cloudera

Apache Kudu Guide

Important Notice
© 2010-2021 Cloudera, Inc. All rights reserved.

Cloudera, the Cloudera logo, and any other product or

service names or slogans contained in this document are trademarks of Cloudera and
its suppliers or licensors, and may not be copied, imitated or used, in whole or in part,
without the prior written permission of Cloudera or the applicable trademark holder. If
this documentation includes code, including but not limited to, code examples, Cloudera
makes this available to you under the terms of the Apache License, Version 2.0, including
any required notices. A copy of the Apache License Version 2.0, including any notices,
is included herein. A copy of the Apache License Version 2.0 can also be found here:
https://opensource.org/licenses/Apache-2.0

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software
Foundation. All other trademarks, registered trademarks, product names and company
names or logos mentioned in this document are the property of their respective owners.
Reference to any products, services, processes or other information, by trade name,
trademark, manufacturer, supplier or otherwise does not constitute or imply
endorsement, sponsorship or recommendation thereof by us.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this document may be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Cloudera.

Cloudera may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subject matter in this document. Except as expressly
provided in any written license agreement from Cloudera, the furnishing of this document
does not give you any license to these patents, trademarks copyrights, or other
intellectual property. For information about patents covering Cloudera products, see
http://tiny.cloudera.com/patents.

The information in this document is subject to change without notice. Cloudera shall
not be liable for any damages resulting from technical errors or omissions which may
be present in this document, or from use of this document.

Cloudera, Inc.

395 Page Mill Road
Palo Alto, CA 94306
info@cloudera.com
US: 1-888-789-1488
Intl: 1-650-362-0488
www.cloudera.com

Release Information

Version: Kudu 1.10.0 / CDH 6.3.x
Date: September 30, 2021

Table of Contents

Apache KudU OVErVIEW......cccciiieeiiieeiiieniiienciieecitnnientnsesenssensnsssssnsssssnsssssnsssssnsessed

(U To [R T aY o | =T N =Y 4 o o PSR 9
[g o] (SR U A T O T <L SRR 10
Related INTOIMAtiON. .cc iiiiiiii ettt et e e st e bt e e e sabe e e s bt e e s aabeeesabee s abeessabeesnabeesnabeeenns 10

Apache Kudu Concepts and Architecture........ccccecereeeiireeiiieeiiiencenienceneneenenennennen 11

(000 (V10 T D | - 1) o] DU P TP 11
Raft CONSENSUS AlZOITTNML.cciiiiiiiii et e e e e e e e st e e e e e e aba e e e e eaaaseeeeesnasseeeeansseeeeannnseeeeann 11
L] <1 LT PP SUPROPURRRTPRRINt 11
L] o= S PSR UPSRUPRRRPP 11
I o1 1= A=Y V= PR UPRR 11
Y 1 X< O PU PP PPPO P OPPPTPPP 12
(07] =1 (o =0 -1 o1 [T PRSP 12
(o T={ x| I 2=T o] [ToF: | 4 e Yo VORI 12
ATCHITECTUNAl OVEIVIEW....eiiiiiiieiee ettt et e e st e e e et e e e e sate e e e e s abeaeeesanbtaeeesssbaeeesaanbeneessanseneeesannes 12

Apache Kudu ReqUIrements.......ccccccceeeeiieeiieniienceeencrnncnencrescsenscsnscssssssnssssssssnsesases 1

Apache Kudu Usage Limitations.........ccceeveiieeiiieniieniiieiieecireerenseeecressssnscsnsssenesnsess D

Yol (TR R IS o g T T T =T o o [PRSPPI 15
PartitiONING LiMITatioNS.ccciii ittt et e e e e e e e sttt et e e e e e e e s e s aaabebbeeeeeeeeeseaaannbenraeaeeeas 16
Scaling Recommendations and Limitations.........ccuuiiiiiiiiiee et e e e e e e e e e rr e e e e e e e e e e e ennnnnes 16
Server ManagemMeENnTt LiMtatioNS. ... e i s s s s e e e e e e e eeeeeaaaaaeeeeeeeereaeaaaaaae 16
Cluster Management LiIMItations.......iiicuiiie ettt e e e e e et e e e e e s ab e e e e e s abbeeeeesaraeeeesnnseeaeesnnsees 17
Replication and Backup LimMitations........cuuuiie ittt ettt e e st e e e e e ata e e e seatteeeesenstaeeesennsaeeasanns 17
Impala INtegration LiMitatioNs........uueiiii i e e e e e e e s e s bt e e e e e e e eeeeseanannennrnees 17
Spark INtegration LIMITatioNS......ccuviiiiiciieee ettt e e e e e ettt e e e e e et b e e e e e e are e e e e enraeeeeensaeeeeannnreeas 18
SECUITLY LIMTatiONS.cceiiiiiiiiiiiiiiit ettt s s s s s e seeeeseeaeaeeeeeeeeseeeessesesesnsensnsnnnnns 18
OLNEI KNOWIN ISSUES....utiiiiiitiiieeeeitiiee e e ettt e e e eette e e e e ettt e e e e saabeeeeesaabaeeeeeasbeeeeeeasssaeaeeassaeaesaansaeaeseansaeaessansseeeeesnnsens 18

Apache Kudu Installation and Upgrade........ccccceeiieniiieiirenciencireciencerecrencerencrennennses 19

T (oY g T Y=Y [V Y s Y= oY (TSRO 19

Downloading and INStalliNg KUU........ooiiiiiiiiie et et e e et e e e s et e e e e s eaaa e e e s eearaeeeeaans 19

(0107 ={ =Y [TV =3 (U [V F U UPPRR 21

Apache Kudu Configuration.......ccccieeireiieeiiieiieeiirncieeiernerescernerencsrnscrsssesnsessnsesnses 22

BT Yor o] a A @eT o) iT={U =Y d o] o LY RO 22
Configuring the KUAU IMaster........uuiii ittt e e e et e e e et te e e e e et e e e e e enbaeeesennbaeeeeennseeeas 23
(00T o) 7= (VT o= =T o] 1 Y=Y =Y PRSP 23
(Ol oL T {0 g T o= (U Lo TN =1 o] 1T UEPRRRN 24

Apache Kudu Administration........cccceieeiiieiieeiiieiieeiiinieieecirenerenseencressssnscrnssssnsesnsess 2

Starting and STOPPING KUU PrOCESSES......ciiiiiiiiiie ittt ettt ettt et e st s e e s bt e e sbee e sbbeesabeeesnbaeesnneeas 25
e [V oI 1 (=] - [YT USROS 25
KUGU MASTEE WD INTEITACE.c..eeeeeeeeeeeeeeee ettt et e ettt e e et e e ettt e e e ettt e e ettt a e e sttt e e et s s e e aasssaeeaasaeaeasssaeennsseas 25
KUAU TADIEt SEIVEI WD INTEITUCE.ccuveeeeeeiie ettt e e e et e e et e et e e et e e s ettt e e ettt e s aasseaeanstaaeassaaesnnsneaesansneas 25
COMMON WED INEEITACE POAGES.........oeeeeeeeeeeeeeeeeeee e e ettt e ettt e e et e e et e e e ettt s e ettt e e e aatasaeaassaeeaasssaeeatsaaasasssaenassseas 25
KUGU IVIBEIICS .ttt ettt ettt ettt ettt e sttt e sttt e s bt e e st e e e s abeeesabaeesabeeesabeeesabeeesabeeesabaeesabeeenabaeesabeeenabeeennseeane 26
o Lo QN e 1 o o (=0 1 =2 o 4 ok SRS PR 26
CONECEING MELIICS VT HTTP.....ooeeeeeeeeeeeee et et e e ettt e e et e e ettt e e e st e e e e atst e e e sts s e e easssaeeaasataaassaaaaaasssaeassaaaaasssaenansses 26
DiOGNOSTICS LOGGING....eteeeeaeeeeeeeeeee ettt e ettt e e e e sttt e e e e ettt e e e e e e ettt e e e e e e sttt et e e e e e eenasbtbeeeaeeeaaan 27
Rack AWareness (LOCAtION AWEIENESS).....cccccvuurureriieeeeeeieeeeiirreeeeeeeeeeeeeeeeiaaaeereeeeeeeeessessabesseereeeeeeeeeeensrsreeenees 28
2Tl U oI T g o I 2T o] £ TR 28
[RoTo [olo] M oo Tol (V] o Xe [y Lo B 21 (o -2 URPPR 28
Physical DACKUPS Of QN @NTITE NOGE..........ccccueeeeeeeeeeeee et et e ettt e e et e e ettt e e et e e e ettt e e etsaaeeaasstaeasassaaeatsaaaasssssaenssseeas 30
ComMMON KUAU WOTKIIOWS....eeiiiiiiiie ettt et e e e et e e e e st te e e e e eabteeeessbaeaeeennsaeeeeesnnraeas 31
Migrating to MUILIDIE KUGU MOSTIS........cc.ueeeeeeeeeeeeee et e ettt e e et e e ettt e e e ettt e e e ettt e e ettt e e e atsaaeaaassaaestseaesasssaessssseas 31
Recovering from a Dead Kudu Master in a Multi-Master DeplOymMENt............c..ueeeecueeeecrireeeiiieeesiiieescieaeesiieeeesiisaaesisanens 35
Removing Kudu Masters from a Multi-Master DePIOYMENT.................eeeecueeeeeereieeeeeieeeeeeieeeesieeeeetaa e eeta e e e staeeeesasaaeeaneas 38
(0T Tae [TaTe WA o R =Tl (o Xy Lo L TSR 39
Best Practices When Adding NEW TADIET SEIVEIS...........uueeeueeeeeeeeeeeeeeeeteeeeettte e e ettt e e ettt e e e et e e eeetsaaeeatsaaeestsaaeeesassaeesasees 40
MOoNitoring CIUSTEr HEAITN WIth KSCK........cceuvveeeeeeeeeeee ettt e e e et e e ettt a e ettt e e e et aa e s sstaaeantsaaeansseaenssneas 40
Changing Dir€Ctory CONFIGUITTION.ccecueeeeeeeeeeeeeeeeeeee ettt e e et e e et e e e et e e e et e e e eatsaaeesataseeatsaaeaaassaaestsaaesasseseesssseas 42
RECOVEIING FIrOM DiSK FQUIUIE..........vveeeeieeeeeee ettt et e et e e ettt e e et e e e ettt e e st e e et asasseaeesnsaaaessseaesanseaennnsnes 42
RECOVEIING FIOM FUII DISKS........oeeeeeeeeeeeeeeeee ettt e e e ettt e e e et e e ettt e e e ettt e e easa e e e sats e e e e ats s e e easssaeeaasaaaeaassaeenasseas 43
Bringing a Tablet That Has Lost a Majority of Replicas BACK ONIINE.............ccccvueeeecieseeiiieeeesiieeeeiteescteaesieeeesaeaesnaneas 44
Rebuilding @ KUdU FIlESYSTOM LAYOUL.............oeeeeeeeeeeieee et eeee e ettt e e et e e et e e et e e e et a e et eeeats e s e saassaaestsaaasasnsaeessseas 45
Scaling Storage on Kudu Master and Tablet Servers in the CIOUG.............ccccuueeeeeeieeeeiieeeeiie et e e siaaa e 45
Migrating Kudu Data from One Directory to Another on the Same HOSt........coooiiiiiiiiiiiic e, 46
Minimizing Cluster Disruption During Temporary Planned Downtime of a Single Tablet Server....................... 46
Running Tablet RebalanCing TOO.........ueii ittt e et e e e e e eta e e e sente e e e e eabaeeesenasaeeaeeans a7
Running Tablet Rebalancing TOO! 0N RACK-AWGAIE CIUSTOI.............uceeuueeeesiiieeeeiiee ettt e s e eiaa e e staaeesiiaeeessiaraessaaaes 48
Running Tablet Rebalancing Tool in ClOUAEIa MONGGET...............ueeeeueeeeeiiieeeeieeeeseeeseata e e st aeeataaaesissaaasasssaeesnssaesssees 49
Decommissioning or Permanently Removing a Tablet Server From a ClUSter........ccccvvveieeeeiiiiieciiiiiieeeeeeeeee, 49

Using cluster names in the kudu command [IN€ T0O0I.......ccoouiiiiiiiiiiiie e 49

Managing Kudu Using Cloudera Manager.......cccccieeiiieeiiieeniiieninienncsnenssesensessensennnsd1

Installing and Upgrading the KUAU SEIVICE.......uuiiiiiiii ettt e e e e e e e e e s e e e e e e e e e e e s ennenranaeees 51
Enabling Core DUMP fOr the KUAU SEIVICE......cocuiiiieicieeee ettt e et e e ette e e e e ata e e e e eeraaeeeeaaes 51
Verifying the Impala Dependency 0N KUU.........ooiiiiiiiiiicieic ettt e e e earee e e e eare e e e e sares 51
Using the Charts Library with the KUdU SErVICE........cccuviiii it e sae e e 51

Developing Applications With Apache Kudu........c.c.cceeveireeiiinirencirenerenceenereeceeneen. 53

Viewing the APl DOCUMENTATION.....iii e e e e e e e e e e st be e reeeeaeeee e s nnsnbanrneraaaaeens 53
(e [Vl T g o] ISl VoY o [ToF: 14 o] o -J PSP 53
Y YT I N] 7 [£ TS UPPR PRSP 54
S TUT1 Lo [T T= g d o TSI =NV Z 1 1T o | U EPR 54
[N Lo [U T V4 o T TN 1 1 =Y oY PR 54
Example Apache Impala Commands With KUdU.........cueeiiiiiiiiii ittt e e eaaae e e 56
KUdu INtegration WIth SPark.........eeoicuiiiii it e e et e e e st e e e eabaeeessanssaeeeeanssaeeeeansaeeeeaan 56
SPATK INTEGIALION BESE PIACTICES.vvveeeeeeeeeeee e e eeeee ettt e et e e ettt e e e ettt e e e et e e e et a e e e sts e s e e assssaeaatsaaaeaatssseesssaaeasseeaaas 58
Integration with MapReduce, YARN, and Other Frameworks...........ciiiiiieie it 59
Using Apache Impala With Kudu........ccceirieiiiieiiriiireccreccreecrreecsreeecereeeesenneenes 60
Impala Database ContainmMENt IMOUEN.........oiii i e et e e e st e e s seabeeeeeseneaeeesanns 60
Internal and External IMPala Tables. ... e e e e e e e e e e e e e e e e e e e nnnraeaneees 60
Using Impala To QUErY KUAU Tables......ciiiuiiiieeciiiiie ettt ettt e e et e e e e e eata e e e e seatteeeeeeansaeeeseanaeeaeanns 61
Querying an Existing Kudu Table from IMPaIQ..............c.oovieeeiiiiieeeee ettt ettt st 61
Creating a New Kudu Table FrOmM IMPQIQ................oooeeuueeeeeieeeeeee ettt e ettt e e et e e ettt e e e et e e e e astaa e esssaaeesassaesesassaeesannes 61
POIEEIONING TADIS. ..ottt ettt ettt ettt e e e et e et e st e et e et e et e et e et eenaneenanes 62
Optimizing Performance for Evaluating SQL PrediCOteS.ccueerueesiieeieesiiesieeesiie sttt ettt sieesiaestaesitaesasaesieesseaen 66
INSEIEING O ROW...cniiiiiiiiieeeee ettt ettt ettt ettt e ettt e sttt e st e e et s e e sats e e s st e e s anneesaannees 66
(8o oL e B I Vo1 RS UUS 67
UPDSEIEING 0 ROW.......oeeiiiiiieeeieeet ettt ettt et ettt ettt e et e e st e e et e s et st e s et e e s st e s e inneennannees 67
W =T Lo I I o o] L= USSR 68
DEIELING G ROW......cneiieieeeeeee ettt ettt ettt ettt e st et e et s ot e et e sttt ettt et e et e st e e s ateeeneenates 69
Failures During INSERT, UPDATE, UPSERT, GNd DELETE OPEIQLIONS.cccuveeeeerireeeiieseesrieeeesseaeesessaeesssaasssssasessssssaesssssens 69
AILEIING TADIE PrOPEILIES.c...eeeeeee ettt ettt ettt et e ettt e et e st et e st e st e et e et aensneenns 69
Dropping a Kudu TabIe USING IMPGIG..............oeeeeeeeeeeeeeeeee ettt e e e e et e e e ettt e e ettt e e e et aaeeaassaaeatsaaesssssaessssseas 70
SECUNIEY CONSIABIATIONS. .. uttiiiiiiieieeeee ettt e e e eeeeceecb e e e e e e eeeeeee s aabaaaesaeeeeeeeeeaasssasrasaeeeaeeesessassssssresaeeeeeeennans 70
KNOWN [1SSUES @Nd LIMItAtioNS....uuiiiiiiieii ittt e e e e e e e e e e e e e e e e e e abbaaaeeeeeeeeesesnsnsraseaaeaaens 70
AL =] o 1S UUUPUPSP IR 71

Using the Hive Metastore with Kudu.......c.ccccciieiieeiiiiiiiiiiniieiiieciecnnecnenceneeneneens 72

Databases and Table NAMES.......coooiiiiiiiiieeeeee et e ettt e e e e e e e et et e e et e et eeae s ta bbb eeeeeeseeeeeaeaaaaseranens 72

(Do [o] 0T K =2 RN 72

INGIMUNG CONSEIQINTS.vvveiieeeeeeeeeeee e ettt e e ettt e e e e e sttt e e e e e s st aeeaessasassteeeaeeeaesaasssteaaaasssaanssssaasaaessssanstssneneseannas 72
MeEtAAALA SYNCRTONIZATION.oeeeeeeeeeseeeee et e ettt e e e e e ettt e e e e e e e ettt eaaeeeeasiassseaaaeeesasassssasaaeseasssstanesaaenanas 72
Enabling the Hive Metastore INTeGratioN........coccuiiiii ittt e e e ette e e e e eata e e e e eeabaeeeeesnaneeeeaans 73
AMINISTIATIVE TOOIS.c..utiiiitiieiiie ettt ettt ettt ettt e sttt e s bt eesabbeesbteesabaeesabbeesabbeesbbeessbeesbaeesanraeenns 74
UPErading EXIStING TablesS. ..uiiiiiiiiie ettt et e e e e st e e e et ba e e e s s sbaeeeeeanssaeeesannsseeeesnnsseeeeann 75
Lo Lo T3y (oY T=I U oo [l o (=3RS 75
PEIfOIM the UDGIAUE.ooeeeenieeeeeeeee ettt ettt ettt ettt et e et e st e st e st e et e et e et e e nineenanes 75

(T Lo [T Yol U] 4| AR RRPRRRRRRRY J 4

Kudu Authentication With KEIDEIOS.uiiiiiiiiiie ettt e s e e st e e s beeestaeesnseeesneeens 77
Internal Private Key INFIASEIUCTUIE (PKI).......c.oocueeieeeeeeeee ettt ettt ettt et et e e sntesateentesasasasenaeens 77
AULNENTICALION TOKENS. ...c..vveeieeeiieeiie ettt st et e e st e et e ettt e e ettt e sate e s at e st e st a et e s staeaseesateasateesataesasesesseassasnssaansses 77
Client Authentication t0 SECUIE KUGU CIUSLEIS............coeueerieeeeeeeeee ettt ettt ettt stt et eenine e s 78
Y or=] =1 11 1 425 UEPRUROt 78
Coarse-grained AUTNONIZAtION........uii i et e e e et e e e e et te e e e e sar e e e e e eabaeeeeenraeeeeennsreeas 78
FINE-Grained AUTNOFIZATION. . ..c.viiiiie ittt st e st e s bt e e s bt e e s bt e e sabbeessbaeesbbeesbbeesbeeesans 78
Y Yo Lo Lol o =B Y=1 11 1 4 /OO U OO PUUSPUPPP 78
AULNOLIZATION TOKENS. ..ottt et ettt e e it e s et e et e st e et e et e et e st esate e st e st s esteeateensneensses 79
TEUSEEO USBIS...eeeeeeieeeeee et ettt et e e ettt e e ettt e st e e ettt e e e ettt e e ettt e s e st e e e s att e e e et te s e aasstaesantbeaesansseasanssees 80
Configuring the Integration With APGACRE SENTIY..........eeeeeeeeeeeeeeee e esee e et te e e ettt e e et e e e ettt e e e essaaeeasssaasasseaeesnsaaensnsees 80
(600 Lol 111 Lo T PO UUUPRY 80
[l oy VA (o Tl (Vo [V I 1Y Lo L3 =1 RS 80
POLICY fOr KUTU TOBIET SEIVEIS.........eeeeeeeeeeeee ettt e e ettt e e et e e ettt e e e et e e e et e e eaatsa e e aatsaeeeattsaeeatssaeeetssaeenasseas 81
= g Yol Vo oY o PO PSPPSR 82
LTV O T =Yg ol V] o 4 o S PPUPPPPPOt 82
{T] o U 1 S T=To = Yot o o PO USSP 82
[=3 2 0=To F= o1 f oY o VOSSP 82
Configuring a Secure Kudu Cluster using Cloudera Manager..........coccuueeeeeiiuieeeeeeiiieeeeeciree e e e evee e e e saraee e e e enaeeas 83
Configuring a Secure Kudu Cluster using the Command LiNE........ccooiuieieiiiiiiie et eraee e e 85

Apache Kudu Schema DesSigN.......ccceiiieeiiieniiieeiiieecninnncnenesenensserenssessnssssenssssensees s 80

Bl LS =T (=To AT o 1= o' TP PPPRR 86
(07 [T oo T B =Y 1= o TS PSPPRR 86
[0 <ol Lo | B =3RS 87
(000] [V T I g ol Yo [T RO RSP UUR 87
(0001 [7 1o B 0T 1] oY =X Lo SRR 88
R T Y A N2V 1= F = o T PRSP 88
L 10T 1 VA =3 VA L Lo L= SRS 88
CONSIACIALIONS fOr BACKSIIl INSEITS. ...cccceeveeeiiieeeeeee ettt ettt e e et e e sttt e e ettt e e e st e s e e astaaesntsaeesnasneasnssneas 88
o= L o o [g =P PPPUUPUPPPPPRt 89

RONGE PAIEITIONING..c.....vvveiieee ettt e e e e e sttt e e e e s sttt e e e e e sss sttt et e e e esssastssteaaaessaanssstaaeaassssssssssneeesesnan 89

HASA POIEIEIONING. ... veeeeeeeeeeeeeeeeee ettt e ettt e e e e ettt e e e e e e ettt eaaaeee ettt s e e e e e e e e s ssssaeaaaeeeaasssasassaaasaessstssnenaseaanas 90

1Y 0L]3] B e T 1 [o SRR 90
POITIEION PIUNING.ccccviiiiiieiiieieieieieeeeeteteteeeteett ettt e e e e s e s e s e s e s e s e s aaasasasasasasasasanasanens 90
Lo T Lol To I =3 (o [0] o) (=X TSRS 90
SCNEMA ALEIATIONS. .. .eieitiee ettt ettt e s bt e s bt e e bt e e s bt e e e bb e e s bbe e e bt e e sabbeesbbeesabbeesnbeesbbeesnbeesnnes 93
Schema DesigN LIMItationS. . .uuii i e e e e e s e e e e e e e e e s s bt et e e reeeaeeeeesssnssssrnneeeeeeeeesanns 93

Apache Kudu Transaction SEmantics.......cccceeiieeiireiieniieniiecreencneccneenenencsenscsnsesenees 94

SiNgle Tablet WIte OPEratioNs.........uii i iiiiie ettt et e st e e e et e e e et e e e e e s abae e e e e sbbaeeeesasaeeeeennsaeeeeennsees 94
LT a Yo de I\ UL T o L= =] o =Y SRS 94
REAA OPEIATIONS (SCANS)..ueiiiiiiiiiiee et e e e ettt e e eett et e e eebe e e e eeeteeeeeesaeeeeeesssaseeeeassaseeeaasssaeeesansssssaeasssseeeannssanaeans 95
KNOWN 1SSUES N0 LIMITatioNS....ueiiiiiiiiiiiiiiiieee ettt ettt e e sttt e e sttt e e s sttt e e s sabb e e e e sanbbeeeesannteeesans 96
VVETES. .ottt ettt e e ettt e e e ettt e e e e e ettt e e e e e e e bttt e e e e e e e bttt e e e e e e e e ettt et e e e e eea b tttaaaeeesaatateaees 96
<o Lo K Yol T L USSP 97

Apache Kudu Background Maintenance Tasks.......cccccceereeiirniinnninnirenienncneennennene. 98

Kudu Scaling GUIdE.......ccceuiiiieiiieiiiiiccrecrreecrreecrrneesennerenssessnssesenssssenssssenssssans 100
LT 2 4T TP PPTPTPPPPP 100
[T 0Y o] LI\ o o Lo T R UESRRPE 100
1Y/ L<T0 0T] V2SO PPUPPPPPPPPRPUPN 100
Verifying if @ Memory Limit iS SUFFICIENT..........ccc.eoiuiieiei ettt ettt ettt eaee s 101
1T D 1Yol e o] 3 UURRPRE 102
B VT T LTRSS PSPPI 102

Troubleshooting Apache Kudu...........cccceieeiiieeiiiieniiriencenrnnccrenesereneerensesenssenenseene. 104

Issues Starting or Restarting the Master or Tablet SEIVEI ... 104
Errors DUIiNG HOIE PUNCRING TOSt........c..ueeeeeieeeeeeee e e ettt e ettt e e ettt e ettt e e e st e e e e ata s e e eassaaeasasasasasssaeessssaasasssenaeannes 104
Already present: FS [QYOUL QIF@AGY @XISTS......c..eeeuuiireeieieeeeeeee ettt ettt ettt ettt et e it esate e st e ene et 104
INTP ClOCK SYNCRAIONIZATION.ccc.eeeeeeeeeeeeeeee et e et e e e et e e e ettt e e ettt e e e et e e e e assaaesaassaaaastssaaasssaaeassssaaessssseeanes 105
D1 QYo [l I U Y- V=TSP PPR 107
Reporting Kudu Crashes USiNg Breakpad.........cccuuiiiiiiiiiieeiiiiiieeeeiiiee et ee s e e e s s siaaeeessstraeessssnneeessnsnneeeean 108
Troubleshooting PerfOrmManCe [SSUES........cccuuuiiiiieeee et e e e e e e e st e e e e e e e e e e e s aabesareeeaaeeeeeesnnnssssenenees 109
Q0o [V g [l o USRS 109
LA L=Ta Lo T4 VA N [TSSOSO UTPPPPP 110
BIOCK COCNE SIZE.......oeeeeeeee ettt ettt ettt e e s st n ettt ettt s s nine s 111
HEQAPD SAMPIING.cccccconneeeeeeeeeeeeeeeeeeee ettt ettt e e e e e ettt e e e e e e ettt e e e e e e e e tatsas e e e e e e e s s atsssaaaaaeeeasasssssaaaeeeaassssssenasas 112
SIow NamMe RESOIULION QNG NSCU........cc.eorieeiieiieiieee ettt ettt ettt 112
(8 ET=Y o1 1AV £ = PSSR 112

ClassNotFoundException: com.cloudera.kudu.hive.KuduStorageHaNIEr..............cc.oeeeeceeeeeciiieeeciee e 112

Runtime Error: Could not create thread: Resource temporarily unavailable (€rror 11)............c.cccevueeeeeveveeeccveeeeeeeeeennen. 112

Tombstoned or STOPPED tablet rePliCas.......uiiiicuiiiieeciiiie ettt eet e e e e et e e e sab e e e e esaaseeeesaseeeaean 113
Corruption: checksum error 0N CRile DIOCK.........coiiiiiii i e e e e e 113
(Gl o[= Tu T =g T = o] LT LT SRR 113
Y o X= 1 S0 T 117 =3P 114

More Resources for Apache Kudu........cccceeeereeeeirenncereencinenncrrenneerenseeressessessessesseens 115

Cloudera Manager Metrics for Kudu........ccceuerreneiiieniiieecirencereeecerenncereneeesenseenenss. 116

Appendix: Apache License, Version 2.0........cccceeireeirreniirenerinncrnnnserenssersnssessnsnens 117

Apache Kudu Overview

Apache Kudu is a columnar storage manager developed for the Hadoop platform. Kudu shares the common technical
properties of Hadoop ecosystem applications: It runs on commodity hardware, is horizontally scalable, and supports
highly available operation.

Apache Kudu is a top-level project in the Apache Software Foundation.

Kudu's benefits include:

Fast processing of OLAP workloads.

Integration with MapReduce, Spark, Flume, and other Hadoop ecosystem components.

Tight integration with Apache Impala, making it a good, mutable alternative to using HDFS with Apache Parquet.
Strong but flexible consistency model, allowing you to choose consistency requirements on a per-request basis,
including the option for strict serialized consistency.

Strong performance for running sequential and random workloads simultaneously.

Easy administration and management through Cloudera Manager.

High availability. Tablet Servers and Master use the Raft consensus algorithm, which ensures availability as long
as more replicas are available than unavailable. Reads can be serviced by read-only follower tablets, even in the
event of a leader tablet failure.

Structured data model.

By combining all of these properties, Kudu targets support applications that are difficult or impossible to implement
on currently available Hadoop storage technologies. Applications for which Kudu is a viable solution include:

Reporting applications where new data must be immediately available for end users

Time-series applications that must support queries across large amounts of historic data while simultaneously
returning granular queries about an individual entity

Applications that use predictive models to make real-time decisions, with periodic refreshes of the predictive
model based on all historical data

Kudu-Impala Integration

Apache Kudu has tight integration with Apache Impala, allowing you to use Impala to insert, query, update, and delete
data from Kudu tablets using Impala's SQL syntax, as an alternative to using the Kudu APIs to build a custom Kudu
application. In addition, you can use JDBC or ODBC to connect existing or new applications written in any language,
framework, or business intelligence tool to your Kudu data, using Impala as the broker.

CREATE/ ALTER/ DROP TABLE - Impala supports creating, altering, and dropping tables using Kudu as the persistence
layer. The tables follow the same internal/external approach as other tables in Impala, allowing for flexible data
ingestion and querying.

| NSERT - Data can be inserted into Kudu tables from Impala using the same mechanisms as any other table with
HDFS or HBase persistence.

UPDATE/ DELETE - Impala supports the UPDATE and DELETE SQL commands to modify existing data in a Kudu
table row-by-row or as a batch. The syntax of the SQL commands is designed to be as compatible as possible with
existing solutions. In addition to simple DELETE or UPDATE commands, you can specify complex joins in the FROM
clause of the query, using the same syntax as a regular SELECT statement.

Flexible Partitioning - Similar to partitioning of tables in Hive, Kudu allows you to dynamically pre-split tables by
hash or range into a predefined number of tablets, in order to distribute writes and queries evenly across your
cluster. You can partition by any number of primary key columns, with any number of hashes, a list of split rows,
or a combination of these. A partition scheme is required.

Parallel Scan - To achieve the highest possible performance on modern hardware, the Kudu client used by Impala
parallelizes scans across multiple tablets.

¢ High-efficiency queries - Where possible, Impala pushes down predicate evaluation to Kudu, so that predicates
are evaluated as close as possible to the data. Query performance is comparable to Parquet in many workloads.

Example Use Cases

Streaming Input with Near Real Time Availability

A common business challenge is one where new data arrives rapidly and constantly, and the same data needs to be
available in near real time for reads, scans, and updates. Kudu offers the powerful combination of fast inserts and
updates with efficient columnar scans to enable real-time analytics use cases on a single storage layer.

Time-Series Application with Widely Varying Access Patterns

A time-series schema is one in which data points are organized and keyed according to the time at which they occurred.
This can be useful for investigating the performance of metrics over time or attempting to predict future behavior
based on past data. For instance, time-series customer data might be used both to store purchase click-stream history
and to predict future purchases, or for use by a customer support representative. While these different types of analysis
are occurring, inserts and mutations might also be occurring individually and in bulk, and become available immediately
to read workloads. Kudu can handle all of these access patterns simultaneously in a scalable and efficient manner.

Kudu is a good fit for time-series workloads for several reasons. With Kudu's support for hash-based partitioning,
combined with its native support for compound row keys, it is simple to set up a table spread across many servers
without the risk of "hotspotting" that is commonly observed when range partitioning is used. Kudu's columnar storage
engine is also beneficial in this context, because many time-series workloads read only a few columns, as opposed to
the whole row.

In the past, you might have needed to use multiple datastores to handle different data access patterns. This practice
adds complexity to your application and operations, and duplicates your data, doubling (or worse) the amount of
storage required. Kudu can handle all of these access patterns natively and efficiently, without the need to off-load
work to other datastores.

Predictive Modeling

Data scientists often develop predictive learning models from large sets of data. The model and the data might need
to be updated or modified often as the learning takes place or as the situation being modeled changes. In addition,
the scientist might want to change one or more factors in the model to see what happens over time. Updating a large
set of data stored in files in HDFS is resource-intensive, as each file needs to be completely rewritten. In Kudu, updates
happen in near real time. The scientist can tweak the value, re-run the query, and refresh the graph in seconds or
minutes, rather than hours or days. In addition, batch or incremental algorithms can be run across the data at any
time, with near-real-time results.

Combining Data In Kudu With Legacy Systems

Companies generate data from multiple sources and store it in a variety of systems and formats. For instance, some
of your data might be stored in Kudu, some in a traditional RDBMS, and some in files in HDFS. You can access and query
all of these sources and formats using Impala, without the need to change your legacy systems.

Related Information

¢ Apache Kudu Concepts and Architecture on page 11
e Apache Kudu Installation and Upgrade on page 19

e Kudu Security on page 77
e More Resources for Apache Kudu on page 115

Apache Kudu Concepts and Architecture

Columnar Datastore

Kudu is a columnar datastore. A columnar datastore stores data in strongly-typed columns. With a proper design, a
columnar store can be superior for analytical or data warehousing workloads for the following reasons:

Read Efficiency

For analytical queries, you can read a single column, or a portion of that column, while ignoring other columns. This
means you can fulfill your request while reading a minimal number of blocks on disk. With a row-based store, you
need to read the entire row, even if you only return values from a few columns.

Data Compression

Because a given column contains only one type of data, pattern-based compression can be orders of magnitude
more efficient than compressing mixed data types, which are used in row-based solutions. Combined with the
efficiencies of reading data from columns, compression allows you to fulfill your query while reading even fewer
blocks from disk.

Raft Consensus Algorithm

The Raft consensus algorithm provides a way to elect a leader for a distributed cluster from a pool of potential leaders.
If a follower cannot reach the current leader, it transitions itself to become a candidate. Given a quorum of voters,
one candidate is elected to be the new leader, and the others transition back to being followers. A full discussion of
Raft is out of scope for this documentation, but it is a robust algorithm.

Kudu uses the Raft Consensus Algorithm for the election of masters and leader tablets, as well as determining the
success or failure of a given write operation.

Table

A table is where your data is stored in Kudu. A table has a schema and a totally ordered primary key. A table is split
into segments called tablets, by primary key.

Tablet

A tablet is a contiguous segment of a table, similar to a partition in other data storage engines or relational databases.
A given tablet is replicated on multiple tablet servers, and at any given point in time, one of these replicas is considered

the leader tablet. Any replica can service reads. Writes require consensus among the set of tablet servers serving the
tablet.

