
Cloudera Distribution of
Apache Kafka

Important Notice
© 2010-2021 Cloudera, Inc. All rights reserved.

Cloudera, the Cloudera logo, and any other product or
service names or slogans contained in this document are trademarks of Cloudera and
its suppliers or licensors, and may not be copied, imitated or used, in whole or in part,
without the prior written permission of Cloudera or the applicable trademark holder. If
this documentation includes code, including but not limited to, code examples, Cloudera
makes this available to you under the terms of the Apache License, Version 2.0, including
any required notices. A copy of the Apache License Version 2.0, including any notices,
is included herein. A copy of the Apache License Version 2.0 can also be found here:
https://opensource.org/licenses/Apache-2.0

Hadoop and the Hadoop elephant logo are trademarks of the Apache Software
Foundation. All other trademarks, registered trademarks, product names and company
names or logosmentioned in this document are the property of their respective owners.
Reference to any products, services, processes or other information, by trade name,
trademark, manufacturer, supplier or otherwise does not constitute or imply
endorsement, sponsorship or recommendation thereof by us.

Complying with all applicable copyright laws is the responsibility of the user. Without
limiting the rights under copyright, no part of this documentmay be reproduced, stored
in or introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording, or otherwise), or for any purpose,
without the express written permission of Cloudera.

Cloudera may have patents, patent applications, trademarks, copyrights, or other
intellectual property rights covering subjectmatter in this document. Except as expressly
provided in anywritten license agreement fromCloudera, the furnishing of this document
does not give you any license to these patents, trademarks copyrights, or other
intellectual property. For information about patents covering Cloudera products, see
http://tiny.cloudera.com/patents.

The information in this document is subject to change without notice. Cloudera shall
not be liable for any damages resulting from technical errors or omissions which may
be present in this document, or from use of this document.

Cloudera, Inc.
395 Page Mill Road
Palo Alto, CA 94306
info@cloudera.com
US: 1-888-789-1488
Intl: 1-650-362-0488
www.cloudera.com

Release Information

Version: Cloudera Distribution of Apache Kafka
Date: July 20, 2021

Table of Contents

Cloudera Distribution of Apache Kafka Overview...5
Understanding Kafka Terminology...5

Cloudera Distribution of Apache Kafka Release Notes..10
What's New in Cloudera Distribution of Apache Kafka?..10

Cloudera Distribution of Apache Kafka Requirements and Supported Versions..11
Supported CDH and Cloudera Manager Releases..11

Supported Operating Systems..12

Supported JDK Versions..12

Ports Used by Kafka...12

Issues Fixed in Cloudera Distribution of Apache Kafka..13
Issues Fixed in Cloudera Distribution of Apache Kafka 2.1.2..13

Issues Fixed in Cloudera Distribution of Apache Kafka 2.1.1..13

Issues Fixed in Cloudera Distribution of Apache Kafka 2.1.0..13

Issues Fixed in Cloudera Distribution of Apache Kafka 2.0.2..13

Issues Fixed in Cloudera Distribution of Apache Kafka 2.0.1..14

Issues Fixed in Cloudera Distribution of Apache Kafka 2.0.0..14

Issues Fixed in Cloudera Distribution of Apache Kafka 1.4.0..14

Issues Fixed in Cloudera Distribution of Apache Kafka 1.3.2..15

Issues Fixed in Cloudera Distribution of Apache Kafka 1.3.1..15

Issues Fixed in Cloudera Distribution of Apache Kafka 1.3.0..15

Issues Fixed in Cloudera Distribution of Apache Kafka 1.2.0..16

Known Issues in Cloudera Distribution of Apache Kafka..16

Cloudera Distribution of Apache Kafka Incompatible Changes and Limitations..20

Cloudera Distribution of Apache Kafka Version and Packaging Information............22
Examples of Cloudera Distribution of Apache Kafka Versions..22

Cloudera Distribution of Apache Kafka Versions..22

Maven Artifacts for Kafka...24

Installing, Migrating and Upgrading Kafka..27
Installing or Upgrading Kafka...27
General Information Regarding Installation and Upgrade ...27

Graceful Shutdown of Kafka Brokers..27

Disks and Filesystem..28

Installing or Upgrading Kafka from a Parcel..28

Installing or Upgrading Kafka from a Package..29

Special Considerations When Upgrading from Kafka 1.x to Kafka 2.x...30

Special Considerations When Upgrading to Kafka 2.1.x..30

Migrating from Apache Kafka to Cloudera Distribution of Apache Kafka..30
Steps for Migrating from Apache Kafka to Cloudera Distribution of Apache Kafka...30

Using Kafka..33
Using Kafka Command-line Tools...33

Using Kafka with Spark Streaming..34

Using Kafka with Flume..34

Additional Considerations When Using Kafka..38

Kafka Administration..39
Configuring Kafka Security...39
Deploying SSL for Kafka...39

Using Kafka Supported Protocols...42

Enabling Kerberos Authentication...43

Enabling Encryption at Rest...44

Using Kafka with Sentry Authorization..44

Configuring High Availability and Consistency for Kafka..47

Configuring Kafka for Performance and Resource Management...49
Partitions and Memory Usage...49

Garbage Collection..50

Handling Large Messages..50

Tuning Kafka for Optimal Performance..51

Configuring JMX Ephemeral Ports ...53

Quotas...53

Setting User Limits for Kafka..54

Viewing Kafka Metrics..54

Working with Kafka Logs..54

Appendix: Apache License, Version 2.0...56

Cloudera Distribution of Apache Kafka Overview

Cloudera Distribution of Apache Kafka is a distributed commit log service. Kafka functionsmuch like a publish/subscribe
messaging system, but with better throughput, built-in partitioning, replication, and fault tolerance. Kafka is a good
solution for large scalemessage processing applications. It is often used in tandemwith ApacheHadoop, Apache Storm,
and Spark Streaming.

You might think of a log as a time-sorted file or data table. Newer entries are appended to the log over time, from left
to right. The log entry number is a convenient replacement for a timestamp.

Kafka integrates this unique abstraction with traditional publish/subscribe messaging concepts (such as producers,
consumers, and brokers), parallelism, and enterprise features for improved performance and fault tolerance.

The original use case for Kafka was to track user behavior on websites. Site activity (page views, searches, or other
actions users might take) is published to central topics, with one topic per activity type.

Kafka can be used tomonitor operational data, aggregating statistics fromdistributed applications to produce centralized
data feeds. It also works well for log aggregation, with low latency and convenient support for multiple data sources.

Kafka provides the following:

• PersistentmessagingwithO(1) disk structures,meaning that the execution timeof Kafka's algorithms is independent
of the size of the input. Execution time is constant, even with terabytes of stored messages.

• High throughput, supporting hundreds of thousands of messages per second, even with modest hardware.
• Explicit support for partitioningmessages over Kafka servers. It distributes consumption over a cluster of consumer

machines while maintaining the order of the message stream.
• Support for parallel data load into Hadoop.

Understanding Kafka Terminology
Kafka and ClouderaManager use terms in ways thatmight vary from other technologies. This topic provides definitions
for how these terms are used in Kafka with Cloudera Manager.

A service is an application that runs in a CDH cluster. Kafka is a service. ZooKeeper is a service that runs within a Kafka
cluster. Other services include MapReduce, HDFS, YARN, Flume, and Spark.

A role is a feature of a service. A broker is a role in a Kafka service.

Cloudera Distribution of Apache Kafka | 5

Cloudera Distribution of Apache Kafka Overview

An instance is a deployed and configured software component. A cluster can include multiple roles and multiple
instances of the same role. A service instancemight be Kafka-1. Kafka-1might host the role instances Broker-1,
Broker-2, and Broker-3.

Kafka brokers process records organized into topics. A topic is a category of records that share similar characteristics.
For example, a topic might consist of instant messages from social media or navigation information for users on a web
site. Each topic has a unique corresponding table in data storage.

A producer is an external process that sends records to a Kafka topic. A consumer is an external process that receives
topic streams from a Kafka cluster.

6 | Cloudera Distribution of Apache Kafka

Cloudera Distribution of Apache Kafka Overview

Brokers process topics in partitions. A partition on one broker in a cluster is the leader. The same partition is mirrored
on one or more other brokers in the cluster as replicas. When a leader goes offline, a replica automatically takes its
place and becomes the new leader for the topic. An in-sync replica is a replica that is completely up-to-date with the
leader.

Cloudera Distribution of Apache Kafka | 7

Cloudera Distribution of Apache Kafka Overview

Each Kafka cluster has one broker that also acts as the controller. The controller is responsible for managing the states
of partitions and replicas. It also performs administrative tasks, such as reassigning partitions.

8 | Cloudera Distribution of Apache Kafka

Cloudera Distribution of Apache Kafka Overview

While these illustrations show single instances of the components of a Kafka implementation, Kafka brokers typically
host multiple partitions and replicas, with any number of producers and consumers, up to the requirements and limits
of the deployed system.

Cloudera Distribution of Apache Kafka | 9

Cloudera Distribution of Apache Kafka Overview

Cloudera Distribution of Apache Kafka Release Notes

Cloudera Distribution of Apache Kafka provides a release guide that contains release and download information for
installers and administrators. It includes release notes as well as information about versions and downloads. The guide
also provides a release matrix that shows which major and minor release version of a product is supported with which
release version of Cloudera Distribution of Apache Kafka.

The Release Guide is comprised of topics including:

What's New in Cloudera Distribution of Apache Kafka?
This section lists new features in Cloudera Distribution of Apache Kafka. The following links provide detailed information
for each release:

New Features in Cloudera Distribution of Apache Kafka 2.1.0

• Rebase on Kafka 0.10

Cloudera Distribution of Apache Kafka 2.1.0 is rebased on Apache Kafka 0.10. See
https://www.apache.org/dyn/closer.cgi?path=/kafka/0.10.0.0/RELEASE_NOTES.html .

• Sentry Authentication

Apache Sentry includes Kafka binding you can use to enable authorization in Kafka with Sentry. See Configuring
Kafka to Use Sentry Authentication on page 44.

New Features in Cloudera Distribution of Apache Kafka 2.0.0

• Rebase on Kafka 0.9

Cloudera Distribution of Apache Kafka 2.0.0 is rebased on Apache Kafka 0.9. See
https://www.apache.org/dyn/closer.cgi?path=/kafka/0.9.0.0/RELEASE_NOTES.html.

• Kerberos

Cloudera Distribution of Apache Kafka 2.0.0 supports Kerberos authentication of connections from clients and
other brokers, including to ZooKeeper.

• SSL

Cloudera Distribution of Apache Kafka 2.0.0 supports wire encryption of communications from clients and other
brokers using SSL.

• New Consumer API

Cloudera Distribution of Apache Kafka 2.0.0 includes a new Java API for consumers.

• MirrorMaker

MirrorMaker is enhanced to help prevent data loss and improve reliability of cross-data center replication.

• Quotas

You can use per-user quotas to throttle producer and consumer throughput in a multitenant cluster. See Quotas
on page 53.

New Features in Cloudera Distribution of Apache Kafka 1.4.0

• Cloudera Distribution of Apache Kafka 1.4.0 is distributed as a package aswell as a parcel. See Cloudera Distribution
of Apache Kafka Version and Packaging Information on page 22.

10 | Cloudera Distribution of Apache Kafka

Cloudera Distribution of Apache Kafka Release Notes

https://www.apache.org/dyn/closer.cgi?path=/kafka/0.10.0.0/RELEASE_NOTES.html
https://www.apache.org/dyn/closer.cgi?path=/kafka/0.9.0.0/RELEASE_NOTES.html

New Features in Cloudera Distribution of Apache Kafka 1.3.2

• RHEL 7.1

Kafka 1.3.2 supports RHEL 7.1. See Supported Operating Systems on page 12

New features in Cloudera Distribution of Apache Kafka 1.3.0

• Metrics Reporter

Cloudera Manager now displays Kafka metrics. Use the values to identify current performance issues and plan
enhancements to handle anticipated changes in workload. See Viewing Kafka Metrics on page 54.

• MirrorMaker configuration

Cloudera Manager allows you to configure the Kafka MirrorMaker cross-cluster replication service. You can add
a MirrorMaker role and use it to replicate to a machine in another cluster. See Kafka MirrorMaker.

New Features in Cloudera Distribution of Apache Kafka 1.1.0

• New producer

The producer added in Cloudera Distribution of Apache Kafka 1.1.0 combines features of the existing synchronous
and asynchronous producers. Send requests are batched, allowing the new producer to perform as well as the
asynchronous producer under load. Every send request returns a response object that can be used to retrieve
status and exceptions.

• Ability to delete topics

You can now delete topics using the kafka-topics --delete command.

• Offset management

In previous versions, consumers that wanted to keep track of which messages were consumed did so by updating
the offset of the last consumedmessage in ZooKeeper. With this new feature, Kafka itself tracks the offsets. Using
offset management can significantly improve consumer performance.

• Automatic leader rebalancing

Each partition starts with a randomly selected leader replica that handles requests for that partition. When a
cluster first starts, the leaders are evenly balanced among hosts. When a broker restarts, leaders from that broker
are distributed to other brokers, which results in an unbalanced distribution. With this feature enabled, leaders
are assigned to the original replica after a restart.

• Connection quotas

Kafka administrators can limit the number of connections allowed from a single IP address. By default, this limit
is 10 connections per IP address. This preventsmisconfigured ormalicious clients from destabilizing a Kafka broker
by opening a large number of connections and using all available file handles.

Cloudera Distribution of Apache Kafka Requirements and Supported Versions
The following sections describe software requirements and supported versions of complementary software for Cloudera
Distribution of Apache Kafka:

Supported CDH and Cloudera Manager Releases

For the list of supported releases of CDH and Cloudera Manager, see CDH and Cloudera Manager Supported Versions.

Cloudera Distribution of Apache Kafka | 11

Cloudera Distribution of Apache Kafka Release Notes

https://www.cloudera.com/documentation/enterprise/release-notes/topics/rn_consolidated_pcm.html#pcm_kafka

Supported Integrations

• Flume and Spark connectors to Kafka are included with CDH 5.7.x and higher and only work with Kafka 2.0.x and
higher.

• Sentry authorization integration with Kafka only works with Kafka 2.1.x and higher on CDH 5.9.x and higher.

Supported Operating Systems

For the list of supported operating systems, see CDH and Cloudera Manager Supported Operating Systems.

SUSE Linux Enterprise Server (SLES)

Unlike CentOS, SLES limits virtual memory by default. Changing this default requires adding the following entries to
the /etc/security/limits.conf file:

* hard as unlimited
* soft as unlimited

Supported JDK Versions

For the list of supported operating systems, see CDH and Cloudera Manager Supported Operating Systems.

Note: If you decide to use the G1 garbage collector and you use JDK 1.7, make sure you use u51 or
newer.

Ports Used by Kafka

Kafka uses the TCP ports listed in the following table. Before deploying Kafka, ensure that these ports are open on
each system.

CommentAccess
Requirement

PortServiceComponent

The primary communication
port used by producers and

External/Internal9092TCP PortBroker

consumers; also used for
inter-broker communication.

A secured communication port
used by producers and

External/Internal9093TLS/SSL PortBroker

consumers; also used for
inter-broker communication.

Internal use only. Used for
administration via JMX.

Internal9393JMX PortBroker

Internal use only. Used to
administer the producer and
consumer of the MirrorMaker.

Internal9394JMX PortMirrorMaker

Internal use only. This is the
port via which the HTTPmetric

Internal24042HTTP Metric Report PortBroker

reporter listens. It is used to
retrieve metrics through HTTP
instead of JMX.

12 | Cloudera Distribution of Apache Kafka

Cloudera Distribution of Apache Kafka Release Notes

https://www.cloudera.com/documentation/enterprise/release-notes/topics/rn_consolidated_pcm.html#cdh_cm_supported_os
https://www.cloudera.com/documentation/enterprise/release-notes/topics/rn_consolidated_pcm.html#cdh_cm_supported_os

Issues Fixed in Cloudera Distribution of Apache Kafka
The following upstream issues are fixed in each release of Cloudera Distribution of Apache Kafka:

Issues Fixed in Cloudera Distribution of Apache Kafka 2.1.2

• KAFKA-3863: Add system test for connector failure/restart.
• KAFKA-3994: Deadlock between consumer heartbeat expiration and offset commit.

Issues Fixed in Cloudera Distribution of Apache Kafka 2.1.1

• KAFKA-724: Allow automatic socket.send.buffer from operating system in SocketServer
• KAFKA-2684: Add force option to topic / config command so they can be called programatically
• KAFKA-2720: Expire group metadata when all offsets have expired
• KAFKA-2948: Remove unused topics from producer metadata set
• KAFKA-3111: Fix ConsumerPerformance reporting to use time-based instead of message-based intervals
• KAFKA-3158: ConsumerGroupCommand should tell whether group is actually dead
• KAFKA-3175: Topic not accessible after deletion even when delete.topic.enable is disabled
• KAFKA-3501: Console consumer process hangs on exit
• KAFKA-3562: Handle topic deletion during a send
• KAFKA-3645: Fix ConsumerGroupCommand and ConsumerOffsetChecker to correctly read endpoint info from ZK
• KAFKA-3716: Validate all timestamps are not negative
• KAFKA-3719: Allow underscores in hostname
• KAFKA-3748: Add consumer-property to console tools consumer
• KAFKA-3774: Make 'time' an optional argument of GetOffsetShell
• KAFKA-3810: replication of internal topics should not be limited by replica.fetch.max.bytes
• KAFKA-3934: Start scripts enable GC by default with no way to disable
• KAFKA-3965: MirrorMaker should not commit offset when exception is thrown from producer.send
• KAFKA-4158: Reset quota to default value if quota override is deleted
• KAFKA-4229: Controller can't start after several zk expired event
• KAFKA-4319: Parallelize shutdown of fetchers in AbstractFetcherManager to speedup shutdown
• KAFKA-4360: Controller may deadLock when autoLeaderRebalance encounter ZK expired
• KAFKA-4428: Kafka does not exit if port is already bound

Issues Fixed in Cloudera Distribution of Apache Kafka 2.1.0

• KAFKA-3787: Preserve the message timestamp in MirrorMaker
• KAFKA-3789: Upgrade Snappy to fix Snappy decompression errors
• KAFKA-3802: Log mtimes reset on broker restart or shutdown
• KAFKA-3894: Log cleaner can partially clean a segment
• KAFKA-3915: Do not convert messages from v0 to v1 during log compaction
• KAFKA-3933: Always fully read deepIterator
• KAFKA-3950: Only throw authorization exception if pattern subscription matches topic
• KAFKA-3977: Defer fetch parsing for space efficiency and to ensure exceptions are raised to the user
• KAFKA-4050: Allow configuration of the PRNG used for SSL
• KAFKA-4073: MirrorMaker should handle messages without timestamp correctly

Cloudera Distribution of Apache Kafka 2.1.0 is rebased on Apache Kafka 0.10. For a complete list of fixed issues, see
https://www.apache.org/dyn/closer.cgi?path=/kafka/0.10.0.0/RELEASE_NOTES.html.

