Cloudera Data Platform (CDP)
Public Cloud service rates
The table below reflects hourly pricing for Cloudera Data Platform Public Cloud Services offerings. The prices reflected do not include infrastructure cost. Infrastructure pricing is available through the respective cloud providers.
-
Amazon Web Services (AWS)
-
Microsoft Azure
-
Google Cloud Platform (GCP)
Data Engineering - AWS instances
Instance | Category | Cores | vCPUs | RAM | GPU | CCUs | Rate/hr |
m5.2xlarge | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.2800 |
m5.4xlarge | General purpose | 8 | 16 | 64 | 0 | 8.00 | $0.5600 |
m5.8xlarge | General purpose | 16 | 32 | 128 | 0 | 16.00 | $1.1200 |
m5.16xlarge | General purpose | 32 | 64 | 256 | 0 | 32.00 | $2.2400 |
m5.24xlarge | General purpose | 48 | 96 | 384 | 0 | 48.00 | $3.3600 |
m5a.2xlarge | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.2800 |
m5a.4xlarge | General purpose | 8 | 16 | 64 | 0 | 8.00 | $0.5600 |
m5a.8xlarge | General purpose | 16 | 32 | 128 | 0 | 16.00 | $1.1200 |
m5a.16xlarge | General purpose | 32 | 64 | 256 | 0 | 32.00 | $2.2400 |
m5a.24xlarge | General purpose | 48 | 96 | 384 | 0 | 48.00 | $3.3600 |
m5ad.2xlage | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.2800 |
m5ad.4xlarge | General purpose | 8 | 16 | 64 | 0 | 8.00 | $0.5600 |
m5ad.8xlarge | General purpose | 16 | 32 | 128 | 0 | 16.00 | $1.1200 |
m5ad.24xlarge | General purpose | 48 | 96 | 384 | 0 | 48.00 | $3.3600 |
m5d.2xlarge | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.2800 |
m5d.4xlarge | General purpose | 8 | 16 | 64 | 0 | 8.00 | $0.5600 |
m5d.8xlarge | General purpose | 16 | 32 | 128 | 0 | 16.00 | $1.1200 |
m5d.16xlarge | General purpose | 32 | 64 | 256 | 0 | 32.00 | $2.2400 |
m5d.24xlarge | General purpose | 48 | 96 | 384 | 0 | 48.00 | $3.3600 |
r5.2xlarge | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $0.4667 |
r5.4xlarge | Memory optimized |
8 | 16 | 128 | 0 | 13.33 | $0.9333 |
r5.8xlarge | Memory optimized |
16 | 32 | 256 | 0 | 26.67 | $1.8667 |
r5.16xlarge | Memory optimized |
32 | 64 | 512 | 0 | 53.33 | $3.7333 |
r5.24xlarge | Memory optimized | 48 | 96 | 768 | 0 | 80.00 | $5.6000 |
r5a.2xlarge | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $0.4667 |
r5a.4xlarge | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $0.9333 |
r5a.8xlarge | Memory optimized | 16 | 32 | 256 | 0 | 26.67 | $1.8667 |
r5a.16xlarge | Memory optimized | 32 | 64 | 512 | 0 | 53.33 | $3.7333 |
r5a.24xlarge | Memory optimized | 48 | 96 | 768 | 0 | 80.00 | $5.6000 |
r5ad.2xlarge | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $0.4667 |
r5ad.4xlarge | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $0.9333 |
r5ad.8xlarge | Memory optimized | 16 | 32 | 256 | 0 | 26.67 | $1.8667 |
r5ad.24xlarge | Memory optimized | 48 | 96 | 768 | 0 | 80.00 | $5.6000 |
r5d.2xlarge | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $0.4667 |
r5d.4xlarge | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $0.9333 |
r5d.8xlarge | Memory optimized | 16 | 32 | 256 | 0 | 26.67 | $1.8667 |
r5d.16xlarge | Memory optimized | 32 | 64 | 512 | 0 | 53.33 | $3.7333 |
r5d.24xlarge | Memory optimized | 48 | 96 | 768 | 0 | 80.00 | $5.6000 |
c5.2xlarge | Compute optimized | 4 | 8 | 16 | 0 | 2.67 | $0.1867 |
c5.4xlarge | Compute optimized |
8 | 16 | 32 | 0 | 5.33 | $0.3733 |
c5.9xlarge | Compute optimized |
18 | 36 | 72 | 0 | 12.00 | $0.8400 |
c5.12xlarge | Compute optimized |
24 | 48 | 96 | 0 | 16.00 | $1.1200 |
c5.24xlarge | Compute optimized |
48 | 96 | 192 | 0 | 32.00 | $2.2400 |
c5ad.2xlarge | Compute optimized |
4 | 8 | 16 | 0 | 2.67 | $0.1867 |
c5ad.4xlarge | Compute optimized |
8 | 16 | 32 | 0 | 5.33 | $0.3733 |
c5a.2xlarge | Compute optimized |
4 | 8 | 16 | 0 | 2.67 | $0.1867 |
c5a.4xlarge | Compute optimized |
8 | 16 | 32 | 0 | 5.33 | $0.3733 |
c5d.2xlarge | Compute optimized |
4 | 8 | 16 | 0 | 2.67 | $0.1867 |
c5d.4xlarge | Compute optimized |
8 | 16 | 32 | 0 | 5.33 | $0.3733 |
c5d.9xlarge | Compute optimized |
18 | 36 | 72 | 0 | 12.00 | $0.8400 |
i3.2xlarge | Storage optimized | 4 | 8 | 61 | 0 | 6.42 | $0.4492 |
i3.4xlarge | Storage optimized |
8 | 16 | 122 | 0 | 12.83 | $0.8983 |
i3.8xlarge | Storage optimized |
16 | 32 | 244 | 0 | 25.67 | $1.7967 |
Machine Learning - AWS instances
Instance | Category | Cores | vCPUs | RAM | GPU | CCUs | Rate/hr |
m4.large | General purpose | 1 | 2 | 8 | 0 | 1.00 | $0.2000 |
m4.xlarge | General purpose |
2 | 4 | 16 | 0 | 2.00 | $0.4000 |
m4.2xlarge | General purpose |
4 | 8 | 32 | 0 | 4.00 | $0.8000 |