Tablet Server

A tablet server stores and serves tablets to clients. For a given tablet, one tablet server acts as a leader and the others
serve follower replicas of that tablet. Only leaders service write requests, while leaders or followers each service read
requests. Leaders are elected using Raft consensus. One tablet server can serve multiple tablets, and one tablet can
be served by multiple tablet servers.

http://raftconsensus.github.io/

Master

The master keeps track of all the tablets, tablet servers, the catalog table, and other metadata related to the cluster.
At a given pointin time, there can only be one acting master (the leader). If the current leader disappears, a new master
is elected using Raft consensus.

The master also coordinates metadata operations for clients. For example, when creating a new table, the client
internally sends the request to the master. The master writes the metadata for the new table into the catalog table,
and coordinates the process of creating tablets on the tablet servers.

All the master's data is stored in a tablet, which can be replicated to all the other candidate masters.

Tablet servers heartbeat to the master at a set interval (the default is once per second).

Catalog Table

The catalog table is the central location for metadata of Kudu. It stores information about tables and tablets. The
catalog table is accessible to clients through the master, using the client API. The catalog table cannot be read or written
directly. Instead, it is accessible only through metadata operations exposed in the client API. The catalog table stores
two categories of metadata:

Contents of the Catalog Table

Tables Table schemas, locations, and states

Tablets The list of existing tablets, which tablet servers have replicas of each tablet, the tablet's current
state, and start and end keys.

Logical Replication

Kudu replicates operations, not on-disk data. This is referred to as logical replication, as opposed to physical replication.
This has several advantages:

¢ Although inserts and updates transmit data over the network, deletes do not need to move any data. The delete
operation is sent to each tablet server, which performs the delete locally.

e Physical operations, such as compaction, do not need to transmit the data over the network in Kudu. This is
different from storage systems that use HDFS, where the blocks need to be transmitted over the network to fulfill
the required number of replicas.

¢ Tablets do not need to perform compactions at the same time or on the same schedule. They do not even need
to remain in sync on the physical storage layer. This decreases the chances of all tablet servers experiencing high
latency at the same time, due to compactions or heavy write loads.

Architectural Overview

The following diagram shows a Kudu cluster with three masters and multiple tablet servers, each serving multiple
tablets. It illustrates how Raft consensus is used to allow for both leaders and followers for both the masters and tablet
servers. In addition, a tablet server can be a leader for some tablets and a follower for others. Leaders are shown in
gold, while followers are shown in grey.

Apache Kudu Concepts and Architecture

Kudu network architecture

Master tablet Tablet 1 Tablet 2 cen Tablet n
| | ,
| : I
! |
Master Master tablet | Tablet 1 ! | Tablet n Tablet
Server A LEADER i LEADER \ ! Server W
a | =
1
i
! | |
|
Master ! Tablet 1 ! Tablet 2 ' Tablet
Server B ! LLOWER | LLOWER ' Server X
! 1
1 I \
I
|
1
1
|
: | i
I
Master ! Tablet 1 : Tablet 2 i Tablet n Tablst
Server C i LLOWER | 1 LLOWER ! LEADER Server Y
1] |
i ' '
1
1
| | |
! 1
i : Tablet 2 i Tablet n Tablet
! i LEADER ! LLOWER ServerZ
| i |
1

Figure 1: Kudu Architectural Overview

Apache Kudu Guide | 13

Apache Kudu Requirements

Starting with Kudu 1.5.0 / CDH 5.13, Kudu is fully integrated in the CDH 5 parcel and packages. As such, for the complete
list of hardware and software requirements for Kudu, see the Product Compatibility Matrix for Apache Kudu.

https://www.cloudera.com/documentation/enterprise/release-notes/topics/rn_consolidated_pcm.html#pcm_kudu

Apache Kudu Usage Limitations

Schema Design Limitations
Primary Key

¢ The primary key cannot be changed after the table is created. You must drop and recreate a table to select a
new primary key.

e The columns which make up the primary key must be listed first in the schema.

¢ The primary key of a row cannot be modified using the UPDATE functionality. To modify a row’s primary key,
the row must be deleted and re-inserted with the modified key. Such a modification is non-atomic.

e Columns with DOUBLE, FLOAT, or BOOL types are not allowed as part of a primary key definition. Additionally,
all columns that are part of a primary key definition must be NOT NULL.

e Auto-generated primary keys are not supported.

e Cells making up a composite primary key are limited to a total of 16KB after internal composite-key encoding
is done by Kudu.

Cells

No individual cell may be larger than 64KB before encoding or compression. The cells making up a composite key
are limited to a total of 16KB after the internal composite-key encoding done by Kudu. Inserting rows not conforming
to these limitations will result in errors being returned to the client.

Columns

¢ By default, Kudu tables can have a maximum of 300 columns. We recommend schema designs that use fewer
columns for best performance.

¢ CHAR, VARCHAR, DATE, and complex types such as ARRAY, MAP, and STRUCT are not supported.
¢ Type and nullability of existing columns cannot be changed by altering the table.
¢ Dropping a column does not immediately reclaim space. Compaction must run first.

* The precision and scale of DECI MAL columns cannot be changed by altering the table.

Tables
¢ Tables must have an odd number of replicas, with a maximum of 7.
e Replication factor (set at table creation time) cannot be changed.

¢ There is no way to run compaction manually, but dropping a table will reclaim the space immediately.

Other Usage Limitations

e Secondary indexes are not supported.
e Multi-row transactions are not supported.
¢ Relational features, such as foreign keys, are not supported.

¢ Identifiers such as column and table names are restricted to be valid UTF-8 strings. Additionally, a maximum
length of 256 characters is enforced.

If you are using Apache Impala to query Kudu tables, refer to the section on Impala Integration Limitations on page
17 as well.

Partitioning Limitations

Tables must be manually pre-split into tablets using simple or compound primary keys. Automatic splitting is not
yet possible. Kudu does not allow you to change how a table is partitioned after creation, with the exception of
adding or dropping range partitions.

Data in existing tables cannot currently be automatically repartitioned. As a workaround, create a new table with
the new partitioning and insert the contents of the old table.

Tablets that lose a majority of replicas (such as 1 left out of 3) require manual intervention to be repaired.

Scaling Recommendations and Limitations

Kudu can seamlessly run across a wide array of environments and workloads with minimal expertise and configuration
at the following scale:

Recommended maximum number of masters is 3.
Recommended maximum number of tablet servers is 100.

Recommended maximum amount of stored data, post-replication and post-compression, per tablet server is 8
TiB.

Recommended number of tablets per tablet server is 1000 (post-replication) with 2000 being the maximum
number of tablets allowed per tablet server.

Maximum number of tablets per table is 60, per tablet server, at table-creation time.
Maximum number of tablets per table for each tablet server is 60, post-replication (assuming the default replication
factor of 3), at table-creation time.

Recommended maximum amount of data per tablet is 50 GiB. Going beyond this can cause issues such a reduced
performance, compaction issues, and slow tablet startup times.

The recommended target size for tablets is under 10 GiB.

Staying within these limits will provide the most predictable and straightforward Kudu experience. However, experienced
users who run on modern hardware, use the latest versions of Kudu, test and tune Kudu for their use case, and work
closely with the community, can achieve much higher scales comfortably. Following are some anecdotal values that
have been seen in real world production clusters:

Number of master servers: 3

More than 300 tablet servers

10+ TiB of stored data per tablet server, post-replication and post-compression

More than 4000 tablets per tablet server, post-replication

50 GiB of stored data per tablet. Going beyond this can cause issues such a reduced performance, compaction
issues, and slower tablet startup time.

Server Management Limitations

Production deployments should configure a least 4 GiB of memory for tablet servers, and ideally more than 16
GiB when approaching the data and tablet scale limits.

Write ahead logs (WALs) can only be stored on one disk.

Cluster

Data directories cannot be removed. You must reformat the data directories to remove them.
Tablet servers cannot be gracefully decommissioned.
Tablet servers cannot change their address or port.

Kudu has a hard requirement on having an up-to-date NTP. Kudu masters and tablet servers will crash when out
of sync.

Kudu releases have only been tested with NTP. Other time synchronization providers such as Chrony may not
work.

Management Limitations

Rolling restart is not supported.

Recommended maximum point-to-point latency within a Kudu cluster is 20 milliseconds.
Recommended minimum point-to-point bandwidth within a Kudu cluster is 10 Gbps.

If you intend to use the location awareness feature to place tablet servers in different locations, it is recommended
that you measure the bandwidth and latency between servers to ensure they fit within the above guidelines.

All masters must be started at the same time when the cluster is started for the very first time.

Replication and Backup Limitations

Kudu does not currently include any built-in features for backup and restore. Users are encouraged to use tools
such as Spark or Impala to export or import tables as necessary.

Impala Integration Limitations

When creating a Kudu table, the CREATE TABLE statement must include the primary key columns before other
columns, in primary key order.

Impala cannot update values in primary key columns.
Impala cannot create Kudu tables with VARCHAR or nested-typed columns.

Kudu tables with a name containing upper case or non-ASCIl characters must be assigned an alternate name when
used as an external table in Impala.

Kudu tables with a column name containing upper case or non-ASCll characters cannot be used as an external
table in Impala. Columns can be renamed in Kudu to work around this issue.

I = and LI KE predicates are not pushed to Kudu, and instead will be evaluated by the Impala scan node. This may
decrease performance relative to other types of predicates.

Updates, inserts, and deletes using Impala are non-transactional. If a query fails part of the way through, its partial
effects will not be rolled back.

The maximum parallelism of a single query is limited to the number of tablets in a table. For good analytic
performance, aim for 10 or more tablets per host or use large tables.

Impala Keywords Not Supported for Creating Kudu Tables

PARTI TI ONED

LOCATI ON
ROWFORVAT

Spark Integration Limitations

Spark 2.2 (and higher) requires Java 8 at runtime even though Kudu Spark 2.x integration is Java 7 compatible.
Spark 2.2 is the default dependency version as of Kudu 1.5.0.

Kudu tables with a name containing upper case or non-ASCIl characters must be assigned an alternate name when
registered as a temporary table.

Kudu tables with a column name containing upper case or non-ASCIl characters must not be used with SparkSQL.
Columns can be renamed in Kudu to work around this issue.

<> and ORpredicates are not pushed to Kudu, and instead will be evaluated by the Spark task. Only LI KE predicates
with a suffix wildcard are pushed to Kudu. This means LI KE " FOO% will be pushed, but LI KE " FOO¥BAR' won't.

Kudu does not support all the types supported by Spark SQL. For example, Dat e and complex types are not
supported.

Kudu tables can only be registered as temporary tables in SparkSQL.

Kudu tables cannot be queried using HiveContext.

Security Limitations

Data encryption at rest is not directly built into Kudu. Encryption of Kudu data at rest can be achieved through
the use of local block device encryption software such as dncr ypt .

Row-level authorization is not available.

Kudu does not support configuring a custom service principal for Kudu processes. The principal must follow the
pattern kudu/ <HOST>@xDEFAULT. REALM>.

Server certificates generated by Kudu IPKI are incompatible with bouncycastle version 1.52 and earlier.
The highest supported version of the TLS protocol is TLSv1.2

Other Known Issues

The following are known bugs and issues with the current release of Kudu. They will be addressed in later releases.
Note that this list is not exhaustive, and is meant to communicate only the most important known issues.

If the Kudu master is configured with the -1 og_f orce_f sync_al | option, the tablet servers and the clients will
experience frequent timeouts, and the cluster may become unusable.

If a tablet server has a very large number of tablets, it may take several minutes to start up. It is recommended
to limit the number of tablets per server to 1000 or fewer. Consider this limitation when pre-splitting your tables.
If you notice slow start-up times, you can monitor the number of tablets per server in the web UI.

https://www.bouncycastle.org/

Apache Kudu Installation and Upgrade

Starting with Apache Kudu 1.5.0 / CDH 5.13, Kudu ships with CDH 5. In a parcel-based configuration, Kudu is part of
the CDH parcel rather than a separate parcel. The Kudu packages are also bundled into the CDH package.

Platform Requirements

Before you proceed with installation or upgrade, review Platform Requirements.

Downloading and Installing Kudu

Minimum Required Role: Cluster Administrator

On a cluster managed by Cloudera Manager, Kudu is installed as part of CDH and does not need to be installed separately.
With Cloudera Manager, you can enable or disable the Kudu service, but the Kudu component remains present on the
cluster. For instructions, see Cloudera Installation Guide.

Starting CDH 6.3.3, you must have an Enterprise Support Subscription to access ar chi ve. cl ouder a. com

If you want support for Kudu's NVM (non-volatile memory) block cache, then you must install the nenki nd library by
running one of the following commands for the corresponding platform:

¢ RHEL/CentOS:

sudo yuminstall nenkind
e Ubuntu or Debian:
sudo apt-get install |ibmenki nd0

e SLES:

sudo zypper install menkind

E,’ Note: For Kudu’s NVM block cache to work properly, the memkind library should be of version 1.8.0
or newer.

If the memkind package provided with the Linux distribution is too old, you can build and install it from source by using
the following commands:

https://www.cloudera.com/documentation/enterprise/6/latest/topics/rg_requirements_supported_versions.html
https://docs.cloudera.com/documentation/enterprise/6/6.3/topics/cm_sg_user_roles.html#concept_wfh_tvy_qp
https://www.cloudera.com/documentation/enterprise/6/latest/topics/installation.html

¢ RHEL/CentOS:

sudo yuminstall nunmactl-libs numactl-deve

git clone https://github. conl menki nd/ menki nd. gi t

cd menkind

./build.sh --prefix=/usr

sudo yum renove nenki nd

sudo make instal

sudo | dconfig

¢ Ubuntu or Debian:

sudo apt-get install |ibnumal |ibnuma-dev

git clone https://github. conl menki nd/ nenki nd. gi t

cd nmenki nd

./build.sh --prefix=/usr

sudo apt-get renove menkind

sudo nmake instal

sudo | dconfig

e SLES:

sudo zypper install nunmactl-libs nunmactl -deve

git clone https://github. conl menki nd/ nenki nd. gi t

cd menki nd

./build.sh --prefix=/usr

sudo zypper renove nenkind

sudo nmake instal

sudo | dconfig

Upgrading Kudu

Before you proceed with an upgrade, review the Upgrade Notes
On a managed cluster,

e |f you have just upgraded Cloudera Manager from a version that did not include Kudu, then Kudu will not be
installed automatically. You will need to add the Kudu service manually. Upgrading Cloudera Manager does not
automatically upgrade CDH or other managed services.

e Parcels: If you are upgrading CDH and were previously using the standalone Kudu parcel (version 1.4.0 and lower),
then you must deactivate this parcel and activate the latest CDH parcel that includes Kudu. For instructions, see
Upgrade Guide

¢ Packages: If you are upgrading CDH and were previously using the Kudu package (version 1.4.0 and lower), then
you must uninstall the kudu package and upgrade to the latest CDH package that includes Kudu. For instructions,
see Upgrade Guide

https://www.cloudera.com/documentation/enterprise/6/latest/topics/rg_install_upgrade_notes.html
https://www.cloudera.com/documentation/enterprise/6/latest/topics/ug_cdh_upgrade.html
https://www.cloudera.com/documentation/enterprise/6/latest/topics/ug_cdh_upgrade.html

Apache Kudu Configuration

To configure the behavior of each Kudu process, you can pass command-line flags when you start it, or read those
options from configuration files by passing them using one or more - - f | agf i | e=<f i | e> options. You can even
includethe--f 1l agfi | e option within your configuration file to include other files. Learn more about gflags by reading
its documentation.

You can place options for masters and tablet servers in the same configuration file, and each will ignore options that
do not apply.

Flags can be prefixed with either one or two - characters. This documentation standardizes on two: - - exanpl e_f | ag.

Only the most common configuration options are documented in this topic. For a more exhaustive list of configuration
options, see the Kudu Configuration Reference. To see all configuration flags for a given executable, run it with the
- - hel p option.

Experimental Flags

Some configuration flags are marked 'unsafe' and 'experimental’. Such flags are disabled by default. You can access
these flags by enabling the additional flags, - - unl ock_unsaf e_f | ags and- - unl ock_experi nent al _f| ags. Note
that these flags might be removed or modified without a deprecation period or any prior notice in future Kudu releases.
Cloudera does not support using unsafe and experimental flags. As a rule of thumb, Cloudera will not support any
configuration flags not explicitly documented in the Kudu Configuration Reference Guide.

Directory Configurations

Every Kudu node requires the specification of directory flags.
The - -fs_wal _di r configuration indicates where Kudu will place its write-ahead logs.

The--fs_netadat a_dir configuration indicates where Kudu will place metadata for each tablet. It is recommended,
although not necessary, that these directories be placed on a high-performance drives with high bandwidth and low
latency, e.g. solid-state drives. If - - f s_met adat a_di r is not specified, metadata will be placed in the directory
specified by --fs_wal _dir.

Since a Kudu node cannot tolerate the loss of its WAL or metadata directories, you might want to mirror the drives
containing these directories in order to make recovering from a drive failure easier. However, mirroring may increase
the latency of Kudu writes.

The - - fs_dat a_di r s configuration indicates where Kudu will write its data blocks. This is a comma-separated list of
directories; if multiple values are specified, data will be striped across the directories. If not specified, data blocks will
be placed in the directory specified by --fs_wal _dir.

E,i Note: While a single data directory backed by a RAID-0 array will outperform a single data directory
backed by a single storage device, it is better to let Kudu manage its own striping over multiple devices
rather than delegating the striping to a RAID-0 array.

Additionally, - -fs_wal _dir and--fs_netadat a_di r may be the same as one of the directories listed in
--fs_dat a_dirs, but must not be sub-directories of any of them.

Warning: Each directory specified by a configuration flag on a given machine should be used by at
most one Kudu process. If multiple Kudu processes on the same machine are configured to use the
same directory, Kudu may refuse to start up.

https://gflags.github.io/gflags/
http://kudu.apache.org/docs/configuration_reference.html
http://kudu.apache.org/docs/configuration_reference.html#configuration_reference_unsupported

Apache Kudu Configuration

Warning: Once - - f s_dat a_di r s is set, extra tooling is required to change it. For more details, see
the Changing Directory Configuration on page 42.

E,’ Note: The--fs_wal _dir and--fs_netadata_dir configurations can be changed, provided the
contents of the directories are also moved to match the flags.

Configuring the Kudu Master

To see all available configuration options for the kudu- mast er executable, run it with the - - hel p option:

kudu- master --help

Table 1: Supported Configuration Flags for Kudu Masters

--mast er _addr esses string | ocal host Comma-separated list of all
the RPC addresses for
Master
consensus-configuration. If
not specified, assumes a
standalone Master.

--fs_data_ dirs string List of directories where the
Master will place its data
blocks.

--fs_wal _dir string The directory where the

Master will place its
write-ahead logs.

--log_dir string [tnp The directory to store
Master log files.

For the complete list of flags for masters, see the Kudu Master Configuration Reference.

Configuring Tablet Servers

To see all available configuration options for the kudu- t ser ver executable, run it with the - - hel p option:

kudu-tserver --help

Table 2: Supported Configuration Flags for Kudu Tablet Servers

--fs_data_dirs string List of directories where the
Tablet Server will place its
data blocks.

Apache Kudu Guide | 23

http://kudu.apache.org/docs/configuration_reference.html#kudu-master_stable

Apache Kudu Configuration

--fs_wal_dir string The directory where the
Tablet Server will place its
write-ahead logs.

--log_dir string /tmp The directory to store Tablet
Server log files

--tserver_master_addrs string 127.0.0.1: 7051 Comma separated addresses
of the masters that the
tablet server should connect
to. The masters do not read
this flag.

--block_cache_capacity_mb | integer 512 Maximum amount of
memory allocated to the
Kudu Tablet Server’s block
cache.

--memory_limit_hard_bytes | integer 4294967296 Maximum amount of
memory a Tablet Server can
consume before it starts
rejecting all incoming writes.

For the complete list of flags for tablet servers, see the Kudu Tablet Server Configuration Reference.

Configuring Kudu Tables

Kudu allows certain configurations to be set per table. To configure the behavior of a Kudu table, you can set these
configurations at table creation, or alter them via the Kudu API or Kudu command line tool.

Table 3: Supported Configurable Properties for Kudu Tables

kudu.table. Integer NA Number of seconds to retain
history_max_age_sec history for tablets in this
table.

24 | Apache Kudu Guide

http://kudu.apache.org/docs/configuration_reference.html#kudu-tserver_stable

Apache Kudu Administration

This topic describes how to perform common administrative tasks and workflows with Apache Kudu.

Starting and Stopping Kudu Processes

Start Kudu services using the following commands:

sudo service kudu-naster start
sudo service kudu-tserver start

To stop Kudu services, use the following commands:

sudo service kudu-master stop
sudo service kudu-tserver stop

Configure the Kudu services to start automatically when the server starts, by adding them to the default runlevel.

sudo chkconfi g kudu-nmaster on # RHEL / Cent OS
sudo chkconfig kudu-tserver on # RHEL / Cent OS
sudo update-rc.d kudu-master defaults # Ubuntu

sudo update-rc.d kudu-tserver defaults # Ubuntu

Kudu Web Interfaces

Kudu tablet servers and masters expose useful operational information on a built-in web interface.

Kudu Master Web Interface

Kudu master processes serve their web interface on port 8051. The interface exposes several pages with information
about the state of the cluster.

e Alist of tablet servers, their host names, and the time of their last heartbeat.
e Alist of tables, including schema and tablet location information for each.

e SQL code which you can paste into Impala Shell to add an existing table to Impala’s list of known data sources.

Kudu Tablet Server Web Interface

Each tablet server serves a web interface on port 8050. The interface exposes information about each tablet hosted
on the server, its current state, and debugging information about maintenance background operations.

Common Web Interface Pages
Both Kudu masters and tablet servers expose the following information via their web interfaces:
e HTTP access to server logs.
e An/rpcz endpoint which lists currently running RPCs via JSON.
¢ Details about the memory usage of different components of the process.
e The current set of configuration flags.

e Currently running threads and their resource consumption.

¢ A JSON endpoint exposing metrics about the server.

e The version number of the daemon deployed on the cluster.

These interfaces are linked from the landing page of each daemon’s web Ul.

Kudu Metrics

Kudu daemons expose a large number of metrics. Some metrics are associated with an entire server process, whereas
others are associated with a particular tablet replica.
Listing Available Metrics

The full set of available metrics for a Kudu server can be dumped using a special command line flag:

$ kudu-tserver --dunmp_metrics_json
$ kudu-master --dunp_netrics_json

This will output a large JSON document. Each metric indicates its name, label, description, units, and type. Because
the output is JSON-formatted, this information can easily be parsed and fed into other tooling which collects metrics
from Kudu servers.

For the complete list of metrics collected by Cloudera Manager for a Kudu service, look for the Kudu metrics listed
under Cloudera Manager Metrics .

If you are using Cloudera Manager, see Cloudera Manager Metrics for Kudu on page 116 for the complete list of metrics
collected by Cloudera Manager for a Kudu service.

Collecting Metrics via HTTP

Metrics can be collected from a server process via its HTTP interface by visiting / met ri cs. The output of this page is
JSON for easy parsing by monitoring services. This endpoint accepts several GET parameters in its query string:

e /nmetrics?metrics=<substringl>, <substring2>, ..- Limits the returned metrics to those which contain
at least one of the provided substrings. The substrings also match entity names, so this may be used to collect
metrics for a specific tablet.

e /netrics?incl ude_schema=1 - Includes metrics schema information such as unit, description, and label in the
JSON output. This information is typically omitted to save space.

e /netrics?conpact =1 - Eliminates unnecessary whitespace from the resulting JSON, which can decrease
bandwidth when fetching this page from a remote host.

e /netrics?include_raw_hi st ograms=1 - Include the raw buckets and values for histogram metrics, enabling
accurate aggregation of percentile metrics over time and across hosts.

e /netrics?l evel =i nf o - Limits the returned metrics based on their severity level. The levels are ordered and
lower levels include the levels above them. If no level is specified, debug is used to include all metrics. The valid
values are:

¢ debug - Metrics that are diagnostically helpful but generally not monitored during normal operation.

¢ i nf o - Generally useful metrics that operators always want to have available but may not be monitored
under normal circumstances.

e war n - Metrics which can often indicate operational oddities, which may need more investigation.

For example:

$ curl -s "http://exanpl e-ts: 8050/ netrics?i ncl ude_schema=1&netri cs=connecti ons_accept ed’

{
"type": "server",
"id": "kudu.tabl etserver",
"attributes": {},
"metrics": [
{
"nane": "rpc_connections_accepted",
"l abel ": "RPC Connections Accepted",
"type": "counter",
"unit": "connections",
"description": "Number of incoming TCP connections nmade to the RPC
server",
"val ue": 92
}
]
}

$ curl -s '"http://exanpl e-ts: 8050/ metrics?nmetrics=l og_append_| at ency"

{
"type": "tablet",
"id": "cOebf 9f ef 1b847e2a83c7bd35¢c2056b1",
"attributes":
"tabl e_nanme": "lineitent,
"partition": "hash buckets: (55), range: [(<start>), (<end>))",
"table_id": ""
"metrics": [
"nanme": "l og_append_| atency",
"total count": 7498,
"mn": 4,
"nmean": 69. 3649,
"percentile_75": 29,
"percentile_95": 38,
"percentile_99": 45,
"percentile_99 9": 95,
"percentile_99 99": 167,
"max": 367244,
"total _suni: 520098
}
]
}

Diagnostics Logging

Kudu may be configured to periodically dump all of its metrics to a local log file using the
--metrics_l og_interval _nsflag. Setthisflagto the interval at which metrics should be writtentoadi agnosti cs

log file.

The diagnostics log will be written to the same directory as the other Kudu log files, with a similar naming format,
substituting di agnost i cs instead of a log level like | NFO. After any diagnostics log file reaches 64MB uncompressed,
the log will be rolled and the previous file will be gzip-compressed.

The log file generated has three space-separated fields. The first field is the word net ri cs. The second field is the
current timestamp in microseconds since the Unix epoch. The third is the current value of all metrics on the server,
using a compact JSON encoding. The encoding is the same as the metrics fetched via HTTP described above.

Rack Awareness (Location Awareness)

Starting in CDH 6.2, Kudu supports a rack awareness feature. Kudu’s ordinary re-replication methods ensure the
availability of the cluster in the event of a single node failure. However, clusters can be vulnerable to correlated failures
of multiple nodes. For example, all of the physical hosts on the same rack in a datacenter may become unavailable
simultaneously if the top-of-rack switch fails. Kudu’s rack awareness feature provides protection from certain kinds of
correlated failures, such as the failure of a single rack in a datacenter.

The first element of Kudu’s rack awareness feature is location assignment. When a tablet server registers with a master,
the master assigns it a location. A location is a / -separated string that begins with a/ and where each / -separated
component consists of characters from the set[a- zA- Z0-9_-.]. For example, / dc- 0/ r ack- 09 is a valid location,
while r ack- 04 and/ r ack=1 are not valid locations. Thus location strings resemble absolute UNIX file paths where
characters in directory and file names are restricted to the set [a- zA- Z0-9_-.] . Presently, Kudu does not use the
hierarchical structure of locations, but it may in the future. Location assignment is done by a user-provided command,
whose path should be specified using the - - | ocat i on_mappi ng_cnd master flag. The command should take a single
argument, the IP address or hostname of a tablet server, and return the location for the tablet server. Make sure that
all Kudu masters are using the same location mapping command.

The second element of Kudu’s rack awareness feature is the placement policy: Do not place a majority of replicas of
a tablet on tablet servers in the same location.

The leader master, when placing newly created replicas on tablet servers and when re-replicating existing tablets, will
attempt to place the replicas in a way that complies with the placement policy. For example, in a cluster with five tablet
servers A, B, C, D, and E, with respective locations/ L0,/ L0,/ L1,/ L1,/ L2, to comply with the placement policy a
new 3x replicated tablet could have its replicas placed on A, C, and E, but not on A, B, and C, because then the tablet
would have 2/3 replicas in location / LO. As another example, if a tablet has replicas on tablet servers A, C, and E, and
then Cfails, the replacement replica must be placed on Din order to comply with the placement policy.

In the case where it is impossible to place replicas in a way that complies with the placement policy, Kudu will violate
the policy and place a replica anyway. For example, using the setup described in the previous paragraph, if a tablet
has replicas on tablet servers A, C, and E, and then E fails, Kudu will re-replicate the tablet onto one of B or D, violating
the placement policy, rather than leaving the tablet under-replicated indefinitely. The kudu cl ust er rebal ance
tool can reestablish the placement policy if it is possible to do so. The kudu cl ust er rebal ance tool can also be
used to reimpose the placement policy on a cluster if the cluster has just been configured to use the rack awareness
feature and existing replicas need to be moved to comply with the placement policy. See Running Tablet Rebalancing
Tool on Rack-Aware Cluster on page 48 for more information.

Backup and Restore

Logical backup and restore

As of Kudu 1.10.0, Kudu supports both full and incremental table backups via a job implemented using Apache Spark.
Additionally, it supports restoring tables from full and incremental backups via a restore job implemented using Apache
Spark.

Kudu backup and restore jobs use Apache Spark. Therefore, ensure that you install Apache Spark in your environment.
To download Apache Spark, see the Apache Spark documentation. You can also review the Submitting Spark Applications
topics.

Backing up tables

You can use the KuduBackup Spark job to backup one or more Kudu tables. When you first run the job for a table, a
full backup is run. Additional runs will perform incremental backups which will only contain the rows that have changed
since the initial full backup. A new set of full backups can be forced at anytime by passing the - - f or ceFul | flag to
the backup job.

Following are some of the common flags that you can use while taking a backup:

https://spark.apache.org/docs/latest/#downloading

e --root Pat h: The root path is used to output backup data. It accepts any Spark-compatible path.

e --kuduMast er Addr esses: Is used to specify comma-separated addresses of Kudu masters. The default value
is localhost.

e <t abl e>..: Used to indicate a list of tables that you want to back up.

E,’ Note: You can obtain a full list of Job options by entering the - - hel p flag.

Here is a full example of a KuduBackup job execution which backs up the tables f oo and bar to the HDFS directory
kudu- backups:

spark-subnmit --class org.apache. kudu. backup. KuduBackup kudu-backup2_2.11-1.10.0.jar \
- - kuduMast er Addr esses nmst er 1- host, nast er - 2- host, mast er - 3- host \
--root Path hdfs:///kudu-backups \
foo bar

Restoring Tables from Backups

You can use the KuduRest or e Spark job to restore one or more Kudu tables. For each backed up table, the
KuduRest or e job restores the full backup and each associated incremental backup until the full table state is restored.
Restoring a complete series of full and incremental backups is possible because the backups are linked via the f r om s
andt o_ms fields in the backup metadata. By default, the restore job creates tables with the same name as the table
that was backed up. If you want to side-load the tables without affecting the existing tables, you can specify the

- -t abl eSuf f i x parameter to append a suffix to each restored table.

Some of the common flags that you can use to restore tables are:

e --root Pat h: It is the root path to the backup data. It accepts any Spark-compatible path.

e --kuduMast er Addr esses: Is used to specify comma-separated addresses of Kudu masters. The default value
is localhost

e --tabl eSuffix:Itisused to add a suffix to the restored table names. It can only be used when cr eat eTabl es
issettotrue.

e --tinestanpMs:Itisa UNIXtimestamp in milliseconds that defines the latest time to use when selecting restore
candidates. Default: System current TineM | | i s()

e <t abl e>..:Itis used to specify a list of tables to be backed up.

E,’ Note: You can obtain a full list of Job options by entering the - - hel p flag.

Here is a full example of a KuduRest or e job execution which restores the tables f oo and bar from the HDFS directory
kudu- backups:

spark-subnit --class org. apache. kudu. backup. KuduRest or e kudu- backup2_2.11-1.10.0.jar \
- - kuduMast er Addr esses nmst er 1- host, nast er - 2- host, mast er - 3- host \
--root Path hdfs:///kudu-backups \
foo bar

Backup Tools

An additional backup- t ool s jar is available to provide some backup exploration and garbage collection capabilities.
This jar does not use Spark directly, but instead only requires the Hadoop classpath to run.

Commands:

e | i st: Lists the backups in the rootPath
e cl ean: Cleans up old backed up data in the rootPath

E’; Note: You can obtain a full list of Job options by entering the - - hel p flag.

Following is an example execution which prints the command options:

java -cp $(hadoop cl asspat h): kudu- backup-tool s-1.10.0.j ar
or g. apache. kudu. backup. KuduBackupCLI --help
Backup Directory Structure

The backup directory structure in the r oot Pat h is considered an internal detail and could change in future versions
of Kudu. Additionally, the format and content of the data and metadata files is meant for the backup and restore
process only and could change in future versions of Kudu. That said, understanding the structure of the backup r oot Pat h
and how it is used can be useful when working with Kudu backups.

The backup directory structure in the r oot Pat h is as follows:

/ <r oot Pat h>/ <t abl el d>- <t abl eName>/ <backup-i d>/
. kudu- et adat a. j son
part-*.<fornmat>

e root Pat h: Can be used to distinguish separate backup groups, jobs, or concerns.
e tabl el d:Isthe unique internal ID of the table being backed up.
e t abl eNane: Is the name of the table being backed up.
Note: Table names are URL encoded to prevent pathing issues.
e backup-i d: Is a way to uniquely identify/group the data for a single backup run.

e . kudu- net adat a. j son: It contains all of the metadata to support recreating the table, linking backups by time,
and handling data format changes.

It is written last so that the failed backups will not have a metadata file and will not be considered at the restore
time or at the backup linking time.

e part-*.<format>:Is used to indicate the data files containing the tables data.
e Currently, 1 part file per Kudu partition.
¢ Incremental backups contain an additional “RowAction” byte column at the end.

¢ Currently, the only supported format/suffix is par quet

Physical backups of an entire node

Kudu does not provide a built-in physical backup and restore functionality yet. However, it is possible to create a
physical backup of a Kudu node (either tablet server or master) and restore it later.

n Warning:

The node to be backed up must be offline during the procedure, or else the backed up (or restored)
data will be inconsistent.

Certain aspects of the Kudu node (such as its hostname) are embedded in the on-disk data. As such,
it’s not yet possible to restore a physical backup of a node onto another machine.

1. Stop all Kudu processes in the cluster. This prevents the tablets on the backed up node from being rereplicated
elsewhere unnecessarily.

2. If creating a backup, make a copy of the WAL, metadata, and data directories on each node to be backed up. It is
important that this copy preserve all file attributes as well as sparseness.

3. If restoring from a backup, delete the existing WAL, metadata, and data directories, then restore the backup via
move or copy. As with creating a backup, it isimportant that the restore preserve all file attributes and sparseness.