Issues Fixed in Cloudera Distribution of Apache Kafka 2.0.2

• KAFKA-3495: NetworkClient.blockingSendAndReceive should rely on requestTimeout.

Cloudera Distribution of Apache Kafka | 13

Cloudera Distribution of Apache Kafka Release Notes

https://issues.apache.org/jira/browse/KAFKA-3863
https://issues.apache.org/jira/browse/KAFKA-3994
https://issues.apache.org/jira/browse/KAFKA-724
https://issues.apache.org/jira/browse/KAFKA-2684
https://issues.apache.org/jira/browse/KAFKA-2720
https://issues.apache.org/jira/browse/KAFKA-2948
https://issues.apache.org/jira/browse/KAFKA-3111
https://issues.apache.org/jira/browse/KAFKA-3158
https://issues.apache.org/jira/browse/KAFKA-3175
https://issues.apache.org/jira/browse/KAFKA-3501
https://issues.apache.org/jira/browse/KAFKA-3562
https://issues.apache.org/jira/browse/KAFKA-3645
https://issues.apache.org/jira/browse/KAFKA-3716
https://issues.apache.org/jira/browse/KAFKA-3719
https://issues.apache.org/jira/browse/KAFKA-3748
https://issues.apache.org/jira/browse/KAFKA-3774
https://issues.apache.org/jira/browse/KAFKA-3810
https://issues.apache.org/jira/browse/KAFKA-3934
https://issues.apache.org/jira/browse/KAFKA-3965
https://issues.apache.org/jira/browse/KAFKA-4158
https://issues.apache.org/jira/browse/KAFKA-4229
https://issues.apache.org/jira/browse/KAFKA-4319
https://issues.apache.org/jira/browse/KAFKA-4360
https://issues.apache.org/jira/browse/KAFKA-4428
https://issues.apache.org/jira/browse/KAFKA-3787
https://issues.apache.org/jira/browse/KAFKA-3789
https://issues.apache.org/jira/browse/KAFKA-3802
https://issues.apache.org/jira/browse/KAFKA-3894
https://issues.apache.org/jira/browse/KAFKA-3915
https://issues.apache.org/jira/browse/KAFKA-3933
https://issues.apache.org/jira/browse/KAFKA-3950
https://issues.apache.org/jira/browse/KAFKA-3977
https://issues.apache.org/jira/browse/KAFKA-4050
https://issues.apache.org/jira/browse/KAFKA-4073
https://www.apache.org/dyn/closer.cgi?path=/kafka/0.10.0.0/RELEASE_NOTES.html
https://issues.apache.org/jira/browse/KAFKA-3495

• KAFKA-2998: Log warnings when client is disconnected from bootstrap brokers.
• KAFKA-3488: Avoid failing of unsent requests in consumer where possible.
• KAFKA-3528: Handle wakeups while rebalancing more gracefully.
• KAFKA-3594: After calling MemoryRecords.close()method, hasRoomFor()method should return false.
• KAFKA-3602: Rename RecordAccumulator dequeFor() and ensure proper usage.
• KAFKA-3789: Upgrade Snappy to fix Snappy decompression errors.
• KAFKA-3830: getTGT() debug logging exposes confidential information.
• KAFKA-3840: Allow clients default OS buffer sizes.
• KAFKA-3691: Confusing logging during metadata update timeout.
• KAFKA-3810: Replication of internal topics should not be limited by replica.fetch.max.bytes.
• KAFKA-3854: Fix issues with new consumer's subsequent regex (pattern) subscriptions.

Issues Fixed in Cloudera Distribution of Apache Kafka 2.0.1

• KAFKA-3409: MirrorMaker hangs indefinitely due to commit.
• KAFKA-3378: Client blocks forever if SocketChannel connects instantly.
• KAFKA-3426: Improve protocol type errors when invalid sizes are received.
• KAFKA-3330: Truncate log cleaner offset checkpoint if the log is truncated.
• KAFKA-3463: Change default receive buffer size for consumer to 64K.
• KAFKA-1148: Delayed fetch/producer requests should be satisfied on a leader change.
• KAFKA-3352: Avoid DNS reverse lookups.
• KAFKA-3341: Improve error handling on invalid requests.
• KAFKA-3310: Fix for NPEs observed when throttling clients.
• KAFKA-2784: swallow exceptions when MirrorMaker exits.
• KAFKA-3243: Fix Kafka basic ops documentation for MirrorMaker, blacklist is not supported for new consumers.
• KAFKA-3235: Unclosed stream in AppInfoParser static block.
• KAFKA-3147: Memory records is not writable in MirrorMaker.
• KAFKA-3088: Broker crash on receipt of produce request with empty client ID.
• KAFKA-3159: Kafka consumer client poll is very CPU intensive under certain conditions.
• KAFKA-3189: Kafka server returns UnknownServerException for inherited exceptions.
• KAFKA-3157: MirrorMaker does not commit offset with low traffic.
• KAFKA-3179: Kafka consumer delivers message whose offset is earlier than sought offset.
• KAFKA-3198: Ticket Renewal Thread exits prematurely due to inverted comparison.

Issues Fixed in Cloudera Distribution of Apache Kafka 2.0.0

• KAFKA-2799: WakeupException thrown in the followup poll() could lead to data loss.
• KAFKA-2878: Kafka broker throws OutOfMemory exception with invalid join group request.
• KAFKA-2880: Fetcher.getTopicMetadata NullPointerException when broker cannot be reached.
• KAFKA-2882: Add constructor cache for Snappy and LZ4 Output/Input streams in Compressor.java
• KAFKA-2913: GroupMetadataManager unloads all groups in removeGroupsForPartitions.
• KAFKA-2942: Inadvertent auto-commit when pre-fetching can cause message loss.
• KAFKA-2950: Fix performance regression in the producer.
• KAFKA-2973: Fix leak of child sensors on remove.
• KAFKA-2978: Consumer stops fetching when consumed and fetch positions get out of sync.
• KAFKA-2988: Change default configuration of the log cleaner.
• KAFKA-3012: Avoid reserved.broker.max.id collisions on upgrade.

Issues Fixed in Cloudera Distribution of Apache Kafka 1.4.0

• KAFKA-1664: Kafka does not properly parse multiple ZK nodes with non-root chroot.
• KAFKA-1994: Evaluate performance effect of chroot check on Topic creation.

14 | Cloudera Distribution of Apache Kafka

Cloudera Distribution of Apache Kafka Release Notes

https://issues.apache.org/jira/browse/KAFKA-2998
https://issues.apache.org/jira/browse/KAFKA-3488
https://issues.apache.org/jira/browse/KAFKA-3528
https://issues.apache.org/jira/browse/KAFKA-3594
https://issues.apache.org/jira/browse/KAFKA-3602
https://issues.apache.org/jira/browse/KAFKA-3789
https://issues.apache.org/jira/browse/KAFKA-3830
https://issues.apache.org/jira/browse/KAFKA-3840
https://issues.apache.org/jira/browse/KAFKA-3691
https://issues.apache.org/jira/browse/KAFKA-3810
https://issues.apache.org/jira/browse/KAFKA-3854
https://issues.apache.org/jira/browse/KAFKA-3409
https://issues.apache.org/jira/browse/KAFKA-3378
https://issues.apache.org/jira/browse/KAFKA-3426
https://issues.apache.org/jira/browse/KAFKA-3330
https://issues.apache.org/jira/browse/KAFKA-3463
https://issues.apache.org/jira/browse/KAFKA-1148
https://issues.apache.org/jira/browse/KAFKA-3352
https://issues.apache.org/jira/browse/KAFKA-3341
https://issues.apache.org/jira/browse/KAFKA-3310
https://issues.apache.org/jira/browse/KAFKA-2784
https://issues.apache.org/jira/browse/KAFKA-3243
https://issues.apache.org/jira/browse/KAFKA-3235
https://issues.apache.org/jira/browse/KAFKA-3147
https://issues.apache.org/jira/browse/KAFKA-3088
https://issues.apache.org/jira/browse/KAFKA-3159
https://issues.apache.org/jira/browse/KAFKA-3189
https://issues.apache.org/jira/browse/KAFKA-3157
https://issues.apache.org/jira/browse/KAFKA-3179
https://issues.apache.org/jira/browse/KAFKA-3198
https://issues.apache.org/jira/browse/KAFKA-2799
https://issues.apache.org/jira/browse/KAFKA-2878
https://issues.apache.org/jira/browse/KAFKA-2880
https://issues.apache.org/jira/browse/KAFKA-2882
https://issues.apache.org/jira/browse/KAFKA-2913
https://issues.apache.org/jira/browse/KAFKA-2942
https://issues.apache.org/jira/browse/KAFKA-2950
https://issues.apache.org/jira/browse/KAFKA-2973
https://issues.apache.org/jira/browse/KAFKA-2978
https://issues.apache.org/jira/browse/KAFKA-2988
https://issues.apache.org/jira/browse/KAFKA-3012
https://issues.apache.org/jira/browse/KAFKA-1664
https://issues.apache.org/jira/browse/KAFKA-1994

• KAFKA-2002: It does not work when kafka_mx4jenable is false.
• KAFKA-2024: Cleaner can generate unindexable log segments.
• KAFKA-2048: java.lang.IllegalMonitorStateException thrown inAbstractFetcherThreadwhenhandling error returned

from simpleConsumer.
• KAFKA-2050: Avoid calling .size() on java.util.ConcurrentLinkedQueue.
• KAFKA-2088: kafka-console-consumer.sh should not create zookeeper path when no brokers found and chroot

was set in zookeeper.connect.
• KAFKA-2118: Cleaner cannot clean after shutdown during replaceSegments.
• KAFKA-2477: Fix a race condition between log append and fetch that causes OffsetOutOfRangeException.
• KAFKA-2633: Default logging from tools to Stderr.

Issues Fixed in Cloudera Distribution of Apache Kafka 1.3.2

• KAFKA-1057: Trim whitespaces from user specified configs
• KAFKA-1641: Log cleaner exits if last cleaned offset is lower than earliest offset
• KAFKA-1702: Messages silently lost by the (old) producer
• KAFKA-1758: corrupt recovery file prevents startup
• KAFKA-1836: metadata.fetch.timeout.ms set to zero blocks forever
• KAFKA-1866: LogStartOffset gauge throws exceptions after log.delete()
• KAFKA-1883: NullPointerException in RequestSendThread
• KAFKA-1896: Record size function of record in mirror maker hit NPE when the message value is null.
• KAFKA-2012: Broker should automatically handle corrupt index files
• KAFKA-2096: Enable keepalive socket option for broker to prevent socket leak
• KAFKA-2114: Unable to set default min.insync.replicas
• KAFKA-2189: Snappy compression of message batches less efficient in 0.8.2.1
• KAFKA-2234: Partition reassignment of a nonexistent topic prevents future reassignments
• KAFKA-2235: LogCleaner offset map overflow
• KAFKA-2336: Changing offsets.topic.num.partitions after the offset topic is created breaks consumer group partition

assignment
• KAFKA-2393: Correctly Handle InvalidTopicException in KafkaApis.getTopicMetadata()
• KAFKA-2406: ISR propagation should be throttled to avoid overwhelming controller
• KAFKA-2407: Only create a log directory when it will be used
• KAFKA-2437: Fix ZookeeperLeaderElector to handle node deletion correctly
• KAFKA-2468: SIGINT during Kafka server startup can leave server deadlocked
• KAFKA-2504: Stop logging WARN when client disconnects

Issues Fixed in Cloudera Distribution of Apache Kafka 1.3.1

• KAFKA-972 - MetadataRequest returns stale list of brokers
• KAFKA-1367 - Broker topic metadata not kept in sync with ZooKeeper
• KAFKA-1867 - liveBroker list not updated on a cluster with no topics
• KAFKA-2308 - New producer + Snappy face un-compression errors after broker restart
• KAFKA-2317 - De-register isrChangeNotificationListener on controller resignation
• KAFKA-2337 - Verify that metric names will not collide when creating new topics

Issues Fixed in Cloudera Distribution of Apache Kafka 1.3.0

• KAFKA-2009 - Fix UncheckedOffset.removeOffset synchronization and trace logging issue in mirror maker
• KAFKA-1984 - Java producer may miss an available partition
• KAFKA-1971 - Starting a broker with a conflicting id will delete the previous broker registration
• KAFKA-1952 - High CPU Usage in 0.8.2 release
• KAFKA-1919 - Metadata request issued with no backoff in new producer if there are no topics

Cloudera Distribution of Apache Kafka | 15

Cloudera Distribution of Apache Kafka Release Notes

https://issues.apache.org/jira/browse/KAFKA-2002
https://issues.apache.org/jira/browse/KAFKA-2024
https://issues.apache.org/jira/browse/KAFKA-2048
https://issues.apache.org/jira/browse/KAFKA-2050
https://issues.apache.org/jira/browse/KAFKA-2088
https://issues.apache.org/jira/browse/KAFKA-2118
https://issues.apache.org/jira/browse/KAFKA-2477
https://issues.apache.org/jira/browse/KAFKA-2633
https://issues.apache.org/jira/browse/KAFKA-1057
https://issues.apache.org/jira/browse/KAFKA-1641
https://issues.apache.org/jira/browse/KAFKA-1702
https://issues.apache.org/jira/browse/KAFKA-1758
https://issues.apache.org/jira/browse/KAFKA-1836
https://issues.apache.org/jira/browse/KAFKA-1866
https://issues.apache.org/jira/browse/KAFKA-1883
https://issues.apache.org/jira/browse/KAFKA-1896
https://issues.apache.org/jira/browse/KAFKA-2012
https://issues.apache.org/jira/browse/KAFKA-2096
https://issues.apache.org/jira/browse/KAFKA-2114
https://issues.apache.org/jira/browse/KAFKA-2189
https://issues.apache.org/jira/browse/KAFKA-2234
https://issues.apache.org/jira/browse/KAFKA-2235
https://issues.apache.org/jira/browse/KAFKA-2336
https://issues.apache.org/jira/browse/KAFKA-2393
https://issues.apache.org/jira/browse/KAFKA-2406
https://issues.apache.org/jira/browse/KAFKA-2407
https://issues.apache.org/jira/browse/KAFKA-2437
https://issues.apache.org/jira/browse/KAFKA-2468
https://issues.apache.org/jira/browse/KAFKA-2504
https://issues.apache.org/jira/browse/KAFKA-972
https://issues.apache.org/jira/browse/KAFKA-1367
https://issues.apache.org/jira/browse/KAFKA-1867
https://issues.apache.org/jira/browse/KAFKA-2308
https://issues.apache.org/jira/browse/KAFKA-2317
https://issues.apache.org/jira/browse/KAFKA-2337
https://issues.apache.org/jira/browse/KAFKA-2009
https://issues.apache.org/jira/browse/KAFKA-1984
https://issues.apache.org/jira/browse/KAFKA-1971
https://issues.apache.org/jira/browse/KAFKA-1952
https://issues.apache.org/jira/browse/KAFKA-1919

Issues Fixed in Cloudera Distribution of Apache Kafka 1.2.0

• KAFKA-1642 - [Java New Producer Kafka Trunk] CPU Usage Spike to 100% when network connection is lost
• KAFKA-1650 - avoid data loss when mirror maker shutdown uncleanly
• KAFKA-1797 - add the serializer/deserializer api to the new java client -
• KAFKA-1667 - topic-level configuration not validated
• KAFKA-1815 - ServerShutdownTest fails in trunk
• KAFKA-1861 - Publishing kafka-client:test in order to utilize the helper utils in TestUtils
• KAFKA-1729 - Add constructor to javaapi to allow constructing explicitly versioned offset commit requests
• KAFKA-1902 - fix MetricName so that Yammer reporter can work correctly
• KAFKA-1890 - Fix bug preventing Mirror Maker from successful rebalance
• KAFKA-1891 - MirrorMaker hides consumer exception - making troubleshooting challenging
• KAFKA-1706 - Add a byte bounded blocking queue utility
• KAFKA-1879 - Log warning when receiving produce requests with acks > 1
• KAFKA-1876 - pom file for scala 2.11 should reference a specific version
• KAFKA-1761 - num.partitions documented default is 1 while actual default is 2
• KAFKA-1210 - Windows Bat files are not working properly
• KAFKA-1864 - Revisit defaults for the internal offsets topic
• KAFKA-1870 - Cannot commit with simpleConsumer on Zookeeper only with Java API
• KAFKA-1868 - ConsoleConsumer shouldn't override dual.commit.enabled to false if not explicitly set
• KAFKA-1841 - OffsetCommitRequest API - timestamp field is not versioned
• KAFKA-1723 - make the metrics name in new producer more standard
• KAFKA-1819 Cleaner gets confused about deleted and re-created topics
• KAFKA-1851 - OffsetFetchRequest returns extra partitions when input only contains unknown partitions
• KAFKA-1512 - Fixes for limit the maximum number of connections per ip address
• KAFKA-1624 - bump up default scala version to 2.11.4 to compile with java 8
• KAFKA-742 - Existing directories under the Kafka data directory without any data cause process to not start
• KAFKA-1698 - Validator.ensureValid() only validates default config value
• KAFKA-1799 - ProducerConfig.METRIC_REPORTER_CLASSES_CONFIG doesn't work
• KAFKA-1743 - ConsumerConnector.commitOffsets in 0.8.2 is not backward compatible
• KAFKA-1769 - javadoc should only include client facing packages
• KAFKA-1481 - Stop using dashes AND underscores as separators in MBean names
• KAFKA-1721 - Snappy compressor is not thread safe
• KAFKA-1764 - ZookeeperConsumerConnector should not put multiple shutdown commands to the same data

chunk queue
• KAFKA-1733 - Producer.send will block indeterminately when broker is unavailable
• KAFKA-1742 - ControllerContext removeTopic does not correctly update state
• KAFKA-1738 - Partitions for topic not created after restart from forced shutdown
• KAFKA-1647 - Replication offset checkpoints (high water marks) can be lost on hard kills and restarts
• KAFKA-1732 - DumpLogSegments tool fails when path has a '.'

Known Issues in Cloudera Distribution of Apache Kafka
The following sections describe known issues in Cloudera Distribution of Apache Kafka:

Unsupported features

• Kafka Connect is included with Cloudera Distribution of Apache Kafka 2.0.0, but is not supported at this time.
• The Kafka default authorizer is included with Cloudera Distribution of Apache Kafka 2.0.0, but is not supported at

this time. This includes setting ACLs and all related APIs, broker functionality, and command-line tools.