m4.4xlarge | General purpose |
8 | 16 | 64 | 0 | 8.00 | $1.6000 |
m4.10xlarge | General purpose | 20 | 40 | 160 | 0 | 20.00 | $4.0000 |
m4.16xlarge | General purpose | 32 | 64 | 256 | 0 | 32.00 | $6.4000 |
m5.large | General purpose | 1 | 2 | 8 | 0 | 1.00 | $0.2000 |
m5.xlarge | General purpose | 2 | 4 | 16 | 0 | 2.00 | $0.4000 |
m5.2xlarge | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.8000 |
m5.4xlarge | General purpose | 8 | 16 | 64 | 0 | 8.00 | $1.6000 |
m5.8xlarge | General purpose | 16 | 32 | 128 | 0 | 16.00 | $3.2000 |
m5.12xlarge | General purpose | 24 | 48 | 192 | 0 | 24.00 | $4.8000 |
m5.24xlarge | General purpose | 48 | 96 | 384 | 0 | 48.00 | $9.6000 |
m5d.large | General purpose | 1 | 2 | 8 | 0 | 1.00 | $0.2000 |
m5d.xlarge | General purpose | 2 | 4 | 16 | 0 | 2.00 | $0.4000 |
m5d.2xlarge | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.8000 |
m5d.4xlarge | General purpose | 8 | 16 | 64 | 0 | 8.00 | $1.6000 |
m5d.12xlarge | General purpose | 24 | 48 | 192 | 0 | 24.00 | $4.8000 |
m5d.24xlarge | General purpose | 48 | 96 | 384 | 0 | 48.00 | $9.6000 |
m5a.large | General purpose | 1 | 2 | 8 | 0 | 1.00 | $0.2000 |
m5a.xlarge | General purpose | 2 | 4 | 16 | 0 | 2.00 | $0.4000 |
m5a.2xlarge | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.8000 |
m5a.4xlarge | General purpose | 8 | 16 | 64 | 0 | 8.00 | $1.6000 |
m5a.8xlarge | General purpose | 16 | 32 | 128 | 0 | 16.00 | $3.2000 |
m5a.12xlarge | General purpose | 24 | 48 | 192 | 0 | 24.00 | $4.8000 |
m5a.16xlarge | General purpose | 32 | 64 | 256 | 0 | 32.00 | $6.4000 |
m5a.24xlarge | General purpose | 48 | 96 | 384 | 0 | 48.00 | $9.6000 |
r3.xlarge | Memory optimized | 2 | 4 | 31 | 0 | 3.25 | $0.6500 |
r3.2xlarge | Memory optimized | 4 | 8 | 61 | 0 | 6.42 | $1.2833 |
r3.4xlarge | Memory optimized | 8 | 16 | 122 | 0 | 12.83 | $2.5667 |
r3.8xlarge | Memory optimized | 16 | 32 | 244 | 0 | 25.67 | $5.1333 |
r4.xlarge | Memory optimized | 2 | 4 | 31 | 0 | 3.25 | $0.6500 |
r4.2xlarge | Memory optimized | 4 | 8 | 61 | 0 | 6.42 | $1.2833 |
r4.4xlarge | Memory optimized | 8 | 16 | 122 | 0 | 12.83 | $2.5667 |
r4.8xlarge | Memory optimized | 16 | 32 | 244 | 0 | 25.67 | $5.1333 |
r4.16xlarge | Memory optimized | 32 | 64 | 488 | 0 | 51.33 | $10.2667 |
r5.large | Memory optimized | 1 | 2 | 16 | 0 | 1.67 | $0.3333 |
r5.xlarge | Memory optimized | 2 | 4 | 32 | 0 | 3.33 | $0.6667 |
r5.2xlarge | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $1.3333 |
r5.4xlarge | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $2.6667 |
r5.8xlarge | Memory optimized | 16 | 32 | 256 | 0 | 26.67 | $5.3333 |
r5.12xlarge | Memory optimized | 24 | 48 | 384 | 0 | 40.00 | $8.0000 |
r5.16xlarge | Memory optimized | 32 | 64 | 512 | 0 | 53.33 | $10.6667 |
r5.24xlarge | Memory optimized | 48 | 96 | 768 | 0 | 80.00 | $16.0000 |
r5d.large | Memory optimized | 1 | 2 | 16 | 0 | 1.67 | $0.3333 |
r5d.xlarge | Memory optimized | 2 | 4 | 32 | 0 | 3.33 | $0.6667 |
r5d.2xlarge | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $1.3333 |
r5d.4xlarge | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $2.6667 |
r5d.12xlarge | Memory optimized | 24 | 48 | 384 | 0 | 40.00 | $8.0000 |
r5d.24xlarge | Memory optimized | 48 | 96 | 768 | 0 | 80.00 | $16.0000 |
r5a.large | Memory optimized | 1 | 2 | 16 | 0 | 1.67 | $0.3333 |
r5a.xlarge | Memory optimized | 2 | 4 | 32 | 0 | 3.33 | $0.6667 |
r5a.2xlarge | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $1.3333 |
r5a.4xlarge | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $2.6667 |
r5a.8xlarge | Memory optimized | 16 | 32 | 256 | 0 | 26.67 | $5.3333 |
r5a.12xlarge | Memory optimized | 24 | 48 | 384 | 0 | 40.00 | $8.0000 |
r5a.16xlarge | Memory optimized | 32 | 64 | 512 | 0 | 53.33 | $10.6667 |
r5a.24xlarge | Memory optimized | 48 | 96 | 768 | 0 | 80.00 | $16.0000 |
z1d.large | Memory optimized | 1 | 2 | 16 | 0 | 1.67 | $0.3333 |
z1d.xlarge | Memory optimized | 2 | 4 | 32 | 0 | 3.33 | $0.6667 |
z1d.2xlarge | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $1.3333 |
z1d.3xlarge | Memory optimized | 6 | 12 | 96 | 0 | 10.00 | $2.0000 |
z1d.6xlarge | Memory optimized | 12 | 24 | 192 | 0 | 20.00 | $4.0000 |
z1d.12xlarge | Memory optimized | 24 | 48 | 384 | 0 | 40.00 | $8.0000 |
c4.2xlarge | Compute optimized | 4 | 8 | 15 | 0 | 2.58 | $0.5167 |
c4.4xlarge | Compute optimized | 8 | 16 | 30 | 0 | 5.17 | $1.0333 |
c4.8xlarge | Compute optimized | 18 | 36 | 60 | 0 | 11.00 | $2.2000 |
c5.xlarge | Compute optimized | 2 | 4 | 8 | 0 | 1.33 | $0.2667 |