4. Start all Kudu processes in the cluster.

Common Kudu Workflows

The following sections describe some common workflows for Kudu users:

Migrating to Multiple Kudu Masters

To provide high availability and to avoid a single point of failure, Kudu clusters should be created with multiple masters.
Many Kudu clusters were created with just a single master, either for simplicity or because Kudu multi-master support
was still experimental at the time. This workflow demonstrates how to migrate to a multi-master configuration. It can
also be used to migrate from two masters to three with straightforward modifications.

o Important:

¢ This workflow is unsafe for adding new masters to an existing multi-master configuration that
already has three or more masters. Do not use it for that purpose.

e An even number of masters doesn't provide any benefit over having one fewer masters. This
guide should always be used for migrating to three masters.

e This workflow presumes you are familiar with Kudu configuration management, with or without
Cloudera Manager.

¢ All of the command line steps below should be executed as the Kudu UNIX user. The example
commands assume the Kudu Unix user is kudu, which is typical.

Prepare for the migration

1. Establish a maintenance window (one hour should be sufficient). During this time the Kudu cluster will be
unavailable.

2. Decide how many masters to use. The number of masters should be odd. Three or five node master configurations
are recommended; they can tolerate one or two failures respectively.

3. Perform the following preparatory steps for the existing master:

¢ Identify and record the directories where the master’s write-ahead log (WAL) and data live. If using Kudu
system packages, their default locations are / var /| i b/ kudu/ mast er, but they may be customized using
thefs _wal dir andfs_dat a_dirs configuration parameters. The command below assume that
fs_ wal _dir is/data/kudu/ master/wal andfs _data_dirsis/data/kudu/ mast er/ dat a. Your
configuration may differ. For more information on configuring these directories, see the Kudu Configuration
docs.

¢ Identify and record the port the master is using for RPCs. The default port value is 7051, but it may have been
customized using the r pc_bi nd_addr esses configuration parameter.

¢ |dentify the master’s UUID. It can be fetched using the following command:

$ sudo -u kudu kudu fs dunp uuid --fs_wal _dir=<master_wal dir>
[--fs_data_dirs=<master_data_dir>] 2>/dev/null

https://www.cloudera.com/documentation/enterprise/latest/topics/kudu_configuration_cli.html
https://www.cloudera.com/documentation/enterprise/latest/topics/kudu_configuration_cli.html

master_data_dir

The location of the existing master’s previously recorded data directory.

For example:

$ sudo -u kudu kudu fs dunmp uuid --fs_wal _dir=/var/lib/kudu/ master 2>/dev/null
4aab798a69e94f ab8d77069edf f 28ce0

¢ (Optional) Configure a DNS alias for the master. The alias could be a DNS cname (if the machine already has
an A record in DNS), an A record (if the machine is only known by its IP address), or an aliasin/ et ¢/ host s.
The alias should be an abstract representation of the master (e.g. mast er - 1).

Important: Without DNS aliases, it is not possible to recover from permanent master failures
without bringing the cluster down for maintenance. t is highly recommended that you use
DNS aliases.

4. If you have Kudu tables that are accessed from Impala, you must update the master addresses in the Apache Hive
Metastore (HMS) database.

¢ Ifyousetupthe DNSaliases, run the following statementini npal a- shel | , replacingmast er - 1, mast er - 2,
and mast er - 3 with your actual aliases.

ALTER TABLE t abl e_nane
SET TBLPROPERTI ES
(' kudu. mast er _addresses' = 'master-1, master-2, master-3');

¢ If you do not have DNS aliases set up, see Step #11 in the Performing the migration section for updating HMS.
5. Perform the following preparatory steps for each new master:

e Choose an unused machine in the cluster. The master generates very little load so it can be collocated with
other data services or load-generating processes, though not with another Kudu master from the same
configuration.

e Ensure Kudu is installed on the machine, either using system packages (in which case the kudu and
kudu- mast er packages should be installed), or some other means.

e Choose and record the directory where the master’s data will live.
e Choose and record the port the master should use for RPCs.

¢ (Optional) Configure a DNS alias for the master (e.g. mast er - 2, nast er - 3, etc).

Perform the migration

1. Stop all the Kudu processes in the entire cluster.

2. Format the data directory on each new master machine, and record the generated UUID. Use the following
commands:

$ sudo -u kudu kudu fs format --fs_wal dir=<master_wal dir>
[--fs_data_dirs=<naster_data_dir>]

$ sudo -u kudu kudu fs dunp uuid --fs_wal dir=<master_wal _dir>
[--fs_data_dirs=<nmaster_data_dir>] 2>/dev/null

master_data_dir

The new master’s previously recorded data directory.

For example:

$ sudo -u kudu kudu fs format --fs_wal _dir=/datal/kudu/ master/wal
--fs_data_dirs=/datal/ kudu/ nast er/ dat a

sudo -u kudu kudu fs dunp uuid --fs_wal _dir=/datal/ kudu/ nmast er/wal
--fs_data_dirs=/datal/ kudu/ mast er/ data 2>/ dev/ nul |

f 5624e05f 40649b79a757629a69d061e

3. If you are using Cloudera Manager, add the new Kudu master roles now, but do not start them.

¢ If using DNS aliases, override the empty value of the Mast er Addr ess parameter for each role (including
the existing master role) with that master’s alias.

¢ Add the port number (separated by a colon) if using a non-default RPC port value.

4. Rewrite the master’s Raft configuration with the following command, executed on the existing master:

$ sudo -u kudu kudu |l ocal _replica cnmeta rewite_raft_config --fs_wal _di r=<master_wal _dir>

[--fs_data_dirs=<master_data_dir>] <tablet id> <all_mmsters>

master_data_dir

The existing master’s previously recorded data directory

tablet_id

This must be set to the string, 00000000000000000000000000000000.
all_masters

A space-separated list of masters, both new and existing. Each entry in the list must be a string of the form
<uui d>: <host nanme>: <port >.

uuid

The master’s previously recorded UUID.

hostname

The master’s previously recorded hostname or alias.
port

The master’s previously recorded RPC port number.

For example:

$ sudo -u kudu kudu local _replica cnmeta rewite_raft_config

--fs_wal _dir=/datal/kudu/ master/wal --fs_data_dirs=/datal/ kudu/ master/data
00000000000000000000000000000000 4aabh798a69e94f ab8d77069edf f 28ce0: mast er- 1: 7051
f 5624e05f 40649b79a757629a69d061e: nast er - 2: 7051

988d8ac6530f 426chbel80be5ba52033d: nmast er - 3: 7051

o Important: If you are using Cloudera Manager, skip the next step.

. Modify the value of the mast er _addr esses configuration parameter for both existing master and new masters.
The new value must be a comma-separated list of all of the masters. Each entry is a string of the form,
<host nane>: <port >.

hostname
The master's previously recorded hostname or alias.
port

The master's previously recorded RPC port number.

6. Start the existing master.
7. Copy the master data to each new master with the following command, executed on each new master machine.

o Important: If your Kudu cluster is secure, in addition to running as the Kudu UNIX user, you must
authenticate as the Kudu service user prior to running this command.

$ sudo -u kudu kudu local _replica copy fromrenote --fs_wal _dir=<master_data_dir>
<tabl et _i d> <exi sting_master>

master_data_dir

The new master's previously recorded data directory.

tablet_id

Must be set to the string, 00000000000000000000000000000000.

existing_master

RPC address of the existing master. It must be a string of the form <host nane>: <port >.
hostname

The existing master's previously recorded hostname or alias.

port

The existing master's previously recorded RPC port number.

Example

$ sudo -u kudu kudu local _replica copy_fromrenote --fs_wal _dir=/data/ kudu/ mast er/ wal
--fs_data_dirs=/datal/ kudu/ master/data 00000000000000000000000000000000 naster-1: 7051

8. Start all the new masters.

o Important: If you are using Cloudera Manager, skip the next step.

9. Modify the value of the t ser ver _nmast er _addr s configuration parameter for each tablet server. The new value
must be a comma-separated list of masters where each entry is a string of the form <host nane>: <port >

hostname
The master's previously recorded hostname or alias
port

The master's previously recorded RPC port number

10 Start all the tablet servers.
1. If you have Kudu tables that are accessed from Impala and you didn’t set up DNS aliases, update the HMS database
manually in the underlying database that provides the storage for HMS.

¢ The following is an example SQL statement you would run in the HMS database:

UPDATE TABLE_PARAMS
SET PARAM VALUE =
'mast er- 1. exanpl e. com nast er - 2. exanpl e. com nmast er - 3. exanpl e. com
WHERE PARAM KEY = ' kudu. mast er _addresses' AND PARAM VALUE = 'ol d-master';

¢ Invalidate the metadata by running the command ini npal a- shel | :

I NVALI DATE METADATA,

To verify that all masters are working properly, consider performing the following sanity checks:

e Using a browser, visit each master’s web Ul and navigate to the / mast er s page. All the masters should now be
listed there with one master in the LEADERrole and the others in the FOLLOAERrole. The contents of / mast er s
on each master should be the same.

¢ RunaKudu system check (ksck) on the cluster using the kudu command line tool. For more details, see Monitoring
Cluster Health with ksck on page 40.

Recovering from a Dead Kudu Master in a Multi-Master Deployment

Kudu multi-master deployments function normally in the event of a master loss. However, it is important to replace
the dead master. Otherwise a second failure may lead to a loss of availability, depending on the number of available
masters. This workflow describes how to replace the dead master.

Due to KUDU-1620, it is not possible to perform this workflow without also restarting the live masters. As such, the
workflow requires a maintenance window, albeit a potentially brief one if the cluster was set up with DNS aliases.

o Important:

e Kudu does not yet support live Raft configuration changes for masters. As such, it is only possible
to replace a master if the deployment was created with DNS aliases or if every node in the cluster
is first shut down. See the previous multi-master migration workflow for more details on deploying
with DNS aliases.

¢ The workflow presupposes at least basic familiarity with Kudu configuration management. If
using Cloudera Manager, the workflow also presupposes familiarity with it.

e All of the command line steps below should be executed as the Kudu UNIX user, typically kudu.

Prepare for the recovery
1. If the cluster was configured without DNS aliases perform the following steps. Otherwise move on to step 2:

a. Establish a maintenance window (one hour should be sufficient). During this time the Kudu cluster will be
unavailable.
b. Shut down all Kudu tablet server processes in the cluster.

2. Ensure that the dead master is well and truly dead. Take whatever steps needed to prevent it from accidentally
restarting; this can be quite dangerous for the cluster post-recovery.

3. Choose one of the remaining live masters to serve as a basis for recovery. The rest of this workflow will refer to
this master as the "reference" master.

4. Choose an unused machine in the cluster where the new master will live. The master generates very little load so
it can be co-located with other data services or load-generating processes, though not with another Kudu master
from the same configuration. The rest of this workflow will refer to this master as the "replacement” master.

5. Perform the following preparatory steps for the replacement master:

e Ensure Kudu is installed on the machine, either via system packages (in which case the kudu and kudu- nast er
packages should be installed), or via some other means.

e Choose and record the directory where the master’s data will live.

6. Perform the following preparatory steps for each live master:

https://issues.apache.org/jira/browse/KUDU-1620

¢ |dentify and record the directory where the master’s data lives. If using Kudu system packages, the default
value is /var/lib/kudu/master, but it may be customized viathefs_wal _di r andfs_dat a_di r s configuration
parameter. Please note if you’'ve setf s_dat a_di r s to some directories other than thevalueoffs_wal _dir,
it should be explicitly included in every command below where fs_wal _di r is also included. For more
information on configuring these directories, see the Kudu Configuration docs.

¢ Identify and record the master’s UUID. It can be fetched using the following command:

$ sudo -u kudu kudu fs dunmp uuid --fs_wal _dir=<master_wal _dir>
[--fs_data_dirs=<master_data_dir>] 2>/dev/null

master_data_dir
live master’s previously recorded data directory

Example

$ sudo -u kudu kudu fs dunp uuid --fs_wal _dir=/data/kudu/ master/wal
--fs_data_dirs=/datal/ kudu/ mast er/ data 2>/ dev/ nul |
80a82c4h8a9f 4c819bab744927ad765¢

7. Perform the following preparatory steps for the reference master:

¢ |dentify and record the directory where the master’s data lives. If using Kudu system packages, the default
valueis/var /i b/ kudu/ mast er, but it may be customized usingthefs_wal _dir andfs_data dirs
configuration parameter. If you have set fs_dat a_di r s to some directories other than the value of
fs_wal _dir, itshouldbe explicitly included in every command below where f s_wal _di r is also included.
For more information on configuring these directories, see the Kudu Configuration docs.

¢ |dentify and record the UUIDs of every master in the cluster, using the following command:

$ sudo -u kudu kudu | ocal _replica cneta print_replica_uuids --fs_wal _dir=<nmaster_data_dir>
<tabl et _i d> 2>/ dev/nul |

master_data_dir

The reference master’s previously recorded data directory.

tablet_id

Must be set to the string, 00000000000000000000000000000000.

For example

$ sudo -u kudu kudu local _replica cneta print_replica_uuids

--fs_wal _dir=/datal/ kudu/ naster/wal --fs_data_dirs=/datal/kudu/ naster/data
00000000000000000000000000000000 2>/ dev/ nul |

80a82c4b8a9f 4c819bab744927ad765¢c 2a73eeee5d47413981d9alc637ccel70

1c3f 3094256347528d02ec107466aef 3

8. Using the two previously-recorded lists of UUIDs (one for all live masters and one for all masters), determine and
record (by process of elimination) the UUID of the dead master.

Perform the recovery

1. Format the data directory on the replacement master machine using the previously recorded UUID of the dead
master. Use the following command sequence:

$ sudo -u kudu kudu fs format --fs_wal _dir=<master_wal _dir>
[--fs_data_dirs=<nmaster_data_dir>] --uuid=<uuid>

master_data_dir

The replacement master’s previously recorded data directory.

https://www.cloudera.com/documentation/enterprise/latest/topics/kudu_configuration_cli.html
https://www.cloudera.com/documentation/enterprise/latest/topics/kudu_configuration_cli.html

uuid
The dead master’s previously recorded UUID.

For example:

$ sudo -u kudu kudu fs format --fs_wal _dir=/datal/kudu/ master/ wal
--fs_data_dirs=/datal/ kudu/ naster/data --uui d=80a82c4b8a9f 4c819bab744927ad765c

2. Copy the master data to the replacement master with the following command.

o Important: If your Kudu cluster is secure, in addition to running as the Kudu UNIX user, you must
authenticate as the Kudu service user prior to running this command.

$ sudo -u kudu kudu local _replica copy_fromrenote --fs_wal _dir=<master_wal _dir>
[--fs_data_dirs=<master_data_dir>] <tablet_id> <reference_naster>

master_data_dir

The replacement master’s previously recorded data directory.

tablet_id

Must be set to the string, 00000000000000000000000000000000.

reference_master

The RPC address of the reference master. It must be a string of the form <host name>: <port >.
hostname

The reference master’s previously recorded hostname or alias.

port

The reference master’s previously recorded RPC port number.

For example:

$ sudo -u kudu kudu | ocal _replica copy_fromrenote --fs_wal _dir=/datalkudu/ mast er/wal
--fs_data_dirs=/datal/ kudu/ mast er/ data 00000000000000000000000000000000 nmst er-2: 7051

3. If you are using Cloudera Manager, add the replacement Kudu master role now, but do not start it.

e Override the empty value of the Mast er Addr ess parameter for the new role with the replacement master’s
alias.

¢ If you are using a non-default RPC port, add the port number (separated by a colon) as well.

4. If the cluster was set up with DNS aliases, reconfigure the DNS alias for the dead master to point at the replacement
master.
5. If the cluster was set up without DNS aliases, perform the following steps:

a. Stop the remaining live masters.
b. Rewrite the Raft configurations on these masters to include the replacement master. See Step 4 of Perform
the Migration for more details.

6. Start the replacement master.
7. Restart the remaining masters in the new multi-master deployment. While the masters are shut down, there will
be an availability outage, but it should last only as long as it takes for the masters to come back up.

To verify that all masters are working properly, consider performing the following sanity checks:

e Using a browser, visit each master’s web Ul and navigate to the / mast er s page. All the masters should now be
listed there with one master in the LEADERrole and the others in the FOLLOAER role. The contents of / mast er s
on each master should be the same.

* Runa Kudu system check (ksck) on the cluster using the kudu command line tool. For more details, see Monitoring
Cluster Health with ksck on page 40.

Removing Kudu Masters from a Multi-Master Deployment

In the event that a multi-master deployment has been overallocated nodes, the following steps should be taken to
remove the unwanted masters.

o Important:

¢ In planning the new multi-master configuration, keep in mind that the number of masters should
be odd and that three or five node master configurations are recommended.

¢ Dropping the number of masters below the number of masters currently needed for a Raft
majority can incur data loss. To mitigate this, ensure that the leader master is not removed during
this process.

Prepare for removal

1. Establish a maintenance window (one hour should be sufficient). During this time the Kudu cluster will be
unavailable.

2. Identify the UUID and RPC address current leader of the multi-master deployment by visiting the / mast er s page
of any master’s web Ul. This master must not be removed during this process; its removal may result in severe
data loss.

3. Stop all the Kudu processes in the entire cluster.

4. If you are using Cloudera Manager, remove the unwanted Kudu master from your cluster's Kudu service.

Perform the removal

1. Rewrite the Raft configuration on the remaining masters to include only the remaining masters. See Step 4 of
Perform the Migration for more details.

2. Remove the data directories and WAL directory on the unwanted masters. This is a precaution to ensure that they
cannot start up again and interfere with the new multi-master deployment.

3. Modify the value of the mast er _addr esses configuration parameter for the masters of the new multi-master
deployment. See Kudu Configuration docs for the steps to modify a configuration parameter. If migrating to a
single-master deployment, the mast er _addr esses flag should be omitted entirely.

4. Start all of the masters that were not removed.

o Important: If you are using Cloudera Manager, skip the next step.

5. Modify the value of the t ser ver _nast er _addr s configuration parameter for the tablet servers to remove any
unwanted masters. See Kudu Configuration docs for the steps to modify a configuration parameter.

6. Start all of the tablet servers.
To verify that all masters are working properly, consider performing the following sanity checks:

e Using a browser, visit each master’s web Ul and navigate to the / mast er s page. All the masters should now be
listed there with one master in the LEADERrole and the others in the FOLLOAER role. The contents of / mast er s
on each master should be the same.

¢ RunaKudu system check (ksck) on the cluster using the kudu command line tool. For more details, see Monitoring
Cluster Health with ksck on page 40.

https://www.cloudera.com/documentation/enterprise/latest/topics/kudu_configuration_cli.html
https://www.cloudera.com/documentation/enterprise/latest/topics/kudu_configuration_cli.html

Changing Master Hostnames

When replacing dead masters, use DNS aliases to prevent long maintenance windows. If the cluster was set up without
aliases, change the host names as described in this section.

Prepare for Hostname Changes
To prepare to change a hostname:

1. Establish a maintenance window during which the Kudu cluster will be unavailable. One hour should be sufficient.
2. On the Masters page in Kudu Web Ul, note the UUID and RPC address of each master.

3. Stop all the Kudu processes in the cluster.

4. Set up the new hostnames to point to the masters and verify all servers and clients properly resolve them.

Perform Hostname Changes
To change hostnames:

1. Rewrite each master’s Raft configuration with the following command, executed on each master host:

$ sudo -u kudu kudu | ocal _replica cneta rewite_raft_config --fs_wal _di r=<master_wal _dir>
[--fs_data_dirs=<naster_data_dir> 00000000000000000000000000000000 <al | _rmast ers>

For example:

$ sudo -u kudu kudu local _replica cneta rewite_raft_config

--fs_wal _dir=/datal/kudu/ master/wal --fs_data_dirs=/datal/kudu/ master/data

00000000000000000000000000000000 4aab798a69e94f ab8d77069edf f 28ce0: new mast er - name- 1: 7051
f 5624e05f 40649b79a757629a69d061e: new nast er - name- 2: 7051

988d8ac6530f 426cbel180be5ba52033d: new mast er - name- 3: 7051

2. Update the master address:

¢ In an environment not managed by Cloudera Manager, change the gf | ag file of the masters so the
mast er _addr esses parameter reflects the new hostnames.

¢ In an environment managed by Cloudera Manager, specify the new hostname in the Master Address
(server.address) field on each Kudu role.

3. Change the gf | ag file of the tablet servers to update the t ser ver _mast er _addr s parameter with the new
hostnames. In an environment managed by Cloudera Manager, this step is not needeed.

4. Start the masters.

5. To verify that all masters are working properly, perform the following sanity checks:

a. In each master’s Web Ul, click Masters on the Status Pages. All of the masters should be listed there with
one master in the LEADER role field and the others in the FOLLOWER role field. The contents of Masters on
all master should be the same.

b. Run the below command to verify all masters are up and listening. The UUIDs are the same and belong to
the same master as before the hostname change:

$ sudo -u kudu kudu master |ist
new mast er - nane- 1: 7051, new nast er - nane- 2: 7051, new nast er - nane- 3: 7051

6. Start all of the tablet servers.

7. Run a Kudu system check (ksck) on the cluster using the kudu command line tool. See Monitoring Cluster Health
with ksck on page 40 for more details. After startup, some tablets may be unavailable as it takes some time to
initialize all of them.

8. If you have Kudu tables that are accessed from Impala, update the HMS database manually in the underlying
database that provides the storage for HMS.

a. The following is an example SQL statement you run in the HMS database:

UPDATE TABLE_PARAMSSET PARAM VALUE =

' new mast er - nane- 1: 7051, new mast er - nane- 2: 7051, new nast er - nane- 3: 7051’
WHERE PARAM KEY = ' kudu. mast er _addr esses'

AND PARAM VALUE = 'master-1: 7051, master-2: 7051, master-3: 7051' ;

b. Ini npal a-shel |, run:

I NVALI DATE METADATA,

c. Verify updating the metadata worked by running a simple SELECT query on a Kudu-backed Impala table.

Best Practices when Adding New Tablet Servers

A common workflow when administering a Kudu cluster is adding additional tablet server instances, in an effort to
increase storage capacity, decrease load or utilization on individual hosts, increase compute power, and more.

By default, any newly added tablet servers will not be utilized immediately after their addition to the cluster. Instead,
newly added tablet servers will only be utilized when new tablets are created or when existing tablets need to be
replicated, which can lead to imbalanced nodes. It's recommended to run the rebalancer CLI tool just after adding a
new tablet server into the cluster.

Avoid placing multiple tablet servers on a single node. Doing so nullifies the point of increasing the overall storage
capacity of a Kudu cluster and increases the likelihood of tablet unavailability when a single node fails (the latter
drawback is not applicable if the cluster is properly configured to use the Rack Awareness (Location Awareness) on
page 28 feature.

To add additional tablet servers to an existing cluster, the following steps can be taken to ensure tablet replicas are
uniformly distributed across the cluster:

1. Ensure that Kudu is installed on the new machines being added to the cluster, and that the new instances have
been correctly configured to point to the pre-existing cluster. Then, start the new tablet server instances.

2. Verify that the new instances check in with the Kudu Master(s) successfully. A quick method for verifying whether
they have successfully checked in with the existing Master instances is to view the Kudu Master WebUI, specifically
the/ t abl et - ser ver s section, and validate that the newly added instances are registered, and have a heartbeat.

3. Once the tablet server(s) are successfully online and healthy, follow the steps to run the rebalancing tool which
spreads the existing tablet replicas to the newly added tablet servers.

4. After the rebalancer tool has completed, or even during its execution, you can check the health of the cluster
using the ksck command-line utility.

Monitoring Cluster Health with ksck

The kudu CLI includes a tool called ksck that can be used for gathering information about the state of a Kudu cluster,
including checking its health. ksck will identify issues such as under-replicated tablets, unreachable tablet servers, or
tablets without a leader.

ksck should be run from the command line as the Kudu admin user, and requires the full list of master addresses to

be specified:

$ sudo -u kudu kudu cluster ksck
mast er - 01. exanpl e. com nmast er - 02. exanpl e. com nmast er - 03. exanpl e. com

To see a full list of the options available with ksck, use the - - hel p flag. If the cluster is healthy, ksck will print
information about the cluster, a success message, and return a zero (success) exit status.

Mast er Sunmary
uuJl D | Addr ess | Status

a811c07b99394df 799e6650e7310f 282 | master-01. exanpl e. com | HEALTHY
b579355eeeea446e998606bcbh7e87844 | nmster-02. exanpl e.com | HEALTHY

cf dcc8592711485f ad32ec4eeadf bf cd | master-02. exanpl e.com | HEALTHY

Tabl et Server Sunmary
uul D | Addr ess | Status

a598f 75345834133a39c6e51163245db | tserver-01. exanpl e.com | HEALTHY
e05cabb6573b4elf 9a518157¢c0c0c637 | tserver-02. exanpl e.com | HEALTHY
e7e53a91f e704296b3a59ad304e7444a | tserver-03. exanpl e.com | HEALTHY

Ver si on Sumary

Version | Servers
_________ e
1.7.1 | all 6 server(s) checked
Sunmary by table
Nane | RF| Status | Total Tablets | Healthy | Recovering | Under-replicated |
Unavai | abl e
---------- T T e T TR ppuppupp
ny_table | 3 | HEALTHY | 8 | 8 | O | O | ©
| Total Count
________________ e e e e e - =
Mast er s | 3
Tabl et Servers | 3
Tabl es | 1
Tabl et s | 8
Repl i cas | 24
K

If the cluster is unhealthy, for instance if a tablet server process has stopped, ksck will report the issue(s) and return
a non-zero exit status, as shown in the abbreviated snippet of ksck output below:

Tabl et Server Sunmary
Uul D | Addr ess [St at us

ab98f 75345834133a39c6e51163245db | tserver-01. exanpl e.com | HEALTHY
e05cabh6573b4elf 9a518157c0c0c637 | tserver-02. exanpl e.com | HEALTHY
e7e53a91f e704296b3a59ad304e7444a | tserver-03. exanpl e.com | UNAVAI LABLE
Error from 127.0.0.1:7150: Network error: could not get status fromserver: Cient
connection negotiation failed: client connection to 127.0.0.1: 7150: connect: Connection
refused (error 61) (UNAVAI LABLE)

(full output elided)

Network error: error fetching info fromtablet servers: failed to gather info for all
tabl et servers: 1 of 3 had errors
Corruption: table consistency check error: 1 out of 1 table(s) are not healthy

FAI LED
Runtime error: ksck discovered errors

To verify data integrity, the optional - - checksum scan flag can be set, which will ensure the cluster has consistent
data by scanning each tablet replica and comparing results. The - - t abl es or - -t abl et s flags can be used to limit
the scope of the checksum scan to specific tables or tablets, respectively.

For example, checking data integrity on the my_t abl e table can be done with the following command:

$ sudo -u kudu kudu cluster ksck --checksumscan --tables my_table
mast er - 01. exanpl e. com nmast er - 02. exanpl e. com nmast er - 03. exanpl e. com

By default, ksck will attempt to use a snapshot scan of the table, so the checksum scan can be done while writes
continue.

Finally, ksck also supports output in JSON format using the - - ksck_f or mat flag. JSON output contains the same
information as the plain text output, but in a format that can be used by other tools. See kudu cl uster ksck
- - hel p for more information.

Changing Directory Configuration

For higher read parallelism and larger volumes of storage per server, you may want to configure servers to store data
in multiple directories on different devices. Once a server is started, you must go through the following steps to change
the directory configuration.

You can add or remove data directories to an existing master or tablet server via the kudu fs update_di rs tool.
Data is striped across data directories, and when a new data directory is added, new data will be striped across the
union of the old and new directories.

E,i Note: Unless the - - f or ce flag is specified, Kudu will not allow for the removal of a directory across
which tablets are configured to spread data. If - - f or ce is specified, all tablets configured to use that
directory will fail upon starting up and be replicated elsewhere.

E,’ Note: If the metadata directory overlaps with a data directory, as was the default prior to Kudu 1.7,
or if a non-default metadata directory is configured, the - - f s_net adat a_di r configuration must
be specified when running the kudu fs update_dirs tool.

E,’ Note: Only new tablet replicas, i.e. brand new tablets' replicas and replicas that are copied to the
server for high availability, will use the new directory. Existing tablet replicas on the server will not
be rebalanced across the new directory.

1. The tool can only run while the server is offline, so establish a maintenance window to update the server. The
tool itself runs quickly, so this offline window should be brief, and as such, only the server to update needs to be
offline.

However, if the server is offline for too long (see the f ol | ower _unavai | abl e_consi dered_f ai | ed_sec flag),
the tablet replicas on it may be evicted from their Raft groups. To avoid this, it may be desirable to bring the entire
cluster offline while performing the update.

2. Run the tool with the desired directory configuration flags. For example, if a cluster was set up with
--fs_ wal _dir=/wals,--fs nmetadata_dir=/nmeta,and--fs _data dirs=/data/l,/datal/2,/datal3,
and/ dat a/ 3 is to be removed (e.g. due to a disk error), run the command:

$ sudo -u kudu kudu fs update_dirs --force --fs_wal _dir=/wals --fs_netadata_dir=/neta
--fs_data_dirs=/data/1l,/datal?2

3. Modify the values of the f s_dat a_di r s flags for the updated sever. If using Cloudera Manager, make sure to
only update the configurations of the updated server, rather than of the entire Kudu service.

4. Once complete, the server process can be started. When Kudu is installed using system packages, ser vi ce is
typically used:

$ sudo service kudu-tserver start

Recovering from Disk Failure

Kudu nodes can only survive failures of disks on which certain Kudu directories are mounted. For more information
about the different Kudu directory types, see the section on Directory Configurations on page 22.

The table below summarizes the resilience to disk failure in different releases of Apache Kudu.

http://kudu.apache.org/docs/configuration.html#directory_configuration

Table 4: Kudu Disk Failure Behavior

Node Type Kudu Directory Type Kudu Releases that Crash on Disk
Failure

Master All All

Tablet Server Directory containing WALs All

Tablet Server Directory containing tablet metadata |All

Tablet Server Directory containing data blocks only |Pre-1.6.0

When a disk failure occurs that does not lead to a crash, Kudu will stop using the affected directory, shut down tablets
with blocks on the affected directories, and automatically re-replicate the affected tablets to other tablet servers. The
affected server will remain alive and print messages to the log indicating the disk failure, for example:

E1205 19: 06: 24. 163748 27115 data_dirs.cc:1011] Directory /data/ 8/ kudu/ data narked as

failed

E1205 19: 06: 30. 324795 27064 | og_bl ock_manager. cc: 1822] Not using report from

/data/ 8/ kudu/data: 10 error: Could not open container 0a6283cab82d4e75848f 49772d2638f e:

/ dat a/ 8/ kudu/ dat a/ 0a6283cab82d4e75848f 49772d2638f e. net adata: Read-only file system (error
30)

E1205 19: 06: 33. 564638 27220 ts_tabl et _manager.cc: 946] T 4957808439314e0d97795¢c1394348d80
P 70f 7ee61ead54b1885d819f 354eb3405: aborting tabl et bootstrap: tablet has data in a

failed directory

While in this state, the affected node will avoid using the failed disk, leading to lower storage volume and reduced
read parallelism. The administrator should schedule a brief window to Changing Directory Configuration on page 42
to exclude the failed disk.

When the disk is repaired, remounted, and ready to be reused by Kudu, take the following steps:

1. Make sure that the Kudu portion of the disk is completely empty.
2. Stop the tablet server.
3. Run the updat e_di r s tool. For example, to add / dat a/ 3, run the following:

$ sudo -u kudu kudu fs update_dirs --force --fs_wal _dir=/wals
--fs _data dirs=/data/l,/data/2,/data/3

4. Start the tablet server.
5. Run ksck to verify cluster health. For example:

$ sudo -u kudu kudu cluster ksck master-01. exanpl e.com

E’; Note: Note that existing tablets will not stripe to the restored disk, but any new tablets will stripe to
the restored disk.

Recovering from Full Disks

By default, Kudu reserves a small amount of space, 1% by capacity, in its directories. Kudu considers a disk full if there
is less free space available than the reservation. Kudu nodes can only tolerate running out of space on disks on which
certain Kudu directories are mounted. For more information about the different Kudu directory types, see Directory
Configurations on page 22. The table below describes this behavior for each type of directory. The behavior is uniform
across masters and tablet servers.

Kudu Directory Type Crash on Full Disk?

Directory containing WALs Yes

Directory containing tablet metadata Yes

Kudu Directory Type Crash on Full Disk?

Directory containing data blocks only No (see below)

Prior to Kudu 1.7.0, Kudu stripes tablet data across all directories, and will avoid writing data to full directories. Kudu
will crash if all data directories are full.

In 1.7.0 and later, new tablets are assigned a disk group consisting of data directories. The number of data directories
are as specified by the-fs_target _data_di rs_per _t abl et flag with the default being 3. If Kudu is not configured
with enough data directories for a full disk group, all data directories are used. When a data directory is full, Kudu will
stop writing new data to it and each tablet that uses that data directory will write new data to other data directories
within its group. If all data directories for a tablet are full, Kudu will crash. Periodically, Kudu will check if full data
directories are still full, and will resume writing to those data directories if space has become available.

If Kudu does crash because its data directories are full, freeing space on the full directories will allow the affected
daemon to restart and resume writing. Note that it may be possible for Kudu to free some space by running:

$ sudo -u kudu kudu fs check --repair

However, the above command may also fail if there is too little space left.

It’s also possible to allocate additional data directories to Kudu in order to increase the overall amount of storage
available. See the documentation on updating a node’s directory configuration for more information. Note that existing
tablets will not use new data directories, so adding a new data directory does not resolve issues with full disks.

Bringing a Tablet That Has Lost a Majority of Replicas Back Online

If a tablet has permanently lost a majority of its replicas, it cannot recover automatically and operator intervention is
required. If the tablet servers hosting a majority of the replicas are down (i.e. ones reported as "TS unavailable" by
ksck), they should be recovered instead if possible.

Suppose a tablet has lost a majority of its replicas. The first step in diagnosing and fixing the problem is to examine the
tablet's state using ksck:

$ sudo -u kudu kudu cluster ksck --tabl et s=e822cab6c0584bc0858219d1539al17e6
mast er - 00, nast er-01, mast er-02
Connected to the Master
Fetched info fromall 5 Tablet Servers
Tabl et €822cab6c0584bc0858219d1539al17e6 of table 'ny_table' is unavailable: 2 replica(s)
not RUNNI NG
638a20403e3e4ae3b55d4d07d920e6de (tserver-00: 7150) : RUNNI NG
9a56f a85a38a4edc99c6229cbha68aeaa (tserver-01:7150): bad state
State: FAI LED
Data state: TABLET _DATA READY
Last status: <failure nmessage>
c311f ef 7708a4cf 9bblla3ed4chcaab8c (tserver-02: 7150): bad state
State: FAI LED
Data state: TABLET DATA READY
Last status: <failure nmessage>

This output shows that, for tablet e822cab6c0584bc0858219d1539a17e6, the two tablet replicas ont ser ver - 01
and t ser ver - 02 failed. The remaining replica is not the leader, so the leader replica failed as well. This means the
chance of data loss is higher since the remaining replica on t ser ver - 00 may have been lagging. In general, to accept
the potential data loss and restore the tablet from the remaining replicas, divide the tablet replicas into two groups:

1. Healthy replicas: Those in RUNNI NGstate as reported by ksck
2. Unhealthy replicas

For example, in the above ksck output, the replica on tablet servert ser ver - 00 is healthy while the replicas on
tserver-01andt server- 02 are unhealthy. On each tablet server with a healthy replica, alter the consensus

configuration to remove unhealthy replicas. In the typical case of 1 out of 3 surviving replicas, there will be only one
healthy replica, so the consensus configuration will be rewritten to include only the healthy replica.

