Your browser is out of date

Update your browser to view this website correctly. Update my browser now

×

Increasing the likelihood of success

Every machine learning effort requires a programmatic approach. It starts with a feasibility study: Is it even possible to solve a given data problem with the available data and the requirements of the business? Through careful exploratory machine learning work, we validate the feasibility of machine learning project ambition. Sometimes success can even be measured in cost savings from identifying an effort that won’t pan out. 

Rules of engagement

Our three-phase process aims to usher your project from science to engineering, starting with proof of concept, carefully documenting what worked and didn't work, and ending with the handoff from your data scientists to production. The length of a typical engagement depends on the complexity of the project.

We break it up into three phases:

  1. Exploration (two weeks)
  2. Algorithmic excellence (a few weeks to a couple of months)
  3. Operationalization (a few weeks to a couple of months)
Mapping out a hadoop cluster

Learn more about Cloudera machine learning advisory services

Yes, I would like to be contacted by Cloudera for newsletters, promotions, events and marketing activities. Please read our privacy and data policy.
Yes, I consent to my information being shared with Cloudera's solution partners to offer related products and services. Please read our privacy and data policy.
I agree to Cloudera's terms and conditions.

Your form submission has failed.

This may have been caused by one of the following:

  • Your request timed out
  • A plugin/browser extention blocked the submission. If you have an ad blocking plugin please disable it and close this message to reload the page.