c5.2xlarge | Compute optimized | 4 | 8 | 16 | 0 | 2.67 | $0.5333 |
c5.4xlarge | Compute optimized | 8 | 16 | 32 | 0 | 5.33 | $1.0667 |
c5.9xlarge | Compute optimized | 18 | 36 | 72 | 0 | 12.00 | $2.4000 |
c5.18xlarge | Compute optimized | 36 | 72 | 144 | 0 | 24.00 | $4.8000 |
c5d.xlarge | Compute optimized | 2 | 4 | 8 | 0 | 1.33 | $0.2667 |
c5d.2xlarge | Compute optimized | 4 | 8 | 16 | 0 | 2.67 | $0.5333 |
c5d.4xlarge | Compute optimized | 8 | 16 | 32 | 0 | 5.33 | $1.0667 |
c5d.9xlarge | Compute optimized | 18 | 36 | 72 | 0 | 12.00 | $2.4000 |
c5d.18xlarge | Compute optimized | 36 | 72 | 144 | 0 | 24.00 | $4.8000 |
i3.xlarge | Storage optimized | 2 | 4 | 31 | 0 | 3.25 | $0.6500 |
i3.2xlarge | Storage optimized | 4 | 8 | 61 | 0 | 6.42 | $1.2833 |
i3.4xlarge | Storage optimized | 8 | 16 | 122 | 0 | 12.83 | $2.5667 |
i3.8xlarge | Storage optimized | 16 | 32 | 244 | 0 | 25.67 | $5.1333 |
i3.16xlarge | Storage optimized | 32 | 64 | 488 | 0 | 51.33 | $10.2667 |
i2.xlarge | Storage optimized | 2 | 4 | 31 | 0 | 3.25 | $0.6500 |
i2.2xlarge | Storage optimized | 4 | 8 | 61 | 0 | 6.42 | $1.2833 |
i2.4xlarge | Storage optimized | 8 | 16 | 122 | 0 | 12.83 | $2.5667 |
i2.8xlarge | Storage optimized | 16 | 32 | 244 | 0 | 25.67 | $5.1333 |
p2.xlarge | GPU optimized | 2 | 4 | 61 | 1 | 5.75 | $0.9363 |
p2.8xlarge | GPU optimized | 8 | 16 | 488 | 8 | 43.33 | $7.4900 |
p2.16xlarge | GPU optimized | 16 | 32 | 732 | 16 | 66.33 | $12.1333 |
p3.2xlarge | GPU optimized | 4 | 8 | 61 | 1 | 6.42 | $1.8358 |
p3.8xlarge | GPU optimized | 16 | 32 | 244 | 4 | 25.67 | $7.4330 |
p3.16xlarge | GPU optimized | 32 | 64 | 488 | 8 | 51.33 | $14.6867 |
Data Hub - AWS instances
Instance | Category | Cores | vCPUs | RAM | GPU | CCUs | Data Hub Rate/hr |
m5.xlarge | General purpose |
2 | 4 | 16 | 0 | 2.00 | $0.0800 |
m5.2xlarge | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.1600 |
m5.4xlarge | General purpose | 8 | 16 | 64 | 0 | 8.00 | $0.3200 |
m5.8xlarge | General purpose | 16 | 32 | 128 | 0 | 16.00 | $0.6400 |
m5.12xlarge | General purpose | 24 | 48 | 192 | 0 | 24.00 | $0.9600 |
m5.16xlarge | General purpose | 32 | 64 | 256 | 0 | 32.00 | $1.0000 |
m5.24xlarge | General purpose | 48 | 96 | 384 | 0 | 48.00 | $1.0000 |
m5a.xlarge | General purpose | 2 | 4 | 16 | 0 | 2.00 | $0.0800 |
m5a.2xlarge | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.1600 |
m5a.4xlarge | General purpose | 8 | 16 | 64 | 0 | 8.00 | $0.3200 |
m5a.8xlarge | General purpose | 16 | 32 | 128 | 0 | 16.00 | $0.6400 |
m5a.12xlarge | General purpose | 24 | 48 | 192 | 0 | 24.00 | $0.9600 |
m5a.16xlarge | General purpose | 32 | 64 | 256 | 0 | 32.00 | $1.0000 |
m5a.24xlarge | General purpose | 48 | 96 | 384 | 0 | 48.00 | $1.0000 |
m5n.2xlarge | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.1600 |
m5n.4xlarge | General purpose | 8 | 16 | 64 | 0 | 8.00 | $0.3200 |
m5n.8xlarge | General purpose | 16 | 32 | 128 | 0 | 16.00 | $0.6400 |
r5.2xlarge | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $0.2667 |
r5.4xlarge | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $0.5333 |
r5.8xlarge | Memory optimized | 16 | 32 | 256 | 0 | 26.67 | $1.0000 |
r5.16xlarge | Memory optimized | 32 | 64 | 512 | 0 | 53.33 | $1.0000 |
r5d.xlarge | Memory optimized | 2 | 4 | 32 | 0 | 3.33 | $0.1333 |
r5d.2xlarge | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $0.2667 |
r5d.4xlarge | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $0.5333 |
r5d.8xlarge | Memory optimized | 16 | 32 | 256 | 0 | 26.67 | $1.0000 |
r5d.16xlarge | Memory optimized | 32 | 64 | 512 | 0 | 53.33 | $1.0000 |
r5n.2xlarge | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $0.2667 |
r5n.4xlarge | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $0.5333 |
r5n.8xlarge | Memory optimized | 16 | 32 | 256 | 0 | 26.67 | $1.0000 |
r5n.16xlarge | Memory optimized | 32 | 64 | 512 | 0 | 53.33 | $1.0000 |
r5dn.xlarge | Memory optimized | 2 | 4 | 32 | 0 | 3.33 | $0.1333 |
r5dn.2xlarge | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $0.2667 |
r5dn.4xlarge | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $0.5333 |
r5dn.8xlarge | Memory optimized | 16 | 32 | 256 | 0 | 26.67 | $1.0000 |
r5dn.16xlarge | Memory optimized | 32 | 64 | 512 | 0 | 53.33 | $1.0000 |
r5a.4xlarge | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $0.5333 |
r5a.8xlarge | Memory optimized | 16 | 32 | 256 | 0 | 26.67 | $1.0000 |
r5ad.xlarge | Memory optimized | 2 | 4 | 32 | 0 | 3.33 | $0.1333 |
r5ad.2xlarge | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $0.2667 |