$ sudo -u kudu kudu renote_replica unsafe_change_config tserver-00: 7150 <tablet-id>
<t server-00- uui d>

where <t abl et -i d>ise822cab6c0584bc0858219d1539a17e6 and <t ser ver - 00- uui d>isthe uuid oft ser ver - 00,
638a20403e3ed4ae3b55d4d07d920e6de.

Once the healthy replicas' consensus configurations have been forced to exclude the unhealthy replicas, the healthy
replicas will be able to elect a leader. The tablet will become available for writes though it will still be under-replicated.
Shortly after the tablet becomes available, the leader master will notice that it is under-replicated, and will cause the
tablet to re-replicate until the proper replication factor is restored. The unhealthy replicas will be tombstoned by the
master, causing their remaining data to be deleted.

Rebuilding a Kudu Filesystem Layout

In the event that critical files are lost, i.e. WALs or tablet-specific metadata, all Kudu directories on the server must be
deleted and rebuilt to ensure correctness. Doing so will destroy the copy of the data for each tablet replica hosted on
the local server. Kudu will automatically re-replicate tablet replicas removed in this way, provided the replication factor
is at least three and all other servers are online and healthy.

E,i Note: These steps use a tablet server as an example, but the steps are the same for Kudu master
servers.

Warning: If multiple nodes need their FS layouts rebuilt, wait until all replicas previously hosted on
A each node have finished automatically re-replicating elsewhere before continuing. Failure to do so
can result in permanent data loss.

1. The first step to rebuilding a server with a new directory configuration is emptying all of the server’s existing
directories. For example, if a tablet server is configured with - - fs_wal _di r =/ dat a/ 0/ kudu-t ser ver - wal ,
--fs_netadata_dir=/data/ 0/ kudu-tserver-neta,and
--fs_data_dirs=/data/ 1/ kudu-tserver,/datal/ 2/ kudu-t server, the following commands will remove
the WAL directory’s and data directories' contents:

Note: this will delete all of the data fromthe |local tablet server.
$ rm-rf /data/O0/kudu-tserver-wal/* /data/O0/kudu-tserver-neta/* /data/1l/kudu-tserver/*
/ dat a/ 2/ kudu-t server/*

2. If using Cloudera Manager, update the configurations for the rebuilt server to include only the desired directories.
Make sure to only update the configurations of servers to which changes were applied, rather than of the entire
Kudu service.

3. After directories are deleted, the server process can be started with the new directory configuration. The appropriate
sub-directories will be created by Kudu upon starting up.

Scaling Storage on Kudu Master and Tablet Servers in the Cloud

If you find that the size of your Kudu cloud deployment has exceeded previous expectations, or you simply wish to
allocate more storage to Kudu, use the following set of high-level steps as a guide to increasing storage on your Kudu
master or tablet server hosts. You must work with your cluster's Hadoop administrators and the system administrators
to complete this process. Replace the file paths in the following steps to those relevant to your setup.

1. Run a consistency check on the cluster hosts. For instructions, see Monitoring Cluster Health with ksck on page
40.

2. On all Kudu hosts, create a new file system with the storage capacity you require. For example, / new/ dat a/ di r .
. Shutdown cluster services. For a cluster managed by Cloudera Manager cluster, see Starting and Stopping a Cluster.
4. Copy the contents of your existing data directory, / cur r ent / dat a/ di r, to the new filesystem at/ new/ dat a/ di r.

w

https://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_start_stop_cluster.html

5. Move your existing data directory, / cur r ent / dat a/ di r, to a separate temporary location such as
/tnp/data/dir.
6. Create anew/ current/dat a/ di r directory.

nkdir /current/data/dir

7. Mount / new dat a/ di r as/ current/dat a/ di r. Make changes to f st ab as needed.
8. Perform steps 4-7 on all Kudu hosts.
9. Startup cluster services. For a cluster managed by Cloudera Manager cluster, see Starting and Stopping a Cluster.

10 Run a consistency check on the cluster hosts. For instructions, see Monitoring Cluster Health with ksck on page
40.

1. After 10 days, if everything is in working order on all the hosts, get approval from the Hadoop administrators to
remove the / backup/ dat a/ di r directory.

Migrating Kudu Data from One Directory to Another on the Same Host

Take the following steps to move the entire Kudu data from one directory to another.

E’; Note:

The steps were verified on an environment where the master and the server instances were configured
to write the WAL/Data to the same directory.

. Stop the Kudu service.

. Modify the directory configurations for the Master/Server instances.
Move the existing data from the old directory, to the new one.

Make sure the file/directory ownership is set to the kudu user.

. Restart the Kudu service.

. Run ksck and verify for the healthy status.

OV A WN R

Minimizing Cluster Disruption During Temporary Planned Downtime of a Single Tablet
Server

If a single tablet server is brought down temporarily in a healthy cluster, all tablets will remain available and clients
will function as normal, after potential short delays due to leader elections. However, if the downtime lasts for more
than--fol |l ower _unavail abl e_consi dered_f ai | ed_sec (default 300) seconds, the tablet replicas on the down
tablet server will be replaced by new replicas on available tablet servers. This will cause stress on the cluster as tablets
re-replicate and, if the downtime lasts long enough, significant reduction in the number of replicas on the down tablet
server. This may require the rebalancer to fix.

To work around this, in Kudu versions 1.11 onward, the kudu CLI contains a tool to put tablet servers into maintenance
mode. While in this state, the tablet server’s replicas are not re-replicated due to its downtime alone, though
re-replication may still occur in the event that the server in maintenance suffers from a disk failure or if a follower
replica on the tablet server falls too far behind its leader replica. Upon exiting maintenance, re-replication is triggered
for any remaining under-replicated tablets.

Thekudu tserver state enter_mai ntenanceandkudu tserver state exit_mai nt enance toolsare added
to orchestrate tablet server maintenance. The following can be run from a tablet server to put it into maintenance:

$ TS UUI D=$(sudo -u kudu kudu fs dunp uuid --fs_wal _dir=<wal _dir>
--fs_data_dirs=<data_dirs>)
$ sudo -u kudu kudu tserver state enter_mai ntenance <naster_addresses> "$TS_UU D'

https://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_start_stop_cluster.html

The tablet server maintenance mode is shown in the "Tablet Servers" page of the Kudu leader master's web Ul, and
in the output of kudu cl ust er ksck. To exit maintenance mode, run the following command:

sudo -u kudu kudu tserver state exit_nai ntenance <master_addresses> "$TS UU D

In versions prior to 1.11, a different approach must be used to prevent unwanted re-replication. Increase

--fol l oner _unavai |l abl e_consi dered_fail ed_sec on all tablet servers so the amount of time before
re-replication starts is longer than the expected downtime of the tablet server, including the time it takes the tablet
server to restart and bootstrap its tablet replicas. To do this, run the following command for each tablet server:

$ sudo -u kudu kudu tserver set_flag <tserver_address>
foll oner _unavail abl e_consi dered_fail ed_sec <num seconds>

where <num seconds> is the number of seconds that will encompass the downtime. Once the downtime is finished,
reset the flag to its original value.

$ sudo -u kudu kudu tserver set_flag <tserver_address>
fol | ower _unavai |l abl e_consi dered_f ai | ed_sec <ori gi nal _val ue>

On Kudu versions prior to 1.8, the - - f or ce flag must be provided in the above set _f | ag commands.

Running Tablet Rebalancing Tool

The kudu CLI contains a rebalancing tool that can be used to rebalance tablet replicas among tablet servers. For each
table, the tool attempts to balance the number of replicas per tablet server. It will also, without unbalancing any table,
attempt to even out the number of replicas per tablet server across the cluster as a whole.

The rebalancing tool should be run as the Kudu admin user, specifying all master addresses:

sudo -u kudu kudu cluster rebal ance
mast er - 01. exanpl e. com nmast er - 02. exanpl e. com mast er - 03. exanpl e. com

When run, the rebalancer will report on the initial tablet replica distribution in the cluster, log the replicas it moves,
and print a final summary of the distribution when it terminates:

Per-server replica distribution summary:
Statistic [Val ue

0
24
14. 400000

M ni mum Repl i ca Count |
Maxi mum Repl i ca Count |
Aver age Replica Count |

Per-table replica distribution sumrary:

Replica Skew | Value
______________ .
M ni mum | 8

Maxi mum | 8

Aver age | 8.000000

10613 14:18:49. 905897 3002065792

e7ee9ade95b342a7a94649b7862b345d:

3b4d9266ac8c45f f 9a5d4d7c3elcb326
10613 14:18:49.917578 3002065792

5f 03944529f 44626a0d6ec8bledc566e:

ba8c22ab030346b4baa289d6d11d0809
10613 14:18:49.928683 3002065792

9373f ee3bf e74cec9054737371a3b15d:

3b4d9266ac8c45f f 9a5d4d7c3elcb326
(full
10613 14:19:01. 162802 3002065792

out put el i ded)

f 4c046f 18b174cc2974c65ac0bf 52767:

3b4d9266ac8c45f f 9a5d4d7c3elcb326

rebal ancer.cc: 779] tabl et
206a51de1486402bbb214b5ce97a633c
nove schedul ed

rebal ancer. cc: 779] tabl et
6e64c4165b864chab0e67ccd82091d60
nmove schedul ed

rebal ancer.cc: 779] tabl et

f ab382adf 72c480984c6cc868f dd5f Oe
nove schedul ed

rebal ancer. cc: 842] tabl et
206a51de1486402bbb214b5ce97a633c
nove conpl eted: K

->

->

rebalancing is conplete: cluster is balanced (noved 28 replicas)
Per-server replica distribution summary:
Statistic Val ue
M ni mum Repl i ca Count |
Maxi mum Repl i ca Count | 15
Aver age Replica Count | 14.400000

+—

Per-table replica distribution summary:

Replica Skew | Val ue
______________ I,

M ni mum | 1

Maxi mum | 1

Aver age | 1.000000

If more details are needed in addition to the replica distribution summary, use the
--output_replica_distribution_details flag. If added, the flag makes the tool print per-table and per-tablet
server replica distribution statistics as well.

Use the - -report _onl y flag to get a report on table-wide and cluster-wide replica distribution statistics without
starting any rebalancing activity.

The rebalancer can also be restricted to run on a subset of the tables by supplying the - - t abl es flag. Note that, when
running on a subset of tables, the tool will not attempt to balance the cluster as a whole.

The length of time rebalancing is run for can be controlled with the flag - - max_r un_t i ne_sec. By default, the
rebalancer will run until the cluster is balanced. To control the amount of resources devoted to rebalancing, modify
the flag - - max_noves_per _server. See kudu cl uster rebal ance - - hel p for more.

It's safe to stop the rebalancer tool at any time. When restarted, the rebalancer will continue rebalancing the cluster.

The rebalancer tool requires all registered tablet servers to be up and running to proceed with the rebalancing process
in order to avoid possible conflicts and races with the automatic re-replication and to keep replica placement optimal
for current configuration of the cluster. If a tablet server becomes unavailable during the rebalancing session, the
rebalancer will exit. As noted above, it's safe to restart the rebalancer after resolving the issue with unavailable tablet
servers.

The rebalancing tool can rebalance Kudu clusters running older versions as well, with some restrictions. Consult the
following table for more information. In the table, "RF" stands for "replication factor".

Version Range Rebalances RF = 1 Tables? Rebalances RF > 1 Tables?
v<1.4.0 No No
14.0<=v<171 No Yes
v>=171 Yes Yes

If the rebalancer is running against a cluster where rebalancing replication factor one tables is not supported, it will
rebalance all the other tables and the cluster as if those singly-replicated tables did not exist.

Running Tablet Rebalancing Tool on Rack-Aware Cluster

As detailed in the Rack Awareness (Location Awareness) on page 28 section, it’s possible to use the

kudu cl ust er rebal ance tool to establish the placement policy on a cluster. This might be necessary when the
rack awareness feature is first configured or when re-replication violated the placement policy. The rebalancing tool
breaks its work into three phases:

1. The rack-aware rebalancer tries to establish the placement policy. Use the - - di sabl e_pol i cy_fi xer flagto
skip this phase.

2. The rebalancer tries to balance load by location, moving tablet replicas between locations in an attempt to spread
tablet replicas among locations evenly. The load of a location is measured as the total number of replicas in the

location divided by the number of tablet servers in the location. Use the
--di sabl e_cross_| ocati on_r ebal anci ng flag to skip this phase.

3. The rebalancer tries to balance the tablet replica distribution within each location, as if the location were a cluster
on its own. Use the - - di sabl e_i ntra_l ocati on_r ebal anci ng flag to skip this phase.

By using the - - r eport _onl y flag, it’s also possible to check if all tablets in the cluster conform to the placement
policy without attempting any replica movement.

Running Tablet Rebalancing Tool in Cloudera Manager
To run the tablet rebalancer tool in Cloudera Manager:

1. Browse to Clusters > Kudu.
2. Click Actions and select Run Kudu Rebalancer Tool.

In Cloudera Manager, the rebalancer runs with the default flags.

Decommissioning or Permanently Removing a Tablet Server From a Cluster

Kudu does not currently support an automated way to remove a tablet server from a cluster permanently. Use the
following steps to manually remove a tablet server:

1. Ensure the cluster is in good health using ksck. See Checking Cluster Health with ksck.

2. If the tablet server contains any replicas of tables with replication factor 1, these replicas must be manually moved
off the tablet server prior to shutting it down. Use the kudu t abl et change_confi g nove_repli ca tool for
this.

3. Shut down the tablet server. After - f ol | ower _unavai | abl e_consi der ed_f ai | ed_sec, which defaults to 5
minutes, Kudu will begin to re-replicate the tablet server’s replicas to other servers. Wait until the process is
finished. Progress can be monitored using ksck.

4. Once all the copies are complete, ksck will continue to report the tablet server as unavailable. The cluster will
otherwise operate fine without the tablet server. To completely remove it from the cluster so ksck shows the
cluster as completely healthy, restart the masters. In the case of a single master, this will cause cluster downtime.
With multi-master, restart the masters in sequence to avoid cluster downtime.

o Important: Do not shut down multiple tablet servers at once. To remove multiple tablet servers from
the cluster, follow the above instructions for each tablet server, ensuring that the previous tablet
server is removed from the cluster and ksck is healthy before shutting down the next.

Using cluster names in the kudu command line tool

When using the kudu command line tool, it can be difficult to remember the precise list of Kudu master RPC addresses
needed to communicate with a cluster, especially when managing multiple clusters. As an alternative, the command
line tool can identify clusters by name. To use this functionality:

1. Create a new directory to store the Kudu configuration file.

2. Export the path to this directory in the KUDU_CONFI Genvironment variable.

3. Create afile called kudur ¢ in the new directory.

4. Populate kudur c as follows, substituting your own cluster names and RPC addresses:

clusters_info:
cl uster_nanel:
mast er _addresses: ipl:portl,ip2:port2,ip3:port3
cl ust er _nane2:
mast er _addresses: ip4:port4

5. When using the kudu command line tool, replace the list of Kudu master RPC addresses with the cluster name,
prepended with the character @

$ sudo -u kudu kudu ksck @l uster_nanel

E’; Note: Cluster names may be used as input in any invocation of the kudu command line tool that
expects a list of Kudu master RPC addresses.

Managing Kudu Using Cloudera Manager

This topic describes the tasks you can perform to manage the Kudu service using Cloudera Manager. You can use
Cloudera Manager to upgrade the Kudu service, start and stop the Kudu service, monitor operations, and configure
the Kudu master and tablet servers, among other tasks. Depending on your deployment, there are several different
configuration settings you may need to modify.

For detailed information about Apache Kudu, view the Apache Kudu Guide.

Installing and Upgrading the Kudu Service

You can install Kudu through the Cloudera Manager installation wizard, using either parcels or packages. For instructions,
see Cloudera Installation Guide.

Enabling Core Dump for the Kudu Service

If Kudu crashes, you can use Cloudera Manager to generate a core dump to get more information about the crash.

1.
. Click the Configuration tab.

. Search for core dunp.

. Check the checkbox for the Enable Core Dump property.

. (Optional) Unless otherwise configured, the dump file is generated in the default core dump directory,

i A WN

Go to the Kudu service.

/var /| og/ kudu, for both the Kudu master and the tablet servers.

¢ To configure a different dump directory for the Kudu master, modify the value of the Kudu Master Core
Dump Directory property.

¢ To configure a different dump directory for the Kudu tablet servers, modify the value of the Kudu Tablet
Server Core Dump Directory property.

. Click Save Changes.

Verifying the Impala Dependency on Kudu

In a Cloudera Manager deployment, once the Kudu service is installed, Impala will automatically identify the Kudu
Master. However, if your Impala queries don't work as expected, use the following steps to make sure that the Impala
service is set to be dependent on Kudu.

1.
. Click the Configuration tab.

. Search for kudu.

. Make sure the Kudu Service property is set to the right Kudu service.
. Click Save Changes.

g b WN

Go to the Impala service.

Using the Charts Library with the Kudu Service

By default, the Status tab for the Kudu service displays a dashboard containing a limited set of charts. For details on
the terminology used in these charts, and instructions on how to query for time-series data, display chart details, and
edit charts, see Charting Time-Series Data.

The Kudu service's Charts Library tab also displays a dashboard containing a much larger set of charts, organized by
categories such as process charts, host charts, CPU charts, and so on, depending on the entity (service, role, or host)

https://www.cloudera.com/documentation/enterprise/latest/topics/installation.html

that you are viewing. You can use these charts to keep track of disk space usage, the rate at which data is being
inserted/modified in Kudu across all tables, or any critical cluster events. You can also use them to keep track of
individual tables. For example, to find out how much space a Kudu table is using on disk:

1. Go to the Kudu service and navigate to the Charts Library tab.
2. On the left-hand side menu, click Tables to display the list of tables currently stored in Kudu.

3. Click on a table name to view the default dashboard for that table. The Total Tablet Size On Disk Across Kudu
Replicas chart displays the total size of the table on disk using a time-series chart.

Hovering with your mouse over the line on the chart opens a small pop-up window that displays information
about that data point. Click the data stream within the chart to display a larger pop-up window that includes
additional information for the table at the point in time where the mouse was clicked.

Developing Applications With Apache Kudu

Apache Kudu provides C++ and Java client APls, as well as reference examples to illustrate their use.

Warning: Use of server-side or private interfaces is not supported, and interfaces which are not part
A of public APIs have no stability guarantees.

Viewing the APl Documentation

C++ APl Documentation

The documentation for the C++ client APIs is included in the header files in / usr /i ncl ude/ kudu/ if you installed
Kudu using packages or subdirectories of sr ¢/ kudu/ cl i ent / if you built Kudu from source. If you installed Kudu
using parcels, no headers are included in your installation. and you will need to build Kudu from source in order to
have access to the headers and shared libraries.

The following command is a naive approach to finding relevant header files. Use of any APIs other than the client APIs
is unsupported.

find /usr/include/kudu -type f -nanme *.h

Java APl Documentation

View the Java APl documentation online. Alternatively, after building the Java client, Java APl documentation is available
injaval/ kudu-cl i ent/target/api docs/index. htm .

Kudu Example Applications

Several example applications are provided in the examples directory of the Apache Kudu git repository. Each example
includes a READVE that shows how to compile and run it. The following list includes some of the examples that are
available today. Check the repository itself in case this list goes out of date.

cpp/example.cc

A simple C++ application which connects to a Kudu instance, creates a table, writes data to it, then drops the table.
java/java-example

A simple Java application which connects to a Kudu instance, creates a table, writes data to it, then drops the table.
java/insert-loadgen

A small Java application which listens on a TCP socket for time series data corresponding to the Collectl wire protocol.
The commonly-available collectl tool can be used to send example data to the server.

python/dstat-kudu
A Java application that generates random insert load.
python/graphite-kudu

An example program that shows how to use the Kudu Python API to load data into a new / existing Kudu table
generated by an external program, dst at in this case.

python/graphite-kudu

An example plugin for using graphite-web with Kudu as a backend.

http://kudu.apache.org/apidocs/index.html
https://github.com/apache/kudu/tree/master/examples

These examples should serve as helpful starting points for your own Kudu applications and integrations.

Maven Artifacts

The following Maven <dependency> element is valid for the Apache Kudu GA release:

<dependency>
<gr oupl d>or g. apache. kudu</ gr oupl d>
<artifactld>kudu-client</artifactld>
<ver si on>1. 9. 0- cdh6. 2. 0</ ver si on>

</ dependency>

Convenience binary artifacts for the Java client and various Java integrations (e.g. Spark, Flume) are also now available
via the ASF Maven repository and the Central Maven repository.

Building the Java Client
Requirements

e JIDK7
e Apache Maven 3.x

e protoc 2.6 or newer installed in your path, or built from thet hi r dpar t y/ directory. Run the following commands
to build pr ot oc from the third-party dependencies:

t hi rdparty/downl oad-t hi rdparty. sh
thirdparty/build-thirdparty.sh protobuf

To build the Java client, clone the Kudu Git repository, change to the j ava directory, and issue the following command:
mvn install -DskipTests

For more information about building the Java API, as well as Eclipse integration, see j ava/ READVE. nd.

Kudu Python Client

The Kudu Python client provides a Python friendly interface to the C++ client API.

To install and use the Kudu Python client, you need to install the Kudu C++ client libraries and headers. See Install Using
Packages topic for installing Kudu C++ client.

E,i Note:

Starting CDH 6.3.3, you must have an Enterprise Support Subscription to access the
archi ve. cl ouder a. com p/ repository.

To install the Kudu Python client:

. Update all the packages on your system using the following command: sudo yum -y updat e

. Install the extra packages for the Enterprise Linux distribution: sudo yum -y install epel-rel ease
. Install the Python package manager: sudo yum -y install python-pip

. Verify the version of the PIP manager that you just installed: pi p --versi on

. Install Cython: sudo pip install cython

. Download the following files:

AU A WN R

http://repository.apache.org/
https://mvnrepository.com/artifact/org.apache.kudu
https://kudu.apache.org/releases/1.8.0/docs/installation.html#install_packages
https://kudu.apache.org/releases/1.8.0/docs/installation.html#install_packages

e wget

http// user rene: passver d@ chi ve. d audera. comip/ cohe 6. 3. 3 redhet 7/ yumiRANB x86 64/ kudkr 1. 10, Orcdhb. 3. x- 1822539, X86 64. rpm
e wget

htp//usarrene pessird@di ve d ackra conhp o5/ 6. 3 I redret 7 WA X6 64 kudkd i et -devd - 1 10 Otodh 3 x- 1822530 85 4 rpm

7. Install the kudu package from the local directory: sudo yum -y localinstall ./kudu-*
8. Install the package used for developing Python extensions: sudo yum -y install python-devel
9. Upgrade the setup tools: sudo pip install --upgrade pip setuptools

10 Install the C++ compiler: sudo yum -y install gcc-c++
1. Install the Kudu-python client: sudo pi p install kudu-python==1.10.0
2 Install kudu-python: sudo pip install kudu-python

The sample below demonstrates the use of part of the Python client.

i mport kudu
from kudu. client inport Partitioning
fromdatetine inport datetine

Connect to Kudu master server
client = kudu. connect (host ="' kudu. master', port=7051)

Define a schena for a new table

bui | der = kudu. schenma_bui | der ()

bui | der. add_col um(' key').type(kudu.int64).null abl e(Fal se). primary_key()
bui | der.add_colum('ts_val', type_=kudu. uni xtime_m cros, null abl e=Fal se,
conpressi on='1z4'

schema = buil der. buil d()

Define partitioning schema
partitioning = Partitioning().add_hash_partitions(colum_names=["'key'], num buckets=3)

Create new table
client.create_tabl e(' python-exanple', schemm, partitioning)

Qpen a table
table = client.tabl e(' python-exanple')

Create a new session so that we can apply wite operations
session = client.new session()

Insert a row
op = table.new_insert({'key': 1, "ts_val': datetine.utcnow)})
sessi on. appl y(op)

Upsert a row
op = table.new upsert({'key': 2, "ts_val': "2016-01-01T00: 00: 00. 000000"})
sessi on. appl y(op)

Updating a row
op = table.new update({' key': 1, "ts_val': ("2017-01-01", "%r-%m %l")})
sessi on. appl y(op)

Delete a row
op = table.new del ete({' key': 2})
sessi on. appl y(op)

Flush wite operations, if failures occur, capture print them
try:

session. fl ush()
except kudu. KuduBadSt atus as e:

print(session.get_pending errors())

Create a scanner and add a predicate
scanner = table.scanner()
scanner. add_predicate(table['ts_val'] == datetine(2017, 1, 1))

Qpen Scanner and read all tuples
Note: This doesn't scale for |arge scans
result = scanner.open().read_all _tuples()

Example Apache Impala Commands With Kudu

See Using Apache Impala with Kudu on page 60 for guidance on installing and using Impala with Kudu, including several
i mpal a- shel | examples.

Kudu Integration with Spark

Kudu integrates with Spark through the Data Source API as of version 1.0.0. Include the kudu- spar k dependency
using the - - packages option.

Use the kudu-spark_2.10 artifact if using Spark with Scala 2.10. Note that Spark 1 is no longer supported in Kudu starting
from version 1.6.0. So in order to use Spark 1 integrated with Kudu, version 1.5.0 is the latest to go to.

spark-shel | --packages org. apache. kudu: kudu- spark_2.10: 1. 5. 0-cdh5. 13.1 --repositories
https://repository.cloudera.comartifactory/cl oudera-repos/

Use kudu-spark2_2.11 artifact if using Spark 2 with Scala 2.11.

E’; Note: kudu-spark versions 1.8.0 and below have slightly different syntax. See the documentation of
your version for a valid example. Versioned documentation can be found on the releases page.

spar k2-shel | --packages org. apache. kudu: kudu-spark2_2.11:1.9.0-cdh6.2.0 --repositories
https://repository.cl oudera.conm artifactory/cl oudera-repos/

Below is a minimal Spark SQL sel ect example. You first import the kudu spark package, then create a Dat aFr ane,
and then create a view from the Dat aFr ane. After those steps, the table is accessible from Spark SQL. You can also
refer to the Spark guickstart guide or this Kudu-Spark example.

E,i Note: You can use the Kudu CLI tool to create table and generate data by kudu perf | oadgen
kudu. mast er: 7051 - keep_aut o_t abl e for the following two examples:

i mport org. apache. kudu. spar k. kudu. _

/1l Create a DataFrane that points to the Kudu table we want to query.
val df = spark.read. options(Mp("kudu. naster” -> "kudu. master:7051",
"kudu.tabl e" -> "default.ny_table")).format("kudu").I| oad
/1l Create a view fromthe DataFrane to nmake it accessible from Spark SQL.
df . creat eOr Repl aceTenmpVi ew(" nmy_t abl e")
/1 Now we can run Spark SQL queries agai nst our view of the Kudu table.
spark.sql ("select * frommy_table").show)

Below is a more advanced example that includes both reads and writes:

i mport org.apache. kudu. client. _
i mport org. apache. kudu. spar k. kudu. KuduCont ext
i mport collection.JavaConverters. _

/1 Read a table from Kudu

val df = spark.read
.options(Map("kudu. master" -> "kudu.nmaster:7051", "kudu.table" -> "kudu_table"))
.format ("kudu") .| oad

/1 Query using the Spark API...
df . select ("key").filter("key >= 5").show()

/1l ...or register a tenporary table and use SQL
df . creat eOr Repl aceTenpVi ew " kudu_t abl e")
val filteredDF = spark.sql ("sel ect key from kudu_t abl e where key >= 5").show()

http://kudu.apache.org/releases/
https://github.com/apache/kudu/tree/master/examples/quickstart/spark
https://github.com/apache/kudu/tree/master/examples/scala/spark-example

/] Use KuduContext to create, delete, or wite to Kudu tables
val kuduCont ext = new KuduCont ext (" kudu. naster: 7051", spark. sparkCont ext)

/1l Create a new Kudu table from a DataFranme schenma
/1 NB: No rows fromthe DataFranme are inserted into the table
kuduCont ext . cr eat eTabl e(
"test_table", df.schema, Seq("key"),
new Creat eTabl eOpti ons()
.set NunRepl i cas(1)
.addHashPartitions(List("key").asJava, 3))

/1 Check for the existence of a Kudu table
kuduCont ext . t abl eExi sts("test_tabl e")

/1l Insert data
kuduCont ext . i nsert Rows(df, "test_table")

/| Delete data
kuduCont ext . del et eRows(df, "test_table")

/1 Upsert data
kuduCont ext . upsert Rows(df, "test_table")

/1 Update data
val updateDF = df.select($"key", ($"int_val" + 1).as("int_val"))
kuduCont ext . updat eRows(updat eDF, "test_table")

/| Data can also be inserted into the Kudu table using the data source, though the

met hods on

/1 KuduContext are preferred

/1 NB: The default is to upsert rows; to performstandard inserts instead, set operation
i nsert

//_ in the options map
/1 NB: Only node Append is supported
df .write
.options(Map("kudu. master"-> "kudu. master: 7051", "kudu.table"-> "test_table"))

. mode(" append")
.format ("kudu") . save

/1l Delete a Kudu table
kuduCont ext . del et eTabl e("test _tabl e")

Upsert Option in Kudu Spark

The upsert operation in kudu-spark supports an extra write option of i gnor eNul | . If set to true, it will avoid setting
existing column values in Kudu table to Null if the corresponding DataFrame column values are Null. If unspecified,
i gnor eNul | is false by default.

val dat aDat aFrane = spark.read
.options(Map("kudu. master" -> "kudu.nmaster:7051", "kudu.table" -> sinpleTabl eNane))
.format ("kudu") .| oad

dat aDat aFr ane. regi st er TenpTabl e(si npl eTabl eNane)
dat aDat aFr ane. show()

/1 Belowis the original data in the table 'sinpleTabl eNane'
R
| key| val |
R e
| O] foo
R

/1 Upsert a rowwth existing key 0 and val Null with ignoreNull set to true

val null DF = spark. creat eDat aFrane(Seq((0, null.aslnstanceO[String]))).toDF("key",
"val ")

val wo = new KuduWiteOptions

wo.ignoreNull = true

kuduCont ext . upsert Rows(nul | DF, si npl eTabl eNane, wo)

dat aDat aFr ane. show()

/1 The val field stays unchanged

e
| key| val |
e
| 0] foo
e

/1 Upsert a row with existing key 0 and val Null with ignoreNull default/set to fal se
kuduCont ext . upsert Rows(nul | DF, si npl eTabl eNarne)
/1 Equival ent to:

/1 val wo = new KuduWiteOptions

/1 wo.ignoreNull = false

/1 kuduCont ext . upsert Rows(nul | DF, sinpl eTabl eNane, wo)
df . show()

/1 The val field is set to Null this tine

T

| key| val|

Fom e - -

| Ol null]

e

Using Spark with a Secure Kudu Cluster

The Kudu-Spark integration is able to operate on secure Kudu clusters which have authentication and encryption
enabled, but the submitter of the Spark job must provide the proper credentials. For Spark jobs using the default 'client’
deploy mode, the submitting user must have an active Kerberos ticket granted through ki ni t . For Spark jobs using
the 'cluster' deploy mode, a Kerberos principal name and keytab location must be provided through the - - pri nci pal
and - - keyt ab arguments to spar k2- submi t .

Spark Integration Known Issues and Limitations

e Spark 2.2 (and higher) requires Java 8 at runtime even though Kudu Spark 2.x integration is Java 7 compatible.
Spark 2.2 is the default dependency version as of Kudu 1.5.0.

¢ Kudu tables with a name containing upper case or non-ASCll characters must be assigned an alternate name when
registered as a temporary table.

¢ Kudu tables with a column name containing upper case or non-ASCII characters must not be used with SparkSQL.
Columns can be renamed in Kudu to work around this issue.

e <>and ORpredicates are not pushed to Kudu, and instead will be evaluated by the Spark task. Only LI KE predicates
with a suffix wildcard are pushed to Kudu. This means LI KE " FOO»8 will be pushed, but LI KE " FOO¥BAR' won't.

e Kudu does not support all the types supported by Spark SQL. For example, Dat e and complex types are not
supported.

e Kudu tables can only be registered as temporary tables in SparkSQL.

e Kudu tables cannot be queried using HiveContext.

Spark Integration Best Practices

Avoid multiple Kudu clients per cluster

One common Kudu-Spark coding error is instantiating extra Kudud i ent objects. In kudu-spark, a Kudud i ent is
owned by the KuduCont ext . Spark application code should not create another Kudud i ent connecting to the same
cluster. Instead, application code should use the KuduCont ext to access a Kudud i ent using

KuduCont ext #syncCl i ent .

To diagnose multiple Kudud i ent instances in a Spark job, look for signs in the logs of the master being overloaded
by many Get Tabl eLocat i ons or Get Tabl et Locat i ons requests coming from different clients, usually around the
same time. This symptom is especially likely in Spark Streaming code, where creating a KuduCl i ent per task will result
in periodic waves of master requests from new clients.

Developing Applications With Apache Kudu

Integration with MapReduce, YARN, and Other Frameworks

Kudu was designed to integrate with MapReduce, YARN, Spark, and other frameworks in the Hadoop ecosystem. See
RowCounter.java and ImportCsv.java for examples which you can model your own integrations on.

Apache Kudu Guide | 59

https://github.com/cloudera/kudu/blob/master/java/kudu-client-tools/src/main/java/org/apache/kudu/mapreduce/tools/RowCounter.java
https://github.com/cloudera/kudu/blob/master/java/kudu-client-tools/src/main/java/org/apache/kudu/mapreduce/tools/ImportCsv.java

Using Apache Impala with Kudu

Apache Kudu has tight integration with Apache Impala, allowing you to use Impala to insert, query, update, and delete
data from Kudu tablets using Impala's SQL syntax, as an alternative to using the Kudu APIs to build a custom Kudu
application. In addition, you can use JDBC or ODBC to connect existing or new applications written in any language,
framework, or business intelligence tool to your Kudu data, using Impala as the broker.

Prerequisites

¢ To use Impala to query Kudu data as described in this topic, you will require Cloudera Manager and CDH 5.10.x
or higher.

e The syntax described in this topic is specific to Impala included in CDH 5.10 and higher, and will not work on
previous versions. If you are using an lower version of Impala (including the | MPALA_KUDU releases previously
available), upgrade to CDH 5.10 or higher.

Note that this topic does not describe Impala installation or upgrade procedures. Refer to the Impala documentation
to make sure you are able to run queries against Impala tables on HDFS before proceeding.

¢ Lower versions of CDH and Cloudera Manager used an experimental fork of Impala which is referred to as
| MPALA_KUDU. If you have previously installed the | MPALA_KUDU service, make sure you remove it from your
cluster before you proceed. Install Kudu 1.2.x (or higher) using Cloudera Manager.

