host running the shell must be configured with a keytab file as described in Configuring Kerberos
Authentication for HBase.

The commands that control ACLs take the following form. Group names are prefixed with the @ symbol.

hbase> grant <user> <permissions> [@<namespace> [<table>[<column family>[<column
qualifier>]]]] # grants permissions

hbase> revoke <user> [@<namespace> [<table> [<column family> [<column qualifier>]
]] # revokes permissions

hbase> user_permission <table>
 # displays existing permissions

In the above commands, fields encased in <> are variables, and fields in [] are optional. The permissions variable
must consist of zero or more character from the set "RWCA".

• R denotes read permissions, which is required to perform Get, Scan, or Exists calls in a given scope.
• W denotes write permissions, which is required to perform Put, Delete, LockRow, UnlockRow,

IncrementColumnValue, CheckAndDelete, CheckAndPut, Flush, or Compact in a given scope.
• X denotes execute permissions, which is required to execute coprocessor endpoints.
• C denotes create permissions, which is required to perform Create, Alter, or Drop in a given scope.
• A denotes admin permissions, which is required to perform Enable, Disable, Snapshot, Restore, Clone,

Split, MajorCompact, Grant, Revoke, and Shutdown in a given scope.

Access Control List Example Commands

grant 'user1', 'RWC'
grant 'user2', 'RW', 'tableA'
grant 'user3', 'C', '@my_namespace'

Be sure to review the information in Understanding HBase Access Levels to understand the implications of the different
access levels.

96 | Apache HBase Guide

Managing HBase Security

Configure Cell_Level Access Control Lists

If you wish to enable cell-level ACLs for HBase, then you must modify the default values for the following properties:

hbase.security.exec.permission.checks => true (the default value is false)
hbase.security.access.early_out => false (the default value is true)
hfile.format.version => 3 (the default value is 2)

Unless you modify the default properties as specified (or via the service-wide HBase Service Advanced Configuration
Snippet (Safety Valve) for hbase-site.xml, which requires a service restart), then cell level ACLs will not work.

The following example shows how to grant (or revoke) HBase permissions (in this case, read permission) at the cell-level
via an ACL:

grant 'Employee', { 'employe.name' => 'R' }, { COLUMNS => ['pd'], FILTER =>
"(PrefixFilter ('T'))" }

Auditing HBase Authorization Grants

When Cloudera Navigator collects HBase audits (enabled by default in Cloudera Manager), each time a grant occurs,
Navigator collects an audit event for the grant. The audit includes the information in the following table:

DescriptionField

Automatically generated and incremented ID.ID

HBase service name as shown in Cloudera Manager.SERVICE_NAME

Whether the request to perform an operation failed or succeeded. A failure occurs if
the user is not authorized to perform the action.

ALLOWED

Username for the account that performed the operation. Depending on how HBase is
configured, this can be the service user.

USERNAME

If HBase is configured for the service user to impersonate the user performing an
operation, the impersonated user appears in USERNAME and the service name appears
in this field.

IMPERSONATOR

IP address of the HBase service.IP_ADDR

Event occurrence in milliseconds in epoch time format.EVENT_TIME

The object that is the target of the operation, if appropriate.TABLE_NAME

The column family that is the object of the operation, if appropriate.FAMILY

The column that is the object of the operation, if appropriate.QUALIFIER

The operation command.OPERATION

For information on other HBase commands audited through Cloudera Navigator, see Cloudera Navigator Service Audit
Events.

Configuring the HBase Thrift Server Role
Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

The Thrift Server role is not added by default when you install HBase, but it is required before you can use certain other
features such as the Hue HBase browser. To add the Thrift Server role:

1. Go to the HBase service.
2. Click the Instances tab.
3. Click the Add Role Instances button.

Apache HBase Guide | 97

Managing HBase Security

4. Select the host(s) where you want to add the Thrift Server role (you only need one for Hue) and click Continue.
The Thrift Server role should appear in the instances list for the HBase server.

5. Select the Thrift Server role instance.
6. Select Actions for Selected > Start.

Other HBase Security Topics
• Using BulkLoad On A Secure Cluster on page 65
• Configuring Secure HBase Replication

98 | Apache HBase Guide

Managing HBase Security

Troubleshooting HBase

The Cloudera HBase packages have been configured to place logs in /var/log/hbase. Cloudera recommends tailing
the .log files in this directory when you start HBase to check for any error messages or failures.

Table Creation Fails after Installing LZO
If you install LZO after starting the RegionServer, you will not be able to create a table with LZO compression until you
re-start the RegionServer.

Why this happens

When the RegionServer starts, it runs CompressionTest and caches the results. When you try to create a table with a
given form of compression, it refers to those results. You have installed LZO since starting the RegionServer, so the
cached results, which pre-date LZO, cause the create to fail.

What to do

Restart the RegionServer. Now table creation with LZO will succeed.