16 | Cloudera Distribution of Apache Kafka

Cloudera Distribution of Apache Kafka Release Notes

https://issues.apache.org/jira/browse/KAFKA-1642
https://issues.apache.org/jira/browse/KAFKA-1650
https://issues.apache.org/jira/browse/KAFKA-1797
https://issues.apache.org/jira/browse/KAFKA-1667
https://issues.apache.org/jira/browse/KAFKA-1815
https://issues.apache.org/jira/browse/KAFKA-1861
https://issues.apache.org/jira/browse/KAFKA-1729
https://issues.apache.org/jira/browse/KAFKA-1902
https://issues.apache.org/jira/browse/KAFKA-1890
https://issues.apache.org/jira/browse/KAFKA-1891
https://issues.apache.org/jira/browse/KAFKA-1706
https://issues.apache.org/jira/browse/KAFKA-1879
https://issues.apache.org/jira/browse/KAFKA-1876
https://issues.apache.org/jira/browse/KAFKA-1761
https://issues.apache.org/jira/browse/KAFKA-1210
https://issues.apache.org/jira/browse/KAFKA-1864
https://issues.apache.org/jira/browse/KAFKA-1870
https://issues.apache.org/jira/browse/KAFKA-1868
https://issues.apache.org/jira/browse/KAFKA-1841
https://issues.apache.org/jira/browse/KAFKA-1723
https://issues.apache.org/jira/browse/KAFKA-1819
https://issues.apache.org/jira/browse/KAFKA-1851
https://issues.apache.org/jira/browse/KAFKA-1512
https://issues.apache.org/jira/browse/KAFKA-1624
https://issues.apache.org/jira/browse/KAFKA-742
https://issues.apache.org/jira/browse/KAFKA-1698
https://issues.apache.org/jira/browse/KAFKA-1799
https://issues.apache.org/jira/browse/KAFKA-1743
https://issues.apache.org/jira/browse/KAFKA-1769
https://issues.apache.org/jira/browse/KAFKA-1481
https://issues.apache.org/jira/browse/KAFKA-1721
https://issues.apache.org/jira/browse/KAFKA-1764
https://issues.apache.org/jira/browse/KAFKA-1733
https://issues.apache.org/jira/browse/KAFKA-1742
https://issues.apache.org/jira/browse/KAFKA-1738
https://issues.apache.org/jira/browse/KAFKA-1647
https://issues.apache.org/jira/browse/KAFKA-1732

Topics created with the kafka-topics tool may not be secured

Topics that are created and deleted via Kafka are secured (for example, auto created topics). However, most topic
creation and deletion is done via the kafka-topics tool, which talks directly to Zookeeper or some other third-party
tool that talks directly to Zookeeper. Since this is the responsibility of Zookeeper authorization and authentication,
Kafka cannot prevent users from making Zookeeper changes. Anyone with access to Zookeeper can create and delete
topics. Note that they will not be able to describe, read, or write to the topics even if they can create them.

The following commands talk directly to Zookeeper and therefore are not secured via Kafka:

• kafka-topics.sh
• kafka-configs.sh
• kafka-preferred-replica-election.sh
• kafka-reassign-partitions.sh

Kafka client jars included in CDH may not match the newest Kafka parcel jar

The Kafka client jars included in CDHmay notmatch the newest Kafka parcel jar that is released. This is done tomaintain
compatibility across CDH 5.7 and higher for integrations such as Spark and Flume.

Source cluster not definable in Kafka 1.x

In Kafka 1.x, the source cluster is assumed to be the cluster thatMirrorMaker is running on. In Kafka 2.0, you can define
a custom source and target cluster.

Kafka fails when configured with Sentry and an old Kafka version

If Kafka is configured with Sentry, and Kafka is not of version 2.1 or higher, Kafka fails with
java.lang.ClassNotFoundException: org.apache.sentry.kafka.authorizer.SentryKafkaAuthorizer

Workaround: unset the Kafka to Sentry dependency.

Kafka stuck with under-replicated partitions after ZooKeeper session expires

This problem might occur when your Kafka cluster includes a large number of under-replicated Kafka partitions. One
or more broker logs include messages such as the following:

 [2016-01-17 03:36:00,888] INFO Partition [__samza_checkpoint_event-creation_1,3]
 on broker 3: Shrinking ISR for partition [__samza_checkpoint_event-creation_1,3] from
 6,5 to 5 (kafka.cluster.Partition)
 [2016-01-17 03:36:00,891] INFO Partition [__samza_checkpoint_event-creation_1,3]
 on broker 3: Cached zkVersion [66] not equal to that in zookeeper, skip updating ISR
(kafka.cluster.Partition)

There will also be an indication of the ZooKeeper session expiring in one or more Kafka broker logs around the same
time as the previous errors:

 INFO zookeeper state changed (Expired) (org.I0Itec.zkclient.ZkClient)

The log is typically in /var/log/kafka on each host where a Kafka broker is running. The location is set by the property
kafka.log4j.dir in Cloudera Manager. The log name is kafka-broker-hostname.log. In diagnostic bundles,
the log is under logs/ hostname-ip-address/.

Affected Versions: CDK 1.4.x, 2.0.x, 2.1.x, 2.2.x Powered By Apache Kafka

Partial Fix: CDK 3.0.0 and later Powered By Apache Kafka are less likely to encounter this issue.

Workaround: To move forward after seeing this problem, restart the Kafka brokers affected. You can restart individual
brokers from the Instances tab in the Kafka service page in Cloudera Manager.

Cloudera Distribution of Apache Kafka | 17

Cloudera Distribution of Apache Kafka Release Notes

Note: If restarting the brokers does not resolve the problem, you might not have this issue; see
KAFKA-3083 A soft failure in controllermay leave a topic partition in an inconsistent state. This problem
also involves the ZooKeeper session expiring, but will not involve the error message with Cached
zkVersion [XX] not equal to that in zookeeper.

To reduce the chances of this issue happening again, do what you can to make sure ZooKeeper sessions do not expire:

• Reduce the potential for long garbage collection pauses by brokers:

– Use a better garbage collectionmechanism in the JVM, such asG1GC. You can do this by adding–XX:+UseG1GC
in the broker_java_opts.

– Increase broker heap size if it is too small (broker_max_heap_size) (be careful that you don’t choose a
heap size that can cause out-of-memory problems given all the services running on the node).

• Increase the ZooKeeper session timeout configuration on brokers (zookeeper.session.timeout.ms), to
reduce the likelihood that sessions expire.

• Ensure ZooKeeper itself is well resourced and not overwhelmed, so it can respond. For example, it is highly
recommended to locate the ZooKeeper log directory is on its own disk.

Cloudera JIRA: CDH-42514

Apache JIRA: KAFKA-2729

The Flume and Spark connectors to Kafka shipped with CDH 5.7 and higher only work with Kafka 2.0 and higher

Use Kafka 2.0 and higher to be compatible with the Flume and Spark connectors included with CDH 5.7.x.

Kafka CSD does not configure the correct listeners for the configured security.inter.broker.protocol

If you use one of the following configuration combinations, the Kafka broker will not start:

• Kerberos on, SSL off and security.inter.broker.protocol set as PLAINTEXT.
• Kerberos on, SSL on and security.inter.broker.protocol set as SSL.
• Kerberos off, SSL off and security.inter.broker.protocol set as SASL_PLAINTEXT.
• Kerberos off, SSL on and security.inter.broker.protocol set as SASL_SSL.

Workaround:

Add a configuration to the Kafka Broker Advanced Configuration Snippet (Safety Valve) for listeners on each Kafka
broker. Create a configuration statement in the following format:

listeners=<PROTOCOL>://<HOST>:[<PORT> or <SSL_PORT>],<PROTOCOL>://<HOST>:[<PORT> or
<SSL_PORT>]

• PROTOCOL can be any of the supported communication protocols: PLAINTEXT, SSL, SASL_SSL, or
SASL_PLAINTEXT.

• HOST is the hostname of Kafka broker.
• PORT is the default Kafka port. Protocols including PLAINTEXT require PORT.
• SSL_PORT is the Kafka SSL port. Protocols including SSL require SSL_PORT.

Note: Listeners cannot use the same protocol or the same port.

Only new Java clients support authentication and authorization

Workaround:Migrate to the new Java producer and consumer APIs.

18 | Cloudera Distribution of Apache Kafka

Cloudera Distribution of Apache Kafka Release Notes

https://issues.apache.org/jira/browse/KAFKA-3083

Requests fail when sending to a nonexistent topic with auto.create.topics.enable set to true

The first few produce requests fail when sending to a nonexistent topic with auto.create.topics.enable set to
true.

Workaround: Increase the number of retries in the Producer configuration settings.

Custom Kerberos principal names must not be used for Kerberized ZooKeeper and Kafka instances

When using ZooKeeper authentication and a custom Kerberos principal, Kerberos-enabled Kafka does not start.

Workaround: None. You must disable ZooKeeper authentication for Kafka or use the default Kerberos principals for
ZooKeeper and Kafka.

Performance degradation when SSL is enabled

Significant performance degradation can occur when SSL is enabled. The impact varies, depending on your CPU type
and JVM version. The reduction is generally in the range 20-50%.

AdminUtils is not binary-compatible between Cloudera Distribution of Apache Kafka 1.x and 2.x

The AdminUtils APIs have changed between Cloudera Distribution of Apache Kafka 1.x and 2.x. If your application uses
AdminUtils APIs, you must modify your application code to use the new APIs before you compile your application
against Cloudera Distribution of Apache Kafka 2.x.

Note: AdminUtils APIs are not part of the publicly supported Cloudera Distribution of Apache Kafka
API.

Monitoring is not supported in Cloudera Manager 5.4

If you use Cloudera Distribution of Kafka 1.2 with Cloudera Manager 5.4, you must disable monitoring.

MirrorMaker does not start when Sentry is enabled

WhenMirrorMaker is used in conjunction with Sentry, MirrorMaker reports an authorization issue and does not start.
This is due to Sentry being unable to authorize the kafka_mirror_maker principal which is automatically created.

Workaround: Complete the following steps prior to enabling Sentry:

1. Create thekafka_mirror_maker Linux user ID and thekafka_mirror_maker Linux group IDon theMirrorMaker
hosts. Use the following command:

useradd kafka_mirror_maker

2. Create the necessary Sentry rules for the kafka_mirror_maker group.

Note: Alternatively, you can add thekafka_mirror_maker user tosuper.users, this bypasses
authorization.

Affected Versions: CDK 2.1.1 and higher Powered by Apache Kafka

Fixed Versions: N/A

Apache JIRA: N/A

Cloudera JIRA: CDH-53706

Cloudera Distribution of Apache Kafka | 19

Cloudera Distribution of Apache Kafka Release Notes

Authenticated Kafka clients may impersonate other users

Authenticated Kafka clients may impersonate any other user via a manually crafted protocol message with SASL/PLAIN
or SASL/SCRAM authentication when using the built-in PLAIN or SCRAM server implementations in Apache Kafka.

Note that the SASL authentication mechanisms that apply to this issue are neither recommended nor supported by
Cloudera. In Cloudera Manager (CM) there are four choices: PLAINTEXT, SSL, SASL_PLAINTEXT, and SASL_SSL. The
SASL/PLAIN option described in this issue is not the same as SASL_PLAINTEXT option in CM. That option uses Kerberos
and is not affected. As a result it is highly unlikely that Kafka is susceptible to this issue when managed by CM unless
the authentication protocol is overridden by an Advanced Configuration Snippet (Safety Valve).

Products affected: CDK Powered by Apache Kafka

Releases affected: CDK 2.1.0 to 2.2.0, CDK 3.0.0

Users affected: All users

Detected by: Rajini Sivaram (rsivaram@apache.org)

Severity (Low/Medium/High):8.3 (High) (CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:H/A:H)

Impact:Privilege escalation.

CVE:CVE-2017-12610

Immediate action required: Upgrade to a newer version of CDK Powered by Apache Kafka where the issue has been
fixed.

Addressed in release/refresh/patch: CDK 3.1, CDH 6.0 and higher

Knowledge article: For the latest update on this issue see the corresponding Knowledge article: TSB 2018-332: Two
Kafka Security Vulnerabilities: Authenticated Kafka clients may impersonate other users and and may interfere with
data replication

Authenticated clients may interfere with data replication

Authenticated Kafka usersmay performan action reserved for the Broker via amanually created fetch request interfering
with data replication, resulting in data loss.

Products affected: CDK Powered by Apache Kafka

Releases affected: CDK 2.0.0 to 2.2.0, CDK 3.0.0

Users affected: All users

Detected by: Rajini Sivaram (rsivaram@apache.org)

Severity (Low/Medium/High):6.3 (Medium) (CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:L)

Impact:Potential data loss due to improper replication.

CVE:CVE-2018-1288

Immediate action required: Upgrade to a newer version of CDK Powered by Apache Kafka where the issue has been
fixed.

Addressed in release/refresh/patch: CDK 3.1, CDH 6.0 and higher

Knowledge article: For the latest update on this issue see the corresponding Knowledge article: TSB 2018-332: Two
Kafka Security Vulnerabilities: Authenticated Kafka clients may impersonate other users and and may interfere with
data replication

Cloudera Distribution of Apache Kafka Incompatible Changes and Limitations
This section describes incompatible changes and limitations:

20 | Cloudera Distribution of Apache Kafka

Cloudera Distribution of Apache Kafka Release Notes

https://www.cloudera.com/documentation/kafka/latest/topics/kafka_security.html#concept_v2d_dhm_s5
https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:H/A:H
https://my.cloudera.com/knowledge/TSB-2018-332?id=79943
https://my.cloudera.com/knowledge/TSB-2018-332?id=79943
https://my.cloudera.com/knowledge/TSB-2018-332?id=79943
https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:L
https://my.cloudera.com/knowledge/TSB-2018-332?id=79943
https://my.cloudera.com/knowledge/TSB-2018-332?id=79943
https://my.cloudera.com/knowledge/TSB-2018-332?id=79943

Warning: The open file handlers of 2.2.0 will increase by roughly 33% because of the addition of time
index files for each segment.

Flume shipped with CDH 5.7 and lower can only send data to Kafka 2.0 and higher via unsecured transport.
Security additions to Kafka 2.0 are not supported by Flume in CDH 5.7 (or lower versions).

Topic Blacklist Removed

The MirrorMaker Topic blacklist setting has been removed in Cloudera Distribution of Kafka 2.0 and higher.

Avoid Data Loss Option Removed

The Avoid Data Loss option from earlier releases has been removed in Kafka 2.0 in favor of automatically setting the
following properties.

1. Producer settings

• acks=all

• retries=max integer

• max.block.ms=max long

2. Consumer setting

• auto.commit.enable=false

3. MirrorMaker setting

• abort.on.send.failute=true

Cloudera Distribution of Apache Kafka | 21

Cloudera Distribution of Apache Kafka Release Notes

Cloudera Distribution of Apache Kafka Version and Packaging
Information

This section describes naming conventions for Cloudera Distribution of Apache Kafka package versions, lists versions
and where to download components.

For installation instructions, see Installing, Migrating and Upgrading Kafka on page 27.

Examples of Cloudera Distribution of Apache Kafka Versions
Cloudera packages are designed to be transparent and easy to understand. Cloudera Distribution of Apache Kafka
package versions are labeled using the following format:

base_version+cloudera_version+patch_level

where:

• base_version is the version of the open-source component included in the Cloudera package.
• cloudera_version is the version of the Cloudera package.
• patch_level is the number of source commits applied on top of the base version forked from the Apache Kafka

branch. Note that the number of commits does not indicate the number of functional changes or bug fixes in the
release. For example, a commit can be used to amend a version number or make other non-functional changes.

Cloudera Distribution of Apache Kafka Versions

Table 1: Cloudera Distribution of Apache Kafka Version Information

Parcel RepositoryRelease NotesVersionComponentCloudera Distribution
of Apache Kafka
Version

Cloudera Distribution
of Apache Kafka 2.1.2
Parcel Repository

Release notes0.10.0.1+kafka2.1.2+6Apache Kafka2.1.2

Cloudera Distribution
of Apache Kafka 2.1.1
Parcel Repository

Release notes0.10.0.0+kafka2.1.
1+21

Apache Kafka2.1.1

Cloudera Distribution
of Apache Kafka 2.1.0
Parcel Repository

Release notes0.10.0.0+kafka2.1.
0+63

Apache Kafka2.1.0

Cloudera Distribution
of Apache Kafka 2.0.2
Parcel Repository

Release notes0.9.0.0+kafka2.0.
2+305

Apache Kafka2.0.2

Cloudera Distribution
of Apache Kafka 2.0.1
Parcel Repository

Release notes0.9.0.0+kafka2.0.
1+283

Apache Kafka2.0.1

Cloudera Distribution
of Apache Kafka 2.0.0
Parcel Repository

Release notes0.9.0.0+kafka2.0.
0+188

Apache Kafka2.0.0

22 | Cloudera Distribution of Apache Kafka

Cloudera Distribution of Apache Kafka Version and Packaging Information

http://archive.cloudera.com/kafka/parcels/2.1.2/
http://archive.cloudera.com/kafka/parcels/2.1.2/
http://archive.cloudera.com/kafka/parcels/2.1.2/
http://archive.cloudera.com/kafka/parcels/2.1.1/
http://archive.cloudera.com/kafka/parcels/2.1.1/
http://archive.cloudera.com/kafka/parcels/2.1.1/
http://archive.cloudera.com/kafka/parcels/2.1.0/
http://archive.cloudera.com/kafka/parcels/2.1.0/
http://archive.cloudera.com/kafka/parcels/2.1.0/
http://archive.cloudera.com/kafka/parcels/2.0.2/
http://archive.cloudera.com/kafka/parcels/2.0.2/
http://archive.cloudera.com/kafka/parcels/2.0.2/
http://archive.cloudera.com/kafka/parcels/2.0.1/
http://archive.cloudera.com/kafka/parcels/2.0.1/
http://archive.cloudera.com/kafka/parcels/2.0.1/
http://archive.cloudera.com/kafka/parcels/2.0.0/
http://archive.cloudera.com/kafka/parcels/2.0.0/
http://archive.cloudera.com/kafka/parcels/2.0.0/

Parcel RepositoryRelease NotesVersionComponentCloudera Distribution
of Apache Kafka
Version

Cloudera Distribution
of Apache Kafka 1.4.0
Parcel Repository

Release notes0.8.2.0+kafka1.4.
0+127

Apache Kafka1.4.0

Cloudera Distribution
of Apache Kafka 1.3.2
Parcel Repository

Release notes0.8.2.0+kafka1.3.
2+116

Apache Kafka1.3.2

Cloudera Distribution
of Apache Kafka 1.3.1
Parcel Repository

Release notes0.8.2.0+kafka1.3.1+80Apache Kafka1.3.1

Cloudera Distribution
of Apache Kafka 1.3.0
Parcel Repository

Release notes0.8.2.0+kafka1.3.0+72Apache Kafka1.3.0

Cloudera Distribution
of Apache Kafka 1.2.0
Parcel Repository

Release notes0.8.2.0+kafka1.2.0+57Apache Kafka1.2.0

Table 2: Compatible Release Versions for Cloudera Distribution of Apache Kafka 2.1.0