Impala Database Containment Model

Every Impala table is contained within a namespace called a database. The default database is called def aul t, and
you may create and drop additional databases as desired. To create the database, use a CREATE DATABASE statement.
To use the database for further Impala operations such as CREATE TABLE, use the USE statement. For example, to
create a table in a database called i npal a_kudu, use the following statements:

CREATE DATABASE i npal a_kudu;
USE i npal a_kudu;
CREATE TABLE ny_first_table (

The ny_first_tabl e tableis created within the i npal a_kudu database.

The prefix i npal a: : and the Impala database name are appended to the underlying Kudu table name:
i mpal a: : <dat abase>. <t abl e>

For example, to specify the my_fi r st _t abl e table in database i mpal a_kudu, as opposed to any other table with
the same name in another database, refer to the table asi npal a: : i mpal a_kudu. my_fi rst _t abl e. This also
applies to | NSERT, UPDATE, DELETE, and DROP statements.

Internal and External Impala Tables

When creating a new Kudu table using Impala, you can create the table as an internal table or an external table.
Internal

An internal table (created by CREATE TABLE) is managed by Impala, and can be dropped by Impala. When you
create a new table using Impala, it is generally a internal table. When such a table is created in Impala, the
corresponding Kudu table will be named i npal a: : dat abase_nane. t abl e_name. The prefixis alwaysi npal a: : ,
and the database name and table name follow, separated by a dot.

http://www.cloudera.com/documentation/enterprise/latest/topics/impala.html

External

An external table (created by CREATE EXTERNAL TABLE) is not managed by Impala, and dropping such a table
does not drop the table from its source location (here, Kudu). Instead, it only removes the mapping between Impala
and Kudu. This is the mode used in the syntax provided by Kudu for mapping an existing table to Impala.

See the Impala documentation for more information about internal and external tables.

Using Impala To Query Kudu Tables

Neither Kudu nor Impala need special configuration in order for you to use the Impala Shell or the Impala API to insert,
update, delete, or query Kudu data using Impala. However, you do need to create a mapping between the Impala and
Kudu tables. Kudu provides the Impala query to map to an existing Kudu table in the web UL.

e Make sure you are using the i npal a- shel | binary provided by the default CDH Impala binary. The following
example shows how you can verify this using the al t er nat i ves command on a RHEL 6 host. Do not copy and
paste the al t ernati ves --set command directly, because the file names are likely to differ.

$ sudo alternatives --display inpal a-shell

i mpal a-shell - status is auto.
link currently points to
/ opt/ cl ouder a/ par cel s/ CDH 5. 10. 0- 1. cdh5. 10. 0. p0. 25/ bi n/ i npal a- shel |
/ opt/ cl ouder a/ par cel s/ CDH- 5. 10. 0- 1. cdh5. 10. 0. p0. 25/ bi n/ i npal a-shell - priority 10
Current “best' version is
/ opt/ cl ouder a/ par cel s/ CDH 5. 10. 0- 1. cdh5. 10. 0. p0. 25/ bi n/i npal a- shel | .

¢ Although not necessary, it is recommended that you configure Impala with the locations of the Kudu Masters
using the - - kudu_nmast er _host s=<nmast er 1>[: port] flag. If this flag is not set, you will need to manually
provide this configuration each time you create a table by specifying the kudu. mast er _addr esses property
inside a TBLPROPERTI ES clause. If you are using Cloudera Manager, no such configuration is needed. The Impala
service will automatically recognize the Kudu Master hosts.

The rest of this guide assumes that this configuration has been set.

e Start Impala Shell using the i npal a- shel | command. By default, i mpal a- shel | attempts to connect to the
Impala daemon on | ocal host on port 21000. To connect to a different host, use the -i <host : port > option.

To automatically connect to a specific Impala database, use the - d <dat abase> option. For instance, if all your
Kudu tables are in Impala in the database i npal a_kudu, use -d i npal a_kudu to use this database.

¢ To quit the Impala Shell, use the following command: qui t ;

Querying an Existing Kudu Table from Impala

Tables created through the Kudu API or other integrations such as Apache Spark are not automatically visible in Impala.
To query them, you must first create an external table within Impala to map the Kudu table into an Impala database:

CREATE EXTERNAL TABLE ny_mappi ng_t abl e
STORED AS KUDU

TBLPROPERTI ES (

" kudu. t abl e_name' = 'ny_kudu_t abl e’

)i

Creating a New Kudu Table From Impala

Creating a new table in Kudu from Impala is similar to mapping an existing Kudu table to an Impala table, except that
you need to specify the schema and partitioning information yourself. Use the examples in this section as a guideline.
Impala first creates the table, then creates the mapping.

In the CREATE TABLE statement, the columns that comprise the primary key must be listed first. Additionally, primary
key columns are implicitly considered NOT NULL.

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/impala_tables.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_kudu_service.html#impala_dependency

When creating a new table in Kudu, you must define a partition schema to pre-split your table. The best partition
schema to use depends upon the structure of your data and your data access patterns. The goal is to maximize parallelism
and use all your tablet servers evenly. For more information on partition schemas, see Partitioning Tables on page 62.

E,i Note: In Impala included in CDH 5.13 and higher, the PARTI TI ON BY clause is optional for Kudu
tables. If the clause is omitted, Impala automatically constructs a single partition that is not connected
to any column. Because such a table cannot take advantage of Kudu features for parallelized queries
and query optimizations, omitting the PARTI TI ON BY clause is only appropriate for small lookup
tables.

The following CREATE TABLE example distributes the table into 16 partitions by hashing the i d column, for simplicity.

CREATE TABLE ny _first_table

id BIGNT,
name STRI NG
PRI MARY KEY(i d)

)
PARTI TI ON BY HASH PARTI TI ONS 16
STORED AS KUDY,

By default, Kudu tables created through Impala use a tablet replication factor of 3. To specify the replication factor for
a Kudu table, add a TBLPROPERTI ESclause to the CREATE TABLE statement as shown below where n is the replication
factor you want to use:

TBLPROPERTI ES (' kudu. numtablet_replicas' = "'n")
A replication factor must be an odd number.
Changing the kudu. num t abl et _repl i cas table property using the ALTER TABLE currently has no effect.

The Impala SQL Reference CREATE TABLE topic has more details and examples.

CREATE TABLE AS SELECT

You can create a table by querying any other table or tables in Impala, using a CREATE TABLE ... AS SELECT
statement. The following example imports all rows from an existing table, ol d_t abl e, into a new Kudu table,

new _t abl e. The columns in new_t abl e will have the same names and types as the columns in ol d_t abl e, but you
will need to additionally specify the primary key and partitioning schema.

CREATE TABLE new_t abl e

PRI MARY KEY (ts, nane)

PARTI TI ON BY HASH(nane) PARTI TI ONS 8
STORED AS KUDU

AS SELECT ts, name, value FROM ol d_t abl e;

You can refine the SELECT statement to only match the rows and columns you want to be inserted into the new table.
You can also rename the columns by using syntax like SELECT nane as new_col _narne.

Partitioning Tables

Tables are partitioned into tablets according to a partition schema on the primary key columns. Each tablet is served
by at least one tablet server. Ideally, a table should be split into tablets that are distributed across a number of tablet
servers to maximize parallel operations. The details of the partitioning schema you use will depend entirely on the
type of data you store and how you access it.

Kudu currently has no mechanism for splitting or merging tablets after the table has been created. Until this feature
has been implemented, you must provide a partition schema for your table when you create it. When designing your
tables, consider using primary keys that will allow you to partition your table into tablets which grow at similar rates.

You can partition your table using Impala's PARTI TI ON BY clause, which supports distribution by RANGE or HASH. The
partition scheme can contain zero or more HASH definitions, followed by an optional RANGE definition. The RANGE

definition can refer to one or more primary key columns. Examples of basic and advanced partitioning are shown
below.

E,i Note: In Impala included in CDH 5.13 and higher, the PARTI TI ON BY clause is optional for Kudu
tables. If the clause is omitted, Impala automatically constructs a single partition that is not connected
to any column. Because such a table cannot take advantage of Kudu features for parallelized queries
and query optimizations, omitting the PARTI TI ON BY clause is only appropriate for small lookup
tables.

Monotonically Increasing Values - If you partition by range on a column whose values are monotonically increasing,
the last tablet will grow much larger than the others. Additionally, all data being inserted will be written to a single
tablet at a time, limiting the scalability of data ingest. In that case, consider distributing by HASH instead of, or in
addition to, RANGE.

’ Note: Impala keywords, such as gr oup, are enclosed by back-tick characters when they are used as
El identifiers, rather than as keywords.

Basic Partitioning
PARTITION BY RANGE

You can specify range partitions for one or more primary key columns. Range partitioning in Kudu allows splitting a
table based on specific values or ranges of values of the chosen partition keys. This allows you to balance parallelism
in writes with scan efficiency.

For instance, if you have a table that has the columns st at e, nane, and pur chase_count , and you partition the table
by st at e, it will create 50 tablets, one for each US state.

CREATE TABLE custoners (
state STRI NG
nane STRI NG
purchase_count int,
PRI MARY KEY (state, nane)

)
PARTI TI ON BY RANGE (st ate)

(
PARTI TI ON VALUE = 'al ',
PARTI TI ON VALUE = ' ak' .
PARTI TI ON VALUE = 'ar' .
PARTI TI ON VALUE = 'w',
PARTI TI ON VALUE = ' wy'

)
STORED AS KUDU,

PARTITION BY HASH

Instead of distributing by an explicit range, or in combination with range distribution, you can distribute into a specific
number of partitions by hash. You specify the primary key columns you want to partition by, and the number of
partitions you want to use. Rows are distributed by hashing the specified key columns. Assuming that the values being
hashed do not themselves exhibit significant skew, this will serve to distribute the data evenly across all partitions.

You can specify multiple definitions, and you can specify definitions which use compound primary keys. However, one
column cannot be mentioned in multiple hash definitions. Consider two columns, a and b:

e HASH(a), HASH(b) -- will succeed
e HASH(a, b) -- will succeed
e HASH(a), HASH(a, b) -- will fail

E,i Note: PARTI TI ON BY HASHwith no column specified is a shortcut to create the desired number of
partitions by hashing all primary key columns.

Hash partitioning is a reasonable approach if primary key values are evenly distributed in their domain and no data
skew is apparent, such as timestamps or serial IDs.

The following example creates 16 tablets by hashing the i d column. A maximum of 16 tablets can be written to in
parallel. In this example, a query for a range of sku values is likely to need to read from all 16 tablets, so this may not
be the optimum schema for this table. See Advanced Partitioning on page 64 for an extended example.

CREATE TABLE cust _behavi or (
id Bl G NT,
sku STRI NG
sal ary STRI NG
edu_| evel | NT,
user gender STRI NG
‘group’ STRING
city STRING
post code STRI NG
| ast _purchase_price FLOAT,
| ast _purchase_date BI G NT,
category STRI NG
rating | NT,
fulfilled_date BI G NT,
PRI MARY KEY (id, sku)

)
PARTI TI ON BY HASH PARTI TI ONS 16
STORED AS KUDY,

Advanced Partitioning

You can combine HASHand RANGE partitioning to create more complex partition schemas. You can also specify zero
or more HASH definitions, followed by zero or one RANGE definitions. Each schema definition can encompass one or
more columns. While enumerating every possible distribution schema is out of the scope of this topic, the following
examples illustrate some of the possibilities.

PARTITION BY HASH and RANGE

Consider the basic PARTI TI ON BY HASHexample above. If you often query for a range of sku values, you can optimize
the example by combining hash partitioning with range partitioning.

The following example still creates 16 tablets, by first hashing the id column into 4 partitions, and then applying range
partitioning to split each partition into four tablets, based upon the value of the sku string. At least four tablets (and
possibly up to 16) can be written to in parallel, and when you query for a contiguous range of sku values, there's a
good chance you only need to read a quarter of the tablets to fulfill the query.

By default, the entire primary key (i d, sku) will be hashed when you use PARTI TI ON BY HASH. To hash on only
part of the primary key, and use a range partition on the rest, use the syntax demonstrated below.

CREATE TABLE cust _behavi or (
id Bl G NT,
sku STRI NG,
sal ary STRI NG
edu_l evel | NT,
user gender STRI NG
“group’ STRING,
city STRI NG
post code STRI NG
| ast _purchase_price FLOAT,
| ast _purchase_date BlI G NT,
category STRI NG
rating | NT,
fulfilled date BI G NT,
PRI MARY KEY (id, sku)

PARTI TI ON BY HASH (id) PARTITI ONS 4,
RANGE (sku)
(

PARTI TI ON VALUES < 'g',
PARTITION 'g' <= VALUES < '0',
PARTI TION ' o' <= VALUES < 'u',
PARTI TION 'u" <= VALUES

)
STORED AS KUDU,

Multiple PARTITION BY HASH Definitions

Once again expanding on the example above, let's assume that the pattern of incoming queries will be unpredictable,
but you still want to ensure that writes are spread across a large number of tablets. You can achieve maximum
distribution across the entire primary key by hashing on both primary key columns.

CREATE TABLE cust _behavi or (
id Bl G NT,
sku STRI NG
sal ary STRI NG
edu_l evel | NT,
user gender STRI NG
“group’ STRING
city STRING
post code STRI NG
| ast _purchase_price FLOAT,
| ast _purchase_date Bl G NT,
category STRI NG
rating | NT,
fulfilled_date BI G NT,
PRI MARY KEY (id, sku)

)

PARTI TI ON BY HASH (i d) PARTITIONS 4,
HASH (sku) PARTI TIONS 4

STORED AS KUDU;

The example creates 16 partitions. You could also use HASH (i d, sku) PARTI TI ONS 16. However, a scan for sku
values would almost always impact all 16 partitions, rather than possibly being limited to 4.

Non-Covering Range Partitions
Kudu supports the use of non-covering range partitions, which can be used to address the following scenarios:

¢ In the case of time-series data or other schemas which need to account for constantly-increasing primary keys,
tablets serving old data will be relatively fixed in size, while tablets receiving new data will grow without bounds.

¢ In cases where you want to partition data based on its category, such as sales region or product type, without
non-covering range partitions you must know all of the partitions ahead of time or manually recreate your table
if partitions need to be added or removed, such as the introduction or elimination of a product type.

E,’ Note: See Range Partitioning on page 89 for the caveats of non-covering range partitions.

The following example creates a tablet per year (5 tablets total), for storing log data. The table only accepts data from
2012 to 2016. Keys outside of these ranges will be rejected.

CREATE TABLE sal es_by_year (
year |INT, sale_id INT, amount | NT,
PRI MARY KEY (sale_id, year)

)
PARTI TI ON BY RANGE (year) (

PARTI TI ON VALUE = 2012,
PARTI TI ON VALUE = 2013,
PARTI TI ON VALUE = 2014,
PARTI TI ON VALUE = 2015,

PARTI TI ON VALUE = 2016

)

STORED AS KUDUY,

When records start coming in for 2017, they will be rejected. At that point, the 2017 range should be added as follows:
ALTER TABLE sal es_by_year ADD RANGE PARTI TI ON VALUE = 2017;

In use cases where a rolling window of data retention is required, range partitions may also be dropped. For example,
if data from 2012 should no longer be retained, it may be deleted in bulk:

ALTER TABLE sal es_by_year DROP RANGE PARTI TI ON VALUE = 2012;

Note that just like dropping a table, this irrecoverably deletes all data stored in the dropped partition.

Partitioning Guidelines
e For large tables, such as fact tables, aim for as many tablets as you have cores in the cluster.
e For small tables, such as dimension tables, ensure that each tablet is at least 1 GB in size.

In general, be mindful the number of tablets limits the parallelism of reads, in the current implementation. Increasing
the number of tablets significantly beyond the number of cores is likely to have diminishing returns.

Optimizing Performance for Evaluating SQL Predicates

If the WHERE clause of your query includes comparisons with the operators =, <=, <, >, >=, BETVEEN, or I N, Kudu
evaluates the condition directly and only returns the relevant results. This provides optimum performance, because
Kudu only returns the relevant results to Impala.

For predicates such as! =, LI KE, or any other predicate type supported by Impala, Kudu does not evaluate the predicates
directly. Instead, it returns all results to Impala and relies on Impala to evaluate the remaining predicates and filter
the results accordingly. This may cause differences in performance, depending on the delta of the result set before
and after evaluating the WHERE clause. In some cases, creating and periodically updating materialized views may be
the right solution to work around these inefficiencies.

Inserting a Row

The syntax for inserting one or more rows using Impala is shown below.

I NSERT I NTO nmy_first_table VALUES (99, "sarah");
I NSERT I NTO nmy_first_table VALUES (1, "john"), (2, "jane"), (3, "jinl);

The primary key must not be null.

Inserting In Bulk

When inserting in bulk, there are at least three common choices. Each may have advantages and disadvantages,
depending on your data and circumstances.

Multiple Single INSERT statements

This approach has the advantage of being easy to understand and implement. This approach is likely to be inefficient
because Impala has a high query start-up cost compared to Kudu's insertion performance. This will lead to relatively
high latency and poor throughput.

Single INSERT statement with multiple VALUES subclauses

If you include more than 1024 VALUES statements, Impala batches them into groups of 1024 (or the value of

bat ch_si ze) before sending the requests to Kudu. This approach may perform slightly better than multiple
sequential | NSERT statements by amortizing the query start-up penalties on the Impala side. To set the batch size
for the current Impala Shell session, use the following syntax:

set batch_si ze=10000;

E,I Note: Increasing the Impala batch size causes Impala to use more memory. You should verify the
impact on your cluster and tune accordingly.

Batch Insert

The approach that usually performs best, from the standpoint of both Impala and Kudu, is usually to import the
data using a SELECT FROMsubclause in Impala.

1. If your data is not already in Impala, one strategy is to import it from a text file, such as a TSV or CSV file.
2. Create the Kudu table, being mindful that the columns designated as primary keys cannot have null values.
3. Insertvalues into the Kudu table by querying the table containing the original data, as in the following example:

I NSERT | NTO mmy_kudu_t abl e
SELECT * FROM | egacy_data_i nport _t abl e;

Ingest using the C++ or Java API
In many cases, the appropriate ingest path is to use the C++ or Java API to insert directly into Kudu tables. Unlike
other Impala tables, data inserted into Kudu tables using the APl becomes available for query in Impala without
the need for any | NVALI DATE METADATA statements or other statements needed for other Impala storage types.

INSERT and Primary Key Uniqueness Violations

In many relational databases, if you try to insert a row that has already been inserted, the insertion will fail because
the primary key will be duplicated (see Failures During INSERT, UPDATE, UPSERT, and DELETE Operations on page 69).
Impala, however, does not fail the query. Instead, it will generate a warning and continue to execute the remainder
of the insert statement.

If you meant to replace existing rows from the table, use the UPSERT statement instead.

I NSERT I NTO nmy_first_table VALUES (99, "sarah");
UPSERT | NTO nmy_first_table VALUES (99, "zoe");

The current value of the row is now zoe.

Updating a Row

The syntax for updating one or more rows using Impala is shown below.

UPDATE ny_first_table SET name="bob" where id = 3;

You cannot change or null the primary key value.

o Important: The UPDATE statement only works in Impala when the underlying data source is Kudu.

Updating In Bulk
You can update in bulk using the same approaches outlined in Inserting In Bulk on page 66.

Upserting a Row

The UPSERT command acts as a combination of the | NSERT and UPDATE statements. For each row processed by the
UPSERT statement:

¢ If another row already exists with the same set of primary key values, the other columns are updated to match
the values from the row being 'UPSERTed'.

e Ifthereis no row with the same set of primary key values, the row is created, the same as if the | NSERT statement
was used.

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/impala_txtfile.html

UPSERT Example

The following example demonstrates how the UPSERT statement works. We start by creating two tables, f ool and
f oo2.

CREATE TABLE fool (
id | NT PRI MARY KEY,
col 1 STRI NG
col 2 STRI NG

)
PARTI TI ON BY HASH(i d) PARTI TIONS 3
STORED AS KUDY,

CREATE TABLE foo02 (
id INT PRI MARY KEY,
col 1 STRI NG,
col 2 STRI NG

)
PARTI TI ON BY HASH(id) PARTITIONS 3
STORED AS KUDY,

Populate f 001 and f 002 using the following | NSERT statements. For f 002, we leave column col 2 with NULL values
to be upserted later:

I NSERT | NTO fool VALUES (1, "hi", "alice");

I NSERT | NTO foo2 select id, coll, NULL fromfool;
The contents of f 002 will be:

SELECT * FROM f 002;

S R R, +
| id] coll | col2 |
B e +
| 1 | hi | NULL |
B Fomm oo - +

Fetched 1 rowm(s) in 0.15s

Now use the UPSERT command to now replace the NULL values in foo2 with the actual values from foo1l.

UPSERT | NTO foo2 (id, col2) select id, col2 fromfool;

SELECT * FROM fo002;

R e e - - +
| id| coll | col2 |
R e tomm - - +
| 1 | hi | alice |
R e tomm - - +

Fetched 1 row(s) in 0.15s

Altering a Table

You can the ALTER TABLE statement to change the default value, encoding, compression, or block size of existing
columns in a Kudu table.

The Impala SQL Reference ALTER TABLE includes a Kudu Considerations section with examples and a list of constraints
relevant to altering a Kudu table in Impala.

Deleting a Row

You can delete Kudu rows in near real time using Impala.
DELETE FROM ny_first_table WHERE id < 3;

You can even use more complex joins when deleting rows. For example, Impala uses a comma in the FROMsub-clause
to specify a join query.

DELETE ¢ FROM ny_second_t abl e ¢, stock_synbols s WHERE c. name = s.synbol;

o Important: The DELETE statement only works in Impala when the underlying data source is Kudu.

Deleting In Bulk
You can delete in bulk using the same approaches outlined in Inserting In Bulk on page 66.

Failures During INSERT, UPDATE, UPSERT, and DELETE Operations

I NSERT, UPDATE, and DELETE statements cannot be considered transactional as a whole. If one of these operations
fails part of the way through, the keys may have already been created (in the case of | NSERT) or the records may have
already been modified or removed by another process (in the case of UPDATE or DELETE). You should design your
application with this in mind.

Altering Table Properties

You can change Impala's metadata relating to a given Kudu table by altering the table's properties. These properties
include the table name, the list of Kudu master addresses, and whether the table is managed by Impala (internal) or
externally. You cannot modify a table's split rows after table creation.

o Important: Altering table properties only changes Impala's metadata about the table, not the
underlying table itself. These statements do not modify any Kudu data.

Rename an Impala Mapping Table
ALTER TABLE ny_t abl e RENAME TO ny_new_t abl e;

Renaming a table usingthe ALTER TABLE ... RENAMEstatementonly renamesthe Impala mappingtable, regardless
of whether the table is an internal or external table. This avoids disruption to other applications that may be accessing
the underlying Kudu table.

Rename the underlying Kudu table for an internal table
In CDH 5.14 and lower, if a table is an internal table, the underlying Kudu table may be renamed by changing the
kudu. t abl e_nane property:

ALTER TABLE ny_internal _table
SET TBLPROPERTI ES(' kudu. t abl e_nanme' = 'new_nane')

Remapping an external table to a different Kudu table
If another application has renamed a Kudu table under Impala, it is possible to re-map an external table to point to a
different Kudu table name.

ALTER TABLE my_external _table_
SET TBLPROPERTI ES(' kudu. t abl e_name' = 'sone_ot her _kudu_table')

Change the Kudu Master Addresses

ALTER TABLE ny_t abl e SET TBLPROPERTI ES(' kudu. nast er _addr esses' =
" kudu- ori gi nal - mast er . exanpl e. com 7051, kudu- new nast er . exanpl e. com 7051") ;

Change an Internally-Managed Table to External

ALTER TABLE ny_t abl e SET TBLPROPERTI ES(' EXTERNAL' = ' TRUE');

Dropping a Kudu Table using Impala

If the table was created as an internal table in Impala, using CREATE TABLE, the standard DROP TABLE syntax drops
the underlying Kudu table and all its data. If the table was created as an external table, using CREATE EXTERNAL
TABLE, the mapping between Impala and Kudu is dropped, but the Kudu table is left intact, with all its data. To change
an external table to internal, or vice versa, see Altering Table Properties on page 69.

DROP TABLE ny_first_table;

Security Considerations

Kudu 1.3 (and higher) includes security features that allow Kudu clusters to be hardened against access from unauthorized
users. Kudu uses strong authentication with Kerberos, while communication between Kudu clients and servers can
now be encrypted with TLS. Kudu also allows you to use HTTPS encryption to connect to the web Ul. These features
should work seamlessly in Impala as long as Impala’s user is given permission to access Kudu.

For instructions on how to configure a secure Kudu cluster, see Kudu Security on page 77.

Known Issues and Limitations

e When creating a Kudu table, the CREATE TABLE statement must include the primary key columns before other
columns, in primary key order.

¢ Impala cannot update values in primary key columns.
¢ Impala cannot create Kudu tables with VARCHAR or nested-typed columns.

¢ Kudu tables with a name containing upper case or non-ASCII characters must be assigned an alternate name when
used as an external table in Impala.

¢ Kudu tables with a column name containing upper case or non-ASCll characters cannot be used as an external
table in Impala. Columns can be renamed in Kudu to work around this issue.

e | =and LI KE predicates are not pushed to Kudu, and instead will be evaluated by the Impala scan node. This may
decrease performance relative to other types of predicates.

e Updates, inserts, and deletes using Impala are non-transactional. If a query fails part of the way through, its partial
effects will not be rolled back.

e The maximum parallelism of a single query is limited to the number of tablets in a table. For good analytic
performance, aim for 10 or more tablets per host or use large tables.

Impala Keywords Not Supported for Creating Kudu Tables

e PARTI TI ONED
e LOCATI ON
¢ RONFORVAT

Next Steps
The examples above have only explored a fraction of what you can do with Impala Shell.

e Learn about the Impala project.

¢ Read the Impala documentation.

e View the Impala SQL Reference.

e For in-depth information on how to configure and use Impala to query Kudu data, see Integrating Impala with
Kudu.

e Read about Impala internals or learn how to contribute to Impala on the Impala Wiki.

http://impala.io/
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/impala.html
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/impala_langref.html
https://www.cloudera.com/documentation/enterprise/latest/topics/impala_kudu.html
https://www.cloudera.com/documentation/enterprise/latest/topics/impala_kudu.html
https://github.com/cloudera/Impala/wiki

Using the Hive Metastore with Kudu

Kudu has an optional feature which allows it to integrate its own catalog with the Hive Metastore (HMS). The HMS is
the de-facto standard catalog and metadata provider in the Hadoop ecosystem. When the HMS integration is enabled,
Kudu tables can be discovered and used by external HMS-aware tools, even if they are not otherwise aware of, or
integrated with Kudu. Additionally, these components can use the HMS to discover necessary information to connect
to the Kudu cluster which owns the table, such as the Kudu master addresses.

Databases and Table Names

With the Hive Metastore integration disabled, Kudu presents tables as a single flat namespace, with no hierarchy or
concept of a database. Additionally, Kudu's only restriction on table names is that they be a valid UTF-8 encoded string.
When the HMS integration is enabled in Kudu, both of these properties change in order to match the HMS model: the
table name must indicate the table's membership of a Hive database, and table name identifiers (i.e. the table name
and database name) are subject to the Hive table name identifier constraints.

Databases

Hive has the concept of a database, which is a collection of individual tables. Each database forms its own independent
namespace of table names.

In order to fit into this model, Kudu tables must be assigned a database when the HMS integration is enabled. No new
APIs have been added to create or delete databases, nor are there APIs to assign an existing Kudu table to a database.
Instead, a new convention has been introduced that Kudu table names must be in the format

<hi ve- dat abase- name>. <hi ve-t abl e- nane>. Thus, databases are an implicit part of the Kudu table name. By
including databases as an implicit part of the Kudu table name, existing applications that use Kudu tables can operate
on non-HMS-integrated and HMS-integrated table names with minimal or no changes.

Kudu provides no additional tooling to create or drop Hive databases. Administrators or users should use existing Hive
tools such as the Beeline Shell or Impala to do so.

Naming Constraints

When the Hive Metastore integration is enabled, the database and table names of Kudu tables must follow the Hive
Metastore naming constraints. Namely, the database and table name must contain only alphanumeric ASCII characters
and underscores.

E’; Note: When the hi ve. support. speci al . char act ers. t abl enane Hive configurationistrue,
the forward-slash (/) character in table name identifiers (i.e. the table name and database name) is
also supported.

Additionally, the Hive Metastore does not enforce case sensitivity for table name identifiers. As such, when enabled,
Kudu will follow suit and disallow tables from being created when one already exists whose table name identifier differs
only by case. Operations that open, alter, or drop tables will also be case-insensitive for the table name identifiers.

Warning: Given the case insensitivity upon enabling the integration, if multiple Kudu tables exist
whose names only differ by case, the Kudu master(s) will fail to start up. Be sure to rename such
conflicting tables before enabling the Hive Metastore integration.

Metadata Synchronization

When the Hive Metastore integration is enabled, Kudu will automatically synchronize metadata changes to Kudu tables
between Kudu and the HMS. As such, it is important to always ensure that the Kudu and HMS have a consistent view
of existing tables, using the administrative tools described in the below section. Failure to do so may result in issues

like Kudu tables not being discoverable or usable by external, HMS-aware components (e.g. Apache Sentry, Apache
Impala).

E,i Note: The Hive Metastore automatically creates directories for Kudu tables. These directories are
benign and can safely be ignored.

Impala has notions of internal and external Kudu tables. When dropping an internal table from Impala, the table's data
is dropped in Kudu; in contrast when dropping an external table, the table's data is not dropped in Kudu. External
tables may refer to tables by names that are different from the names of the underlying Kudu tables, while internal
tables must use the same names as those stored in Kudu. Additionally, multiple external tables may refer to the same
underlying Kudu table. Thus, since external tables may not map one-to-one with Kudu tables, the Hive Metastore
integration and tooling will only automatically synchronize metadata for internal tables. See the Kudu-Impala integration
documentation for more information about table types in Impala

Enabling the Hive Metastore Integration

Before enabling the Hive Metastore integration on an existing cluster, make sure to upgrade any tables that may exist
in Kudu's or in the HMS's catalog. See the Upgrading Existing Tables on page 75 section for more details.

Setup using Cloudera Manager

1. When the Hive Metastore is configured with fine-grained authorization using Apache Sentry, and the Sentry HDFS
Sync feature is enabled, the Kudu admin need to be able to access and modify directories that are created for
Kudu by the HMS. This can be done by adding the Kudu admin user to the group of the Hive service users, e.g. by
running the user nod -aG hi ve kudu command on the HMS nodes.

2. Go to the Hive service.
3. Click the Configuration tab.
4. Select the Kudu Service with which the Hive Metastore will synchronize the Kudu tables.

Manual Setup

1. When the Hive Metastore is configured with fine-grained authorization using Apache Sentry and the Sentry HDFS
Sync feature is enabled, the Kudu admin needs to be able to access and modify directories that are created for
Kudu by the HMS. This can be done by adding the Kudu admin user to the group of the Hive service users, e.g. by
running the user nod - aG hi ve kudu command on the HMS nodes.

2. Configure the Hive Metastore to include the notification event listener and the Kudu HMS plugin, to allow altering
and dropping columns, and to add full Thrift objects in notifications. Add the following values to the HMS
configuration in hi ve-site. xnl :

<property>
<nanme>hi ve. met astore. transacti onal . event. | i st ener s</ nane>
<val ue>
or g. apache. hive. hcatal og. | i stener. DbNoti fi cati onLi stener,
or g. apache. kudu. hi ve. net ast or e. KuduMet ast or ePl ugi n
</ val ue>
</ property>

<property>
<nanme>hi ve. nmet ast or e. di sal | ow. i nconpati bl e. col . t ype. changes</ nane>
<val ue>f al se</ val ue>

</ property>

<property>
<nanme>hi ve. net astore. notifications.add.thrift.objects</name>
<val ue>t rue</ val ue>

</ property>

3. After building Kudu from source, add the hns- pl ugi n. j ar found under the build directory (e.g.
bui | d/ r el ease/ bi n) to the HMS classpath.

https://www.cloudera.com/documentation/enterprise/latest/topics/kudu_impala.html
https://www.cloudera.com/documentation/enterprise/latest/topics/kudu_impala.html

4. Restart the HMS.
5. Enable the Hive Metastore integration in Kudu with the following configuration properties for the Kudu master(s):

--hive_metastore_uris=<HVS Thrift URI(s)>
--hive_netastore_sasl _enabl ed=<val ue of the H ve Metastore's hive. netastore. sasl . enabl ed
configuration>

E,i Note: In a secured cluster, in which - - hi ve_net ast or e_sasl _enabl ed is set to true,
--hi ve_met ast or e_ker beros_pri nci pal must match the primary portion of
hi ve. net ast or e. ker ber os. pri nci pal inthe Hive Metastore configuration.

6. Restart the Kudu master(s).

Administrative Tools

Kudu provides the command line tools kudu hns | i st, kudu hns precheck, kudu hms check, and kudu hns
fi x to allow administrators to find and fix metadata inconsistencies between the internal Kudu catalog and the Hive
Metastore catalog, during the upgrade process described below or during the normal operation of a Kudu cluster.

kudu hns tools should be run from the command line as the Kudu admin user. They require the full list of master
addresses to be specified:

$ sudo -u kudu kudu hnms check master-nane-1: 7051, mast er - nane- 2: 7051, nast er - nane- 3: 7051

To see a full list of the options available with the kudu hns tool, use the - - hel p flag.

E,i Note: When fine-grained authorization is enabled, the Kudu admin user, commonly "kudu", needs

to have access to all the Kudu tables to be able to run the kudu hns tools. This can be done by
configuring the user as a trusted user viathe - -t rust ed_user _acl master configuration. For more
information, see Trusted Users on page 80.

E,’ Note: If the Hive Metastore is configured with fine-grained authorization using Apache Sentry, the
Kudu admin user needs to have read and write privileges on HMS table entries. Configured this in the
Hive Metastore using the sent ry. net ast or e. servi ce. user s property.

kudu hnms i st

The kudu hns |i st tool scans the Hive Metastore catalog, and lists the HMS entries (including table name and type)
for Kudu tables, as indicated by their HMS storage handler.

kudu hns check

The kudu hns check tool scans the Kudu and Hive Metastore catalogs, and validates that the two catalogs agree on
what Kudu tables exist. The tool will make suggestions on how to fix any inconsistencies that are found. Typically, the
suggestion will be to run the kudu hns fi x tool, however some certain inconsistencies require using Impala Shell
for fixing.

kudu hns precheck

The kudu hns pr echeck tool scans the Kudu catalog and validates that if there are multiple Kudu tables whose
names only differ by case and logs the conflicted table names.

kudu hns fix

kudu hns fi x tool analyzes the Kudu and HMS catalogs and attempts to fix any automatically-fixable issues, for
instance, by creating a table entry in the HMS for each Kudu table that doesn't already have one. The - - dr yr un option
shows the proposed fix instead of actually executing it. When no automatic fix is available, it will make suggestions on
how a manual fix can help.

E,’ Note: The kudu hns fi x tool will not automatically fix Impala external tables for the reasons
described above. It is instead recommended to fix issues with external tables by dropping and recreating
them.

kudu hns downgr ade

The kudu hns downgr ade downgrades the metadata to legacy format for Kudu and the Hive Metastores. It is
discouraged to use unless necessary, since the legacy format can be deprecated in future releases.