Thrift Server Crashes after Receiving Invalid Data
The Thrift server may crash if it receives a large amount of invalid data, due to a buffer overrun.

Why this happens

The Thrift server allocates memory to check the validity of data it receives. If it receives a large amount of invalid data,
it may need to allocate more memory than is available. This is due to a limitation in the Thrift library itself.

What to do

To prevent the possibility of crashes due to buffer overruns, use the framed and compact transport protocols. These
protocols are disabled by default, because they may require changes to your client code. The two options to add to
your hbase-site.xml are hbase.regionserver.thrift.framed and hbase.regionserver.thrift.compact.
Set each of these to true, as in the XML below. You can also specify the maximum frame size, using the
hbase.regionserver.thrift.framed.max_frame_size_in_mb option.

<property>
 <name>hbase.regionserver.thrift.framed</name>
 <value>true</value>
</property>
<property>
 <name>hbase.regionserver.thrift.framed.max_frame_size_in_mb</name>
 <value>2</value>
</property>
<property>
 <name>hbase.regionserver.thrift.compact</name>
 <value>true</value>
</property>

HBase is using more disk space than expected.
HBase StoreFiles (also called HFiles) store HBase row data on disk. HBase stores other information on disk, such as
write-ahead logs (WALs), snapshots, data that would otherwise be deleted but would be needed to restore from a
stored snapshot.

Apache HBase Guide | 99

Troubleshooting HBase

Warning: The following information is provided to help you troubleshoot high disk usage only. Do
not edit or remove any of this data outside the scope of the HBase APIs or HBase Shell, or your data
is very likely to become corrupted.

Table 15: HBase Disk Usage

Troubleshooting NotesPurposeLocation

To list snapshots, use the HBase Shell
command list_snapshots. To

Contains one subdirectory per
snapshot.

/hbase/.snapshots

remove a snapshot, use
delete_snapshot.

To free up space being taken up by
excessive archives, delete the

Contains data that would otherwise
have been deleted (either because it

/hbase/.archive

snapshots that refer to them.was explicitly deleted or expired due
Snapshots never expire so datato TTL or version limits on the table)
referred to by them is kept until thebut that is required to restore from an

existing snapshot. snapshot is removed. Do not remove
anything from /hbase/.archive

manually, or you will corrupt your
snapshots.

WALs are removed when their
contents are verified to have been

Contains HBase WAL files that are
required to recover regions in the
event of a RegionServer failure.

/hbase/.logs

written to StoreFiles. Do not remove
them manually. If the size of any
subdirectory of /hbase/.logs/ is
growing, examine the HBase server
logs to find the root cause for why
WALs are not being processed
correctly.

To tune the length of time aWAL stays
in the .oldWALs before it is removed,

Contains HBase WAL files that have
already been written to disk. A HBase

/hbase/logs/.oldWALs

configure themaintenance thread removes them
periodically based on a TTL. hbase.master.logcleaner.ttl

property, which defaults to 60000
milliseconds, or 1 hour.

Do not remove corrupt WALs
manually. If the size of any

Contains corrupted HBase WAL files./hbase/.logs/.corrupt

subdirectory of /hbase/.logs/ is
growing, examine the HBase server
logs to find the root cause for why
WALs are not being processed
correctly.

100 | Apache HBase Guide

Troubleshooting HBase

Appendix: Apache License, Version 2.0

SPDX short identifier: Apache-2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through
9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of
fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

"Object" form shall mean any form resulting frommechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole,
an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or
additions to thatWork or DerivativeWorks thereof, that is intentionally submitted to Licensor for inclusion in theWork
by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of
discussing and improving theWork, but excluding communication that is conspicuouslymarked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whoma Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare DerivativeWorks of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license tomake, havemade,
use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims

Cloudera | 101

Appendix: Apache License, Version 2.0

licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated
within theWork constitutes direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and
2. You must cause any modified files to carry prominent notices stating that You changed the files; and
3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,

and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part
of the Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along
with the DerivativeWorks; or, within a display generated by the DerivativeWorks, if andwherever such third-party
notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify
the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be
construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as
a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an "AS IS" BASIS,WITHOUTWARRANTIES OR CONDITIONSOF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required
by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable
to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure ormalfunction, or any and all other commercial damages or losses), even
if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

102 | Cloudera

Appendix: Apache License, Version 2.0

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
"[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class name and description of
purpose be included on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Cloudera | 103

Appendix: Apache License, Version 2.0

	Table of Contents
	Apache HBase Guide
	Configuration Settings
	Managing HBase
	HBase Security
	HBase Replication
	HBase High Availability
	Troubleshooting HBase
	Upstream Information for HBase

	Configuration Settings for HBase
	Using DNS with HBase
	Using the Network Time Protocol (NTP) with HBase
	Setting User Limits for HBase
	Using dfs.datanode.max.transfer.threads with HBase
	Configuring BucketCache in HBase
	Configuring Encryption in HBase
	Enabling Hedged Reads for HBase
	Accessing HBase by using the HBase Shell
	HBase Shell Overview
	Setting Virtual Machine Options for HBase Shell
	Scripting with HBase Shell