r5ad.4xlarge | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $0.5333 |
r5ad.8xlarge | Memory optimized | 16 | 32 | 256 | 0 | 26.67 | $1.0000 |
r5ad.16xlarge | Memory optimized | 32 | 64 | 512 | 0 | 53.33 | $1.0000 |
x1e.2xlarge | Memory optimized | 4 | 8 | 244 | 0 | 21.67 | $0.8667 |
c5.2xlarge | Compute optimized | 4 | 8 | 16 | 0 | 2.67 | $0.1067 |
c5.4xlarge | Compute optimized | 8 | 16 | 32 | 0 | 5.33 | $0.2133 |
c5.9xlarge | Compute optimized | 18 | 36 | 72 | 0 | 12.00 | $0.4800 |
c5a.2xlarge | Compute optimized | 4 | 8 | 16 | 0 | 2.67 | $0.1067 |
c5a.4xlarge | Compute optimized | 8 | 16 | 32 | 0 | 5.33 | $0.2133 |
c5a.8xlarge | Compute optimized | 16 | 32 | 64 | 0 | 10.67 | $0.4267 |
i3.2xlarge | Storage optimized | 4 | 8 | 61 | 0 | 6.42 | $0.2567 |
i3.4xlarge | Storage optimized | 8 | 16 | 122 | 0 | 12.83 | $0.5133 |
i3.8xlarge | Storage optimized | 16 | 32 | 244 | 0 | 25.67 | $1.0000 |
h1.2xlarge | Storage optimized | 4 | 8 | 32 | 0 | 4.00 | $0.1600 |
h1.4xlarge | Storage optimized | 8 | 16 | 64 | 0 | 8.00 | $0.3200 |
h1.8xlarge | Storage optimized | 16 | 32 | 128 | 0 | 16.00 | $0.6400 |
d2.xlarge | Storage optimized | 2 | 4 | 30.5 | 0 | 3.21 | $0.1283 |
d2.2xlarge | Storage optimized | 4 | 8 | 61 | 0 | 6.42 | $0.2567 |
d2.4xlarge | Storage optimized | 8 | 16 | 122 | 0 | 12.83 | $0.5133 |
d2.8xlarge | Storage optimized | 18 | 36 | 244 | 0 | 26.33 | $1.0000 |
p3.2xlarge | GPU optimized | 4 | 8 | 61 | 1 | 6.42 | $1.1942 |
p3.8xlarge | GPU optimized | 16 | 32 | 244 | 4 | 25.67 | $4.7500 |
Data Hub - Flow Management - AWS instances
Rates are effective January 6th, 2021*
The Flow Management rate applies to all nodes in a Data Hub Cluster running NiFi regardless of whether the official Flow Management template or a custom template was used to create the cluster.
Instance | Category | Cores | vCPUs | RAM | GPU | CCUs | Rate/hr* |
m5.xlarge | General purpose | 2 | 4 | 16 | 0 | 2.00 | $0.3000 |
m5.2xlarge | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.6000 |
m5.4xlarge | General purpose | 8 | 16 | 64 | 0 | 8.00 | $1.2000 |
m5.8xlarge | General purpose | 16 | 32 | 128 | 0 | 16.00 | $2.4000 |
m5.12xlarge | General purpose | 24 | 48 | 192 | 0 | 24.00 | $3.6000 |
m5.16xlarge | General purpose | 32 | 64 | 256 | 0 | 32.00 | $4.8000 |
m5.24xlarge | General purpose | 48 | 96 | 384 | 0 | 48.00 | $7.2000 |
m5a.xlarge | General purpose | 2 | 4 | 16 | 0 | 2.00 | $0.3000 |
m5a.2xlarge | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.6000 |
m5a.4xlarge | General purpose | 8 | 16 | 64 | 0 | 8.00 | $1.2000 |
m5a.8xlarge | General purpose | 16 | 32 | 128 | 0 | 16.00 | $2.4000 |
m5a.12xlarge | General purpose | 24 | 48 | 192 | 0 | 24.00 | $3.6000 |
m5a.16xlarge | General purpose | 32 | 64 | 256 | 0 | 32.00 | $4.8000 |
m5a.24xlarge | General purpose | 48 | 96 | 384 | 0 | 48.00 | $7.2000 |
m5n.2xlarge | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.6000 |
m5n.4xlarge | General purpose | 8 | 16 | 64 | 0 | 8.00 | $1.2000 |
m5n.8xlarge | General purpose | 16 | 32 | 128 | 0 | 16.00 | $2.4000 |
r5.2xlarge | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $1.0000 |
r5.4xlarge | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $2.0000 |
r5.8xlarge | Memory optimized | 16 | 32 | 256 | 0 | 26.67 | $4.0000 |
r5.16xlarge | Memory optimized | 32 | 64 | 512 | 0 | 53.33 | $8.0000 |
r5d.xlarge | Memory optimized | 2 | 4 | 32 | 0 | 3.33 | $0.5000 |
r5d.2xlarge | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $1.0000 |
r5d.4xlarge | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $2.0000 |
r5d.8xlarge | Memory optimized | 16 | 32 | 256 | 0 | 26.67 | $4.0000 |
r5d.16xlarge | Memory optimized | 32 | 64 | 512 | 0 | 53.33 | $8.0000 |
r5n.2xlarge | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $1.0000 |
r5n.4xlarge | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $2.0000 |
r5n.8xlarge | Memory optimized | 16 | 32 | 256 | 0 | 26.67 | $4.0000 |
r5n.16xlarge | Memory optimized | 32 | 64 | 512 | 0 | 53.33 | $8.0000 |
r5dn.xlarge | Memory optimized | 2 | 4 | 32 | 0 | 3.33 | $0.5000 |
r5dn.2xlarge | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $1.0000 |
r5dn.4xlarge | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $2.0000 |
r5dn.8xlarge | Memory optimized | 16 | 32 | 256 | 0 | 26.67 | $4.0000 |
r5dn.16xlarge | Memory optimized | 32 | 64 | 512 | 0 | 53.33 | $8.0000 |
r5a.4xlarge | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $2.0000 |
r5a.8xlarge | Memory optimized | 16 | 32 | 256 | 0 | 26.67 | $4.0000 |