Upgrading Existing Tables

Before enabling the Kudu-HMS integration, it is important to ensure that the Kudu and HMS start with a consistent
view of existing tables. This may entail renaming Kudu tables to conform to the Hive naming constraints. This detailed
workflow describes how to upgrade existing tables before enabling the Hive Metastore integration.

Prepare for the Upgrade

¢ Establish a maintenance window. During this time the Kudu cluster will still be available, but tables in Kudu and
the Hive Metastore may be altered or renamed as a part of the upgrade process.

* Make note of all external tables using the following command and drop them. This reduces the chance of having
naming conflicts with Kudu tables which can lead to errors during upgrading process. It also helps in cases where
a catalog upgrade breaks external tables, due to the underlying Kudu tables being renamed. The external tables
can be recreated after upgrade is complete.

$ sudo -u kudu kudu hns |ist nmaster-nane-1: 7051, mast er - nane- 2: 7051, nast er - nanme- 3: 7051

Perform the Upgrade

1. Runthe kudu hms precheck tool to ensure no Kudu tables only differ by case. If the tool does not report any
warnings, you can skip the next step.

$ sudo -u kudu kudu table renane_table
mast er - nane- 1: 7051, mast er - nane- 2: 7051, nast er - nanme- 3: 7051 <conflicting_t abl e_name>
<new_t abl e_nane>

2. Runthekudu hns check tool using the following command. If the tool does not report any catalog inconsistencies,
skip to Step 7 below.

$ sudo -u kudu kudu hns check naster-nane-1: 7051, nast er - nane- 2: 7051, mast er - nanme- 3: 7051
--hive_netastore_uris=<hive netastore_uris>
[--ignore_other_cl usters=<i gnores_other_cl usters>]

E,i Note: By default, the kudu hms tools will ignore metadata in the HMS that refer to a different

Kudu cluster than that being operated on, as indicated by having different masters specified. The
tools compare the value of the kudu. mast er _addr esses table property (either supplied at
table creation or as - - kudu_nmast er _host s on impalad daemons) in each HMS metadata entry
against the RPC endpoints (including the ports) of the Kudu masters. To have the tooling account
for and fix metadata entries with different master RPC endpoints specified (e.g. if ports are not
specified in the HMS), supply - - i gnor e_ot her _cl ust er s=f al se asan argument to the kudu
hns check andfi x tools.

For example:

$ sudo -u kudu kudu hms check master-nanme-1: 7051, nast er - nane- 2: 7051, mast er - nane- 3: 7051
--hive_netastore_uris=thrift://hive-netastore: 9083 --ignore_other_clusters=fal se

3. Ifthe kudu hnms check tool reports an inconsistent catalog, perform a dry-run of the kudu hns fi x tool to
understand how the tool will attempt to address the automatically-fixable issues.

$ sudo -u kudu kudu hns fix master-nane-1: 7051, mast er - nane- 2: 7051, mast er - nane- 3: 7051
--hive_metastore_uris=<hive_netastore_uris> --dryrun=true
[--ignore_other_clusters=<ignore_other_cl usters>]

For example:

$ sudo -u kudu kudu hms check naster-nane-1: 7051, nast er - nane- 2: 7051, mast er - nane- 3: 7051
--hive_metastore_uris=thrift://hive-nmetastore: 9083 --dryrun=true
--ignore_ot her_clusters=fal se

4. Manually fix any issues that are reported by the check tool that cannot be automatically fixed. For example, rename
any tables with names that are not Hive-conformant.

5. Run the kudu hns fi x tool to automatically fix all the remaining issues.

$ sudo -u kudu kudu hns fix master-nane-1: 7051, nast er - nane- 2: 7051, nast er - nane- 3: 7051
--hive_metastore_uris=<hive_netastore_uris>

[--drop_orphan_hns_t abl es=<dr ops_or phan_hns_t abl es>]

[--ignore_other_cl usters=<i gnore_other_cl usters>]

For example:

$ sudo -u kudu kudu hms fix master-name-1: 7051, mast er - name- 2: 7051, mast er - name- 3: 7051
--hive_metastore_uris=thrift://hive-metastore: 9083 --ignore_other_cl usters=fal se

’ Note: The - - drop_or phan_hns_t abl es argument indicates whether to drop orphan Hive

El Metastore tables that refer to non-existent Kudu tables. Due to KUDU-2883, this option may fail
to drop HMS entries that have no table ID. A workaround to this is to drop the table via the Impala
Shell.

6. Recreate any external tables that were dropped when preparing for the upgrade by using Impala Shell.

7. Enable the Hive Metastore Integration as described in the Enabling the Hive Metastore Integration on page 73
section.

https://issues.apache.org/jira/browse/KUDU-2883

Kudu Security

Kudu includes security features that allow Kudu clusters to be hardened against access from unauthorized users. Kudu
uses strong authentication with Kerberos, while communication between Kudu clients and servers can now be encrypted
with TLS. Kudu also allows you to use HTTPS encryption to connect to the web UL.

The rest of this topic describes the security capabilities of Apache Kudu and how to configure a secure Kudu cluster.
Currently, there are a few known limitations in Kudu security that might impact your cluster. For the list, see Security
Limitations on page 18.

Kudu Authentication with Kerberos

Kudu can be configured to enforce secure authentication among servers, and between clients and servers. Authentication
prevents untrusted actors from gaining access to Kudu, and securely identifies connecting users or services for
authorization checks. Authentication in Kudu is designed to interoperate with other secure Hadoop components by
utilizing Kerberos.

Configure authentication on Kudu servers using the - - r pc_aut hent i cat i on flag, which can be set to one of the
following options:

e required - Kudu will reject connections from clients and servers who lack authentication credentials.
e optional -Kudu will attempt to use strong authentication, but will allow unauthenticated connections.
¢ di sabl ed - Kudu will only allow unauthenticated connections.

By default, the flag is set to opt i onal . To secure your cluster, set - - r pc_aut henti cati on to r equi r ed.

Internal Private Key Infrastructure (PKI)

Kudu uses an internal PKI to issue X.509 certificates to servers in the cluster. Connections between peers who have
both obtained certificates will use TLS for authentication. In such cases, neither peer needs to contact the Kerberos
KDC.

X.509 certificates are only used for internal communication among Kudu servers, and between Kudu clients and servers.
These certificates are never presented in a public facing protocol. By using internally-issued certificates, Kudu offers
strong authentication which scales to huge clusters, and allows TLS encryption to be used without requiring you to
manually deploy certificates on every node.

Authentication Tokens

After authenticating to a secure cluster, the Kudu client will automatically request an authentication token from the
Kudu master. An authentication token encapsulates the identity of the authenticated user and carries the Kudu master's
RSA signature so that its authenticity can be verified. This token will be used to authenticate subsequent connections.
By default, authentication tokens are only valid for seven days, so that even if a token were compromised, it cannot
be used indefinitely. For the most part, authentication tokens should be completely transparent to users. By using
authentication tokens, Kudu is able to take advantage of strong authentication, without paying the scalability cost of
communicating with a central authority for every connection.

When used with distributed compute frameworks such as Apache Spark, authentication tokens can simplify configuration
and improve security. For example, the Kudu Spark connector will automatically retrieve an authentication token during
the planning stage, and distribute the token to tasks. This allows Spark to work against a secure Kudu cluster where
only the planner node has Kerberos credentials.

Client Authentication to Secure Kudu Clusters

Users running client Kudu applications must first run the ki ni t command to obtain a Kerberos ticket-granting ticket.
For example:

ki ni t adm n@XAMPLE- REALM COM

Once authenticated, you use the same client code to read from and write to Kudu servers with and without the Kerberos
configuration.

Scalability

Kudu authentication is designed to scale to thousands of nodes, which means it must avoid unnecessary coordination
with a central authentication authority (such as the Kerberos KDC) for each connection. Instead, Kudu servers and
clients use Kerberos to establish initial trust with the Kudu master, and then use alternate credentials for subsequent
connections. As described previously, the Kudu master issues internal X.509 certificates to tablet servers on startup,
and temporary authentication tokens to clients on first contact.

Coarse-grained Authorization

Kudu supports coarse-grained authorization checks for client requests based on the client's authenticated Kerberos
principal (user or service). Access levels are granted based on whitelist-style Access Control Lists (ACLs), one for each
level. Each ACL specifies a comma-separated list of users, or may be set to '*' to indicate that all authenticated users
have access rights at the specified level.

The two levels of access which can be configured are:

e Superuser - Principals authorized as a superuser can perform certain administrative functions such as using the
kudu command line tool to diagnose and repair cluster issues.

e User - Principals authorized as a user are able to access and modify all data in the Kudu cluster. This includes the
ability to create, drop, and alter tables, as well as read, insert, update, and delete data. The default value for the
User ACL is "*', which allows all users access to the cluster. However, if authentication is enabled, this will restrict
access to only those users who are able to successfully authenticate using Kerberos. Unauthenticated users on
the same network as the Kudu servers will be unable to access the cluster.

E,i Note: Internally, Kudu has a third access level for the daemons themselves called Service. This is used
to ensure that users cannot connect to the cluster and pose as tablet servers.

Fine-Grained Authorization

As of Kudu 1.10.0, Kudu can be configured to enforce fine-grained authorization across servers. This ensures that users
can see only the data they are explicitly authorized to see. Kudu currently supports this by leveraging policies defined
in Apache Sentry 2.2 and later.

Warning: Fine-grained authorization policies are not enforced when accessing the web Ul. User data
may appear on various pages of the web Ul (e.g. in logs, metrics, scans, etc.). As such, it is recommended
to either limit access to the web Ul ports, or redact or disable the web Ul entirely, as desired. See the
Web Ul Encryption on page 82 section for information on securing the web Ul.

Apache Sentry

Apache Sentry models tabular objects in the following hierarchy:

e Server: is indicated by the Kudu configuration flag - - ser ver _nane. Everything stored in a Kudu cluster falls
within the given "ser ver "

e Database: is indicated as a prefix of table names with the format <dat abase>. <t abl e>

¢ Table: is a single Kudu table.

e Column: is a column within a Kudu table.

Each level of this hierarchy defines a scope on which the privileges can be granted. Privileges granted on a higher scope
imply privileges on a lower scope. For example, if a user has a SELECT privilege on a database, then that user implicitly
has the SELECT privileges on every table belonging to that database.

Privileges are also associated with specific actions. Access to Kudu tables may rely on privileges on the following actions:

e ALTER

e CREATE
e DELETE
e DROP

e | NSERT
e UPDATE
e SELECT

Additionally, there are three special actions recognized by Kudu: ALL, OMNER, and METADATA. If a user has the ALL or
OMNER privileges on a given table, that user has all of the above privileges on the table. METADATA privilege is not an
actual privilege per se, rather, it is a conceptual privilege with which Kudu models any privilege. If a user has any
privilege on a given table, that user has METADATA privileges on the table, i.e. a privilege granted on any action on a
table implies that the user has the METADATA privilege on that table.

For more details about Sentry privileges, see the Apache Sentry documentation.

E’; Note: Depending on the value of the sentry. db. explicit. grants. perm tted configurationin

Sentry, certain privileges may not be grantable in Sentry. For example, in Sentry deployments that
don't support UPDATE privileges, to perform an operation that requires UPDATE privileges, a user
must instead have ALL privileges.

When a Kudu master receives a request, it consults Sentry to determine what privileges a user has. If the user is not
authorized to perform the requested action, the request is rejected. Kudu leverages the authenticated identity of a
user to decide whether to perform or reject a request.

Authorization Tokens

Rather than having every tablet server communicate directly with Sentry, privileges are propagated and checked via

authorization tokens. These tokens encapsulate what privileges a user has on a given table. Tokens are generated by
the master and returned to Kudu clients upon opening a Kudu table. Kudu clients automatically attach authorization

tokens when sending requests to tablet servers.

Authorization tokens are a means to limit the number of nodes directly accessing Sentry to retrieve privileges. As such,
since the expected number of tablet servers in a cluster is much higher than the number of Kudu masters, they are
only used to authorize requests sent to tablet servers. Kudu masters fetch privileges directly from Sentry or cache. See
<<privilege-caching>> for more details of Kudu's privilege cache.

Similar to the validity interval for authentication tokens, to limit the window of potential unwanted access if a token
becomes compromised, authorization tokens are valid for five minutes by default. The acquisition and renewal of a
token is hidden from the user, as Kudu clients automatically retrieve new tokens when existing tokens expire.

When a tablet server that has been configured to enforce fine-grained access control receives a request, it checks the
privileges in the attached token, rejecting it if the privileges are not sufficient to perform the requested operation, or
if it is invalid (e.g. expired).

https://cwiki.apache.org/confluence/display/SENTRY/Sentry+Privileges

Trusted Users

It may be desirable to allow certain users to view and modify any data stored in Kudu. Such users can be specified via
the - -trust ed_user _acl master configuration. Trusted users can perform any operation that would otherwise
require fine-grained privileges, without Kudu consulting Sentry.

Additionally, some services that interact with Kudu may authorize requests on behalf of their end users. For example,
Apache Impala authorizes queries on behalf of its users, and sends requests to Kudu as the Impala service user,
commonly "impala". Since Impala authorizes requests on its own, to avoid extraneous communication between Sentry
and Kudu, the Impala service user should be listed as a trusted user.

E,i Note: When accessing Kudu through Impala, Impala enforces its own fine-grained authorization
policy. This policy is similar to Kudu's and can be found in Impala's autorization documentation.

Configuring the Integration with Apache Sentry

Sentry is often configured with Kerberos authentication. In order to enable integration with Sentry, a cluster must first
be integrated with the Apache Hive Metastore. See the Enabling the Hive Metastore Integration on page 73 section
to configure Kudu to synchronize its internal catalog with the Hive Metastore.

The following configurations must be set on the master:

--sentry_service_rpc_addresses=<Sentry RPC address>

--server_nanme=<val ue of H veServer2's hive.sentry.server configuration>

- -kudu_servi ce_nane=kudu

--sentry_servi ce_kerberos_princi pal =sentry
--sentry_service_security_node=kerberos

This exanple ACL setup allows the "inpala user to access all data stored in
Kudu, assuming Inpala will authorize requests on its own. The 'hadoopadnin'
user is also granted access to all Kudu data, which may facilitate testing

and debuggi ng.
--trusted_user_acl =i npal a, hadoopadmi n

The following configurations must be set on the tablet servers:

--tserver_enforce_access_control =true

Caching

To avoid overwhelming Sentry with requests to fetch user privileges, the Kudu master can be configured to cache user
privileges. A by-product of this caching is that when privileges are changed in Sentry, they may not be reflected in Kudu
for a configurable amount of time, defined by the following Kudu master configurations:

--sentry_privileges_cache_ttl _factor * --authz_token_validity_interval _secs

The default value is fifty minutes. If privilege updates need to be reflected in Kudu sooner than this, the Kudu CLI tool
can be used to invalidate the cached privileges to force Kudu to fetch new ones from Sentry:

kudu master authz_cache reset <master-addresses>

Policy for Kudu Masters

The following authorization policy is enforced by Kudu masters:

Table 5: Authorization Policy for Masters

Operation Required Privilege

Creat eTabl e CREATE ON DATABASE

Kudu Security

Cr eat eTabl e with a different owner specified than the
requesting user

ALL ON DATABASE with the Sentry GRANT OPTI ON. See
GRANT <Privilege> ... WITH GRANT OPTION.

Del et eTabl e

DROP ON TABLE

Al t er Tabl e (with no rename)

ALTER ON TABLE

Al t er Tabl e (with rename)

ALL ON TABLE <ol d-t abl e>and CREATE ON
DATABASE <new dat abase>

| sCr eat eTabl eDone

METADATA ON TABLE

| sAl t er Tabl eDone

METADATA ON TABLE

Li st Tabl es

METADATA ON TABLE

Cet Tabl eLocat i ons

METADATA ON TABLE

CGet Tabl eSchena

METADATA ON TABLE

CGet Tabl et Locat i ons

METADATA ON TABLE

Policy for Kudu Tablet Servers

The following authorization policy is enforced by Kudu tablet servers:

Table 6: Authorization Policy for Tablet Servers

Scan

SELECT ON TABLE, or

METADATA ON TABLEand SELECT ON COLUMNfor each
projected column and each predicate column

Scan (no projected columns, equivalent to COUNT(*))

SELECT ON TABLE, or
SELECT ON COLUMN for each column in the table

Scan (with virtual columns)

SELECT ON TABLE, or
SELECT ON COLUMWN for each column in the table

Scan (in ORDERED mode)

<privileges required for a Scan>and SELECT
ON COLUWNfor each primary key column

I nsert I NSERT ON TABLE
Updat e UPDATE ON TABLE
Upsert I NSERT ON TABLE and UPDATE ON TABLE
Del ete DELETE ON TABLE

Spl i t KeyRange

SELECT ON COLUMWNfor each primary key column and
SELECT ON COLUMNfor each projected column

Checksum

User must be configured in - - super user _acl

Li st Tabl et s

User must be configured in - - super user _acl

Apache Kudu Guide | 81

E,i Note: Unlike Impala, Kudu only supports all-or-nothing access to a table’s schema, rather than showing
only authorized columns.

Encryption

Kudu allows you to use TLS to encrypt all communications among servers, and between clients and servers. Configure
TLS encryption on Kudu servers using the - - r pc_encr ypt i on flag, which can be set to one of the following options:

e required - Kudu will reject unencrypted connections.
e optional - Kudu will attempt to use encryption, but will allow unencrypted connections.
¢ di sabl ed - Kudu will not use encryption.

By default, the flag is set to opt i onal . To secure your cluster, set--r pc_encrypti ontorequired.

E,i Note: Kudu will automatically turn off encryption on local loopback connections, since traffic from
these connections is never exposed externally. This allows locality-aware compute frameworks, such
as Spark and Impala, to avoid encryption overhead, while still ensuring data confidentiality.

Using Vormetric encryption is considered experimental. We recommend you to experiment using Vormetric encryption
with Kudu in a development environment.

Web Ul Encryption

The Kudu web Ul can be configured to use secure HTTPS encryption by providing each server with TLS certificates. Use
the--webserver _certificate_fil eand--webserver_private_key_ fil epropertiestospecify the certificate
and private key to be used for communication.

Alternatively, you can choose to completely disable the web Ul by setting - - webser ver _enabl ed flagto f al se on
the Kudu servers.

Web Ul Redaction

To prevent sensitive data from being included in the web Ul, all row data is redacted. Table metadata, such as table
names, column names, and partitioning information is not redacted. Alternatively, you can choose to completely disable
the web Ul by setting the - - webser ver _enabl ed flag to f al se on the Kudu servers.

E,i Note: Disabling the web Ul will also disable REST endpoints such as/ net ri cs. Monitoring systems
rely on these endpoints to gather metrics data.

Log Redaction

To prevent sensitive data from being included in Kudu server logs, all row data will be redacted. You can turn off log
redaction using the - - r edact flag.

Configuring a Secure Kudu Cluster using Cloudera Manager

Warning: If you are upgrading from Kudu 1.2.0 / CDH 5.10.x, you must upgrade both Kudu and CDH
A parcels (or packages) at the same time. If you upgrade Kudu but do not upgrade CDH, new Kudu

features such as Security will not be available. Note that even though you might be able to see the

updated configuration options for Kudu security in Cloudera Manager, configuring them will have no

effect.

Use the following set of instructions to secure a Kudu cluster using Cloudera Manager:

Enabling Kerberos Authentication and RPC Encryption

Important: The following instructions assume you already have a secure Cloudera Manager cluster
with Kerberos authentication enabled. If this is not the case, first secure your cluster using the steps
described at Enabling Kerberos Authentication Using the Cloudera Manager Wizard.

To enable Kerberos authentication for Kudu:

Ui b WIN =

. Go to the Kudu service.

. Click the Configuration tab.
. Select Category > Main.

. In the Search field, type Kerberos to show the relevant properties.

. Edit the following properties according to your cluster configuration:

Field

Usage Notes

Kerberos Principal

Set to the default principal, kudu. Currently, Kudu does not support configuring
a custom service principal for Kudu processes.

Enable Secure Authentication
And Encryption

Select this checkbox to enable authentication and RPC encryption between
all Kudu clients and servers, as well as between individual servers. Only enable
this property after you have configured Kerberos.

. Click Save Changes.
. You will see an error message that tells you the Kudu keytab is missing. To generate the keytab, go to the top

navigation bar and click Administration > Security.

running on the cluster.

. Go to the Kerberos Credentials tab. On this page you will see a list of the existing Kerberos principals for services

. Click Generate Missing Credentials. Once the Generate Missing Credentials command has finished running, you

will see the Kudu principal added to the list.

Configuring Coarse-grained Authorization with ACLs

v b WN

. Go to the Kudu service.

. Click the Configuration tab.
. Select Category > Security.
. In the Search field, type ACL to show the relevant properties.

. Edit the following properties according to your cluster configuration:

Field

Usage Notes

Superuser Access Control List

Add a comma-separated list of superusers who can access the cluster. By
default, this property is left blank.

"*'indicates that all authenticated users will be given superuser access.

https://www.cloudera.com/documentation/enterprise/latest/topics/cm_sg_intro_kerb.html

6.

Field

Usage Notes

User Access Control List

Add a comma-separated list of users who can access the cluster. By default,
this property is set to '*'.

The default value of '* ' allows all users access to the cluster. However, if
authentication is enabled, this will restrict access to only those users who are
able to successfully authenticate using Kerberos. Unauthenticated users on
the same network as the Kudu servers will be unable to access the cluster.

Add the i nmpal a user to this list to allow Impala to query data in Kudu. You
might choose to add any other relevant usernames if you want to give access
to Spark Streaming jobs.

Click Save Changes.

Configuring HTTPS Encryption for the Kudu Master and Tablet Server Web Uls

Use the following steps to enable HTTPS for encrypted connections to the Kudu master and tablet server web Uls.

1.
. Click the Configuration tab.
. Select Category > Security.
. In the Search field, type TLS/SSL to show the relevant properties.

. Edit the following properties according to your cluster configuration:

v A WN

6.

Go to the Kudu service.

Field

Usage Notes

Master TLS/SSL Server Private
Key File (PEM Format)

Set to the path containing the Kudu master host's private key (PEM-format).
This is used to enable TLS/SSL encryption (over HTTPS) for browser-based
connections to the Kudu master web Ul.

Tablet Server TLS/SSL Server
Private Key File (PEM Format)

Set to the path containing the Kudu tablet server host's private key
(PEM-format). This is used to enable TLS/SSL encryption (over HTTPS) for
browser-based connections to Kudu tablet server web Uls.

Master TLS/SSL Server Certificate
File (PEM Format)

Set to the path containing the signed certificate (PEM-format) for the Kudu
master host's private key (set in Master TLS/SSL Server Private Key File). The
certificate file can be created by concatenating all the appropriate root and
intermediate certificates required to verify trust.

Tablet Server TLS/SSL Server
Certificate File (PEM Format)

Set to the path containing the signed certificate (PEM-format) for the Kudu
tablet server host's private key (set in Tablet Server TLS/SSL Server Private
Key File). The certificate file can be created by concatenating all the
appropriate root and intermediate certificates required to verify trust.

Enable TLS/SSL for Master Server

Enables HTTPS encryption on the Kudu master web Ul.

Enable TLS/SSL for Tablet Server

Enables HTTPS encryption on the Kudu tablet server Web Uls.

Click Save Changes.

Enabling Sentry Authorization

To enable Kudu’s integration with Sentry:

1. First, ensure that Kudu has been configured to synchronize its catalog with the Hive Metastore. See the steps
described in Enabling the Hive Metastore Integration on page 73.

2.

Go to the Kudu service.

3. Click the Configuration tab.
4. Select the Sentry Service with which Kudu should authorize requests.

Configuring a Secure Kudu Cluster using the Command Line

Important: Follow these command-line instructions on systems that do not use Cloudera Manager.
If you are using Cloudera Manager, see Configuring a Secure Kudu Cluster using Cloudera Manager
on page 83.

The following configuration parameters should be set on all servers (master and tablet servers) to ensure that a Kudu
cluster is secure:

Connection Security

--rpc_aut henticati on=required
--rpc_encryption=required
--keytab_fil e=<pat h-to- ker ber os- keyt ab>

Web U Security

--webserver_certificate_fil e=<path-to-cert-penp
--webserver_private_key fil e=<pat h-to-key-penr

opti onal

--webserver_privat e_key_password_cnd=<passwor d- cnd>

If you prefer to disable the web U entirely:
--webserver _enabl ed=f al se

Coar se-grai ned authorization

This exanple ACL setup allows the 'inpala' user as well as the

'etl _service_account' principal access to all data in the

Kudu cluster. The 'hadoopadmn' user is allowed to use adm nistrative
tooling. Note that by granting access to 'inpala', other users

may access data in Kudu via the Inpala service subject to its own

aut hori zation rules.

--user _acl =i npal a, et|l _servi ce_account

--adm n_acl =hadoopadni n

More information about these flags can be found in the configuration reference documentation.

See Configuring the Integration with Apache Sentry on page 80 to see an example of how to enable fine-grained
authorization via Apache Sentry.

http://kudu.apache.org/docs/configuration_reference.html

Apache Kudu Schema Design

Kudu tables have a structured data model similar to tables in a traditional relational database. With Kudu, schema
design is critical for achieving the best performance and operational stability. Every workload is unique, and there is
no single schema design that is best for every table. This topic outlines effective schema design philosophies for Kudu,
and how they differ from approaches used for traditional relational database schemas.

There are three main concerns when creating Kudu tables: column design, primary key design, and partitioning.

The Perfect Schema

The perfect schema would accomplish the following:

e Data would be distributed such that reads and writes are spread evenly across tablet servers. This can be achieved
by effective partitioning.

e Tablets would grow at an even, predictable rate, and load across tablets would remain steady over time. This can
be achieved by effective partitioning.

e Scans would read the minimum amount of data necessary to fulfill a query. This is impacted mostly by primary
key design, but partitioning also plays a role via partition pruning.

The perfect schema depends on the characteristics of your data, what you need to do with it, and the topology of your
cluster. Schema design is the single most important thing within your control to maximize the performance of your
Kudu cluster.

Column Design

A Kudu table consists of one or more columns, each with a defined type. Columns that are not part of the primary key
may be nullable. Supported column types include:

e boolean

e 8-bit signed integer

e 16-bit signed integer

e 32-bit signed integer

e 64-bit signed integer

e unixtime_micros (64-bit microseconds since the Unix epoch)
¢ single-precision (32-bit) IEEE-754 floating-point number

¢ double-precision (64-bit) IEEE-754 floating-point number

¢ decimal (see Decimal Type on page 87 for details)
e UTF-8 encoded string (up to 64KB uncompressed)

¢ binary (up to 64KB uncompressed)

Kudu takes advantage of strongly-typed columns and a columnar on-disk storage format to provide efficient encoding
and serialization. To make the most of these features, columns should be specified as the appropriate type, rather
than simulating a 'schemaless' table using string or binary columns for data which could otherwise be structured. In
addition to encoding, Kudu allows compression to be specified on a per-column basis.

Decimal Type

The deci mal type is a numeric data type with fixed scale and precision suitable for financial and other arithmetic
calculations where the imprecise representation and rounding behavior of f | oat and doubl e make those types
impractical. The deci mal type is also useful for integers larger than int64 and cases with fractional values in a primary
key.

The deci mal type is a parameterized type that takes precision and scale type attributes.

Precision represents the total number of digits that can be represented by the column, regardless of the location of
the decimal point. This value must be between 1 and 38 and has no default. For example, a precision of 4 is required
to represent integer values up to 9999, or to represent values up to 99.99 with two fractional digits. You can also
represent corresponding negative values, without any change in the precision. For example, the range -9999 to 9999
still only requires a precision of 4.

Scale represents the number of fractional digits. This value must be between 0 and the precision. A scale of 0 produces
integral values, with no fractional part. If precision and scale are equal, all of the digits come after the decimal point.
For example, a decimal with precision and scale equal to 3 can represent values between -0.999 and 0.999.

Performance considerations:

Kudu stores each value in as few bytes as possible depending on the precision specified for the decimal column. For
that reason it is not advised to just use the highest precision possible for convenience. Doing so could negatively impact
performance, memory and storage.

Before encoding and compression:

e Decimal values with precision of 9 or less are stored in 4 bytes.
e Decimal values with precision of 10 through 18 are stored in 8 bytes.

e Decimal values with precision greater than 18 are stored in 16 bytes.

E,’ Note: The precision and scale of decimal columns cannot be changed by altering the table.

Column Encoding
Depending on the type of the column, Kudu columns can be created with the following encoding types.
Plain Encoding
Data is stored in its natural format. For example, i nt 32 values are stored as fixed-size 32-bit little-endian integers.
Bitshuffle Encoding

A block of values is rearranged to store the most significant bit of every value, followed by the second most significant
bit of every value, and so on. Finally, the result is LZ4 compressed. Bitshuffle encoding is a good choice for columns
that have many repeated values, or values that change by small amounts when sorted by primary key. The bitshuffle
project has a good overview of performance and use cases.

Run Length Encoding

Runs (consecutive repeated values) are compressed in a column by storing only the value and the count. Run length
encoding is effective for columns with many consecutive repeated values when sorted by primary key.

Dictionary Encoding

Dictionary encoding can be used for BINARY or STRING columns. A dictionary of unique values is built, and each
column value is encoded as its corresponding index in the dictionary. Dictionary encoding is effective for columns
with low cardinality. If the column values of a given row set are unable to be compressed because the number of
unique values is too high, Kudu will transparently fall back to plain encoding for that row set. This is evaluated
during flush.

Prefix Encoding

Common prefixes are compressed in consecutive column values. Prefix encoding can be effective for values that
share common prefixes, or the first column of the primary key, since rows are sorted by primary key within tablets.

Each column in a Kudu table can be created with an encoding, based on the type of the column. Starting with Kudu
1.3, default encodings are specific to each column type.

Column Type Encoding Default

int8, intl6, int32 plain, bitshuffle, run length|bitshuffle
int64, unixtine_mncros plain, bitshuffle, run length|bitshuffle
fl oat, double plain, bitshuffle bi tshuffle
bool plain, run length run | ength
string, binary plain, prefix, dictionary di ctionary

Column Compression

Kudu allows per-column compression using the LZ4, Snappy, or zl i b compression codecs.

By default, columns that are Bitshuffle-encoded are inherently compressed with the LZ4 compression. Otherwise,
columns are stored uncompressed. Consider using compression if reducing storage space is more important than raw
scan performance.

Every data set will compress differently, but in general LZ4 is the most efficient codec, while zI i b will compress to
the smallest data sizes. Bitshuffle-encoded columns are automatically compressed using LZ4, so it is not recommended
to apply additional compression on top of this encoding.

Primary Key Design

Every Kudu table must declare a primary key comprised of one or more columns. Like an RDBMS primary key, the Kudu
primary key enforces a uniqueness constraint. Attempting to insert a row with the same primary key values as an
existing row will result in a duplicate key error.

Primary key columns must be non-nullable, and may not be a boolean or floating- point type.
Once set during table creation, the set of columns in the primary key may not be altered.

Unlike an RDBMS, Kudu does not provide an auto-incrementing column feature, so the application must always provide
the full primary key during insert.

Row delete and update operations must also specify the full primary key of the row to be changed. Kudu does not
natively support range deletes or updates.

The primary key values of a column may not be updated after the row is inserted. However, the row may be deleted
and re-inserted with the updated value.

Primary Key Index

As with many traditional relational databases, Kudu'’s primary key is in a clustered index. All rows within a tablet are
sorted by its primary key.

When scanning Kudu rows, use equality or range predicates on primary key columns to efficiently find the rows.

Considerations for Backfill Inserts

This section discuss a primary key design consideration for timeseries use cases where the primary key is a timestamp,
or the first column of the primary key is a timestamp.

Each time a row is inserted into a Kudu table, Kudu looks up the primary key in the primary key index storage to check
whether that primary key is already present in the table. If the primary key exists in the table, a "duplicate key" error
is returned. In the typical case where data is being inserted at the current time as it arrives from the data source, only
a small range of primary keys are "hot". So, each of these "check for presence" operations is very fast. It hits the cached
primary key storage in memory and doesn’t require going to disk.

In the case when you load historical data, which is called "backfilling", from an offline data source, each row that is
inserted is likely to hit a cold area of the primary key index which is not resident in memory and will cause one or more
HDD disk seeks. For example, in a normal ingestion case where Kudu sustains a few million inserts per second, the
"backfill" use case might sustain only a few thousand inserts per second.

To alleviate the performance issue during backfilling, consider the following options:
e Make the primary keys more compressible.

For example, with the first column of a primary key being a random ID of 32-bytes, caching one billion primary
keys would require at least 32 GB of RAM to stay in cache. If caching backfill primary keys from several days ago,
you need to have several times 32 GB of memory. By changing the primary key to be more compressible, you
increase the likelihood that the primary keys can fit in cache and thus reducing the amount of random disk I/Os.

e Use SSDs for storage as random seeks are orders of magnitude faster than spinning disks.
e Change the primary key structure such that the backfill writes hit a continuous range of primary keys.

Partitioning

In order to provide scalability, Kudu tables are partitioned into units called tablets, and distributed across many tablet
servers. A row always belongs to a single tablet. The method of assigning rows to tablets is determined by the partitioning
of the table, which is set during table creation.

Choosing a partitioning strategy requires understanding the data model and the expected workload of a table. For
write-heavy workloads, it is important to design the partitioning such that writes are spread across tablets in order to
avoid overloading a single tablet. For workloads involving many short scans, where the overhead of contacting remote
servers dominates, performance can be improved if all of the data for the scan is located on the same tablet.
Understanding these fundamental trade-offs is central to designing an effective partition schema.

o Important: Kudu does not provide a default partitioning strategy when creating tables. It is
recommended that new tables which are expected to have heavy read and write workloads have at
least as many tablets as tablet servers.

Kudu provides two types of partitioning: range partitioning and hash partitioning. Tables may also have multilevel
partitioning, which combines range and hash partitioning, or multiple instances of hash partitioning.

Range Partitioning

Range partitioning distributes rows using a totally-ordered range partition key. Each partition is assigned a contiguous
segment of the range partition keyspace. The key must be comprised of a subset of the primary key columns. If the
range partition columns match the primary key columns, then the range partition key of a row will equal its primary
key. In range partitioned tables without hash partitioning, each range partition will correspond to exactly one tablet.

The initial set of range partitions is specified during table creation as a set of partition bounds and split rows. For each
bound, a range partition will be created in the table. Each split will divide a range partition in two. If no partition bounds
are specified, then the table will default to a single partition covering the entire key space (unbounded below and
above). Range partitions must always be non-overlapping, and split rows must fall within a range partition.

Adding and Removing Range Partitions

Kudu allows range partitions to be dynamically added and removed from a table at runtime, without affecting the
availability of other partitions. Removing a partition will delete the tablets belonging to the partition, as well as the
data contained in them. Subsequent inserts into the dropped partition will fail. New partitions can be added, but they

must not overlap with any existing range partitions. Kudu allows dropping and adding any number of range partitions
in a single transactional alter table operation.