Parcel FileLocationType

http://archive.cloudera.com/kafka/
parcels/2.1.0/
KAFKA-2.1.0-1.2.1.0.p0.115-el7.parcel

http://archive.cloudera.com/kafka/
redhat/7/x86_64/kafka/

yum RHEL/CentOS/Oracle 7

http://archive.cloudera.com/kafka/
parcels/2.1.0/
KAFKA-2.1.0-1.2.1.0.p0.115-el6.parcel

http://archive.cloudera.com/kafka/
redhat/6/x86_64/kafka/

yum RHEL/CentOS/Oracle 6

http://archive.cloudera.com/kafka/
parcels/2.1.0/
KAFKA-2.1.0-1.2.1.0.p0.115-el5.parcel

http://archive.cloudera.com/kafka/
redhat/5/x86_64/kafka/

yum RHEL/CentOS/Oracle 5

http://archive.cloudera.com/kafka/
parcels/2.1.0/
KAFKA-2.1.0-1.2.1.0.p0.115-jessie.parcel

https://archive.cloudera.com/kafka/
debian/jessie/amd64/kafka/dists

Debian Jesse 8.2

http://archive.cloudera.com/kafka/
parcels/2.1.0/
KAFKA-2.1.0-1.2.1.0.p0.115-wheezy.parcel

https://archive.cloudera.com/kafka/
debian/wheezy/amd64/kafka/dists

apt Debian Wheezy 7.0

http://archive.cloudera.com/kafka/
parcels/2.1.0/
KAFKA-2.1.0-1.2.1.0.p0.115-sles12.parcel

https://archive.cloudera.com/kafka/
sles/12/x86_64/kafka/

zypper/YaST SLES 12

http://archive.cloudera.com/kafka/
parcels/2.1.0/
KAFKA-2.1.0-1.2.1.0.p0.115-sles11.parcel

https://archive.cloudera.com/kafka/
sles/11/x86_64/kafka/

zypper/YaST SLES 11

http://archive.cloudera.com/kafka/
parcels/2.1.0/
KAFKA-2.1.0-1.2.1.0.p0.115-trusty.parcel

https://archive.cloudera.com/kafka/
ubuntu/trusty/amd64/kafka/dists

Ubuntu Trusty 14.04

Cloudera Distribution of Apache Kafka | 23

Cloudera Distribution of Apache Kafka Version and Packaging Information

http://archive.cloudera.com/kafka/parcels/1.4.0/
http://archive.cloudera.com/kafka/parcels/1.4.0/
http://archive.cloudera.com/kafka/parcels/1.4.0/
http://archive.cloudera.com/kafka/parcels/1.3.2/
http://archive.cloudera.com/kafka/parcels/1.3.2/
http://archive.cloudera.com/kafka/parcels/1.3.2/
http://archive.cloudera.com/kafka/parcels/1.3.1/
http://archive.cloudera.com/kafka/parcels/1.3.1/
http://archive.cloudera.com/kafka/parcels/1.3.1/
http://archive.cloudera.com/kafka/parcels/1.3.0/
http://archive.cloudera.com/kafka/parcels/1.3.0/
http://archive.cloudera.com/kafka/parcels/1.3.0/
http://archive.cloudera.com/kafka/parcels/1.2.0/
http://archive.cloudera.com/kafka/parcels/1.2.0/
http://archive.cloudera.com/kafka/parcels/1.2.0/
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-el7.parcel
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-el7.parcel
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-el7.parcel
http://archive.cloudera.com/kafka/redhat/7/x86_64/kafka/
http://archive.cloudera.com/kafka/redhat/7/x86_64/kafka/
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-el6.parcel
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-el6.parcel
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-el6.parcel
http://archive.cloudera.com/kafka/redhat/6/x86_64/kafka/
http://archive.cloudera.com/kafka/redhat/6/x86_64/kafka/
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-el5.parcel
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-el5.parcel
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-el5.parcel
http://archive.cloudera.com/kafka/redhat/5/x86_64/kafka/
http://archive.cloudera.com/kafka/redhat/5/x86_64/kafka/
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-jessie.parcel
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-jessie.parcel
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-jessie.parcel
http://archive.cloudera.com/kafka/debian/jessie/amd64/kafka/dists/
http://archive.cloudera.com/kafka/debian/jessie/amd64/kafka/dists/
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-wheezy.parcel
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-wheezy.parcel
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-wheezy.parcel
http://archive.cloudera.com/kafka/debian/wheezy/amd64/kafka/dists/
http://archive.cloudera.com/kafka/debian/wheezy/amd64/kafka/dists/
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-sles12.parcel
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-sles12.parcel
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-sles12.parcel
https://archive.cloudera.com/kafka/sles/12/x86_64/kafka/
https://archive.cloudera.com/kafka/sles/12/x86_64/kafka/
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-sles11.parcel
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-sles11.parcel
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-sles11.parcel
https://archive.cloudera.com/kafka/sles/11/x86_64/kafka/
https://archive.cloudera.com/kafka/sles/11/x86_64/kafka/
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-trusty.parcel
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-trusty.parcel
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-trusty.parcel
https://archive.cloudera.com/kafka/ubuntu/trusty/amd64/kafka/dists/
https://archive.cloudera.com/kafka/ubuntu/trusty/amd64/kafka/dists/

Parcel FileLocationType

http://archive.cloudera.com/kafka/
parcels/2.1.0/
KAFKA-2.1.0-1.2.1.0.p0.115-precise.parcel

https://archive.cloudera.com/kafka/
ubuntu/precise/amd64/kafka/dists

Ubuntu Precise 12.04

Table 3: Compatible Release Versions for Cloudera Distribution of Apache Kafka 1.4.0

Parcel FileLocationType

http://archive.cloudera.com/kafka/
parcels/1.4.0/
KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-el5.parcel

http://archive.cloudera.com/kafka/
redhat/7/x86_64/kafka/

yum RHEL/CentOS/Oracle 7

http://archive.cloudera.com/kafka/
parcels/1.4.0/
KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-el6.parcel

http://archive.cloudera.com/kafka/
redhat/6/x86_64/kafka/

yum RHEL/CentOS/Oracle 6

http://archive.cloudera.com/kafka/
parcels/1.4.0/
KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-el7.parcel

http://archive.cloudera.com/kafka/
redhat/5/x86_64/kafka/

yum RHEL/CentOS/Oracle 5

http://archive.cloudera.com/kafka/
parcels/1.4.0/
KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-wheezy.parcel

https://archive.cloudera.com/kafka/
debian/wheezy/amd64/kafka/

apt Debian Wheezy 7.0

http://archive.cloudera.com/kafka/
parcels/1.4.0/
KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-sles11.parcel

https://archive.cloudera.com/kafka/
sles/11/x86_64/kafka/

zypper/YaST SLES

http://archive.cloudera.com/kafka/
parcels/1.4.0/
KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-trusty.parcel

https://archive.cloudera.com/kafka/
ubuntu/trusty/amd64/kafka/

Ubuntu Trusty 14.04

http://archive.cloudera.com/kafka/
parcels/1.4.0/
KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-precise.parcel

https://archive.cloudera.com/kafka/
ubuntu/precise/amd64/kafka/

Ubuntu Precise 12.04

Maven Artifacts for Kafka
The following table lists the project name, groupId, artifactId, and version required to access each Kafka artifact from
a Maven POM. For information on how to use Kafka Maven artifacts, see Using the CDH 5 Maven Repository.

versionartifactIdgroupIdProject

0.10.0-kafka-2.
1.2

connectorg.apache.
kafka

Kafka

0.10.0-kafka-2.
1.2

connect-apiorg.apache.
kafka

Kafka

0.10.0-kafka-2.
1.2

connect-fileorg.apache.
kafka

Kafka

0.10.0-kafka-2.
1.2

connect-jsonorg.apache.
kafka

Kafka

0.10.0-kafka-2.
1.2

connect-runtimeorg.apache.
kafka

Kafka

24 | Cloudera Distribution of Apache Kafka

Cloudera Distribution of Apache Kafka Version and Packaging Information

http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-precise.parcel
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-precise.parcel
http://archive.cloudera.com/kafka/parcels/2.1.0/KAFKA-2.1.0-1.2.1.0.p0.115-precise.parcel
https://archive.cloudera.com/kafka/ubuntu/precise/amd64/kafka/dists
https://archive.cloudera.com/kafka/ubuntu/precise/amd64/kafka/dists
http://archive.cloudera.com/kafka/parcels/1.4.0/KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-el5.parcel
http://archive.cloudera.com/kafka/parcels/1.4.0/KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-el5.parcel
http://archive.cloudera.com/kafka/parcels/1.4.0/KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-el5.parcel
http://archive.cloudera.com/kafka/redhat/7/x86_64/kafka/
http://archive.cloudera.com/kafka/redhat/7/x86_64/kafka/
http://archive.cloudera.com/kafka/parcels/1.4.0/KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-el6.parcel
http://archive.cloudera.com/kafka/parcels/1.4.0/KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-el6.parcel
http://archive.cloudera.com/kafka/parcels/1.4.0/KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-el6.parcel
http://archive.cloudera.com/kafka/redhat/6/x86_64/kafka/
http://archive.cloudera.com/kafka/redhat/6/x86_64/kafka/
http://archive.cloudera.com/kafka/parcels/1.4.0/KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-el7.parcel
http://archive.cloudera.com/kafka/parcels/1.4.0/KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-el7.parcel
http://archive.cloudera.com/kafka/parcels/1.4.0/KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-el7.parcel
http://archive.cloudera.com/kafka/redhat/5/x86_64/kafka/
http://archive.cloudera.com/kafka/redhat/5/x86_64/kafka/
http://archive.cloudera.com/kafka/parcels/1.4.0/KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-wheezy.parcel
http://archive.cloudera.com/kafka/parcels/1.4.0/KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-wheezy.parcel
http://archive.cloudera.com/kafka/parcels/1.4.0/KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-wheezy.parcel
http://archive.cloudera.com/kafka/debian/wheezy/amd64/kafka/
http://archive.cloudera.com/kafka/debian/wheezy/amd64/kafka/
http://archive.cloudera.com/kafka/parcels/1.4.0/KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-sles11.parcel
http://archive.cloudera.com/kafka/parcels/1.4.0/KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-sles11.parcel
http://archive.cloudera.com/kafka/parcels/1.4.0/KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-sles11.parcel
https://archive.cloudera.com/kafka/sles/11/x86_64/kafka/
https://archive.cloudera.com/kafka/sles/11/x86_64/kafka/
http://archive.cloudera.com/kafka/parcels/1.4.0/KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-trusty.parcel
http://archive.cloudera.com/kafka/parcels/1.4.0/KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-trusty.parcel
http://archive.cloudera.com/kafka/parcels/1.4.0/KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-trusty.parcel
https://archive.cloudera.com/kafka/ubuntu/trusty/amd64/kafka/
https://archive.cloudera.com/kafka/ubuntu/trusty/amd64/kafka/
http://archive.cloudera.com/kafka/parcels/1.4.0/KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-precise.parcel
http://archive.cloudera.com/kafka/parcels/1.4.0/KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-precise.parcel
http://archive.cloudera.com/kafka/parcels/1.4.0/KAFKA-0.8.2.0-1.kafka1.4.0.p0.56-precise.parcel
https://archive.cloudera.com/kafka/ubuntu/precise/amd64/kafka/
https://archive.cloudera.com/kafka/ubuntu/precise/amd64/kafka/
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cdh_vd_cdh5_maven_repo.html

versionartifactIdgroupIdProject

0.10.0-kafka-2.
1.2

kafka-clientsorg.apache.
kafka

Kafka

0.10.0-kafka-2.
1.2

kafka-examplesorg.apache.
kafka

Kafka

0.10.0-kafka-2.
1.2

kafka-log4j-appenderorg.apache.
kafka

Kafka

0.10.0-kafka-2.
1.2

kafka-streamsorg.apache.
kafka

Kafka

0.10.0-kafka-2.
1.2

kafka-streams-examplesorg.apache.
kafka

Kafka

0.10.0-kafka-2.
1.2

kafka-toolsorg.apache.
kafka

Kafka

0.10.0-kafka-2.
1.2

kafka_2.10org.apache.
kafka

Kafka

0.10.0-kafka-2.
1.2

kafka_2.11org.apache.
kafka

Kafka

versionartifactIdgroupIdProject

0.10.0-kafka-2.
1.1

connectorg.apache.
kafka

Kafka

0.10.0-kafka-2.
1.1

connect-apiorg.apache.
kafka

Kafka

0.10.0-kafka-2.
1.1

connect-fileorg.apache.
kafka

Kafka

0.10.0-kafka-2.
1.1

connect-jsonorg.apache.
kafka

Kafka

0.10.0-kafka-2.
1.1

connect-runtimeorg.apache.
kafka

Kafka

0.10.0-kafka-2.
1.1

kafka-clientsorg.apache.
kafka

Kafka

0.10.0-kafka-2.
1.1

kafka-examplesorg.apache.
kafka

Kafka

0.10.0-kafka-2.
1.1

kafka-log4j-appenderorg.apache.
kafka

Kafka

0.10.0-kafka-2.
1.1

kafka-streamsorg.apache.
kafka

Kafka

0.10.0-kafka-2.
1.1

kafka-streams-examplesorg.apache.
kafka

Kafka

0.10.0-kafka-2.
1.1

kafka-toolsorg.apache.
kafka

Kafka

0.10.0-kafka-2.
1.1

kafka_2.10org.apache.
kafka

Kafka

Cloudera Distribution of Apache Kafka | 25

Cloudera Distribution of Apache Kafka Version and Packaging Information

versionartifactIdgroupIdProject

0.10.0-kafka-2.
1.1

kafka_2.11org.apache.
kafka

Kafka

versionartifactIdgroupIdProject

0.10.0-kafka-2.1.0connectorg.apache.kafkaKafka

0.10.0-kafka-2.1.0connect-apiorg.apache.kafkaKafka

0.10.0-kafka-2.
1.0

connect-fileorg.apache.kafkaKafka

0.10.0-kafka-2.1.0connect-jsonorg.apache.kafkaKafka

0.10.0-kafka-2.1.0connect-runtimeorg.apache.kafkaKafka

0.10.0-kafka-2.1.0kafka-clientsorg.apache.kafkaKafka

0.10.0-kafka-2.1.0kafka-examplesorg.apache.kafkaKafka

0.10.0-kafka-2.1.0kafka-log4j-appenderorg.apache.kafkaKafka

0.10.0-kafka-2.
1.0

kafka-toolsorg.apache.kafkaKafka

0.10.0-kafka-2.
1.0

kafka_2.10org.apache.kafkaKafka

The following table lists the project name, groupId, artifactId, and version required to access each Cloudera Distribution
of Apache Kafka 1.4.0 artifact.

versionartifactIdgroupIdProject

0.8.2.0-kafka-1.4.0kafka-clientsorg.apache.kafkaKafka

0.8.2.0-kafka-1.4.0kafka-examplesorg.apache.kafkaKafka

0.8.2.0-kafka-1.4.0kafka_2.10org.apache.kafkaKafka

26 | Cloudera Distribution of Apache Kafka

Cloudera Distribution of Apache Kafka Version and Packaging Information

Installing, Migrating and Upgrading Kafka

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

Important: As of February 1, 2021, all downloads of CDK, CDH, and Cloudera Manager require a
username and password and use a modified URL. You must use the modified URL, including the
username and password when downloading the repository contents described below. You may need
to upgrade Cloudera Manager to a newer version that uses the modified URLs.

This can affect new installations, upgrades, adding new hosts to a cluster, downloading a new parcel,
and adding a new cluster.

For more information, see Updating an existing CDH/Cloudera Manager deployment to access
downloads with authentication.

The steps required to install or upgrade Kafka vary based on the version of Cloudera Manager you are using. This
section describes several possible installation and upgrade scenarios. Before you install, review the Release Notes,
particularly:

• What's New in Cloudera Distribution of Apache Kafka? on page 10
• Cloudera Distribution of Apache Kafka Requirements and Supported Versions on page 11
• Known Issues in Cloudera Distribution of Apache Kafka on page 16

In addition, make sure to also review the Kafka Product Compatibility Matrix.

Installing or Upgrading Kafka
Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

Kafka is distributed as a parcel, separate from the CDH parcel. It is also distributed as a package. The steps to install
Kafka vary, depending on whether you choose to install from a parcel or a package.

General Information Regarding Installation and Upgrade

ClouderaManager 5.4 or higher includes the Kafka service. To install, download Kafka using ClouderaManager, distribute
Kafka to the cluster, activate the new parcel, and add the service to the cluster. For a list of available parcels and
packages, see Cloudera Distribution of Apache Kafka Version and Packaging Information on page 22

Colocation of Kafka and ZooKeeper services on the same host is possible. However, for optimal performance, Cloudera
recommends the usage of dedicated hosts. This is especially true for larger, production environments.

Note: Upgrade instructions assume you want to upgrade parcel-based Kafka with parcels or
package-based Kafka with packages. If you want to switch to using parcel-based Kafka using a Kafka
package, you first must uninstall parcel-based Kafka. See Uninstalling an Add-on Service.

Graceful Shutdown of Kafka Brokers

If the Kafka brokers do not shut down gracefully, subsequent restarts may take longer than expected. This can happen
when the brokers take longer than 30 seconds to clear their backlog while stopping the Kafka service, stopping the
Kafka Broker role, or stopping a cluster where the Kafka service is running. The Kafka brokers are also shut down as
part of performing an upgrade. There are two configuration properties you can set to control whether ClouderaManager
waits for the brokers to shut down gracefully:

Cloudera Distribution of Apache Kafka | 27

Installing, Migrating and Upgrading Kafka

https://docs.cloudera.com/documentation/enterprise/release-notes/topics/cm-retrofit-auth-downloads.html#cm_retrofit_auth_downloads
https://docs.cloudera.com/documentation/enterprise/release-notes/topics/cm-retrofit-auth-downloads.html#cm_retrofit_auth_downloads
https://www.cloudera.com/documentation/enterprise/release-notes/topics/rn_consolidated_pcm.html#pcm_kafka
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cm_mc_addon_services.html#concept_uyv_pqj_bn_unique_1

Table 4: Kafka Shutdown Properties

Default ValueDescriptionProperty

EnabledEnables controlled shutdown of the
broker. If enabled, the broker moves

Enable Controlled Shutdown

all leaders on it to other brokers
before shutting itself down. This
reduces the unavailability window
during shutdown.

30000 milliseconds

(30 seconds)

The timeout inmilliseconds towait for
graceful shutdown to complete.

Graceful Shutdown Timeout

To configure these properties, go to Clusters > Kafka Service > Configuration and search for "shutdown".

If Kafka is taking a long time for controlled shutdown to complete, consider increasing the value of Graceful Shutdown
Timeout. Once this timeout is reached, Cloudera Manager issues a forced shutdown, which interrupts the controlled
shutdown and could cause subsequent restarts to take longer than expected.

Disks and Filesystem

Cloudera recommends that you use multiple drives to get good throughput. To ensure good latency, do not share the
samedrives used for Kafka datawith application logs or otherOS filesystemactivity. You can either use RAID to combine
these drives into a single volume, or format and mount each drive as its own directory. Since Kafka has replication,
RAID can also provide redundancy at the application level. This choice has several tradeoffs.