r5ad.xlarge | Memory optimized | 2 | 4 | 32 | 0 | 3.33 | $0.5000 |
r5ad.2xlarge | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $1.0000 |
r5ad.4xlarge | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $2.0000 |
r5ad.8xlarge | Memory optimized | 16 | 32 | 256 | 0 | 26.67 | $4.0000 |
r5ad.16xlarge | Memory optimized | 32 | 64 | 512 | 0 | 53.33 | $8.0000 |
x1e.2xlarge | Memory optimized | 4 | 8 | 244 | 0 | 21.67 | $3.2500 |
c5a.2xlarge | Compute optimized | 4 | 8 | 16 | 0 | 2.67 | $0.4000 |
c5a.4xlarge | Compute optimized | 8 | 16 | 32 | 0 | 5.33 | $0.8000 |
c5a.8xlarge | Compute optimized | 16 | 32 | 64 | 0 | 10.67 | $1.6000 |
c5.2xlarge | Compute optimized | 4 | 8 | 16 | 0 | 2.67 | $0.4000 |
c5.4xlarge | Compute optimized | 8 | 16 | 32 | 0 | 5.33 | $0.8000 |
c5.9xlarge | Compute optimized | 18 | 36 | 72 | 0 | 12.00 | $1.8000 |
i3.2xlarge | Storage optimized | 4 | 8 | 61 | 0 | 6.42 | $0.9625 |
i3.4xlarge | Storage optimized | 8 | 16 | 122 | 0 | 12.83 | $1.9250 |
i3.8xlarge | Storage optimized | 16 | 32 | 244 | 0 | 25.67 | $3.8500 |
h1.2xlarge | Storage optimized | 4 | 8 | 32 | 0 | 4.00 | $0.6000 |
h1.4xlarge | Storage optimized | 8 | 16 | 64 | 0 | 8.00 | $1.2000 |
h1.8xlarge | Storage optimized | 16 | 32 | 128 | 0 | 16.00 | $2.4000 |
d2.xlarge | Storage optimized | 2 | 4 | 30.5 | 0 | 3.21 | $0.4813 |
d2.2xlarge | Storage optimized | 4 | 8 | 61 | 0 | 6.42 | $0.9625 |
d2.4xlarge | Storage optimized | 8 | 16 | 122 | 0 | 12.83 | $1.9250 |
d2.8xlarge | Storage optimized | 18 | 36 | 244 | 0 | 26.33 | $3.9500 |
p3.2xlarge | GPU optimized | 4 | 8 | 61 | 1 | 6.42 | $0.9625 |
p3.8xlarge | GPU optimized | 16 | 32 | 244 | 4 | 25.67 | $3.8500 |
Data Engineering - Azure instances
Instance* | Category | Cores | vCPUs | RAM | GPU | CCUs | Rate/hr |
D8s v4 | General Purpose | 4 | 8 | 32 | 0 | 4.00 | $0.2800 |
D16s v4 | General Purpose | 8 | 16 | 64 | 0 | 8.00 | $0.5600 |
D32s v4 | General Purpose | 16 | 32 | 128 | 0 | 16.00 | $1.1200 |
D64s v4 | General Purpose | 32 | 64 | 256 | 0 | 32.00 | $2.2400 |
E8s v4 | Memory Optimized | 4 | 8 | 64 | 0 | 6.67 | $0.4667 |
E16s v4 | Memory Optimized | 8 | 16 | 128 | 0 | 13.33 | $0.9333 |
E32s v4 | Memory Optimized | 16 | 32 | 256 | 0 | 26.67 | $1.8667 |
E64s v4 | Memory Optimized | 32 | 64 | 504 | 0 | 52.67 | $3.6867 |
F8s v2 | Compute Optimized | 4 | 8 | 16 | 0 | 2.67 | $0.1867 |
F16s v2 | Compute Optimized | 8 | 16 | 32 | 0 | 5.33 | $0.3733 |
F32s v2 | Compute Optimized | 16 | 32 | 64 | 0 | 10.67 | $0.7467 |
F48s v2 | Compute Optimized | 24 | 48 | 96 | 0 | 16.00 | $1.1200 |
F72s v2 | Compute Optimized | 36 | 72 | 144 | 0 | 24.00 | $1.6800 |
Machine Learning - Azure instances
Instance | Category | Cores | vCPUs | RAM | GPU | CCUs | Rate/hr |
DS3 v2 | General purpose | 2 | 4 | 14 | 0 | 1.83 | $0.3667 |
DS4 v2 | General purpose | 4 | 8 | 28 | 0 | 3.67 | $0.7333 |
DS5 v2 | General purpose | 8 | 16 | 56 | 0 | 7.33 | $1.4667 |
D3 v2 | General purpose | 2 | 4 | 14 | 0 | 1.83 | $0.3667 |
D8s v3 | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.8000 |
D16s v3 | General purpose | 8 | 16 | 64 | 0 | 8.00 | $1.6000 |
D32s v3 | General purpose | 16 | 32 | 128 | 0 | 16.00 | $3.2000 |
D64s v3 | General purpose | 32 | 64 | 256 | 0 | 32.00 | $6.4000 |
D8 v3 | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.8000 |
D16 v3 | General purpose | 8 | 16 | 64 | 0 | 8.00 | $1.6000 |
D32 v3 | General purpose | 16 | 32 | 128 | 0 | 16.00 | $3.2000 |
D64 v3 | General purpose | 32 | 64 | 256 | 0 | 32.00 | $6.4000 |
DS12 v2 | General purpose | 2 | 4 | 28 | 0 | 3.00 | $0.6000 |
DS13 v2 | General purpose | 4 | 8 | 56 | 0 | 6.00 | $1.2000 |
DS14 v2 | General purpose | 8 | 16 | 112 | 0 | 12.00 | $2.4000 |
DS15 v2 | General purpose | 10 | 20 | 140 | 0 | 15.00 | $3.0000 |
D12 v2 | General purpose | 2 | 4 | 28 | 0 | 3.00 | $0.6000 |
D13 v2 | General purpose | 4 | 8 | 56 | 0 | 6.00 | $1.2000 |
D14 v2 | General purpose | 8 | 16 | 112 | 0 | 12.00 | $2.4000 |
D15 v2 | General purpose | 10 | 20 | 140 | 0 | 15.00 | $3.0000 |
E8s v3 | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $1.3333 |
E16s v3 | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $2.6667 |
E32s v3 | Memory optimized | 16 | 32 | 256 | 0 | 26.67 | $5.3333 |
E64s v3 | Memory optimized | 32 | 64 | 432 | 0 | 46.67 | $9.3333 |
L4s | Storage optimized | 4 | 8 | 32 | 0 | 4.00 | $0.8000 |
L8s | Storage optimized | 8 | 16 | 64 | 0 | 8.00 | $1.6000 |
L16s | Storage optimized | 16 | 32 | 128 | 0 | 16.00 | $3.2000 |
L32s | Storage optimized | 32 | 64 | 256 | 0 | 32.00 | $6.4000 |