Dynamically adding and dropping range partitions is particularly useful for time series use cases. As time goes on, range
partitions can be added to cover upcoming time ranges. For example, a table storing an event log could add a month-wide
partition just before the start of each month in order to hold the upcoming events. Old range partitions can be dropped
in order to efficiently remove historical data, as necessary.

Hash Partitioning

Hash partitioning distributes rows by hash value into one of many buckets. In single-level hash partitioned tables, each
bucket will correspond to exactly one tablet. The number of buckets is set during table creation. Typically the primary
key columns are used as the columns to hash, but as with range partitioning, any subset of the primary key columns
can be used.

Hash partitioning is an effective strategy when ordered access to the table is not needed. Hash partitioning is effective
for spreading writes randomly among tablets, which helps mitigate hot-spotting and uneven tablet sizes.

Multilevel Partitioning

Kudu allows a table to combine multiple levels of partitioning on a single table. Zero or more hash partition levels can
be combined with an optional range partition level. The only additional constraint on multilevel partitioning beyond
the constraints of the individual partition types, is that multiple levels of hash partitions must not hash the same
columns.

When used correctly, multilevel partitioning can retain the benefits of the individual partitioning types, while reducing
the downsides of each. The total number of tablets in a multilevel partitioned table is the product of the number of
partitions in each level.

Partition Pruning

Kudu scans will automatically skip scanning entire partitions when it can be determined that the partition can be
entirely filtered by the scan predicates. To prune hash partitions, the scan must include equality predicates on every
hashed column. To prune range partitions, the scan must include equality or range predicates on the range partitioned
columns. Scans on multilevel partitioned tables can take advantage of partition pruning on any of the levels
independently.

Partitioning Examples

To illustrate the factors and tradeoffs associated with designing a partitioning strategy for a table, we will walk through
some different partitioning scenarios. Consider the following table schema for storing machine metrics data (using
SQL syntax and date-formatted timestamps for clarity):

CREATE TABLE netrics (
host STRI NG NOT NULL,
metric STRING NOT NULL,
tinme I NT64 NOT NULL,
val ue DOUBLE NOT NULL,
PRI MARY KEY (host, metric, tinme)

E

Range Partitioning

A natural way to partition the net ri cs table is to range partition on the t i me column. Let’s assume that we want to
have a partition per year, and the table will hold data for 2014, 2015, and 2016. There are at least two ways that the
table could be partitioned: with unbounded range partitions, or with bounded range partitions.

2014-01-01 2015-01-01 2016-01-01 2017-01-01
I I I |

Example 1 Tablet 1 Tablet 2 Tablet 3
Bounds: defauit

Splits: 2015, 2016 values before 2015 | values in 2015 values after 2015
Example 2 Tablet 1 Tablet 2 Tablet 3
Bounds: 2014 to 2017

Splits: 2015 and 2016 values in 2014 | valuesin 2015 | values in 2016

The image above shows the two ways the net ri cs table can be range partitioned on the t i ne column. In the first
example (in blue), the default range partition bounds are used, with splits at 2015- 01- 01 and 2016- 01- 01. This
results in three tablets: the first containing values before 2015, the second containing values in the year 2015, and the
third containing values after 2016. The second example (in green) uses a range partition bound of [(2014- 01- 01),
(2017-01-01)], and splits at 2015- 01- 01 and 2016- 01- 01. The second example could have equivalently been
expressed through range partition bounds of [(2014- 01- 01), (2015-01-01)],[(2015-01-01), (2016-01-01)],
and [(2016-01-01), (2017-01-01)], with no splits. The first example has unbounded lower and upper range
partitions, while the second example includes bounds.

Each of the range partition examples above allows time-bounded scans to prune partitions falling outside of the scan’s
time bound. This can greatly improve performance when there are many partitions. When writing, both examples
suffer from potential hot-spotting issues. Because metrics tend to always be written at the current time, most writes
will go into a single range partition.

The second example is more flexible, because it allows range partitions for future years to be added to the table. In
the first example, all writes for times after 2016- 01- 01 will fall into the last partition, so the partition may eventually
become too large for a single tablet server to handle.

Hash Partitioning

Another way of partitioning the met ri cs table is to hash partition on the host and et ri ¢ columns.

HASH (host, metric)

Tablet 1 Tablet 2 Tablet 3 Tablet 4

bucket: 0 bucket: 1 bucket: 2 bucket: 3

In the example above, the net ri cs table is hash partitioned on the host and net ri ¢ columns into four buckets.
Unlike the range partitioning example earlier, this partitioning strategy will spread writes over all tablets in the table
evenly, which helps overall write throughput. Scans over a specific host and metric can take advantage of partition
pruning by specifying equality predicates, reducing the number of scanned tablets to one. One issue to be careful of
with a pure hash partitioning strategy, is that tablets could grow indefinitely as more and more data is inserted into
the table. Eventually tablets will become too big for an individual tablet server to hold.

Hash and Range Partitioning

The previous examples showed how the net ri cs table could be range partitioned on the t i me column, or hash
partitioned on the host and net ri ¢ columns. These strategies have associated strength and weaknesses:

Table 7: Partitioning Strategies

Strategy Writes Reads Tablet Growth

range(ti me) @ all writes go to latest @ time-bounded scans can | @ new tablets can be added
partition be pruned for future time periods

hash(host, metric) @ writes are spread evenly |Bscans on specific hosts and | @ tablets could grow too
among tablets metrics can be pruned large

Hash partitioning is good at maximizing write throughput, while range partitioning avoids issues of unbounded tablet
growth. Both strategies can take advantage of partition pruning to optimize scans in different scenarios. Using multilevel
partitioning, it is possible to combine the two strategies in order to gain the benefits of both, while minimizing the
drawbacks of each.

RANGE (time)
2014-01-01 2015-01-01 2016-01-01 2017-01-01

Ll —
L -

Tablet1) Tablet5 Y Tablet9

values in 2014 | values in 2015 | values in 2016
l‘thn,lckr-,'t: 0 |‘Lbucket: 0 kbucket: 0 y

Tablet2) Tablet6) Tablet10

values in 2014 | values in 2015 | values in 2016
l‘thn,lckr-,'t: 1 kaucket: 1 kaucket: 1 y

Tablet3 | Tablet7 | Tablet 11

values in 2014 | values in 2015 | values in 2016
\bucket: 2 kaucket: 2 kaucket: 2 Y.

Tablet4)Y Tablet8 Y Tablet12

values in 2014 | values in 2015 | values in 2016
kbucket: 3 kaucket: 3 kaucket: 3 Y.

AN
AN

HASH (host, metric)

In the example above, range partitioning on the t i me column is combined with hash partitioning on the host and
nmet ri ¢ columns. This strategy can be thought of as having two dimensions of partitioning: one for the hash level and
one for the range level. Writes into this table at the current time will be parallelized up to the number of hash buckets,
in this case 4. Reads can take advantage of time bound and specific host and metric predicates to prune partitions.
New range partitions can be added, which results in creating 4 additional tablets (as if a new column were added to

the diagram).

Hash and Hash Partitioning

Kudu can support any number of hash partitioning levels in the same table, as long as the levels have no hashed columns
in common.

HASH (metric)

(" Tablet1 Y Tablet5 Y Tablet9

host bucket: 0 host bucket: 0 host bucket: 0
metric bucket: 0 metric bucket: 1 metric bucket: 2

\ V
(" Tablet 2 g Tablet 6 g Tablet10)
host bucket: 1 host bucket: 1 host bucket: 1

metric bucket: 0 rmetric bucket: 1 metric bucket: 2
\ # <
<

(" Tablet 3 Tablet 7 Tablet 11

host bucket: 2 host bucket: 2 host bucket: 2
metric bucket: 0 rmetric bucket: 1 metric bucket: 2

<*

HASH (host)

\ <
(" Tablet 4 \g Tablet 8 T Tablet12)
host bucket: 3 host bucket: 3 host bucket: 3

metric bucket: 0 rmetric bucket: 1 metric bucket: 2

_LM

In the example above, the table is hash partitioned on host into 4 buckets, and hash partitioned on et ri c into 3
buckets, resulting in 12 tablets. Although writes will tend to be spread among all tablets when using this strategy, it is
slightly more prone to hot-spotting than when hash partitioning over multiple independent columns, since all values
for an individual host or metric will always belong to a single tablet. Scans can take advantage of equality predicates
on the host and net ri ¢ columns separately to prune partitions.

Multiple levels of hash partitioning can also be combined with range partitioning, which logically adds another dimension
of partitioning.

Schema Alterations

You can alter a table’s schema in the following ways:

e Rename the table
e Rename primary key columns
e Rename, add, or drop non-primary key columns

¢ Add and drop range partitions

Multiple alteration steps can be combined in a single transactional operation.

Schema Design Limitations

Kudu currently has some known limitations that may factor into schema design. For a complete list, see Apache Kudu
Usage Limitations on page 15.

Apache Kudu Transaction Semantics

This is a brief introduction to Kudu’s transaction and consistency semantics. Kudu's core philosophy is to provide
transactions with simple, strong semantics, without sacrificing performance or the ability to tune to different
requirements. Kudu'’s transactional semantics and architecture are inspired by state-of-the-art systems such as Spanner
and Calvin. For an in-depth technical exposition of what is mentioned here, see the technical report.

Kudu currently allows the following operations:

e Scans are read operations that can traverse multiple tablets and read information with different levels of consistency
or correctness guarantees. Scans can also perform time-travel reads. That is, you can set a scan timestamp from
the past and get back results that reflect the state of the storage engine at that point in time.

e Write operations are sets of rows to be inserted, updated, or deleted in the storage engine, in a single tablet with
multiple replicas. Write operations do not have separate "read sets", that is, they do not scan existing data before
performing the write. Each write is only concerned with the previous state of the rows that are about to change.
Writes are not "committed" explicitly by the user. Instead, they are committed automatically by the system, after
completion.

While Kudu is designed to eventually be fully ACID (Atomic, Consistent, Isolated, Durable), multi-tablet transactions
have not yet been implemented. As such, the following discussion focuses on single-tablet write operations, and only
briefly touches multi-tablet reads.

Single Tablet Write Operations

Kudu employs Multiversion Concurrency Control (MVCC) and the Raft consensus algorithm. Each write operation in
Kudu must go through the following order of operations:

1. The tablet's leader acquires all locks for the rows that it will change.

2. The leader assigns the write a timestamp before the write is submitted for replication. This timestamp will be the
write’s tag in MVCC.

3. After a majority of replicas have acknowledged the write, the rows are changed.

4. After the changes are complete, they are made visible to concurrent writes and reads, atomically.

All replicas of a tablet observe the same process. Therefore, if a write operation is assigned timestamp n, and changes
row x, a second write operation at timestamp m > n is guaranteed to see the new value of x.

This strict ordering of lock acquisition and timestamp assignment is enforced to be consistent across all replicas of a
tablet through consensus. Therefore, write operations are ordered with regard to clock-assigned timestamps, relative
to other writes in the same tablet. In other words, writes have strict-serializable semantics.

In case of multi-row write operations, while they are Isolated and Durable in an ACID sense, they are not yet fully
Atomic. The failure of a single write in a batch operation will not roll back the entire operation, but produce per-row
errors.

Writing to Multiple Tablets

Kudu does not support transactions that span multiple tablets. However, consistent snapshot reads are possible (with
caveats, as explained below). Writes from a Kudu client are optionally buffered in memory until they are flushed and
sent to the tablet server. When a client’s session is flushed, the rows for each tablet are batched together, and sent
to the tablet server which hosts the leader replica of the tablet. Since there are no inter-tablet transactions, each of
these batches represents a single, independent write operation with its own timestamp. However, the client API
provides the option to impose some constraints on the assigned timestamps and on how writes to different tablets
are observed by clients.

https://research.google.com/archive/spanner.html
http://dl.acm.org/citation.cfm?doid=2213836.2213838
http://users.ece.utexas.edu/%7Egarg/pdslab/david/hybrid-time-tech-report-01.pdf

Kudu was designed to be externally consistent, that is, preserving consistency when operations span multiple tablets
and even multiple data centers. In practice this means that if a write operation changes item x at tablet A, and a
following write operation changes item y at tablet B, you might want to enforce that if the change to y is observed,
the change to x must also be observed. There are many examples where this can be important. For example, if Kudu
is storing clickstreams for further analysis, and two clicks follow each other but are stored in different tablets, subsequent
clicks should be assigned subsequent timestamps so that the causal relationship between them is captured.

e CLI ENT_PROPAGATED Consistency

Kudu’s default external consistency mode is called CLI ENT_PROPAGATED. This mode causes writes from a single
client to be automatically externally consistent. In the clickstream scenario above, if the two clicks are submitted
by different client instances, the application must manually propagate timestamps from one client to the other
for the causal relationship to be captured. Timestamps between clients a and b can be propagated as follows:

Java Client

Call AsyncKudud i ent #get Last Pr opagat edTi mest anp() on client a, propagate the timestamp to client b,
and call AsyncKuduCl i ent #set Last Pr opagat edTi mest anp() on client b.

C++ Client

Call Kudud i ent : : Get Lat est Gbser vedTi nest anp() on client a, propagate the timestamp to client b, and
call Kudud i ent : : Set Lat est Obser vedTi nest anp() on client b.

e COW T_WAI T Consistency

Kudu also has an experimental implementation of an external consistency model (used in Google’s Spanner),

called COVMM T_WAI T. COW T_WAI T works by tightly synchronizing the clocks on all machines in the cluster. Then,
when a write occurs, timestamps are assigned and the results of the write are not made visible until enough time
has passed so that no other machine in the cluster could possibly assign a lower timestamp to a following write.

When using this mode, the latency of writes is tightly tied to the accuracy of clocks on all the cluster hosts, and
using this mode with loose clock synchronization causes writes to either take a long time to complete, or even
time out.

The COMM T_WAI T consistency mode may be selected as follows:

Java Client

Call KuduSessi on#set Ext er nal Consi st encyMode(Ext er nal Consi st encyMode. COMM T_WAI T)
C++ Client

Call KuduSessi on: : Set Ext er nal Consi st encyMode(COWM T_WAI T)

n Warning:

COW T_WAI T consistency is an experimental feature. It may return incorrect results, exhibit
performance issues, or negatively impact cluster stability. Its use in production environments is
discouraged.

Read Operations (Scans)

Scans are read operations performed by clients that may span one or more rows across one or more tablets. When a
server receives a scan request, it takes a snapshot of the MVCC state and then proceeds in one of two ways depending
on the read mode selected by the user. The mode may be selected as follows:

Java Client

Call KuduScanner Bui | der #ReadMbode(..)

C++ Client

Call KuduScanner : : Set ReadMode()
The following modes are available in both clients:
READ_LATEST

This is the default read mode. The server takes a snapshot of the MVCC state and proceeds with the read immediately.
Reads in this mode only yield 'Read Committed' isolation.

READ AT_SNAPSHOT

In this read mode, scans are consistent and repeatable. A timestamp for the snapshot is selected either by the
server, or set explicitly by the user through KuduScanner : : Set Snapshot M cr os() . Explicitly setting the timestamp
is recommended.

The server waits until this timestamp is 'safe'; that is, until all write operations that have a lower timestamp have
completed and are visible). This delay, coupled with an external consistency method, will eventually allow Kudu to
have fullstri ct - seri al i zabl e semantics for reads and writes. However, this is still a work in progress and some
anomalies are still possible. Only scans in this mode can be fault-tolerant.

Selecting between read modes requires balancing the trade-offs and making a choice that fits your workload. For
instance, a reporting application that needs to scan the entire database might need to perform careful accounting
operations, so that scan may need to be fault-tolerant, but probably doesn’t require a to-the-microsecond up-to-date
view of the database. In that case, you might choose READ_AT_SNAPSHOT and select a timestamp that is a few seconds
in the past when the scan starts. On the other hand, a machine learning workload that is not ingesting the whole data
set and is already statistical in nature might not require the scan to be repeatable, so you might choose READ_LATEST
instead for better scan performance.

E’; Note:

Kudu also provides replica selection API for you to choose at which replica the scan should be
performed:

Java Client

Call KuduScanner Bui | der #repl i caSel ection(...)
C++ Client

Call KuduScanner : : Set Sel ection(...)

This APl is a means to control locality and, in some cases, latency. The replica selection API has no
effect on the consistency guarantees, which will hold no matter which replica is selected.

Known Issues and Limitations

There are several gaps and corner cases that currently prevent Kudu from being strictly-serializable in certain situations.

Writes

Support for COM T_WAI T is experimental and requires careful tuning of the time-synchronization protocol, such as
NTP (Network Time Protocol). Its use in production environments is discouraged.

Recommendation
If external consistency is a requirement and you decide to use COMM T_WAI T, the time-synchronization protocol
needs to be tuned carefully. Each transaction will wait 2x the maximum clock error at the time of execution, which
is usually in the 100 msec. to 1 sec. range with the default settings, maybe more. Thus, transactions would take at
least 200 msec. to 2 sec. to complete when using the default settings and may even time out.

¢ Alocal server should be used as a time server. We’ve performed experiments using the default NTP time source
available in a Google Compute Engine data center and were able to obtain a reasonable tight max error bound,
usually varying between 12-17 milliseconds.

¢ The following parameters should be adjusted in/ et c/ nt p. conf to tighten the maximum error:
— server ny_server.org iburst mnpoll 1 maxpoll 8
— tinker dispersion 500

— tinker allan 0

Reads (Scans)

¢ On aleader change, READ_AT_SNAPSHOT scans at a snapshot whose timestamp is beyond the last write, may
yield non-repeatable reads (see KUDU-1188).

Recommendation

If repeatable snapshot reads are a requirement, use READ_AT_SNAPSHOT with a timestamp that is slightly in the
past (between 2-5 seconds, ideally). This will circumvent the anomaly described above. Even when the anomaly
has been addressed, back-dating the timestamp will always make scans faster, since they are unlikely to block.

e Impala scans are currently performed as READ_LATEST and have no consistency guarantees.

e |In AUTO BACKGROUND_FLUSHmode, or when using "async" flushing mechanisms, writes applied to a single client
session may get reordered due to the concurrency of flushing the data to the server. This is particularly noticeable
if a single row is quickly updated with different values in succession. This phenomenon affects all client API
implementations. Workarounds are described in the respective APl documentation for Fl ushibde or
AsyncKuduSessi on. See KUDU-1767.

https://issues.apache.org/jira/browse/KUDU-1188
https://issues.apache.org/jira/browse/KUDU-1767

Apache Kudu Background Maintenance Tasks

Kudu relies on running background tasks for many important maintenance activities. These tasks include flushing data
from memory to disk, compacting data to improve performance, freeing up disk space, and more.

Maintenance Manager

The maintenance manager schedules and runs background tasks. At any given point in time, the maintenance manager
is prioritizing the next task based on improvements needed at that moment, such as relieving memory pressure,
improving read performance, or freeing up disk space. The number of worker threads dedicated to running background
tasks can be controlled by setting - - mai nt enance_manager _num t hr eads.

With Kudu 1.4, the maintenance manager features improved utilization of the configured maintenance threads.
Previously, maintenance work would only be scheduled a maximum of 4 times per second, but now maintenance work
will be scheduled immediately whenever any configured thread is available. Make sure that the

- -mai nt enance_manager _num t hr eads property is set to at most a 1:3 ratio for Maintenance Manager threads
to the number of data directories (for spinning disks). This will improve the throughput of write-heavy workloads.

Flushing Data to Disk

Flushing data from memory to disk relieves memory pressure and can improve read performance by switching from
a write-optimized, row-oriented in-memory format in the MenRowSet , to a read-optimized, column-oriented format
on disk.

Background tasks that flush data include FI ushMRSOp and FI ushDel t aMenst or esOp. The metrics associated with
these operations have the prefix f | ush_nr s and f | ush_dns, respectively.

With Kudu 1.4, the maintenance manager aggressively schedules flushes of in-memory data when memory consumption
crosses 60 percent of the configured process-wide memory limit. The backpressure mechanism which begins to throttle
client writes was also adjusted to not begin throttling until memory consumption reaches 80 percent of the configured
limit. These two changes together result in improved write throughput, more consistent latency, and fewer timeouts
due to memory exhaustion.

Compacting On-disk Data

Kudu constantly performs several compaction tasks in order to maintain consistent read and write performance over
time.

e A merging compaction, which combines multiple Di skRowSet s together into a single Di skRowSet , is run by
Conpact RowSet sOp.

e Kudu also runs two types of delta store compaction operations: M nor Del t aConpact i onOp and
Maj or Del t aConpacti onQp.

For more information on what these compaction operations do, see the Kudu Tablet design document.

The metrics associated with these tasks have the prefix conpact _rs, del t a_ni nor _conpact _rs, and
del t a_maj or _conpact _rs, respectively.

Write-ahead Log Garbage Collection

Kudu maintains a write-ahead log (WAL) per tablet that is split into discrete fixed-size segments. A tablet periodically
rolls the WAL to a new log segment when the active segment reaches a size threshold (configured by the

--1 og_segnent _si ze_nb property). In order to save disk space and decrease startup time, a background task called
LogGCOp attempts to garbage-collect (GC) old WAL segments by deleting them from disk once it is determined that
they are no longer needed by the local node for durability.

The metrics associated with this background task have the prefix | og_gc.

https://github.com/apache/kudu/blob/master/docs/design-docs/tablet.md

Tablet History Garbage Collection and the Ancient History Mark

Kudu uses a multiversion concurrency control (MVCC) mechanism to ensure that snapshot scans can proceed isolated
from new changes to a table. Therefore, periodically, old historical data should be garbage-collected (removed) to free
up disk space. While Kudu never removes rows or data that are visible in the latest version of the data, Kudu does
remove records of old changes that are no longer visible.

The specific threshold in time (in the past) beyond which historical MVCC data becomes inaccessible and is free to be
deleted is called the ancient history mark (AHM). The AHM can be configured by setting the
--tabl et _hi story_max_age_sec property.

There are two background tasks that remove historical MVCC data older than the AHM:
e The one that runs the merging compaction, called Conpact RowSet sOp (see above).
¢ A separate background task deletes old undo delta blocks, called UndoDel t aBl ockGCOp. Running

UndoDel t aBl ockGCOp reduces disk space usage in all workloads, but particularly in those with a higher volume
of updates or upserts. The metrics associated with this background task have the prefix undo_del t a_bl ock.

Kudu Scaling Guide

This document describes in detail how Kudu scales with respect to various system resources, including memory, file
descriptors, and threads. See Scaling Recommendations and Limitations on page 16 for the maximum recommended
parameters of a Kudu cluster. They can be used to estimate roughly the number of servers required for a given quantity
of data.

Terms

We will use the following terms in this topic:

hot replica: A tablet replica that is continuously receiving writes. For example, in a time series use case, tablet
replicas for the most recent range partition on a time column would be continuously receiving the latest data,
and would be hot replicas.

cold replica: A tablet replica that is not hot, i.e. a replica that is not frequently receiving writes, for example, once
every few minutes. A cold replica may be read from. For example, in a time series use case, tablet replicas for
previous range partitions on a time column would not receive writes at all, or only occasionally receive late updates
or additions, but may be constantly read.

data on disk: The total amount of data stored on a tablet server across all disks, post-replication, post-compression,
and post-encoding.

Example Workload

The sections below perform sample calculations using the following parameters:

200 hot replicas per tablet server

1600 cold replicas per tablet server

8TB of data on disk per tablet server (about 4.5GB/replica)
512MB block cache

40 cores per server

limit of 32000 file descriptors per server

a read workload with 1 frequently-scanned table with 40 columns

This workload resembles a time series use case, where the hot replicas correspond to the most recent range partition
on time.

Memory

The flag--nmenory_|i mt_hard_byt es determines the maximum amount of memory that a Kudu tablet server may
use. The amount of memory used by a tablet server scales with data size, write workload, and read concurrency. The
following table provides numbers that can be used to compute a rough estimate of memory usage.

Table 8: Table 1. Tablet Server Memory Usage

Type Multiplier Description

Memory required per TB of data on | 1.5GB per 1TB data on disk Amount of memory per unit of data
disk on disk required for basic operation of

the tablet server.

Hot Replicas' MemRowSets and
DeltaMemStores

minimum 128MB per hot replica

Minimum amount of data to flush per
MemRowSet flush. For most use cases,
updates should be rare compared to
inserts, so the DeltaMemStores should
be very small.

--bl ock_cache_capaci t y_nb(default
512MB)

Scans 256KB per column per core for Amount of memory used by scanners,
read-heavy tables and which will be constantly needed
for tables which are constantly read.
Block Cache Fixed by Amount of memory reserved for use

by the block cache.

Using this information for the example load gives the following breakdown of memory usage:

Table 9: Table 2. Example Tablet Server

Memory Usage

Type

Amount

8TB data on disk

8TB * 1.5GB/ 1TB = 12GB

200 hot replicas

200 * 128MB = 25.6GB

1 40-column, frequently-scanned table

40 * 40 * 256KB = 409.6MB

Block Cache --bl ock_cache_capacity_nmb=512 =512MB
Expected memory usage 38.5GB
Recommended hard limit 52GB

Using this as a rough estimate of Kudu’s memory usage, select a memory limit so that the expected memory usage of
Kudu is around 50-75% of the hard limit.
Verifying if a Memory Limit is sufficient

After configuring an appropriate memory limit with - - renory_| i nmi t _har d_byt es, run a workload and monitor the
Kudu tablet server process’s RAM usage. The memory usage should stay around 50-75% of the hard limit, with occasional
spikes above 75% but below 100%. If the tablet server runs above 75% consistently, the memory limit should be
increased.

Additionally, it’s also useful to monitor the logs for memory rejections, which look like:

Servi ce unavail able: Soft menory linmt exceeded (at 96.35% of capacity)

And watch the memory rejections metrics:
e | eader _menory_pressure_rejections
e follower_nenory_pressure_rejections

e transacti on_nmenory_pressure_rejections

Occasional rejections due to memory pressure are fine and act as backpressure to clients. Clients will transparently
retry operations. However, no operations should time out.

File Descriptors

Processes are allotted a maximum number of open file descriptors (also referred to as fds). If a tablet server attempts
to open too many fds, it will typically crash with a message saying something like "too many open files". The following
table summarizes the sources of file descriptor usage in a Kudu tablet server process:

Table 10: Table 3. Tablet Server File Descriptor Usage

Type Multiplier Description

File cache Fixed by Maximum allowed open fds reserved
- - bl ock_nmanager _nax_open_fi | es | for use by the file cache.
(default 40% of process maximum)

Hot replicas 2 per WAL segment, 1 per WAL index | Number of fds used by hot replicas.
See below for more explanation.

Cold replicas 3 per cold replica Number of fds used per cold replica:
2 for the single WAL segment and 1
for the single WAL index.

Every replica has at least one WAL segment and at least one WAL index, and should have the same number of segments
and indices; however, the number of segments and indices can be greater for a replica if one of its peer replicas is
falling behind. WAL segment and index fds are closed as WALs are garbage collected.

Using this information for the example load gives the following breakdown of file descriptor usage, under the assumption
that some replicas are lagging and using 10 WAL segments:

Table 11: Table 4. Example Tablet Server File Descriptor Usage

Type Amount

file cache 40% * 32000 fds = 12800 fds

1600 cold replicas 1600 cold replicas * 3 fds / cold replica = 4800 fds

200 hot replicas (2 / segment * 10 segments/hot replica * 200 hot replicas)
+(1/index * 10 indices / hot replica * 200 hot replicas) =
6000 fds

Total 23600 fds

So for this example, the tablet server process has about 32000 - 23600 = 8400 fds to spare.

There is typically no downside to configuring a higher file descriptor limit if approaching the currently configured limit.

Threads

Processes are allotted a maximum number of threads by the operating system, and this limit is typically difficult or
impossible to change. Therefore, this section is more informational than advisory.

If a Kudu tablet server’s thread count exceeds the OS limit, it will crash, usually with a message in the logs like
"pthread_create failed: Resource temporarily unavailable". If the system thread count limit is exceeded, other processes
on the same node may also crash.

Threads and thread pools are used all over Kudu for various purposes, but the number of threads found in nearly all
of these does not scale with load or data/tablet size; instead, the number of threads is either a hard coded constant,
a constant defined by a configuration parameter, or based on a static dimension (such as the number of CPU cores).

The only exception to this is the WAL append thread, one of which exists for every "hot" replica.

Note that all replicas may be considered hot at startup, so tablet servers' thread usage will generally peak when started
and settle down thereafter.

Troubleshooting Apache Kudu

This guide covers basic Apache Kudu troubleshooting information. For more details, see the official Kudu documentation
for troubleshooting.

Issues Starting or Restarting the Master or Tablet Server

Errors During Hole Punching Test

Kudu requires hole punching capabilities in order to be efficient. Hole punching support depends upon your operation
system kernel version and local filesystem implementation.

e RHEL or CentOS 6.4 or later, patched to kernel version of 2.6.32-358 or later. Unpatched RHEL or CentOS 6.4 does
not include a kernel with support for hole punching.

e Ubuntu 14.04 includes version 3.13 of the Linux kernel, which supports hole punching.

e Newer versions of the ext4 and xfs filesystems support hole punching. Older versions that do not support hole
punching will cause Kudu to emit an error message such as the following and to fail to start:

Error during hole punch test. The | og bl ock manager requires a
filesystemw th hole punching support such as ext4 or xfs. On el 6,

kernel version 2.6.32-358 or newer is required. To run w thout hole
punching (at the cost of sone efficiency and scalability), reconfigure
Kudu with --bl ock_nanager=file. Refer to the Kudu docunentation for nore
details. Raw error nessage foll ows.

E,i Note:

ext4 mountpoints may actually be backed by ext2 or ext3 formatted devices, which do not support
hole punching. The hole punching test will fail when run on such filesystems. There are several different
ways to determine whether an ext4 mountpoint is backed by an ext2, ext3, or ext4 formatted device;
see this Stack Exchange post for details.

Without hole punching support, the log block manager is unsafe to use. It won’t ever delete blocks, and will consume
ever more space on disk.
If you can’t use hole punching in your environment, you can still try Kudu. Enable the file block manager instead of the

log block manager by adding the - - bl ock_nanager =fi | e flag to the commands you use to start the master and
tablet servers. The file block manager does not scale as well as the log block manager.

Already present: FS layout already exists

When Kudu starts, it checks each configured data directory, expecting either for all to be initialized or for all to be
empty. If a server fails to start with a log message such as the following, then this precondition check has failed.

Check failed: _s.ok() Bad status: Already present: Could not create new FS | ayout:
FSManager root is not enpty: /dataO/kudu/data

This could be because Kudu was configured with non-empty data directories on first startup, or because a
previously-running, healthy Kudu process was restarted and at least one data directory was deleted or is somehow
corrupted, perhaps because of a disk error. If it is the latter, refer Changing Directory Configuration on page 42.

http://kudu.apache.org/docs/troubleshooting.html
http://kudu.apache.org/docs/troubleshooting.html
https://unix.stackexchange.com/q/60723

NTP Clock Synchronization

For the master and tablet server daemons, the server’s clock must be synchronized using NTP. In addition, the maximum
clock error(not to be mistaken with the estimated error) must be below a configurable threshold. The default value is
10 seconds, but it can be set with the flag - - max_cl ock_sync_error _usec.

If NTP is not installed, or if the clock is reported as unsynchronized, Kudu will not start, and will emit a message such
as:

F0924 20: 24: 36. 336809 14550 hybrid_clock.cc:191 Couldn't get the current tine: C ock
unsynchroni zed. Status: Service unavailable: Error reading clock. C ock considered
unsynchr oni zed.

If NTP is installed and synchronized, but the maximum clock error is too high, the user will see a message such as:

Sep 17, 8:13:09.873 PM FATAL hybrid_cl ock.cc:196 Couldn't get the current tine: O ock
synchroni zed, but error: 11130000, is past the maxi num al |l owabl e error: 10000000

or

Sep 17, 8:32:31.135 PM FATAL tabl et _server_main. cc: 38 Check failed: _s.ok() Bad status:
Servi ce unavail able: Cannot initialize clock: Cannot initialize Hybridd ock. d ock

synchroni zed but error was too high (11711000 us).

Installing NTP

To install NTP, use the command appropriate for your operating system:

(o} Command
Debian/Ubuntu sudo apt-get install ntp
RHEL/CentOS sudo yuminstall ntp

If NTP is installed but not running, start it using one of these commands:

oS Command
Debian/Ubuntu sudo service ntp restart
RHEL/CentOS sudo /etc/init.d/ntpd restart

Monitoring NTP Status

When NTP is installed, you can monitor the synchronization status by running nt pt i me. For example, a healthy system
may report:

ntp_gettine() returns code 0 (CK)

time de24cOcf.8d5da274 Tue, Feb 6 2018 16:03:27.552, (.552210980),

maxi mum error 224455 us, estimated error 383 us, TAl offset O
ntp_adjtine() returns code 0 (CK)

nmodes 0x0 (),

of fset 1279.543 us, frequency 2.500 ppm interval 1 s,

maxi mum error 224455 us, estimated error 383 us,

status 0x2001 (PLL, NANO),

time constant 10, precision 0.001 us, tolerance 500 ppm

In particular, note the following most important parts of output:

e maxi mum error 22455 us: This value is well under the 10-second maximum error required by Kudu.

e status 0x2001 (PLL, NANO) : This indicates a healthy synchronization status.

In contrast, a system without NTP properly configured and running will output something like the following:

ntp_gettine() returns code 5 (ERROR)

time de24c240. 0c006000 Tue, Feb 6 2018 16:09: 36. 046, (.046881),

maxi mum error 16000000 us, estinated error 16000000 us, TAl offset O
ntp_adjtine() returns code 5 (ERROR)

nmodes 0x0 (),

of fset 0.000 us, frequency 2.500 ppm interval 1 s,

maxi mum error 16000000 us, estimated error 16000000 us,

status 0x40 (UNSYNC),

time constant 10, precision 1.000 us, tolerance 500 ppm

Note the UNSYNC status and the 16-second maximum error.

