X

Cloudera Tutorials

Optimize your time with detailed tutorials that clearly explain the best way to deploy, use, and manage Cloudera products. Login or register below to access all Cloudera tutorials.

Cloudera named a leader in 2022 Gartner® Magic Quadrant™ for Cloud Database Management Systems Get the report

Ready to Get Started?

 

NOTICE

 

As of January 31, 2021, this tutorial references legacy products that no longer represent Cloudera’s current product offerings.

Please visit recommended tutorials:

 

Introduction

So what is Schema Registry and what benefits does it provide? Would using it make a data pipeline more robust and maintainable? Let us explore exactly what Schema Registry is and how it fits into modern data architectures.

Prerequisites

Outline

What is Schema Registry?

Schema Registry

Schema Registry provides a centralized repository for schemas and metadata, allowing services to flexibly interact and exchange data with each other without the challenge of managing and sharing schemas between them.

Schema Registry has support for multiple underlying schema representations (Avro, JSON, etc.) and is able to store a schema's corresponding serializer and deserializer.

Smaller Payloads

Typically, when serializing data for transmission using schemas, the actual schema (text) needs to be transmitted with the data. This results in an increase of payload size.

Using Schema Registry, all schemas are registered with a central system. Data producers no longer need to include the full schema text with the payload, but instead only include the ID of that schema, also resulting in speedier serialization.

Payload differences

Differing Schemas

Consider the case where thousands of medical devices are reading the vitals of patients and relaying information back to a server.

The services and applications in your pipeline are expecting data using a specific format and fields that these medical devices use.

What about when medical devices from a different vendor are added to the system? Data in a different format carrying a different set of fields would typically require updates to the different components of your data pipeline.

Schema Registry enables generic format conversion and generic routing, allowing you to build a resilient pipeline able to handle data in different format with varying sets of fields.

Schema Evolution

Following the use-case above, consider the case when the software in some of the medical devices you are collecting data from is updated. Some devices now collect new data points, while other devices report to same limited number of fields as before. Similarly, consider when the processing step in the pipeline is altered to output data with fewer or more fields than its previous version. Typically, for either of these cases, the rest of your pipeline would need to be updated to handle these changes.

With Schema Registry, the different components in your architecture (IoT devices, routing logic, processing nodes, etc.) can evolve at different rates. Components can change the shape of its data while Schema Registry handles the translation from one schema to another, ensuring compatibility with downstream services.

Next: A Closer Look At The Architecture

Next, we'll go a bit more in depth and look at what different components make up Schema Registry and what they do for us.



Your form submission has failed.

This may have been caused by one of the following:

  • Your request timed out
  • A plugin/browser extension blocked the submission. If you have an ad blocking plugin please disable it and close this message to reload the page.