L8s v2 | Storage optimized | 4 | 8 | 64 | 0 | 6.67 | $1.3333 |
L16s v2 | Storage optimized | 8 | 16 | 128 | 0 | 13.33 | $2.6667 |
L32s v2 | Storage optimized | 16 | 32 | 256 | 0 | 26.67 | $5.3333 |
L64s v2 | Storage optimized | 32 | 64 | 512 | 0 | 53.33 | $10.6667 |
L80s v2 | Storage optimized | 40 | 80 | 640 | 0 | 66.67 | $13.3333 |
F4s v2 | Storage optimized | 2 | 4 | 8 | 0 | 1.33 | $0.2667 |
F8s v2 | Storage optimized | 4 | 8 | 16 | 0 | 2.67 | $0.5333 |
F16s v2 | Storage optimized | 8 | 16 | 32 | 0 | 5.33 | $1.0667 |
F32s v2 | Storage optimized | 16 | 32 | 64 | 0 | 10.67 | $2.1333 |
F64s v2 | Storage optimized | 32 | 64 | 128 | 0 | 21.33 | $4.2667 |
F72s v2 | Storage optimized | 36 | 72 | 144 | 0 | 24.00 | $4.8000 |
F4 | Storage optimized | 4 | 8 | 8 | 0 | 2.00 | $0.4000 |
F8 | Storage optimized | 8 | 16 | 16 | 0 | 4.00 | $0.8000 |
F16 | Storage optimized | 16 | 32 | 32 | 0 | 8.00 | $1.6000 |
H16 | High performance | 16 | 32 | 112 | 0 | 14.67 | $2.9333 |
NC6 | GPU optimized | 6 | 12 | 56 | 1 | 6.67 | $1.0646 |
NC12 | GPU optimized | 12 | 24 | 112 | 2 | 13.33 | $2.1292 |
NC24 | GPU optimized | 24 | 48 | 224 | 4 | 26.67 | $4.2583 |
NC6s v2 | GPU optimized | 6 | 12 | 122 | 1 | 12.17 | $1.8867 |
NC12s v2 | GPU optimized | 12 | 24 | 244 | 2 | 24.33 | $3.7733 |
NV24s v2 | GPU optimized | 24 | 48 | 448 | 4 | 45.33 | $7.5467 |
NC6s v3 | GPU optimized | 6 | 12 | 112 | 1 | 11.33 | $2.5242 |
NC12s v3 | GPU optimized | 12 | 24 | 224 | 2 | 22.67 | $5.0483 |
NC24s v3 | GPU optimized | 24 | 48 | 448 | 4 | 45.33 | $10.0967 |
ND6s | GPU optimized | 6 | 12 | 112 | 1 | 11.33 | $1.9467 |
ND12s | GPU optimized | 12 | 24 | 224 | 2 | 22.67 | $3.8933 |
ND24s | GPU optimized | 24 | 48 | 448 | 4 | 45.33 | $7.7867 |
Data Hub - Azure instances
Instance | Category | Cores | vCPUs | RAM | GPU | CCUs | Rate/hr |
D8 v3 | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.1600 |
D16 v3 | General purpose | 8 | 16 | 64 | 0 | 8.00 | $0.3200 |
D32 v3 | General purpose | 16 | 32 | 128 | 0 | 16.00 | $0.6400 |
D64 v3 | General purpose | 32 | 64 | 256 | 0 | 32.00 | $1.0000 |
D8s v3 | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.1600 |
D16s v3 | General purpose | 8 | 16 | 64 | 0 | 8.00 | $0.3200 |
D32s v3 | General purpose | 16 | 32 | 128 | 0 | 16.00 | $0.6400 |
D64s v3 | General purpose | 32 | 64 | 256 | 0 | 32.00 | $1.0000 |
D8a v4 | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.1600 |
D16a v4 | General purpose | 8 | 16 | 64 | 0 | 8.00 | $0.3200 |
D32a v4 | General purpose | 16 | 32 | 128 | 0 | 16.00 | $0.6400 |
D64a v4 | General purpose | 32 | 64 | 256 | 0 | 32.00 | $1.0000 |
D8as v4 | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.1600 |
D16as v4 | General purpose | 8 | 16 | 64 | 0 | 8.00 | $0.3200 |
D32as v4 | General purpose | 16 | 32 | 128 | 0 | 16.00 | $0.6400 |
D64as v4 | General purpose | 32 | 64 | 256 | 0 | 32.00 | $1.0000 |
E8 v3 | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $0.2667 |
E16 v3 | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $0.5333 |
E32 v3 | Memory optimized | 16 | 32 | 256 | 0 | 26.67 | $1.0000 |
E64 v3 | Memory optimized | 32 | 64 | 512 | 0 | 53.33 | $1.0000 |
E4a v4 | Memory optimized | 2 | 4 | 32 | 0 | 3.33 | $0.1333 |
E8a v4 | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $0.2667 |
E16a v4 | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $0.5333 |
E32a v4 | Memory optimized | 16 | 32 | 256 | 0 | 26.67 | $1.0000 |
E64a v4 | Memory optimized | 32 | 64 | 512 | 0 | 53.33 | $1.0000 |
E64ds v4 | Memory optimized | 32 | 64 | 504 | 0 | 52.67 | $1.0000 |
D13 v2 | Memory optimized | 4 | 8 | 56 | 0 | 6.00 | $0.2400 |
D14 v2 | Memory optimized | 8 | 16 | 112 | 0 | 12.00 | $0.4800 |
F8s v2 | Compute optimized | 4 | 8 | 16 | 0 | 2.67 | $0.1067 |
F16s v2 | Compute optimized | 8 | 16 | 32 | 0 | 5.33 | $0.2133 |
F32s v2 | Compute optimized | 16 | 32 | 64 | 0 | 10.67 | $0.4267 |
L8s v2 | Storage optimized | 4 | 8 | 64 | 0 | 6.67 | $0.2667 |
L16s v2 | Storage optimized | 8 | 16 | 128 | 0 | 13.33 | $0.5333 |
L32s v2 | Storage optimized | 16 | 32 | 256 | 0 | 26.67 | $1.0000 |
L48s v2 | Storage optimized | 24 | 48 | 384 | 0 | 40.00 | $1.0000 |
NC6 | GPU optimized | 3 | 6 | 56 | 1 | 5.67 | $0.3579 |
NC24r | GPU optimized | 12 | 24 | 244 | 4 | 24.33 | $1.4317 |
Data Hub - Flow Management - Azure instances
The Flow Management rate applies to all nodes in a Data Hub cluster running NiFi regardless of whether the official Flow Management template or a custom template was used to create the cluster.