If more detailed information is needed, the nt pg or nt pdc tools can be used to dump further information about which
network time servers are currently acting as sources:

$ ntpg -nc | peers

renot e refid st t when poll reach del ay offset jitter
-108.59. 2. 24 130.133.1.10 2u 13 64 1 71.743 0.373 0.016
+192. 96. 202. 120 129.6. 15. 28 2u 12 64 1 72.583 -0.426 0.028
-69.10. 161. 7 204. 26. 59. 157 3u 11 64 1 15. 741 2.641 0.021
-173. 255. 206. 154 45.56. 123. 24 3u 10 64 1 43.502 0.199 0.029
-69.195.159. 158 128.138.140.44 2 u 9 64 1 53.885 -0.016 0.013
*216. 218. 254, 202 . CDVA. 1u 6 64 1 1.475 -0.400 0.012
+129. 250. 35. 250 249.224.99.213 2 u 7 64 1 1.342 -0.640 0.018
45.76.244.193 216.239.35.4 2u 6 64 1 17.380 -0.754 0.051
69.89.207.199 212.215.1. 157 2u 5 64 1 57.796 -3.411 0.059
171.66.97. 126 . GPSs. 1u 4 64 1 1.024 -0.374 0.018
66.228. 42. 59 211.172.242.174 3 u 3 64 1 72.409 0.895 0.964
91.189.89.198 17.253.34.125 2u 2 64 1 135.195 -0.329 0.171
162.210.111.4 216.218.254.202 2 u 1 64 1 28.570 0.693 0.306
199. 102. 46. 80 . GPS. 1u 2 64 1 55.652 -0.039 0.019
91.189.89.199 17.253. 34.125 2u 1 64 1 135.265 -0.413 0.037
$ ntpg -nc opeers
renote | ocal st t when poll reach del ay of f set di sp
-108.59. 2. 24 10. 17. 100. 238 2u 17 64 1 71.743 0.373 187.573
+192. 96.202. 120 10.17.100. 238 2u 16 64 1 72.583 -0.426 187.594
-69.10. 161. 7 10. 17. 100. 238 3u 15 64 1 15. 741 2.641 187.569
-173. 255. 206. 154 10. 17. 100. 238 3u 14 64 1 43.502 0.199 187.580
-69. 195. 159. 158 10.17.100. 238 2u 13 64 1 53.885 -0.016 187.561
*216.218. 254. 202 10.17.100. 238 1lu 10 64 1 1.475 -0.400 187.543
+129. 250. 35. 250 10.17.100. 238 2u 11 64 1 1.342 -0.640 187.588
45.76.244.193 10.17.100. 238 2u 10 64 1 17.380 -0.754 187.596
69.89.207.199 10.17.100. 238 2u 9 64 1 57.796 -3.411 187.541
171.66.97.126 10.17.100. 238 1u 8 64 1 1.024 -0.374 187.578
66.228. 42. 59 10. 17. 100. 238 3u 7 64 1 72.409 0.895 187.589
91.189.89.198 10.17.100. 238 2u 6 64 1 135.195 -0.329 187.584
162.210.111.4 10.17.100. 238 2u 5 64 1 28.570 0. 693 187. 606
199.102.46.80 10.17.100. 238 1lu 4 64 1 55.652 -0.039 187.587
91.189.89.199 10.17.100. 238 2u 3 64 1 135.265 -0.413 187.621

E’; Note: Both | peer s and opeer s may be helpful as | peer s lists refid and jitter, while opeer s lists
clock dispersion.

Using chrony for time synchronization

Some operating systems offer chr ony as an alternative to nt pd for network time synchronization. Kudu has been
tested most thoroughly using nt pd and use of chr ony is considered experimental.

In order to use chr ony for synchronization, chr ony. conf must be configured with the rt csync option.

NTP Configuration Best Practices

In order to provide stable time synchronization with low maximum error, follow these best NTP configuration best
practices.

Always configure at least four time sources for NTP. In addition to providing redundancy in case one or more time
sources becomes unavailable, The NTP protocol is designed to increase its accuracy with a diversity of sources. Even
if your organization provides one or more local time servers, configuring additional remote servers is highly recommended
for a robust setup.

Pick servers in your server’s local geography. For example, if your servers are located in Europe, pick servers from the
European NTP pool. If your servers are running in a public cloud environment, consult the cloud provider’s documentation
for a recommended NTP setup. Many cloud providers offer highly accurate clock synchronization as a service.

Use the i bur st option for faster synchronization at startup. The i bur st option instructs nt pd to send an initial
"burst" of time queries at startup. This typically results in a faster time synchronization when a machine restarts.

An example NTP server list may appear as follows:

Use ny organi zation's internal NTP servers
server ntpl.nyorg.internal iburst

server ntp2.nyorg.internal iburst

Provi de several public pool servers for

redundancy and robust ness.

server 0.pool.ntp.org iburst

server 1.pool.ntp.org iburst

server 2.pool.ntp.org iburst

server 3.pool.ntp.org iburst

E,’ Note: After configuring NTP, use the nt pq tool described above to verify that nt pd was able to
connect to a variety of peers. If no public peers appear, it is possiblbe that the NTP protocol is being
blocked by a firewall or other network connectivity issue.

Troubleshooting NTP Stability Problems

As of Kudu 1.6.0, Kudu daemons are able to continue to operate during a brief loss of NTP synchronization. If NTP
synchronization is lost for several hours, however, daemons may crash. If a daemon crashes due to NTP synchronization
issues, consult the ERROR log for a dump of related information which may help to diagnose the issue.

E,i Note: Kudu 1.5.0 and earlier versions were less resilient to brief NTP outages. In addition, they

contained a bug which could cause Kudu to incorrectly measure the maximum error, resulting in
crashes. If you experience crashes related to clock synchronization on these earlier versions of Kudu
and it appears that the system’s NTP configuration is correct, consider upgrading to Kudu 1.6.0 or
later.

E,i Note: NTP requires a network connection and may take a few minutes to synchronize the clock at
startup. In some cases a spotty network connection may make NTP report the clock as unsynchronized.
A common, though temporary, workaround for this is to restart NTP with one of the commands above.

Disk Space Usage

When using the log block manager (the default on Linux), Kudu uses sparse files to store data. A sparse file has a
different apparent size than the actual amount of disk space it uses. This means that some tools may inaccurately

https://issues.apache.org/jira/browse/KUDU-2209
https://en.wikipedia.org/wiki/Sparse_file

report the disk space used by Kudu. For example, the size listed by | s -1 does not accurately reflect the disk space
used by Kudu data files:

$ Is -1h /datal/kudu/tserver/data

total 117M

STW------ 1 kudu kudu 160M Mar 26 19: 37 0b9807b8bl17d48a6a7d5b16bf 4ac4e6d. dat a
STW------ 1 kudu kudu 4. 4K Mar 26 19: 37 0b9807b8bl17d48a6a7d5bl16bf 4ac4e6d. net adat a
STW------ 1 kudu kudu 32M Mar 26 19: 37 2f 26eeacc7e04b65a009e2c9a2a8bd20. dat a
STW------ 1 kudu kudu 4. 3K Mar 26 19: 37 2f 26eeacc7e04b65a009e2c9a2a8bd20. net adat a
STW------ 1 kudu kudu 672M Mar 26 19: 37 30a2dd2cd3554d8a9613f 588a8d136ff. data
STW------ 1 kudu kudu 4. 4K Mar 26 19: 37 30a2dd2cd3554d8a9613f 588a8d136f f. net adat a
STW------ 1 kudu kudu 32M Mar 26 19: 37 7434c83cbhec74aebaf 5974e4909chf 82. dat a
STW------ 1 kudu kudu 4. 3K Mar 26 19: 37 7434c83c5ec74ae6af 5974e4909cbhf 82. net adat a
STW------ 1 kudu kudu 672M Mar 26 19: 37 772d070347a04f 9f 8ad2ad3241440090. dat a
STW--- - - - 1 kudu kudu 4.4K Mar 26 19: 37 772d070347a04f 9f 8ad2ad3241440090. net adat a
STW------ 1 kudu kudu 160M Mar 26 19: 37 86e50a95531f 46b6a79e671e6f 5f 4151. data
STW------ 1 kudu kudu 4. 4K Mar 26 19: 37 86e50a95531f 46b6a79e671e6f 5f 4151. net adat a
STW--- - - 1 kudu kudu 687 Mar 26 19:26 bl ock_manager _i nstance

Notice that the total size reported is 117MiB, while the first file’s size is listed as 160MiB. Adding the - s optionto | s
will cause | s to output the file’s disk space usage.

The du and df utilities report the actual disk space usage by default.

$ du -h /data/ kudu/tserver/datall8M /data/kudu/tserver/data

The apparent size can be shown with the - - appar ent - si ze flag to du.

$ du -h --apparent-size /datal/kudu/tserver/datal. 7G /data/kudu/tserver/data

Reporting Kudu Crashes Using Breakpad

Kudu uses the Google Breakpad library to generate a minidump whenever Kudu experiences a crash. A minidump file
contains important debugging information about the process that crashed, including shared libraries loaded and their
versions, a list of threads running at the time of the crash, the state of the processor registers and a copy of the stack
memory for each thread, and CPU and operating system version information. These minidumps are typically only a
few MB in size and are generated even if core dump generation is disabled. Currently, generating minidumps is only
possible on Linux deployments.

By default, Kudu stores its minidumps in a subdirectory of the configured glog directory called i ni dunps. This location
can be customized by setting the - - ni ni dunp_pat h flag. Kudu will retain only a certain number of minidumps before
deleting the older ones, in an effort to avoid filling up the disk with minidump files. The maximum number of minidumps
that will be retained can be controlled by setting the - - max_mi ni dunps gflag.

Minidumps contain information specific to the binary that created them and are therefore not useful without access
to the exact binary that crashed, or a very similar binary.

Kudu developers can access the minidump tools in their development environment because they are installed as part
of the Kudu thirdparty build. They can be found in the Kudu development environment under uni nst r unent ed/ bi n.
For example, t hi rdparty/i nstal | ed/ uni nst rument ed/ bi n/ mi ni dunp- 2- core.

If minidumps are enabled, it is possible to force Kudu to create a minidump without killing the process. To do that,
send a USRI signal to the kudu-t ser ver or kudu- mast er process. For example:

sudo pkill -USR1 kudu-tserver

Viewing the minidump stack trace with the GNU Debugger

Although a minidump contains no heap information, it does contain thread and stack information. You can convert a
minidump to a core file to view it with GDB.

https://chromium.googlesource.com/breakpad/breakpad/

To convert the minidump (. dnp file) to a core file:

m ni dunp-2-core -o 02ch4a97-ee37- 6454- 73a9d9ch- 590c7dde. core \
02ch4a97- ee37- 6454- 73a9d9cb- 590c7dde. dnmp

To view the core file with GDB (on a parcel deployment):

gdb /opt/cl oudera/ parcel s/ KUDU | i b/ kudu/ sbi n-rel ease/ kudu- master \
-s /opt/cl ouderal/ parcel s/ KUDU | i b/ debug/ usr/1i b/ kudu/ sbi n-rel ease/ kudu- mast er. debug \
02cb4a97- ee37- 6454- 73a9d9cb- 590c7dde. core

For more information, see Getting started with Breakpad and Linux Minidump to Core.

Troubleshooting Performance Issues

Kudu Tracing

The Kudu master and tablet server daemons include built-in support for tracing based on the open source Chromium
Tracing framework. You can use tracing to diagnose latency issues or other problems on Kudu servers.

Accessing the Tracing Web Interface

The tracing interface is part of the embedded web server in each of the Kudu daemons, and can be accessed using a
web browser. Note that while the interface has been known to work in recent versions of Google Chrome, other
browsers may not work as expected.

Daemon URL
Tablet Server <t abl et - server-1. exanpl e. cone: 8050/t raci ng. ht m
Master <mast er - 1. exanpl e. con®: 8051/ traci ng. ht m

Saving Traces

After you have collected traces, you can save these traces as JSON files by clicking Save. To load and analyze a saved
JSON file, click Load and choose the file.

RPC Timeout Traces

If client applications are experiencing RPC timeouts, the Kudu tablet server WARNI NG level logs should contain a log
entry which includes an RPC-level trace. For example:

W0922 00: 56: 52. 313848 10858 i nbound_cal | .cc: 193] Call

kudu. consensus. ConsensusSer vi ce. Updat eConsensus

from 192. 168. 1. 102: 43499 (request call id 3555909) took 1464nms (client timeout 1000).

W922 00: 56: 52. 314888 10858 i nbound_call.cc:197] Trace:

0922 00: 56: 50. 849505 (+ Ous) service_pool.cc:97] Inserting onto call queue

0922 00: 56: 50. 849527 (+ 22us) service_pool .cc: 158] Handling cal

0922 00: 56: 50. 849574 (+ 47us) raft_consensus. cc: 1008] Updating replica for 2 ops
0922 00: 56: 50. 849628 (+ 54us) raft_consensus.cc: 1050] Early marking committed up to
term 8 index: 880241

0922 00: 56: 50. 849968 (+ 340us) raft_consensus. cc: 1056] Triggering prepare for 2 ops
0922 00: 56:50.850119 (+ 151us) log.cc:420] Serialized 1555 byte log entry

0922 00: 56: 50. 850213 (+ 94us) raft_consensus.cc: 1131] Marking conmitted up to term
8 index: 880241

0922 00: 56: 50. 850218 (+ 5us) raft_consensus. cc:1148] Updating | ast received op as

term 8 index: 880243

0922 00: 56: 50. 850219 (+ lus) raft_consensus.cc:1195] Filling consensus response to
| eader .

0922 00: 56: 50. 850221 (+ 2us) raft_consensus.cc:1169] Waiting on the replicates to

finish | oggi

ng
0922 00: 56: 52. 313763 (+1463542us) raft_consensus. cc: 1182] fini shed

https://chromium.googlesource.com/breakpad/breakpad/%2B/master/docs/getting_started_with_breakpad.md
https://github.com/webosose/chromium68/blob/master/src/docs/linux_minidump_to_core.md
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool

0922 00:56: 52. 313764 (+
0922 00: 56:52.313788 (+

lus)
24us)

raft _consensus. cc: 1190] Updat eReplicas() finished
i nbound_cal | . cc: 114] Queuei ng success response

These traces can indicate which part of the request was slow. Make sure you include them when filing bug reports
related to RPC latency outliers.

Kernel Stack Watchdog Traces

Each Kudu server process has a background thread called the Stack Watchdog, which monitors other threads in the
server in case they are blocked for longer-than-expected periods of time. These traces can indicate operating system
issues or bottle-necked storage.

When the watchdog thread identifies a case of thread blockage, it logs an entry in the WARNI NGlog as follows:

W921 23:51:54. 306350 10912 ker nel

_stack_wat chdog. cc: 111] Thread 10937 stuck at

/ dat a/ kudu/ consensus/ | og. cc: 505 for 537ms:

Ker nel stack:
<ffffffffa0d0b209d>] do_get_write_access+0x29d/ 0x520 [j bd2]
<ffffffffaO0b2471>] jbd2_journal _get_wite_access+0x31/0x50 [j bd2]
<ffffffffa0Of e6d8> ext4_journal _get _wite_access+0x38/ 0x80 [ext 4]
<ffffffffa00d9b23>] ext4_reserve_i node_write+0x73/0xa0 [ext4]
<ffffffffa00d9b9c>] ext4 mark_i node_dirty+0x4c/ 0x1d0 [ext 4]
<ffffffffa00d9e90>] ext4_di rty i node+0x40/ 0x60 [ext 4]
<ffffffff8llac48b> mar k_i node_di rty+0x3b/ 0x160
<ffffffffg8119c742>] file updat e_ti me+0xf 2/ 0x170
<ffffffff811llcle0>] _ generic_file_ ai o_wite+0x230/0x490
<ffffffff8111c4c8>] generic file_aio_wite+0x88/ 0x100
<ffffffffa00d3fbl>] ext4 file_wite+0x61/0x1le0 [ext4]
<ffffffff81180f5b>] do_sync_readv_writev+0xfb/0x140
<ffffffff81181lee6>] do_readv_witev+0xd6/ Ox1fO
<ffffffff81182046>] vfs witev+0x46/ 0x60
<ffffffff81182102>] sys_pwitev+0xa2/ 0xc0
<ffffffff8100b072>] system call _fastpat h+0Ox16/0x1lb
<FFEFfffffffffffff>] OXFffffffffffffffs
User stack:

@ Ox3alacelOc4 (unknown)

@ 0x1262103 (unknown)

@ 0x12622d4 (unknown)

@ 0x12603df (unknown)

@ 0x8e7bfb (unknown)

@ 0x8f 478b (unknown)

@ 0x8f 55db (unknown)

@ 0x12a7b6f (unknown)

@ 0x3al1lb007851 (unknown)

@ Ox3alace894d (unknown)

@ (nil) (unknown)

These traces can be useful for diagnosing root-cause latency issues in Kudu especially when they are caused by underlying
systems such as disk controllers or filesystems.
Memory Limits

Kudu has a hard and soft memory limit. The hard memory limit is the maximum amount a Kudu process is allowed to
use, and is controlled by the - - nrenory_| i mi t _har d_byt es flag. The soft memory limit is a percentage of the hard
memory limit, controlled by the flag menory_li mit _sof t _per cent age and with a default value of 80%, that
determines the amount of memory a process may use before it will start rejecting some write operations.

If the logs or RPC traces contain messages such as the following example, then Kudu is rejecting writes due to memory
back pressure. This may result in write timeouts.
Servi ce unavail able: Soft menory linmt exceeded (at 96.35% of capacity)

There are several ways to relieve the memory pressure on Kudu:

¢ If the host has more memory available for Kudu, increase - - menory_|i mit _hard_bytes.

¢ Increase the rate at which Kudu can flush writes from memory to disk by increasing the number of disks or
increasing the number of maintenance manager threads - - mai nt enance_nanager _num t hr eads. Generally,
the recommended ratio of maintenance manager threads to data directories is 1:3.

¢ Reduce the volume of writes flowing to Kudu on the application side.

Finally, in Kudu versions 1.7 and lower, check the value of the - - bl ock_cache_capaci t y_nb setting. This setting
determines the maximum size of Kudu's block cache. While a higher value can help with read and write performance,
setting it too high as a percentage of the - - menory_| i nmi t _har d_byt es setting is harmful. Do not raise

--bl ock_cache_capacity_nb above - - menory_pressur e_per cent age (default 60%) of
--menory_linmt_hard_byt es, as this will cause Kudu to flush aggressively even if write throughput is low. The
recommended value for - - bl ock_cache_capaci ty_nb is below the following:

(50% * - - menory_pressure_percentage) *--nenory_limt_hard_bytes

With the defaults, this means the - - bl ock_cache_capaci t y_nb should not exceed 30% of
--nmenory_limt_hard_bytes.

In Kudu 1.8 and higher, servers will refuse to start if the block cache capacity exceeds the memory pressure threshold.

Block Cache Size

Kudu uses an LRU cache for recently read data. On workloads that scan a subset of the data repeatedly, raising the
size of this cache can offer significant performance benefits. To increase the amount of memory dedicated to the block
cache, increase the value of the - - bl ock_cache_capaci ty_nb flag. The default is 512 MiB.

Kudu provides a set of useful metrics for evaluating the performance of the block cache, which can be found on the
/ met ri cs endpoint of the Web Ul. The following is an example set:

{
"nane": "bl ock_cache_inserts",
"val ue": 64

%,
"nane": "bl ock_cache_l ookups",
"val ue": 512

%,
"nane": "bl ock_cache_evictions",
"value": 0

%,
"nanme": "bl ock_cache_nmi sses",
"val ue": 96

%,
"nanme": "bl ock_cache_ni sses_cachi ng",
"val ue": 64

%,
"nanme": "bl ock_cache_hits",
"value": 0

%,
"nanme": "bl ock_cache_hits_caching",
"val ue": 352

%,
"nanme": "bl ock_cache_usage",
"val ue": 6976

}

To judge the efficiency of the block cache on a tablet server, first wait until the server has been running and serving
normal requests for some time, so the cache is not cold. Unless the server stores very little data or is idle,

bl ock_cache_usage should be equal or nearly equal to bl ock_cache_capaci t y_nb. Once the cache has reached
steady state, compare bl ock_cache_I| ookups to bl ock_cache_ni sses_cachi ng. The latter metric counts the
number of blocks that Kudu expected to read from cache but which weren’t found in the cache. If a significant amount

of lookups result in misses on expected cache hits, and thebl ock_cache_evi ct i ons metric is significant compared
to bl ock_cache_i nsert s, then raising the size of the block cache may provide a performance boost. However, the
utility of the block cache is highly dependent on workload, so it’s necessary to test the benefits of a larger block cache.

Heap Sampling

For advanced debugging of memory usage, or advanced debugging of memory usage, released builds of Kudu enable
Heap Sampling by default. This allows Kudu developers to associate memory usage with the specific lines of code and
data structures responsible. When reporting a bug related to memory usage or an apparent memory leak, heap profiling
can give quantitative data to pinpoint the issue.

If heap sampling is enabled, the current sampled heap occupancy can be retrieved over HTTP by visiting
http://tabl et-server. exanpl e. com 8050/ pprof / heaporhttp:// mast er. exanpl e. com 8051/ ppr of / heap.
The output is a machine-readable dump of the stack traces with their associated heap usage.

Rather than visiting the heap profile page directly in a web browser, it is typically more useful to use the ppr of tool
that is distributed as part of the gper f t ool s open source project. For example, a developer with a local build tree
can use the following command to collect the sampled heap usage and output an SVG diagram:

thirdparty/install ed/ uni nstrunented/bin/pprof -svg 'http://1ocal host: 8051/ pprof/heap’
> [t np/ heap. svg

The resulting SVG may be visualized in a web browser or sent to the Kudu community to help troubleshoot memory
occupancy issues.
Tip: Heap samples contain only summary information about allocations and do not contain any data from the heap.
It is safe to share heap samples in public without fear of exposing confidential or sensitive data.

Slow Name Resolution and nscd

For better scalability on nodes hosting many replicas, we recommend that you use nscd (name service cache daemon)
to cache both DNS name resolution and static name resolution (via / et c/ host s).

When DNS lookups are slow, you will see a log message similar to the following:

WD926 11:19:01.339553 27231 net_util.cc: 193] Tine spent resol ve address for
kudu-tserver. exanpl e.com real 4.647s user 0.000s sys 0.000s

nscd can alleviate slow name resolution by providing a cache for the most common name service requests, such as
for passwords, groups, and hosts.

Refer to your operating system documentation for how to install and enable nscd.

Usability Issues

ClassNotFoundException: com.cloudera.kudu.hive.KuduStorageHandler

You will encounter this exception when you try to access a Kudu table using Hive. This is not a case of a missing jar,
but simply that Impala stores Kudu metadata in Hive in a format that is unreadable to other tools, including Hive itself.
and Spark. Currently, there is no workaround for Hive users. Spark users can work around this by creating temporary
tables.

Runtime Error: Could not create thread: Resource temporarily unavailable (error 11)

You will encounter this error when Kudu is unable to create more threads, usually on versions older than CDH 5.15 /
Kudu 1.7. It happens on tablet servers, and is a sign that the tablet server hosts too many tablet replicas.

To fix the issue, you can raise the npr oc ulimit as detailed in the documentation for your operating system or distribution.

However, the better solution is to reduce the number of replicas on the tablet server. This may involve rethinking the
table's partitioning schema. For the recommended limits on number of replicas per tablet server, see the known issues
and scaling limitations documentation.

Tombstoned or STOPPED tablet replicas

You may notice some replicas on a tablet server are in a STOPPED state and remain on the server indefinitely. These
replicas are tombstones. A tombstone indicates that the tablet server once held a bona fide replica of its tablet. For
example, in case a tablet server goes down and its replicas are re-replicated elsewhere, if the tablet server rejoins the
cluster, its replicas will become tombstones. A tombstone will remain until the table it belongs to is deleted, or a new
replica of the same tablet is placed on the tablet server. A count of tombstoned replicas and details of each one are
available onthe/ t abl et s page of the tablet server web Ul. The Raft consensus algorithm that Kudu uses for replication
requires tombstones for correctness in certain rare situations. They consume minimal resources and hold no data.
They must not be deleted.

Corruption: checksum error on CFile block

In versions prior to Kudu 1.8.0, if the data on disk becomes corrupt, you will encounter warnings containing "Corruption:
checksum error on CFile block" in the tablet server logs and client side errors when trying to scan tablets with corrupt
CFile blocks. Fixing this corruption is a manual process.

To fix the issue, first identify all the affected tablets by running a checksum scan on the affected tables or tablets using
the ksck tool.

sudo -u kudu kudu cl uster ksck <master_ addresses> -checksum scan -t abl es=<t abl es>
sudo -u kudu kudu cluster ksck <master_addresses> -checksum scan -t abl et s=<t abl et s>

If there is at least one replica for each tablet that does not return a corruption error, you can repair the bad copies by
deleting them and forcing them to be re-replicated from the leader using the remote_replica delete tool.

sudo -u kudu kudu renote_replica del ete <tserver_address> <tablet_id> "Cfile Corruption"
If all of the replica are corrupt, then some data loss has occurred. Until KUDU-2526 is completed, this can happen if
the corrupt replica became the leader and the existing follower replicas are replaced.

If data has been lost, you can repair the table by replacing the corrupt tablet with an empty one using the
unsafe_replace_tablet tool.

sudo -u kudu kudu tabl et unsafe_replace_tabl et <nmaster_addresses> <tabl et _id>

From versions 1.8.0 onwards, Kudu will mark the affected replicas as failed, leading to their automatic re-replication
elsewhere.

Generating a Table List

To generate a list of tables to backup using the kudu tabl e |i st tool along with gr ep can be useful. Below is an
example that will generate a list of all tables that start with my_db. :

kudu table list <master_addresses> | grep "~ny_db\.*" | tr "\n" ' '

E,’ Note: This list could be saved as a part of you backup process to be used at restore time as well.

https://kudu.apache.org/docs/command_line_tools_reference.html#cluster-ksck
https://kudu.apache.org/docs/command_line_tools_reference.html#remote_replica-delete
https://issues.apache.org/jira/browse/KUDU-2526
https://kudu.apache.org/docs/command_line_tools_reference.html#tablet-unsafe_replace_tablet

Spark Tuning

In general the Spark jobs were designed to run with minimal tuning and configuration. You can adjust the number of
executors and resources to increase parallelism and performance using Spark’s configuration options.

If your tables are super wide and your default memory allocation is fairly low, you may see jobs fail. To resolve this,
increase the Spark executor memory. A conservative rule of thumb is 1 GiB per 50 columns.

If your Spark resources drastically outscale the Kudu cluster, then you may want to limit the number of concurrent
tasks allowed to run on restore.

https://spark.apache.org/docs/latest/configuration.html#viewing-spark-properties

More Resources for Apache Kudu

The following is a list of resources that may help you to understand some of the architectural features of Apache Kudu
and columnar data storage. The links further down tend toward the academic and are not required reading in order
to understand how to install, use, and administer Kudu.

Kudu Project
Read the official Kudu documentation and learn how you can get involved.
Kudu Documentation

Read the official Kudu documentation, which includes more in-depth information about installation and configuration
choices.

Kudu Github Repository
Examine the Kudu source code and contribute to the project.

Kudu-Examples Github Repository
View and run several Kudu code examples, as well as the Kudu Quickstart VM.
Kudu White Paper
Read draft of the white paper discussing Kudu's architecture, written by the Kudu development team.

In Search Of An Understandable Consensus Algorithm, Diego Ongaro and John Ousterhout, Stanford University.
2014.

The original whitepaper describing the Raft consensus algorithm.
Column-Stores vs. Row-Stores: How Different Are They Really? Abadi, Madden, Hachem. 2008.

A discussion of the characteristics of column-based and row-based datastores and their characteristics under
different workloads and schemas.

Support

Bug reports and feedback can be submitted through the public JIRA, our Cloudera Community Kudu forum, and a public
mailing list monitored by the Kudu development team and community members. In addition, a public Slack instance
is available to communicate with the team.

http://kudu.apache.org/
http://kudu.apache.org/docs/index.html
http://github.com/cloudera/kudu/
http://github.com/cloudera/kudu-examples/
http://kudu.apache.org/kudu.pdf
https://raft.github.io/raft.pdf
http://db.csail.mit.edu/projects/cstore/abadi-sigmod08.pdf
https://issues.apache.org/jira/browse/KUDU/
http://community.cloudera.com/t5/Beta-Releases-Kudu-RecordService/bd-p/Beta
http://mail-archives.apache.org/mod_mbox/kudu-user/
https://getkudu-slack.herokuapp.com/

Cloudera Manager Metrics for Kudu

The following topics list the metrics collected by Cloudera Manager when a Kudu service is managed by Cloudera
Manager. For more information about metrics in Cloudera Manager, see Cloudera Manager Metrics and Metric

Aggregation.

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_metrics.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_dg_metric_aggregation.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_dg_metric_aggregation.html

Appendix: Apache License, Version 2.0

SPDX short identifier: Apache-2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through
9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of
fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole,
an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or
additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work
by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of
discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims

licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated
within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and

2. You must cause any modified files to carry prominent notices stating that You changed the files; and

3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,
and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part
of the Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along
with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party
notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify
the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be
construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as
a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required
by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable
to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even
if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
"[1" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class name and description of
purpose be included on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [nane of copyright owner]

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/licenses/ LI CENSE-2.0

Unl ess required by applicable |aw or agreed to in witing, software
distributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or inplied.
See the License for the specific |anguage governi ng permn ssions and
limtations under the License.

	Table of Contents
	Apache Kudu Overview
	Kudu-Impala Integration
	Example Use Cases
	Related Information

	Apache Kudu Concepts and Architecture
	Columnar Datastore
	Raft Consensus Algorithm
	Table
	Tablet
	Tablet Server
	Master
	Catalog Table
	Logical Replication
	Architectural Overview

	Apache Kudu Requirements
	Apache Kudu Usage Limitations
	Schema Design Limitations
	Partitioning Limitations
	Scaling Recommendations and Limitations
	Server Management Limitations
	Cluster Management Limitations
	Replication and Backup Limitations
	Impala Integration Limitations
	Spark Integration Limitations
	Security Limitations
	Other Known Issues

	Apache Kudu Installation and Upgrade
	Platform Requirements
	Downloading and Installing Kudu
	Upgrading Kudu

	Apache Kudu Configuration
	Directory Configurations
	Configuring the Kudu Master
	Configuring Tablet Servers
	Configuring Kudu Tables

	Apache Kudu Administration
	Starting and Stopping Kudu Processes
	Kudu Web Interfaces
	Kudu Master Web Interface
	Kudu Tablet Server Web Interface
	Common Web Interface Pages

	Kudu Metrics
	Listing Available Metrics
	Collecting Metrics via HTTP
	Diagnostics Logging

	Rack Awareness (Location Awareness)
	Backup and Restore
	Logical backup and restore
	Backing up tables
	Restoring Tables from Backups
	Backup Tools
	Backup Directory Structure

	Physical backups of an entire node

	Common Kudu Workflows
	Migrating to Multiple Kudu Masters
	Prepare for the migration
	Perform the migration

	Recovering from a Dead Kudu Master in a Multi-Master Deployment
	Prepare for the recovery
	Perform the recovery

	Removing Kudu Masters from a Multi-Master Deployment
	Prepare for removal
	Perform the removal

	Changing Master Hostnames
	Prepare for Hostname Changes
	Perform Hostname Changes

	Best Practices when Adding New Tablet Servers
	Monitoring Cluster Health with ksck
	Changing Directory Configuration
	Recovering from Disk Failure
	Recovering from Full Disks
	Bringing a Tablet That Has Lost a Majority of Replicas Back Online
	Rebuilding a Kudu Filesystem Layout
	Scaling Storage on Kudu Master and Tablet Servers in the Cloud

	Migrating Kudu Data from One Directory to Another on the Same Host
	Minimizing Cluster Disruption During Temporary Planned Downtime of a Single Tablet Server
	Running Tablet Rebalancing Tool
	Running Tablet Rebalancing Tool on Rack-Aware Cluster
	Running Tablet Rebalancing Tool in Cloudera Manager

	Decommissioning or Permanently Removing a Tablet Server From a Cluster
	Using cluster names in the kudu command line tool

	Managing Kudu Using Cloudera Manager
	Installing and Upgrading the Kudu Service
	Enabling Core Dump for the Kudu Service
	Verifying the Impala Dependency on Kudu
	Using the Charts Library with the Kudu Service

	Developing Applications With Apache Kudu
	Viewing the API Documentation
	Kudu Example Applications
	Maven Artifacts
	Building the Java Client
	Kudu Python Client
	Example Apache Impala Commands With Kudu
	Kudu Integration with Spark
	Spark Integration Best Practices
	Avoid multiple Kudu clients per cluster

	Integration with MapReduce, YARN, and Other Frameworks

	Using Apache Impala with Kudu
	Impala Database Containment Model
	Internal and External Impala Tables
	Using Impala To Query Kudu Tables
	Querying an Existing Kudu Table from Impala
	Creating a New Kudu Table From Impala
	CREATE TABLE AS SELECT

	Partitioning Tables
	Optimizing Performance for Evaluating SQL Predicates
	Inserting a Row
	Inserting In Bulk
	INSERT and Primary Key Uniqueness Violations

	Updating a Row
	Updating In Bulk

	Upserting a Row
	Altering a Table
	Deleting a Row
	Deleting In Bulk

	Failures During INSERT, UPDATE, UPSERT, and DELETE Operations
	Altering Table Properties
	Dropping a Kudu Table using Impala

	Security Considerations
	Known Issues and Limitations
	Next Steps

	Using the Hive Metastore with Kudu
	Databases and Table Names
	Databases
	Naming Constraints
	Metadata Synchronization

	Enabling the Hive Metastore Integration
	Administrative Tools
	Upgrading Existing Tables
	Prepare for the Upgrade
	Perform the Upgrade

	Kudu Security
	Kudu Authentication with Kerberos
	Internal Private Key Infrastructure (PKI)
	Authentication Tokens
	Client Authentication to Secure Kudu Clusters

	Scalability
	Coarse-grained Authorization
	Fine-Grained Authorization
	Apache Sentry
	Authorization Tokens
	Trusted Users
	Configuring the Integration with Apache Sentry
	Caching
	Policy for Kudu Masters
	Policy for Kudu Tablet Servers

	Encryption
	Web UI Encryption
	Web UI Redaction
	Log Redaction
	Configuring a Secure Kudu Cluster using Cloudera Manager
	Configuring a Secure Kudu Cluster using the Command Line

	Apache Kudu Schema Design
	The Perfect Schema
	Column Design
	Decimal Type
	Column Encoding
	Column Compression

	Primary Key Design
	Primary Key Index
	Considerations for Backfill Inserts

	Partitioning
	Range Partitioning
	Hash Partitioning
	Multilevel Partitioning
	Partition Pruning
	Partitioning Examples

	Schema Alterations
	Schema Design Limitations

	Apache Kudu Transaction Semantics
	Single Tablet Write Operations
	Writing to Multiple Tablets
	Read Operations (Scans)
	Known Issues and Limitations
	Writes
	Reads (Scans)

	Apache Kudu Background Maintenance Tasks
	Kudu Scaling Guide
	Terms
	Example Workload
	Memory
	Verifying if a Memory Limit is sufficient

	File Descriptors
	Threads

	Troubleshooting Apache Kudu
	Issues Starting or Restarting the Master or Tablet Server
	Errors During Hole Punching Test
	Already present: FS layout already exists
	NTP Clock Synchronization
	Installing NTP
	Monitoring NTP Status
	Using chrony for time synchronization

	NTP Configuration Best Practices
	Troubleshooting NTP Stability Problems

	Disk Space Usage
	Reporting Kudu Crashes Using Breakpad
	Troubleshooting Performance Issues
	Kudu Tracing
	Memory Limits
	Block Cache Size
	Heap Sampling
	Slow Name Resolution and nscd

	Usability Issues
	ClassNotFoundException: com.cloudera.kudu.hive.KuduStorageHandler
	Runtime Error: Could not create thread: Resource temporarily unavailable (error 11)

	Tombstoned or STOPPED tablet replicas
	Corruption: checksum error on CFile block
	Generating a Table List
	Spark Tuning

	More Resources for Apache Kudu
	Cloudera Manager Metrics for Kudu
	Appendix: Apache License, Version 2.0