If you configure multiple data directories, partitions are assigned round-robin to data directories. Each partition is
stored entirely in one of the data directories. This can lead to load imbalance between disks if data is not well balanced
among partitions.

RAID can potentially do a better job of balancing load between disks because it balances load at a lower level. The
primary downside of RAID is that it is usually a big performance hit for write throughput, and it reduces the available
disk space.

Another potential benefit of RAID is the ability to tolerate disk failures. However, rebuilding the RAID array is so I/O
intensive that it can effectively disable the server, so this does not provide much improvement in availability.

The following table summarizes these pros and cons for RAID10 versus JBOD.

JBODRAID10

Single disk failure kills the brokerCan survive single disk failure

More available disk spaceSingle log directory

Higher write throughputLower total I/O

Broker is not smart about balancing partitions across disk.

Installing or Upgrading Kafka from a Parcel

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

1. In Cloudera Manager, select Hosts > Parcels.
2. If you do not see Kafka in the list of parcels, you can add the parcel to the list.

a. Find the parcel for the version of Kafka you want to use on Cloudera Distribution of Apache Kafka Versions
on page 22.

b. Copy the parcel repository link.
c. On the Cloudera Manager Parcels page, click Configuration.

28 | Cloudera Distribution of Apache Kafka

Installing, Migrating and Upgrading Kafka

d. In the field Remote Parcel Repository URLs, click + next to an existing parcel URL to add a new field.
e. Paste the parcel repository link.
f. Save your changes.

3. On the Cloudera Manager Parcels page, download the Kafka parcel, distribute the parcel to the hosts in your
cluster, and then activate the parcel. SeeManaging Parcels. After you activate the Kafka parcel, ClouderaManager
prompts you to restart the cluster. You do not need to restart the cluster after installing Kafka. Click Close to ignore
this prompt.

4. Add the Kafka service to your cluster. See Adding a Service.

Installing or Upgrading Kafka from a Package

Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

You install the Kafka package from the command line.

1. Navigate to the /etc/repos.d directory.
2. Use wget to download the Kafka repository. See Cloudera Distribution of Apache Kafka Version and Packaging

Information on page 22.
3. Install Kafka using the appropriate commands for your operating system.

Table 5: Kafka Installation Commands

CommandsOperating System

$ sudo yum clean all

RHEL-compatible

$ sudo yum install kafka
$ sudo yum install kafka-server

$ sudo zypper clean --all

SLES

$ sudo zypper install kafka
$ sudo zypper install kafka-server

$ sudo apt-get update

Ubuntu or Debian

$ sudo apt-get install kafka
$ sudo apt-get install kafka-server

4. Edit /etc/kafka/conf/server.properties to ensure that the broker.id is unique for each node and broker
in Kafka cluster, and zookeeper.connect points to same ZooKeeper for all nodes and brokers.

5. Start the Kafka server with the following command:

$ sudo service kafka-server start.

To verify all nodes are correctly registered to the same ZooKeeper, connect to ZooKeeper using zookeeper-client.

$ zookeeper-client
$ ls /brokers/ids

You should see all of the IDs for the brokers you have registered in your Kafka cluster.

To discover to which node a particular ID is assigned, use the following command:

$ get /brokers/ids/<ID>

Cloudera Distribution of Apache Kafka | 29

Installing, Migrating and Upgrading Kafka

http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cm_ig_parcels.html#concept_vwq_421_yk_unique_1
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cm_mc_add_service.html

This command returns the host name of node assigned the ID you specify.

Special Considerations When Upgrading from Kafka 1.x to Kafka 2.x

If you upgrade to Kafka 2.0, Cloudera recommends taking the cluster offline because it is a major upgrade with
incompatible protocol changes. The upgrade steps are the same even if a cluster is offline.

If taking the cluster offline is not an option, use the following steps to perform a rolling upgrade:

1. In ClouderaManager, go to the Kafka Configuration page and addinter.broker.protocol.version=0.8.2.X

to the Kafka Advanced Configuration Snippet (Safety Valve). See Custom Configuration.
2. Upgrade your parcel or package as described in the steps above.
3. Perform a rolling restart.
4. After the entire is upgraded and restarted, remove the property you added in step 1.
5. To have the new protocol take effect, perform another rolling restart.

Upgrade Considerations

• Always upgrade your Kafka cluster before upgrading your clients.
• If using MirrorMaker, upgrade your downstream Kafka clusters first. Otherwise, incompatible messages might be

sent downstream.

Special Considerations When Upgrading to Kafka 2.1.x

You must upgrade your Kafka 2.0.x brokers to Kafka 2.1.x before you upgrade your Kafka 2.0.x clients to Kafka 2.1.x.

Migrating from Apache Kafka to Cloudera Distribution of Apache Kafka
Minimum Required Role: Cluster Administrator (also provided by Full Administrator)

This topic describes the required steps tomigrate an existing Apache Kafka instance to Cloudera Distribution of Apache
Kafka.

Assumptions

• You are migrating to a Kafka cluster managed by Cloudera Manager.
• You can plan a maintenance window for your migration.
• You are migrating from a compatible release version, as shown in the table below:

Table 6: Compatible Release Versions

To Cloudera Distribution of Apache KafkaFrom Apache Kafka

1.x0.8.x

2.x0.9.x

Note: Migration from Apache Kafka 0.7.x is not supported. If running Apache Kafka 0.7.x or earlier,
you must first migrate to Apache Kafka 0.8.x or higher.

Steps for Migrating from Apache Kafka to Cloudera Distribution of Apache Kafka

Cloudera recommends the following migration procedure. You must migrate brokers first, and then clients.

Before You Begin

1. Shut down all existing producers, consumers, MirrorMaker instances, and Kafka brokers.
2. If not already installed, install Cloudera Manager. See Installing Cloudera Manager, CDH, and Managed Services.

30 | Cloudera Distribution of Apache Kafka

Installing, Migrating and Upgrading Kafka

http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_config_snippet.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_mc_rolling_restart.html
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cm_ig_intro_to_cm_install.html

Add the CDH and Kafka parcels at installation time.a.
b. Do not add any services yet. Skip the install page by clicking the ClouderaManager icon in the top navigation

bar.

Step 1. Migrating Zookeeper
Kafka stores its metadata in ZooKeeper. When migrating to Cloudera Distribution of Kafka, you must also migrate your
ZooKeeper instance to the supported version included with CDH.

1. Shut down your existing ZooKeeper cluster.
2. Back up your dataDir and dataLogDir by copying them to another location or machine.
3. Add the ZooKeeper service to the cluster where you will run Cloudera Kafka. See Adding a Service.
4. Add the ZooKeeper role to all machines that were running ZooKeeper.
5. Set any custom configuration from your old zoo.cfg file in Cloudera Manager.
6. Make sure dataDir and dataLogDirmatch your old configuration. This is important because this is where all

your data is stored.
7. Make sure the zookeeper user owns the files in the dataDir and dataLogDir. For example:

ex: chown -R zookeeper /var/lib/zookeeper

8. Start the new ZooKeeper service.
9. Use the zookeeper-client CLI to validate that data exists. You should see nodes such as brokers, consumers,

and configs. You might need to adjust your chroot. For example:

zookeeper-client -server hostname:port
 ls /

Step 2. Migrating Kafka Brokers

All producers, consumers, and Kafka brokers should still be shut down.

1. Back up your log.dirs from the old broker machines by copying them to another location or machine.
2. Add the Kafka service to the cluster where you migrated ZooKeeper. See Adding a Service.
3. Add the broker role to all machines that were running brokers.
4. Make sure the kafka user owns the log.dirs files. For example:

chown -R kafka /var/local/Kafka/data

5. Set any custom configuration from your old server.properties file in Cloudera Manager.

• Make sure to override the broker.id on each node tomatch the configured value in your old configurations.
If these values do not match, Kafka treats your brokers as new brokers and not your existing ones.

• Make sure log.dirs and zookeeper.chrootmatch your old configuration. All of your data and state
information is stored here.

6. Start the Kafka brokers using Cloudera Manager.

Step 3. Migrating MirrorMaker
These are the steps for migrating the MirrorMaker role. To avoid compatibility issues, migrate downstream clusters
first.

1. Add the MirrorMaker role to all machines that were running MirrorMaker before.
2. Set any customconfiguration fromyour oldproducer.properties andconsumer.properties files in Cloudera

Manager.
3. Start the MirrorMaker instances using Cloudera Manager.

Cloudera Distribution of Apache Kafka | 31

Installing, Migrating and Upgrading Kafka

http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cm_mc_add_service.html
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cm_mc_add_service.html

Step 4. Migrating Kafka Clients

Although Kafka might function with your existing clients, you must also upgrade all of your producers and consumers
to have all Cloudera patches and bug fixes, and to have a fully supported system.

Migration requires that you change your Kafka dependencies from the Apache versions to the Cloudera versions,
recompile your classes, and redeploy them. Use the Maven repository locations as described in Maven Artifacts for
Kafka on page 24.

32 | Cloudera Distribution of Apache Kafka

Installing, Migrating and Upgrading Kafka

Using Kafka

This section describes ways you can use Kafka tools to capture data for analysis.

Using Kafka Command-line Tools
Kafka command-line tools are located in /usr/bin:

• kafka-topics

Create, alter, list, and describe topics. For example:

$ /usr/bin/kafka-topics --zookeeper zk01.example.com:2181 --list
sink1
t1
t2
$ /usr/bin/kafka-topics --create --zookeeper hostname:2181/kafka --replication-factor
2
 --partitions 4 --topic topicname

• kafka-console-consumer

Read data from a Kafka topic and write it to standard output. For example:

$ /usr/bin/kafka-console-consumer --zookeeper zk01.example.com:2181 --topic t1

• kafka-console-producer

Read data from standard output and write it to a Kafka topic. For example:

$ /usr/bin/kafka-console-producer --broker-list
kafka02.example.com:9092,kafka03.example.com:9092 --topic t1

• kafka-consumer-offset-checker (deprecated)

Note: kafka-consumer-offset-checker is not supported in the new Consumer API. Use the
ConsumerGroupCommand tool, below.

Check the number of messages read and written, as well as the lag for each consumer in a specific consumer
group. For example:

$ /usr/bin/kafka-consumer-offset-checker --group flume --topic t1 --zookeeper
zk01.example.com:2181

• kafka-consumer-groups

To view offsets as in the previous example with the ConsumerOffsetChecker, you describe the consumer
group using the following command:

$ /usr/bin/kafka-consumer-groups --zookeeper zk01.example.com:2181 --describe --group
flume

GROUP TOPIC PARTITION CURRENT-OFFSET LOG-END-OFFSET LAG OWNER
flume t1 0 1 3 2
test-consumer-group_postamac.local-1456198719410-29ccd54f-0

Cloudera Distribution of Apache Kafka | 33

Using Kafka

Using Kafka with Spark Streaming
For information on how to configure Spark Streaming to receive data from Kafka, see the Spark Streaming + Kafka
Integration Guide.

In CDH 5.7 and higher, the Spark connector to Kafka only works with Kafka 2.0 and higher.

Validating Kafka Integration with Spark Streaming

To validate your Kafka integration with Spark Streaming, run the KafkaWordCount example.

If you installed Spark using parcels, use the following command:

/opt/cloudera/parcels/CDH/lib/spark/bin/run-example streaming.KafkaWordCount <zkQuorum>
<group> <topics> <numThreads>

If you installed Spark using packages, use the following command:

 /usr/lib/spark/bin/run-example streaming.KafkaWordCount <zkQuorum> <group>
<topics><numThreads>

Replace the variables as follows:

• <zkQuorum> - ZooKeeper quorum URI used by Kafka (for example,
zk01.example.com:2181,zk02.example.com:2181,zk03.example.com:2181).

• <group> - Consumer group used by the application.
• <topic> - Kafka topic containing the data for the application.
• <numThreads> - Number of consumer threads reading the data. If this is higher than the number of partitions

in the Kafka topic, some threads will be idle.

Note: If multiple applications use the same group and topic, each application receives a subset of
the data.

Using Kafka with Flume
In CDH 5.2 and higher, Flume contains a Kafka source and sink. Use these to stream data from Kafka to Hadoop or from
any Flume source to Kafka.

In CDH 5.7 and higher, the Flume connector to Kafka only works with Kafka 2.0 and higher.

Important: Do not configure a Kafka source to send data to a Kafka sink. If you do, the Kafka source
sets the topic in the event header, overriding the sink configuration and creating an infinite loop,
sending messages back and forth between the source and sink. If you need to use both a source and
a sink, use an interceptor to modify the event header and set a different topic.

For information on configuring Kafka to securely communicate with Flume, see Configuring Flume Security with Kafka.

This topic describes how to configure Kafka sources, sinks, and channels:

Kafka Source

Use the Kafka source to stream data in Kafka topics to Hadoop. The Kafka source can be combined with any Flume
sink, making it easy to write Kafka data to HDFS, HBase, and Solr.

34 | Cloudera Distribution of Apache Kafka

Using Kafka

http://spark.apache.org/docs/1.5.0/streaming-kafka-integration.html
http://spark.apache.org/docs/1.5.0/streaming-kafka-integration.html
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cm_mc_flume_kafka_security_confg.html

The following Flume configuration example uses a Kafka source to send data to an HDFS sink:

 tier1.sources = source1
 tier1.channels = channel1
 tier1.sinks = sink1

 tier1.sources.source1.type = org.apache.flume.source.kafka.KafkaSource
 tier1.sources.source1.zookeeperConnect = zk01.example.com:2181
 tier1.sources.source1.topic = weblogs
 tier1.sources.source1.groupId = flume
 tier1.sources.source1.channels = channel1
 tier1.sources.source1.interceptors = i1
 tier1.sources.source1.interceptors.i1.type = timestamp
 tier1.sources.source1.kafka.consumer.timeout.ms = 100

 tier1.channels.channel1.type = memory
 tier1.channels.channel1.capacity = 10000
 tier1.channels.channel1.transactionCapacity = 1000

 tier1.sinks.sink1.type = hdfs
 tier1.sinks.sink1.hdfs.path = /tmp/kafka/%{topic}/%y-%m-%d
 tier1.sinks.sink1.hdfs.rollInterval = 5
 tier1.sinks.sink1.hdfs.rollSize = 0
 tier1.sinks.sink1.hdfs.rollCount = 0
 tier1.sinks.sink1.hdfs.fileType = DataStream
 tier1.sinks.sink1.channel = channel1

For higher throughput, configure multiple Kafka sources to read from the same topic. If you configure all the sources
with the same groupID, and the topic contains multiple partitions, each source reads data from a different set of
partitions, improving the ingest rate.

The following table describes parameters that the Kafka source supports. Required properties are listed in bold.

Table 7: Kafka Source Properties

DescriptionDefault
Value

Property Name

Must be set to org.apache.flume.source.kafka.KafkaSource.type

The URI of the ZooKeeper server or quorum used by Kafka. This can be
a single host (for example, zk01.example.com:2181) or a

zookeeperConnect

comma-separated list of hosts in a ZooKeeper quorum (for example,
zk01.example.com:2181,zk02.example.com:2181,

zk03.example.com:2181).

The Kafka topic from which this source reads messages. Flume supports
only one topic per source.

topic

The unique identifier of the Kafka consumer group. Set the samegroupID
in all sources to indicate that they belong to the same consumer group.

flumegroupID

The maximum number of messages that can be written to a channel in
a single batch.

1000batchSize

The maximum time (in ms) before a batch is written to the channel. The
batch is written when the batchSize limit or batchDurationMillis
limit is reached, whichever comes first.

1000batchDurationMillis

Used to configure the Kafka consumer used by the Kafka source. You can
use any consumer properties supported by Kafka. Prepend the consumer

Other properties supported
by the Kafka consumer

property name with the prefix kafka. (for example,
kafka.fetch.min.bytes). See the Kafka documentation for the full
list of Kafka consumer properties.

Cloudera Distribution of Apache Kafka | 35

Using Kafka

http://kafka.apache.org/documentation.html#consumerconfigs

Tuning Notes

The Kafka source overrides two Kafka consumer parameters:

1. auto.commit.enable is set to false by the source, and every batch is committed. For improved performance,
set this to true using the kafka.auto.commit.enable setting. This can lead to data loss if the source goes
down before committing.

2. consumer.timeout.ms is set to 10, so when Flume polls Kafka for new data, it waits no more than 10 ms for
the data to be available. Setting this to a higher value can reduce CPU utilization due to less frequent polling, but
introduces latency in writing batches to the channel.

Kafka Sink

Use the Kafka sink to send data to Kafka from a Flume source. You can use the Kafka sink in addition to Flume sinks
such as HBase or HDFS.

The following Flume configuration example uses a Kafka sink with an exec source:

 tier1.sources = source1
 tier1.channels = channel1
 tier1.sinks = sink1

 tier1.sources.source1.type = exec
 tier1.sources.source1.command = /usr/bin/vmstat 1
 tier1.sources.source1.channels = channel1

 tier1.channels.channel1.type = memory
 tier1.channels.channel1.capacity = 10000
 tier1.channels.channel1.transactionCapacity = 1000

 tier1.sinks.sink1.type = org.apache.flume.sink.kafka.KafkaSink
 tier1.sinks.sink1.topic = sink1
 tier1.sinks.sink1.brokerList = kafka01.example.com:9092,kafka02.example.com:9092
 tier1.sinks.sink1.channel = channel1
 tier1.sinks.sink1.batchSize = 20

The following table describes parameters the Kafka sink supports. Required properties are listed in bold.

Table 8: Kafka Sink Properties

DescriptionDefault ValueProperty Name

Must be set toorg.apache.flume.sink.kafka.KafkaSink.type

The brokers the Kafka sink uses to discover topic partitions,
formatted as a comma-separated list ofhostname:port entries.

brokerList

You do not need to specify the entire list of brokers, but Cloudera
recommends that you specify at least two for high availability.

The Kafka topic to which messages are published by default. If
the event header contains a topic field, the event is published
to the designated topic, overriding the configured topic.

default-flume-topictopic

The number of messages to process in a single batch. Specifying
a largerbatchSize can improve throughput and increase latency.

100batchSize

The number of replicas that must acknowledge amessage before
it is written successfully. Possible values are 0 (do not wait for an

0request.required.acks

acknowledgement), 1 (wait for the leader to acknowledge only),
and -1 (wait for all replicas to acknowledge). To avoid potential
loss of data in case of a leader failure, set this to -1.

Used to configure the Kafka producer used by the Kafka sink. You
can use any producer properties supported by Kafka. Prepend

Other properties supported
by the Kafka producer

36 | Cloudera Distribution of Apache Kafka

Using Kafka

DescriptionDefault ValueProperty Name

the producer property namewith the prefix kafka. (for example,
kafka.compression.codec). See the Kafka documentation for
the full list of Kafka producer properties.

The Kafka sink uses the topic and key properties from the FlumeEvent headers to determine where to send events
in Kafka. If the header contains the topic property, that event is sent to the designated topic, overriding the configured
topic. If the header contains the key property, that key is used to partition events within the topic. Events with the
same key are sent to the same partition. If the key parameter is not specified, events are distributed randomly to
partitions. Use these properties to control the topics and partitions to which events are sent through the Flume source
or interceptor.

