Cloudera makes bold bet on strategic acquisition of Verta’s Operational AI Platform

Read the blog
Thriving with data science and machine learning means not only having the right platforms, tools and skills, but identifying use cases and implementing processes that can deliver repeatable, scalable business value. The challenges are numerous, from selecting data sets and data platforms, to architecting and optimizing data pipelines, and model training and deployment. In response, new solutions have emerged to deliver key capabilities in areas including visualization, self-service and real-time analytics. Watch this webinar to hear about: Moving from isolated pockets of success to an enterprise AI factory model where capabilities can be built and deployed consistently and repeatedly. Scaling enterprise machine learning across multiple dimensions, from strategy and people skills, to corporate compliance and technology platforms, to drive business adoption. Tapping technology platforms designed to unlock the power of open source for deploying machine learning capabilities with enterprise-grade security, governance and scale. Use cases and solutions for data science and machine learning spanning multiple industries.

Your form submission has failed.

This may have been caused by one of the following:

  • Your request timed out
  • A plugin/browser extension blocked the submission. If you have an ad blocking plugin please disable it and close this message to reload the page.