	HBase Online Merge
	Configuring RegionServer Grouping
	Troubleshooting HBase
	Configuring the BlockCache
	Configuring the Scanner Heartbeat
	Accessing HBase by using the HBase Shell
	HBase Shell Overview
	Setting Virtual Machine Options for HBase Shell
	Scripting with HBase Shell

	HBase Online Merge
	Using MapReduce with HBase
	Configuring HBase Garbage Collection
	Configure HBase Garbage Collection Using Cloudera Manager
	Using the HBase Garbage Collector with JDK11
	Disabling the BoundedByteBufferPool
	Disable the BoundedByteBufferPool Using Cloudera Manager

	Configuring the HBase Canary
	Configure the HBase Canary Using Cloudera Manager

	Configuring the Blocksize for HBase
	Configuring the Blocksize for a Column Family
	Monitoring Blocksize Metrics

	Configuring the HBase BlockCache
	Contents of the BlockCache
	Deciding Whether To Use the BucketCache
	Bypassing the BlockCache
	Cache Eviction Priorities
	Sizing the BlockCache
	About the Off-heap BucketCache
	Configuring the Off-heap BucketCache
	Monitoring the BlockCache

	Configuring Quotas
	Setting up quotas
	General Quota Syntax
	Throttle quotas
	Throttle quota examples
	Space quotas
	Quota enforcement
	Quota violation policies
	Impact of quota violation policy
	Live Write Access
	Bulk Write Access
	Read Access
	Metrics and Insight
	Examples of overlapping quota policies

	Number-of-Tables Quotas
	Number-of-Regions Quotas

	Configuring the HBase Scanner Heartbeat
	Configure the Scanner Heartbeat Using Cloudera Manager

	Limiting the Speed of Compactions
	Configure the Compaction Speed Using Cloudera Manager

	Configuring and Using the HBase REST API
	Installing the REST Server
	Installing the REST Server Using Cloudera Manager

	Using the REST API

	Configuring HBase MultiWAL Support
	Configuring MultiWAL Support Using Cloudera Manager

	Storing Medium Objects (MOBs) in HBase
	Configuring Columns to Store MOBs
	HBase MOB Cache Properties
	Configuring the MOB Cache Using Cloudera Manager
	Testing MOB Storage and Retrieval Performance
	Compacting MOB Files Manually

	Configuring the Storage Policy for the Write-Ahead Log (WAL)

	Managing HBase
	Creating the HBase Root Directory
	Graceful Shutdown
	Configuring the HBase Thrift Server Role
	Enabling HBase Indexing
	Adding a Custom Coprocessor
	Disabling Loading of Coprocessors
	Enabling Hedged Reads on HBase
	Moving HBase Master Role to Another Host
	Advanced Configuration for Write-Heavy Workloads
	Starting and Stopping HBase
	Starting or Restarting HBase
	Stopping HBase

	Accessing HBase by using the HBase Shell
	HBase Shell Overview
	Setting Virtual Machine Options for HBase Shell
	Scripting with HBase Shell

	Using HBase Command-Line Utilities
	PerformanceEvaluation
	LoadTestTool
	wal
	hfile
	hbck
	clean

	Writing Data to HBase
	Importing Data Into HBase
	Choosing the Right Import Method
	Using CopyTable
	Using Snapshots
	Using BulkLoad
	Using Cluster Replication
	Using Pig and HCatalog
	Using the Java API
	Using the Apache Thrift Proxy API
	Using the REST Proxy API
	Using Flume
	Using Sqoop
	Using Spark
	Using Spark and Kafka
	Using a Custom MapReduce Job

	Reading Data from HBase
	Hedged Reads
	Enabling Hedged Reads for HBase

	Hedged Reads
	Enabling Hedged Reads for HBase
	Monitoring the Performance of Hedged Reads

	HBase Filtering
	Using the HBCK2 Tool to Remediate HBase Clusters
	Supported Versions
	Running the HBCK2 Tool
	Finding Issues
	Fixing Issues
	HBCK2 Tool Command Reference

	Exposing HBase Metrics to a Ganglia Server
	Expose HBase Metrics to Ganglia Using Cloudera Manager

	Managing HBase Security
	HBase Authentication
	Configuring HBase Authorization
	Understanding HBase Access Levels
	Enable HBase Authorization
	Configure Access Control Lists for Authorization
	Auditing HBase Authorization Grants

	Configuring the HBase Thrift Server Role
	Other HBase Security Topics

	Troubleshooting HBase
	Table Creation Fails after Installing LZO
	Thrift Server Crashes after Receiving Invalid Data
	HBase is using more disk space than expected.

	Appendix: Apache License, Version 2.0