Kafka Channel

CDH 5.3 and higher includes a Kafka channel to Flume in addition to the existing memory and file channels. You can
use the Kafka channel:

• To write to Hadoop directly from Kafka without using a source.
• To write to Kafka directly from Flume sources without additional buffering.
• As a reliable and highly available channel for any source/sink combination.

The following Flume configuration uses a Kafka channel with an exec source and hdfs sink:

tier1.sources = source1
tier1.channels = channel1
tier1.sinks = sink1

tier1.sources.source1.type = exec
tier1.sources.source1.command = /usr/bin/vmstat 1
tier1.sources.source1.channels = channel1

tier1.channels.channel1.type = org.apache.flume.channel.kafka.KafkaChannel
tier1.channels.channel1.capacity = 10000
tier1.channels.channel1.zookeeperConnect = zk01.example.com:2181
tier1.channels.channel1.parseAsFlumeEvent = false
tier1.channels.channel1.*kafka.*topic = channel2
tier1.channels.channel1.*kafka.*consumer.group.id = channel2-grp
tier1.channels.channel1.auto.offset.reset = earliest
tier1.channels.channel1.kafka.bootstrap.servers =
kafka02.example.com:9092,kafka03.example.com:9092
tier1.channels.channel1.transactionCapacity = 1000
tier1.channels.channel1.kafka.consumer.max.partition.fetch.bytes=2097152

tier1.sinks.sink1.type = hdfs
tier1.sinks.sink1.hdfs.path = /tmp/kafka/channel
tier1.sinks.sink1.hdfs.rollInterval = 5
tier1.sinks.sink1.hdfs.rollSize = 0
tier1.sinks.sink1.hdfs.rollCount = 0
tier1.sinks.sink1.hdfs.fileType = DataStream
tier1.sinks.sink1.channel = channel1

The following table describes parameters the Kafka channel supports. Required properties are listed in bold.

Table 9: Kafka Channel Properties

DescriptionDefault
Value

Property Name

Must be set toorg.apache.flume.channel.kafka.KafkaChannel.type

The brokers the Kafka channel uses to discover topic partitions, formatted
as a comma-separated list of hostname:port entries. You do not need

brokerList

to specify the entire list of brokers, but Cloudera recommends that you
specify at least two for high availability.

Cloudera Distribution of Apache Kafka | 37

Using Kafka

http://kafka.apache.org/documentation.html#producerconfigs

DescriptionDefault
Value

Property Name

The URI of the ZooKeeper server or quorum used by Kafka. This can be
a single host (for example, zk01.example.com:2181) or a

zookeeperConnect

comma-separated list of hosts in a ZooKeeper quorum (for example,
zk01.example.com:2181,zk02.example.com:2181,

zk03.example.com:2181).

The Kafka topic the channel will use.flume-channeltopic

The unique identifier of the Kafka consumer group the channel uses to
register with Kafka.

flumegroupID

Set to true if a Flume source is writing to the channel and expects
AvroDataums with the FlumeEvent schema

trueparseAsFlumeEvent

(org.apache.flume.source.avro.AvroFlumeEvent) in thechannel.
Set to false if other producers are writing to the topic that the channel
is using.

What to do when there is no initial offset in Kafka or if the current offset
does not exist on the server (for example, because the data is deleted).

latestauto.offset.reset

• earliest: automatically reset the offset to the earliest offset
• latest: automatically reset the offset to the latest offset
• none: throw exception to the consumer if no previous offset is found

for the consumer's group
• anything else: throw exception to the consumer.

Polling interval when writing to the sink.100kafka.consumer.timeout.ms

The maximum amount of data per-partition the server will return.1048576consumer.max.partition.
fetch.bytes

Used to configure the Kafka producer. You can use any producer
properties supported by Kafka. Prepend the producer property name

Other properties supported
by the Kafka producer

with the prefix kafka. (for example, kafka.compression.codec).
See the Kafka documentation for the full list of Kafka producer properties.

Additional Considerations When Using Kafka
When using Kafka, consider the following:

• Use Cloudera Manager to start and stop Kafka and ZooKeeper services. Do not use the kafka-server-start,
kafka-server-stop, zookeeper-server-start, and zookeeper-server-stop commands.

• All Kafka command-line tools are located in /opt/cloudera/parcels/KAFKA/lib/kafka/bin/.
• Ensure that the JAVA_HOME environment variable is set to your JDK installation directory before using the

command-line tools. For example:

export JAVA_HOME=/usr/java/jdk1.7.0_55-cloudera

See the Apache Kafka documentation.

See the Apache Kafka FAQ.

38 | Cloudera Distribution of Apache Kafka

Using Kafka

http://kafka.apache.org/documentation.html#producerconfigs
http://kafka.apache.org/documentation.html
https://cwiki.apache.org/confluence/display/KAFKA/FAQ

Kafka Administration

This section describes ways to configure and manage Kafka, including performance tuning and high availability
considerations.

Configuring Kafka Security
This topic describes additional steps you can take to ensure the safety and integrity of your data stored in Kafka, with
features available in Cloudera Distribution of Apache Kafka 2.0.0 and higher:

Deploying SSL for Kafka

Kafka allows clients to connect over SSL. By default, SSL is disabled, but can be turned on as needed.

Step 1. Generating Keys and Certificates for Kafka Brokers

First, generate the key and the certificate for each machine in the cluster using the Java keytool utility. See Creating
Certificates.

keystore is the keystore file that stores your certificate. validity is the valid time of the certificate in days.

$ keytool -keystore {tmp.server.keystore.jks} -alias localhost -validity {validity}
-genkey

Make sure that the common name (CN) matches the fully qualified domain name (FQDN) of your server. The client
compares the CN with the DNS domain name to ensure that it is connecting to the correct server.

Step 2. Creating Your Own Certificate Authority

You have generated a public-private key pair for each machine, and a certificate to identify the machine. However,
the certificate is unsigned, so an attacker can create a certificate and pretend to be any machine. Sign certificates for
each machine in the cluster to prevent unauthorized access.

A Certificate Authority (CA) is responsible for signing certificates. A CA is similar to a government that issues passports.
A government stamps (signs) each passport so that the passport becomes difficult to forge. Similarly, the CA signs the
certificates, and the cryptography guarantees that a signed certificate is computationally difficult to forge. If the CA is
a genuine and trusted authority, the clients have high assurance that they are connecting to the authentic machines.

openssl req -new -x509 -keyout ca-key -out ca-cert -days 365

The generated CA is a public-private key pair and certificate used to sign other certificates.

Add the generated CA to the client truststores so that clients can trust this CA:

keytool -keystore {client.truststore.jks} -alias CARoot -import -file {ca-cert}

Note: If you configure Kafka brokers to require client authentication by setting ssl.client.auth to be
requested or required on the Kafka brokers config, youmust provide a truststore for the Kafka brokers
as well. The truststore should have all the CA certificates by which the clients keys are signed.

The keystore created in step 1 stores each machine’s own identity. In contrast, the truststore of a client stores all the
certificates that the client should trust. Importing a certificate into a truststore means trusting all certificates that are
signed by that certificate. This attribute is called the chain of trust. It is particularly useful when deploying SSL on a
large Kafka cluster. You can sign all certificates in the cluster with a single CA, and have all machines share the same
truststore that trusts the CA. That way, all machines can authenticate all other machines.

Cloudera Distribution of Apache Kafka | 39

Kafka Administration

http://cloudera.com/documentation/enterprise/latest/topics/cm_sg_create_deploy_certs.html?scroll=xd_583c10bfdbd326ba--6eed2fb8-14349d04bee--7723#concept_kgr_r4l_l4_unique_1
http://cloudera.com/documentation/enterprise/latest/topics/cm_sg_create_deploy_certs.html?scroll=xd_583c10bfdbd326ba--6eed2fb8-14349d04bee--7723#concept_kgr_r4l_l4_unique_1
http://kafka.apache.org/documentation.html#config_broker

Step 3. Signing the certificate
Now you can sign all certificates generated by step 1 with the CA generated in step 2.

1. Export the certificate from the keystore:

keytool -keystore server.keystore.jks -alias localhost -certreq -file cert-file

2. Sign it with the CA:

openssl x509 -req -CA ca-cert -CAkey ca-key -in cert-file -out cert-signed -days
{validity} -CAcreateserial -passin pass:{ca-password}

3. Import both the certificate of the CA and the signed certificate into the keystore:

keytool -keystore server.keystore.jks -alias CARoot -import -file ca-cert keytool
-keystore server.keystore.jks -alias localhost -import -file cert-signed

The definitions of the variables are as follows:

• keystore: the location of the keystore
• ca-cert: the certificate of the CA
• ca-key: the private key of the CA
• ca-password: the passphrase of the CA
• cert-file: the exported, unsigned certificate of the server
• cert-signed: the signed certificate of the server

The following Bash script demonstrates the steps described above. One of the commands assumes a password of
test1234, so either use that password or edit the command before running it.

#!/bin/bash
#Step 1
keytool -keystore server.keystore.jks -alias localhost -validity 365 -genkey
#Step 2
openssl req -new -x509 -keyout ca-key -out ca-cert -days 365
keytool -keystore server.truststore.jks -alias CARoot -import -file ca-cert
keytool -keystore client.truststore.jks -alias CARoot -import -file ca-cert
#Step 3
keytool -keystore server.keystore.jks -alias localhost -certreq -file cert-file
openssl x509 -req -CA ca-cert -CAkey ca-key -in cert-file -out cert-signed -days 365
-CAcreateserial -passin pass:test1234
keytool -keystore server.keystore.jks -alias CARoot -import -file ca-cert
keytool -keystore server.keystore.jks -alias localhost -import -file cert-signed

Step 4. Configuring Kafka Brokers

Kafka Brokers support listening for connections on multiple ports. You must configure the listeners property in
server.properties, with one ormore comma-separated values. If SSL is not enabled for inter-broker communication
(see below for how to enable it), both PLAINTEXT and SSL ports are required. For example:

listeners=PLAINTEXT://host.name:port,SSL://host.name:port

Kafka CSD auto-generates listeners for Kafka brokers, depending on your SSL and Kerberos configuration. To enable
SSL for Kafka installations, do the following:

1. Turn on SSL for the Kafka service by turning on the ssl_enabled configuration for the Kafka CSD.
2. Set security.inter.broker.protocol as SSL, if Kerberos is disabled; otherwise, set it as SASL_SSL.

40 | Cloudera Distribution of Apache Kafka

Kafka Administration

The following SSL configurations are required on each broker. Each of these values can be set in Cloudera Manager.
See Modifying Configuration Properties Using Cloudera Manager:

ssl.keystore.location=/var/private/ssl/kafka.server.keystore.jks
ssl.keystore.password=test1234
ssl.key.password=test1234
ssl.truststore.location=/var/private/ssl/kafka.server.truststore.jks
ssl.truststore.password=test1234

Other configuration settings might also be needed, depending on your requirements:

• ssl.client.auth=none: Other options for client authentication are required, or requested, where clients
without certificates can still connect. The use of requested is discouraged, as it provides a false sense of security
and misconfigured clients can still connect.

• ssl.cipher.suites: A cipher suite is a named combination of authentication, encryption, MAC, and a key
exchange algorithm used to negotiate the security settings for a network connection using TLS or SSL network
protocol. This list is empty by default.

• ssl.enabled.protocols=TLSv1.2,TLSv1.1,TLSv1: Provide a list of SSL protocols that your brokers accept
from clients.

• ssl.keystore.type=JKS

• ssl.truststore.type=JKS

To enable SSL for inter-broker communication, add the following line to the broker properties file. The default value
is PLAINTEXT. See Using Kafka Supported Protocols on page 42.

security.inter.broker.protocol=SSL

Due to import regulations in some countries, theOracle implementation limits the strength of cryptographic algorithms
available by default. If you need stronger algorithms (for example, AES with 256-bit keys), you must obtain the JCE
Unlimited Strength Jurisdiction Policy Files and install them in the JDK/JRE. Formore information, see the JCA Providers
Documentation.

Once you start the broker, you should see the following message in the server.log:

with addresses: PLAINTEXT -> EndPoint(192.168.64.1,9092,PLAINTEXT),SSL ->
EndPoint(192.168.64.1,9093,SSL)

To check whether the server keystore and truststore are set up properly, run the following command:

openssl s_client -debug -connect localhost:9093 -tls1

Note: TLSv1 should be listed under ssl.enabled.protocols.

In the output of this command, you should see the server certificate:

-----BEGIN CERTIFICATE-----
{variable sized random bytes}
-----END CERTIFICATE-----
subject=/C=US/ST=CA/L=Santa Clara/O=org/OU=org/CN=John Smith
issuer=/C=US/ST=CA/L=Santa Clara/O=org/OU=org/CN=kafka/emailAddress=test@test.com

If the certificate does not appear, or if there are any other error messages, your keystore is not set up properly.

Step 5. Configuring Kafka Clients

SSL is supported only for the new Kafka Producer and Consumer APIs. The configurations for SSL are the same for both
the producer and consumer.

Cloudera Distribution of Apache Kafka | 41

Kafka Administration

http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cm_mc_mod_configs.html?scroll=cmug_topic_5_3
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/SunProviders.html

If client authentication is not required in the broker, the following shows a minimal configuration example:

security.protocol=SSL
ssl.truststore.location=/var/private/ssl/kafka.client.truststore.jks
ssl.truststore.password=test1234

If client authentication is required, a keystore must be created as in step 1, and you must also configure the following
properties:

ssl.keystore.location=/var/private/ssl/kafka.client.keystore.jks
ssl.keystore.password=test1234
ssl.key.password=test1234

Other configuration settings might also be needed, depending on your requirements and the broker configuration:

• ssl.provider (Optional). The name of the security provider used for SSL connections. Default is the default
security provider of the JVM.

• ssl.cipher.suites (Optional). A cipher suite is a named combination of authentication, encryption,MAC, and
a key exchange algorithmused to negotiate the security settings for a network connection using TLS or SSL network
protocol.

• ssl.enabled.protocols=TLSv1.2,TLSv1.1,TLSv1. This property should list at least one of the protocols
configured on the broker side

• ssl.truststore.type=JKS

• ssl.keystore.type=JKS

Using Kafka Supported Protocols

Kafka can expose multiple communication endpoints, each supporting a different protocol. Supporting multiple
communication endpoints enables you to use different communication protocols for client-to-broker communications
and broker-to-broker communications. Set the Kafka inter-broker communication protocol using the
security.inter.broker.protocol property. Use this property primarily for the following scenarios:

• Enabling SSL encryption for client-broker communication but keeping broker-broker communication as PLAINTEXT.
Because SSL has performance overhead, you might want to keep inter-broker communication as PLAINTEXT if
your Kafka brokers are behind a firewall and not susceptible to network snooping.

• Migrating from a non-secure Kafka configuration to a secure Kafka configuration without requiring downtime.
Use a rolling restart and keep security.inter.broker.protocol set to a protocol that is supported by all
brokers until all brokers are updated to support the new protocol.

For example, if you have a Kafka cluster that needs to be configured to enable Kerberos without downtime, follow
these steps:

1. Set security.inter.broker.protocol to PLAINTEXT.
2. Update the Kafka service configuration to enable Kerberos.
3. Perform a rolling restart.
4. Set security.inter.broker.protocol to SASL_PLAINTEXT.

Kafka 2.0 supports the following combinations of protocols.

KerberosSSL

NoNoPLAINTEXT

NoYesSSL

YesNoSASL_PLAINTEXT

YesYesSASL_SSL

These protocols can be defined for broker-to-client interaction and for broker-to-broker interaction.
security.inter.broker.protocol allows the broker-to-broker communication protocol to be different than the

42 | Cloudera Distribution of Apache Kafka

Kafka Administration

broker-to-client protocol. It was added to ease the upgrade from non-secure to secure clusters while allowing rolling
upgrades.

In most cases, set security.inter.broker.protocol to the protocol you are using for broker-to-client
communication. Set security.inter.broker.protocol to a protocol different than the broker-to-client protocol
only when you are performing a rolling upgrade from a non-secure to a secure Kafka cluster.

Note: Kafka brokers using certain combinations of protocols fail to start. See Kafka CSD does not
configure the correct listeners for the configured security.inter.broker.protocol on page 18.

Enabling Kerberos Authentication

Kafka 2.0 and higher supports Kerberos authentication. If you already have a Kerberos server, you can add Kafka to
your current configuration. If you do not have a Kerberos server, install it before proceeding. See Enabling Kerberos
Authentication Using the Wizard.

If you already have configured the mapping from Kerberos principals to short names using the
hadoop.security.auth_to_local HDFS configuration property, configure the same rules for Kafka by adding the
sasl.kerberos.principal.to.local.rules property to theAdvanced Configuration Snippet forKafka Broker
Advanced Configuration Snippet using Cloudera Manager. Specify the rules as a comma separated list.

To enable Kerberos authentication for Kafka:

1. From Cloudera Manager, navigate to Kafka > Configurations. Set SSL client authentication to none. Set Inter
Broker Protocol to SASL_PLAINTEXT.

2. Click Save Changes.
3. Restart the Kafka service.
4. Make sure that listeners = SASL_PLAINTEXT is present in the Kafka broker logs

/var/log/kafka/server.log.
5. Create a jaas.conf file with the following contents to use with cached Kerberos credentials (you can modify

this to use keytab files instead of cached credentials. To generate keytabs, see Step 6: Get or Create a Kerberos
Principal for Each User Account).

If you use kinit first, use this configuration.

KafkaClient {
com.sun.security.auth.module.Krb5LoginModule required
useTicketCache=true;
};

If you use keytab, use this configuration:

KafkaClient {
com.sun.security.auth.module.Krb5LoginModule required
useKeyTab=true
keyTab="/etc/security/keytabs/kafka_server.keytab"
principal="kafka/kafka1.hostname.com@EXAMPLE.COM";
};

6. Create the client.properties file containing the following properties.

security.protocol=SASL_PLAINTEXT
sasl.kerberos.service.name=kafka

7. Test with the Kafka console producer and consumer. To obtain a Kerberos ticket-granting ticket (TGT):

$ kinit <user>

Cloudera Distribution of Apache Kafka | 43

Kafka Administration

http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cm_sg_intro_kerb.html
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cm_sg_intro_kerb.html
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cm_sg_s6_user_principals.html
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cm_sg_s6_user_principals.html

8. Verify that your topic exists. (This does not use security features, but it is a best practice.)

$ kafka-topics --list --zookeeper <zkhost>:2181

9. Verify that the jaas.conf file is used by setting the environment.

$ export KAFKA_OPTS="-Djava.security.auth.login.config=/home/user/jaas.conf"

10. Run a Kafka console producer.

$ kafka-console-producer --broker-list <anybroker>:9092 --topic test1
--producer.config client.properties

11. Run a Kafka console consumer.

$ kafka-console-consumer --new-consumer --topic test1 --from-beginning
--bootstrap-server <anybroker>:9092 --consumer.config client.properties

Enabling Encryption at Rest

Data encryption is increasingly recognized as an optimal method for protecting data at rest.