Instance | Category | Cores | vCPUs | RAM | GPU | CCUs | Rate/hr* |
D8 v3 | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.6000 |
D16 v3 | General purpose | 8 | 16 | 64 | 0 | 8.00 | $1.2000 |
D32 v3 | General purpose | 16 | 32 | 128 | 0 | 16.00 | $2.4000 |
D64 v3 | General purpose | 32 | 64 | 256 | 0 | 32.00 | $4.8000 |
D8s v3 | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.6000 |
D16s v3 | General purpose | 8 | 16 | 64 | 0 | 8.00 | $1.2000 |
D32s v3 | General purpose | 16 | 32 | 128 | 0 | 16.00 | $2.4000 |
D64s v3 | General purpose | 32 | 64 | 256 | 0 | 32.00 | $4.8000 |
D8a v4 | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.6000 |
D16a v4 | General purpose | 8 | 16 | 64 | 0 | 8.00 | $1.2000 |
D32a v4 | General purpose | 16 | 32 | 128 | 0 | 16.00 | $2.4000 |
D64a v4 | General purpose | 32 | 64 | 256 | 0 | 32.00 | $4.8000 |
D8as v4 | General purpose | 4 | 8 | 32 | 0 | 4.00 | $0.6000 |
D16as v4 | General purpose | 8 | 16 | 64 | 0 | 8.00 | $1.2000 |
D32as v4 | General purpose | 16 | 32 | 128 | 0 | 16.00 | $2.4000 |
D64as v4 | General purpose | 32 | 64 | 256 | 0 | 32.00 | $4.8000 |
E8 v3 | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $1.0000 |
E16 v3 | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $2.0000 |
E32 v3 | Memory optimized | 16 | 32 | 256 | 0 | 26.67 | $4.0000 |
E64 v3 | Memory optimized | 32 | 64 | 512 | 0 | 53.33 | $8.0000 |
E4a v4 | Memory optimized | 2 | 4 | 32 | 0 | 3.33 | $0.5000 |
E8a v4 | Memory optimized | 4 | 8 | 64 | 0 | 6.67 | $1.0000 |
E16a v4 | Memory optimized | 8 | 16 | 128 | 0 | 13.33 | $2.0000 |
E32a v4 | Memory optimized | 16 | 32 | 256 | 0 | 26.67 | $4.0000 |
E64a v4 | Memory optimized | 32 | 64 | 512 | 0 | 53.33 | $8.0000 |
E64ds_v4 | Memory optimized | 32 | 64 | 504 | 0 | 52.67 | $7.9000 |
D13 v2 | Memory optimized | 4 | 8 | 56 | 0 | 6.00 | $0.9000 |
D14 v2 | Memory optimized | 8 | 16 | 112 | 0 | 12.00 | $1.8000 |
F8s v2 | Compute optimized | 4 | 8 | 16 | 0 | 2.67 | $0.4000 |
F16s v2 | Compute optimized | 8 | 16 | 32 | 0 | 5.33 | $0.8000 |
F32s v2 | Compute optimized | 16 | 32 | 64 | 0 | 10.67 | $1.6000 |
L8s v2 | Storage optimized | 4 | 8 | 64 | 0 | 6.67 | $1.0000 |
L16s v2 | Storage optimized | 8 | 16 | 128 | 0 | 13.33 | $2.0000 |
L32s v2 | Storage optimized | 16 | 32 | 256 | 0 | 26.67 | $4.0000 |
L48s v2 | Storage optimized | 24 | 48 | 384 | 0 | 40.00 | $6.0000 |
NC6 | GPU optimized | 3 | 6 | 56 | 1 | 5.67 | $0.8500 |
NC24r | GPU optimized | 12 | 24 | 244 | 4 | 24.33 | $3.6500 |
Data Hub - GCP Instances
Instance | Category | Cores | vCPUs | RAM | GPU | CCUs | Rate/hr |
e2-standard-2 | General Purpose | 1 | 2 | 8 | 0 | 1.00 | $0.0400 |
e2-standard-4 | General Purpose | 2 | 4 | 16 | 0 | 2.00 | $0.0800 |
e2-standard-8 | General Purpose | 4 | 8 | 32 | 0 | 4.00 | $0.1600 |
e2-standard-16 | General Purpose | 8 | 16 | 64 | 0 | 8.00 | $0.3200 |
e2-standard-32 | General Purpose | 16 | 32 | 128 | 0 | 16.00 | $0.6400 |
n1-standard-2 | General Purpose | 1 | 2 | 7.5 | 0 | 0.96 | $0.0383 |
n1-standard-4 | General Purpose | 2 | 4 | 15 | 0 | 1.92 | $0.0767 |
n1-standard-8 | General Purpose | 4 | 8 | 30 | 0 | 3.83 | $0.1533 |
n1-standard-16 | General Purpose | 8 | 16 | 60 | 0 | 7.67 | $0.3067 |
n1-standard-32 | General Purpose | 16 | 32 | 120 | 0 | 15.33 | $0.6133 |
n1-standard-64 | General Purpose | 32 | 64 | 240 | 0 | 30.67 | $1.0000 |
n2.standard-2 | General Purpose | 1 | 2 | 8 | 0 | 1.00 | $0.0400 |
n2.standard-4 | General Purpose | 2 | 4 | 16 | 0 | 2.00 | $0.0800 |
n2.standard-8 | General Purpose | 4 | 8 | 32 | 0 | 4.00 | $0.1600 |
n2.standard-16 | General Purpose | 8 | 16 | 64 | 0 | 8.00 | $0.3200 |
n2.standard-32 | General Purpose | 16 | 32 | 128 | 0 | 16.00 | $0.6400 |
n2.standard-48 | General Purpose | 24 | 48 | 192 | 0 | 24.00 | $0.9600 |
n2.standard-64 | General Purpose | 32 | 64 | 256 | 0 | 32.00 | $1.0000 |
n2.standard-80 | General Purpose | 40 | 80 | 320 | 0 | 40.00 | $1.0000 |