Follow these are the steps to encrypt Kafka data that is not in active use.

1. Stop the Kafka service.
2. Archive the Kafka data to an alternate location, using TAR or another archive tool.
3. Unmount the affected drives.
4. Install and configure Navigator Encrypt.
5. Expand the TAR archive into the encrypted directories.

Using Kafka with Sentry Authorization

Starting with Kafka 2.1.x on CDH 5.9.x and higher, Apache Sentry includes Kafka binding you can use to enable
authorization in Kafka with Sentry. For more information, see Authorization With Apache Sentry.

Configuring Kafka to Use Sentry Authentication

The following steps describe how to configure Kafka to use Sentry authorization. These steps assume you have installed
Kafka and Sentry on your cluster.

Sentry requires that your cluster include HDFS. After you install and start Sentry with the correct configuration, you
can stop the HDFS service.

Note: Cloudera's distribution of Kafka can make use of LDAP-based user groups when the LDAP
directory is synchronized to Linux via tools such as SSSD. Cloudera's distribution of Kafka does not
support direct integrationwith LDAP, either through direct Kafka's LDAP authentication, or via Hadoop's
group mapping (when hadoop.group.mapping is set to LdapGroupMapping). For more information,
see Configuring LDAP Group Mappings.

For more information, see Installing or Upgrading Kafka on page 27 and Sentry Installation.

To configure Sentry authentication for Kafka:

1. Go to Kafka > Configuration.
2. Select the checkbox Enable Kerberos Authentication.
3. Select a Sentry service in the Kafka service configuration.
4. Add Super users. Super users can perform any action on any resource in the Kafka cluster. The kafka user is

added as a super user by default. Super user requests are authorizedwithout going through Sentry, which provides
enhanced performance.

44 | Cloudera Distribution of Apache Kafka

Kafka Administration

https://en.wikipedia.org/wiki/Data_at_rest
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cm_mc_start_stop_service.html
http://www.cloudera.com/documentation/enterprise/latest/topics/navigator_encrypt_install.html
http://www.cloudera.com/documentation/enterprise/latest/topics/sg_sentry_overview.html
https://www.cloudera.com/documentation/enterprise/latest/topics/cm_sg_ldap_grp_mappings.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cdh_ig_sentry_installation.html

5. Select the checkbox Enable Sentry Privileges Caching to enhance performance.

Authorizable Resources

Authorizable resources are resources or entities in a Kafka cluster that require special permissions for a user to be able
to perform actions on them. Kafka has four authorizable resources.

• Cluster, which controls who can perform cluster-level operations such as creating or deleting a topic. This can
only have one value, kafka-cluster, as one Kafka cluster cannot have more than one cluster resource.

• Topic, which controls who can perform topic-level operations such as producing and consuming topics. Its value
must match exactly the topic name in the Kafka cluster. Wildcards ('*') cannot be used when specifying the topic.

• Consumergroup, which controls who can perform consumergroup-level operations such as joining or describing
a consumergroup. Its value must exactly match the group.id of a consumergroup.

• Host, which controls fromwhere specific operations can be performed. Think of this as a way to achieve IP filtering
in Kafka. You can set the value of this resource to the wildcard (*), which represents all hosts.

Authorized Actions

You can perform multiple actions on each resource. The following operations are supported by Kafka, though not all
actions are valid on all resources.

• ALL, this is a wildcard action, and represents all possible actions on a resource.
• read
• write
• create
• delete
• alter
• describe
• clusteraction

Authorizing Privileges

Privileges define what actions are allowed on a resource. A privilege is represented as a string in Sentry. The following
rules apply to a valid privilege.

• Can have at most one Host resource. If you do not specify a Host resource in your privilege string, Host=* is
assumed.

• Must have exactly one non-Host resource.
• Must have exactly one action specified at the end of the privilege string.

For example, the following are valid privilege strings:

Host=*->Topic=myTopic->action=ALL
Topic=test->action=ALL

Granting Privileges to a Role

The following examples grant privileges to the role test, so that users in testGroup can create a topic named
testTopic and produce to it.

However, before you can assign the test role, you must first create it. To create the test role:

$kafka-sentry -cr -r test

To confirm that the role was created, list the roles:

$ kafka-sentry -lr

If Sentry privileges caching is enabled, as recommended, the new privileges you assign take some time to appear in
the system. The time is the time-to-live interval of the Sentry privileges cache, which is set using

Cloudera Distribution of Apache Kafka | 45

Kafka Administration

sentry.kafka.caching.ttl.ms. By default, this interval is 30 seconds. For test clusters, it is beneficial to have
changes appear within the system as fast as possible, therefore, Cloudera recommends that you either use a lower
time interval, or disable caching with sentry.kafka.caching.enable.

• Allow users in testGroup to create a new topic from localhost.

$ kafka-sentry -gpr -r test -p "Host=127.0.0.1->Cluster=kafka-cluster->action=create"

• Allow users in testGroup to describe testTopic from localhost, which the user creates and uses.

$ kafka-sentry -gpr -r test -p "Host=127.0.0.1->Topic=testTopic->action=describe"

• Allow users in testGroup to write to testTopic from localhost, which allows users to produce to testTopic.

$ kafka-sentry -gpr -r test -p "Host=127.0.0.1->Topic=testTopic->action=write"

• Create testTopic.

$ kafka-topics --create --zookeeper localhost:2181 --replication-factor 1 \
 --partitions 1 --topic testTopic
$ kafka-topics --list --zookeeper localhost:2181 testTopic

• Assign the test role to the group testGroup:

kafka-sentry -arg -r test -g testGroup

• To verify that the test role is part of the group testGroup:

kafka-sentry -lr -g testGroup

• Produce to testTopic. Note that you have to pass a configuration file,producer.properties, with information
on JAAS configuration and other Kerberos authentication related information. See SASL Configuration for Kafka
Clients.

$ kafka-console-producer --broker-list localhost:9092 --topic testTopic \
 --producer.config producer.properties
This is a message
This is another message

• Allow users in testGroup to describe a consumer group, testconsumergroup, that it will start and join.

$ kafka-sentry -gpr -r test -p
"Host=127.0.0.1->Consumergroup=testconsumergroup->action=describe"

• Allow users in testGroup to read from a consumer group, testconsumergroup, that it will start and join.

$ kafka-sentry -gpr -r test -p "Host=127.0.0.1->Topic=testTopic->action=read"

• Allow users in testGroup to read from testTopic from localhost and to consume from testTopic.

$ kafka-sentry -gpr -r test -p
"Host=127.0.0.1->Consumergroup=testconsumergroup->action=read"

• Consume from testTopic. Note that you have to pass a configuration file, consumer.properties, with
information on JAAS configuration and other Kerberos authentication related information. The configuration file
must also specify group.id as testconsumergroup.

$ kafka-console-consumer --zookeeper localhost:2181 --topic testTopic --from-beginning
 --consumer.config consumer.properties

46 | Cloudera Distribution of Apache Kafka

Kafka Administration

http://kafka.apache.org/documentation.html#security_sasl_clientconfig
http://kafka.apache.org/documentation.html#security_sasl_clientconfig

This is a message
This is another message

Troubleshooting

If Kafka requests are failing due to authorization, the following steps can provide insight into the error:

• Make sure you are kinit'd as a user who has privileges to perform an operation.
• Identify which broker is hosting leader of the partition you are trying to produce to or consume from, as this leader

is going to authorize your request against Sentry. One easy way of debugging is to just have one Kafka broker.
Change log level of the Kafka broker to debug and restart the broker.

• Run the Kafka client or Kafka CLI with required arguments and capture the Kafka log, which should be something
like /var/log/kafka/kafka-broker-<HOST_ID>.log on kafka broker's host.

• There will be many Jetty logs, and filtering that out usually helps in reducing noise. Look for log messages from
org.apache.sentry.

• Look for following information in the filtered logs:

– Groups the user Kafka client or CLI is running as.
– Required privileges for the operation.
– Retrieved privileges from Sentry.
– Required and retrieved privileges comparison result.

This log information can provide insight into which privilege is not assigned to a user, causing a particular operation
to fail.

Configuring High Availability and Consistency for Kafka
To achieve high availability and consistency targets, adjust the following parameters to meet your requirements:

Replication Factor

The default replication factor for new topics is one. For high availability production systems, Cloudera recommends
setting the replication factor to at least three. This requires at least three Kafka brokers.

To change the replication factor, navigate to Kafka Service > Configuration > Service-Wide. Set Replication factor to
3, click Save Changes, and restart the Kafka service.

Preferred Leader Election

Kafka is designed with failure in mind. At some point in time, web communications or storage resources fail. When a
broker goes offline, one of the replicas becomes the new leader for the partition. When the broker comes back online,
it has no leader partitions. Kafka keeps track of which machine is configured to be the leader. Once the original broker
is back up and in a good state, Kafka restores the information it missed in the interim and makes it the partition leader
once more.

Preferred Leader Election is enabled by default, and should occur automatically unless you actively disable the feature.
Typically, the leader is restored within five minutes of coming back online. If the preferred leader is offline for a very
long time, though, it might need additional time to restore its required information from the replica.

There is a small possibility that some messages might be lost when switching back to the preferred leader. You can
minimize the chance of lost data by setting the acks property on the Producer to all. See Acknowledgements on
page 48.

Unclean Leader Election

Enable unclean leader election to allow an out-of-sync replica to become the leader and preserve the availability of
the partition. With unclean leader election, messages that were not synced to the new leader are lost. This provides

Cloudera Distribution of Apache Kafka | 47

Kafka Administration

balance between consistency (guaranteed message delivery) and availability. With unclean leader election disabled,
if a broker containing the leader replica for a partition becomes unavailable, and no in-sync replica exists to replace
it, the partition becomes unavailable until the leader replica or another in-sync replica is back online.

To enable unclean leader election, navigate to Kafka Service > Configuration > Service-Wide. Check the box labeled
Enable unclean leader election, click Save Changes, and restart the Kafka service.

Acknowledgements

When writing or configuring a Kafka producer, you can choose how many replicas commit a new message before the
message is acknowledged using the acks property (see Table 8: Kafka Sink Properties on page 36 for details).

Set acks to 0 (immediately acknowledge the message without waiting for any brokers to commit), 1 (acknowledge
after the leader commits the message), or all (acknowledge after all in-sync replicas are committed) according to
your requirements. Setting acks to all provides the highest consistency guarantee at the expense of slower writes
to the cluster.

Minimum In-sync Replicas

You can set the minimum number of in-sync replicas (ISRs) that must be available for the producer to successfully send
messages to a partition using the min.insync.replicas setting. If min.insync.replicas is set to 2 and acks is
set to all, each message must be written successfully to at least two replicas. This guarantees that the message is not
lost unless both hosts crash.

It also means that if one of the hosts crashes, the partition is no longer available for writes. Similar to the unclean
leader election configuration, setting min.insync.replicas is a balance between higher consistency (requiring
writes to more than one broker) and higher availability (allowing writes when fewer brokers are available).

The leader is considered one of the in-sync replicas. It is included in the count of total min.insync.replicas.
However, leaders are special, in that producers and consumers can only interact with leaders in a Kafka cluster.

To configure min.insync.replicas at the cluster level, navigate to Kafka Service > Configuration > Service-Wide.
SetMinimum number of replicas in ISR to the desired value, click Save Changes, and restart the Kafka service.

To set this parameter on a per-topic basis, navigate to Kafka Service > Configuration > Kafka broker Default Group >
Advanced, and add the following to the Kafka Broker Advanced Configuration Snippet (Safety Valve) for
kafka.properties:

min.insync.replicas.per.topic=topic_name_1:value,topic_name_2:value

Replace topic_name_nwith the topic names, and replace valuewith the desired minimum number of in-sync replicas.

You can also set this parameter using the /usr/bin/kafka-topics --alter command for each topic. For example:

/usr/bin/kafka-topics --alter --zookeeper zk01.example.com:2181 --topic topicname \
--config min.insync.replicas=2

Kafka MirrorMaker

Kafka mirroring enables maintaining a replica of an existing Kafka cluster. You can configure MirrorMaker directly in
Cloudera Manager 5.4 and higher.

The most important configuration setting is Destination broker list. This is a list of brokers on the destination cluster.
You should list more than one, to support high availability, but you do not need to list all brokers.

MirrorMaker requires that you specify a Topic whitelist that represents the exclusive set of topics to replicate. The
Topic blacklist setting has been removed in CDK 2.0 and higher Powered By Apache Kafka.

48 | Cloudera Distribution of Apache Kafka

Kafka Administration

Note: The Avoid Data Loss option from earlier releases has been removed in favor of automatically
setting the following properties. Also note that MirrorMaker starts correctly if you enter the numeric
values in the configuration snippet (rather than using "max integer" for retries and "max long" for
max.block.ms).

1. Producer settings

• acks=all

• retries=2147483647

• max.block.ms=9223372036854775807

2. Consumer setting

• auto.commit.enable=false

3. MirrorMaker setting

• abort.on.send.failure=true

Configuring Kafka for Performance and Resource Management
Kafka is optimized for small messages. According to benchmarks, the best performance occurs with 1 KB messages.
Larger messages (for example, 10 MB to 100 MB) can decrease throughput and significantly impact operations.

This topic describes options that can improve performance and reliability in your Kafka cluster:

Partitions and Memory Usage

For a quick video introduction to load balancing, see tl;dr: Balancing Apache Kafka Clusters.

Brokers allocate a buffer the size of replica.fetch.max.bytes for each partition they replicate. If
replica.fetch.max.bytes is set to 1 MiB, and you have 1000 partitions, about 1 GiB of RAM is required. Ensure
that the number of partitions multiplied by the size of the largest message does not exceed available memory.

The same consideration applies for the consumer fetch.message.max.bytes setting. Ensure that you have enough
memory for the largest message for each partition the consumer replicates. With larger messages, you might need to
use fewer partitions or provide more RAM.

Partition Reassignment

At some point you will likely exceed configured resources on your system. If you add a Kafka broker to your cluster to
handle increased demand, newpartitions are allocated to it (the same as any other broker), but it does not automatically
share the load of existing partitions on other brokers. To redistribute the existing load among brokers, you must
manually reassign partitions. You can do so using bin/kafka-reassign-partitions.sh script utilities.

To reassign partitions:

1. Create a list of topics you want to move.

topics-to-move.json
{"topics": [{"topic": "foo1"},
 {"topic": "foo2"}],
 "version":1
}

Cloudera Distribution of Apache Kafka | 49

Kafka Administration

https://engineering.linkedin.com/kafka/benchmarking-apache-kafka-2-million-writes-second-three-cheap-machines
https://youtu.be/t2pN4_HfGbY

2. Use the --generate option in kafka-reassign-partitions.sh to list the distribution of partitions and
replicas on your current brokers, followed by a list of suggested locations for partitions on your new broker.

bin/kafka-reassign-partitions.sh --zookeeper localhost:2181
 --topics-to-move-json-file topics-to-move.json
 --broker-list "4"
 --generate

Current partition replica assignment

{"version":1,
 "partitions":[{"topic":"foo1","partition":2,"replicas":[1,2]},
 {"topic":"foo1","partition":0,"replicas":[3,1]},
 {"topic":"foo2","partition":2,"replicas":[1,2]},
 {"topic":"foo2","partition":0,"replicas":[3,2]},
 {"topic":"foo1","partition":1,"replicas":[2,3]},
 {"topic":"foo2","partition":1,"replicas":[2,3]}]
}

{"version":1,
 "partitions":[{"topic":"foo1","partition":3,"replicas":[4]},
 {"topic":"foo1","partition":1,"replicas":[4]},
 {"topic":"foo2","partition":2,"replicas":[4]}]
}

3. Revise the suggested list if required, and then save it as a JSON file.
4. Use the --execute option in kafka-reassign-partitions.sh to start the redistirbution process, which can

take several hours in some cases.

> bin/kafka-reassign-partitions.sh \
 --zookeeper localhost:2181 \
 --reassignment-json-file expand-cluster-reassignment.json
 --execute

5. Use the --verify option in kafka-reassign-partitions.sh to check the status of your partitions.

Although reassigning partitions is labor-intensive, you should anticipate system growth and redistribute the load when
your system is at 70% capacity. If you wait until you are forced to redistribute because you have reached the limites
of your resources, the redistribution process can be extremely slow.

Garbage Collection

Large messages can cause longer garbage collection (GC) pauses as brokers allocate large chunks. Monitor the GC log
and the server log. If long GC pauses cause Kafka to abandon the ZooKeeper session, youmay need to configure longer
timeout values for zookeeper.session.timeout.ms.

Handling Large Messages

Before configuring Kafka to handle large messages, first consider the following options to reduce message size:

• The Kafka producer can compress messages. For example, if the original message is a text-based format (such as
XML), in most cases the compressed message will be sufficiently small.

Use the compression.codec and compressed.topics producer configuration parameters to enable
compression. Gzip and Snappy are supported.

• If shared storage (such as NAS, HDFS, or S3) is available, consider placing large files on the shared storage and
using Kafka to send a message with the file location. In many cases, this can be much faster than using Kafka to
send the large file itself.

• Split large messages into 1 KB segments with the producing client, using partition keys to ensure that all segments
are sent to the same Kafka partition in the correct order. The consuming client can then reconstruct the original
large message.

If you still need to send large messages with Kafka, modify the configuration parameters presented in the following
sections to match your requirements.

50 | Cloudera Distribution of Apache Kafka

Kafka Administration

Broker Configuration

Table 10: Broker Configuration Properties

DescriptionDefault ValueProperty

Maximum message size the broker accepts. When using
the old consumer, this property must be lower than the

1000000

(1 MB)

message.max.bytes

consumerfetch.message.max.bytes, or the consumer
cannot consume the message.

Size of a Kafka data file. Must be larger than any single
message.

1073741824

(1 GiB)

log.segment.bytes

Maximum message size a broker can replicate. Must be
larger than message.max.bytes, or a broker can accept

1048576

(1 MiB)

replica.fetch.max.bytes

messages it cannot replicate, potentially resulting in data
loss.

Consumer Configuration
Kafka offers two separate consumer implementations, the old consumer and the new consumer. The old consumer is
the Consumer class written in Scala. The new consumer is the KafkaConsumer class written in Java. When configuring
Kafka to handle large messages, different properties have to be configured for each consumer implementation.
Old Consumer

Table 11: Old Consumer Configuration Properties

DescriptionDefault ValueProperty

The maximum amount of data the server should return
for a fetch request. This is a hard limit. If a message batch

52428800

(50 MiB)

fetch.message.max.bytes

is larger than this limit, the consumer will not be able to
consume the message or any subsequent messages in a
given partition.

New Consumer

Table 12: New Consumer Configuration Properties

DescriptionDefault ValueProperty

The maximum amount of data per-partition the server
will return.