n2d.standard-2 | General Purpose | 1 | 2 | 8 | 0 | 1.00 | $0.0400 |
n2d.standard-4 | General Purpose | 2 | 4 | 16 | 0 | 2.00 | $0.0800 |
n2d.standard-8 | General Purpose | 4 | 8 | 32 | 0 | 4.00 | $0.1600 |
n2dstandard-16 | General Purpose | 8 | 16 | 64 | 0 | 8.00 | $0.3200 |
n2d.standard-32 | General Purpose | 16 | 32 | 128 | 0 | 16.00 | $0.6400 |
n2d.standard-48 | General Purpose | 24 | 48 | 192 | 0 | 24.00 | $0.9600 |
n2d.standard-64 | General Purpose | 32 | 64 | 256 | 0 | 32.00 | $1.0000 |
n2d.standard-80 | General Purpose | 40 | 80 | 320 | 0 | 40.00 | $1.0000 |
e2-highmem-16 | High Memory | 8 | 16 | 128 | 0 | 13.33 | $0.5333 |
n2d-highmem-16 | High Memory | 8 | 16 | 128 | 0 | 13.33 | $0.5333 |
e2-highcpu-8 | High Compute | 4 | 8 | 8 | 0 | 2.00 | $0.0800 |
e2-highcpu-16 | High Compute | 8 | 16 | 16 | 0 | 4.00 | $0.1600 |
e2-highcpu-32 | High Compute | 16 | 32 | 32 | 0 | 8.00 | $0.3200 |
n2d-highcpu-8 | High Compute | 4 | 8 | 8 | 0 | 2.00 | $0.0800 |
n2d-highcpu-16 | High Compute | 8 | 16 | 16 | 0 | 4.00 | $0.1600 |
n2d-highcpu-32 | High Compute | 16 | 32 | 32 | 0 | 8.00 | $0.3200 |
Data Hub - Flow Management - GCP Instances
The Flow Management rate applies to all nodes in a Data Hub cluster running NiFi regardless of whether the official Flow Management template or a custom template was used to create the cluster.
Instance | Category | Cores | vCPUs | RAM | GPU | CCUs | Rate/hr* |
e2-standard-2 | General Purpose | 1 | 2 | 8 | 0 | 1.00 | $0.1500 |
e2-standard-4 | General Purpose | 2 | 4 | 16 | 0 | 2.00 | $0.3000 |
e2-standard-8 | General Purpose | 4 | 8 | 32 | 0 | 4.00 | $0.6000 |
e2-standard-16 | General Purpose | 8 | 16 | 64 | 0 | 8.00 | $1.2000 |
e2-standard-32 | General Purpose | 16 | 32 | 128 | 0 | 16.00 | $2.4000 |
n1-standard-2 | General Purpose | 1 | 2 | 7.5 | 0 | 0.96 | $0.1438 |
n1-standard-4 | General Purpose | 2 | 4 | 15 | 0 | 1.92 | $0.2875 |
n1-standard-8 | General Purpose | 4 | 8 | 30 | 0 | 3.83 | $0.5750 |
n1-standard-16 | General Purpose | 8 | 16 | 60 | 0 | 7.67 | $1.1500 |
n1-standard-32 | General Purpose | 16 | 32 | 120 | 0 | 15.33 | $2.3000 |
n1-standard-64 | General Purpose | 32 | 64 | 240 | 0 | 30.67 | $4.6000 |
n2.standard-2 | General Purpose | 1 | 2 | 8 | 0 | 1.00 | $0.1500 |
n2.standard-4 | General Purpose | 2 | 4 | 16 | 0 | 2.00 | $0.3000 |
n2.standard-8 | General Purpose | 4 | 8 | 32 | 0 | 4.00 | $0.6000 |
n2.standard-16 | General Purpose | 8 | 16 | 64 | 0 | 8.00 | $1.2000 |
n2.standard-32 | General Purpose | 16 | 32 | 128 | 0 | 16.00 | $2.4000 |
n2.standard-48 | General Purpose | 24 | 48 | 192 | 0 | 24.00 | $3.6000 |
n2.standard-64 | General Purpose | 32 | 64 | 256 | 0 | 32.00 | $4.8000 |
n2.standard-80 | General Purpose | 40 | 80 | 320 | 0 | 40.00 | $6.0000 |
n2d.standard-2 | General Purpose | 1 | 2 | 8 | 0 | 1.00 | $0.1500 |
n2d.standard-4 | General Purpose | 2 | 4 | 16 | 0 | 2.00 | $0.3000 |
n2d.standard-8 | General Purpose | 4 | 8 | 32 | 0 | 4.00 | $0.6000 |
n2dstandard-16 | General Purpose | 8 | 16 | 64 | 0 | 8.00 | $1.2000 |
n2d.standard-32 | General Purpose | 16 | 32 | 128 | 0 | 16.00 | $2.4000 |
n2d.standard-48 | General Purpose | 24 | 48 | 192 | 0 | 24.00 | $3.6000 |
n2d.standard-64 | General Purpose | 32 | 64 | 256 | 0 | 32.00 | $4.8000 |
n2d.standard-80 | General Purpose | 40 | 80 | 320 | 0 | 40.00 | $6.0000 |
e2-highmem-16 | High Memory | 8 | 16 | 128 | 0 | 13.33 | $2.0000 |
n2d-highmem-16 | High Memory | 8 | 16 | 128 | 0 | 13.33 | $2.0000 |
e2-highcpu-8 | High Compute | 4 | 8 | 8 | 0 | 2.00 | $0.3000 |
e2-highcpu-16 | High Compute | 8 | 16 | 16 | 0 | 4.00 | $0.6000 |
e2-highcpu-32 | High Compute | 16 | 32 | 32 | 0 | 8.00 | $1.2000 |
n2d-highcpu-8 | High Compute | 4 | 8 | 8 | 0 | 2.00 | $0.3000 |
n2d-highcpu-16 | High Compute | 8 | 16 | 16 | 0 | 4.00 | $0.6000 |
n2d-highcpu-32 | High Compute | 16 | 32 | 32 | 0 | 8.00 | $1.2000 |