1048576

(10 MiB)

max.partition.fetch.bytes

The maximum amount of data the server should return
for a fetch request.

52428800

(50 MiB)

fetch.max.bytes

Note: The new consumer is able to consume a message batch that is larger than the default value of
the max.partition.fetch.bytes or fetch.max.bytes property. However, the batch will be
sent alone, which can cause performance degradation.

Tuning Kafka for Optimal Performance

For a quick video introduction to tuning Kafka, see tl;dr: Tuning Your Apache Kafka Cluster.

Cloudera Distribution of Apache Kafka | 51

Kafka Administration

https://youtu.be/6hFhf6LgEps

Performance tuning involves two important metrics: Latencymeasures how long it takes to process one event, and
throughputmeasures howmany events arrive within a specific amount of time. Most systems are optimized for either
latency or throughput. Kafka is balanced for both. A well tuned Kafka system has just enough brokers to handle topic
throughput, given the latency required to process information as it is received.

Tuning your producers, brokers, and consumers to send, process, and receive the largest possible batches within a
manageable amount of time results in the best balance of latency and throughput for your Kafka cluster.

Tuning Kafka Producers

Kafka uses an asynchronous publish/subscribe model. When your producer calls the send() command, the result
returned is a future. The future provides methods to let you check the status of the information in process. When the
batch is ready, the producer sends it to the broker. The Kafka broker waits for an event, receives the result, and then
responds that the transaction is complete.

If you do not use a future, you could get just one record, wait for the result, and then send a response. Latency is very
low, but so is throughput. If each transaction takes 5 ms, throughput is 200 events per second.—slower than the
expected 100,000 events per second.

When you use Producer.send(), you fill up buffers on the producer. When a buffer is full, the producer sends the
buffer to the Kafka broker and begins to refill the buffer.

Two parameters are particularly important for latency and throughput: batch size and linger time.

Batch Size

batch.sizemeasures batch size in total bytes instead of the number of messages. It controls how many bytes of
data to collect before sending messages to the Kafka broker. Set this as high as possible, without exceeding available
memory. The default value is 16384.

If you increase the size of your buffer, it might never get full. The Producer sends the information eventually, based
on other triggers, such as linger time in milliseconds. Although you can impair memory usage by setting the buffer
batch size too high, this does not impact latency.

If your producer is sending all the time, you are probably getting the best throughput possible. If the producer is often
idle, you might not be writing enough data to warrant the current allocation of resources.

Linger Time

linger.ms sets themaximum time to buffer data in asynchronousmode. For example, a setting of 100 batches 100ms
of messages to send at once. This improves throughput, but the buffering adds message delivery latency.

By default, the producer does not wait. It sends the buffer any time data is available.

Instead of sending immediately, you can set linger.ms to 5 and sendmoremessages in one batch. This would reduce
the number of requests sent, but would add up to 5 milliseconds of latency to records sent, even if the load on the
system does not warrant the delay.

The farther away the broker is from the producer, themore overhead required to sendmessages. Increase linger.ms
for higher latency and higher throughput in your producer.

Tuning Kafka Brokers

Topics are divided into partitions. Each partition has a leader. Most partitions are written into leaders with multiple
replicas. When the leaders are not balanced properly, one might be overworked, compared to others. For more
information on load balancing, see Partitions and Memory Usage.

Depending on your system and how critical your data is, you want to be sure that you have sufficient replication sets
to preserve your data. Cloudera recommends starting with one partition per physical storage disk and one consumer
per partition.

52 | Cloudera Distribution of Apache Kafka

Kafka Administration

Tuning Kafka Consumers

Consumers can create throughput issues on the other side of the pipeline. The maximum number of consumers for a
topic is equal to the number of partitions. You need enough partitions to handle all the consumers needed to keep up
with the producers.

Consumers in the same consumer group split the partitions among them. Adding more consumers to a group can
enhance performance. Adding more consumer groups does not affect performance.

How you use the replica.high.watermark.checkpoint.interval.ms property can affect throughput. When
reading from a partition, you can mark the last point where you read information. That way, if you have to go back
and locate missing data, you have a checkpoint from which to move forward without having to reread prior data. If
you set the checkpointwatermark for every event, youwill never lose amessage, but it significantly impacts performance.
If, instead, you set it to check the offset every hundred messages, you have a margin of safety with much less impact
on throughput.

Configuring JMX Ephemeral Ports

Kafka uses two high-numbered ephemeral ports for JMX. These ports are listed when you view netstat -anp

information for the Kafka Broker process.

You can change the number for the first port by adding a command similar to
-Dcom.sun.management.jmxremote.rmi.port=<port number> to the field Additional Broker Java Options
(broker_java_opts) in Cloudera Manager. The JMX_PORT configuration maps to
com.sun.management.jmxremote.port by default.

The second ephemeral port used for JMX communication is implemented for the JRMPprotocol and cannot be changed.

Quotas

For a quick video introduction to quotas, see tl;dr: Quotas.

In Cloudera Distribution of Kafka 2.0 and higher, Kafka can enforce quotas on produce and fetch requests. Producers
and consumers can use very high volumes of data. This can monopolize broker resources, cause network saturation,
and generally deny service to other clients and the brokers themselves. Quotas protect against these issues and are
important for large, multi-tenant clusters where a small set of clients using high volumes of data can degrade the user
experience.

Quotas are byte-rate thresholds, defined per client ID. A client ID logically identifies an application making a request.
A single client ID can span multiple producer and consumer instances. The quota is applied for all instances as a single
entity: For example, if a client ID has a produce quota of 10 MB/s, that quota is shared across all instances with that
same ID.

When running Kafka as a service, quotas can enforce API limits. By default, each unique client ID receives a fixed quota
in bytes per second, as configured by the cluster (quota.producer.default, quota.consumer.default). This
quota is defined on a per-broker basis. Each client can publish or fetch a maximum of X bytes per second per broker
before it gets throttled.

The broker does not return an error when a client exceeds its quota, but instead attempts to slow the client down.
The broker computes the amount of delay needed to bring a client under its quota and delays the response for that
amount of time. This approach keeps the quota violation transparent to clients (outside of client-side metrics). This
also prevents clients from having to implement special backoff and retry behavior.

Setting Quotas

You can override the default quota for client IDs that need a higher or lower quota. Themechanism is similar to per-topic
log configuration overrides. Write your client ID overrides to ZooKeeper under /config/clients. All brokers read
the overrides, which are effective immediately. You can change quotas without having to do a rolling restart of the
entire cluster.

Cloudera Distribution of Apache Kafka | 53

Kafka Administration

https://en.wikipedia.org/wiki/Ephemeral_port
https://youtu.be/zMAwFoPdcmM

By default, each client ID receives an unlimited quota. The following configuration sets the default quota per producer
and consumer client ID to 10 MB/s.

quota.producer.default=10485760
quota.consumer.default=10485760

To set quotas using ClouderaManager, open the Kafka Configuration page and search forQuota. Use the fields provided
to set the Default Consumer Quota or Default Producer Quota. For more information, see Modifying Configuration
Properties Using Cloudera Manager.

Setting User Limits for Kafka

Kafka opens many files at the same time. The default setting of 1024 for the maximum number of open files on most
Unix-like systems is insufficient. Any significant load can result in failures and cause error messages such as
java.io.IOException...(Too many open files) to be logged in the Kafka or HDFS log files. You might also
notice errors such as this:

ERROR Error in acceptor (kafka.network.Acceptor)
java.io.IOException: Too many open files

Cloudera recommends setting the value to a relatively high starting point, such as 32,768.

You can monitor the number of file descriptors in use on the Kafka Broker dashboard. In Cloudera Manager:

1. Go to the Kafka service.
2. Select a Kafka Broker.
3. Open Charts Library > Process Resources and scroll down to the File Descriptors chart.

See http://www.cloudera.com/documentation/enterprise/latest/topics/cm_dg_view_charts.html.

Viewing Kafka Metrics
For the complete list of Kafka metrics, see:

• Kafka Metrics
• Kafka Broker Metrics
• Kafka Broker Topic Metrics
• Kafka MirrorMaker Metrics
• Kafka Replica Metrics

Working with Kafka Logs
The Kafka parcel is configured to log all Kafka log messages to a single file, /var/log/kafka/server.log, by
default. You can view, filter, and search this log using Cloudera Manager. See Logs.

For debugging purposes, you can create a separate file with TRACE level logs of a specific component (such as the
controller) or the state changes.

For example, to restore the default Apache Kafka log4j configuration, do the following:

1. Navigate to the Kafka Broker Configuration page.
2. Search for the Kafka Broker Logging Advanced Configuration Snippet (Safety Valve) field.
3. Copy and paste the following into the configuration snippet field:

log4j.appender.kafkaAppender=org.apache.log4j.DailyRollingFileAppender
log4j.appender.kafkaAppender.DatePattern='.'yyyy-MM-dd-HH
log4j.appender.kafkaAppender.File=${log.dir}/kafka_server.log
log4j.appender.kafkaAppender.layout=org.apache.log4j.PatternLayout
log4j.appender.kafkaAppender.layout.ConversionPattern=[%d] %p %m (%c)%n

54 | Cloudera Distribution of Apache Kafka

Kafka Administration

http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cm_mc_mod_configs.html
http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cm_mc_mod_configs.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_dg_view_charts.html
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cm_metrics_kafka.html
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cm_metrics_kafka_broker.html
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cm_metrics_kafka_broker_topic.html
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cm_metrics_kafka_mirrormaker.html
http://www.cloudera.com/content/cloudera/en/documentation/core/latest/topics/cm_metrics_kafka_replica.html
http://www.cloudera.com/documentation/enterprise/latest/topics/cm_dg_logs.html

log4j.appender.stateChangeAppender=org.apache.log4j.DailyRollingFileAppender
log4j.appender.stateChangeAppender.DatePattern='.'yyyy-MM-dd-HH
log4j.appender.stateChangeAppender.File=${log.dir}/state-change.log
log4j.appender.stateChangeAppender.layout=org.apache.log4j.PatternLayout
log4j.appender.stateChangeAppender.layout.ConversionPattern=[%d] %p %m (%c)%n

log4j.appender.requestAppender=org.apache.log4j.DailyRollingFileAppender
log4j.appender.requestAppender.DatePattern='.'yyyy-MM-dd-HH
log4j.appender.requestAppender.File=${log.dir}/kafka-request.log
log4j.appender.requestAppender.layout=org.apache.log4j.PatternLayout
log4j.appender.requestAppender.layout.ConversionPattern=[%d] %p %m (%c)%n

log4j.appender.cleanerAppender=org.apache.log4j.DailyRollingFileAppender
log4j.appender.cleanerAppender.DatePattern='.'yyyy-MM-dd-HH
log4j.appender.cleanerAppender.File=${log.dir}/log-cleaner.log
log4j.appender.cleanerAppender.layout=org.apache.log4j.PatternLayout
log4j.appender.cleanerAppender.layout.ConversionPattern=[%d] %p %m (%c)%n

log4j.appender.controllerAppender=org.apache.log4j.DailyRollingFileAppender
log4j.appender.controllerAppender.DatePattern='.'yyyy-MM-dd-HH
log4j.appender.controllerAppender.File=${log.dir}/controller.log
log4j.appender.controllerAppender.layout=org.apache.log4j.PatternLayout
log4j.appender.controllerAppender.layout.ConversionPattern=[%d] %p %m (%c)%n

Turn on all our debugging info
#log4j.logger.kafka.producer.async.DefaultEventHandler=DEBUG, kafkaAppender
#log4j.logger.kafka.client.ClientUtils=DEBUG, kafkaAppender
#log4j.logger.kafka.perf=DEBUG, kafkaAppender
#log4j.logger.kafka.perf.ProducerPerformance$ProducerThread=DEBUG, kafkaAppender
#log4j.logger.org.I0Itec.zkclient.ZkClient=DEBUG
log4j.logger.kafka=INFO, kafkaAppender

log4j.logger.kafka.network.RequestChannel$=WARN, requestAppender
log4j.additivity.kafka.network.RequestChannel$=false

#log4j.logger.kafka.network.Processor=TRACE, requestAppender
#log4j.logger.kafka.server.KafkaApis=TRACE, requestAppender
#log4j.additivity.kafka.server.KafkaApis=false
log4j.logger.kafka.request.logger=WARN, requestAppender
log4j.additivity.kafka.request.logger=false

log4j.logger.kafka.controller=TRACE, controllerAppender
log4j.additivity.kafka.controller=false

log4j.logger.kafka.log.LogCleaner=INFO, cleanerAppender
log4j.additivity.kafka.log.LogCleaner=false

log4j.logger.state.change.logger=TRACE, stateChangeAppender
log4j.additivity.state.change.logger=false

Alternatively, you can add only the appenders you need.

For more information on setting properties, see Modifying Configuration Properties Using Cloudera Manager.

Cloudera Distribution of Apache Kafka | 55

Kafka Administration

http://www.cloudera.com/content/www/en-us/documentation/enterprise/latest/topics/cm_mc_mod_configs.html?scroll=cmug_topic_5_3

Appendix: Apache License, Version 2.0

SPDX short identifier: Apache-2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through
9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or
indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of
fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications, including but not limited to software source
code, documentation source, and configuration files.

"Object" form shall mean any form resulting frommechanical transformation or translation of a Source form, including
but not limited to compiled object code, generated documentation, and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as
indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix
below).

"Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the
Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole,
an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or
additions to thatWork or DerivativeWorks thereof, that is intentionally submitted to Licensor for inclusion in theWork
by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For
the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to
the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of
discussing and improving theWork, but excluding communication that is conspicuouslymarked or otherwise designated
in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whoma Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare DerivativeWorks of, publicly
display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License.

Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide,
non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license tomake, havemade,
use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims

56 | Cloudera

Appendix: Apache License, Version 2.0

licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against
any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated
within theWork constitutes direct or contributory patent infringement, then any patent licenses granted to You under
this License for that Work shall terminate as of the date such litigation is filed.

4. Redistribution.

You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You meet the following conditions:

1. You must give any other recipients of the Work or Derivative Works a copy of this License; and
2. You must cause any modified files to carry prominent notices stating that You changed the files; and
3. You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark,

and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part
of the Derivative Works; and

4. If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE
text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along
with the DerivativeWorks; or, within a display generated by the DerivativeWorks, if andwherever such third-party
notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify
the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or
as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be
construed as modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as
a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated
in this License.

5. Submission of Contributions.

Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the
Licensor shall be under the terms and conditions of this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks.

This License does not grant permission to use the trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing
the content of the NOTICE file.

7. Disclaimer of Warranty.

Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides
its Contributions) on an "AS IS" BASIS,WITHOUTWARRANTIES OR CONDITIONSOF ANY KIND, either express or implied,
including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or
redistributing the Work and assume any risks associated with Your exercise of permissions under this License.

8. Limitation of Liability.

In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required
by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable
to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising
as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss
of goodwill, work stoppage, computer failure ormalfunction, or any and all other commercial damages or losses), even
if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability.

Cloudera | 57

Appendix: Apache License, Version 2.0

While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance
of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in
accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any
other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work

To apply the Apache License to your work, attach the following boilerplate notice, with the fields enclosed by brackets
"[]" replaced with your own identifying information. (Don't include the brackets!) The text should be enclosed in the
appropriate comment syntax for the file format. We also recommend that a file or class name and description of
purpose be included on the same "printed page" as the copyright notice for easier identification within third-party
archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

58 | Cloudera

Appendix: Apache License, Version 2.0

	Table of Contents
	Cloudera Distribution of Apache Kafka Overview
	Understanding Kafka Terminology

	Cloudera Distribution of Apache Kafka Release Notes
	What's New in Cloudera Distribution of Apache Kafka?
	Cloudera Distribution of Apache Kafka Requirements and Supported Versions
	Supported CDH and Cloudera Manager Releases
	Supported Integrations

	Supported Operating Systems
	SUSE Linux Enterprise Server (SLES)

	Supported JDK Versions
	Ports Used by Kafka

	Issues Fixed in Cloudera Distribution of Apache Kafka
	Issues Fixed in Cloudera Distribution of Apache Kafka 2.1.2
	Issues Fixed in Cloudera Distribution of Apache Kafka 2.1.1
	Issues Fixed in Cloudera Distribution of Apache Kafka 2.1.0
	Issues Fixed in Cloudera Distribution of Apache Kafka 2.0.2
	Issues Fixed in Cloudera Distribution of Apache Kafka 2.0.1
	Issues Fixed in Cloudera Distribution of Apache Kafka 2.0.0
	Issues Fixed in Cloudera Distribution of Apache Kafka 1.4.0
	Issues Fixed in Cloudera Distribution of Apache Kafka 1.3.2
	Issues Fixed in Cloudera Distribution of Apache Kafka 1.3.1
	Issues Fixed in Cloudera Distribution of Apache Kafka 1.3.0
	Issues Fixed in Cloudera Distribution of Apache Kafka 1.2.0

	Known Issues in Cloudera Distribution of Apache Kafka
	Cloudera Distribution of Apache Kafka Incompatible Changes and Limitations

	Cloudera Distribution of Apache Kafka Version and Packaging Information
	Examples of Cloudera Distribution of Apache Kafka Versions
	Cloudera Distribution of Apache Kafka Versions
	Maven Artifacts for Kafka

	Installing, Migrating and Upgrading Kafka
	Installing or Upgrading Kafka
	General Information Regarding Installation and Upgrade
	Graceful Shutdown of Kafka Brokers
	Disks and Filesystem
	Installing or Upgrading Kafka from a Parcel
	Installing or Upgrading Kafka from a Package
	Special Considerations When Upgrading from Kafka 1.x to Kafka 2.x
	Special Considerations When Upgrading to Kafka 2.1.x

	Migrating from Apache Kafka to Cloudera Distribution of Apache Kafka
	Steps for Migrating from Apache Kafka to Cloudera Distribution of Apache Kafka

	Using Kafka
	Using Kafka Command-line Tools
	Using Kafka with Spark Streaming
	Using Kafka with Flume
	Additional Considerations When Using Kafka

	Kafka Administration
	Configuring Kafka Security
	Deploying SSL for Kafka
	Using Kafka Supported Protocols
	Enabling Kerberos Authentication
	Enabling Encryption at Rest
	Using Kafka with Sentry Authorization
	Configuring Kafka to Use Sentry Authentication
	Authorizable Resources
	Authorized Actions
	Authorizing Privileges
	Granting Privileges to a Role
	Troubleshooting

	Configuring High Availability and Consistency for Kafka
	Configuring Kafka for Performance and Resource Management
	Partitions and Memory Usage
	Garbage Collection
	Handling Large Messages
	Tuning Kafka for Optimal Performance
	Tuning Kafka Producers
	Batch Size
	Linger Time

	Tuning Kafka Brokers
	Tuning Kafka Consumers

	Configuring JMX Ephemeral Ports
	Quotas
	Setting Quotas

	Setting User Limits for Kafka

	Viewing Kafka Metrics
	Working with Kafka Logs

	Appendix: Apache License, Version 2.0

